WorldWideScience

Sample records for amorphous carbon particles

  1. Amorphous calcium carbonate particles form coral skeletons

    Science.gov (United States)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.; Gilbert, Pupa U. P. A.

    2017-09-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  2. Stabilization of amorphous calcium carbonate by controlling its particle size

    NARCIS (Netherlands)

    Nudelman, F.; Sonmezler, E.; Bomans, P.H.H.; With, de G.; Sommerdijk, N.A.J.M.

    2010-01-01

    Amorphous calcium carbonate (ACC) nanoparticles of different size are prepared using a flow system. Post-synthesis stabilization with a layer of poly[(a,ß)-DL-aspartic acid] leads to stabilization of the ACC, but only for particles

  3. Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Zhong; Tian Wenhuai; Liu Xiaohe; Yang Rong; Li Xingguo

    2007-01-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles

  4. Synthesis and electrochemical performances of amorphous carbon-coated Sn Sb particles as anode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo

    2007-12-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.

  5. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  6. The ir emission features: Emission from PAH (Polycyclic Aromatic Hydrocarbons) molecules and amorphous carbon particles

    Energy Technology Data Exchange (ETDEWEB)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs.

  7. The ir emission features: Emission from PAH [Polycyclic Aromatic Hydrocarbons] molecules and amorphous carbon particles

    International Nuclear Information System (INIS)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs

  8. Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide

    International Nuclear Information System (INIS)

    Barranco, V.; Pico, F.; Ibanez, J.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Kimura, M.; Oya, A.; Rojas, R.M.; Amarilla, J.M.; Rojo, J.M.

    2009-01-01

    Composites consisting of ruthenium oxide particles deposited on amorphous carbon nanofibres are prepared by a repetitive impregnation procedure. The choice of amorphous carbon nanofibres as support of amorphous ruthenium oxide leads to composites in which the deposited oxide consists of aggregates of extremely small primary particles (1-1.5 nm-size) and showing high porosity (specific surface area of 450 m 2 g -1 ). This special deposition of the oxide seems to favour: (i) high oxide capacitance (1000 Fg -1 ) at high oxide loadings (up to 20 wt%) and (ii) high capacitance retention (ca. 80% from the initial oxide capacitance) at high current densities (200 mA cm -2 ). Amorphous carbon nanofibres are suitable supports for amorphous ruthenium oxide and perhaps for other amorphous oxides acting as active electrode materials.

  9. Electromagnetic wave absorption properties of composites with micro-sized magnetic particles dispersed in amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin Peng [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Tianjin Binhai New Area Finance Bureau, Tianjin 300450 (China); Wang, Cheng Guo, E-mail: sduwangchg@gmail.com [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Wang, Wen [Norinco Group China North Material Science and Engineering Technology Group Corporation, Jinan 250031 (China); Yu, Mei Jie; Gao, Rui; Chen, Yang; Xiang Wang, Yan [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-09-01

    Composites with micro-sized magnetic particles dispersed in amorphous carbon were fabricated conveniently and economically by carbonizing polyacrylonitrile (PAN) fibers mixed with micro-sized iron particles under different temperatures. The composites were characterized by X-ray diffraction (XRD) and scanning electric microscope (SEM). The electromagnetic (EM) properties were measured by a vector network analyzer in the frequency range of 2–18 GHz based on which analog computations of EM wave absorption properties were carried out. The influences of temperature on phase composition and EM wave absorption properties were also investigated, indicating that the composites had good electromagnetic absorption properties with both electrical loss and magnetic loss. Effective reflection loss (RL<−10 dB) was observed in a large frequency range of 7.5–18 GHz with the absorber thickness of 2.0–3.0 mm for the paraffin samples with composite powders heated up to 750 °C and the minimum absorption peak around −40 dB appeared at approximately 10 GHz with matching thickness of 2.0 mm for the paraffin sample with composite powders heated up to 800 °C. - Highlights: • High-performance electromagnetic wave absorption materials were fabricated conveniently and economically. • The materials are composites with micro-sized magnetic particles dispersed in porous amorphous carbon. • The influences of temperature on phase composition and electromagnetic wave absorption properties were investigated. • The composites heated up to 750 °C and 800 °C had good electromagnetic wave absorption property.

  10. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  11. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N.; Franco, A.; Riesen, Y.; Despeisse, M.; Dunand, S.; Powolny, F.; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  12. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  13. Amorphous Carbon Gold Nanocomposite Thin Films: Structural and Spectro-ellipsometric Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montiel-Gonzalez, Z., E-mail: zeuzmontiel@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Mendoza-Galvan, A. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Queretaro, 76010 Queretaro, Queretaro (Mexico); Rodriguez-Fernandez, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510, Mexico D.F (Mexico)

    2011-07-01

    Spectroscopic Ellipsometry was used to determine the optical and structural properties of amorphous carbon:gold nanocomposite thin films deposited by dc magnetron co-sputtering at different deposition power. The incorporation of gold as small particles distributed in the amorphous carbon matrix was confirmed by X-ray Diffraction, Rutherford Backscattering measurements and High Resolution Transmission Electron Microscopy. Based on these results, an optical model for the films was developed using the Maxwell-Garnett effective medium with the Drude-Lorentz model representing the optical response of gold and the Tauc-Lorentz model for the amorphous carbon. The gold volume fraction and particle size obtained from the fitting processes were comparable to those from the physical characterization. The analysis of the ellipsometric spectra for all the samples showed strong changes in the optical properties of the carbon films as a consequence of the gold incorporation. These changes were correlated to the structural modification observed by Raman Spectroscopy, which indicated a clustering of the sp{sup 2} phase with a subsequent decrease in the optical gap. Finally, measurements of Reflection and Transmission Spectroscopy were carried out and Transmission Electron Microscopy images were obtained in order to support the ellipsometric model results.

  14. Carbon nanostructure formation driven by energetic particles

    International Nuclear Information System (INIS)

    Zhu Zhiyuan; Gong Jinlong; Zhu Dezhang

    2006-01-01

    Carbon nanostructures, especially carbon nanotubes (CNTs), have been envisaged to be the building blocks of a variety of nanoscale devices and materials. The inherent nanometer-size and ability of being either metallic or semiconductive of CNTs lead to their application in nanoelectronics. Excellent mechanical characteristics of CNTs suggest their use as structural reinforcements. However, to fully exploit the potential applications, effective means of tailoring CNT properties must be developed. Irradiation of materials with energetic particles beams (ions and electrons) is a standard and important tool for modifying material properties. Irradiation makes it possible to dope the samples, to create local amorphous region or vice versa, recrystallize the lattice and even drive a phase transition. In this paper, we report our results of (1) phase transfromation from carbon nanotubes to nanocrystalline diamond driven by hydrogen plasma, (2) onion-like nanostructure from carbon nanotubes driven by ion beams of several tens keV, and (3) amorphous carbon nanowire network formation by ion beam irradiation. Structural phase transformation from multiwalled carbon nanotubes to nanocrystalline diamond by hydrogen plasma post-treatment was carried out. Ultrahigh equivalent diamond nucleation density of more than 1011 nuclei/cm 2 was obtained. The diamond formation and growth mechanisms were proposed to be the consequence of the formation of sp3 bonded amorphous carbon clusters. The hydrogen chemisorption on curved graphite network and the energy deposited on CNTs by continuous impingement of activated molecular or atomic hydrogen are responsible for the formation of amorphous carbon matrix. Diamond nucleates and grows in the way similar to that of diamond chemical vapor deposition processes on amorphous carbon films. Furthermore, single crystalline diamond nanorods of 4-8 nm in diameter and up to 200 nm in length have been successfully synthesized by hydrogen plasma post

  15. Structure and properties of carbon black particles

    Science.gov (United States)

    Xu, Wei

    Structure and properties of carbon black particles were investigated using atomic force microscopy, gas adsorption, Raman spectroscopy, and X-ray diffraction. Supplementary information was obtained using TEM and neutron scattering. The AFM imaging of carbon black aggregates provided qualitative visual information on their morphology, complementary to that obtained by 3-D modeling based on TEM images. Our studies showed that carbon black aggregates were relatively flat. The surface of all untreated carbon black particles was found to be rough and its fractal dimension was 2.2. Heating reduced the roughness and fractal dimension for all samples heat treated at above 1300 K to 2.0. Once the samples were heat treated rapid cooling did not affect the surface roughness. However, rapid cooling reduced crystallite sizes, and different Raman spectra were obtained for carbon blacks of various history of heat treatment. By analyzing the Raman spectra we determined the crystallite sizes and identified amorphous carbon. The concentration of amorphous carbon depends on hydrogen content. Once hydrogen was liberated at increased temperature, the concentration of amorphous carbon was reduced and crystallites started to grow. Properties of carbon blacks at high pressure were also studied. Hydrostatic pressure did not affect the size of the crystallites in carbon black particles. The pressure induced shift in Raman frequency of the graphitic component was a result of increased intermolecular forces and not smaller crystallites. Two methods of determining the fractal dimension, the FHH model and the yardstick technique based on the BET theory were used in the literature. Our study proved that the FHH model is sensitive to numerous assumptions and leads to wrong conclusions. On the other hand the yardstick method gave correct results, which agreed with the AFM results.

  16. Cell survival in carbon beams - comparison of amorphous track model predictions

    DEFF Research Database (Denmark)

    Grzanka, L.; Greilich, S.; Korcyl, M.

    Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under i....... Amorphous track modelling of luminescence detector efficiency in proton and carbon beams. 4.Tsuruoka C, Suzuki M, Kanai T, et al. LET and ion species dependence for cell killing in normal human skin fibroblasts. Radiat Res. 2005;163:494-500.......Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under ion....... [2] . In addition, a new approach based on microdosimetric distributions is presented and investigated [3] . Material and methods: A suitable software library embrasing the mentioned amorphous track models including numerous submodels with respect to delta-electron range models, radial dose...

  17. Mechanochemical treatment of amorphous carbon from brown sphagnum moss for the preparation of carbon nanotubes

    International Nuclear Information System (INIS)

    Onishchenko, D.V.

    2013-01-01

    Under consideration is the mechanism of multiwalled nanotubes formation during mechanical activation of amorphous carbon synthesized by pyrolysis of sphagnum moss. The formation of nanotubes has been shown to take place in the array of carbon particles. A complex study of the sorption characteristics of carbon nanotubes has been carried out. The dependence of the sorption capacity of carbon nanotubes on their storage time, as well as the effect of the process parameters of nanotubes formation on their ability for oxidative modification, is represented. (authors)

  18. Interdispersed amorphous MnO{sub x}-carbon nanocomposites with superior electrochemical performance as lithium-storage material

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Juchen; Wang, Chunsheng [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD (United States); Liu, Qing; Zachariah, Michael R. [Department of Chemistry and Biochemistry, University of Maryland, College Park, MD (United States)

    2012-02-22

    The realization of manganese oxide anode materials for lithium-ion batteries is hindered by inferior cycle stability, rate capability, and high overpotential induced by the agglomeration of manganese metal grains, low conductivity of manganese oxide, and the high stress/strain in the crystalline manganese oxide structure during the repeated lithiation/delithiation process. To overcome these challenges, unique amorphous MnO{sub x}-C nanocomposite particles with interdispersed carbon are synthesized using aerosol spray pyrolysis. The carbon filled in the pores of amorphous MnO{sub x} blocks the penetration of liquid electrolyte to the inside of MnO{sub x}, thus reducing the formation of a solid electrolyte interphase and lowering the irreversible capacity. The high electronic and lithium-ion conductivity of carbon also enhances the rate capability. Moreover, the interdispersed carbon functions as a barrier structure to prevent manganese grain agglomeration. The amorphous structure of MnO{sub x} brings additional benefits by reducing the stress/strain of the conversion reaction, thus lowering lithiation/delithiation overpotential. As the result, the amorphous MnO{sub x}-C particles demonstrated the best performance as an anode material for lithium-ion batteries to date. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Precipitation of amorphous SiO2 particles and their properties

    Directory of Open Access Journals (Sweden)

    S. Musić

    2011-03-01

    Full Text Available The experimental conditions were optimized for the synthesis of amorphous SiO2 particles by the reaction of neutralization of sodium silicate solution with H2SO4 solution. Amorphous SiO2 particles were characterized by XRD, FT-IR, FE-SEM, EDS and microelectrophoresis. The amorphous peak was located at 2θ = 21.8º in the XRD pattern. Primary SiO2 particles were ~ 15 to ~ 30 nm in size and they aggregated into bigger particles. Amorphous SiO2 particles showed a specific surface area up to 130 m²g-1, dependent on the parameters of the precipitation process. The EDS spectrum of amorphous SiO2 particles did not show contamination with sulfate or other ions, which cannot be excluded in traces. pHzpc =1.7 was obtained by microelectrophoresis.

  20. Structure and giant magnetoresistance of carbon-based amorphous films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Ma, L.; He, M.F.; Liu, Z.W.; Zeng, D.C.; Gu, Z.F.; Cheng, G.

    2014-01-01

    Pure amorphous carbon (a-C) and Co-doped Co x C 1−x films were prepared on n-Si(100) substrates by dc magnetron sputtering. In Co–C films, the nano-sized amorphous Co particles were homogeneously dispersed in the amorphous cross-linked carbon matrix. The structures of a-C and Co x C 1−x films were investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The results showed that the a-C films were diamond-like carbon (DLC) films. After doping cobalt into DLC film, the sp 3 -hybridized carbon content in DLC composite films almost had no change. The as-deposited Co x C 1−x granular films had larger value of magnetoresistance (MR) than the amorphous carbon film. A very high positive MR, up to 15.5% at magnetic field B = 0.8 T and x = 2.5 at.% was observed in a Co x C 1−x granular film with thickness of 80 nm at room temperature when the external magnetic field was perpendicular to the electric current and the film surface. With increase of the film thickness and Co-doped content, the MR decreased gradually. It remains a challenge to well explain the observed MR effect in the Co x C 1−x granular films. - Highlights: • The amorphous carbon films were diamond-like carbon films. • No carbide appearing, the Co–C composite films form a good metal/insulator system. • A high positive magnetoresistance, up to 15.5% at B = 0.8 T was observed in Co–C films

  1. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ternary graphene/amorphous carbon/nickel nanocomposite film for outstanding superhydrophobicity

    Science.gov (United States)

    Zhu, Xiaobo; Zhou, Shengguo; Yan, Qingqing

    2018-04-01

    A novel superhydrophobic ternary graphene/amorphous carbon/nickel (G-Ni/a-C:H) carbon-based film was fabricated by a green approach of high-voltage electrochemical deposition without using aqueous solution, which was systematically investigated including the structure and relating applications on self-cleaning and corrosion resistance. Graphene and nickel nano-particle inserts were effective to tailor the feature of nanocrystallite/amorphous microstructure as well as micro-nanoscale hierarchical rose-petal-like surface for G-Ni/a-C:H carbon-based film. Surprisingly, this deposit could present outstanding superhydrophobicity with the contact angle of 158.98 deg and sliding angle of 2.75 deg without any further surface modification meanwhile it could possess fairly well adhesion. Furthermore, the superhydrophobic G-Ni/a-C:H carbon-based film could exhibit excellent corrosion resistance and self-cleaning performances compared to no graphene incorporated deposit. The procedure of fabricating deposit might be simple, scalable, and environmental friendly, indicating a promising prospect for industrial applications in the field of anti-fouling, anti-corrosion and drag resistance.

  3. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  4. Characterization of amorphous and nanocrystalline carbon films

    International Nuclear Information System (INIS)

    Chu, Paul K.; Li Liuhe

    2006-01-01

    Amorphous and nanocrystalline carbon films possess special chemical and physical properties such as high chemical inertness, diamond-like properties, and favorable tribological proprieties. The materials usually consist of graphite and diamond microstructures and thus possess properties that lie between the two. Amorphous and nanocrystalline carbon films can exist in different kinds of matrices and are usually doped with a large amount of hydrogen. Thus, carbon films can be classified as polymer-like, diamond-like, or graphite-like based on the main binding framework. In order to characterize the structure, either direct bonding characterization methods or the indirect bonding characterization methods are employed. Examples of techniques utilized to identify the chemical bonds and microstructure of amorphous and nanocrystalline carbon films include optical characterization methods such as Raman spectroscopy, Ultra-violet (UV) Raman spectroscopy, and infrared spectroscopy, electron spectroscopic and microscopic methods such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, transmission electron microscopy, and electron energy loss spectroscopy, surface morphology characterization techniques such as scanning probe microscopy (SPM) as well as other characterization methods such as X-ray reflectivity and nuclear magnetic resonance. In this review, the structures of various types of amorphous carbon films and common characterization techniques are described

  5. Large-deformation and high-strength amorphous porous carbon nanospheres

    Science.gov (United States)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  6. Deformation-induced amorphization of crystalline particles in a Cu-Ti metallic glass

    International Nuclear Information System (INIS)

    Kamentzky, E.A.; Askenazy, P.D.; Johnson, W.L.; Tanner, L.E.

    1987-01-01

    Crystalline particles and grains embedded in Cu 35 Ti 65 glass ribbons have been amorphized by isothermal cold rolling. The structural evolution has been studied by X-ray diffraction and TEM techniques. Initial particle morphologies are spherulitic and spherical, the latter with sizes ranging between 10 and 100 nm. The new amorphous phase seems to nucleate at crystalline-amorphous matrix interfaces. Initially there is a well defined interface between the new and the existing amorphous phases but it disappears as rolling progresses. Crystallites on a nanoscale still present in the final stages of particle amorphization have been observed by convergent beam electron diffraction. After sufficient deformation the consolidated ribbon becomes a completely glassy. A morphological description of the transformation process in terms of crystal destabilization and solid- state particle melting is presented

  7. Fabrication of C60/amorphous carbon superlattice structures

    International Nuclear Information System (INIS)

    Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2001-01-01

    The nitrogen doping effects in C 60 films by RF plasma source was investigated, and it was found that the nitrogen ion bombardment broke up C 60 molecules and changed them into amorphous carbon. Based on these results, formation of C 60 /amorphous carbon superlattice structure was proposed. The periodic structure of the resulted films was confirmed by XRD measurements, as the preliminary results of fabrication of the superlattice structure

  8. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McMullan, G., E-mail: gm2@mrc-lmb.cam.ac.uk; Vinothkumar, K.R.; Henderson, R.

    2015-11-15

    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å{sup 2} for every incident 300 keV e{sup −}/Å{sup 2}. The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e{sup −}/Å{sup 2} per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. - Highlights: • Thon rings can be seen from amorphous ice. • Radiation damage to amorphous ice randomly displaces water molecules. • Each incident 300 keV e{sup −}/Å{sup 2} displaces water molecules on average by ∼1 Å. • Macromolecules embedded in amorphous ice undergo beam induced Brownian motion.

  9. Amorphous molecular junctions produced by ion irradiation on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Zhenxia; Yu Liping; Zhang Wei; Ding Yinfeng; Li Yulan; Han Jiaguang; Zhu Zhiyuan; Xu Hongjie; He Guowei; Chen Yi; Hu Gang

    2004-01-01

    Experiments and molecular dynamics have demonstrated that electron irradiation could create molecular junctions between crossed single-wall carbon nanotubes. Recently molecular dynamics computation predicted that ion irradiation could also join single-walled carbon nanotubes. Employing carbon ion irradiation on multi-walled carbon nanotubes, we find that these nanotubes evolve into amorphous carbon nanowires, more importantly, during the process of which various molecular junctions of amorphous nanowires are formed by welding from crossed carbon nanotubes. It demonstrates that ion-beam irradiation could be an effective way not only for the welding of nanotubes but also for the formation of nanowire junctions

  10. Paramagnetic defects in hydrogenated amorphous carbon powders

    International Nuclear Information System (INIS)

    Keeble, D J; Robb, K M; Smith, G M; Mkami, H El; Rodil, S E; Robertson, J

    2003-01-01

    Hydrogenated amorphous carbon materials typically contain high concentrations of paramagnetic defects, the density of which can be quantified by electron paramagnetic resonance (EPR). In this work EPR measurements near 9.5, 94, and 189 GHz have been performed on polymeric and diamond-like hydrogenated amorphous carbon (a-C:H) powder samples. A similar single resonance line was observed at all frequencies for the two forms of a-C:H studied. No contributions to the spectrum from centres with resolved anisotropic g-values as reported earlier were detected. An increase in linewidth with microwave frequency was observed. Possible contributions to this frequency dependence are discussed

  11. Intrinsic graphene field effect transistor on amorphous carbon films

    OpenAIRE

    Tinchev, Savcho

    2013-01-01

    Fabrication of graphene field effect transistor is described which uses an intrinsic graphene on the surface of as deposited hydrogenated amorphous carbon films. Ambipolar characteristic has been demonstrated typical for graphene devices, which changes to unipolar characteristic if the surface graphene was etched in oxygen plasma. Because amorphous carbon films can be growth easily, with unlimited dimensions and no transfer of graphene is necessary, this can open new perspective for graphene ...

  12. Hydrogenated amorphous carbon next deposit after heat treatment

    International Nuclear Information System (INIS)

    Salancon, E.; Durbeck, T.; Schwarz-Selinger, T.; Jacob, W.

    2006-01-01

    One of the main safety problems in the ITER tokamak project is the tritium adsorption in the reactor walls and in particular the deposits which appear after the plasma discharge. These deposits are amorphous hydrogenated carbon films, type polymer (soft a-C:H). The heating of these deposits with a pulse laser is a proposed solution for the tritium desorption. Meanwhile, Gibson and al show that in experimental conditions, products are deposed on the walls before entering the mass spectrometer. The authors present thermo-desorption spectra of different amorphous carbon films. (A.L.B.)

  13. Inhibition of surface crystallisation of amorphous indomethacin particles in physical drug-polymer mixtures

    DEFF Research Database (Denmark)

    Priemel, Petra A; Laitinen, Riikka; Barthold, Sarah

    2013-01-01

    stability than pure IMC whereas IMC Soluplus(®) mixtures did not. Water uptake was higher for mixtures containing Soluplus(®) than for amorphous IMC or IMC Eudragit(®) mixtures. However, the Tg of amorphous IMC was unaffected by the presence (and nature) of polymer. SEM revealed that Eudragit(®) particles...... through reduced IMC surface molecular mobility. Polymer particles may also mechanically hinder crystal growth outwards from the surface. This work highlights the importance of microparticulate surface coverage of amorphous drug particles on their stability....

  14. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy.

    Science.gov (United States)

    McMullan, G; Vinothkumar, K R; Henderson, R

    2015-11-01

    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å(2) for every incident 300 keV e(-)/Å(2). The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e(-)/Å(2) per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films

    Science.gov (United States)

    Reyes, R.; Legnani, C.; Ribeiro Pinto, P. M.; Cremona, M.; de Araújo, P. J. G.; Achete, C. A.

    2003-06-01

    White-blue electroluminescent emission with a voltage bias less than 10 V was achieved in rf sputter-deposited amorphous carbon nitride (a-CN) and amorphous silicon carbon nitride (a-SiCN) thin-film-based devices. The heterojunction structures of these devices consist of: Indium tin oxide (ITO), used as a transparent anode; amorphous carbon film as an emission layer, and aluminum as a cathode. The thickness of the carbon films was about 250 Å. In all of the produced diodes, a stable visible emission peaked around 475 nm is observed at room temperature and the emission intensity increases with the current density. For an applied voltage of 14 V, the luminance was about 3 mCd/m2. The electroluminescent properties of the two devices are discussed and compared.

  16. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  17. Coaxial carbon plasma gun deposition of amorphous carbon films

    International Nuclear Information System (INIS)

    Sater, D.M.; Gulino, D.A.

    1984-03-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented

  18. Properties of Amorphous Carbon Microspheres Synthesised by Palm Oil-CVD Method

    International Nuclear Information System (INIS)

    Zobir, S. A. M.; Zainal, Z.; Sarijo, S. H.; Rusop, M.

    2011-01-01

    Amorphous carbon microspheres were synthesized using a dual-furnace chemical vapour deposition method at 800-1000 deg. C. Palm oil-based cooking oil (PO) and zinc nitrate solution was used as a carbon source and catalyst precursor, respectively with PO to zinc nitrate ratio of 30:20 (v/v) and a silicon wafer as the sample target. Regular microsphere shape of the amorphous carbons was obtained and a uniform microsphere structure improved as the carbonization temperature increased from 800 to 1000 deg. C. At 800 deg. C, no regular microspheres were formed but more uniform structure is observed at 900 deg. C. Generally the microspheres size is uniform when the heating temperature was increased to 1000 deg. C, but the presence of mixed sizes can still be observed. X-ray diffraction patterns show the presence of oxide of carbon, ZnO phase together with Zn oxalate phase. Raman spectra show two broad peaks characteristic to amorphous carbon at 1344 and 1582 cm -1 for the D and G bands, respectively. These bands become more prominent as the preparation temperature increased from 800 to 1000 deg. C. This is in agreement with the formation of amorphous carbon microspheres as shown by the FESEM study and other Zn-based phases as a result of the oxidation process of the palm oil as the carbon source and the zinc nitrate as the catalyst precursor, respectively.

  19. Nanosized amorphous calcium carbonate stabilized by poly(ethylene oxide)-b-poly(acrylic acid) block copolymers.

    Science.gov (United States)

    Guillemet, Baptiste; Faatz, Michael; Gröhn, Franziska; Wegner, Gerhard; Gnanou, Yves

    2006-02-14

    Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming an interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation.

  20. Properties of amorphous FeCoB alloy particles (abstract)

    DEFF Research Database (Denmark)

    Charles, S. W.; Wells, S.; Meagher, A.

    1988-01-01

    -ray diffraction. Magnetic measurements of the saturation magnetization, coercivity, and remanence of the particles have been measured. The transition from the amorphous-to-crystalline state has been studied using differential scanning calorimetry (DSC) and thermomagnetometry up to a temperature of 450 °C (see Fig......Amorphous and crystalline alloy particles (0.05–0.5 nm) of FexCoyBz in which the ratio x:y ranges from 0 to 1 have been prepared by the borohydride reduction of iron and cobalt salts in aqueous solution. The structure of the particles has been studied using Mössbauer spectroscopy and x....... 1). It has been shown that the fraction of boron in the alloys (10–35 at. %) is dependent upon the rate of addition of salts to borohydride and the concentration of cobalt present; this in turn influences the crystallinity and magnetic properties . Journal of Applied Physics is copyrighted...

  1. Evaluation of optical properties of the amorphous carbon film on fused silica

    International Nuclear Information System (INIS)

    Baydogan, Nilguen Dogan

    2004-01-01

    Deposition was done using a pulsed filtered cathodic arc with a graphite cathode. The carbon plasma is fully ionised and condenses on the substrate, forming diamond-like material but with amorphous structure. Optical properties of amorphous carbon films on fused-silica glass were investigated and the curves of optical density have a characteristic band at approximately 950 nm. Changes of the colourimetric quantities were evaluated and compared to uncoated fused silica glass. These changes were investigated as a function of the applied substrate bias voltage using the CIE and CIELAB colour systems. It is suggested that the mechanism of absorption is related to an allowed direct transition at the amorphous carbon films on fused silica glass. The optical energy gap of the amorphous carbon film depends on the bias voltage applied to the substrate holder. The optical colour parameters and optical band gap indicated that there is a relation between the dominant wavelength of the reflectance in the visible range and the wavelength of the optical band gap

  2. Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing

    International Nuclear Information System (INIS)

    McCann, R.; Roy, S.S.; Papakonstantinou, P.; Bain, M.F.; Gamble, H.S.; McLaughlin, J.A.

    2005-01-01

    Tetrahedral amorphous carbon (ta-C) and nitrogenated tetrahedral amorphous carbon films (ta-CN x ), deposited by double bend off plane Filtered Vacuum Cathodic Arc were annealed up to 1000 deg. C in flowing argon for 2 min. Modifications on the chemical bonding structure of the rapidly annealed films, as a function of temperature, were investigated by NEXAFS, X-ray photoelectron and Raman spectroscopies. The interpretation of these spectra is discussed. The results demonstrate that the structure of undoped ta-C films prepared at floating potential with an arc current of 80 A remains stable up to 900 deg. C, whereas that of ta-CN x containing 12 at.% nitrogen is stable up to 700 deg. C. At higher temperatures, all the spectra indicated the predominant formation of graphitic carbon. Through NEXAFS studies, we clearly observed three π* resonance peaks at the ' N K edge structure. The origin of these three peaks is not well established in the literature. However our temperature-dependant study ascertained that the first peak originates from C=N bonds and the third peak originates from the incorporation of nitrogen into the graphite like domains

  3. Memristive effects in oxygenated amorphous carbon nanodevices

    Science.gov (United States)

    Bachmann, T. A.; Koelmans, W. W.; Jonnalagadda, V. P.; Le Gallo, M.; Santini, C. A.; Sebastian, A.; Eleftheriou, E.; Craciun, M. F.; Wright, C. D.

    2018-01-01

    Computing with resistive-switching (memristive) memory devices has shown much recent progress and offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and memory, which limits the performance of conventional computer architectures. Due to their good scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral amorphous carbon or ta-C, typically suffer from a low cycling endurance. A material that has proven to be capable of combining the advantages of elemental carbon-based memories with simple fabrication methods and good endurance performance for binary memory applications is oxygenated amorphous carbon, or a-CO x . Here, we examine the memristive capabilities of nanoscale a-CO x devices, in particular their ability to provide the multilevel and accumulation properties that underpin computing type applications. We show the successful operation of nanoscale a-CO x memory cells for both the storage of multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and simultaneously store the computed result in the self-same a-CO x cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses.

  4. Heavy-ion induced desorption yields of amorphous carbon films bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Scrivens, R; Costa Pinto, P; Yin Vallgren, C; Bender, M

    2011-01-01

    During the past decade, intense experimental studies on the heavy-ion induced molecular desorption were performed in several particle accelerator laboratories worldwide in order to understand and overcome large dynamic pressure rises caused by lost beam ions. Different target materials and various coatings were studied for desorption and mitigation techniques were applied to heavy-ion accelerators. For the upgrade of the CERN injector complex, a coating of the Super Proton Synchrotron (SPS) vacuum system with a thin film of amorphous carbon is under study to mitigate the electron cloud effect observed during SPS operation with the nominal proton beam for the Large Hadron Collider (LHC). Since the SPS is also part of the heavy-ion injector chain for LHC, dynamic vacuum studies of amorphous carbon films are important to determine their ion induced desorption yields. At the CERN Heavy Ion Accelerator (LINAC 3), carbon-coated accelerator-type stainless steel vacuum chambers were tested for desorption using 4.2 Me...

  5. Designed synthesis of tunable amorphous carbon nanotubes (a ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Designed synthesis of tunable amorphous carbon nanotubes (a-CNTs) by a novel route and their oxidation resistance properties by Longlong. Xu et al (pp 1397–1402).

  6. The application of Car-Parrinello molecular dynamics to the study of tetrahedral amorphous carbon

    International Nuclear Information System (INIS)

    McKenzie, D.R.; McCulloch, D.G.; Goringe, C.M.

    1998-01-01

    The Car-Parrinello method for carrying out molecular dynamics enables the forces between atoms to be calculated by solving Schroedinger's equation for the valence electrons using Density Functional Theory. The method is capable of giving good structural predictions for amorphous network solids by quenching from the melt, even in situations where the bonding changes from one site to another. In amorphous carbon where, depending on its environment, carbon may show sp 2 or sp 3 bonds. The method is applied here to the study of network solids using the example of tetrahedral amorphous carbon

  7. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoqiang, E-mail: lxq_suse@sina.com [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China); Hao, Junying, E-mail: jyhao@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Xie, Yuntao [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-08-30

    Highlights: • Evolution of nanostructure and properties of the polymeric amorphous carbon films were firstly studied. • Si doping enhanced polymerization of the hydrocarbon chains and Al doping resulted in increase in the ordered carbon clusters of polymeric amorphous carbon films. • Soft polymeric amorphous carbon films exhibited an unconventional frictional behaviors with a superior wear resistance. • The mechanical and vacuum tribological properties of the polymeric amorphous carbon films were significantly improved by Si and Al co-doping. - Abstract: Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  8. Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Ajai, E-mail: ajai.iyer@aalto.fi; Liu, Xuwen; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, POB 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, School of Science, Aalto University, POB 15100, 00076 Espoo (Finland); Johansson, Leena-Sisko [Department of Forest Products Technology, School of Chemical Technology, Aalto University, POB 16400, 00076 Espoo (Finland)

    2015-06-14

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp{sup 3} bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  9. The effect of empirical potential functions on modeling of amorphous carbon using molecular dynamics method

    International Nuclear Information System (INIS)

    Li, Longqiu; Xu, Ming; Song, Wenping; Ovcharenko, Andrey; Zhang, Guangyu; Jia, Ding

    2013-01-01

    Empirical potentials have a strong effect on the hybridization and structure of amorphous carbon and are of great importance in molecular dynamics (MD) simulations. In this work, amorphous carbon at densities ranging from 2.0 to 3.2 g/cm 3 was modeled by a liquid quenching method using Tersoff, 2nd REBO, and ReaxFF empirical potentials. The hybridization, structure and radial distribution function G(r) of carbon atoms were analyzed as a function of the three potentials mentioned above. The ReaxFF potential is capable to model the change of the structure of amorphous carbon and MD results are in a good agreement with experimental results and density function theory (DFT) at low density of 2.6 g/cm 3 and below. The 2nd REBO potential can be used when amorphous carbon has a very low density of 2.4 g/cm 3 and below. Considering the computational efficiency, the Tersoff potential is recommended to model amorphous carbon at a high density of 2.6 g/cm 3 and above. In addition, the influence of the quenching time on the hybridization content obtained with the three potentials is discussed.

  10. Citrate effects on amorphous calcium carbonate (ACC) structure, stability, and crystallization

    DEFF Research Database (Denmark)

    Tobler, Dominique Jeanette; Rodriguez Blanco, Juan Diego; Dideriksen, Knud

    2015-01-01

    Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid-mineral inte......Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid...

  11. Amorphous semiconductors for particle detection: Physical and technical limits and possibilities

    International Nuclear Information System (INIS)

    Equer, B.; Karar, A.

    1989-01-01

    Amorphous silicon is used, at an industrial level, in at least three different fields of application: photovoltaic cells, flat TV screens and line scanners for image processing. In the last two cases, thin film transistors (TFT) are produced with the same technology. Particle detection with amorphous silicon has been demonstrated, but present performances are limited to ionizing particles. In this paper, we discuss the physical basis of amorphous semiconductors and the possible future development that can be expected on the basis of the existing technology. It is concluded that substitution of amorphous for crystalline silicon brings no clear advantage, if possible at all. Positive assets are to be found in using specific properties of thin layers: large area structures like arrays of photodiodes with associated readout are in the state of the art; vertical structures alternating layers of differently doped materials and/or of different semiconductors can be produced by the same technique. The development of large area pixel detectors is technically feasible but requires a very large effort. A joint development effort with industries involved in X-ray detection and 2D photodetectors might be the most appropriate solution. (orig.)

  12. Combined HRTEM and PEELS analysis of nanoporous and amorphous carbon

    International Nuclear Information System (INIS)

    Peng, J.L.; Fan, X. D.; Bursill, L.A.

    1997-01-01

    Both the mass density (1.37 kgm/m 3 ) and sp 2 +sp 3 bonding fraction (0.15) were determined for an unusual nanoporous amorphous carbon consisting of curved single graphitic sheets. A combination of high-resolution transmission electron microscopy (HRTEM) and parallel electron energy loss spectroscopy (PEELS) was used. The values of these two parameters provide important constraints for the determination of the structure of this relatively low density variety of nanoporous carbon. The results are relevant also in the search for negatively-curved Schwarzite-related carbon structures. New date are also presented for highly-oriented pyrollytic graphite (HOPG), chemically vapour deposited (CVD) diamond, C 60 , glassy carbon (GC) and evaporated amorphous carbon (EAC); these are compared with the results for NAC. Kramers-Kronig analysis (KKA) of the low-loss PEELS data shows that the band gaps of both NAC and EAC are collapsed relative to that of CVD diamond. 18 refs., 2 tabs., 3 figs

  13. Combined HRTEM and PEELS analysis of nanoporous and amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Peng, J.L.; Fan, X. D.; Bursill, L.A.

    1997-06-01

    Both the mass density (1.37 kgm/m{sup 3}) and sp{sup 2}+sp{sup 3} bonding fraction (0.15) were determined for an unusual nanoporous amorphous carbon consisting of curved single graphitic sheets. A combination of high-resolution transmission electron microscopy (HRTEM) and parallel electron energy loss spectroscopy (PEELS) was used. The values of these two parameters provide important constraints for the determination of the structure of this relatively low density variety of nanoporous carbon. The results are relevant also in the search for negatively-curved Schwarzite-related carbon structures. New date are also presented for highly-oriented pyrollytic graphite (HOPG), chemically vapour deposited (CVD) diamond, C{sub 60}, glassy carbon (GC) and evaporated amorphous carbon (EAC); these are compared with the results for NAC. Kramers-Kronig analysis (KKA) of the low-loss PEELS data shows that the band gaps of both NAC and EAC are collapsed relative to that of CVD diamond. 18 refs., 2 tabs., 3 figs.

  14. Amorphous carbon enhancement of hydrogen penetration into UO2

    International Nuclear Information System (INIS)

    Zalkind, S.; Shamir, N.; Gouder, T.; Akhvlediani, R.; Hoffman, A.

    2014-01-01

    In a previous study, it was demonstrated that an amorphous carbon layer, deposited on a native oxide covered uranium surface, significantly enhances the interaction of hydrogen with the uranium metal. Fig. 1[2], demonstrates the preferential hydrogen attack (forming uranium hydride) on the carbon covered area of the naturally oxidized uranium metal

  15. Nanopillar arrays of amorphous carbon nitride

    Science.gov (United States)

    Sai Krishna, Katla; Pavan Kumar, B. V. V. S.; Eswaramoorthy, Muthusamy

    2011-07-01

    Nanopillar arrays of amorphous carbon nitride have been prepared using anodic aluminum oxide (AAO) membrane as a template. The amine groups present on the surface of these nanopillars were exploited for functionalization with oleic acid in order to stabilize the nanostructure at the aqueous-organic interface and also for the immobilization of metal nanoparticles and protein. These immobilised nanoparticles were found to have good catalytic activity.

  16. Revealing the 1 nm/s Extensibility of Nanoscale Amorphous Carbon in a Scanning Electron Microscope

    DEFF Research Database (Denmark)

    Zhang, Wei

    2013-01-01

    In an ultra-high vacuum scanning electron microscope, the edged branches of amorphous carbon film (∼10 nm thickness) can be continuously extended with an eye-identifying speed (on the order of ∼1 nm/s) under electron beam. Such unusual mobility of amorphous carbon may be associated with deformation...... promoted by the electric field, which resulted from an inner secondary electron potential difference from the main trunk of carbon film to the tip end of branches under electron beam. This result demonstrates importance of applying electrical effects to modify properties of carbon materials. It may have...... positive implications to explore some amorphous carbon as electron field emission device. SCANNING 35: 261-264, 2013. © 2012 Wiley Periodicals, Inc....

  17. Crystalline and amorphous carbon nitride films produced by high-energy shock plasma deposition

    International Nuclear Information System (INIS)

    Bursilll, L.A.; Peng, Julin; Gurarie, V.N.; Orlov, A.V.; Prawer, S.

    1995-01-01

    High-energy shock plasma deposition techniques are used to produce carbon-nitride films containing both crystalline and amorphous components. The structures are examined by high-resolution transmission electron microscopy, parallel-electron-energy loss spectroscopy and electron diffraction. The crystalline phase appears to be face-centered cubic with unit cell parameter approx. a=0.63nm and it may be stabilized by calcium and oxygen at about 1-2 at % levels. The carbon atoms appear to have both trigonal and tetrahedral bonding for the crystalline phase. There is PEELS evidence that a significant fraction of the nitrogen atoms have sp 2 trigonal bonds in the crystalline phase. The amorphous carbon-nitride film component varies from essentially graphite, containing virtually no nitrogen, to amorphous carbon-nitride containing up to 10 at % N, where the fraction of sp 3 bonds is significant. 15 refs., 5 figs

  18. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Science.gov (United States)

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  19. Wollastonite Carbonation in Water-Bearing Supercritical CO2: Effects of Particle Size.

    Science.gov (United States)

    Min, Yujia; Li, Qingyun; Voltolini, Marco; Kneafsey, Timothy; Jun, Young-Shin

    2017-11-07

    The performance of geologic CO 2 sequestration (GCS) can be affected by CO 2 mineralization and changes in the permeability of geologic formations resulting from interactions between water-bearing supercritical CO 2 (scCO 2 ) and silicates in reservoir rocks. However, without an understanding of the size effects, the findings in previous studies using nanometer- or micrometer-size particles cannot be applied to the bulk rock in field sites. In this study, we report the effects of particle sizes on the carbonation of wollastonite (CaSiO 3 ) at 60 °C and 100 bar in water-bearing scCO 2 . After normalization by the surface area, the thickness of the reacted wollastonite layer on the surfaces was independent of particle sizes. After 20 h, the reaction was not controlled by the kinetics of surface reactions but by the diffusion of water-bearing scCO 2 across the product layer on wollastonite surfaces. Among the products of reaction, amorphous silica, rather than calcite, covered the wollastonite surface and acted as a diffusion barrier to water-bearing scCO 2 . The product layer was not highly porous, with a specific surface area 10 times smaller than that of the altered amorphous silica formed at the wollastonite surface in aqueous solution. These findings can help us evaluate the impacts of mineral carbonation in water-bearing scCO 2 .

  20. Theoretical investigation of magnetic properties in interfaces of magnetic nanoparticles and amorphous carbons

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shih-Jye, E-mail: sjs@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Hsu, Hua-Shu [Department of Applied Physics, National Pingtung University, Pingtung 900, Taiwan (China); Ovchinnikov, Sergei [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036 (Russian Federation); Chen, Guan-Long [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China)

    2017-06-15

    Highlights: • The interfaces of amorphous carbons will be graphited and antiferromagnetic. • The ferromagnetism on the Co interfaces is induced by the medium electrons. • The spin-wave excitation will change between the acoustic and optical modes. • The charge exchange in the interfaces changes the magnetism of the interfaces. - Abstract: Based on the experimental finding of the exchange bias in amorphous carbon samples with embedded Co nanoparticles and on the graphited character of the amorphous carbon interface confirmed by molecular dynamics simulations we have proposed the interface of graphited carbon to be antiferromagnetic. A theoretical model, which comprises the Kondo interactions in the interfaces of Co nanoparticles and the induced antiferromagnetic interactions in the graphited carbons, is employed to evaluate the ferromagnetism of the interfaces of Co nanoparticles. We have shown that the ferromagnetism of interfaces of Co nanoparticles will be enhanced by the increase of antiferromagnetic interaction as well as the increase of electron density in the graphited carbons. In particular, we found that the antiferromagnetic interactions in graphited carbons will change the spin-wave excitation in interfaces of Co nanoparticles from the quasiacoustic mode to the quasioptical one.

  1. Detection of charged particles in amorphous silicon layers

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Morel, J.; Kaplan, S.N.; Street, R.A.

    1986-02-01

    The successful development of radiation detectors made from amorphous silicon could offer the possibility for relatively easy construction of large area position-sensitive detectors. We have conducted a series of measurements with prototype detectors, on signals derived from alpha particles. The measurement results are compared with simple model calculations, and projections are made of potential applications in high-energy and nuclear physics

  2. Mesoporous calcium carbonate as a phase stabilizer of amorphous celecoxib--an approach to increase the bioavailability of poorly soluble pharmaceutical substances.

    Science.gov (United States)

    Forsgren, Johan; Andersson, Mattias; Nilsson, Peter; Mihranyan, Albert

    2013-11-01

    The bioavailability of crystalline pharmaceutical substances is often limited by their poor aqueous solubility but it can be improved by formulating the active substance in the amorphous state that is featured with a higher apparent solubility. Although the possibility of stabilizing amorphous drugs inside nano-sized pores of carbon nanotubes and ordered mesoporous silica has been shown, no conventional pharmaceutical excipients have so far been shown to possess this property. This study demonstrates the potential of using CaCO3 , a widely used excipient in oral drug formulations, to stabilize the amorphous state of active pharmaceutical ingredients, in particular celecoxib. After incorporation of celecoxib in the vaterite particles, a five to sixfold enhancement in apparent solubility of celecoxib is achieved due to pore-induced amorphization. To eliminate the possibility of uncontrolled phase transitions, the vaterite particles are stored in an inert atmosphere at 5 °C throughout the study. Also, to demonstrate that the amorphization effect is indeed associated with vaterite mesopores, accelerated stress conditions of 100% relative humidity are employed to impose transition from mesoporous vaterite to an essentially non-porous aragonite phase of CaCO3 , which shows only limited amorphization ability. Further, an improvement in solubility is also confirmed for ketoconazole when formulated with the mesoporous vaterite. Synthesis of the carrier particles and the incorporation of the active substances are carried out simultaneously in a one-step procedure, enabling easy fabrication. These results represent a promising approach to achieve enhanced bioavailability in new formulations of Type II BCS drugs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-01-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  4. Bonding topologies in diamondlike amorphous-carbon films

    International Nuclear Information System (INIS)

    Siegal, M. P.; Provencio, P. N.; Tallant, D. R.; Simpson, R. L.; Kleinsorge, B.; Milne, W. I.

    2000-01-01

    The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces; their thicknesses increase with deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies 160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of σ- to π-bonded carbon atoms. (c) 2000 American Institute of Physics

  5. Sputtering of amorphous carbon layers studied by laser induced fluorescence

    International Nuclear Information System (INIS)

    Pasch, E.

    1992-07-01

    In order to minimize the radiation losses, it is desirable to keep the plasmas in nuclear fusion devices free of high-Z-impurities. Therefore, the walls of TEXTOR and other tokamaks are covered with thin layers of amorphous carbon layers (a-C:H) or amorphous carbon/boron layers (a-C/B:H). The sputtering behaviour of these layers has been studied under bombardment by Ar + ions with energies of 1.5 keV and current densities of a few mA/cm 2 . Investigations of these coatings were carried out with the object to measure the velocity distribution of the sputtered atoms and the sputtered yields by laser induced fluorescence in the vacuum ultraviolet. (orig.)

  6. Dissociation of carbon dioxide and creation of carbon particles and films at room temperature

    Science.gov (United States)

    Fukuda, Takahiro; Maekawa, Toru; Hasumura, Takashi; Rantonen, Nyrki; Ishii, Koji; Nakajima, Yoshikata; Hanajiri, Tatsuro; Yoshida, Yoshikazu; Whitby, Raymond; Mikhalovsky, Sergey

    2007-09-01

    As fluids approach their gas-liquid critical points, the physical properties such as the specific heat and compressibility diverge due to the formation of large molecular clusters. Incident light cannot penetrate near-critical fluids because of the large clusters, a phenomenon known as critical opalescence. In this paper, we irradiate near-critical carbon dioxide (ncCO2), the critical temperature and pressure of which are 31.0°C and 7.38 MPa, with a laser beam of 213, 266, 355 and 532 nm wavelength and show that CO2 is dissociated and particles are produced when the system is set so close to the critical point that critical opalescence occurs in the case of 213 and 266 nm wavelength, whereas no particles are produced when the temperature is made to deviate from the critical value. We also apply a dc electric field to ncCO2 during irradiation with a laser beam of 213 and 266 nm wavelength and find that particles are formed on both anode and cathode. As the intensity of the electric field increases, films are formed on the electrodes. Electron diffraction patterns and energy-dispersive x-ray, Auger electron, x-ray photoelectron and Raman spectroscopic analyses show that the particles and films are composed of amorphous carbon.

  7. Dissociation of carbon dioxide and creation of carbon particles and films at room temperature

    International Nuclear Information System (INIS)

    Fukuda, Takahiro; Maekawa, Toru; Hasumura, Takashi; Rantonen, Nyrki; Ishii, Koji; Nakajima, Yoshikata; Hanajiri, Tatsuro; Yoshida, Yoshikazu; Whitby, Raymond; Mikhalovsky, Sergey

    2007-01-01

    As fluids approach their gas-liquid critical points, the physical properties such as the specific heat and compressibility diverge due to the formation of large molecular clusters. Incident light cannot penetrate near-critical fluids because of the large clusters, a phenomenon known as critical opalescence. In this paper, we irradiate near-critical carbon dioxide (ncCO 2 ), the critical temperature and pressure of which are 31.0 0 C and 7.38 MPa, with a laser beam of 213, 266, 355 and 532 nm wavelength and show that CO 2 is dissociated and particles are produced when the system is set so close to the critical point that critical opalescence occurs in the case of 213 and 266 nm wavelength, whereas no particles are produced when the temperature is made to deviate from the critical value. We also apply a dc electric field to ncCO 2 during irradiation with a laser beam of 213 and 266 nm wavelength and find that particles are formed on both anode and cathode. As the intensity of the electric field increases, films are formed on the electrodes. Electron diffraction patterns and energy-dispersive x-ray, Auger electron, x-ray photoelectron and Raman spectroscopic analyses show that the particles and films are composed of amorphous carbon

  8. Detection of charged particles in amorphous silicon layers

    International Nuclear Information System (INIS)

    Kaplan, S.N.; Morel, J.R.; Mulera, T.A.; Perez-Mendez, V.; Schnurmacher, G.; Street, R.A.

    1985-10-01

    The successful development of radiation detectors made from amorphous silicon could offer the possibility for relatively easy construction of large area position-sensitive detectors. We have conducted a series of measurements with prototype detectors, on signals derived from alpha particles. The measurement results are compared with simple model calculations, and projections are made of potential applications in high-energy and nuclear physics. 4 refs., 7 figs

  9. Convective heat transfer enhancement using Carbon nanofibers (CNFs): influence of amorphous carbon layer on heat transfer performance

    NARCIS (Netherlands)

    Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2013-01-01

    In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nano structures was achieved using catalytic

  10. Development of novel Mg–Ni60Nb40 amorphous particle reinforced composites with enhanced hardness and compressive response

    International Nuclear Information System (INIS)

    Jayalakshmi, S.; Sahu, Shreyasi; Sankaranarayanan, S.; Gupta, Sujasha; Gupta, M.

    2014-01-01

    Development of amorphous alloy/glassy particle reinforced light metal composites is an emerging research field. In this investigation, we have synthesized and characterized Ni 60 Nb 40 amorphous alloy particle reinforced Mg-composites with varying volume fractions. Microwave-assisted two-directional rapid sintering technique followed by hot extrusion was used to produce these pure Mg-based composites. The structural and mechanical properties of the developed composites were investigated, and are discussed using structure–property relationship. Structural analysis indicated the retention of amorphous structure of the reinforcement in all the composites. It was found that the distribution of the reinforcement was strongly dependent on the volume fraction (V f ). The addition of Ni 60 Nb 40 amorphous alloy particles modified the preferred crystal orientation of Mg, as was observed from X-ray diffraction (XRD) analysis. The composites showed significant improvement in hardness (increment up to 120%) and compressive strength (∼85% increase at 5% V f ). Comparison of mechanical properties of the developed composites with those of conventional Mg-composites having ceramic/metallic reinforcements, highlight the effectiveness of using amorphous particles as promising reinforcement materials. - Highlights: • Novel Mg-composites reinforced with Ni 60 Nb 40 amorphous particles were developed . • Microwave sintering and hot extrusion were used to synthesize the composites. • Reinforcements retained the amorphous structure, and changed Mg-crystal orientation. • Composites showed significant enhancement in hardness and compressive properties. • Performance of developed composites are superior/competitive to conventional MMCs

  11. Amorphous TiO2 doped with carbon for visible light photodegradation of rhodamine B and 4-chlorophenol

    International Nuclear Information System (INIS)

    Shao, Penghui; Tian, Jiayu; Zhao, Zhiwei; Shi, Wenxin; Gao, Shanshan; Cui, Fuyi

    2015-01-01

    Graphical abstract: - Highlights: • Amorphous TiO 2 doped with carbon is prepared as a visible photocatalyst. • RhB and 4-chlorophenol are decomposed effectively by carbon-doped amorphous TiO 2 . • The mechanism for visible light photocatalysis is discussed detailedly. - Abstract: Visible light photocatalytic activity of amorphous TiO 2 doped with carbon is prepared by a facile sol-gel route for the first time. The most active sample with mesostructure of amorphous phase, high surface area (273 m 2 g −1 ) and large pore volume (0.33 cm 3 g −1 ) is identified by X-ray diffractometer, Raman spectrometer, transmission electron microscope and N 2 adsorption–desorption isotherms. In addition, the most active sample is characterized by Fourier transform-infrared spectrometer, X-ray photoelectron spectrometer, UV–vis diffuse reflectance spectrometer and luminescence spectrometer. The results show that the most active sample with oxygenic groups has a narrower bandgap and lower recombination of electron–hole, due to the carbon doping and phase of amorphous. Effective photodegradation capability and stability of rhodamine B and colorless 4-chlorophenol are verified by photocatalytic tests under visible light irradiation. A possible mechanism of amorphous TiO 2 doped with carbon for visible light photocatalysis is proposed. The findings of this paper will provide new insights to design visible light-induced photocatalyst based on amorphous TiO 2 for organic removal

  12. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  13. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Saharoui; Mughal, Asad Jahangir

    2015-01-01

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  14. Raman spectroscopy of carbon nano-particles synthesized by laser ablation of graphite in water

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, J. F.; Cadenbach, T.; Costa V, C.; Paz, J. L. [Escuela Politecnica Nacional, Departamento de Fisica, Apdo. 17-12-866, Ladron de Guevara E11-253, EC 170109, Quito (Ecuador); Zhang, Z. B.; Zhang, S. L. [Institutionen for teknikvetenskaper, Fasta tillstandets elektronik, Angstromlaboratoriet, Lagerhyddsvagen, 1 Box 534, 751-21 Uppsala (Sweden); Debut, A.; Vaca, A. V., E-mail: cardenas9291@gmail.com [Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Sangolqui (Ecuador)

    2017-11-01

    Carbon nanoparticles (CNPs) have been synthesized by laser ablation of polycrystalline graphite in water using a pulsed Nd:YAG laser (1064 nm) with a width of 8 ns. Structural and mesoscopic characterization of the CNPs in the supernatant by Raman spectroscopy provide evidence for the presence of mainly two ranges of particle sizes: 1-5 nm and 10-50 nm corresponding to amorphous carbon and graphite Nps, respectively. These results are corroborated by complementary characterization using atomic force microscopy (AFM) and transmission electron microscopy (Tem). In addition, large (10-100 μm) graphite particles removed from the surface are essentially unmodified (in structure and topology) by the laser as confirmed by Raman analysis. (Author)

  15. Bonding topologies in diamondlike amorphous-carbon films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; PROVENCIO,PAULA P.; TALLANT,DAVID R.; SIMPSON,REGINA L.; KLEINSORGE,B.; MILNE,W.I.

    2000-01-27

    The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces and their thicknesses increase with increasing deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies < 60 eV and increases for films grown using ion energies > 160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of 4-fold to 3-fold coordinated carbon atoms.

  16. Bonding topologies in diamondlike amorphous-carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Provencio, P. N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Kleinsorge, B. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ, (United Kingdom); Milne, W. I. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ, (United Kingdom)

    2000-04-10

    The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces; their thicknesses increase with deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies <60 eV and increases for films grown using ion energies >160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of {sigma}- to {pi}-bonded carbon atoms. (c) 2000 American Institute of Physics.

  17. Dissociation of carbon dioxide and creation of carbon particles and films at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Takahiro [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Maekawa, Toru [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Hasumura, Takashi [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Rantonen, Nyrki [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Ishii, Koji [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Nakajima, Yoshikata [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Hanajiri, Tatsuro [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Yoshida, Yoshikazu [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Whitby, Raymond [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockroft Building, Lewes Road, Brighton BN2 4GJ (United Kingdom); Mikhalovsky, Sergey [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockroft Building, Lewes Road, Brighton BN2 4GJ (United Kingdom)

    2007-09-15

    As fluids approach their gas-liquid critical points, the physical properties such as the specific heat and compressibility diverge due to the formation of large molecular clusters. Incident light cannot penetrate near-critical fluids because of the large clusters, a phenomenon known as critical opalescence. In this paper, we irradiate near-critical carbon dioxide (ncCO{sub 2}), the critical temperature and pressure of which are 31.0{sup 0}C and 7.38 MPa, with a laser beam of 213, 266, 355 and 532 nm wavelength and show that CO{sub 2} is dissociated and particles are produced when the system is set so close to the critical point that critical opalescence occurs in the case of 213 and 266 nm wavelength, whereas no particles are produced when the temperature is made to deviate from the critical value. We also apply a dc electric field to ncCO{sub 2} during irradiation with a laser beam of 213 and 266 nm wavelength and find that particles are formed on both anode and cathode. As the intensity of the electric field increases, films are formed on the electrodes. Electron diffraction patterns and energy-dispersive x-ray, Auger electron, x-ray photoelectron and Raman spectroscopic analyses show that the particles and films are composed of amorphous carbon.

  18. Low hydrogen containing amorphous carbon films - Growth and electrochemical properties as lithium battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, V.; Masarapu, Charan; Wei, Bingqing [Department of Mechanical Engineering, University of Delaware, 130 Academy Street, Newark, DE 19716 (United States); Karabacak, Tansel [Department of Applied Science, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States); Teki, Ranganath [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2010-04-02

    Amorphous carbon films were deposited successfully on Cu foils by DC magnetron sputtering technique. Electrochemical performance of the film as lithium battery anode was evaluated across Li metal at 0.2 C rate in a non-aqueous electrolyte. The discharge curves showed unusually low irreversible capacity in the first cycle with a reversible capacity of {proportional_to}810 mAh g{sup -1}, which is at least 2 times higher than that of graphitic carbon. For the first time we report here an amorphous carbon showing such a high reversibility in the first cycle, which is very much limited to the graphitic carbon. The deposited films were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and step profilometer for the structural and surface properties. The hydrogen content of the synthesized films was studied using residual gas analysis (RGA). The low hydrogen content and the low specific surface area of the synthesized amorphous carbon film are considered responsible for such a high first cycle columbic efficiency. The growth mechanism and the reasons for enhanced electrochemical performance of the carbon films are discussed. (author)

  19. Low hydrogen containing amorphous carbon films-Growth and electrochemical properties as lithium battery anodes

    Science.gov (United States)

    Subramanian, V.; Karabacak, Tansel; Masarapu, Charan; Teki, Ranganath; Lu, Toh-Ming; Wei, Bingqing

    Amorphous carbon films were deposited successfully on Cu foils by DC magnetron sputtering technique. Electrochemical performance of the film as lithium battery anode was evaluated across Li metal at 0.2 C rate in a non-aqueous electrolyte. The discharge curves showed unusually low irreversible capacity in the first cycle with a reversible capacity of ∼810 mAh g -1, which is at least 2 times higher than that of graphitic carbon. For the first time we report here an amorphous carbon showing such a high reversibility in the first cycle, which is very much limited to the graphitic carbon. The deposited films were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and step profilometer for the structural and surface properties. The hydrogen content of the synthesized films was studied using residual gas analysis (RGA). The low hydrogen content and the low specific surface area of the synthesized amorphous carbon film are considered responsible for such a high first cycle columbic efficiency. The growth mechanism and the reasons for enhanced electrochemical performance of the carbon films are discussed.

  20. Amorphization of complex ceramics by heavy-particle irradiations

    International Nuclear Information System (INIS)

    Ewing, R.C.; Wang, L.M.

    1994-11-01

    Complex ceramics, for the purpose of this paper, include materials that are generally strongly bonded (mixed ionic and covalent), refractory and frequently good insulators. They are distinguished from simple, compact ceramics (e.g., MgO and UO 2 ) by structural features which include: (1) open network structures, best characterized by a consideration of the shape, size and connectivity of coordination polyhedra; (2) complex compositions which characteristically lead to multiple cation sites and lower symmetry; (3) directional bonding; (4) bond-type variations within the structure. The heavy particle irradiations include ion-beam irradiations and recoil-nucleus damage resulting from a-decay events from constituent actinides. The latter effects are responsible for the radiation-induced transformation to the metamict state in minerals. The responses of these materials to irradiation are complex, as energy may be dissipated ballistically by transfer of kinetic energy from an incident projectile or radiolytically by conversion of radiation-induced electronic excitations into atomic motion. This results in isolated Frenkel defect pairs, defect aggregates, isolated collision cascades or bulk amorphization. Thus, the amorphization process is heterogeneous. Only recently have there been systematic studies of heavy particle irradiations of complex ceramics on a wide variety of structure-types and compositions as a function of dose and temperature. In this paper, we review the conditions for amorphization for the tetragonal orthosilicate, zircon [ZrSiO 4 ]; the hexagonal orthosilicate/phosphate apatite structure-type [X 10 (ZO 4 ) 6 (F,Cl,O) 2 ]; the isometric pyrochlores [A 1-2 B 2 O 6 (O,OH,F) 0-1p H 2 O] and its monoclinic derivative zirconotite [CaZrTi 2 O 7 ]; the olivine (derivative - hcp) structure types, α- VI A 2 IV BO 4 , and spinel (ccp), γ- VI A 2 IV BO 4

  1. Particle-induced amorphization of complex ceramics. Final report

    International Nuclear Information System (INIS)

    Ewing, R.C.; Wang, L.M.

    1998-01-01

    The crystalline-to-amorphous (c-a) phase transition is of fundamental importance. Particle irradiations provide an important, highly controlled means of investigating this phase transformation and the structure of the amorphous state. The interaction of heavy-particles with ceramics is complex because these materials have a wide range of structure types, complex compositions, and because chemical bonding is variable. Radiation damage and annealing can produce diverse results, but most commonly, single crystals become aperiodic or break down into a polycrystalline aggregate. The authors continued the studies of the transition from the periodic-to-aperiodic state in natural materials that have been damaged by α-recoil nuclei in the uranium and thorium decay series and in synthetic, analogous structures. The transition from the periodic to aperiodic state was followed by detailed x-ray diffraction analysis, in-situ irradiation/transmission electron microscopy, high resolution transmission electron microscopy, extended x-ray absorption fine structure spectroscopy/x-ray absorption near edge spectroscopy and other spectroscopic techniques. These studies were completed in conjunction with bulk irradiations that can be completed at Los Alamos National Laboratory or Sandia National Laboratories. Principal questions addressed in this research program included: (1) What is the process at the atomic level by which a ceramic material is transformed into a disordered or aperiodic state? (2) What are the controlling effects of structural topology, bond-type, dose rate, and irradiation temperature on the final state of the irradiated material? (3) What is the structure of the damaged material? (4) What are the mechanisms and kinetics for the annealing of interstitial and aggregate defects in these irradiated ceramic materials? (5) What general criteria may be applied to the prediction of amorphization in complex ceramics?

  2. Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Debabrata [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)]. E-mail: dpradhan@sciborg.uwaterloo.ca; Sharon, Maheshwar [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2007-06-30

    A simple thermal chemical vapor deposition technique is employed for the pyrolysis of a natural precursor 'camphor' and deposition of carbon films on alumina substrate at higher temperatures (600-900 deg. C). X-ray diffraction measurement reveals the amorphous structure of these films. The carbon films properties are found to significantly vary with the deposition temperatures. At higher deposition temperature, films have shown predominately sp{sup 2}-bonded carbon and therefore, higher conductivity and lower optical band gap (Tauc gap). These amorphous carbon (a-C) films are also characterized with Raman and X-ray photoelectron spectroscopy. In addition, electrical and optical properties are measured. The thermoelectric measurement shows these as-grown a-C films are p-type in nature.

  3. Nanostructural characterization of amorphous diamondlike carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Martinez-Miranda, L. J. [University of Maryland, Department of Materials and Nuclear Engineering, College Park, Maryland 20742 (United States); Barbour, J. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2000-04-15

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetics and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of three- and four-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetics of PLD growth results in films becoming more ''diamondlike,'' i.e., increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film. (c) 2000 The American Physical Society.

  4. Nanostructural characterization of amorphous diamondlike carbon films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; MARTINEZ-MIRANDA,L.J.; BARBOUR,J. CHARLES; SIMPSON,REGINA L.; OVERMYER,DONALD L.

    2000-01-27

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetic and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of 3- and 4-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetic of PLD growth results in films becoming more ``diamondlike'', i.e. increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film.

  5. Growth Mechanism for Low Temperature PVD Graphene Synthesis on Copper Using Amorphous Carbon

    Science.gov (United States)

    Narula, Udit; Tan, Cher Ming; Lai, Chao Sung

    2017-03-01

    Growth mechanism for synthesizing PVD based Graphene using Amorphous Carbon, catalyzed by Copper is investigated in this work. Different experiments with respect to Amorphous Carbon film thickness, annealing time and temperature are performed for the investigation. Copper film stress and its effect on hydrogen diffusion through the film grain boundaries are found to be the key factors for the growth mechanism, and supported by our Finite Element Modeling. Low temperature growth of Graphene is achieved and the proposed growth mechanism is found to remain valid at low temperatures.

  6. The Diversity of Carbon in Cometary Refractory Dust Particles

    Science.gov (United States)

    Wooden, D. H.

    2018-01-01

    When comparing the dark icy surfaces of outer solar system small bodies and the composition of carbonaceous chondrites derived from dark asteroids we find a significant discrepancy in the assessed amounts of elemental carbon: up to 80% amorphous carbon is used to model the dark surfaces of Kuiper Belt Objects and Centaurs whereas at most 5% of elemental carbon is found in carbonaceous chondrites. If we presume that regimes of comet nuclei formation are analogous to disk regimes where other outer solar system ice-rich bodies formed then we can turn to comet dust to gain insights into the diversity in the concentration and forms of carbon available in the outer disk. Comet dust offers important insights into the diversity in the amounts and forms of carbon that were incorporated into aggregate dust particles in the colder parts of the protoplanetary disk out of which comet nuclei accreted. Comet nuclei are amongst the most primitive bodies because they have remained cold and unequilibrated. Comet dust particles reveal the presence of forms of elemental carbon and of soluble and insoluble organic matter, and in a great diversity of concentrations from very little, e.g., Stardust samples of comet 81P/Wild 2, to 80% by volume for Ultra Carbonaceous Antarctic Micro Meteorites (UCAMMs). Cometary outbursts and/or jet activity also demonstrate variations in the concentration of carbon in the grains at different grain sizes within a single comet. We review the diversity of carbon-bearing dust grains in cometary samples, flyby measurements and deduced from remote-sensing to enrich the discussion about the diversity of carbonaceous matter available in the outer ice-rich disk at the time of comet nuclei formation.

  7. Synthesis of Antimony Doped Amorphous Carbon Films

    Science.gov (United States)

    Okuyama, H.; Takashima, M.; Akasaka, H.; Ohtake, N.

    2013-06-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  8. Synthesis of Antimony Doped Amorphous Carbon Films

    International Nuclear Information System (INIS)

    Okuyama, H; Takashima, M; Akasaka, H; Ohtake, N

    2013-01-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp 2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  9. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite.

    Science.gov (United States)

    Rodriguez-Blanco, Juan Diego; Shaw, Samuel; Benning, Liane G

    2011-01-01

    The kinetics and mechanisms of nanoparticulate amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, were studied at a range of environmentally relevant temperatures (7.5-25 °C) using synchrotron-based in situ time-resolved Energy Dispersive X-ray Diffraction (ED-XRD) in conjunction with high-resolution electron microscopy, ex situ X-ray diffraction and infrared spectroscopy. The crystallization process occurs in two stages; firstly, the particles of ACC rapidly dehydrate and crystallize to form individual particles of vaterite; secondly, the vaterite transforms to calcite via a dissolution and reprecipitation mechanism with the reaction rate controlled by the surface area of calcite. The second stage of the reaction is approximately 10 times slower than the first. Activation energies of calcite nucleation and crystallization are 73±10 and 66±2 kJ mol(-1), respectively. A model to calculate the degree of calcite crystallization from ACC at environmentally relevant temperatures (7.5-40 °C) is also presented.

  10. Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite.

    Science.gov (United States)

    Peng, Wenhong; Chen, Xianjue; Zhu, Shenmin; Guo, Cuiping; Raston, Colin L

    2014-10-11

    Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.

  11. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  12. The 10 μm amorphous silicate feature of fractal aggregates and compact particles with complex shapes

    NARCIS (Netherlands)

    Min, M.; Dominik, C.; Hovenier, J.W.; de Koter, A.; Waters, L.B.F.M.

    2006-01-01

    We model the 10 μm absorption spectra of nonspherical particles composed of amorphous silicate. We consider two classes of particles, compact ones and fractal aggregates composed of homogeneous spheres. For the compact particles we consider Gaussian random spheres with various degrees of

  13. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations

    Directory of Open Access Journals (Sweden)

    T. Koop

    2009-12-01

    Full Text Available Interactions with water are crucial for the properties, transformation and climate effects of atmospheric aerosols. Here we present a conceptual framework for the interaction of amorphous aerosol particles with water vapor, outlining characteristic features and differences in comparison to crystalline particles. We used a hygroscopicity tandem differential mobility analyzer (H-TDMA to characterize the hydration and dehydration of crystalline ammonium sulfate, amorphous oxalic acid and amorphous levoglucosan particles (diameter ~100 nm, relative humidity 5–95% at 298 K. The experimental data and accompanying Köhler model calculations provide new insights into particle microstructure, surface adsorption, bulk absorption, phase transitions and hygroscopic growth. The results of these and related investigations lead to the following conclusions:

    (1 Many organic substances, including carboxylic acids, carbohydrates and proteins, tend to form amorphous rather than crystalline phases upon drying of aqueous solution droplets. Depending on viscosity and microstructure, the amorphous phases can be classified as glasses, rubbers, gels or viscous liquids.

    (2 Amorphous organic substances tend to absorb water vapor and undergo gradual deliquescence and hygroscopic growth at lower relative humidity than their crystalline counterparts.

    (3 In the course of hydration and dehydration, certain organic substances can form rubber- or gel-like structures (supramolecular networks and undergo transitions between swollen and collapsed network structures.

    (4 Organic gels or (semi-solid amorphous shells (glassy, rubbery, ultra-viscous with low molecular diffusivity can kinetically limit the uptake and release of water and may influence the hygroscopic growth and activation of aerosol particles as cloud condensation nuclei (CCN and ice nuclei (IN. Moreover, (semi-solid amorphous phases may influence the uptake of gaseous photo

  14. Charged particle detectors made from thin layers of amorphous silicon

    International Nuclear Information System (INIS)

    Morel, J.R.

    1986-05-01

    A series of experiments was conducted to determine the feasibility of using hydrogenated amorphous silicon (α-Si:H) as solid state thin film charged particle detectors. 241 Am alphas were successfully detected with α-Si:H devices. The measurements and results of these experiments are presented. The problems encountered and changes in the fabrication of the detectors that may improve the performance are discussed

  15. Micro-friction behavior of amorphous carbon films on porous AAO membrane synthesized by the pyrolysis of polyethleneglycol 400

    International Nuclear Information System (INIS)

    Tu, J.P.; Jiang, C.X.; Guo, S.Y.; Fu, M.F.

    2005-01-01

    The amorphous carbon films with different degrees of graphitization were synthesized by the pyrolysis of polyethleneglycol 400 infiltrated in the nano-sized pores of anodic aluminum oxide (AAO) membrane. The morphology and microstructure of the carbon films were characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The micro-friction behavior of the amorphous carbon films sliding against GCr15 steel in ambient air was investigated using a ball-on-disk tester at an applied load of 980 mN and a sliding velocity of 0.2 m s -1 . The graphitization degree in the carbon films had effect on the micro-friction properties. In comparison, the amorphous carbon film with high graphitization degree showed low friction coefficient and high wear resistance. An efficient approach was brought for enhancing the friction performance of aluminum

  16. Micro-friction behavior of amorphous carbon films on porous AAO membrane synthesized by the pyrolysis of polyethleneglycol 400

    Energy Technology Data Exchange (ETDEWEB)

    Tu, J P [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang, C X [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Department of Mechanical and Electronic Engineering, Nanchang University, Nanchang 330029 (China); Guo, S Y [Department of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310033 (China); Fu, M F [Department of Mechanical and Electronic Engineering, Nanchang University, Nanchang 330029 (China)

    2005-05-25

    The amorphous carbon films with different degrees of graphitization were synthesized by the pyrolysis of polyethleneglycol 400 infiltrated in the nano-sized pores of anodic aluminum oxide (AAO) membrane. The morphology and microstructure of the carbon films were characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The micro-friction behavior of the amorphous carbon films sliding against GCr15 steel in ambient air was investigated using a ball-on-disk tester at an applied load of 980 mN and a sliding velocity of 0.2 m s{sup -1}. The graphitization degree in the carbon films had effect on the micro-friction properties. In comparison, the amorphous carbon film with high graphitization degree showed low friction coefficient and high wear resistance. An efficient approach was brought for enhancing the friction performance of aluminum.

  17. Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate

    International Nuclear Information System (INIS)

    Versteegh, E.A.A.; Black, S.; Hodson, M.E.

    2017-01-01

    In this study we investigate carbon isotope fractionation during the crystallization of biogenic calcium carbonate. Several species of earthworm including Lumbricus terrestris secrete CaCO_3. Initially a milky fluid comprising micro-spherules of amorphous CaCO_3 (ACC) is secreted into pouches of the earthworm calciferous gland. The micro-spherules coalesce and crystalize to form millimetre scale granules, largely comprising calcite. These are secreted into the earthworm intestine and from there into the soil. L. terrestris were cultured for 28 days in two different soils, moistened with three different mineral waters at 10, 16 and 20 °C. The milky fluid in the calciferous glands, granules in the pouches of the calciferous glands and granules excreted into the soil were collected and analysed by FTIR spectroscopy to determine the form of CaCO_3 present and by IRMS to determine δ"1"3C values. The milky fluid was ACC. Granules removed from the pouches and soil were largely calcite; the granules removed from the pouches contained more residual ACC than those recovered from the soil. The δ"1"3C values of milky fluid and pouch granules became significantly more negative with increasing temperature (p ≤ 0.001). For samples from each temperature treatment, δ"1"3C values became significantly (p ≤ 0.001) more negative from the milky fluid to the pouch granules to the soil granules (−13.77, −14.69 and −15.00 respectively at 10 °C; −14.37, −15.07 and −15.18 respectively at 16 °C and −14.89, −15.41 and −15.65 respectively at 20 °C). Fractionation of C isotopes occurred as the ACC recrystallized to form calcite with the fractionation factor ε_c_a_l_c_i_t_e_-_A_C_C = −1.20 ± 0.52‰. This is consistent with the crystallization involving dissolution and reprecipitation rather than a solid state rearrangement. Although C isotopic fractionation has previously been described between different species of dissolved inorganic carbon

  18. High-resolution transmission electron microscopy of grain-refining particles in amorphous aluminum alloys

    International Nuclear Information System (INIS)

    Schumacher, P.; Greer, A.L.

    1996-01-01

    The nucleation mechanism of Al-Ti-B grain refiners is studied in an Al-based amorphous alloy. The ability to limit growth of α-Al in the amorphous alloy permits the microscopical observation of nucleation events on boride particles. Earlier studies of this kind are extended by using high-resolution electron microscopy. This shows that the efficient nucleation α-Al depends on the TiB 2 particles being coated with a thin layer of Al 3 Ti, which can form only when there is some excess titanium in the melt. The aluminide layer, stabilized by adsorption effects, can be as little as a few monolayers thick, and is coherent with the boride. The nature of this layer, and its importance for the nucleation mechanism are discussed. The fading of the grain refinement action is also considered

  19. Amorphous track models: a numerical comparison study

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Hahn, Ute

    in carbon ion treatment at the particle facility HIT in Heidelberg. Apparent differences between the LEM and the Katz model are the way how interactions of individual particle tracks and how extended targets are handled. Complex scenarios, however, can mask the actual effect of these differences. Here, we......Amorphous track models such as Katz' Ion-Gamma-Kill (IGK) approach [1, 2] or the Local Effect Model (LEM) [3, 4] had reasonable success in predicting the response of solid state dosimeters and radiobiological systems. LEM is currently applied in radiotherapy for biological dose optimization...

  20. Three-dimensional structure of Au nanoparticles supported on amorphous silica and carbon substrates

    International Nuclear Information System (INIS)

    Bruma, A; Li, Z Y

    2012-01-01

    Scanning Transmission Electron Microscope (STEM) has been employed to study the three-dimensional structure of gold (Au) nanoparticles deposited by means of thermal evaporation in high vacuum on amorphous silica (a-SiO 2 ) and amorphous carbon (a-C) supports. By performing quantitative analysis on the evolution of the high angle annular dark field (HAADF) images, we studied the influence of the nature and the temperature of support on the growth mode of gold nanoparticles.

  1. One-step liquid phase chemical method to prepare carbon-based amorphous molybdenum sulfides: As the effective hydrogen evolution reaction catalysts

    International Nuclear Information System (INIS)

    Guo, Mengmeng; Wu, Qikang; Yu, Miaomiao; Wang, Yinling; Li, Maoguo

    2017-01-01

    Two different kinds of carbon-based amorphous molybdenum sulfide composite catalysts (activated carbon supported amorphous molybdenum sulfide and acetylene black supported amorphous molybdenum sulfide) had been prepared in a facile and scalable one-step liquid phase chemical method. The morphological and structural information of catalysts was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and it’s electro-catalytic HER activity were evaluated by linear sweep voltammetry(LSV), amperometric i-t technology and AC impedance technology. The as-prepared carbon-based amorphous molybdenum sulfides showed greatly enhanced electro-catalytic activity for HER compared with pure amorphous molybdenum sulfides. Especially, the nano-sized acetylene black supported molybdenum sulfide exhibited excellent electro-catalytic HER performances with a low onset potential of −116 mV versus reverse hydrogen electrode (RHE) and a small Tafel slope of 51 mV per decade.

  2. Protective amorphous carbon coatings on glass substrates

    Science.gov (United States)

    Silins, Kaspars; Baránková, Hana; Bardos, Ladislav

    2017-11-01

    Thick amorphous carbon films were deposited by the Magnets-in-Motion (M-M) rf linear hollow cathode at varying acetylene contents in Ar in a hybrid PVD/PE-CVD process directly on glass substrates. The hollow cathode plates manufactured from graphite were used as the PVD target. The measurements show that the films can reach thickness of up to 50 μm at deposition rates of up to 2.5 μm/min. Scratch test measurements confirm that well adhering films several μm thick can be achieved at C2H2 contents of up to 0.5%.

  3. Implantation of xenon in amorphous carbon and silicon for brachytherapy application

    International Nuclear Information System (INIS)

    Marques, F.C.; Barbieri, P.F.; Viana, G.A.; Silva, D.S. da

    2013-01-01

    We report a procedure to implant high dose of xenon atoms (Xe) in amorphous carbon, a-C, and amorphous silicon, a-Si, for application in brachytherapy seeds. An ion beam assisted deposition (IBAD) system was used for the deposition of the films, where one ion gun was used for sputtering a carbon (or silicon) target, while the other ion gun was used to simultaneously bombard the growing film with a beam of xenon ion Xe + in the 0–300 eV range. Xe atoms were implanted into the film with concentration up to 5.5 at.%, obtained with Xe bombardment energy in the 50–150 eV range. X-ray absorption spectroscopy was used to investigate the local arrangement of the implanted Xe atoms through the Xe L III absorption edge (4.75 keV). It was observed that Xe atoms tend to agglomerate in nanoclusters in a-C and are dispersed in a-Si.

  4. Control of wettability of hydrogenated amorphous carbon thin films by laser-assisted micro- and nanostructuring

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Kohler, Robert; Torge, Maika; Trouillet, Vanessa; Danneil, Friederike; Stueber, Michael

    2011-01-01

    A flexible and rapid surface functionalization of amorphous carbon films shows a great potential for various application fields such as biological surfaces and tribological systems. For this purpose, the combination of thin film deposition and subsequent laser material processing was investigated. Amorphous carbon layers doped with hydrogen were deposited on silicon wafers by reactive direct-current magnetron sputtering. Films with three different hydrogen contents were synthesized. Subsequent to the thin film deposition process, UV laser material processing at wavelengths of 193 nm or 248 nm was performed with respect to chemical surface modification and surface structuring on micro- and nanometer scale. Depending on structure size and laser-induced chemical surface modification the adjustment of the surface energy and wetting behaviour in a broad range from hydrophobic to hydrophilic was possible. The chemical modification and the ablation mechanisms near the ablation threshold were strongly influenced by the hydrogen content in amorphous carbon thin films. Structural and chemical information of the as-deposited and modified films was obtained by Raman spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements.

  5. Ultrafast carrier dynamics in tetrahedral amorphous carbon: carrier trapping versus electron-hole recombination

    International Nuclear Information System (INIS)

    Carpene, E; Mancini, E; Dallera, C; Schwen, D; Ronning, C; Silvestri, S De

    2007-01-01

    We report the investigation of the ultrafast carrier dynamics in thin tetrahedral amorphous carbon films by means of femtosecond time-resolved reflectivity. We estimated the electron-phonon relaxation time of a few hundred femtoseconds and we observed that under low optical excitation photo-generated carriers decay according to two distinct mechanisms attributed to trapping by defect states and direct electron-hole recombination. With high excitation, when photo-carrier and trap densities are comparable, a unique temporal evolution develops, as the time dependence of the trapping process becomes degenerate with the electron-hole recombination. This experimental evidence highlights the role of defects in the ultrafast electronic dynamics and is not specific to this particular form of carbon, but has general validity for amorphous and disordered semiconductors

  6. Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors

    KAUST Repository

    Zhu, Shijin; Zhang, Jie; Ma, Junjun; Zhang, Yuxin; Yao, Kexin

    2015-01-01

    Coaxial mesoporous MnO2/amorphous-carbon nanotubes have been synthesized via a facile and cost-effective strategy at room temperature. The coaxial double nanotubes of inner (outer) MnO2 and outer (inner) amorphous carbon can be obtained via fine tuning the preparative factors (e.g., deposition order and processing temperature). Furthermore, the electrochemical properties of the coaxial nanotubes were evaluated by cycle voltammetric (CV) and galvanostatic charge-discharge (GC) measurements. The as-prepared coaxial double nanotubes of outer MnO2 and inner amorphous carbon exhibit the optimized pseudocapacitance performance (362 F g-1) with good cycling stability, and ideal rate capability owning to the unique nanostructures. When assembled into two-electrode asymmetric supercapacitor, an energy density of 22.56 W h kg-1 at a power density of 224.9 W kg-1 is obtained. These findings provide a new and facile approach to fabricate high-performance electrode for supercapacitors.

  7. Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors

    KAUST Repository

    Zhu, Shijin

    2015-03-01

    Coaxial mesoporous MnO2/amorphous-carbon nanotubes have been synthesized via a facile and cost-effective strategy at room temperature. The coaxial double nanotubes of inner (outer) MnO2 and outer (inner) amorphous carbon can be obtained via fine tuning the preparative factors (e.g., deposition order and processing temperature). Furthermore, the electrochemical properties of the coaxial nanotubes were evaluated by cycle voltammetric (CV) and galvanostatic charge-discharge (GC) measurements. The as-prepared coaxial double nanotubes of outer MnO2 and inner amorphous carbon exhibit the optimized pseudocapacitance performance (362 F g-1) with good cycling stability, and ideal rate capability owning to the unique nanostructures. When assembled into two-electrode asymmetric supercapacitor, an energy density of 22.56 W h kg-1 at a power density of 224.9 W kg-1 is obtained. These findings provide a new and facile approach to fabricate high-performance electrode for supercapacitors.

  8. Production of colourful pigments consisting of amorphous arrays of silica particles.

    Science.gov (United States)

    Yoshioka, Shinya; Takeoka, Yukikazu

    2014-08-04

    It is desirable to produce colourful pigments that have anti-fading properties and are environmentally friendly. In this Concept, we describe recently developed pigments that exhibit such characteristics. The pigments consist of amorphous arrays of submicron silica particles, and they exhibit saturated and angle-independent structural colours. Variously coloured pigments can be produced by changing the size of the particles, and the saturation of the colour can be controlled by incorporating small amounts of black particles. We review a simple analysis that is useful for interpreting the angular independence of the structural colours and discuss the remaining tasks that must be accomplished for the realistic application of these pigments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Improvement of Electrical Conductivity of Single-Walled Carbon Nano tube Network Using Particle Irradiation

    International Nuclear Information System (INIS)

    Lim, Suntaek; Kim, Gonho

    2010-01-01

    Substitution for Indium Tin Oxide of transparent electrode Applications : Flat panel displays, Touch panel, Solar cell, EM wave shielding... For very low energy of 20 eV and 90 eV, argon ion irradiations, the surface of SWCNT bundles were sputtered and thinned the diameter of the bundle. With increasing the incident ion energy as 7.5 keV, SWCNT bundles were networked by amorphization of cross welded CNTs. → Less damage can be obtained from higher energy of irradiated particle due to less collision cross section. For 10 MeV proton and 800 keV electron irradiations, there are no severe damages. Electron irradiation is more effective on network with less damage than that of ion irradiation. → Network process can be proceeded with the generation of free carbon, the migration of free carbon on CNT and reconstruction of the cross linked CNTs, which processes require the latent energy on CNT body after collision. It can be controlled by the energy and dose of irradiation particle

  10. Low-energy particle interaction at carbon nanowalls on W surface

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, N., E-mail: nozomi.tanaka@ppl2.qse.tohoku.ac.j [Tohoku University, Aramaki 6-01-2, Aoba, Sendai 980-8579 (Japan); Yamaoka, H. [Harima Institute, RIKEN (The Institute of Physical and Chemical Research), Hyogo 679-5148 (Japan); Nishiura, M.; Tsumori, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nagamura, T.; Sasao, M. [Tohoku University, Aramaki 6-01-2, Aoba, Sendai 980-8579 (Japan); Kenmotsu, T. [Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Matsumoto, Y. [Tokushima Bunri University, Yamashiro, Tokushima 770-8514 (Japan); Wada, M. [Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2009-06-15

    We measured the characteristics of the reflected particles from a carbon nanowall (CNW) deposited on a W surface following the injection of 1-2 keV H{sup +} and O{sup +} ions. The reflected ion energies and intensities indicated a contribution from multiple scattering in the target. The reflection angular dependence of the reflected ion intensities reached the maximum around the mirror angle and showed a sharp distribution, which may be attributable to the effect due to the aligned structure of the CNW. The energies and intensities of the reflected ions decreased with the time of ion bombardment. The intensities and energies of the reflected ions were, however, recovered to some degree by baking the sample, indicating the surface modification due to retention of the injected particles during the injection. We used the Monte Carlo simulation code ACAT (Atomic Collision in Amorphous Target) to study these processes theoretically and the calculated results supported the experimental results.

  11. Carbon fuel particles used in direct carbon conversion fuel cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  12. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  13. Thermodynamic properties of the amorphous and crystalline modifications of carbon and the metastable synthesis of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Guencheva, V.; Grantscharova, E.; Gutzow, I. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Physical Chemistry

    2001-07-01

    The temperature dependencies of the thermodynamic properties of the little known (or even hypothetical) undercooled carbon melt and of the glasses that could be obtained from it at appropriate cooling rates are constructed. This is done using both a general thermodynamic formalism to estimate equilibrium properties of undercooled glass-forming melts and the expected analogy in properties of Fourth Group Elements. A comparison of the hypothetical carbon glasses with amorphous materials, obtained by the pyrolisis of organic resins, usually called vitreous (or glassy) carbon, is made. It turns out that from a thermodynamic point of view existing vitreous carbon materials, although characterized by an amorphous, frozen-in structure, differ significantly from the carbon glasses, which could be obtained by a splat-cool-quench of the carbon melt. It is shown also that the hypothetical carbon glasses should have at any temperature a thermodynamic potential, significantly higher than that of diamond. Thus they could be used as a source of constant supersaturation in metastable diamond synthesis. Existing amorphous carbon materials, although showing considerably lower thermodynamic potentials than the hypothetical carbon glasses, could also be used as sources of constant supersaturation in a process of isothermal diamond synthesis if their thermodynamic potential is additionally increased (e.g. by mechano-chemical treatment or by dispersion into nano-size scale). Theoretical estimates made in terms of Ostwald's Rule of Stages indicate that in processes of metastable isothermal diamond synthesis additional kinetic factors (e.g. influencing the formation of sp{sup 3} - carbon structures in the ambient phase) and the introduction of active substrates (e.g. diamond powder) are to be of significance in the realization of this thermodynamic possibility. (orig.)

  14. Two types of amorphous protein particles facilitate crystal nucleation.

    Science.gov (United States)

    Yamazaki, Tomoya; Kimura, Yuki; Vekilov, Peter G; Furukawa, Erika; Shirai, Manabu; Matsumoto, Hiroaki; Van Driessche, Alexander E S; Tsukamoto, Katsuo

    2017-02-28

    Nucleation, the primary step in crystallization, dictates the number of crystals, the distribution of their sizes, the polymorph selection, and other crucial properties of the crystal population. We used time-resolved liquid-cell transmission electron microscopy (TEM) to perform an in situ examination of the nucleation of lysozyme crystals. Our TEM images revealed that mesoscopic clusters, which are similar to those previously assumed to consist of a dense liquid and serve as nucleation precursors, are actually amorphous solid particles (ASPs) and act only as heterogeneous nucleation sites. Crystalline phases never form inside them. We demonstrate that a crystal appears within a noncrystalline particle assembling lysozyme on an ASP or a container wall, highlighting the role of heterogeneous nucleation. These findings represent a significant departure from the existing formulation of the two-step nucleation mechanism while reaffirming the role of noncrystalline particles. The insights gained may have significant implications in areas that rely on the production of protein crystals, such as structural biology, pharmacy, and biophysics, and for the fundamental understanding of crystallization mechanisms.

  15. Nickel–carbon nanocomposites: Synthesis, structural changes and strengthening mechanisms

    International Nuclear Information System (INIS)

    Nunes, D.; Vilarigues, M.; Correia, J.B.; Carvalho, P.A.

    2012-01-01

    The present work investigates Ni–nanodiamond and Ni–graphite composites produced by mechanical synthesis and subsequent heat treatments. Processing of nickel–carbon nanocomposites by this powder metallurgy route poses specific challenges, as carbon phases are prone to carbide conversion and amorphization. The processing window for carbide prevention has been established through X-ray diffraction by a systematic variation of the milling parameters. Transmission electron microscopy confirmed the absence of carbide and showed homogeneous particle distributions, as well as intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained largely unaffected by mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. The results on the annealed nanocomposites showed that milling with Ni accelerated graphitization of the carbon phases during heat treatments at 973 and 1073 K in both composites. At the finer scales, the nanocomposites exhibited a remarkable microhardness enhancement (∼70%) compared with pure nanostructured nickel. The Hall–Petch relation and the Orowan–Ashby equation are used to discuss strengthening mechanisms and the load transfer ability to the reinforcing particles.

  16. Structure-property relations in amorphous carbon for photovoltaics

    International Nuclear Information System (INIS)

    Risplendi, Francesca; Cicero, Giancarlo; Bernardi, Marco; Grossman, Jeffrey C.

    2014-01-01

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles molecular dynamics and density functional theory calculations to generate and analyze a set of a-C structures with a range of densities and hydrogen concentrations. We demonstrate that optical and electronic properties of interest in PV can be widely tuned by varying the density and hydrogen content. For example, sunlight absorption in a-C films can significantly exceed that of a same thickness of a-Si for a range of densities and H contents in a-C. Our results highlight promising features of a-C as the active layer material of thin-film solar cells.

  17. Structure-property relations in amorphous carbon for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Risplendi, Francesca; Cicero, Giancarlo [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy); Bernardi, Marco [Department of Physics, University of California, Berkeley, California 94720 (United States); Grossman, Jeffrey C., E-mail: jcg@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-07-28

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles molecular dynamics and density functional theory calculations to generate and analyze a set of a-C structures with a range of densities and hydrogen concentrations. We demonstrate that optical and electronic properties of interest in PV can be widely tuned by varying the density and hydrogen content. For example, sunlight absorption in a-C films can significantly exceed that of a same thickness of a-Si for a range of densities and H contents in a-C. Our results highlight promising features of a-C as the active layer material of thin-film solar cells.

  18. Role of carbon atoms in the remote plasma deposition of hydrogenated amorphous carbon

    International Nuclear Information System (INIS)

    Benedikt, J.; Wisse, M.; Woen, R.V.; Engeln, R.; Sanden, M.C.M. van de

    2003-01-01

    The aim of this article is to determine the role of carbon atoms in the growth of hydrogenated amorphous carbon (a-C:H) films by means of an argon/acetylene expanding thermal plasma. Cavity ring down absorption spectroscopy is used to detect metastable carbon atoms by probing the 1s 2 2s 2 2p 3s 1 P 1 2 2s 2 2p 2 1 S 0 electronic transition. In addition to absorption measurements, the emission of the same transition is monitored by means of optical emission spectroscopy. These two measurements provide information about the local production of the C atoms and about their reactivity in the gas phase. It will be shown that under growth conditions in an Ar/C 2 H 2 expanding thermal plasma, the metastable carbon density is also representative for the ground state carbon density. From obtained results it is concluded that the carbon atoms react rapidly with acetylene in the gas phase and therefore their contribution to the growth of hard diamond-like a-C:H films can be neglected. Only at low acetylene flows, the condition when soft polymer-like films are deposited, carbon atoms are detected close to the substrate and can possibly contribute to the film growth

  19. Effect of particle size of drug on conversion of crystals to an amorphous state in a solid dispersion with crospovidone.

    Science.gov (United States)

    Sugamura, Yuka; Fujii, Makiko; Nakanishi, Sayaka; Suzuki, Ayako; Shibata, Yusuke; Koizumi, Naoya; Watanabe, Yoshiteru

    2011-01-01

    The effect of particle size on amorphization of drugs in a solid dispersion (SD) was investigated for two drugs, indomethacin (IM) and nifedipine (NP). The SD of drugs were prepared in a mixture with crospovidone by a variety of mechanical methods, and their properties investigated by particle sizing, thermal analysis, and powder X-ray diffraction. IM, which had an initial particle size of 1 µm and tends to aggregate, was forced through a sieve to break up the particles. NP, which had a large initial particle size, was jet-milled. In both cases, reduction of the particle size of the drugs enabled transition to an amorphous state below the melting point of the drug. The reduction in particle size is considered to enable increased contact between the crospovidone and drug particles, increasing interactions between the two compounds. © 2011 Pharmaceutical Society of Japan

  20. Controlled fluoridation of amorphous carbon films deposited at reactive plasma conditions

    Directory of Open Access Journals (Sweden)

    Yoffe Alexander

    2015-09-01

    Full Text Available A study of the correlations between plasma parameters, gas ratios, and deposited amorphous carbon film properties is presented. The injection of a C4F8/Ar/N2 mixture of gases was successfully used in an inductively coupled plasma system for the preparation of amorphous carbon films with different fluoride doping at room-temperature, using silicon as a substrate. This coating was formed at low-pressure and low-energy using an inductively coupled plasma process. A strong dependence between the ratios of gases during deposition and the composition of the substrate compounds was shown. The values of ratios between Ar (or Ar+N2 and C4F8 - 1:1 and between N2 and Ar - 1:2 in the N2/Ar/C4F8 mixture were found as the best for low fluoridated coatings. In addition, an example of improving the etch-passivation in the Bosch procedure was described. Scanning electron microscopy with energy dispersive spectroscopy options, X-ray diffraction, and X-ray reflectivity were used for quantitative analysis of the deposited films.

  1. Properties of amorphous silicon thin films synthesized by reactive particle beam assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyeong-Ho; Jang, Jin-Nyoung; Hong, MunPyo; Kwon, Kwang-Ho; Park, Hyung-Ho

    2010-01-01

    Amorphous silicon thin films were formed by chemical vapor deposition of reactive particle beam assisted inductively coupled plasma type with various reflector bias voltages. During the deposition, the substrate was heated at 150 o C. The effects of reflector bias voltage on the physical and chemical properties of the films were systematically studied. X-ray diffraction and Raman spectroscopy results showed that the deposited films were amorphous and the films under higher reflector voltage had higher internal energy to be easily crystallized. The chemical state of amorphous silicon films was revealed as metallic bonding of Si atoms by using X-ray photoelectron spectroscopy. An increase in reflector voltage induced an increase of surface morphology of films and optical bandgap and a decrease of photoconductivity.

  2. Effective utilizations of palm oil mill fly ash for synthetic amorphous silica and carbon zeolite composite synthesis

    Science.gov (United States)

    Utama, P. S.; Saputra, E.; Khairat

    2018-04-01

    Palm Oil Mill Fly Ash (POMFA) the solid waste of palm oil industry was used as a raw material for synthetic amorphous silica and carbon zeolite composite synthesis in order to minimize the wastes of palm oil industry. The alkaline extraction combine with the sol-gel precipitation and mechanical fragmentation was applied to produce synthetic amorphous silica. The byproduct, extracted POMFA was rich in carbon and silica content in a significant amount. The microwave heated hydrothermal process used to synthesize carbon zeolite composite from the byproduct. The obtained silica had chemical composition, specific surface area and the micrograph similar to commercial precipitated silica for rubber filler. The microwave heated hydrothermal process has a great potential for synthesizing carbon zeolite composite. The process only needs one-step and shorter time compare to conventional hydrothermal process.

  3. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin

    DEFF Research Database (Denmark)

    Zhang, Fang; Aaltonen, Jaakko; Tian, Fang

    2009-01-01

    This study investigated the factors influencing the stability of amorphous simvastatin. Quench-cooled amorphous simvastatin in two particle size ranges, 150-180 microm (QC-big) and ... compared to the crystalline form. The rank of solubility was found to be QC-big=QC-small>CM>crystalline. For the physical stability, the highest crystallization rate was observed for CM, and the slowest rate was detected for QC-big, with an intermediate rate occurring for QC-small. QC exhibited lower...

  4. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    Science.gov (United States)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  5. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.; Komvopoulos, K.

    2012-01-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical

  6. Short pulse laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon

    Energy Technology Data Exchange (ETDEWEB)

    SOKOLOWSKI-TINTEN,K.; VON DER LINDE,D.; SIEGAL,MICHAEL P.; OVERMYER,DONALD L.

    2000-02-07

    Short pulse laser damage and ablation of amorphous, diamond-like carbon films is investigated. Material removal is due to fracture of the film and ejection of large fragments, which exhibit a broadband emission of microsecond duration.

  7. Influence of surface modified nanoilmenite/amorphous silica composite particles on the thermal stability of cold galvanizing coating

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2018-03-01

    Full Text Available The present approach investigates the use of novel nanoilmenite/amorphous silica composite (NI/AS particles fabricated from ilmenite nanoparticles (FeTiO3 NPs and synthesized amorphous silica grains to improve thermal stability of the cold galvanizing coating. Transmission electron microscopic (TEM images demonstrated that both nanoilmenite and nanocomposite particles were of flaky-like nature and the average diameter of the particles is 20 nm. The lamellar shape of the nanocomposite and spherical nature of Zn-dust particles were illustrated by scanning electron microscopy (SEM micrographs. Different alkyd-based cold galvanizing coating formulations were modified using uniformly dispersing various amounts of the processed nanocomposite particles as a modifier to form some engineering nanocomposite coatings. Thermal stability of the nanocomposite and Zn-dust particles was determined by thermo-gravimetric analysis (TGA. From the obtained results it could be observed that the weight loss (% as a feature of the thermal stability in case of the nanocomposite particles was 2.9 compared to 85.9 for Zn-dust powder grains. Derivative thermo-gravimetric (DTG measurements were done under nitrogen atmosphere for the cured cold galvanizing coating samples heated from room temperature to 1000 °C. The obtained results revealed that the maximum decomposition temperature point in the third degradation step for 6% nanocomposite surface modified cured sample (CG-F was detected at 693 °C and was less value for unmodified conventional cold galvanizing coating (CG-A at 612 °C. The increase in thermal stability with increasing the concentration of nanocomposite particles could be mainly attributed to the interface surface interaction between the nanocomposite particles and alkyd resin matrix in which enhancing the inorganic-organic network stiffness by causing a reduction in the total free spaces and enhancement in the cross-linking density of the cured film

  8. Molecular dynamics simulations of laser disintegration of amorphous aerosol particles with spatially nonuniform absorption

    International Nuclear Information System (INIS)

    Schoolcraft, Tracy A.; Constable, Gregory S.; Jackson, Bryan; Zhigilei, Leonid V.; Garrison, Barbara J.

    2001-01-01

    A series of molecular dynamics (MD) simulations are performed in order to provide qualitative information on the mechanisms of disintegration of aerosol particles as used in aerosol mass spectrometry. Three generic types of aerosol particles are considered: strongly absorbing particles with homogeneous composition, transparent particles with absorbing inclusion, and absorbing particles with transparent inclusion. To study the effect of the mechanical properties of the aerosol material on the disintegration process, the results for crystalline (brittle) and amorphous (ductile) particles are compared. For large laser fluences, nearly complete dissociation of the absorbing material is observed, whereas the nonabsorbing portions remain fairly intact. Because large fluences can cause photofragmentation of constituent molecules, multiple pulses at low laser fluence and/or lasers with different wavelengths are recommended for the best representative sampling of multicomponent aerosol particles in laser desorption/ionization (LDI) mass spectrometry

  9. Amorphous-tetrahedral diamondlike carbon layered structures resulting from film growth energetics

    Science.gov (United States)

    Siegal, M. P.; Barbour, J. C.; Provencio, P. N.; Tallant, D. R.; Friedmann, T. A.

    1998-08-01

    High-resolution transmission electron microscopy (HRTEM) shows that amorphous-tetrahedral diamondlike carbon (a-tC) films grown by pulsed-laser deposition on Si(100) consist of three-to-four layers, depending on the growth energetics. We estimate the density of each layer using both HRTEM image contrast and Rutherford backscattering spectrometry. The first carbon layer and final surface layer have relatively low density. The bulk of the film between these two layers has higher density. For films grown under the most energetic conditions, there exists a superdense a-tC layer between the interface and bulk layers. The density of all four layers, and the thickness of the surface and interfacial layers, correlate well with the energetics of the depositing carbon species.

  10. Effectiveness of amorphous silica encapsulation technology on welding fume particles and its impact on mechanical properties of welds

    International Nuclear Information System (INIS)

    Wang, Jun; Wu, Chang-Yu; Franke, Gene

    2014-01-01

    Highlights: • A novel welding shielding gas containing a silica precursor. • Up to 76% of the welding fume particles encapsulated in an amorphous silica layer. • No statistical difference between different types of welds in mechanical tests. • Can potentially reduce the toxicity of welding fume particles. - Abstract: Stainless steel welding generates nano-sized fume particles containing toxic metals which may cause serious health effects upon inhalation. The objective of this study was to investigate the effectiveness of an amorphous silica encapsulation (ASE) technology by evaluating its silica coating efficiency (SCE), particle morphology, and its impact on the weld’s mechanical properties. Tetramethylsilane (TMS) added to the welding shielding gas decomposed at the high-temperature arc zone to enable the silica coating. Collected welding fume particles were digested by two acid mixtures with different degrees of silica solubility, and the measured mass differences in the digests were used to determine the SCE. The SCEs were around 48–64% at the low and medium primary shielding gas flow rates. The highest SCE of 76% occurred at the high shielding gas flow rate (30 Lpm) with a TMS carrier gas flow of 0.64 Lpm. Transmission electron microscopy (TEM) images confirmed the amorphous silica layer on the welding fume particles at most gas flow rates, as well as abundant stand-alone silica particles formed at the high gas flow rate. Metallography showed that welds from the baseline and from the ASE technology were similar except for a tiny crack found in one particular weld made with the ASE technology. Tensile tests showed no statistical difference between the baseline and the ASE welds. All the above test results confirm that welding equipment retrofitted with the ASE technology has the potential to effectively address the toxicity problem of welding fume particles without affecting the mechanical properties of the welds

  11. Electronic sputtering by swift highly charged ions of nitrogen on amorphous carbon

    International Nuclear Information System (INIS)

    Caron, M.; Haranger, F.; Rothard, H.; Ban d'Etat, B.; Boduch, P.; Clouvas, A.; Potiriadis, C.; Neugebauer, R.; Jalowy, T.

    2001-01-01

    Electronic sputtering with heavy ions as a function of both electronic energy loss dE/dx and projectile charge state q was studied at the French heavy ion accelerator GANIL. Amorphous carbon (untreated, and sputter-cleaned and subsequently exposed to nitrogen) was irradiated with swift highly charged ions (Z=6-73, q=6-54, energy 6-13 MeV/u) in an ultrahigh vacuum scattering chamber. The fluence dependence of ion-induced electron yields allows to deduce a desorption cross-section σ which varies approximately as σ∼(dE/dx) 1.65 or σ∼q 3.3 for sputter-cleaned amorphous carbon exposed to nitrogen. This q dependence is close to the cubic charge dependence observed for the emission of H + secondary ions which are believed to be emitted from the very surface. However, the power law σ∼(dE/dx) 1.65 , related to the electronic energy loss gives the best empirical description. The dependence on dE/dx is close to a quadratic one thus rather pointing towards a thermal evaporation-like effect

  12. Piezoresistive effect observed in flexible amorphous carbon films

    Science.gov (United States)

    Wang, B.; Jiang, Y. C.; Zhao, R.; Liu, G. Z.; He, A. P.; Gao, J.

    2018-05-01

    Amorphous carbon (a-C) films, deposited on Si substrates at 500 °C, were transferred onto flexible polyethylene (PE) substrates by a lift-off method, which overcomes the limit of deposition temperature. After transferring, a-C films exhibited a large piezoresistive effect. Such flexible samples could detect the change of bending angle by attaching them onto Cu foils. The ratio of the bending and non-bending resistances reaches as large as ~27.8, which indicates a potential application as a pressure sensor. Also, the a-C/PE sample revealed an enhanced sensitivity to gas pressure compared with the a-C/Si one. By controlling the bending angle, the sensitivity range can be tuned to shift to a low- or high-pressure region. The fatigue test shows a less than 1% change in resistance after 10 000 bending cycles. Our work provides a route to prepare the flexible and piezoresistive carbon-based devices with high sensitivity, controllable pressure-sensing and high stability.

  13. On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.

    Science.gov (United States)

    Nebel, Holger; Neumann, Markus; Mayer, Christian; Epple, Matthias

    2008-09-01

    The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.

  14. Amorphous-silicon@silicon oxide/chromium/carbon as an anode for lithium-ion batteries with excellent cyclic stability

    International Nuclear Information System (INIS)

    Li, Mingqi; Gu, Jingwei; Feng, Xiaofang; He, Hongyan; Zeng, Chunmei

    2015-01-01

    Highlights: • A new amorphous-Si@SiO x /Cr/carbon anode composite for lithium-ion batteries is synthesized by a simple method. • At a current density of 100 mA g −1 , this as-prepared composite exhibit a stable discharge capacity of about 810 mAh g −1 with good capacity retention up to 200 cycles. Even at a current density of 800 mA g −1 , a stable discharge capacity of 570 mAh g −1 can be obtained. • This work creates a new method to improve the electrochemical performance of SiO-based electrode materials. - Abstract: A new amorphous-Si@SiO x /Cr/carbon (a-Si@SiO x /Cr/C) anode composite for lithium-ion batteries is synthesized, using SiO, chromium powder and graphite as starting materials. X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) are employed to characterize the composition, morphology and microstructure of the composite. Coin-type cells are assembled to investigate the electrochemical behaviors of the as-prepared composites by constant current charge–discharge technique, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that chromium facilitates the crush of Si@SiO x and graphite during milling, and thus improves their mutual dispersion in the composite. When cycled at 100 mA g −1 , the a-Si@SiO x /Cr/C exhibits a stable discharge capacity of about 810 mAh g −1 (calculated on the mass of a-Si@SiO x /Cr/C) with good capacity retention up to 200 cycles. The improved electrochemical performance is attributed to the reduced particle size of a-Si@SiO x and the synergistic effect of carbon and chromium

  15. Enhancement of photovoltaic effects and photoconductivity observed in Co-doped amorphous carbon/silicon heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y. C.; Gao, J., E-mail: jugao@hku.hk [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu (China)

    2016-08-22

    Co-doped amorphous carbon (Co-C)/silicon heterostructures were fabricated by growing Co-C films on n-type Si substrates using pulsed laser deposition. A photovoltaic effect (PVE) has been observed at room temperature. Open-circuit voltage V{sub oc} = 320 mV and short-circuit current density J{sub sc }= 5.62 mA/cm{sup 2} were measured under illumination of 532-nm light with the power of 100 mW/cm{sup 2}. In contrast, undoped amorphous carbon/Si heterostructures revealed no significant PVE. Based on the PVE and photoconductivity (PC) investigated at different temperatures, it was found that the energy conversion efficiency increased with increasing the temperature and reached the maximum at room temperature, while the photoconductivity showed a reverse temperature dependence. The observed competition between PVE and PC was correlated with the way to distribute absorbed photons. The possible mechanism, explaining the enhanced PVE and PC in the Co-C/Si heterostructures, might be attributed to light absorption enhanced by localized surface plasmons in Co nanoparticles embedded in the carbon matrix.

  16. Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles

    Science.gov (United States)

    Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.

    2016-12-01

    Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study provides a natural example of the transformation of an atomic crystal to an amorphous, mesoscale ordered material; thus, links the research fields of natural colloidal crystal formation, carbonate-silica replacement, and crystallization by oriented particle aggregation (CPA).

  17. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na; Komvopoulos, Kyriakos

    2013-01-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron

  18. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Kai; Wang, Yibo [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  19. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes.

    Science.gov (United States)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2013-12-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 kΩ at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (≤ 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    International Nuclear Information System (INIS)

    Martinez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-01-01

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 C. Film surfaces roughen upon annealing to 300 C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films

  1. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-07-23

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 C. Film surfaces roughen upon annealing to 300 C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films.

  2. Effect of mating materials on wear properties of amorphous hydrogenated carbon (a-C:H coating and tetrahedral amorphous carbon (ta-C coating in base oil boundary lubrication condition

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2017-12-01

    Full Text Available In this study, wear behavior of amorphous hydrogenated carbon (a-C:H coating and tetrahedral amorphous carbon (ta-C coating when sliding against various mating materials in base oil boundary lubrication condition is comparatively investigated to find out the optimal combinations of DLC/mating material and corresponding wear mechanism of both DLC coating. Tribological tests were performed in a cylinder-on-disc tribometer, Field Emission Scanning Electron Microscopy, Raman spectroscopy is used for characterization of ta-C and a-C:H worn surface. The results show that the specific wear rate of ta-C coating increases along with the hardness and roughness of mating material increases, while the specific wear rate of a-C:H coating increases together with an increment in the ID/IG ratio. It is concluded that for ta-C coating, local stress concentration-induced microfracture is the main wear mechanism in relative high wear scenario, along with minor graphitization-induced wear which prevails in low wear scenario. On the other hand, a-C:H coating showed that simultaneous generation and removal of the graphitized layer on the contact surface is the predominant wear mechanism.

  3. Detection of minimum-ionizing particles in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Kaplan, S.N.; Fujieda, I.; Perez-Mendez, V.; Qureshi, S.; Ward, W.; Street, R.A.

    1987-09-01

    Based on previously-reported results of the successful detection of alpha particles and 1- and 2-MeV protons with hydrogenated amorphous silicon (a-Si : H) diodes, detection of a single minimum-ionizing particle will require a total sensitive thickness of approximately 100 to 150 μm, either in the form of a single thick diode, or as a stack of several thinner diodes. Signal saturation at high dE/dx makes it necessary to simulate minimum ionization in order to evaluate present detectors. Two techniques, using pulsed infrared light, and pulsed x-rays, give single-pulse signals large enough for direct measurements. A third, using beta rays, requires multiple-transit signal averaging to produce signals measurable above noise. Signal amplitudes from the a-Si : H limit at 60% of the signal size from Si crystals extrapolated to the same thickness. This is consistent with an a-Si : H radiation ionization energy, W = 6 eV/electron-hole pair. Beta-ray signals are observed at the expected amplitude

  4. Buckling instability in amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X D [CAS Key Laboratory of Basic Plasma Physics, Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Narumi, K [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Naramoto, H [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2007-06-13

    In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 deg. C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with {pi}-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 {mu}m with a height of {approx}500 nm and a wavelength of {approx}8.2 {mu}m. However, the length decreases dramatically to 70 {mu}m as the deposition temperature is increased to 550 deg. C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542)

  5. Buckling instability in amorphous carbon films

    International Nuclear Information System (INIS)

    Zhu, X D; Narumi, K; Naramoto, H

    2007-01-01

    In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 deg. C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with π-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 μm with a height of ∼500 nm and a wavelength of ∼8.2 μm. However, the length decreases dramatically to 70 μm as the deposition temperature is increased to 550 deg. C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542)

  6. Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbon-Nitrogen for Oxygen Reduction: Discerning and Refactoring Chaotic Bonds

    DEFF Research Database (Denmark)

    Zhang, Caihong; Zhang, Wei; Wang, Dong

    2017-01-01

    Mild annealing enables inactive nitrogen (N)-doped amorphous carbon (a-C) films abundant with chaotic bonds prepared by magnetron sputtering to become effective for the oxygen reduction reaction (ORR) by virtue of generating pyridinic N. The rhythmic variation of ORR activity elaborates well...... on the subtle evolution of the amorphous C−N bonds conferred by spectroscopic analysis....

  7. THE EFFECT OF DIAMETER ON THE MECHANICAL-PROPERTIES OF AMORPHOUS-CARBON FIBERS FROM LINEAR LOW-DENSITY POLYETHYLENE

    NARCIS (Netherlands)

    PENNING, JP; LAGCHER, R; PENNINGS, AJ

    The mechanical properties of amorphous carbon fibers, derived from linear low density polyethylene strongly depend on the fibre diameter, which may be attributed to the presence of a skin/core structure in these fibres. High strength carbon fibres could thus be prepared by using thin precursor

  8. Hard graphitelike hydrogenated amorphous carbon grown at high rates by a remote plasma

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Zaharia, T.; Creatore, M.

    2010-01-01

    Hydrogenated amorphous carbon (a-C:H) deposited from an Ar-C 2H2 expanding thermal plasma chemical vapor deposition (ETP-CVD) is reported. The downstream plasma region of an ETP is characterized by a low electron temperature (∼0.3 eV), which leads to an ion driven chemistry and negligible physical...

  9. Importance of the Direct Contact of Amorphous Solid Particles with the Surface of Monolayers for the Transepithelial Permeation of Curcumin.

    Science.gov (United States)

    Kimura, Shunsuke; Kasatani, Sachiha; Tanaka, Megumi; Araki, Kaeko; Enomura, Masakazu; Moriyama, Kei; Inoue, Daisuke; Furubayashi, Tomoyuki; Tanaka, Akiko; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-01

    The amorphization has been generally known to improve the absorption and permeation of poorly water-soluble drugs through the enhancement of the solubility. The present study focused on the direct contact of amorphous solid particles with the surface of the membrane using curcumin as a model for water-insoluble drugs. Amorphous nanoparticles of curcumin (ANC) were prepared with antisolvent crystallization method using a microreactor. The solubility of curcumin from ANC was two orders of magnitude higher than that of crystalline curcumin (CC). However, the permeation of curcumin from the saturated solution of ANC was negligible. The transepithelial permeation of curcumin from ANC suspension was significantly increased as compared to CC suspension, while the permeation was unlikely correlated with the solubility, and the increase in the permeation was dependent on the total concentration of curcumin in ANC suspension. The absorptive transport of curcumin (from apical to basal, A to B) from ANC suspension was much higher than the secretory transport (from basal to apical, B to A). In vitro transport of curcumin through air-interface monolayers is large from ANC but negligible from CC particles. These findings suggest that the direct contact of ANC with the absorptive membrane can play an important role in the transport of curcumin from ANC suspension. The results of the study suggest that amorphous particles may be directly involved in the transepithlial permeation of curcumin.

  10. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    Science.gov (United States)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  11. Source contributions to atmospheric fine carbon particle concentrations

    Science.gov (United States)

    Andrew Gray, H.; Cass, Glen R.

    A Lagrangian particle-in-cell air quality model has been developed that facilitates the study of source contributions to atmospheric fine elemental carbon and fine primary total carbon particle concentrations. Model performance was tested using spatially and temporally resolved emissions and air quality data gathered for this purpose in the Los Angeles area for the year 1982. It was shown that black elemental carbon (EC) particle concentrations in that city were dominated by emissions from diesel engines including both on-highway and off-highway applications. Fine primary total carbon particle concentrations (TC=EC+organic carbon) resulted from the accumulation of small increments from a great variety of emission source types including both gasoline and diesel powered highway vehicles, stationary source fuel oil and gas combustion, industrial processes, paved road dust, fireplaces, cigarettes and food cooking (e.g. charbroilers). Strategies for black elemental carbon particle concentration control will of necessity need to focus on diesel engines, while controls directed at total carbon particle concentrations will have to be diversified over a great many source types.

  12. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs

    NARCIS (Netherlands)

    Dekker, Robert J.; de Bruijn, Joost Dick; Stigter, Martin; Barrère, F.; Layrolle, Pierre; van Blitterswijk, Clemens

    2005-01-01

    Poor fixation of bone replacement implants, e.g. the artificial hip, in implantation sites with inferior bone quality and quantity may be overcome by the use of implants coated with a cultured living bone equivalent. In this study, we tested, respectively, amorphous carbonated apatite (CA)- and

  13. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    Science.gov (United States)

    Martínez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-07-01

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 °C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 °C. Film surfaces roughen upon annealing to 300 °C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 °C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films.

  14. Modelling the structure factors and pair distribution functions of amorphous germanium, silicon and carbon

    International Nuclear Information System (INIS)

    Dalgic, Seyfettin; Gonzalez, Luis Enrique; Baer, Shalom; Silbert, Moises

    2002-01-01

    We present the results of calculations of the static structure factor S(k) and the pair distribution function g(r) of the tetrahedral amorphous semiconductors germanium, silicon and carbon using the structural diffusion model (SDM). The results obtained with the SDM for S(k) and g(r) are of comparable quality with those obtained by the unconstrained Reverse Monte Carlo simulations and existing ab initio molecular dynamics simulations for these systems. We have found that g(r) exhibits a small peak, or shoulder, a weak remnant of the prominent third neighbour peak present in the crystalline phase of these systems. This feature has been experimentally found to be present in recently reported high energy X-ray experiments of amorphous silicon (Phys. Rev. B 60 (1999) 13520), as well as in the previous X-ray diffraction of as-evaporated amorphous germanium (Phys. Rev. B 50 (1994) 539)

  15. Modelling the structure factors and pair distribution functions of amorphous germanium, silicon and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Dalgic, Seyfettin; Gonzalez, Luis Enrique; Baer, Shalom; Silbert, Moises

    2002-12-01

    We present the results of calculations of the static structure factor S(k) and the pair distribution function g(r) of the tetrahedral amorphous semiconductors germanium, silicon and carbon using the structural diffusion model (SDM). The results obtained with the SDM for S(k) and g(r) are of comparable quality with those obtained by the unconstrained Reverse Monte Carlo simulations and existing ab initio molecular dynamics simulations for these systems. We have found that g(r) exhibits a small peak, or shoulder, a weak remnant of the prominent third neighbour peak present in the crystalline phase of these systems. This feature has been experimentally found to be present in recently reported high energy X-ray experiments of amorphous silicon (Phys. Rev. B 60 (1999) 13520), as well as in the previous X-ray diffraction of as-evaporated amorphous germanium (Phys. Rev. B 50 (1994) 539)

  16. High throughput deposition of hydrogenated amorphous carbon coatings on rubber with expanding thermal plasma

    NARCIS (Netherlands)

    Pei, Y.T.; Eivani, A.R.; Zaharia, T.; Kazantis, A.V.; Sanden, van de M.C.M.; De Hosson, J.T.M.

    2014-01-01

    Flexible hydrogenated amorphous carbon (a-C:H) thin film coated on rubbers has shown outstanding protection of rubber seals from friction and wear. This work concentrates on the potential advances of expanding thermal plasma (ETP) process for a high throughput deposition of a-C:H thin films in

  17. Substrate temperature influence on the trombogenicity in amorphous carbon nitride thin coatings

    International Nuclear Information System (INIS)

    Galeano-Osorio, D.S.; Vargas, S.; Lopez-Cordoba, L.M.; Ospina, R.; Restrepo-Parra, E.; Arango, P.J.

    2010-01-01

    Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained. During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (T room ), 100 deg. C, 150 deg. C and 200 deg. C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films. Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 deg. C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 ± 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the I D /I G or sp 3 /sp 2 ratio and not by the absolute sp 3 or sp 2 concentration.

  18. Highly ordered amorphous silicon-carbon alloys obtained by RF PECVD

    CERN Document Server

    Pereyra, I; Carreno, M N P; Prado, R J; Fantini, M C A

    2000-01-01

    We have shown that close to stoichiometry RF PECVD amorphous silicon carbon alloys deposited under silane starving plasma conditions exhibit a tendency towards c-Si C chemical order. Motivated by this trend, we further explore the effect of increasing RF power and H sub 2 dilution of the gaseous mixtures, aiming to obtain the amorphous counterpart of c-Si C by the RF-PECVD technique. Doping experiments were also performed on ordered material using phosphorus and nitrogen as donor impurities and boron and aluminum as acceptor ones. For nitrogen a doping efficiency close to device quality a-Si:H was obtained, the lower activation energy being 0,12 eV with room temperature dark conductivity of 2.10 sup - sup 3 (OMEGA.cm). Nitrogen doping efficiency was higher than phosphorous for all studied samples. For p-type doping, results indicate that, even though the attained conductivity values are not device levels, aluminum doping conducted to a promising shift in the Fermi level. Also, aluminum resulted a more efficie...

  19. Electron emission induced modifications in amorphous tetrahedral diamondlike carbon

    International Nuclear Information System (INIS)

    Mercer, T.W.; DiNardo, N.J.; Rothman, J.B.; Siegal, M.P.; Friedmann, T.A.; Martinez-Miranda, L.J.

    1998-01-01

    The cold-cathode electron emission properties of amorphous tetrahedral diamondlike carbon are promising for flat-panel display and vacuum microelectronics technologies. The onset of electron emission is, typically, preceded by open-quotes conditioningclose quotes where the material is stressed by an applied electric field. To simulate conditioning and assess its effect, we combined the spatially localized field and current of a scanning tunneling microscope tip with high-spatial-resolution characterization. Scanning force microscopy shows that conditioning alters surface morphology and electronic structure. Spatially resolved electron-energy-loss spectroscopy indicates that the predominant bonding configuration changes from predominantly fourfold to threefold coordination. copyright 1998 American Institute of Physics

  20. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique

    International Nuclear Information System (INIS)

    Rebollo, P.B.; Escobar A, L.; Camps C, E.; Haro P, E.; Camacho L, M.A.; Muhl S, S.

    2000-01-01

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 -4 Torr until 7.5 x 10 -2 Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  1. Influence of Magnesium Content on the Local Structure of Amorphous Calcium Carbonate (ACC): Real Time Determination by In Situ PDF Analysis

    Science.gov (United States)

    Mergelsberg, S. T.; Ulrich, R. N.; Michel, F. M.; Dove, P. M.

    2016-12-01

    Calcium carbonate minerals are an essential component in the exoskeletons of crustaceans and mollusks. The onset of exoskeleton mineralization includes the precipitation of amorphous calcium carbonate (ACC) as a reactive intermediate that later transforms to produce diverse structures. Despite the importance of ACC as a critical phase during skeleton formation, the chemical and physical properties are not well characterized at conditions that approximate biological environments. Of particular interest are the solubility of ACC, the short-range structure at the time of formation, and the evolution of ACC structure to final products. Recent advances showing the widespread occurrence of multistep pathways to mineralization in biological and geological settings (De Yoreo et al., 2015) underline the importance of understanding amorphous intermediates. Using quantitative laboratory techniques developed by our research group (Blue et al., 2013; Blue and Dove, 2015; Blue et al., in press), this experimental study quantifies the solubility of ACC in parallel with the physical characterization of the corresponding structure. We measured ACC solubility at specific time points during the precipitation and during its subsequent evolution under the mild pH conditions that approximate biological and environmental conditions. In parallel experiments, structural data were collected from in situ pair distribution function (PDF) analyses were conducted to follow the evolution of individual samples from initial precipitation to final product. The measurements are leading to a quantitative solubility function for ACC with variable Mg contents and an x-ray based understanding of ACC structure in the same particles. We are also finding temporal changes in the short-range order of ACC after precipitation and this order is dependent upon Mg content. Moreover, the data show Mg distribution through the ACC particles is dependent upon total alkalinity. Insights from this study hold promise

  2. Tribological studies of nitrogen ion implantation induced overlayer coatings of amorphous carbon and carbonitride phase

    International Nuclear Information System (INIS)

    Kumar, N.; Srivastava, S.K.; Pandian, R.; Bahuguna, Ashok; Dhara, S.; Nair, K.G.M.; Dash, S.; Tyagi, A.K.

    2013-01-01

    Highlights: ► Composite phase of amorphous carbon and carbonitride phase is observed on the N + ion implanted surface of steel. ► Advanced properties of implanted surface shows low friction coefficient of ∼0.05. ► High wear resistance 4.3 × 10 −8 mm 3 /Nm of N + implanted surface is obtained. -- Abstract: Morphology and microstructure of N + ion implanted 316 LN steel are found to modify with irradiated substrate temperature. At low temperature of 100 °C, self-similar micro-ripples are formed but at high temperature of 200 and 300 °C, micro-pores and blisters are observed on the implanted surface. Chemically modified surface is found to consist of amorphous carbon and carbonitride phase. Such composite characteristic of implanted steel surface at irradiated substrate temperature of 300 °C shows improved tribological properties with low friction coefficient and high wear resistance

  3. The application of thick hydrogenated amorphous silicon layers to charged particle and x-ray detection

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Fujieda, I.; Kaplan, S.N.; Qureshi, S.; Street, R.A.

    1989-04-01

    We outline the characteristics of thick hydrogenated amorphous silicon layers which are optimized for the detection of charged particles, x-rays and γ-rays. Signal amplitude as a function of the linear energy transfer of various particles are given. Noise sources generated by the detector material and by the thin film electronics - a-Si:H or polysilicon proposed for pixel position sensitive detectors readout are described, and their relative amplitudes are calculated. Temperature and neutron radiation effects on leakage currents and the corresponding noise changes are presented. 17 refs., 12 figs., 2 tabs

  4. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  5. Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications

    KAUST Repository

    Wan, Shanhong

    2015-01-01

    A novel boron nitride nanosheets (BNNSs)-amorphous carbon (a-C) hybrid film has been deposited successfully on silicon substrates by simultaneous electrochemical deposition, and showed a good integrity of this B-C-N composite film by the interfacial bonding. This synthesis can potentially provide the facile control of the B-C-N composite film for the potential optoelectronic devices. This journal is

  6. Spectroscopic properties of nitrogen doped hydrogenated amorphous carbon films grown by radio frequency plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Hayashi, Y.; Yu, G.; Rahman, M. M.; Krishna, K. M.; Soga, T.; Jimbo, T.; Umeno, M.

    2001-01-01

    Nitrogen doped hydrogenated amorphous carbon thin films have been deposited by rf plasma-enhanced chemical vapor deposition using CH 4 as the source of carbon and with different nitrogen flow rates (N 2 /CH 4 gas ratios between 0 and 3), at 300 K. The dependence modifications of the optical and the structural properties on nitrogen incorporation were investigated using different spectroscopic techniques, such as, Raman spectroscopy, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, electron spin resonance (ESR), photoluminescence (PL) and spectroscopic ellipsometry (SE). Raman spectroscopy and IR absorption reveal an increase in sp 2 -bonded carbon or a change in sp 2 domain size with increasing nitrogen flow rate. It is found that the configuration of nitrogen atoms incorporated into an amorphous carbon network gradually changes from nitrogen atoms surrounded by three (σ bonded) to two (π bonded) neighboring carbons with increasing nitrogen flow rate. Tauc optical gap is reduced from 2.6 to 2.0 eV, and the ESR spin density and the peak-to-peak linewidth increase sharply with increasing nitrogen flow rate. Excellent agreement has been found between the measured SE data and modeled spectra, in which an empirical dielectric function of amorphous materials and a linear void distribution along the thickness have been assumed. The influence of nitrogen on the electronic density of states is explained based on the optical properties measured by UV-VIS and PL including nitrogen lone pair band. [copyright] 2001 American Institute of Physics

  7. The effect of substrate bias on titanium carbide/amorphous carbon nanocomposite films deposited by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Zhang, Xu; Liang, Hong; Wu, Zhenglong; Wu, Xiangying; Zhang, Huixing

    2013-01-01

    The titanium carbide/amorphous carbon nanocomposite films have been deposited on silicon substrate by filtered cathodic vacuum arc (FCVA) technology, the effects of substrate bias on composition, structures and mechanical properties of the films are studied by scanning electron spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy and nano-indentation. The results show that the Ti content, deposition rate and hardness at first increase and then decrease with increasing the substrate bias. Maximum hardness of the titanium carbide/amorphous carbon nanocomposite film is 51 Gpa prepared at −400 V. The hardness enhancement may be attributed to the compressive stress and the fraction of crystalline TiC phase due to ion bombardment

  8. Growth, characterisation and electronic applications of amorphous hydrogenated carbon

    International Nuclear Information System (INIS)

    Paul, S.

    2000-11-01

    My thesis proposes solutions to a number of riddles associated with the material, hydrogenated amorphous carbon, (a-C:H). This material has lately generated interest in the electronic engineering community, owing to some remarkable properties. The characterisation of amorphous carbon films, grown by radio frequency plasma enhanced chemical vapour deposition has been reported. The coexistence of multiple phases in the same a-C:H film manifests itself in the inconsistent electrical behaviour of different parts of the film, thus rendering it difficult to predict the nature of films. For the first time, in this thesis, a reliable prediction of Schottky contact formation on a-C:H films is reported. A novel and simple development on a Scanning Electron Microscope, configured to study the electrical properties of the grown a-C:H films, has been reported. Since device performance is crucially linked to the density of states in the film, a study of the same was undertaken in my doctoral research. I present a mathematical formalism to estimate the density of states in a-C:H. The most commonly used metal, (aluminium), for contact formation on a-C:H films, has been concluded to be the least suitable. On the basis of the study presented in this thesis, copper and chromium are judged to be the best alternatives. The resilience of a-C:H/Si heterostructures under high voltages (upto 900 V) has been reported in this thesis for the first time. The performance of a-C:H grown at room temperature on GaAs, has been studied and concluded to be satisfactory on the basis of good adherence and low leakage currents. Such a structure was motivated by the applicability in Metal Insulator Semiconductor Field Effect Transistors (MISFET). (author)

  9. Self-selection in size and structure in argon clusters formed on amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Krainyukova, Nina V.; Waal, Benjamin W. van de

    2004-07-01

    Argon clusters formed on an amorphous carbon substrate as deposited from the vapor phase were studied by means of transmission high energy electron diffraction using the liquid helium cryostat. Electron diffractograms were analysed on the basis of assumption that there exist a cluster size distribution in samples formed on substrate and multi-shell structures such as icosahedra, decahedra, fcc and hcp were probed for different sizes up to {approx}15 000 atoms. The experimental data were considered as a result of a superposition of diffracted intensities from clusters of different sizes and structures. The comparative analysis was based on the R-factor minimization that was found to be equal to 0.014 for the best fit between experiment and modelling. The total size and structure distribution function shows the presence of 'non-crystallographic' structures such as icosahedra and decahedra with five-fold symmetry that was found to prevail and a smaller amount of fcc and hcp structures. Possible growth mechanisms as well as observed general tendency to self-selection in sizes and structures are presumably governed by confined pore-like geometry in an amorphous carbon substrate.

  10. Substrate temperature influence on the trombogenicity in amorphous carbon nitride thin coatings

    Energy Technology Data Exchange (ETDEWEB)

    Galeano-Osorio, D.S.; Vargas, S.; Lopez-Cordoba, L.M.; Ospina, R. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia); Arango, P.J. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia)

    2010-10-01

    Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained. During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (T{sub room}), 100 deg. C, 150 deg. C and 200 deg. C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films. Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 deg. C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 {+-} 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the I{sub D}/I{sub G} or sp{sup 3}/sp{sup 2} ratio and not by the absolute sp{sup 3} or sp{sup 2} concentration.

  11. Electrochemical treatment of domestic wastewater using boron-doped diamond and nanostructured amorphous carbon electrodes.

    Science.gov (United States)

    Daghrir, Rimeh; Drogui, Patrick; Tshibangu, Joel; Delegan, Nazar; El Khakani, My Ali

    2014-05-01

    The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8%, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9%, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9 ± 2 and 85.5 ± 2 %, whereas 70% of total organic carbon removal was achieved.

  12. Preparation of nickel-based amorphous alloys with finely dispersed lead and lead-bismuth particles and their superconducting properties

    International Nuclear Information System (INIS)

    Inoue, A.; Oguchi, M.; Harakawa, Y.; Masumoto, T.; Matsuzaki, K.

    1986-01-01

    The application of the melt-quenching technique to Ni-Si-B-Pb, Ni-P-B-Pb, Ni-Si-B-Pb-Bi and Ni-P-B-Pb-Bi alloys containing immiscible elements such as lead and bismuth has been tried and it has been found to result in the formation of a new type of material consisting of fine fcc Pb or hcp epsilon(Pb-Bi) + bct X(Pb-Bi) particles dispersed uniformly in the nickel-based amorphous matrix. The particle size and interparticle distance were 1 to 3 and 1 to 4 μm, respectively, for the lead phase, and less than 0.2 to 0.5 μm and 0.2 to 1.0 μm for the Pb-Bi phase. The uniform dispersion of such fine particles into the amorphous matrix was achieved in the composition range below about 6 at% Pb and 7 at% (Pb+Bi). Additionally, these amorphous alloys have been found to exhibit a superconductivity by the proximity effect of fcc Pb or epsilon(Pb-Bi) superconducting particles. The transition temperature Tsub(c) was in the range 6.8 to 7.5 K for the Ni-Si (or P)-B-Pb alloys and 8.6 to 8.8 K for the Ni-Si (or P)-B-Pb-Bi alloys. The upper critical field Hsub(c2) and the critical current density Jsub(c) for (Nisub(0.8)Psub(0.1)Bsub(0.1)) 95 Pb 3 Bi 2 at 4.2 K were, respectively, about 1.6 T and of the order of 7 x 10 7 Am -2 at zero applied field. (author)

  13. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation

    International Nuclear Information System (INIS)

    Rebollo P, B.

    2001-01-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp 2 and sp 3 bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  14. Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics.

    Science.gov (United States)

    Constantinou, Marios; Nikolaou, Petros; Koutsokeras, Loukas; Avgeropoulos, Apostolos; Moschovas, Dimitrios; Varotsis, Constantinos; Patsalas, Panos; Kelires, Pantelis; Constantinides, Georgios

    2018-03-30

    This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a-C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a-C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a-C:H:Ag and a-C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  15. Amorphous hydrogenated carbon films treated by SF{sub 6} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Marins, N M S; Mota, R P; Santos, D C R; Honda, R Y; Kayama, M E; Kostov, K G; Algatti, M A [Laboratorio de Plasma, Faculdade de Engenharia, UNESP, Av. Dr. Ariberto Pereira da Cunha-333, 12516-410, Guaratingueta, SP (Brazil); Cruz, N C; Rangel, E C, E-mail: nazir@feg.unesp.b [Laboratorio de Plasmas Tecnologicos, Unidade Diferenciada Sorocaba/Ipero, UNESP, Av. Tres de Marco-511, 18085-180, Sorocaba, SP (Brazil)

    2009-05-01

    This work was performed to verify the chemical structure, mechanical and hydrophilic properties of amorphous hydrogenated carbon films prepared by plasma enhanced chemical vapor deposition, using acetylene/argon mixture as monomer. Films were prepared in a cylindrical quartz reactor, fed by 13.56 MHz radiofrequency. The films were grown during 5 min, for power varying from 25 to 125 W at a fixed pressure of 9.5 Pa. After deposition, all samples were treated by SF{sub 6} plasma with the aim of changing their hydrophilic character. Film chemical structure investigated by Raman spectroscopy, revealed the increase of sp{sup 3} hybridized carbon bonds as the plasma power increases. Hardness measurements performed by the nanoindentation technique showed an improvement from 5 GPa to 14 GPa following the increase discharge power. The untreated films presented a hydrophilic character, which slightly diminished after SF{sub 6} plasma treatment.

  16. Lightning-produced Carbon Species in the Atmosphere of Saturn

    Science.gov (United States)

    Delitsky, Mona; Baines, K. H.

    2010-10-01

    Recent studies by Baines et al (2009) indicate that thunderstorm-associated clouds on Saturn are spectrally dark from 0.7 to 4 um, darker than regular clouds. This darkening is found to be consistent with the presence of particles of elemental carbon, such as in the form of soot particles mixed in with spectrally bright condensates. This carbon is thought to be generated by lightning-induced dissociation of methane. Lightning on Saturn will input large amounts of energy to a narrow column of atmosphere and generate products at high energies such as radicals and ions. After the column cools down, the new chemical species recombine and are frozen into a new chemical equilibrium. Experimental studies in the literature of reactions of methane and other gases in plasma discharges (which simulate lightning) indicate that, even with high ratios of hydrogen/methane, the elemental carbon obtained will form solid dark particles that persist and have a very high C/H ratio. Basically, they are mostly pure carbon, in the form of soot, amorphous carbon, graphite, graphene, polycyclic aromatic hydrocarbons, carbon black, carbon onions, etc. Hydrogen will act as a sealant onto the particles and attach to dangling bonds on their growing surfaces. Even in experiments to form the most crystalline allotrope of carbon, that is, diamond, the presence of hydrogen does not inhibit diamond formation, even at the low pressures in the atmospheres of the Jovian planets or in the interstellar medium (Allamandola et al 1991). Therefore, some form of elemental carbon is likely produced in Saturnian storm clouds and may occur as dark particles of either amorphous carbon, PAHs or crystalline carbon in a form such as graphite. ..Refs: Baines et al., PSS 57, 1650-1658 (2009) ; Allamandola et al., Meteoritics 26, 313 (1991).

  17. Electrochemical deposition of carbon films on titanium in molten LiCl–KCl–K2CO3

    International Nuclear Information System (INIS)

    Song, Qiushi; Xu, Qian; Wang, Yang; Shang, Xujing; Li, Zaiyuan

    2012-01-01

    Electrodeposition of carbon films on the oxide-scale-coated titanium has been performed in a LiCl–KCl–K 2 CO 3 melt, which are characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction analysis. The electrochemical process of carbon deposition is investigated by cyclic voltammetry on the graphite, titanium and oxide-scale-coated titanium electrodes. The particle-size-gradient carbon films over the oxide-scale-coated titanium can be achieved by electrodeposition under the controlled potentials for avoiding codeposition of lithium carbide. The deposited carbon films are comprised of micron-sized ‘quasi-spherical’ carbon particles with graphitized and amorphous phases. The cyclic voltammetry behavior on the graphite, titanium and oxide-scale-coated titanium electrodes shows that CO 3 2− ions are reduced most favorably on the graphite for the three electrodes. Lithium ions can discharge under the less negative potential on the electrode containing carbon compared with titanium electrode because of the formation of lithium carbide from the reaction between lithium and carbon. - Highlights: ► Carbon films are prepared on oxide-scale-coated titanium in a LiCl–KCl–K 2 CO 3 melt. ► The films comprise micron-size ‘quasi-spherical’ carbon particles. ► The films present particle-size-gradient. ► The particles contain graphitized and amorphous phases. ► The prepared carbon films are more electrochemically active than graphite.

  18. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes.

    Science.gov (United States)

    Tali, S A Safiabadi; Soleimani-Amiri, S; Sanaee, Z; Mohajerzadeh, S

    2017-02-10

    We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploits C 2 H 2 and N 2 gases as the sources of carbon and nitrogen constituents and can be applied to various micro and nanostructures. Although as-deposited a-C:N films have a porous surface, their porosity can be significantly improved through a modification process consisting of Ni-assisted annealing and etching steps. The electrochemical analyses demonstrated the superior performance of the modified a-C:N as a supercapacitor active material, where specific capacitance densities as high as 42 F/g and 8.5 mF/cm 2 (45 F/cm 3 ) on silicon microrod arrays were achieved. Furthermore, this supercapacitor electrode showed less than 6% degradation of capacitance over 5000 cycles of a galvanostatic charge-discharge test. It also exhibited a relatively high energy density of 2.3 × 10 3  Wh/m 3 (8.3 × 10 6  J/m 3 ) and ultra-high power density of 2.6 × 10 8  W/m 3 which is among the highest reported values.

  19. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.

    Science.gov (United States)

    Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry

    2017-09-01

    The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium

  20. Pt coating on flame-generated carbon particles

    International Nuclear Information System (INIS)

    Choi, In Dae; Lee, Dong Geun

    2008-01-01

    Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission Electron Microscopy (TEM), Energy Dispersive Spectra (EDS) and X-Ray Diffraction (XRD). Crystallinity and surface bonding groups of carbon are investigated through X-ray Photoelectron Spectroscoy (XPS) and Raman spectroscopy

  1. Efficient Production of N-Butyl Levulinate Fuel Additive from Levulinic Acid Using Amorphous Carbon Enriched with Oxygenated Groups

    Directory of Open Access Journals (Sweden)

    Jinfan Yang

    2018-01-01

    Full Text Available The aim of this study was to develop an effective carbonaceous solid acid for synthesizing green fuel additive through esterification of lignocellulose-derived levulinic acid (LA and n-butanol. Two different sulfonated carbons were prepared from glucose-derived amorphous carbon (GC400 and commercial active carbon (AC400. They were contrastively studied by a series of characterizations (N2 adsorption, X-ray diffraction, elemental analysis, transmission electron microscopy, Fourier transform infrared spectroscopy and NH3 temperature programmed desorption. The results indicated that GC400 possessed stronger acidity and higher –SO3H density than AC400, and the amorphous structure qualified GC400 for good swelling capacity in the reaction solution. Assessment experiments showed that GC400 displayed remarkably higher catalytic efficiency than AC400 and other typical solid acids (HZSM-5, Hβ, Amberlyst-15 and Nafion-212 resin. Up to 90.5% conversion of LA and 100% selectivity of n-butyl levulinate could be obtained on GC400 under the optimal reaction conditions. The sulfonated carbon retained 92% of its original catalytic activity even after five cycles.

  2. Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guigen, E-mail: wanggghit@yahoo.com [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Kuang Xuping; Zhang Huayu; Zhu Can [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Han Jiecai [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Center for Composite Materials, Harbin Institute of Technology, Harbin 150080 (China); Zuo Hongbo [Center for Composite Materials, Harbin Institute of Technology, Harbin 150080 (China); Ma Hongtao [SAE Technologies Development (Dongguan) Co., Ltd., Dongguan 523087 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The ultra-thin carbon films with different silicon nitride (Si-N) film underlayers were prepared. Black-Right-Pointing-Pointer It highlighted the influences of Si-N underlayers. Black-Right-Pointing-Pointer The carbon films with Si-N underlayers obtained by nitriding especially at the substrate bias of -150 V, can exhibit better corrosion protection properties - Abstract: There are higher technical requirements for protection overcoat of magnetic recording slider used in high-density storage fields for the future. In this study, silicon nitride (Si-N) composition-gradient films were firstly prepared by nitriding of silicon thin films pre-sputtered on silicon wafers and magnetic recording sliders, using microwave electron cyclotron resonance plasma source. The ultra-thin tetrahedral amorphous carbon films were then deposited on the Si-N films by filtered cathodic vacuum arc method. Compared with amorphous carbon overcoats with conventional silicon underlayers, the overcoats with Si-N underlayers obtained by plasma nitriding especially at the substrate bias of -150 V, can provide better corrosion protection for high-density magnetic recording sliders.

  3. Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider

    International Nuclear Information System (INIS)

    Wang Guigen; Kuang Xuping; Zhang Huayu; Zhu Can; Han Jiecai; Zuo Hongbo; Ma Hongtao

    2011-01-01

    Highlights: ► The ultra-thin carbon films with different silicon nitride (Si-N) film underlayers were prepared. ► It highlighted the influences of Si-N underlayers. ► The carbon films with Si-N underlayers obtained by nitriding especially at the substrate bias of −150 V, can exhibit better corrosion protection properties - Abstract: There are higher technical requirements for protection overcoat of magnetic recording slider used in high-density storage fields for the future. In this study, silicon nitride (Si-N) composition-gradient films were firstly prepared by nitriding of silicon thin films pre-sputtered on silicon wafers and magnetic recording sliders, using microwave electron cyclotron resonance plasma source. The ultra-thin tetrahedral amorphous carbon films were then deposited on the Si-N films by filtered cathodic vacuum arc method. Compared with amorphous carbon overcoats with conventional silicon underlayers, the overcoats with Si-N underlayers obtained by plasma nitriding especially at the substrate bias of −150 V, can provide better corrosion protection for high-density magnetic recording sliders.

  4. Infrared analysis of thin films: amorphous, hydrogenated carbon on silicon

    International Nuclear Information System (INIS)

    Jacob, Wolfgang; Keudell, Achim von; Schwarz-Selinger, Thomas

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, an experimentally measured spectrum has to be simulated using the full formalism including the Kramers-Kronig relation. Infrared absorption spectra and the resulting k spectra in the range of the CH vibrational bands around 3000 cm -1 are presented for a variety of a-C:H layers. The shape and the total intensity of the peak are quite sensitive to the film structure. Soft, polymerlike hydrocarbon layers are characterized by a well structured, intense IR absorption band, while hard, amorphous, hydrogenated carbon layers exhibit a structureless, broad IR absorption band with relative low intensity. The k spectra of the CH vibrational bands can be considered as fingerprint for the type of a-C:H film. (author)

  5. Negative ion emission at field electron emission from amorphous (alpha-C:H) carbon

    CERN Document Server

    Bernatskij, D P; Ivanov-Omskij, V I; Pavlov, V G; Zvonareva, T K

    2001-01-01

    The study on the electrons field emission from the plane cathode surface on the basis of the amorphous carbon film (alpha-C:H) is carried out. The methodology, making it possible to accomplish simultaneously the registration of the emission currents and visually observe the distribution of the emission centers on the plane emitter surface is developed. The analysis of the oscillograms indicated that apart from the proper electron constituent the negative ions of hydrogen (H sup - and H sub 2 sup -), carbon (C sup -) and hydrocarbon (CH sub n sup -) are observed. The ions emission is connected with the processes of formation and degradation of the local emission centers

  6. Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization

    International Nuclear Information System (INIS)

    Nunes, D.; Livramento, V.; Mateus, R.; Correia, J.B.; Alves, L.C.; Vilarigues, M.; Carvalho, P.A.

    2011-01-01

    Highlights: → The study characterized Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites. → Preservation of nD crystalline structure during high-energy milling was demonstrated. → Higher refinement of matrix in Cu-nD comparing to Cu-G is due to a milling mechanism. → Remarkable thermal stability and microhardness have been achieved in Cu-nD and Cu-G. → Strengthening resulted mainly from grain refinement and second-phase reinforcement. - Abstract: Processing of copper-carbon nanocomposites by mechanical synthesis poses specific challenges as carbon phases are prone to amorphization and exhibit an intrinsically difficult bonding with copper. The present work investigates Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites produced by mechanical synthesis and subsequent heat treatments. Transmission electron microscopy observations showed homogeneous particle distributions and intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained essentially unaffected by the mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. Particle-induced X-ray emission spectroscopy showed that the total contamination originating from the milling media remained below 0.7 wt.%. The Cu-nanodiamond composite exhibited remarkable microhardness and microstructural thermal stability when compared with pure nanostructured copper.

  7. Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.nunes@ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Livramento, V. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Mateus, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Alves, L.C. [ITN, Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Vilarigues, M. [Departamento de Conservacao e Restauro e R and D Unit Vidro e da Ceramica Para as Artes, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal); Carvalho, P.A. [ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-11-15

    Highlights: {yields} The study characterized Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites. {yields} Preservation of nD crystalline structure during high-energy milling was demonstrated. {yields} Higher refinement of matrix in Cu-nD comparing to Cu-G is due to a milling mechanism. {yields} Remarkable thermal stability and microhardness have been achieved in Cu-nD and Cu-G. {yields} Strengthening resulted mainly from grain refinement and second-phase reinforcement. - Abstract: Processing of copper-carbon nanocomposites by mechanical synthesis poses specific challenges as carbon phases are prone to amorphization and exhibit an intrinsically difficult bonding with copper. The present work investigates Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites produced by mechanical synthesis and subsequent heat treatments. Transmission electron microscopy observations showed homogeneous particle distributions and intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained essentially unaffected by the mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. Particle-induced X-ray emission spectroscopy showed that the total contamination originating from the milling media remained below 0.7 wt.%. The Cu-nanodiamond composite exhibited remarkable microhardness and microstructural thermal stability when compared with pure nanostructured copper.

  8. Origins of amorphous interstellar grains

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    The existence of amorphous interstellar grains has been suggested from infrared observations. Some carbon stars show the far infrared emission with a lambda -1 wavelength dependence. Far infrared emission supposed to be due to silicate grains often show the lambda -1 wavelength dependence. Mid infrared spectra around 10 μm have broad structure. These may be due to the amorphous silicate grains. The condition that the condensed grains from the cosmic gas are amorphous is discussed. (author)

  9. Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shengtong [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; School of Chemical Engineering, State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road Shanghai 200237 P.R. China; Chevrier, Daniel M. [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Zhang, Peng [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Gebauer, Denis [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; Cölfen, Helmut [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany

    2016-09-09

    Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO3 units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO3 entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO3 core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection.

  10. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Science.gov (United States)

    Hwang, Jeongwoon; Ihm, Jisoon; Lee, Kwang-Ryeol; Kim, Seungchul

    2015-01-01

    We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV). As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries. PMID:28347087

  11. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jeongwoon Hwang

    2015-10-01

    Full Text Available We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV. As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries.

  12. Metal (Ag/Ti-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics

    Directory of Open Access Journals (Sweden)

    Marios Constantinou

    2018-03-01

    Full Text Available This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a–C:H:Me of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD and Physical Vapor Deposition (PVD technologies. The a–C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti. The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR, Raman spectroscopy, Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM, Transmission Electron Microscopy (TEM and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a–C:H:Ag and a–C:H:Ti exhibited enhanced nanoscratch resistance (up to +50% and low values of friction coefficient (<0.05, properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  13. Structural properties of nitrogenated amorphous carbon films: Influence of deposition temperature and radiofrequency discharge power

    International Nuclear Information System (INIS)

    Lazar, G.; Bouchet-Fabre, B.; Zellama, K.; Clin, M.; Ballutaud, D.; Godet, C.

    2008-01-01

    The structural properties of nitrogenated amorphous carbon deposited by radiofrequency magnetron sputtering of graphite in pure N 2 plasma are investigated as a function of the substrate temperature and radiofrequency discharge power. The film composition is derived from x-ray photoemission spectroscopy, nuclear reaction analysis and elastic recoil detection measurements and the film microstructure is discussed using infrared, Raman, x-ray photoemission and near edge x-ray absorption fine structure spectroscopic results. At low deposition temperature and low radiofrequency power, the films are soft, porous, and easily contaminated with water vapor and other atmospheric components. The concentration of nitrogen in the films is very large for low deposition temperatures (∼33.6 at. % N at 150 deg. C) but decreases strongly when the synthesis temperature increases (∼15 at. % N at 450 deg. C). With increasing deposition temperature and discharge power values, the main observed effects in amorphous carbon nitride alloys are a loss of nitrogen atoms, a smaller hydrogen and oxygen contamination related to the film densification, an increased order of the aromatic sp 2 phase, and a strong change in the nitrogen distribution within the carbon matrix. Structural changes are well correlated with modifications of the optical and transport properties

  14. From empirical to ab initio: transferable potentials in the atomistic simulation of amorphous carbons

    International Nuclear Information System (INIS)

    Marks, N.A.; Goringe, C.M.; McKenzie, D.R.; McCulloch, D.G.; Royal Melbourne Institute of Technology University, Melbourne, VIC

    2000-01-01

    Full text: Silicon is often described as the prototype covalent material, and when it comes to developing atomistic models this situation is well described by the sentiment that 'everything works for silicon'. The same cannot be said for carbon though, where the interaction potential has always proved problematical, be it with empirical, tight-binding or ab initio methods. Thus far the most decisive contributions to understanding amorphous carbon networks have come from ab initio simulations using the Car-Parrinello method, where the fully quantum treatment of the valence electrons has provided unexpected insight into the local structure. However such first principles calculations are restricted spatially and temporally to systems with approximately 100 atoms and times of order one picosecond. There is therefore demand for less expensive techniques capable of resolving important questions whose solution can only to found with larger simulations running for longer times. In the case of tetrahedral amorphous carbon, such issues include the release of compressive stress through annealing, the origin of graphitic surface layers and the nature of the film growth process and thermal spike. Against this background tight-binding molecular dynamics has emerged as a popular alternative to first principles methods, and our group has an ongoing program to understand film growth using one of the efficient variants of tight-binding. Another direction of research is a new empirical potential based on the Environment Dependent Interaction Potential (EDIP) recently developed for silicon. The EDIP approach represents a promising direction for empirical potentials through its use of ab initio data to motivate the functional form as well as the more conventional parametrisation. By inverting ab initio cohesive energy curves the authors of EDIP arrived at a pair potential expression which reduces to the well-known Stillinger-Weber form at integer coordination, while providing

  15. Method of producing carbon coated nano- and micron-scale particles

    Science.gov (United States)

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  16. Crystalline and Amorphous Phosphorus – Carbon Nanotube Composites as Promising Anodes for Lithium-Ion Batteries

    KAUST Repository

    Smajic, Jasmin

    2016-05-04

    Battery research has been going full steam and with that the search for alternative anodes. Among many proposed electrode materials, little attention has been given to phosphorus. Phosphorus boasts the third highest gravimetric charge capacity and the highest volumetric charge capacity of all elements. Because of that, it would be an attractive battery anode material were it not for its poor cyclability with significant capacity loss immediately after the first cycle. This is known to be the consequence of considerable volume changes of phosphorus during charge/discharge cycles. In this work, we propose circumventing this issue by mixing amorphous red phosphorus with carbon nanotubes. By employing a non-destructive sublimation-deposition method, we have synthesized composites where the synergetic effect between phosphorus and carbon nanotubes allow for an improvement in the electrochemical performance of battery anodes. In fact, it has been shown that carbon nanotubes can act as an effective buffer to phosphorus volumetric expansions and contractions during charging and discharging of the half-cells [1]. By modifying the synthesis parameters, we have also been able to change the degree of crystallinity of the phosphorus matrix in the composites. In fact, the less common phase of red phosphorus, named fibrous phosphorus, was obtained, and that explains some of the varying electrochemical performances observed in the composites. Overall, it is found that a higher surface area of amorphous phosphorus allows for a better anode material when using single-walled carbon nanotubes as fillers.

  17. Low Thermal Conductivity of Bulk Amorphous Si1- x Ge x Containing Nano-Sized Crystalline Particles Synthesized by Ball-Milling Process

    Science.gov (United States)

    Muthusamy, Omprakash; Nishino, Shunsuke; Ghodke, Swapnil; Inukai, Manabu; Sobota, Robert; Adachi, Masahiro; Kiyama, Makato; Yamamoto, Yoshiyuki; Takeuchi, Tsunehiro; Santhanakrishnan, Harish; Ikeda, Hiroya; Hayakawa, Yasuhiro

    2018-06-01

    Amorphous Si0.65Ge0.35 powder containing a small amount of nano-sized crystalline particles was synthesized by means of the mechanical alloying process. Hot pressing for 24 h under the pressure of 400 MPa at 823 K, which is below the crystallization temperature, allowed us to obtain bulk amorphous Si-Ge alloy containing a small amount of nanocrystals. The thermal conductivity of the prepared bulk amorphous Si-Ge alloy was extremely low, showing a magnitude of less than 1.35 Wm-1 K-1 over the entire temperature range from 300 K to 700 K. The sound velocity of longitudinal and transverse waves for the bulk amorphous Si0.65Ge0.35 were measured, and the resulting values were 5841 m/s and 2840 m/s, respectively. The estimated mean free path of phonons was kept at the very small value of ˜ 4.2 nm, which was mainly due to the strong scattering limit of phonons in association with the amorphous structure.

  18. Transformation of Mg-bearing amorphous calcium carbonate to Mg-calcite - In situ monitoring

    Science.gov (United States)

    Purgstaller, Bettina; Mavromatis, Vasileios; Immenhauser, Adrian; Dietzel, Martin

    2016-02-01

    The formation of Mg-bearing calcite via an amorphous precursor is a poorly understood process that is of relevance for biogenic and abiogenic carbonate precipitation. In order to gain an improved insight on the controls of Mg incorporation in calcite formed via an Mg-rich amorphous calcium carbonate (Mg-ACC) precursor, the precipitation of Mg-ACC and its transformation to Mg-calcite was monitored by in situ Raman spectroscopy. The experiments were performed at 25.0 ± 0.03 °C and pH 8.3 ± 0.1 and revealed two distinct pathways of Mg-calcite formation: (i) At initial aqueous Mg/Ca molar ratios ⩽ 1:6, Mg-calcite formation occurs via direct precipitation from solution. (ii) Conversely, at higher initial Mg/Ca molar ratios, Mg-calcite forms via an intermediate Mg-rich ACC phase. In the latter case, the final product is a calcite with up to 20 mol% Mg. This Mg content is significant higher than that of the Mg-rich ACC precursor phase. Thus, a strong net uptake of Mg ions from the solution into the crystalline precipitate throughout and also subsequent to ACC transformation is postulated. Moreover, the temporal evolution of the geochemical composition of the reactive solution and the Mg-ACC has no significant effect on the obtained ;solubility product; of Mg-ACC. The enrichment of Mg in calcite throughout and subsequent to Mg-ACC transformation is likely affected by the high aqueous Mg/Ca ratio and carbonate alkalinity concentrations in the reactive solution. The experimental results have a bearing on the formation mechanism of Mg-rich calcites in marine early diagenetic environments, where high carbonate alkalinity concentrations are the rule rather than the exception, and on the insufficiently investigated inorganic component of biomineralisation pathways in many calcite secreting organisms.

  19. On the properties of nanocomposite amorphous carbon films prepared by off-plane double bend filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Tay, B.K.; Zhang, P.

    2002-01-01

    It is known to deposit hard thin films, such as tetrahedral amorphous carbon (ta-C), using a filtered cathode vacuum arc (FCVA). These ta-C films have interesting and useful properties because of the high sp 3 fraction of carbon atoms (up to 87%) in the film. However, the high internal stress in the films can limit their applications as the film may flake away from the substrate. In order to reduce the internal stress of the ta-C films and in an attempt to improve adhesion of thick films of this type, growth modifications such as incorporating metal into the ta-C films have been carried out. Nanocomposite amorphous carbon films were deposited by FCVA technique using metal-carbon composite target. Atomic force microscopy, Raman, and X-ray photoelectron spectroscopy were used to characterize the morphology and structure of the films. Nanoindenter and surface profilometer were used to determine the hardness, Young's modulus, and internal stress. The same metal composition targets for different elements results in different metal composition in the corresponding nanocomposite amorphous carbon films. We attribute this observation to the dynamic balance deposition effect of the FCVA deposition process. The influence of the type of metallic elements and its composition in the films on the structural, mechanical properties, surface energy and field emission (FE) performance was studied. The incorporation of metal into the films results in the decrease of sp 3 fraction, internal stress in the films, but the hardness and Young's modulus remains at high level. The surface energy of the films increases with incorporating Ni atoms, but decreases after incorporating Fe and Al atoms into the films. After heat-treatment, the incorporation of metal into ta-C films can greatly improve the FE performance

  20. X-ray and neutron scattering from amorphous diamondlike carbon and hydrocarbon films

    International Nuclear Information System (INIS)

    Findeisen, E.

    1994-10-01

    In this report amorphous, diamondlike, carbon and hydrocarbon films are investigated by two different methods, namely, X-ray scattering and a combination of X-ray and neutron reflectivity. As specular reflectivity probes the scattering length density profile of a sample perpendicular to its surface, the combination of X-ray and neutron reflectivity reveals the nuclei density of both carbon and hydrogen separately. This allows to calculate the concentration of hydrogen in the films, which varies in the presented experiments between 0 and 36 atomic %. This method is a new and nondestructive technique to determine the concentration of hydrogen within an error of about ±1 at. % in samples with sharp interfaces. It is well suited for thin diamondlike carbon films. X-ray scattering is used to obtain structural information on the atomic scale, especially the average carbon-carbon distance and the average coordination number of the carbon atoms. As grazing incidence diffraction experiments were not successful, free-standing films are used for the scattering experiments with synchrotron light. However, the scattered intensity for large scattering vectors is, in spite of the intense primary beam, very weak, and therefore the accuracy of the obtained structural parameter is not sufficient to prove the diamondlike properties also on the atomic scale. (au) (10 tabs., 76 ills., 102 refs.)

  1. Solubility and bioavailability of stabilized amorphous calcium carbonate.

    Science.gov (United States)

    Meiron, Oren E; Bar-David, Elad; Aflalo, Eliahu D; Shechter, Assaf; Stepensky, David; Berman, Amir; Sagi, Amir

    2011-02-01

    Since its role in the prevention of osteoporosis in humans was proven some 30 years ago, calcium bioavailability has been the subject of numerous scientific studies. Recent technology allowing the production of a stable amorphous calcium carbonate (ACC) now enables a bioavailability analysis of this unique form of calcium. This study thus compares the solubility and fractional absorption of ACC, ACC with chitosan (ACC-C), and crystalline calcium carbonate (CCC). Solubility was evaluated by dissolving these preparations in dilute phosphoric acid. The results demonstrated that both ACC and ACC-C are more soluble than CCC. Fractional absorption was evaluated by intrinsically labeling calcium carbonate preparations with (45)Ca, orally administrated to rats using gelatin capsules. Fractional absorption was determined by evaluating the percentage of the administrated radioactive dose per milliliter that was measured in the serum, calcium absorption in the femur, and whole-body retention over a 34-hour period. Calcium serum analysis revealed that calcium absorption from ACC and ACC-C preparations was up to 40% higher than from CCC, whereas retention of ACC and ACC-C was up to 26.5% higher than CCC. Absorbed calcium in the femurs of ACC-administrated rats was 30% higher than in CCC-treated animals, whereas 15% more calcium was absorbed following ACC-C treatment than following CCC treatment. This study demonstrates the enhanced solubility and bioavailability of ACC over CCC. The use of stable ACC as a highly bioavailable dietary source for calcium is proposed based on the findings of this study. Copyright © 2011 American Society for Bone and Mineral Research.

  2. Fabrication of periodical surface structures by picosecond laser irradiation of carbon thin films: transformation of amorphous carbon in nanographite

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, C.; Dorcioman, G. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania); Bita, B. [National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae Street, Voluntari RO-077190 (Romania); Faculty of Physics, 405 Atomistilor Street, Magurele RO-077125 (Romania); Besleaga, C.; Zgura, I. [National Institute of Materials Physics, 105bis Atomistilor Street, Magurele RO-077125 (Romania); Himcinschi, C. [Institute of Theoretical Physics, TU Bergakademie Freiberg, Freiberg D-09596 (Germany); Popescu, A.C., E-mail: andrei.popescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania)

    2016-12-30

    Highlights: • Ripples obtained on carbon films after irradiation with visible ps laser pulses. • Amorphous carbon was transformed in nanographite following irradiation. • Ripples had a complex morphology, being made of islands of smaller ripples. • Hydrophilic carbon films became hydrophobic after surface structuring. - Abstract: Thin films of carbon were synthesized by ns pulsed laser deposition in vacuum on silicon substrates, starting from graphite targets. Further on, the films were irradiated with a picosecond laser source emitting in visible at 532 nm. After tuning of laser parameters, we obtained a film surface covered by laser induced periodical surface structures (LIPSS). They were investigated by optical, scanning electron and atomic force microscopy. It was observed that changing the irradiation angle influences the LIPSS covered area. At high magnification it was revealed that the LIPSS pattern was quite complex, being composed of other small LIPSS islands, interconnected by bridges of nanoparticles. Raman spectra for the non-irradiated carbon films were typical for a-C type of diamond-like carbon, while the LIPSS spectra were characteristic to nano-graphite. The pristine carbon film was hydrophilic, while the LIPSS covered film surface was hydrophobic.

  3. Effects of hydrogenation on thermal conductivity of ultrananocrystalline diamond/amorphous carbon composite films prepared via coaxial arc plasma deposition

    Science.gov (United States)

    Takeichi, Satoshi; Nishiyama, Takashi; Tabara, Mitsuru; Kawawaki, Shuichi; Kohno, Masamichi; Takahashi, Koji; Yoshitake, Tsuyoshi

    2018-06-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite (UNCD/a-C:H) and UNCD/non-hydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were prepared via coaxial arc plasma deposition, and their thermal conductivity and interfacial conductance in grain boundaries were measured using a time-domain thermoreflectance method. The interfacial conductance was estimated to be 1,010 and 4,892 MW/(m2·K) for UNCD/a-C:H and UNCD/a-C films, respectively. The reasons for the hydrogenated film having lower interfacial conductance than the non-hydrogenated film are 1) the reduced number of carriers that contribute to heat transport and 2) the hydrogen atoms, which are preferentially located at the grain boundaries and enhance phonon scattering.

  4. Single particle composition measurements of artificial Calcium Carbonate aerosols

    Science.gov (United States)

    Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.

    2012-12-01

    Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.

  5. Mapping residual organics and carbonate at grain boundaries and in the amorphous interphase in mouse incisor enamel

    Directory of Open Access Journals (Sweden)

    Lyle M Gordon

    2015-03-01

    Full Text Available Dental enamel has evolved to resist the most grueling conditions of mechanical stress, fatigue, and wear. Adding insult to injury, it is exposed to the frequently corrosive environment of the oral cavity. While its hierarchical structure is unrivaled in its mechanical resilience, heterogeneity in the distribution of magnesium ions and the presence of Mg-substituted amorphous calcium phosphate (Mg-ACP as an intergranular phase have recently been shown to increase the susceptibility of mouse enamel to acid attack. Herein we investigate the distribution of two important constituents of enamel, residual organic matter and inorganic carbonate. We find that organics, carbonate, and possibly water show distinct distribution patterns in the mouse enamel crystallites, at simple grain boundaries, and in the amorphous interphase at multiple grain boundaries. This has implications for the resistance to acid corrosion, mechanical properties, and the mechanism by which enamel crystals grow during amelogenesis.

  6. Resistance switching at the nanometre scale in amorphous carbon

    International Nuclear Information System (INIS)

    Sebastian, Abu; Rossel, Christophe; Pozidis, Haralampos; Eleftheriou, Evangelos; Pauza, Andrew; Shelby, Robert M; RodrIguez, Arantxa Fraile

    2011-01-01

    The electrical transport and resistance switching mechanism in amorphous carbon (a-C) is investigated at the nanoscale. The electrical conduction in a-C thin films is shown to be captured well by a Poole-Frenkel transport model that involves nonisolated traps. Moreover, at high electric fields a field-induced threshold switching phenomenon is observed. The following resistance change is attributed to Joule heating and subsequent localized thermal annealing. We demonstrate that the mechanism is mostly due to clustering of the existing sp 2 sites within the sp 3 matrix. The electrical conduction behaviour, field-induced switching and Joule-heating-induced rearrangement of atomic order resulting in a resistance change are all reminiscent of conventional phase-change memory materials. This suggests the potential of a-C as a similar nonvolatile memory candidate material.

  7. Heat treatment of cathodic arc deposited amorphous hard carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Ager, J.W. III; Brown, I.G. [and others

    1997-02-01

    Amorphous hard carbon films of varying sp{sup 2}/sp{sup 3} fractions have been deposited on Si using filtered cathodic are deposition with pulsed biasing. The films were heat treated in air up to 550 C. Raman investigation and nanoindentation were performed to study the modification of the films caused by the heat treatment. It was found that films containing a high sp{sup 3} fraction sustain their hardness for temperatures at least up to 400 C, their structure for temperatures up to 500 C, and show a low thickness loss during heat treatment. Films containing at low sp{sup 3} fraction graphitize during the heat treatment, show changes in structure and hardness, and a considerable thickness loss.

  8. Amorphous nano-curcumin stabilized oil in water emulsion: Physico chemical characterization.

    Science.gov (United States)

    Aditya, N P; Hamilton, Ian E; Norton, Ian T

    2017-06-01

    Particle characteristics e.g. size and polymorphism are known to significantly affect the Pickering ability of the solid particles by influencing their interaction at the oil and water (O/W) interface. In this study, nano-sized amorphous curcumin particles were fabricated using nanonization technology to use them as Pickering particles. After nanonization, native crystalline curcumin particles were converted into amorphous, nanosized particles of ∼220nm. Amorphous nature of the particle was evident from the decreased melting point from 177±1°C (native curcumin) to 146±3°C (nanonized curcumin) and enthalpy from 27±2J/g to 3.5±1J/g. Interfacial tension (IFT) studies have shown a decrease in IFT at the O/W interface from ∼27mN/m to ∼15mN/m in the presence of amorphous curcumin particles in water phase compared to crystalline curcumin particles. Curcumin stabilized O/W emulsion has an initial droplet size of ∼1.2μm and they were stable for 30days at 4°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Ignition of a Combustible Atmosphere by Incandescent Carbon Wear Particles

    Science.gov (United States)

    Buckley, Donald H.; Swikert, Max A.; Johnson, Robert L.

    1960-01-01

    A study was made to determine whether carbon wear particles from carbon elements in sliding contact with a metal surface were sufficiently hot to cause ignition of a combustible atmosphere. In some machinery, electric potential differences and currents may appear at the carbon-metal interface. For this reason the effect of these voltages and currents on the ability of carbon wear particles to cause ignition was evaluated. The test specimens used in the investigation were carbon vanes taken from a fuel pump and flat 21-inch-diameter 2 metal disks (440-C stainless steel) representing the pump housing. During each experiment a vane was loaded against a disk with a 0.5-pound force, and the disk was rotated to give a surface speed of 3140 feet per minute. The chamber of the apparatus that housed the vane and the disk was filled with a combustible mixture of air and propane. Various voltages and amperages were applied across the vane-disk interface. Experiments were conducted at temperatures of 75, 350, 400, and 450 F. Fires were produced by incandescent carbon wear particles obtained at conditions of electric potential as low as 106 volts and 0.3 ampere at 400 F. Ignitions were obtained only with carbon wear particles produced with an electric potential across the carbon-vane-disk interface. No ignitions were obtained with carbon wear particles produced in the absence of this potential; also, the potential difference produced no ignitions in the absence of carbon wear particles. A film supplement showing ignition by incandescent wear particles is available.

  10. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams

    International Nuclear Information System (INIS)

    Narasimman, R.; Vijayan, Sujith; Prabhakaran, K.

    2014-01-01

    Graphical abstract: - Highlights: • An easy method for the preparation of carbon foam from sucrose is presented. • Wood derived activated carbon particles are used to stabilize the molten sucrose foam. • The carbon foams show relatively good mechanical strength. • The carbon foams show excellent CO 2 adsorption and oil absorption properties. • The process could be scaled up for the preparation of large foam bodies. - Abstract: Activated carbon powder was used as a foaming and foam setting agent for the preparation of carbon foams with a hierarchical pore structure from molten sucrose. The rheological measurements revealed the interruption of intermolecular hydrogen bonding in molten sucrose by the carbon particles. The carbon particles stabilized the bubbles in molten sucrose by adsorbing on the molten sucrose–gas interface. The carbon foams obtained at the activated carbon powder to sucrose weight ratios in the range of 0–0.25 had a compressive strength in the range of 1.35–0.31 MPa. The produced carbon foams adsorb 2.59–3.04 mmol/g of CO 2 at 760 mmHg at 273 K and absorb oil from oil–water mixtures and surfactant stabilized oil-in-water emulsions with very good selectivity and recyclability

  11. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    Science.gov (United States)

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants. Copyright © 2015. Published by Elsevier B.V.

  12. PREPARATION AND MAGNETIC-PROPERTIES OF AMORPHOUS FE1-XBX (15-LESS-THAN-OR-EQUAL-TO X LESS-THAN-40 ATMOSPHERIC PERCENT) ALLOY PARTICLES

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, S.

    1992-01-01

    Amorphous Fe1-xBx alloy particles have been prepared in aqueous solutions by reduction of Fe2+ ions to the metallic state by the use of NaBH4. It is demonstrated, that by changing the pH of the aqueous metal ion solution the amount of boron incorporated in the alloy particles can be varied between...... 15 and 28 at.%. Fe-57 Mossbauer spectra have been obtained at 10, 80 and 295 K. The hyperfine parameters for amorphous particles have been found to be similar to those found for ribbons and films prepared by the liquid-quench and sputtering techniques, respectively, though with a tendency...... for the magnetic hyperfine fields for the chemically prepared and sputter prepared alloys to deviate slightly from those for melt-spun samples. The magnetic hyperfine fields decrease linearly as a function of T3/2....

  13. Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization

    Science.gov (United States)

    Erich, M.; Kokkoris, M.; Fazinić, S.; Petrović, S.

    2018-02-01

    This work reports on the induced diamond crystal amorphization by 4 MeV carbon ions implanted in the 〈1 0 0〉 oriented crystal and its determination by application of RBS/C and EBS/C techniques. The spectra from the implanted samples were recorded for 1.2, 1.5, 1.75 and 1.9 MeV protons. For the two latter ones the strong resonance of the nuclear elastic scattering 12C(p,p0)12C at 1.737 MeV was explored. The backscattering channeling spectra were successfully fitted and the ion beam induced crystal amorphization depth profile was determined using a phenomenological approach, which is based on the properly defined Gompertz type dechanneling functions for protons in the 〈1 0 0〉 diamond crystal channels and the introduction of the concept of ion beam amorphization, which is implemented through our newly developed computer code CSIM.

  14. Discovery of amorphous carbon veins in the 2008 Wenchuan earthquake fault zone: implications for the fault weakening mechanism

    Science.gov (United States)

    Liu, J.; Zhang, J.; Zhang, B.; Li, H.

    2013-12-01

    The 2008 Wenchuan earthquake generated 270- and 80-km-long surface ruptures along Yingxiu-Beichuan fault and Guanxian-Anxian fault, respectively. At the outcrop near Hongkou village, southwest segment of Yingxiu-Beichuan rupture, network black amorphous carbon veins were discovered near fault planes in the 190-m-wide earthquake fault zone. These veins are mainly composed of ultrafine- and fine-grained amorphous carbon, usually narrower than 5mm and injected into faults and cracks as far as several meter. Flowage structures like asymmetrical structures around few stiff rock fragments indicate materials flew when the veins formed. Fluidization of cataclastic amorphous carbon and the powerful driving force in the veins imply high pore pressure built up during earthquakes. High pore pressure solution and graphite reported in the fault gouge (Togo et al., 2011) can lead very low dynamic friction during the Wenchuan earthquake. This deduction hypothesis is in accordance with the very low thermal abnormal measured on the principle fault zone following the Wenchuan earthquake (Mori et al., 2010). Furthermore, network amorphous carbon veins of different generations suggest similar weakening mechanism also worked on historical earthquakes in Longmenshan fault zone. Reference: Brodsky, E. E., Li, H., Mori, J. J., Kano, Y., and Xue, L., 2012, Frictional Stress Measured Through Temperature Profiles in the Wenchuan Scientific Fault Zone Drilling Project. American Geophysical Union, Fall Meeting. San Francisco, T44B-07 Li, H., Xu, Z., Si, J., Pei, J., Song, S., Sun, Z., and Chevalier, M., 2012, Wenchuan Earthquake Fault Scientific Drilling program (WFSD): Overview and Results. American Geophysical Union, Fall Meeting. San Francisco, T44B-01 Mori, J. J., Li, H., Wang, H., Kano, Y., Pei, J., Xu, Z., and Brodsky, E. E., 2010, Temperature measurements in the WFSD-1 borehole following the 2008 Wenchuan earthquake (MW7.9). American Geophysical Union, Fall Meeting. San Francisco, T53E

  15. Effect of ultraviolet light irradiation on amorphous carbon nitride films

    International Nuclear Information System (INIS)

    Zhang, M.; Nakayama, Y.

    1997-01-01

    The amorphous carbon nitride films were produced using electron cyclotron resonance nitrogen plasma with various mixtures of N 2 and CH 4 gases. The dependence of film structures on the nitrogen incorporation and the structural modifications of the film due to ultraviolet (UV) light irradiation were investigated using infrared and UV-VIS spectroscopy. It is found that UV irradiation results in the decrease of CH bonding, increase of CC and CN double bonding in the film and increase of the optical band gap of the film. It appears that both bond removal and reordering have taken place as a result of UV irradiation. The structural modifications due to nitrogen incorporation and UV light irradiation are explained by a cluster model. copyright 1997 American Institute of Physics

  16. Preparation of hollow mesoporous carbon spheres and their performances for electrochemical applications

    Science.gov (United States)

    Ariyanto, T.; Zhang, G. R.; Kern, A.; Etzold, B. J. M.

    2018-03-01

    Hollow carbon materials have received intensive attention for energy storage/conversion applications due to their attractive properties of high conductivity, high surface area, large void and short diffusion pathway. In this work, a novel hollow mesoporous material based on carbide-derived carbon (CDC) is presented. CDC is a new class of carbon material synthesized by the selective extraction of metals from metal carbides. With a two-stage extraction procedure of carbides with chlorine, firstly hybrid core-shell carbon particles were synthesized, i.e. mesoporous/graphitic carbon shells covering microporous/amorphous carbon cores. The amorphous cores were then selectively removed from particles by a careful oxidative treatment utilizing its low thermal characters while the more stable carbon shells remained, thus resulting hollow particles. The characterization methods (e.g. N2 sorption, Raman spectroscopy, temperature-programmed oxidation and SEM) proved the successful synthesis of the aspired material. In electric double-layer capacitor (EDLC) testing, this novel hollow core material showed a remarkable enhancement of EDLC’s rate handling ability (75% at a high scan rate) with respect to an entirely solid-mesoporous material. Furthermore, as a fuel cell catalyst support the material showed higher Pt mass activity (a factor of 1.8) compared to a conventional carbon support for methanol oxidation without noticeably decreasing activity in a long-term testing. Therefore, this carbon nanostructure shows great promises as efficient electrode materials for energy storage and conversion systems.

  17. Morphology determination of small particles by electron microscopy and electrical conduction measurements

    International Nuclear Information System (INIS)

    Robrieux, B.; Desrousseaux, G.; Renou, A.; Gillet, M.

    1989-01-01

    In this paper, we show that it is possible to deduce the actual morphology of small particle condensed onto an insulator by combining the granularity analysis from electron micrographs and the electrical sheet conductance of the deposit on its substrate. Assuming the particles are truncated ellipsoids, we determine the excentricity and the contact angle with the substrate for Au on amorphous carbon and MgO substrates. (orig.)

  18. Nanocomposite metal amorphous-carbon thin films deposited by hybrid PVD and PECVD technique.

    Science.gov (United States)

    Teixeira, V; Soares, P; Martins, A J; Carneiro, J; Cerqueira, F

    2009-07-01

    Carbon based films can combine the properties of solid lubricating graphite structure and hard diamond crystal structure, i.e., high hardness, chemical inertness, high thermal conductivity and optical transparency without the crystalline structure of diamond. Issues of fundamental importance associated with nanocarbon coatings are reducing stress, improving adhesion and compatibility with substrates. In this work new nanocomposite coatings with improved toughness based in nanocrystalline phases of metals and ceramics embedded in amorphous carbon matrix are being developed within the frame of a research project: nc-MeNxCy/a-C(Me) with Me = Mo, Si, Al, Ti, etc. Carbide forming metal/carbon (Me/C) composite films with Me = Mo, W or Ti possess appropriate properties to overcome the limitation of pure DLC films. These novel coating architectures will be adopted with the objective to decrease residual stress, improve adherence and fracture toughness, obtain low friction coefficient and high wear-resistance. Nanocomposite DLC's films were deposited by hybrid technique using a PVD-Physically Vapor Deposition (magnetron sputtering) and Plasma Enhanced Chemical Vapor Deposition (PECVD), by the use of CH4 gas. The parameters varied were: deposition time, substrate temperature (180 degrees C) and dopant (Si + Mo) of the amorphous carbon matrix. All the depositions were made on silicon wafers and steel substrates precoated with a silicon inter-layer. The characterisation of the film's physico-mechanical properties will be presented in order to understand the influence of the deposition parameters and metal content used within the a-C matrix in the thin film properties. Film microstructure and film hybridization state was characterized by Raman Spectroscopy. In order to characterize morphology SEM and AFM will be used. Film composition was measured by Energy-Dispersive X-ray analysis (EDS) and by X-ray photoelectron spectroscopy (XPS). The contact angle for the produced DLC's on

  19. α″ Martensite and Amorphous Phase Transformation Mechanism in TiNbTaZr Alloy Incorporated with TiO2 Particles During Friction Stir Processing

    Science.gov (United States)

    Ran, Ruoshi; Liu, Yiwei; Wang, Liqiang; Lu, Eryi; Xie, Lechun; Lu, Weijie; Wang, Kuaishe; Zhang, Lai-Chang

    2018-06-01

    This work studied the formation of the α″ martensite and amorphous phases of TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Formation of the amorphous phase in the top surface mainly results from the dissolution of oxygen, rearrangement of the lattice structure, and dislocations. High-stress stemming caused by dislocations and high-stress concentrations at crystal-amorphous interfaces promote the formation of α″ martensite. Meanwhile, an α″ martensitic transformation is hindered by oxygen diffusion from TiO2 to the matrix, thereby increasing resistance to shear.

  20. Short-pulse-laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon films

    Science.gov (United States)

    Sokolowski-Tinten, Klaus; Ziegler, Wolfgang; von der Linde, Dietrich; Siegal, Michael P.; Overmyer, D. L.

    2005-03-01

    Short-pulse-laser-induced damage and ablation of thin films of amorphous, diamond-like carbon have been investigated. Material removal and damage are caused by fracture of the film and ejection of large fragments. The fragments exhibit a delayed, intense and broadband emission of microsecond duration. Both fracture and emission are attributed to the laser-initiated relaxation of the high internal stresses of the pulse laser deposition-grown films.

  1. A Low-Stress, Elastic, and Improved Hardness Hydrogenated Amorphous Carbon Film

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2015-01-01

    Full Text Available The evolution of hydrogenated amorphous carbon films with fullerene-like microstructure was investigated with a different proportion of hydrogen supply in deposition. The results showed at hydrogen flow rate of 50 sccm, the deposited films showed a lower compressive stress (lower 48.6%, higher elastic recovery (higher 19.6%, near elastic recovery rate 90%, and higher hardness (higher 7.4% compared with the films deposited without hydrogen introduction. Structural analysis showed that the films with relatively high sp2 content and low bonded hydrogen content possessed high hardness, elastic recovery rate, and low compressive stress. It was attributed to the curved graphite microstructure, which can form three-dimensional covalently bonded network.

  2. Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability.

    Science.gov (United States)

    Dhumal, Ravindra S; Biradar, Shailesh V; Yamamura, Shigeo; Paradkar, Anant R; York, Peter

    2008-09-01

    The aim of the present work was to prepare amorphous discreet nanoparticles by sonoprecipitation method for enhancing oral bioavailability of cefuroxime axetil (CA), a poorly water-soluble drug. CA nanoparticles (SONO-CA) were prepared by sonoprecipitation and compared with particles obtained by precipitation without sonication (PPT-CA) and amorphous CA obtained by spray drying. Spray drying present broad particle size distribution (PSD) with mean particle size of 10 microm and low percent yield, whereas, precipitation without sonication resulted in large amorphous aggregates with broad PSD. During sonoprecipitation, particle size and yield improve with an increase in the amplitude of sonication and lowering the operation temperature due to instantaneous supersaturation and nucleation. The overall symmetry and purity of CA molecule was maintained as confirmed by FTIR and HPLC, respectively. All the three methods resulted in the formation of amorphous CA with only sonoprecipitation resulting in uniform sized nanoparticles. Sonoprecipitated CA nanoparticles showed enhanced dissolution rate and oral bioavailability in Wistar rat due to an increased solubility attributed to combination of effects like amorphization and nanonization with increased surface area and reduced diffusion pathway.

  3. Analysis and simulation of phase transformation kinetics of zeolite A from amorphous phases

    CERN Document Server

    Marui, Y; Uchida, H; Takiyama, H

    2003-01-01

    Experiments on transformation rates of zeolite A from amorphous phases at different feed rates to alter the particle size of the amorphous phases were carried out to analyze the kinetics of the transformation, and were analyzed by performing simulation of the transformation. A clear dependence of the induction time for nucleation of zeolite A crystals on the surface area of the amorphous phase was recognized, indicating that the nucleation of zeolite A was heterogeneous and the nucleation rate was almost proportional to the size of the amorphous particles. From the simulation, the mechanism of the transformation was found to be heterogeneous nucleation of zeolite A crystals on the surface of amorphous particles followed by solution mediated phase transformation, and the transformation kinetics were well reproduced at different feed rates. (author)

  4. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries

    Science.gov (United States)

    Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng

    2014-08-01

    A series of core-shell carbon coated amorphous CoSnO3 (CoSnO3@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO3@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g-1 after 100 cycles.

  5. Band gap engineering of hydrogenated amorphous carbon thin films for solar cell application

    Science.gov (United States)

    Dwivedi, Neeraj; Kumar, Sushil; Dayal, Saurabh; Rauthan, C. M. S.; Panwar, O. S.; Malik, Hitendra K.

    2012-10-01

    In this work, self bias variation, nitrogen introduction and oxygen plasma (OP) treatment approaches have been used for tailoring the band gap of hydrogenated amorphous carbon (a-C:H) thin films. The band gap of a-C:H and modified a- C:H films is varied in the range from 1.25 eV to 3.45 eV, which is found to be nearly equal to the full solar spectrum (1 eV- 3.5 eV). Hence, such a-C:H and modified a-C:H films are found to be potential candidate for the development of full spectrum solar cells. Besides this, computer aided simulation with considering variable band gap a-C:H and modified a- C:H films as window layer for amorphous silicon p-i-n solar cells is also performed by AFORS-HET software and maximum efficiency as ~14 % is realized. Since a-C:H is hard material, hence a-C:H and modified a-C:H films as window layer may avoid the use of additional hard and protective coating particularly in n-i-p configuration.

  6. Synthesis and electrochemical evaluation of an amorphous titanium dioxide derived from a solid state precursor

    Science.gov (United States)

    Joyce, Christopher D.; McIntyre, Toni; Simmons, Sade; LaDuca, Holly; Breitzer, Jonathan G.; Lopez, Carmen M.; Jansen, Andrew N.; Vaughey, J. T.

    Titanium oxides are an important class of lithium-ion battery electrodes owing to their good capacity and stability within the cell environment. Although most Ti(IV) oxides are poor electronic conductors, new methods developed to synthesize nanometer scale primary particles have achieved the higher rate capability needed for modern commercial applications. In this report, the anionic water stable titanium oxalate anion [TiO(C 2O 4) 2] 2- was isolated in high yield as the insoluble DABCO (1,4-diazabicyclo[2.2.2]octane) salt. Powder X-ray diffraction studies show that the titanium dioxide material isolated after annealing in air is initially amorphous, converts to N-doped anatase above 400 °C, then to rutile above 600 °C. Electrochemical studies indicate that the amorphous titanium dioxide phase within a carbon matrix has a stable cycling capacity of ∼350 mAh g -1. On crystallizing at 400 °C to a carbon-coated anatase the capacity drops to 210 mAh g -1, and finally upon carbon burn-off to 50 mAh g -1. Mixtures of the amorphous titanium dioxide and Li 4Ti 5O 12 showed a similar electrochemical profile and capacity to Li 4Ti 5O 12 but with the addition of a sloping region to the end of the discharge curve that could be advantageous for determining state-of-charge in systems using Li 4Ti 5O 12.

  7. Structure and properties of bulk amorphous magnetically soft coatings prepared by plasma spraying

    International Nuclear Information System (INIS)

    Kalita, V.I.; Kekalo, I.B.; Komlev, D.I.; Taranichev, V.E.

    1995-01-01

    Co-Ni-Fe-Si-B composition plasma coatings consisting of amorphous disk-shaped particles forming the bulk of a coating, of crystalline particles and of a threshold space, were studied. Iron and metalloid distribution heterogeneous by the thickness represents a peculiar feature for coating amorphous particles. Structure of coatings and their magnetic properties depend on some technological parameters. Conclusion is made that at annealing the variation of magnetic properties is determined by the processes of directed ordering and stratification of amorphous phase, while the low level of the initial magnetic properties of coatings is caused alongside with structure peculiarities, by occurrence of independent fine-dispersive domain structure in each disk-shaped amorphous phase. 14 refs., 8 figs., 6 tabs

  8. Annealing effect on the microstructure modification and tribological properties of amorphous carbon nitride films

    Science.gov (United States)

    Wang, Zhou; Wang, Chengbing; Wang, Qi; Zhang, Junyan

    2008-10-01

    The influences of thermal annealing on the microstructural and tribological properties of amorphous carbon nitride films were investigated. X-ray photoelectron spectroscopy, Raman spectroscopy, and Fourier transform infrared spectrometer were utilized to characterize bond configuration and chemical state of the films. The results indicated that at low annealing temperatures (200 and 300 °C), the volatile species and surface contamination are easily dissociated without obvious bulk modification; while at high annealing temperatures (400 and 500 °C), the microstructure of carbon nitride films changed and favored a graphitization process, which indicated the growth of more graphitic film structures. The faint Raman signal of C≡N decreased with annealing temperature (TA) and completely disappeared at TA of 500 °C, indicating that nitrile bonds were thermal unstable under high temperature. Surprisingly, the tribological properties of the films showed a remarkably decreasing in friction coefficient as the TA increased; it is attributed to the graphitization of carbon nitride films during thermal annealing, which favored transfer film formation between the carbon nitride films and counterface materials. The transfer films benefit the decrease in coefficient of friction.

  9. Physical and chemical study of the influence of oxidation on the structure of carbon black; Etude physico-chimique de l'influence de l'oxydation sur la structure du noir de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Hueber, Francois

    1961-06-26

    This research thesis reports the study of the influence of an oxidising attack on carbon black particles by using chemical, physical and electrochemical methods to highlight the oxidation process. The carbon black particle is a spherical set essentially made of amorphous and crystalline carbon. It appears that the oxidising attack mainly occurs against the amorphous parts which surround the crystallites. If the attack is strong enough, crystallites are freed and the particle collapses. This process has been observed by using electronic microscopy, X rays, the BET nitrogen absorption method, and infra-reds. Chemical analysis revealed the presence of carboxyl, hydroxyl and quinone functional groups on the oxidised particle surface. These groups have been dosed by different methods (methylation, calcium acetate dosing, polarography and potassium borohydride reduction) [French] Dans la presente etude nous nous sommes occupes de l'influence de l'attaque oxydante sur les particules de noir de carbone. Pour ce faire, nous avons mis en oeuvre des methodes chimiques, physiques et electrochimiques et nous avons ainsi pu mettre en evidence le processus de l'attaque oxydante. La particule de noir de carbone est un ensemble spherique constitue essentiellement de carbone engage dans des domaines amorphes et dans des domaines cristallins. L'attaque oxydante se fait surtout aux depens des parties amorphes qui entourent les cristallites. Si l'attaque est suffisamment poussee, les cristallites sont liberes ce qui se traduit par l'effondrement de la particule. C'est la conjugaison de la microscopie electronique, des rayons X, de la methode d'absorption d'azote B.E.T. et des infra-rouge qui ont permis d'etablir ce schema de l'attaque oxydante. Sur le plan des analyses chimiques, nous avons confirme la presence de fonctions carboxyles, hydroxyles et quinones a la surface de la particule de noir de carbone oxyde et avons pu les doser. Une des methodes de dosage quantitative des

  10. Formation of amorphous layers by irradiation

    International Nuclear Information System (INIS)

    Bourgoin, J.C.

    1979-01-01

    When an ordered solid is irradiated with heavy energy particles, disorder is produced. When the irradiation dose exceeds a so-called critical dose, the irradiated area of the solid becomes uniformly disordered. Mention is first made of the nature, concentration and distribution of the defects created by a heavy energy particle. The description is then given -solely with respect to semiconductors- of the effect of the various parameters on the critical dose energy and nature of the ion, nature and temperature of the solid, irradiation flux. The physical properties (electronic and thermodynamic types) and the uniformly disordered areas are briefly discussed and these properties are compared with those of amorphous semiconductor layers fabricated by evaporation. It is concluded that the evaporated and irradiated layers are similar in nature. It is suggested that the transformation of an irradiated crystalline area into an amorphous one occurs when the Gibbs energy of the crystal become greater than the Gibbs energy of the amorphous one [fr

  11. Surface energy of amorphous carbon films containing iron

    International Nuclear Information System (INIS)

    Chen, J. S.; Lau, S. P.; Tay, B. K.; Chen, G. Y.; Sun, Z.; Tan, Y. Y.; Tan, G.; Chai, J. W.

    2001-01-01

    Iron containing diamond-like amorphous carbon (a-C:Fe) films were deposited by filtered cathodic vacuum arc technique. The influences of Fe content and substrate bias on the surface energy of the films were investigated. The surface energy of a-C:Fe films was determined by the contact angle measurement. Atomic force microscopy, Raman spectroscopy, and x-ray induced photoelectron spectroscopy were employed to analyze the origin of the variation of surface energy with various Fe content and substrate bias. It is found that the contact angle for water increases significantly after incorporating Fe into the films and the films become hydrophobic. The roughness of these films has no effect on the contact angle. The surface energy is reduced from 42.8 to 25 dyne/cm after incorporating Fe into the a-C film (10% Fe in the target), which is due to the reduction of both dispersive and polar component. The reduction in dispersive component is ascribed to the decrease of atomic density of the a-C:Fe films due to the increase in sp 2 bonded carbon. When sp 2 content increases to some extent, the atomic density remains constant and hence dispersive component does not change. The absorption of oxygen on the surface plays an important role in the reduction of the polar component for the a-C:Fe films. It is proposed that such network as (C n - O - Fe) - O - (Fe - O - C n ) may be formed and responsible for the reduction of polar component. [copyright] 2001 American Institute of Physics

  12. Understanding API-polymer proximities in amorphous stabilized composite drug products using fluorine-carbon 2D HETCOR solid-state NMR.

    Science.gov (United States)

    Abraham, Anuji; Crull, George

    2014-10-06

    A simple and robust method for obtaining fluorine-carbon proximities was established using a (19)F-(13)C heteronuclear correlation (HETCOR) two-dimensional (2D) solid-state nuclear magnetic resonance (ssNMR) experiment under magic-angle spinning (MAS). The method was applied to study a crystalline active pharmaceutical ingredient (API), avagacestat, containing two types of fluorine atoms and its API-polymer composite drug product. These results provide insight into the molecular structure, aid with assigning the carbon resonances, and probe API-polymer proximities in amorphous spray dried dispersions (SDD). This method has an advantage over the commonly used (1)H-(13)C HETCOR because of the large chemical shift dispersion in the fluorine dimension. In the present study, fluorine-carbon distances up to 8 Å were probed, giving insight into the API structure, crystal packing, and assignments. Most importantly, the study demonstrates a method for probing an intimate molecular level contact between an amorphous API and a polymer in an SDD, giving insights into molecular association and understanding of the role of the polymer in API stability (such as recrystallization, degradation, etc.) in such novel composite drug products.

  13. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    1996-01-01

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...... done in an oxygen-containing atmosphere. Ferrihydrite is formed and is stable at and below a temperature of 300 C. At 600 C small particles of maghemite is the dominant iron oxide. A transformation reaction is suggested....

  14. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    Directory of Open Access Journals (Sweden)

    Goedele Craye

    2015-12-01

    Full Text Available In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS as a solubilizer, was explored as a production method for co-amorphous simvastatin–lysine (SVS-LYS at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD and differential scanning calorimetry (DSC showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a “spring and parachute” effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions was observed when SLS was spray-dried with SVS (and LYS. In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  15. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

    Science.gov (United States)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka

    2015-12-03

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  16. Multiscale simulation of thermal disruption in resistance switching process in amorphous carbon

    International Nuclear Information System (INIS)

    Popov, A M; Nikishin, N G; Shumkin, G N

    2015-01-01

    The switching of material atomic structure and electric conductivity is used in novel technologies of making memory on the base of phase change. The possibility of making memory on the base of amorphous carbon is shown in experiment [1]. Present work is directed to simulation of experimentally observed effects. Ab initio quantum calculations were used for simulation of atomic structure changes in amorphous carbon [2]. These simulations showed that the resistance change is connected with thermally induced effects. The temperature was supposed to be the function of time. In present paper we propose a new multiscale, self-consistent model which combines three levels of simulation scales and takes into account the space and time dependencies of the temperature. On the first level of quantum molecular dynamic we provide the calculations of phase change in atomic structure with space and time dependence of the temperature. Nose-Hover thermostats are used for MD simulations to reproduce space dependency of the temperature. It is shown that atomic structure is localized near graphitic layers in conducting dot. Structure parameter is used then on the next levels of the modeling. Modified Ehrenfest Molecular Dynamics is used on the second level. Switching evolution of electronic subsystem is obtained. In macroscopic scale level the heat conductivity equation for continuous media is used for calculation space-time dependence of the temperature. Joule heat source depends on structure parameter and electric conductivity profiles obtained on previous levels of modeling. Iterative procedure is self-consistently repeated combining three levels of simulation. Space localization of Joule heat source leads to the thermal disruption. Obtained results allow us to explain S-form of the Volt-Ampere characteristic observed in experiment. Simulations were performed on IBM Blue Gene/P supercomputer at Moscow State University. (paper)

  17. Particles of spilled oil-absorbing carbon in contact with water

    Science.gov (United States)

    Muradov, Nazim [Melbourne, FL

    2011-03-29

    Hydrogen generator coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. Carbon particles with surface filaments having a hydrophobic property of oil film absorption, compositions of matter containing those particles, and a system for using the carbon particles for cleaning oil spills.

  18. Effect of metal doping on structural characteristics of amorphous carbon system: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaowei; Zhang, Dong [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Lee, Kwang-Ryeol, E-mail: krlee@kist.re.kr [Computational Science Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-05-31

    First-principles calculation was performed to investigate the effect of metal doping on the structural characteristics of amorphous carbon system, and the 3d transition metals (TM) were particularly selected as representative case. Results showed that the total energy in TM–C systems caused by distorting the bond angles was reduced distinctly for comparison with that in C–C system. Further electronic structure revealed that as the 3d electrons of doped TM increased, the bond characteristic of highest occupied molecular orbital changed from bonding (Sc, Ti) to nonbonding (V, Cr, Mn, Fe) and finally to antibonding (Co, Ni, Cu) between the TM and C atoms. Meanwhile, the TM–C bond presented a mixture of the covalent and ionic characters. The decrease of strength and directionality of TM–C bonds resulted in the total energy change upon bond angle distortion, which demonstrated that the bond characteristics played an important role in reducing residual stress of TM-doped amorphous carbon systems. - Highlights: • The bond characteristics as 3d electrons changed from bonding, nonbonding to antibonding. • The TM–C bond was a mixture of covalent and ionic characters. • Reduced strength and directionality of TM–C bond led to small distortion energy change. • The weak TM–C bond accounted for the reduced compressive stress caused by TM.

  19. Gas desorption during friction of amorphous carbon films

    International Nuclear Information System (INIS)

    Rusanov, A; Fontaine, J; Martin, J-M; Mogne, T L; Nevshupa, R

    2008-01-01

    Gas desorption induced by friction of solids, i.e. tribodesorption, is one of the numerous physical and chemical phenomena, which arise during friction as result of thermal and structural activation of material in a friction zone. Tribodesorption of carbon oxides, hydrocarbons, and water vapours may lead to significant deterioration of ultra high vacuum conditions in modern technological equipment in electronic, optoelectronic industries. Therefore, knowledge of tribodesorption is crucial for the performance and lifetime of vacuum tribosystems. Diamond-like carbon (DLC) coatings are interesting materials for vacuum tribological systems due to their high wear resistance and low friction. Highly hydrogenated amorphous carbon (a-C:H) films are known to exhibit extremely low friction coefficient under high vacuum or inert environment, known as 'superlubricity' or 'superlow friction'. However, the superlow friction period is not always stable and then tends to spontaneous transition to high friction. It is supposed that hydrogen supply from the bulk to the surface is crucial for establishing and maintaining superlow friction. Thus, tribodesorption can serve also as a new technique to determine the role of gases in superlow friction mechanisms. Desorption of various a-C:H films, deposited by PECVD, ion-beam deposition and deposition using diode system, has been studied by means of ultra-high vacuum tribometer equipped with a mass spectrometer. It was found that in superlow friction period desorption rate was below the detection limit in the 0-85 mass range. However, transition from superlow friction to high friction was accompanied by desorption of various gases, mainly of H 2 and CH 4 . During friction transition, surfaces were heavily damaged. In experiments with DLC films with low hydrogen content tribodesorption was significant during the whole experiment, while low friction was not observed. From estimation of maximum surface temperature during sliding contact it

  20. Photophysical and photochemical investigations of fullerene presence in amorphous hydrogenated carbon films

    Science.gov (United States)

    Chen, J. Q.; Meeker, D. L.; Barashkov, N. N.

    1997-07-01

    The plasma-enhanced chemical vapor deposition system was used to grow amorphous hydrogenated carbon films deposited on silicon substrates. Extracts of the films were obtained by treatment with boiling cyclohexane solvent. The absorption spectra of these extracts showed the existence of small quantities of fullerenes. Using the molar extinction coefficient of C60 in cyclohexane, the mass of fullerenes in the films was estimated to be about 0.019 mg. C60 induced fluorescence quenching of anthracene was also observed. Additional evidence for the presence of fullerenes was based on their capability to accelerate the photo-oxidation of anthracene through the generation of singlet oxygen with a high quantum yield under ultraviolet irradiation.

  1. Study and characterization of an integrated circuit-deposited hydrogenated amorphous silicon sensor for the detection of particles and radiations

    International Nuclear Information System (INIS)

    Despeisse, M.

    2006-03-01

    Next generation experiments at the European laboratory of particle physics (CERN) require particle detector alternatives to actual silicon detectors. This thesis presents a novel detector technology, which is based on the deposition of a hydrogenated amorphous silicon sensor on top of an integrated circuit. Performance and limitations of this technology have been assessed for the first time in this thesis in the context of particle detectors. Specific integrated circuits have been designed and the detector segmentation, the interface sensor-chip and the sensor leakage current have been studied in details. The signal induced by the track of an ionizing particle in the sensor has been characterized and results on the signal speed, amplitude and on the sensor resistance to radiation are presented. The results are promising regarding the use of this novel technology for radiation detection, though limitations have been shown for particle physics application. (author)

  2. Salt Fog Testing Iron-Based Amorphous Alloys

    International Nuclear Information System (INIS)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-01-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  3. Synthesis of morphology-controlled carbon hollow particles by carbonization of resorcinol-formaldehyde precursor microspheres and applications in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haijiao, E-mail: seaboyfang@163.com [Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, 150027 (China); Xu Huifang, E-mail: xuhf@hit.edu.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 (China); Zhao Can [Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, 150027 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Resorcinol-formaldehyde hollow particles could be obtained by inverse suspension method. Black-Right-Pointing-Pointer The morphologies of RF carbon precursor particles could be controlled by adjusting the pH values of the RF precursor. Black-Right-Pointing-Pointer The prepared carbon hollow particles, which derived from resorcinol-formaldehyde, exhibited microporous properties. Black-Right-Pointing-Pointer The RF carbon microcapsules displayed excellent power property and cycle durability. - Abstract: The morphology-controlled carbon hollow particles, derived from resorcinol-formaldehyde (RF) particles, were prepared by using an (oil phase) O/(water phase) W/(oil phase) O inverse-emulsion system which was formed by adding RF precursor (water phase) to n-hexane (oil phase) with Span-80 as surfactant and the following carbonization. This simple method led to the formation of various morphologies of RF carbon precursor particles such as hollow spheres, bowl-like hollow structures, microcapsules, or solid microspheres by adjusting the pH values of the RF precursor. The synthesized carbon particles exhibited porous characters with the surface area of 659 m{sup 2} g{sup -1} and the total pore volume of 0.44 cm{sup 3} g{sup -1}. Additionally, the electrochemical behavior of the typical RF carbon particles in lithium-ion batteries revealed that the RF carbon microcapsules displayed a high initial discharge capacity of 1059 mAh g{sup -1} and stabilized at about 330 mAh g{sup -1}, indicating its excellent power property and cycle durability.

  4. Spherical cauliflower-like carbon dust formed by interaction between deuterium plasma and graphite target and its internal structure

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, N. [Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)], E-mail: ohno@ees.nagoya-u.ac.jp; Yoshimi, M. [Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Tokitani, M. [National Institute for Fusion Science, Oroshi 322-6, Toki 509-5292 (Japan); Takamura, S. [Department of Electronics, Aichi Institute of Technology, Yakusa-cho, Toyota 470-0392 (Japan); Tokunaga, K.; Yoshida, N. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2009-06-15

    Simulated experiments to produce carbon dust particles with cauliflower structure have been performed in a liner plasma device, NAGDIS-II by exposing high density deuterium plasma to a graphite sample (IG-430U). Formation of carbon dust depends on the surface temperature and the incident ion energy. At a surface temperature 600-700 K, a lot of isolated spherical dust particles are observed on the graphite target. The internal structure of an isolated dust particle was observed with Focused Ion Beam (FIB) system and Transmission Electron Microscope (TEM) in detail. FIB analysis clearly shows there exist honey-combed cell structure with thin carbon walls in the dust particle and the dust particle grows from the graphite surface. TEM image also shows that the dust particle is made of amorphous carbon with crystallized grains with diameters of 10-50 nm.

  5. Transformation and Crystallization Energetics of Synthetic and Biogenic Amorphous Calcium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Radha, A. V. [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States); Forbes, Tori Z. [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States); Killian, Christopher E. [Univ. of Wisconsin, Madison, WI (United States); Gilbert, P.U.P.A [Univ. of Wisconsin, Madison, WI (United States); Navrotsky, Alexandra [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States)

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC→anhydrous ACC ~ biogenic anhydrous ACC→vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO₂ sequestration.

  6. Magnetomechanical coupling in thermal amorphous solids

    Science.gov (United States)

    Hentschel, H. George E.; Ilyin, Valery; Mondal, Chandana; Procaccia, Itamar

    2018-05-01

    Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film "width" and its change due to the magnetostriction effect.

  7. Growth Mechanism and Origin of High s p3 Content in Tetrahedral Amorphous Carbon

    Science.gov (United States)

    Caro, Miguel A.; Deringer, Volker L.; Koskinen, Jari; Laurila, Tomi; Csányi, Gábor

    2018-04-01

    We study the deposition of tetrahedral amorphous carbon (ta-C) films from molecular dynamics simulations based on a machine-learned interatomic potential trained from density-functional theory data. For the first time, the high s p3 fractions in excess of 85% observed experimentally are reproduced by means of computational simulation, and the deposition energy dependence of the film's characteristics is also accurately described. High confidence in the potential and direct access to the atomic interactions allow us to infer the microscopic growth mechanism in this material. While the widespread view is that ta-C grows by "subplantation," we show that the so-called "peening" model is actually the dominant mechanism responsible for the high s p3 content. We show that pressure waves lead to bond rearrangement away from the impact site of the incident ion, and high s p3 fractions arise from a delicate balance of transitions between three- and fourfold coordinated carbon atoms. These results open the door for a microscopic understanding of carbon nanostructure formation with an unprecedented level of predictive power.

  8. Silica particles and method of preparation thereof

    NARCIS (Netherlands)

    2015-01-01

    The invention is in the field of silica products. More in particular, the invention is in the field of amorphous silica particles. The invention is directed to amorphous silica particles and related products including clusters of said silica particles, a suspension of said silica particles, and an

  9. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    Unknown

    moves from low preparation temperature to high preparation temperature. The amorphous .... nm and the interac- tion between the pi-electron clouds of the two layers re- .... sp2 configuration forms to minimize stress and making. C900 films ...

  10. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N; Komvopoulos, K

    2014-01-01

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures

  11. Preparation of porous carbon particle with shell/core structure

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available Porous carbon particles with a shell/core structure have been prepared successfully by controlled precipitation of the polymer from droplets of oil-in-water emulsion, followed by curing and carbonization. The droplets of the oil phase are composed of phenolic resin (PFR, a good solvent (ethyl acetate and porogen (Poly(methyl methacrylate, PMMA. The microstructure was characterized in detail by scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, and thermo gravimetric analysis (TGA. The obtained carbon particles have a capsular structure with a microporous carbon shell and a mesoporous carbon core. The BET surface area and porous volume are calculated to be 499 m2g-1 and 0.56 cm3g-1, respectively. The effects of the amount of porogen (PMMA, co-solvent (acetone and surfactant on the resultant structure were studied in detail.

  12. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    Science.gov (United States)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  13. Photophysical and photochemical investigations of fullerene presence in amorphous hydrogenated carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.Q.; Meeker, D.L. [The Physics Program, University of Texas at Dallas, Richardson, Texas 75083 (United States); Barashkov, N.N. [Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1997-07-01

    The plasma-enhanced chemical vapor deposition system was used to grow amorphous hydrogenated carbon films deposited on silicon substrates. Extracts of the films were obtained by treatment with boiling cyclohexane solvent. The absorption spectra of these extracts showed the existence of small quantities of fullerenes. Using the molar extinction coefficient of C{sub 60} in cyclohexane, the mass of fullerenes in the films was estimated to be about 0.019 mg. C{sub 60} induced fluorescence quenching of anthracene was also observed. Additional evidence for the presence of fullerenes was based on their capability to accelerate the photo-oxidation of anthracene through the generation of singlet oxygen with a high quantum yield under ultraviolet irradiation. {copyright} {ital 1997 American Institute of Physics.}

  14. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  15. The infrared emission of carbonaceous particles around C-rich IRAS sources

    International Nuclear Information System (INIS)

    Blanco, A.; Borghesi, A.; Fonti, S.; Orofino, V.; Strafella, F.

    1997-01-01

    The IRAS spectra of 23 carbon-rich sources have been fitted by means of an improved theoretical model based on the Leung-Spagna radiative transfer code and using extinction data obtained in their laboratory for different types of amorphous carbon and silicon carbide submicron particles. The agreement between observations and theoretical spectra is rather good. A comparison between the IRAS spectrum of the object 12447 + 0425 (RU Vir) and that recently obtained at UKIRT, for the same object but with higher resolution, seems to open new problems

  16. Microstructure and property of Fe–Co–B–Si–C–Nb amorphous composite coating fabricated by laser cladding process

    International Nuclear Information System (INIS)

    Zhu, Y.Y.; Li, Z.G.; Li, R.F.; Li, M.; Daze, X.L.; Feng, K.; Wu, Y.X.

    2013-01-01

    Laser cladding of Fe 34 Co 34 B 20 Si 5 C 3 Nb 4 on a low carbon steel substrate was conducted using coaxial powder feeding method. Microstructure, phase and microhardness were investigated by scanning electronic microscopy, transmission electron microscopy, X-ray diffraction, electron probe micro-analysis and microhardness tester. Amorphous coating with NbC particles embedded in the matrix was formed. Differential scanning calorimetry curve showed that the glass transition temperature (T g ) and the onset crystallization temperature (T x ) were 799 K and 850 K, respectively. The supercooled liquid region (ΔT x = T x − T g ) was as large as 51 K, which implied the high thermal stability of the supercooled liquid against crystallization. Due to the NbC particles embedded in the amorphous matrix, the mean value of the microhardness of the coating prepared by laser cladding was higher than that of the bulk metallic glass formed by the copper mold casting method. The contribution of NbC particles to the total microhardness was theoretically estimated. The estimated hardness of the composite coating agreed well with the tested value.

  17. TEM and EELS study of deuterated carbon: application to the fuel retention in tokamaks; Etude couplee MET-EELS du carbone deutere: application a la retention du combustible dans les tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, N

    2007-12-15

    We developed a methodology, based on the combination of TEM and EELS techniques, for a structural and chemical characterization, at a high spatial resolution, of a wide range of carbon materials. We i) optimized, in the framework of theoretical models, the sp2 fraction quantification from pure carbons by EELS ii) transferred this quantification to deuterated amorphous carbon layers iii) showed, from graphitized carbons, how the TEM-EELS combination allows to detect low concentrations of implanted D. Due to the accomplishment of these developments, we applied our approach to the study of D retention in composites C/C, which are the plasma-facing materials in TS. We showed that specific localized retention sites correspond to relatively large ({approx} 3 mm.) cracks between fibres and matrix; such cracks offer a simple and direct path for deuterated amorphous carbon. The particle balance performed in TS is discussed in the light of this trapping mechanism. (author)

  18. Structural and mechanical properties of amorphous carbon films deposited by the dual plasma technique

    Institute of Scientific and Technical Information of China (English)

    Yaohui Wang; Xu Zhang; Xianying Wu; Huixing Zhang; Xiaoji Zhang

    2008-01-01

    Direct current metal filtered cathodic vacuum are (FCVA) and acetylene gas (C2H2) were wielded to synthesize Ti-containing amorphous carbon films on Si (100). The influence of substrate bias voltage and acetylene gas on the microstructure and mechanical properties of the films were investigated. The results show that the phase of TiC in the (111) preferential crystallo-graphic orientation exists in the film, and rite main existing pattern of carbon is sp2. With increasing the acetylene flow rate, the con-tents of Ti and TiC phase of the film gradually reduce; however, the thickness of the film increases. When the substrate bias voltage reaches -600 V, the internal stress of the film reaches 1.6 GPa. The micro-hardness and elastic modulus of the film can reach 33.9 and 237.6 GPa, respectively, and the friction coefficient of the film is 0.25.

  19. Optical and luminescence properties of hydrogenated amorphous carbon

    International Nuclear Information System (INIS)

    Rusli

    1996-03-01

    In this thesis, the optical and luminescence properties of hydrogenated amorphous carbon(a - C:H) thin films deposited using a Plasma Enhanced Chemical Vapour Deposition (PECVD) system are studied. A photoluminescence (PL) measuring system with a wavelength range of 300nm to 900nm, used for the above study, has been set up as a main part of the research. Firstly, a simple yet powerful method developed to solve for the optical constants and thickness of a - C : H deposited on Si is presented. This is followed by an investigation into the optical properties of band gap modulated a - C : H thin films superlattice structures. a - C : H films, obtained from a wide range of deposition conditions, are then characterised in terms of their optical absorption, infrared absorption, Raman scattering, fraction of sp 2 to sp 3 bondings and unpaired electron spin density. Their PL characteristics, such as the peak emission energy, spectral bandwidth, quantum efficiency, fatigue and polarisation memory are investigated in relation to their microstructure. The results, taken together with those obtained from photoconductivity study and electric field quenching of PL, are used to understand the origin of the strong PL in a - C : H. Preliminary work on a - C : H electroluminescent celbis also presented. (author)

  20. Study on the substrate-induced crystallisation of amorphous SiC-precursor ceramics. TIB/A; Untersuchungen zur substratinduzierten Kristallisation amorpher SiC-Precursorkeramiken

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C.

    2000-12-01

    In the present thesis the crystallization behaviour of amorphous silicon-carbon materials (SiC{sub x}) was studied. The main topic of the experimental studies formed thereby the epitactical crystallization of thin silicon carbide layers on monocrystalline substrates of silicon carbides or silicon. Furthermore by thermolysis of the polymer amorphous SiC{sub x}-powder was obtained.

  1. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D.; Fujieda, I.; Street, R.A.

    1991-07-01

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  2. Establishing the solubility and local structure(s) of Amorphous Calcium Carbonate (ACC): Toward an understanding of invertebrate biomineralization

    Science.gov (United States)

    Mergelsberg, S. T.; Ulrich, R. N.; Michel, F. M.; Dove, P. M.

    2017-12-01

    Recent advances in high-resolution imaging show the widespreadd occurrence of multistep pathways to mineralization in biological and geological settings (De Yoreo et al., 2015, Science). For example, carbonate biomineralization often involves precipitation of amorphous calcium carbonate (ACC) as a reactive intermediate that subsequently transforms to crystalline products with diverse structures. Although current carbonate mineral proxies are based upon the composition of final crystalline products, the final signatures may be recording the properties of the initial amorphous phase. Thus, it is critical to establish the physical properties of ACC and understand the factors that influence its evolution to final products at conditions that approximate biological environments. This disconnect limits our ability to build a process-based understanding of when/how minor and trace elements are recorded in mineral composition proxies. In this experimental study, we quantified the chemical and physical properties of ACC and its evolution to final products. We first determined ACC solubility under controlled chemical conditions using a new type of flow-through reactor developed by our research group (Blue and Dove, 2015, GCA; Blue et al., 2017, GCA). The experimental design varied Mg concentration and total alkalinity while maintaining a mild pH that approximates biological environments. ACC solubility was measured at specific time points during the precipitation (from super- and undersaturated conditions) and during its subsequent evolution. Parallel experiments characterized the structure of the corresponding amorphous products using in situ pair distribution function (PDF) and small-angle x-ray scattering (SAXS) analyses. The measurements demonstrate at least two types of ACC can be produced by tuning Mg concentration and alkalinity. Each "phase" exhibits distinct short-range ordering that demonstrates structure-specific solubility. We also find temporal changes in the

  3. Thermal stability of amorphous carbon films grown by pulsed laser deposition

    Science.gov (United States)

    Friedmann, T. A.; McCarty, K. F.; Barbour, J. C.; Siegal, M. P.; Dibble, Dean C.

    1996-03-01

    The thermal stability in vacuum of amorphous tetrahedrally coordinated carbon (a-tC) films grown on Si has been assessed by in situ Raman spectroscopy. Films were grown in vacuum on room-temperature substrates using laser fluences of 12, 22, and 45 J/cm2 and in a background gas of either hydrogen or nitrogen using a laser fluence of 45 J/cm2. The films grown in vacuum at high fluence (≳20J/cm2) show little change in the a-tC Raman spectra with temperature up to 800 °C. Above this temperature the films convert to glassy carbon (nanocrystalline graphite). Samples grown in vacuum at lower fluence or in a background gas (H2 or N2) at high fluence are not nearly as stable. For all samples, the Raman signal from the Si substrate (observed through the a-tC film) decreases in intensity with annealing temperature indicating that the transparency of the a-tC films is decreasing with temperature. These changes in transparency begin at much lower temperatures (˜200 °C) than the changes in the a-tC Raman band shape and indicate that subtle changes are occurring in the a-tC films at lower temperatures.

  4. The effects of carbon coating on the electrochemical performances of ZnO in Ni–Zn secondary batteries

    International Nuclear Information System (INIS)

    Long, Wei; Yang, Zhanhong; Fan, Xinming; Yang, Bin; Zhao, Zhiyuan; Jing, Jing

    2013-01-01

    The ZnO samples coated with carbon are successfully synthesized by using a high energy ball milling method. The scanning electron microscopy (SEM) images and energy dispersive spectrometer (EDS) spectra of the carbon-coated ZnO and pure ZnO show that the carbon-coated ZnO (carbon source: glucose, citric acid) samples and the untreated ZnO sample have similar particle size and crystal form. The particles have prismatic microstructure whose sizes are about 100–200 nm. However, the carbon-coated ZnO (carbon source: sucrose) sample has become agglomeration after calcination whose size has been increased to 2–6 μm. The uncoated ZnO powders have more complete crystal shape and they are glazed quadrangular materials, while the carbon coated ZnO particles has a rough surface, which resulted from the growth of carbon coating on ZnO particles. X-ray diffraction (XRD) patterns of the carbon-coated ZnO and the pure ZnO show carbon formed on the surface of ZnO is amorphous. Tafel plot, cyclic voltammetry (CV), AC impedance spectroscopy and galvanostatic charge–discharge measurement are utilized to examine the electrochemical performances of the carbon-coated ZnO. The carbon-coated ZnO (carbon source: glucose) have the most positive steady-state potential and lowest corrosion current density in the zinc electrodes which indicates that it has a good anticorrosion ability. A lower charge platform and a higher discharge platform of carbon-coated ZnO indicate that it have a better charge/discharge performance as anodic material for Ni/Zn cells. A smaller ohmic resistance and charge-transfer resistance imply that the carbon film upon ZnO could greatly decrease the impedance of the reaction process. Meanwhile, the carbon-coated ZnO also showed more excellent cycling performance than pure ZnO. The reason of improvement about electrochemical performance can be ascribed as the unique structure of amorphous carbon layer

  5. Sizeable magnetic circular dichroism of artificially precipitated Co clusters in amorphous carbon

    Directory of Open Access Journals (Sweden)

    H. S. Hsu

    2012-09-01

    Full Text Available This study examines sizeable magnetic circular dichroism (MCD in Co(20%-doped amorphous carbon (a-C films. While as-grown films exhibit a non-detectable MCD signal, films that undergo rapid thermal annealing (RTA at 600°C in a vacuum yield broad MCD spectra with a large amplitude of ∼3.9 × 104 deg/cm in saturation field 0.78 T at the σ-σ* gap transition (∼5.5 eV. In such films after RTA, the metastable Co-C bonding is decomposed and suitable Co nanoparticles/a-C interfaces are thus formed. Our results indicate that the large change in MCD is contributed from Co nanoparticles and associated with the spin-dependent electronic structure at the Co/a-C interfaces.

  6. Amorphization of Fe-based alloy via wet mechanical alloying assisted by PCA decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Pană, O. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293, Cluj-Napoca (Romania); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-11-01

    Amorphization of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) alloy has been attempted both by wet and dry mechanical alloying starting from a mixture of elemental powders. Powder amorphization was not achieved even after 140 hours of dry mechanical alloying. Using the same milling parameters, when wet mechanical alloying was used, the powder amorphization was achieved after 40 h of milling. Our assumption regarding the powder amorphization capability enhancement by contamination with carbon was proved by X-ray Photoelectron Spectroscopy (XPS) measurements which revealed the presence of carbon in the chemical composition of the wet mechanically alloyed sample. Using shorter milling times and several process control agents (PCA) (ethanol, oleic acid and benzene) with different carbon content it was proved that the milling duration required for powder amorphization is linked to the carbon content of the PCA. Differential Scanning Calorimetry (DSC), thermomagnetic (TG) and X-ray Diffraction (XRD) measurements performed to the heated samples revealed the fact that, the crystallisation occurs at 488 °C, thus leading to the formation of Fe{sub 3}Si and Fe{sub 2}B. Thermogravimetry measurements performed under H{sub 2} atmosphere, showed the same amount of contamination with C, which is about 2.3 wt%, for the amorphous samples regardless of the type of PCA. Saturation magnetisation of the wet milled samples decreases upon increasing milling time. In the case of the amorphous samples wet milled with benzene up to 20 h and with oleic acid up to 30 h, the saturation magnetisation has roughly the same value, indicating the same degree of contamination. The XRD performed on the samples milled using the same parameters, revealed that powder amorphization can be achieved even via dry milling, just by adding the equivalent amount of elemental C calculated from the TG plots. This proves that in this system by considering the atomic species which can contaminate the powder, they can be

  7. Mechanically Strain-Induced Modification of Selenium Powders in the Amorphization Process

    International Nuclear Information System (INIS)

    Fuse, Makoto; Shirakawa, Yoshiyuki; Shimosaka, Atsuko; Hidaka, Jusuke

    2003-01-01

    For the fabrication of particles designed in the nanoscale structure, or the nanostructural modification of particles using mechanical grinding process, selenium powders ground by a planetary ball mill at various rotational speeds have been investigated. Structural analyses, such as particle size distributions, crystallite sizes, lattice strains and nearest neighbour distances were performed using X-ray diffraction, scanning electron microscopy and dynamical light scattering.By grinding powder particles became spherical composites consisting of nanocrystalline and amorphous phase, and had a distribution with the average size of 2.7 μm. Integral intensities of diffraction peaks of annealed crystal selenium decreased with increasing grinding time, and these peaks broadened due to lattice strains and reducing crystallite size during the grinding. The ground powder at 200 rpm did not have the lattice strain and showed amorphization for the present grinding periods. It indicates that the amorphization of Se by grinding accompanies the lattice strain, and the lattice strain arises from a larger energy concerning intermolecular interaction. In this process, the impact energy is spent on thermal and structural changes according to energy accumulation in macroscopic (the particle size distribution) and microscopic (the crystallite size and the lattice strain) range

  8. TEM and EELS study of deuterated carbon: application to the fuel retention in tokamaks

    International Nuclear Information System (INIS)

    Bernier, N.

    2007-12-01

    We developed a methodology, based on the combination of TEM and EELS techniques, for a structural and chemical characterization, at a high spatial resolution, of a wide range of carbon materials. We i) optimized, in the framework of theoretical models, the sp2 fraction quantification from pure carbons by EELS ii) transferred this quantification to deuterated amorphous carbon layers iii) showed, from graphitized carbons, how the TEM-EELS combination allows to detect low concentrations of implanted D. Due to the accomplishment of these developments, we applied our approach to the study of D retention in composites C/C, which are the plasma-facing materials in TS. We showed that specific localized retention sites correspond to relatively large (∼ 3 mm.) cracks between fibres and matrix; such cracks offer a simple and direct path for deuterated amorphous carbon. The particle balance performed in TS is discussed in the light of this trapping mechanism. (author)

  9. Characterization and observation of water-based nanofluids quench medium with carbon particle content variation

    Science.gov (United States)

    Yahya, S. S.; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Kresnodrianto, Mahiswara, E. P.

    2018-05-01

    Recently, nanofluids have been widely used in heat treatment industries as quench medium with better quenching performance. The thermal conductivity of nanofluids is higher compared to conventional quench medium such as polymer, water, brine, and petroleum-based oil. This characteristic can be achieved by mixing high thermal conductivity particles in nanometer scale with a fluid as base. In this research, carbon powder and distilled water were used as nanoparticles and base respectively. The carbon source used in this research was laboratory grade carbon powder, and activated carbon as a cheaper alternative source. By adjusting the percentage of dispersed carbon particles, thermal conductivity of nanofluids could be controlled as needed. To obtain nanoscale carbon particles, planetary ball mill was used to grind laboratory-grade carbon and active carbon powder to further decrease its particle size. This milling method will provide nanoparticles with lower production cost. Milling speed and duration were set at 500 rpm and 15 hours. Scanning electron microscope (SEM) and Energy Dispersive X-Ray (EDX) were carried out respectively to determine the particle size, material identification, particle morphology. The carbon nanoparticle content in nanofluids quench mediums for this research were varied at 0.1, 0.3, and 0.5 % vol. Furthermore, these mediums were used to quench AISI 1045 carbon steel samples which had been annealed at 1000 °C. Hardness testing and metallography observation were then conducted to check the effect of different quench medium in steel samples. Preliminary characterizations showed that the carbon particle dimension after milling was hundreds of nanometers, or still in sub-micron range. Therefore, the milling process parameters are need to be optimized further. EDX observation in laboratory-grade carbon powder showed that the powder was pure carbon as expected for, but in activated carbon has some impurities. The nanofluid itself, however, was

  10. Irradiation induced crystalline to amorphous transition

    International Nuclear Information System (INIS)

    Bourgoin, J.

    1980-01-01

    Irradiation of a crystalline solid with energetic heavy particles results in cascades of defects which, with increasing dose, overlap and form a continuous disordered layer. In semiconductors the physical properties of such disordered layers are found to be similar to those of amorphous layers produced by evaporation. It is shown in the case of silicon, that the transition from a disordered crystalline (X) layer to an amorphous (α) layer occurs when the Gibbs energy of the X phase and of the defects it contains becomes larger than the Gibbs energy of the α phase. (author)

  11. Low Secondary Electron Yield Carbon Coatings for Electron-cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Calatroni, Sergio; Chiggiato, Paolo; Costa Pinto, Pedro; Marques, Hugo; Neupert, Holger; Taborelli, Mauro; Vollenberg, Wilhelmus; Wevers, Ivo; Yaqub, Kashif

    2010-01-01

    Electron-cloud is one of the main limitations for particle accelerators with positively charged beams of high intensity and short bunch spacing, as the SPS at CERN. The Secondary Electron Yield (SEY) of the inner surface of the vacuum chamber is the main parameter governing the phenomenon. The effect could be eliminated by coating the vacuum chambers with a material of low SEY, which does not require bake-out and is robust against air exposure. For such a purpose amorphous carbon (a-C) coatings were produced by magnetron sputtering of graphite targets. They exhibit maximum SEY between 0.95 and 1.05 after air transfer to the measuring instrument. After 1 month of air exposure the SEY rises by 10 - 20 % of the initial values. Storage in desiccator or by packaging in Al foil makes this increase negligible. The coatings have a similar X-ray photoelectron spectroscopy (XPS) C1s spectrum for a large set of deposition parameters and exhibit an enlarged linewidth compared to HOPG graphite. The static outgassing witho...

  12. Thionyl chloride assisted functionalization of amorphous carbon nanotubes: A better field emitter and stable nanofluid with better thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, S.K.; Jha, A. [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700 032 (India); Chattopadhyay, K.K., E-mail: kalyan_chattopadhyay@yahoo.com [Thin Film & Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700 032 (India); School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700 032 (India)

    2015-06-15

    Highlights: • Thionyl chloride assisted functionalization of amorphous carbon nanotubes (a-CNTs). • Improved dispersion enhanced thermal conductivity of engine oil. • Again f-a-CNTs showed enhanced field emission property compared to pure a-CNTs. - Abstract: Amorphous carbon nanotubes (a-CNTs) were synthesized at low temperature in open atmosphere and further functionalized by treating them in thionyl chloride added stearic acid-dichloro methane solution. The as prepared functionalized a-CNTs (f-a-CNTs) were characterized by Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, transmission and scanning electron microscopy. The nanofluid was prepared by dispersing f-a-CNTs in engine oil using ultrasonic treatment. The effective thermal conductivity of as prepared nanofluid was investigated at different loading (volume fraction of f-a-CNTs). Obtained experimental data of thermal conductivity were compared with the predicted values, calculated using existing theoretical models. Stability of the nanofluid was tested by means of zeta potential measurement to optimize the loading. The as prepared f-a-CNTs sample also showed improved field emission result as compared to pristine a-CNTs. Dependence of field emission behavior on inter electrode distance was investigated too.

  13. Fabrication of amorphous Si and C anode films via co-sputtering for an all-solid-state battery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.S. [Department of Materials Science and Engineering, Yonsei University Shinchondong, 262 Seongsanno, Seodaemoongu, Seoul 120-749 (Korea, Republic of); Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Lee, S.H. [Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Woo, S.P. [Department of Materials Science and Engineering, Yonsei University Shinchondong, 262 Seongsanno, Seodaemoongu, Seoul 120-749 (Korea, Republic of); Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Kim, H.S. [Department of Mechanical Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Yoon, Y.S., E-mail: benedicto@gachon.ac.kr [Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of)

    2014-08-01

    In this study, a combination of silicon and carbon as the anode material for an all-solid-state battery has been investigated to overcome their individual deficiencies. The capacity of silicon thin films with an input power of 60 W shows dramatic failure after 38 cycles due to serious volume expansion. In contrast, C thin films at 60 W show high stability of cyclic performance and capacity retention. The amorphous silicon and carbon composite reduced the volume expansion of silicon during long term cycles and enhanced the low specific capacity of the carbon. This resistance of the volume expansion might be expected from the cushion effect caused by the carbon, which was confirmed by scanning electron microscope images after a 100 cycle test. These results indicate that amorphous silicon and carbon composite thin films have a high possibility as the stable anode material for an all-solid-state battery. - Highlights: • Amorphous Si/C nanocomposite thin films have been prepared by co-sputtering. • Carbon can act as a cushion effect to prevent volume expansion of Si. • Amorphous Si/C nanocomposite thin films show structure stability at 100 cycles. • Capacity of the amorphous Si/C nanocomposite thin films was enhanced considerably.

  14. Concentration of carbonate admixture from opalized tuff into one separate fraction

    International Nuclear Information System (INIS)

    Bogoevski, Slobodan; Boshkovski, Boshko

    2016-01-01

    White opalized tuff (from the Strmosh locality, Probishtip), as a raw silicate amorphous material, contains some quantity of admixtures. The total quantity of admixtures amounts is about 8% mass. Mine powdery ingredients are homogeneously distributed into the basic silicate mass.Carbonate material is a significant part of present admixtures, and it is possible to be separated with controlled milling. Milling parameters (type and time of milling) enables to concentrate the present CaCO 3 in granulometric fraction<0.032 μm, after 30 min. milling. Reliable evidence about afore mentioned separation is shown with simultaneous view of the results of silicate chemical analysis, DT/TG analysis (750 - 850 °C), and sieve-analysis.From the X-ray analysis it is evident that the present carbonate material exists in crypto crystal to amorphous state. The space where CaCO 3 is hidden, presents the place between basic silicate particles inside the groups, generally with dimensions about 40 to 60 μm. The concentration of CaCO 3 appears when this particle group goes to the process of disintegration. (author)

  15. One-pot synthesis and electrochemical reactivity of carbon coated LiFePO4 spindles

    International Nuclear Information System (INIS)

    Yu Juanjuan; Hu Juncheng; Li Jinlin

    2012-01-01

    Highlights: ► Carbon coated LiFePO 4 spindles have been successfully synthesized via a novel supercritical method. ► The concentrations of lithium have an effect on the morphology of carbon coated LiFePO 4 . ► Amorphous carbon layer formed on the surface of LiFePO 4 by adding glucose. ► The carbon coating is responsible for the enhanced electrochemical performance. - Abstract: Spindle-like carbon coated LiFePO 4 (LiFePO 4 /C) composites have been successfully synthesized via a novel one-pot supercritical methanol method. The products were characterized by X-ray power diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The particle size, morphology and electrochemical reactivity changed with the concentration of lithium and carbon source. A possible morphology evolution process was also proposed. The glucose not only facilitates the formation of single crystalline LiFePO 4 , but also gives an amorphous carbon layer on the surface LiFePO 4 spindles.

  16. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Chiba, Kiyoshi; Takahashi, Toshiyuki; Kageyama, Takashi; Oda, Hironori

    2005-01-01

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H 2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (140 nm)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  17. Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability.

    Science.gov (United States)

    Peltola, Emilia; Wester, Niklas; Holt, Katherine B; Johansson, Leena-Sisko; Koskinen, Jari; Myllymäki, Vesa; Laurila, Tomi

    2017-02-15

    We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups ND andante or amine ND amine , carboxyl ND vox or hydroxyl groups ND H and drop-casted or spray-coated onto substrate. By utilizing these novel structures we show that (i) the detection limit for dopamine can be improved by two orders of magnitude [from 10µM to 50nM] in comparison to ta-C thin film electrodes and (ii) the coating method significantly affects electrochemical properties of NDs and (iii) the ND coatings selectively promote cell viability. ND andante and ND H showed most promising electrochemical properties. The viability of human mesenchymal stem cells and osteoblastic SaOS-2 cells was increased on all ND surfaces, whereas the viability of mouse neural stem cells and rat neuroblastic cells was improved on ND andante and ND H and reduced on ND amine and ND vox. The viability of C6 cells remained unchanged, indicating that these surfaces will not cause excess gliosis. In summary, we demonstrated here that by using functionalized NDs on ta-C thin films we can significantly improve sensitivity towards dopamine as well as selectively promote cell viability. Thus, these novel carbon nanostructures provide an interesting concept for development of various in vivo targeted sensor solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The microstructure and morphology of carbon black: A study using small angle neutron scattering and contrast variation

    International Nuclear Information System (INIS)

    Hjelm, R.P. Jr.; Seeger, P.A.; Wampler, W.A.; Gerspacher, M.

    1994-01-01

    This is a study of the microstructure of particles of an experimental high surface area carbon black (HSA) and of the morphology of the particle aggregates using small-angle neutron scattering and the method of contrast variation. Contrast variation was effected by studying suspensions of the carbon black in cyclohexane containing different fractions of deuterocyclohexane. We find that the approximately 29 nm diameter HSA particles are arranged as small, linear aggregates with average aggregation number between 4 and 6. The structure averaged over the particle population is best represented by a prolate ellipsoid of revolution with semi axes 14.5 and 76.4 nm. The surface of the aggregates appears smooth over length scales longer than 1 nm, which places an upper limit on the surface roughness observed by other methods. The intemal structure of the aggregates is described by a shell-core model, with the shell density being consistent with a graphitic structure and the core being of lower density, more like amorphous carbon. Some fraction of the core volume (0.1 to 0.2) is taken up by voids that are not accessible to the solvent. An estimate of the shell thickness gives 1 to 2 nm along the ellipsoid minor axis and 6 to 10 nm along the major axis. The particles of the aggregate appear to be fused so that the less dense amorphous core is continuous through the inner parts of the aggregate. The information that can be obtained on the internal structure using contrast variation is limited by nonheterogeneity in the chemical composition of carbon black aggregates

  19. Structures and properties of fluorinated amorphous carbon films

    Science.gov (United States)

    Huang, K. P.; Lin, P.; Shih, H. C.

    2004-07-01

    Fluorinated amorphous carbon (a-C:F) films were deposited by radio frequency bias assisted microwave plasma electron cyclotron resonance chemical vapor deposition with tetrafluoromethane (CF4) and acetylene (C2H2) as precursors. The deposition process was performed at two flow ratios R=0.90 and R=0.97, where R=CF4/(CF4+C2H2). The samples were annealed at 300 °C for 30 min. in a N2 atmosphere. Both Fourier transform infrared and electron spectroscopy for chemical analyzer were used to characterize the a-C:F film chemical bond and fluorine concentration, respectively. A high resolution electron energy loss spectrometer was applied to detect the electronic structure. The higher CF4 flow ratio (R=0.97) produced more sp3 linear structure, and it made the a-C:F film smoother and softer. A lifetime of around 0.34 μs and an energy gap of ˜2.75 eV were observed in both the as-deposited and after annealing conditions. The short carriers lifetime in the a-C:F film made the photoluminescence peak blueshift. The annealing changed both the structure and composition of the a-C:F film. The type of fluorocarbon bond and electronic structure characterized the mechanical and physical properties of a-C:F film.

  20. Mo-containing tetrahedral amorphous carbon deposited by dual filtered cathodic vacuum arc with selective pulsed bias voltage

    International Nuclear Information System (INIS)

    Pasaja, Nitisak; Sansongsiri, Sakon; Intarasiri, Saweat; Vilaithong, Thiraphat; Anders, Andre

    2007-01-01

    Metal-containing tetrahedral amorphous carbon films were produced by dual filtered cathodic vacuum arc plasma sources operated in sequentially pulsed mode. Negatively pulsed bias was applied to the substrate when carbon plasma was generated, whereas it was absent when the molybdenum plasma was presented. Film thickness was measured after deposition by profilometry. Glass slides with silver pads were used as substrates for the measurement of the sheet resistance. The microstructure and composition of the films were characterized by Raman spectroscopy and Rutherford backscattering, respectively. It was found that the electrical resistivity decreases with an increase of the Mo content, which can be ascribed to an increase of the sp 2 content and an increase of the sp 2 cluster size

  1. Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process

    Science.gov (United States)

    McHenry, M. E.; Majetich, S. A.; Artman, J. O.; Degraef, M.; Staley, S. W.

    1994-04-01

    A process based on the Kratschmer-Huffman carbon arc method of preparing fullerenes has been used to generate carbon-coated cobalt and cobalt carbide nanocrystallites. Magnetic nanocrystallites are extracted from the soot with a gradient field technique. For Co/C composites, structural characterization by x-ray diffraction and high-resolution transmission electron microscopy reveals the presence of a fcc Co phase, graphite, and a minority Co2C phase. The majority of Co nanocrystals exists as nominally spherical particles, 0.5-5 nm in radius. Hysteretic and temperature-dependent magnetic response, in randomly and magnetically aligned powder samples frozen in epoxy reveals fine-particle magnetism associated with monodomain Co particles. The magnetization exhibits a unique functional dependence on H/T, and hysteresis below a blocking temperature, TB~=160 K. Below TB, the temperature dependence of the coercivity is given by Hc=Hci[1-(T/TB)1/2], with Hci~=450 Oe.

  2. Molecular dynamics simulation of chemical vapor deposition of amorphous carbon. Dependence on H/C ratio of source gas

    International Nuclear Information System (INIS)

    Ito, Atsushi M.; Takayama, Arimichi; Nakamura, Hiroaki; Saito, Seiki; Ohno, Noriyasu; Kajita, Shin

    2011-01-01

    By molecular dynamics simulation, the chemical vapor deposition of amorphous carbon onto graphite and diamond surfaces was studied. In particular, we investigated the effect of source H/C ratio, which is the ratio of the number of hydrogen atoms to the number of carbon atoms in a source gas, on the deposition process. In the present simulation, the following two source gas conditions were tested: one was that the source gas was injected as isolated carbon and hydrogen atoms, and the other was that the source gas was injected as hydrocarbon molecules. Under the former condition, we found that as the source H/C ratio increases, the deposition rate of carbon atoms decreases exponentially. This exponential decrease in the deposition rate with increasing source H/C ratio agrees with experimental data. However, under the latter molecular source condition, the deposition rate did not decrease exponentially because of a chemical reaction peculiar to the type of hydrocarbon in the source gas. (author)

  3. Particle Size, Surface Area, and Amorphous Content as Predictors of Solubility and Bioavailability for Five Commercial Sources of Ferric Orthophosphate in Ready-To-Eat Cereal.

    Science.gov (United States)

    Dickmann, Robin S; Strasburg, Gale M; Romsos, Dale R; Wilson, Lori A; Lai, Grace H; Huang, Hsimin

    2016-03-01

    Ferric orthophosphate (FePO₄) has had limited use as an iron fortificant in ready-to-eat (RTE) cereal because of its variable bioavailability, the mechanism of which is poorly understood. Even though FePO₄ has desirable sensory properties as compared to other affordable iron fortificants, few published studies have well-characterized its physicochemical properties. Semi-crystalline materials such as FePO₄ have varying degrees of molecular disorder, referred to as amorphous content, which is hypothesized to be an important factor in bioavailability. The objective of this study was to systematically measure the physicochemical factors of particle size, surface area, amorphous content, and solubility underlying the variation in FePO₄ bioavailability. Five commercial FePO₄ sources and ferrous sulfate were added to individual batches of RTE cereal. The relative bioavailability value (RBV) of each iron source, determined using the AOAC Rat Hemoglobin Repletion Bioassay, ranged from 51% to 99% (p Solubility in dilute HCl accurately predicted RBV (R² = 0.93, p = 0.008). Amorphous content measured by Dynamic Vapor Sorption ranged from 1.7% to 23.8% and was a better determinant of solubility (R² = 0.91; p = 0.0002) than surface area (R² = 0.83; p = 0.002) and median particle size (R² = 0.59; p = 0.12). The results indicate that while solubility of FePO₄ is highly predictive of RBV, solubility, in turn, is strongly linked to amorphous content and surface area. This information may prove useful for the production of FePO₄ with the desired RBV.

  4. Emission of blue light from hydrogenated amorphous silicon carbide

    Science.gov (United States)

    Nevin, W. A.; Yamagishi, H.; Yamaguchi, M.; Tawada, Y.

    1994-04-01

    THE development of new electroluminescent materials is of current technological interest for use in flat-screen full-colour displays1. For such applications, amorphous inorganic semiconductors appear particularly promising, in view of the ease with which uniform films with good mechanical and electronic properties can be deposited over large areas2. Luminescence has been reported1 in the red-green part of the spectrum from amorphous silicon carbide prepared from gas-phase mixtures of silane and a carbon-containing species (usually methane or ethylene). But it is not possible to achieve blue luminescence by this approach. Here we show that the use of an aromatic species-xylene-as the source of carbon during deposition results in a form of amorphous silicon carbide that exhibits strong blue luminescence. The underlying structure of this material seems to be an unusual combination of an inorganic silicon carbide lattice with a substantial 'organic' π-conjugated carbon system, the latter dominating the emission properties. Moreover, the material can be readily doped with an electron acceptor in a manner similar to organic semiconductors3, and might therefore find applications as a conductivity- or colour-based chemical sensor.

  5. Recent Experimental Results on Amorphous Carbon Coatings for Electron Cloud Mitigation

    CERN Document Server

    Yin Vallgren, C; Chiggiato, P; Costa Pinto, P; Neupert, H; Taborelli, M; Rumolo, G; Shaposhnikova, E; Vollenberg, W

    2011-01-01

    Amorphous carbon (a-C) thin films, produced in different coating configurations by using DC magnetron sputtering, have been investigated in laboratory for low secondary electron yield (SEY) applications. After the coatings had shown a reliable low initial SEY, the a-C thin films have been applied in the CERN Super Proton Synchrotron (SPS) and tested with Large Hadron Collider (LHC) type beams.Currently, we have used a-C thin film coated in so-called liner configuration for the electron cloud monitors. In addition the vacuum chambers of three dipole magnets have been coated and inserted into the machine. After describing the different configurations used for the coatings, results of the tests in the machine and a summary of the analyses after extraction will be presented. Based on comparison between different coating configurations, a new series of coatings has been applied on three further dipole magnet vacuum chambers. They have been installed and will be tested in coming machine development runs.

  6. Influence of small metallic particles on the absorption and emission in amorphous materials doped with rare earths

    International Nuclear Information System (INIS)

    Malta, O.L.; Santa Cruz, P.A.; Sa, G.F. de

    1987-01-01

    The influence of small metallic clusters on the absorption and emission processes in molecular species shows a great interest as well the fundamental as the pratical point of view. This subject, which has been recently developed, covers several aspects related to the kinetics of formation of these chusters and to theirs optical properties in amorphous media. A study of this problem developed by the first time for the case of one volumetric distribution of metallic particles is presented. With this aim, fluoborate glasses doped with Eu 3+ ion which fluorescence is well known in several materials are used. (L.C.) [pt

  7. Kinetics and formation mechanism of amorphous Fe52Nb48 alloy powder fabricated by mechanical alloying

    International Nuclear Information System (INIS)

    El-Eskandarany, S.

    1999-01-01

    A single phase amorphous Fe 52 Nb 48 alloy has been synthesized through a solid state interdiffusion of pure polycrystalline Fe and Nb powders at room temperature, using a high-energy ball-milling technique. The mechanisms of metallic glass formation and competing crystallization processes in the mechanically deformed composite powders have been investigated by means of X-ray diffraction, Moessbauer spectroscopy, differential thermal analysis, scanning electron microscopy and transmission electron microscopy. The numerous intimate layered composite particles of the diffusion couples that formed during the first and intermediate stages of milling time (0-56 ks), are intermixed to form amorphous phase(s) upon heating to about 625 K by so-called thermally assisted solid state amorphization, TASSA. The amorphization heat of formation for binary system via the TASSA, ΔH a , was measured directly as a function of the milling time. Comparable with the TASSA, homogeneous amorphous alloys were fabricated directly without heating the composite multilayered particles upon milling these particles for longer milling time (86 ks-144 ks). The amorphization reaction here is attributed to the mechanical driven solid state amorphization. This single amorphous phase transforms into an order phase (μ phase) upon heating at 1088 K (crystallization temperature, T x ) with enthalpy change of crystallization, ΔH x , of -8.3 kJmol -1 . (orig.)

  8. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene

    Science.gov (United States)

    Piotr Michałowski, Paweł; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-01

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm‑2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  9. Amorphous Mn oxide-ordered mesoporous carbon hybrids as a high performance electrode material for supercapacitors.

    Science.gov (United States)

    Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop

    2012-07-01

    A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.

  10. Studies on tableting properties of lactose. VII. The effect of variations in primary particle size and percentage of amorphous lactose in spray dried lactose products

    NARCIS (Netherlands)

    Vromans, H.; Bolhuis, G.K.; Lerk, C.F.; van de Biggelaar, H.; Bosch, H.

    1987-01-01

    Sieve fractions of α-lactose monohydrate and dicalcium phosphate dihydrate, respectively, suspended in solutions of lactose, were spray dried in order to obtain products with various amorphous lactose contents. The compactibility of the samples appeared to be a function of both the primary particle

  11. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    Science.gov (United States)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  12. Si-Carbon Composite Nanofibers with Good scalability and Favorable Architecture for Highly Reversible Lithium Storage and Superb Kinetics

    International Nuclear Information System (INIS)

    Lee, Youngmin; Heo, Yoon-Uk; Song, Dahye; Shin, Dong Wook; Kang, Yong-Mook

    2014-01-01

    We demonstrate a simple electrospinning for preparing Si-carbon composite Nanofiber (NF) in which aciniform aggregates of Si particles are well encased by amorphous carbon. The Si-carbon composite NF exhibit a significantly improved electrochemical performance with a high specific capacity of 1250 mAh·g −1 and a superior cycling performance during 50 cycles at a rate of 0.2 C. More importantly, Si-carbon composite NF maintain about 70% of initial capacity at 0.2 C and an excellent cycling stability even at 25 times higher current density compared to the initial condition, proving that it has superb kinetics compared to ever reported Si or SiO x materials. The electrochemical superiority of Si-carbon composite NF can be attributed to amorphous carbon framework accommodating the inherent volume expansion of Si during lithiation as well as the enlarged contact area between active materials and conducting agent attributed to the morphological characteristics of its one dimensional (1D) nanostructure

  13. Damage of amorphous carbon induced by soft x-ray femtosecond pulses above and below the critical angle

    Czech Academy of Sciences Publication Activity Database

    Chalupský, Jaromír; Hájková, Věra; Altapova, V.; Burian, T.; Gleeson, A.J.; Juha, Libor; Jurek, M.; Sinn, H.; Störmer, M.; Sobierajski, R.; Tiedtke, K.; Toleikis, S.; Tschentscher, T.; Vyšín, Luděk; Wabnitz, H.; Gaudin, J.

    2009-01-01

    Roč. 95, č. 3 (2009), 031111/1-031111/3 ISSN 0003-6951 R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAAX00100903; GA AV ČR IAA400100701 Institutional research plan: CEZ:AV0Z10100523 Keywords : amorphous state * carbon * coatings * graphitisation * laser beam effects * nanostructured materials * phase transformations * reflectivity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.554, year: 2009

  14. Fluidized bed reactor for working up carbon coated particles

    International Nuclear Information System (INIS)

    Marschollek, M.; Simon, W.; Walter, C.

    1981-01-01

    A fluidized bed reactor is described for working up carbon coated particles, particularly nuclear fuel particles or fertile material particles consisting essentially of a cylindrical portion connected to a conical portion. Gas supply pipes, gas distribution space and gas distribution heads are provided within the conical reactor lower portion, the gas distribution members being arranged in at least two superimposed planes and distributed symmetrically over the cross-section of the reactor

  15. Influence of disorder on localization and density of states in amorphous carbon nitride thin films systems rich in π-bonded carbon atoms

    International Nuclear Information System (INIS)

    Alibart, F.; Lejeune, M.; Durand Drouhin, O.; Zellama, K.; Benlahsen, M.

    2010-01-01

    We discuss in this paper the evolution of both the density of states (DOS) located between the band-tail states and the DOS around the Fermi level N(E F ) in amorphous carbon nitride films (a-CN x ) as a function of the total nitrogen partial pressure ratio in the Ar/N 2 plasma mixture. The films were deposited by three different deposition techniques and their microstructure was characterized using a combination of infrared and Raman spectroscopy and optical transmission experiments, completed with electrical conductivity measurements, as a function of temperature. The observed changes in the optoelectronic properties are attributed to the modification in the atomic bonding structures, which were induced by N incorporation, accompanied by an increase in the sp 2 carbon bonding configurations and their relative disorder. The electrical conductivity variation was interpreted in terms of local effects on the nature and energy distribution of π and π* states.

  16. Amorphous infinite coordination polymer microparticles: a new class of selective hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, You-Moon; Heo, Jungseok; Mirkin, Chad A [Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL (United States); Armatas, Gerasimos S [Department of Chemistry, Northwestern University, Evanston, IL (United States); Kanatzidis, Mercouri G [Materials Science Division, Argonne National Laboratory, Argonne, IL (United States)

    2008-06-04

    A new class of micrometer-sized amorphous infinite coordination particles is selectively prepared from the coordination chemistry of a metallo-salen building block and Zn{sup 2+} ions. The particles show moderately high H{sub 2} uptake and almost no N{sub 2} adsorption, even though they are amorphous and do not have the well-defined channels typically used to explain such selectivity in metal-organic framework systems. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  17. Field Emission and Radial Distribution Function Studies of Fractal-like Amorphous Carbon Nanotips

    Directory of Open Access Journals (Sweden)

    Lebrón-Colón M

    2009-01-01

    Full Text Available Abstract The short-range order of individual fractal-like amorphous carbon nanotips was investigated by means of energy-filtered electron diffraction in a transmission electron microscope (TEM. The nanostructures were grown in porous silicon substrates in situ within the TEM by the electron beam-induced deposition method. The structure factorS(k and the reduced radial distribution functionG(r were calculated. From these calculations a bond angle of 124° was obtained which suggests a distorted graphitic structure. Field emission was obtained from individual nanostructures using two micromanipulators with sub-nanometer positioning resolution. A theoretical three-stage model that accounts for the geometry of the nanostructures provides a value for the field enhancement factor close to the one obtained experimentally from the Fowler-Nordheim law.

  18. ELABORATION OF AMORPHOUS METALS AND GLASS TRANSITIONFORMATION AND CHARACTERIZATION OF AMORPHOUS METALS

    OpenAIRE

    Giessen , B.; Whang , S.

    1980-01-01

    This review deals with the definition of amorphous and glassy metals ; the principal methods for their preparation by atom-by-atom deposition, rapid liquid quenching and particle bombardment ; criteria for their formation, especially ready glass formation (RGF) and its alloy chemical foundations ; and their classification. This is followed by a discussion of their elastic and plastic properties (Young's modulus and microhardness) and thermal stability (glass transition and crystallization tem...

  19. Metallic conductivity transition of carbon nanotube yarns coated with silver particles

    International Nuclear Information System (INIS)

    Zhang, Daohong; Zhang, Yunhe; Miao, Menghe

    2014-01-01

    Dry spun carbon nanotube yarns made from vertically aligned multiwalled carbon nanotube forests possess high mechanical strength and behave like semiconductors with electrical conductivity of the order of 4 × 10 4 S m −1 . Coating a submicron-thick film of silver particle-filled polymer on the surface increased the electrical conductivity of the carbon nanotube yarn by 60-fold without significantly sacrificing its mechanical strength. The transitional characteristics of the silver-coated carbon nanotube yarn were investigated by varying the take-up ratio of the silver coating. A step change in conductivity was observed when the silver content in the coated yarn was between 7 and 10 wt% as a result of the formation of connected silver particle networks on the carbon nanotube yarn surface. (papers)

  20. Water-assisted growth of graphene-carbon nanotube hybrids in plasma

    Science.gov (United States)

    Tewari, Aarti; Ghosh, Santanu; Srivastava, Pankaj

    2018-04-01

    The enhanced growth of graphene-carbon nanotube (CNT) hybrids in a hydrocarbon and hydrogen plasma assisted by water is numerically formulated. The catalyst activity and agglomeration of catalyst particles are the rate determining factors in the growth of hybrids and their constituents, i.e., the CNT and graphene. The water vapor concentration is varied to investigate its effect on the growth process. The enhanced catalyst activity on account of oxidation by hydroxyl ions of water to impede the agglomeration of catalyst particles and the removal of amorphous carbon through etching by hydrogen ions of water are seen to be the main driving forces behind the many fold increase in the dimensions of constituent nanostructures and the hybrids with water vapor concentration. Importantly, beyond a certain specific water vapor concentration, the growth rates dropped due to active oxidation of the catalyst particle.

  1. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  2. Particle Size, Surface Area, and Amorphous Content as Predictors of Solubility and Bioavailability for Five Commercial Sources of Ferric Orthophosphate in Ready-To-Eat Cereal

    Directory of Open Access Journals (Sweden)

    Robin S. Dickmann

    2016-03-01

    Full Text Available Ferric orthophosphate (FePO4 has had limited use as an iron fortificant in ready-to-eat (RTE cereal because of its variable bioavailability, the mechanism of which is poorly understood. Even though FePO4 has desirable sensory properties as compared to other affordable iron fortificants, few published studies have well-characterized its physicochemical properties. Semi-crystalline materials such as FePO4 have varying degrees of molecular disorder, referred to as amorphous content, which is hypothesized to be an important factor in bioavailability. The objective of this study was to systematically measure the physicochemical factors of particle size, surface area, amorphous content, and solubility underlying the variation in FePO4 bioavailability. Five commercial FePO4 sources and ferrous sulfate were added to individual batches of RTE cereal. The relative bioavailability value (RBV of each iron source, determined using the AOAC Rat Hemoglobin Repletion Bioassay, ranged from 51% to 99% (p < 0.05, which is higher than typically reported. Solubility in dilute HCl accurately predicted RBV (R2 = 0.93, p = 0.008. Amorphous content measured by Dynamic Vapor Sorption ranged from 1.7% to 23.8% and was a better determinant of solubility (R2 = 0.91; p = 0.0002 than surface area (R2 = 0.83; p = 0.002 and median particle size (R2 = 0.59; p = 0.12. The results indicate that while solubility of FePO4 is highly predictive of RBV, solubility, in turn, is strongly linked to amorphous content and surface area. This information may prove useful for the production of FePO4 with the desired RBV.

  3. The effects of size and surface modification of amorphous silica particles on biodistribution and liver metabolism in mice

    Science.gov (United States)

    Lu, Xiaoyan; Ji, Cai; Jin, Tingting; Fan, Xiaohui

    2015-05-01

    Engineered nanoparticles, with unconventional properties, are promising platforms for biomedical applications. Since they may interact with a wide variety of biomolecules, it is critical to understand the impact of the physicochemical properties of engineered nanoparticles on biological systems. In this study, the effects of particle size and surface modification alone or in combination of amorphous silica particles (SPs) on biological responses were determined using a suite of general toxicological assessments and metabonomics analysis in mice model. Our results suggested that amino or carboxyl surface modification mitigated the liver toxicity of plain-surface SPs. 30 nm SPs with amino surface modification were found to be the most toxic SPs among all the surface-modified SP treatments at the same dosage. When treatment dose was increased, submicro-sized SPs with amino or carboxyl surface modification also induced liver toxicity. Biodistribution studies suggested that 70 nm SPs were mainly accumulated in liver and spleen regardless of surface modifications. Interestingly, these two organs exhibited different uptake trends. Furthermore, metabonomics studies indicated that surface modification plays a more dominant role to affect the liver metabolism than particle size.

  4. Carbon isotope ratios of organic matter in Bering Sea settling particles. Extremely high remineralization of organic carbon derived from diatoms

    International Nuclear Information System (INIS)

    Yasuda, Saki; Akagi, Tasuku; Naraoka, Hiroshi; Kitajima, Fumio; Takahashi, Kozo

    2016-01-01

    The carbon isotope ratios of organic carbon in settling particles collected in the highly-diatom-productive Bering Sea were determined. Wet decomposition was employed to oxidize relatively fresh organic matter. The amount of unoxidised organic carbon in the residue following wet decomposition was negligible. The δ 13 C of organic carbon in the settling particles showed a clear relationship against SiO 2 /CaCO 3 ratio of settling particles: approximately -26‰ and -19‰ at lower and higher SiO 2 /CaCO 3 ratios, respectively. The δ 13 C values were largely interpreted in terms of mixing of two major plankton sources. Both δ 13 C and compositional data can be explained consistently only by assuming that more than 98% of diatomaceous organic matter decays and that organic matter derived from carbonate-shelled plankton may remain much less remineralized. A greater amount of diatom-derived organic matter is discovered to be trapped with the increase of SiO 2 /CaCO 3 ratio of the settling particles. The ratio of organic carbon to inorganic carbon, known as the rain ratio, therefore, tends to increase proportionally with the SiO 2 /CaCO 3 ratio under an extremely diatom-productive condition. (author)

  5. Structural and electrical properties of amorphous carbon–sulfur ...

    Indian Academy of Sciences (India)

    Unknown

    Amorphous carbon films; pyrolysis; scanning electron microscopy; electrical properties; thermal analysis. 1. Introduction ... phorus compounds may have useful mechanical or elec- .... SEM images of a-C:S samples with different S/P values.

  6. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  7. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng

    2014-01-01

    Highlights: • The thickness of carbon coating layers can be successfully controlled through varying molar concentration of aqueous glucose solution. • Coating carbon thickness and carbon content are two important factors on the electrochemical performances of CoSnO3@C. • CoSnO 3 @C under optimized conditions exhibits the optimal balance between the volume buffering effect and reversible capacity. • As-prepared CoSnO 3 @C under optimized conditions shows excellent electrochemical performances, whose reversible capacity could reach 491 mA h g −1 after 100 cycles. - Abstract: A series of core–shell carbon coated amorphous CoSnO 3 (CoSnO 3 @C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge–discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO 3 @C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g −1 after 100 cycles

  8. Carbon/Clay nanostructured composite obtained by hydrothermal method

    International Nuclear Information System (INIS)

    Barin, G.B.; Bispo, T.S.; Gimenez, I.F.; Barreto, L.S.; Souza Filho, A.G.

    2010-01-01

    The development of strategies for converting biomass into useful materials, more efficient energy carrier and / or hydrogen storage is shown a key issue for the present and future. Carbon nanostructure can be obtained by severe processing techniques such as arc discharge, chemical deposition and catalyzed pyrolysis of organic compounds. In this study we used hydrothermal methods for obtaining nanostructured composites of carbon / clay. To this end, we used coir dust and special clays. The samples were characterized by infrared spectroscopy, X-ray diffraction and Raman. The presence of the D band at 1350 cm -1 in the Raman spectrum shows the formation of amorphous carbon with particle size of about 8.85 nm. (author)

  9. Synthesis of carbon nanofibres from waste chicken fat for field electron emission applications

    Energy Technology Data Exchange (ETDEWEB)

    Suriani, A.B., E-mail: absuriani@yahoo.com [Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900 (Malaysia); Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900 (Malaysia); Dalila, A.R. [Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900 (Malaysia); Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900 (Malaysia); Mohamed, A.; Isa, I.M.; Kamari, A.; Hashim, N. [Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900 (Malaysia); Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900 (Malaysia); Soga, T.; Tanemura, M. [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2015-10-15

    Highlights: • Waste chicken fat is used as a starting material to produce CNFs via TCVD method. • High heating rate applied resulted in aggregation of catalyst particles. • Aggregated catalyst produced sea urchin-like CNFs with amorphous nature. • The as-grown CNFs presented a potential for field electron emission applications. - Abstract: Carbon nanofibres (CNFs) with sea urchin-like morphology were synthesised from waste chicken fat precursor via catalytic thermal chemical vapour deposition method at 750 °C. The CNFs showed amorphous structures under high-resolution transmission electron microscopy, micro-Raman spectroscopy and X-ray diffraction examination. X-ray photoelectron spectroscopy analysis confirmed that the core of the sea urchin-like CNFs was composed of Fe{sub 3}C formed within the first 20 min of synthesis time. The growth of amorphous CNFs from agglomerated Fe{sub 3}C particles was favourable due to the high heating rate applied during the synthesis. Field electron emission examination of the CNFs indicated turn-on and threshold field values of 5.4 and 6.6 V μm{sup −1} at current density of 1 and 10 μA cm{sup −2}, respectively. This study demonstrates that waste chicken fat, a low-cost and readily available resource, can be used as an inexpensive carbon source for the production of CNFs with a potential application in field electron emitters.

  10. Synthesis of carbon nanofibres from waste chicken fat for field electron emission applications

    International Nuclear Information System (INIS)

    Suriani, A.B.; Dalila, A.R.; Mohamed, A.; Isa, I.M.; Kamari, A.; Hashim, N.; Soga, T.; Tanemura, M.

    2015-01-01

    Highlights: • Waste chicken fat is used as a starting material to produce CNFs via TCVD method. • High heating rate applied resulted in aggregation of catalyst particles. • Aggregated catalyst produced sea urchin-like CNFs with amorphous nature. • The as-grown CNFs presented a potential for field electron emission applications. - Abstract: Carbon nanofibres (CNFs) with sea urchin-like morphology were synthesised from waste chicken fat precursor via catalytic thermal chemical vapour deposition method at 750 °C. The CNFs showed amorphous structures under high-resolution transmission electron microscopy, micro-Raman spectroscopy and X-ray diffraction examination. X-ray photoelectron spectroscopy analysis confirmed that the core of the sea urchin-like CNFs was composed of Fe 3 C formed within the first 20 min of synthesis time. The growth of amorphous CNFs from agglomerated Fe 3 C particles was favourable due to the high heating rate applied during the synthesis. Field electron emission examination of the CNFs indicated turn-on and threshold field values of 5.4 and 6.6 V μm −1 at current density of 1 and 10 μA cm −2 , respectively. This study demonstrates that waste chicken fat, a low-cost and readily available resource, can be used as an inexpensive carbon source for the production of CNFs with a potential application in field electron emitters

  11. Minimum ionizing particle detection using amorphous silicon diodes

    Energy Technology Data Exchange (ETDEWEB)

    Xi, J.; Hollingsworth, R.E.; Buitrago, R.H. (Glasstech Solar, Inc., Wheat Ridge, CO (USA)); Oakley, D.; Cumalat, J.P.; Nauenberg, U. (Colorado Univ., Boulder (USA). Dept. of Physics); McNeil, J.A. (Colorado School of Mines, Golden (USA). Dept. of Physics); Anderson, D.F. (Fermi National Accelerator Lab., Batavia, IL (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1991-03-01

    Hydrogenated amorphous silicon pin diodes have been used to detect minimum ionizing electrons with a pulse height signal-to-noise ratio exceeding 3. A distinct signal was seen for shaping times from 100 to 3000 ns. The devices used had a 54 {mu}m thick intrinsic layer and an active area of 0.1 cm{sup 2}. The maximum signal was 3200 electrons with a noise width of 950 electrons for a shaping time of 250 ns. (orig.).

  12. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    Science.gov (United States)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  13. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    Science.gov (United States)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  14. Correlation between substrate bias, growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon films

    International Nuclear Information System (INIS)

    Liu Aiping; Zhu Jiaqi; Han Jiecai; Wu Huaping; Jia Zechun

    2007-01-01

    We investigate the growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon (ta-C:P) films which are deposited at different substrate biases by filtered cathodic vacuum arc technique with PH 3 as the dopant source. The films are characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, Raman spectroscopy, residual stress measurement, UV/VIS/NIR absorption spectroscopy and temperature-dependent conductivity measurement. The atomic fraction of phosphorus in the films as a function of substrate bias is obtained by XPS analysis. The optimum bias for phosphorus incorporation is about -80 V. Raman spectra show that the amorphous structures of all samples with atomic-scaled smooth surface are not remarkably changed when PH 3 is implanted, but some small graphitic crystallites are formed. Moreover, phosphorus impurities and higher-energetic impinging ions are favorable for the clustering of sp 2 sites dispersed in sp 3 skeleton and increase the level of structural ordering for ta-C:P films, which further releases the compressive stress and enhances the conductivity of the films. Our analysis establishes an interrelationship between microstructure, stress state, electrical properties, and substrate bias, which helps to understand the deposition mechanism of ta-C:P films

  15. Field Emission Property of Double-walled Carbon Nanotubes Related to Purification and Transmittance

    International Nuclear Information System (INIS)

    Ahn, KiTae; Jang, HyunChul; Hong, Wanshick; Park, Kyoungwan; Sok, Junghyun; Lyu, SeungChul; Lee, Hansung; Lee, Naesung; Han, Moonsup; Park, Yunsun

    2011-01-01

    Double-walled carbon nanotubes (DWCNTs) with high purity were produced by the catalytic decomposition of tetrahydrofuran (THF) using a Fe-Mo/MgO catalyst at 800°C. The as-synthesized DWCNTs typically have catalytic impurities and amorphous carbon, which were removed by a two-step purification process consisting of acid treatment and oxidation. In the acid treatment, metallic catalysts were removed in HCl at room temperature for 5 hr with magnetic stirring. Subsequently, the oxidation, using air at 380°C for 5 hr in the a vertical-type furnace, was used to remove the amorphous carbon particles. The DWCNT suspension was prepared by dispersing the purified DWCNTs in the aqueous sodium dodecyl sulfate solution with horn-type sonication. This was then air-sprayed on ITO glass to fabricate DWCNT field emitters. The field emission properties of DWCNT films related to transmittance were studied. This study provides the possibility of the application of large-area transparent CNT field emission cathodes.

  16. Ion-Assisted Pulsed Laser Deposition of amorphous tetrahedral-coordinated carbon films

    Science.gov (United States)

    Friedmann, T. A.; Tallant, D. R.; Sullivan, J. P.; Siegal, M. P.; Simpson, R. L.

    1994-04-01

    A parametric study has been performed of amorphous tetrahedral carbon (a-tC) films produced by ion-assisted pulsed laser deposition (IAPLD). The ion voltage, current density, and feed gas composition (nitrogen in argon) have been varied. The resultant films were characterized by thickness, residual stress, Raman spectroscopy, and electrical resistivity. The Raman spectra have been fit to two gaussian peaks, the so called graphitic (G) peak and the disorder (D) peak. It has been found that the magnitude of the D peak and the residual compressive stress are inversely correlated. At low beam voltages and currents, the magnitude of the D peak is low, increasing as the ion beam voltage and current are raised. The ion beam voltage has the most dramatic effect on the magnitude of the D peak. At low voltages (200-500 V) the magnitude of the D peak is greater for ion beams with high percentages of nitrogen possibly indicative of C-N bonding in the films. At higher voltages (500-1500 V) the D peak intensity is less sensitive to the nitrogen content of the beam.

  17. Electron irradiation effects in amorphous antimony thin films obtained by cluster-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, G.; Treilleux, M.; Santos Aires, F.; Cabaud, B.; Melinon, P.; Hoareau, A. (Lyon-1 Univ., 69 - Villeurbanne (France))

    1991-03-01

    In order to understand the differences existing between films obtained with a classical molecular beam deposition (MBD) and the new low-energy cluster beam deposition (LECBD), transmission electron microscopy has been used to characterize the first stages of antimony LECBD. Antimony deposits are discontinuous and amorphous up to 2 nm in thickness. They are formed with isolated amorphous antimony particles surrounded by an amorphous antimony oxide shell. Moreover, under electron beam exposure in the microscope, an amorphous-crystal transformation has been observed in the oxide shell. Electron irradiation induces the formation of a crystallized antimony oxide (Sb{sub 2}O{sub 3}) around the amorphous antimony core. (author).

  18. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    International Nuclear Information System (INIS)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-01-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N 2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO x films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH 2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  19. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Science.gov (United States)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-10-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiOx films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV-vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of sbnd NH2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  20. The hydrogen and oxygen content of self-supporting carbon foils prepared by dc glow discharge in ethylene

    International Nuclear Information System (INIS)

    Tait, N.R.S.; Tolfree, D.W.L.; John, P.; Odeh, I.M.; Thomas, M.J.K.; Tricker, M.J.; Wilson, J.J.B.; England, J.B.A.; Newton, D.

    1980-01-01

    The hydrogen and oxygen content of self-supporting carbon films produced by dc glow discharge have been determined using a precise method involving the elastic scattering of 25 MeV α-particles. The number of carbon-hydrogen bonds has been determined for similar samples using infrared spectroscopy. The results are compared with those for samples made by the carbon arc process. Assuming that the glow discharge carbon contains graphitic regions surrounded by amorphous tetrahedrally bonded material to which hydrogen can attach, a simple estimate is made of the relative numbers of carbon atoms in the two forms. (orig.)

  1. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO{sub 3}@C composites as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Fuqiang [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Fang, Guoqing [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Changzhou Institute of Energy Storage Materials and Devices, Changzhou 213000 (China); Zhang, Ruixue [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Xu, Yanhui; Zheng, Junwei [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Li, Decheng, E-mail: lidecheng@suda.edu.cn [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China)

    2014-08-30

    Highlights: • The thickness of carbon coating layers can be successfully controlled through varying molar concentration of aqueous glucose solution. • Coating carbon thickness and carbon content are two important factors on the electrochemical performances of CoSnO3@C. • CoSnO{sub 3}@C under optimized conditions exhibits the optimal balance between the volume buffering effect and reversible capacity. • As-prepared CoSnO{sub 3}@C under optimized conditions shows excellent electrochemical performances, whose reversible capacity could reach 491 mA h g{sup −1} after 100 cycles. - Abstract: A series of core–shell carbon coated amorphous CoSnO{sub 3} (CoSnO{sub 3}@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge–discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO{sub 3}@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g{sup −1} after 100 cycles.

  2. Distribution and histologic effects of intravenously administered amorphous nanosilica particles in the testes of mice

    International Nuclear Information System (INIS)

    Morishita, Yuki; Yoshioka, Yasuo; Satoh, Hiroyoshi; Nojiri, Nao; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-ichi; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Tsutsumi, Yasuo

    2012-01-01

    Highlights: ► There is rising concern regarding the potential health risks of nanomaterials. ► Few studies have investigated the effect of nanomaterials on the reproductive system. ► Here, we evaluated the intra-testicular distribution of nanosilica particles. ► We showed that nanosilica particles can penetrate the blood-testis barrier. ► These data provide basic information on ways to create safer nanomaterials. -- Abstract: Amorphous nanosilica particles (nSP) are being utilized in an increasing number of applications such as medicine, cosmetics, and foods. The reduction of the particle size to the nanoscale not only provides benefits to diverse scientific fields but also poses potential risks. Several reports have described the in vivo and in vitro toxicity of nSP, but few studies have examined their effects on the male reproductive system. The aim of this study was to evaluate the testicular distribution and histologic effects of systemically administered nSP. Mice were injected intravenously with nSP with diameters of 70 nm (nSP70) or conventional microsilica particles with diameters of 300 nm (nSP300) on two consecutive days. The intratesticular distribution of these particles 24 h after the second injection was analyzed by transmission electron microscopy. nSP70 were detected within sertoli cells and spermatocytes, including in the nuclei of spermatocytes. No nSP300 were observed in the testis. Next, mice were injected intravenously with 0.4 or 0.8 mg nSP70 every other day for a total of four administrations. Testes were harvested 48 h and 1 week after the last injection and stained with hematoxylin–eosin for histologic analysis. Histologic findings in the testes of nSP70-treated mice did not differ from those of control mice. Taken together, our results suggest that nSP70 can penetrate the blood-testis barrier and the nuclear membranes of spermatocytes without producing apparent testicular injury.

  3. Distribution and histologic effects of intravenously administered amorphous nanosilica particles in the testes of mice

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Yuki [Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yoshioka, Yasuo, E-mail: yasuo@phs.osaka-u.ac.jp [Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Satoh, Hiroyoshi; Nojiri, Nao [Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nagano, Kazuya [Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085 (Japan); Abe, Yasuhiro [Cancer Biology Research Center, Sanford Research/USD, 2301 E. 60th Street N, Sioux Falls, SD 57104 (United States); Kamada, Haruhiko; Tsunoda, Shin-ichi [Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085 (Japan); The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nabeshi, Hiromi [Division of Foods, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Yoshikawa, Tomoaki [Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tsutsumi, Yasuo, E-mail: ytsutsumi@phs.osaka-u.ac.jp [Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085 (Japan); The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer There is rising concern regarding the potential health risks of nanomaterials. Black-Right-Pointing-Pointer Few studies have investigated the effect of nanomaterials on the reproductive system. Black-Right-Pointing-Pointer Here, we evaluated the intra-testicular distribution of nanosilica particles. Black-Right-Pointing-Pointer We showed that nanosilica particles can penetrate the blood-testis barrier. Black-Right-Pointing-Pointer These data provide basic information on ways to create safer nanomaterials. -- Abstract: Amorphous nanosilica particles (nSP) are being utilized in an increasing number of applications such as medicine, cosmetics, and foods. The reduction of the particle size to the nanoscale not only provides benefits to diverse scientific fields but also poses potential risks. Several reports have described the in vivo and in vitro toxicity of nSP, but few studies have examined their effects on the male reproductive system. The aim of this study was to evaluate the testicular distribution and histologic effects of systemically administered nSP. Mice were injected intravenously with nSP with diameters of 70 nm (nSP70) or conventional microsilica particles with diameters of 300 nm (nSP300) on two consecutive days. The intratesticular distribution of these particles 24 h after the second injection was analyzed by transmission electron microscopy. nSP70 were detected within sertoli cells and spermatocytes, including in the nuclei of spermatocytes. No nSP300 were observed in the testis. Next, mice were injected intravenously with 0.4 or 0.8 mg nSP70 every other day for a total of four administrations. Testes were harvested 48 h and 1 week after the last injection and stained with hematoxylin-eosin for histologic analysis. Histologic findings in the testes of nSP70-treated mice did not differ from those of control mice. Taken together, our results suggest that nSP70 can penetrate the blood-testis barrier and the

  4. Semiconducting Properties of Nanostructured Amorphous Carbon Thin Films Incorporated with Iodine by Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Kamaruzaman, Dayana; Ahmad, Nurfadzilah; Annuar, Ishak; Rusop, Mohamad

    2013-11-01

    Nanostructured iodine-post doped amorphous carbon (a-C:I) thin films were prepared from camphor oil using a thermal chemical vapor deposition (TCVD) technique at different doping temperatures. The structural properties of the films were studied by field-emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), Raman, and Fourier transform infrared (FTIR) studies. FESEM and EDS studies showed successful iodine doping. FTIR and Raman studies showed that the a-C:I thin films consisted of a mixture of sp2- and sp3-bonded carbon atoms. The optical and electrical properties of a-C:I thin films were determined by UV-vis-NIR spectroscopy and current-voltage (I-V) measurement respectively. The optical band gap of a-C thin films decreased upon iodine doping. The highest electrical conductivity was found at 400 °C doping. Heterojunctions are confirmed by rectifying the I-V characteristics of an a-C:I/n-Si junction.

  5. Rapid growth of amorphous carbon films on the inner surface of micron-thick and hollow-core fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Longfei [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Zhou, Xinwei [Department of Mechanical Engineering, Zhejiang University, Zhejiang 310007 (China); Song, Ying [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Ni, Weiyuan [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Niu, Jinhai; Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2013-10-01

    Ultrathick (> 25 μm) carbon films were obtained on the inner surface of hollow and micron-thick quartz fibers by confining CH{sub 4}/He or C{sub 2}H{sub 2}/He microplasmas in their hollow cores. The resulting carbon films were studied by using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The microplasma-enhanced chemical vapor deposition (CVD) technique resulted in the uniform growth of amorphous carbon films on the inner surface of very long (> 1 m) hollow-core fibers. Film deposition is performed by using microplasmas at atmospheric pressure and at 50 Pa. The carbon films obtained with the latter show the smooth inner surfaces and the well continuity across the film/optical fiber. Low-pressure CH{sub 4}/He and C{sub 2}H{sub 2}/He microplasmas can lead to a rapid growth (∼ 2.00 μm/min) of carbon films with their thickness of > 25 μm. The optical emission measurements show that various hydrocarbon species were formed in these depositing microplasmas due to the collisions between CH{sub 4}/C{sub 2}H{sub 2} molecules and energetic species. The microplasma-enhanced CVD technique running without the complicated fabrication processes shows its potentials for rapidly depositing the overlong carbon tubes with their inner diameters of tens of microns. - Highlights: • The microplasma device is applied for coating deposition inside hollow-core fibers. • The microplasma device results in > 25 μm-thick carbon films. • The microplasma device is simple for deposition of ultralong carbon tubes.

  6. Structural stability of hydrogenated amorphous carbon overcoats used in heat-assisted magnetic recording investigated by rapid thermal annealing

    KAUST Repository

    Wang, N.; Komvopoulos, K.; Rose, F.; Marchon, B.

    2013-01-01

    Ultrathin amorphous carbon (a-C) films are extensively used as protective overcoats of magnetic recording media. Increasing demands for even higher storage densities have necessitated the development of new storage technologies, such as heat-assisted magnetic recording (HAMR), which uses laser-assisted heating to record data on high-stability media that can store single bits in extremely small areas (∼1 Tbit/in.2). Because HAMR relies on locally changing the coercivity of the magnetic medium by raising the temperature above the Curie temperature for data to be stored by the magnetic write field, it raises a concern about the structural stability of the ultrathin a-C film. In this study, rapid thermal annealing (RTA) experiments were performed to examine the thermal stability of ultrathin hydrogenated amorphous carbon (a-C:H) films deposited by plasma-enhanced chemical vapor deposition. Structural changes in the a-C:H films caused by RTA were investigated by x-ray photoelectron spectroscopy, Raman spectroscopy, x-ray reflectivity, and conductive atomic force microscopy. The results show that the films exhibit thermal stability up to a maximum temperature in the range of 400-450 °C. Heating above this critical temperature leads to hydrogen depletion and sp 2 clustering. The critical temperature determined by the results of this study represents an upper bound of the temperature rise due to laser heating in HAMR hard-disk drives and the Curie temperature of magnetic materials used in HAMR hard disks. © 2013 American Institute of Physics.

  7. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults.

    Science.gov (United States)

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-11-09

    The criteria for designating an "Active Fault" not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault's latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones.

  8. Amorphous to crystalline phase transition in carbon induced by intense femtosecond x-ray free-electron laser pulses

    Czech Academy of Sciences Publication Activity Database

    Gaudin, J.; Peyrusse, O.; Chalupský, Jaromír; Toufarová, Martina; Vyšín, Luděk; Hájková, Věra; Sobierajski, R.; Burian, Tomáš; Dastjani-Farahani, S.; Graf, A.; Amati, M.; Gregoratti, L.; Hau-Riege, S.P.; Hoffmann, G.; Juha, Libor; Krzywinski, J.; London, R.A.; Moeller, S.; Sinn, H.; Schorb, S.; Störmer, M.; Tschentscher, T.; Vorlíček, Vladimír; Vu, H.; Bozek, J.; Bostedt, C.

    2012-01-01

    Roč. 86, č. 2 (2012), "024103-1"-"024103-7" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA ČR GAP205/11/0571; GA ČR GAP208/10/2302; GA AV ČR IAAX00100903; GA MŠk EE.2.3.20.0087 Grant - others:OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087 Institutional research plan: CEZ:AV0Z10100523 Keywords : amorphous carbon * phase transition * graphitization * x-ray laser * free-electron laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.767, year: 2012

  9. Amorphous track modelling of luminescence detector efficiency in proton and carbon beams

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Bassler, Niels

    assumptions in a variety of detectors. The library also includes simple particle transportation or can be interfaced to external transport codes. We applied our code to RL and OSL data from fiber-coupled Al2O3:C-detectors in a proton (nominal energies 10 MeV to 60 MeV) and a carbon beam (270 MeV/u). Results...

  10. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  11. The effects of size and surface modification of amorphous silica particles on biodistribution and liver metabolism in mice

    International Nuclear Information System (INIS)

    Lu, Xiaoyan; Ji, Cai; Jin, Tingting; Fan, Xiaohui

    2015-01-01

    Engineered nanoparticles, with unconventional properties, are promising platforms for biomedical applications. Since they may interact with a wide variety of biomolecules, it is critical to understand the impact of the physicochemical properties of engineered nanoparticles on biological systems. In this study, the effects of particle size and surface modification alone or in combination of amorphous silica particles (SPs) on biological responses were determined using a suite of general toxicological assessments and metabonomics analysis in mice model. Our results suggested that amino or carboxyl surface modification mitigated the liver toxicity of plain-surface SPs. 30 nm SPs with amino surface modification were found to be the most toxic SPs among all the surface-modified SP treatments at the same dosage. When treatment dose was increased, submicro-sized SPs with amino or carboxyl surface modification also induced liver toxicity. Biodistribution studies suggested that 70 nm SPs were mainly accumulated in liver and spleen regardless of surface modifications. Interestingly, these two organs exhibited different uptake trends. Furthermore, metabonomics studies indicated that surface modification plays a more dominant role to affect the liver metabolism than particle size. (paper)

  12. Study on CO{sub 2} absorption enhancement by adding active carbon particles into MEA solution

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Juan; Sun, Rui; Ma, Lian; Sun, Shaozeng [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

    2013-07-01

    The chemical absorption of CO{sub 2} is generally recognized as the most efficient post-combustion technology of CO{sub 2} separation at present. A study on CO{sub 2} absorption enhancement by adding small particles of active carbon into MEA solution is investigated within a self-designed glass stirring tank. Experiments of different particle loadings and different particle sizes have been conducted. When active carbon particle concentration is fewer, compared to the absorption rate of CO{sub 2} gas absorbed by MEA aqueous solution, the role of active carbon adsorption CO{sub 2} gas is negligible. The enhancement efficiency of CO{sub 2} absorption could be improved by 10% to the upmost in this liquid-particle system.

  13. Reaction mechanisms for enhancing carbon dioxide mineral sequestration

    Science.gov (United States)

    Jarvis, Karalee Ann

    Increasing global temperature resulting from the increased release of carbon dioxide into the atmosphere is one of the greatest problems facing society. Nevertheless, coal plants remain the largest source of electrical energy and carbon dioxide gas. For this reason, researchers are searching for methods to reduce carbon dioxide emissions into the atmosphere from the combustion of coal. Mineral sequestration of carbon dioxide reacted in electrolyte solutions at 185°C and 2200 psi with olivine (magnesium silicate) has been shown to produce environmentally benign carbonates. However, to make this method feasible for industrial applications, the reaction rate needs to be increased. Two methods were employed to increase the rate of mineral sequestration: reactant composition and concentration were altered independently in various runs. The products were analyzed with complete combustion for total carbon content. Crystalline phases in the product were analyzed with Debye-Scherrer X-ray powder diffraction. To understand the reaction mechanism, single crystals of San Carlos Olivine were reacted in two solutions: (0.64 M NaHCO3/1 M NaCl) and (5.5 M KHCO3) and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and fluctuation electron microscopy (FEM) to study the surface morphology, atomic crystalline structure, composition and amorphous structure. From solution chemistry studies, it was found that increasing the activity of the bicarbonate ion increased the conversion rate of carbon dioxide to magnesite. The fastest conversion, 60% conversion in one hour, occurred in a solution of 5.5 M KHCO3. The reaction product particles, magnesium carbonate, significantly increased in both number density and size on the coupon when the bicarbonate ion activity was increased. During some experiments reaction vessel corrosion also altered the mineral sequestration mechanism. Nickel ions from vessel

  14. Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Mireshghi, A.; Wildermuth, D.; Goodman, C.; Fujieda, I.

    1992-07-01

    We describe the characteristics of thin (1 μm) and thick (> 30 μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-ray, γ rays and thermal neutrons. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For thermal neutron detection we use thin (2∼5 μm) gadolinium converters on 30 μm thick a-Si:H diodes. For direct detection of minimum ionizing particles and others with high resistance to radiation damage, we use the thick p-i-n diode arrays. Diode and amorphous silicon readouts as well as polysilicon pixel amplifiers are described

  15. Surface morphology and grain analysis of successively industrially grown amorphous hydrogenated carbon films (a-C:H) on silicon

    Science.gov (United States)

    Catena, Alberto; McJunkin, Thomas; Agnello, Simonpietro; Gelardi, Franco M.; Wehner, Stefan; Fischer, Christian B.

    2015-08-01

    Silicon (1 0 0) has been gradually covered by amorphous hydrogenated carbon (a-C:H) films via an industrial process. Two types of these diamond-like carbon (DLC) coatings, one more flexible (f-DLC) and one more robust (r-DLC), have been investigated. Both types have been grown by a radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. Surface morphologies have been studied in detail by atomic force microscopy (AFM) and Raman spectroscopy has been used to investigate the DLC structure. Both types appeared to have very similar morphology and sp2 carbon arrangement. The average height and area for single grains have been analyzed for all depositions. A random distribution of grain heights was found for both types. The individual grain structures between the f- and r-type revealed differences: the shape for the f-DLC grains is steeper than for the r-DLC grains. By correlating the average grain heights to the average grain areas for all depositions a limited region is identified, suggesting a certain regularity during the DLC deposition mechanisms that confines both values. A growth of the sp2 carbon entities for high r-DLC depositions is revealed and connected to a structural rearrangement of carbon atom hybridizations and hydrogen content in the DLC structure.

  16. Thermal expansion coefficient measurement from electron diffraction of amorphous films in a TEM.

    Science.gov (United States)

    Hayashida, Misa; Cui, Kai; Malac, Marek; Egerton, Ray

    2018-05-01

    We measured the linear thermal expansion coefficients of amorphous 5-30 nm thick SiN and 17 nm thick Formvar/Carbon (F/C) films using electron diffraction in a transmission electron microscope. Positive thermal expansion coefficient (TEC) was observed in SiN but negative coefficients in the F/C films. In case of amorphous carbon (aC) films, we could not measure TEC because the diffraction radii required several hours to stabilize at a fixed temperature. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  17. Effect of nitrogen plasma afterglow on the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films

    Science.gov (United States)

    Kayed, Kamal

    2018-06-01

    The aim of this paper is to investigate the relationship between the micro structure and the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films prepared by laser ablation method. The study results show that the charge effect coefficient (E) is not just a correction factor. We found that the changes in this coefficient value due to incorporation of nitrogen atoms into the carbon network are related to the spatial configurations of the sp2 bonded carbon atoms, order degree and sp2 clusters size. In addition, results show that the curve E vs. C(sp3)-N is a characteristic curve of the micro structure. This means that using this curve makes it easy to sorting the samples according to the micro structure (hexagonal rings or chains).

  18. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.

    2012-07-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical and experimental results. The thickness of a-C films deposited at different incidence angles was investigated in the light of Monte Carlo simulations, and the calculated depth profiles were compared with those obtained from high-resolution transmission electron microscopy (TEM). The topography and structure of the a-C films were studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The film thickness decreased with the increase of the incidence angle, while the surface roughness increased and the content of tetrahedral carbon hybridization (sp 3) decreased significantly with the increase of the incidence angle above 45° , measured from the surface normal. TEM, AFM, and XPS results indicate that the smoothest and thinnest a-C films with the highest content of sp 3 carbon bonding were produced for an incidence angle of 45°. The findings of this study have direct implications in ultrahigh-density magnetic recording, where ultrathin and smooth a-C films with high sp 3 contents are of critical importance. © 2012 IEEE.

  19. Influence of deposition temperature and amorphous carbon on microstructure and oxidation resistance of magnetron sputtered nanocomposite Crsbnd C films

    Science.gov (United States)

    Nygren, Kristian; Andersson, Matilda; Högström, Jonas; Fredriksson, Wendy; Edström, Kristina; Nyholm, Leif; Jansson, Ulf

    2014-06-01

    It is known that mechanical and tribological properties of transition metal carbide films can be tailored by adding an amorphous carbon (a-C) phase, thus making them nanocomposites. This paper addresses deposition, microstructure, and for the first time oxidation resistance of magnetron sputtered nanocomposite Crsbnd C/a-C films with emphasis on studies of both phases. By varying the deposition temperature between 20 and 700 °C and alternating the film composition, it was possible to deposit amorphous, nanocomposite, and crystalline Crsbnd C films containing about 70% C and 30% Cr, or 40% C and 60% Cr. The films deposited at temperatures below 300 °C were X-ray amorphous and 500 °C was required to grow crystalline phases. Chronoamperometric polarization at +0.6 V vs. Ag/AgCl (sat. KCl) in hot 1 mM H2SO4 resulted in oxidation of Crsbnd C, yielding Cr2O3 and C, as well as oxidation of C. The oxidation resistance is shown to depend on the deposition temperature and the presence of the a-C phase. Physical characterization of film surfaces show that very thin C/Cr2O3/Crsbnd C layers develop on the present material, which can be used to improve the oxidation resistance of, e.g. stainless steel electrodes.

  20. Particle-size effect on the rate of TiO2 carbonizing

    International Nuclear Information System (INIS)

    Lekanova, T.L.; Ryabkov, Yu.I.; Sevbo, O.A.

    2003-01-01

    Dependence of recovery rate constant of titanium dioxide in TiO 2 -C system on the value of specific surface initial components at 1300 deg C was studied. It is shown that decrease in equivalent particle size of titanium dioxide and carbon particles in the range of 500-100 μm has a similar effect on increase in titanium dioxide recovery rate. Analysis of kinetic equations suggests diffusion character of titanium dioxide carbonizing at the values of initial components specific surface in excess of 100 m 2 /g [ru

  1. Synthesis of diamondlike carbon particles in/on a water substrate by laser irradiation

    International Nuclear Information System (INIS)

    Hidai, Hirofumi; Tokura, Hitoshi

    2005-01-01

    We proposed two-particle synthesis techniques using a liquid as a substrate. First, utilizing liquid instead of solid substrates, particle synthesis is expected on the liquid surface. Particles sink into the liquid before the particles grow into film, because of liquid fluidity. Second, the excitation of a gas dissolved in water was also attempted. An ArF excimer laser beam was focused in a chamber. The 60% volume of the chamber was filled with water, in which methane was dissolved and the remaining space of the chamber was filled with methane gas. As a result, diamondlike carbon particles could be synthesized in water. The particles synthesized from methane in the gas phase were 50-200 nm in diameter, and the particles synthesized from methane dissolved in water were 200-700 nm in diameter, and no structural differences were observed between the particles of two different diameters. Energy-dispersive spectroscopy, Raman spectroscopy analysis, and high-resolution transmission electron microscopy observations revealed that particles contained a diamondlike carbon component and that graphite was attached to them. These particles were harder than graphite particles

  2. Stabilization of iron and molybdenum amorphous state with interstitials under high rates of cooling

    International Nuclear Information System (INIS)

    Barmin, Yu.V.; Vavilova, V.V.; Verevkin, A.G.; Gertsen, A.T.; Kovneristyj, Yu.K.; Kotyurgin, E.A.; Mirkin, B.V.; Palij, N.A.

    1993-01-01

    Amorphous solidification of iron and molybdenum is investigated in thin films and on surface laser irradiated on air at 10 12 and 10 8 /Ks cooling rates correspondingly. Amorphous solidification occurs during ion plasma spraying in thin films of 50 nm at saturation of carbon and oxygen atoms in the ratio of C:0=2.3, but amorphous state is absent at room temperature. Metastable fcc phase, among bcc, is formed by crystallization

  3. Lung clearance of inhaled particles after exposure to carbon black generated from a resuspension system

    International Nuclear Information System (INIS)

    Lee, P.S.; Gorski, R.A.; Hering, W.E.; Chan, T.L.

    1987-01-01

    A system to resuspend carbon black particles for providing submicron aerosols for inhalation exposure studies has been developed. The effect of continuous exposure to carbonaceous material (as a surrogate for the carbonaceous particles in diesel exhaust) on the pulmonary clearance of inhaled diesel tracer particles was studied in male Fischer 344 rats. Submicron carbon black particles with a mass median aerodynamic diameter (MMAD) of 0.22 micron and a size distribution similar to that of exhaust particles from a GM 5.7-liter diesel engine were successfully generated and administered to test animals at a nominal concentration of 6 mg/m3 for 20 hr/day, 7 days/week, for periods lasting 1 to 11 weeks. Immediately after the carbon black exposure, test animals were administered 14 C-tagged diesel particles for 45 min in a nose-only chamber. The pulmonary retention of inhaled radioactive tracer particles was determined at preselected time intervals. Based upon the data collected up to 1 year postexposure, prolonged exposure to carbon black particles exhibits a similar inhibitory effect on pulmonary clearance as does prolonged exposure to diesel exhaust with a comparable particulate dose. This observation indicates that the excessive accumulation of carbonaceous material may be the predominant factor affecting lung clearance

  4. Occurrence of particle debris field during focused Ga ion beam milling of glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hu Qin [Centre for Industrial Photonics, Institute for Manufacturing, Department of Engineering, University of Cambridge, Alan Reece Building, 17 Charles Babbage Road, Cambridge, CB3 0FS (United Kingdom); O' Neill, William, E-mail: wo207@eng.cam.ac.uk [Centre for Industrial Photonics, Institute for Manufacturing, Department of Engineering, University of Cambridge, Alan Reece Building, 17 Charles Babbage Road, Cambridge, CB3 0FS (United Kingdom)

    2010-08-01

    To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (R{sub a}) of FIB milled areas after cleaning is less than 2 nm.

  5. Occurrence of particle debris field during focused Ga ion beam milling of glassy carbon

    International Nuclear Information System (INIS)

    Hu Qin; O'Neill, William

    2010-01-01

    To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (R a ) of FIB milled areas after cleaning is less than 2 nm.

  6. Synthesis of amorphous calcium phosphate using various types of cyclodextrins

    International Nuclear Information System (INIS)

    Li Yanbao; Wiliana, Tjandra; Tam, Kam C.

    2007-01-01

    Amorphous calcium phosphate (ACP) was synthesised in aqueous solution at room temperature using cyclodextrins. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and thermal analysis (DTA/TGA) were performed on the calcium phosphate precipitates obtained from solutions. We observed that only β-CD could stabilise the amorphous phase in the mother solution because of the lower solubility of β-CD in water and the ACP remained stable in aqueous solution for more than 24 h at room temperature. The ACP particle has an initial particle size of less than 40 nm, Ca/P molar ratio of 1.67 and β-CD absorbed on its surface. The mechanism for the stabilisation of ACP is proposed

  7. Comparative solubilisation of potassium carbonate, sodium bicarbonate and sodium carbonate in hot dimethylformamide: application of cylindrical particle surface-controlled dissolution theory.

    Science.gov (United States)

    Forryan, Claire L; Compton, Richard G; Klymenko, Oleksiy V; Brennan, Colin M; Taylor, Catherine L; Lennon, Martin

    2006-02-07

    A surface-controlled dissolution of cylindrical solid particles model is applied to potassium carbonate, sodium bicarbonate and sodium carbonate in dimethylformamide at elevated temperatures. Previously published data for the dissolution of potassium carbonate is interpreted assuming a cylindrical rather than a spherical shape of the particles, the former representing a closer approximation to the true shape of the particles as revealed by scanning electron microscopy. The dissolution kinetics of sodium carbonate and sodium bicarbonate in dimethylformamide at 100 degrees C were investigated via monitoring of the deprotonation of 2-cyanophenol with dissolved solid to form the 2-cyanophenolate anion that was detected with UV-visible spectroscopy. From fitting of experimental results to theory, the dissolution rate constant, k, for the dissolutions of potassium carbonate, sodium bicarbonate and sodium carbonate in dimethylformamide at 100 degrees C were found to have the values of (1.0 +/- 0.1) x 10(-7) mol cm(-2) s(-1), (5.5 +/- 0.3) x 10(-9) mol cm(-2) s(-1) and (9.7 +/- 0.8) x 10(-9) mol cm(-2) s(-1), respectively.

  8. Recent Progress in Some Amorphous Materials for Supercapacitors.

    Science.gov (United States)

    Li, Qing; Xu, Yuxia; Zheng, Shasha; Guo, Xiaotian; Xue, Huaiguo; Pang, Huan

    2018-05-14

    A breakthrough in technologies having "green" and sustainable energy storage conversion is urgent, and supercapacitors play a crucial role in this area of research. Owing to their unique porous structure, amorphous materials are considered one of the best active materials for high-performance supercapacitors due to their high specific capacity, excellent cycling stability, and fast charging rate. This Review summarizes the synthesis of amorphous materials (transition metal oxides, carbon-based materials, transition metal sulfides, phosphates, hydroxides, and their complexes) to highlight their electrochemical performance in supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization

    Science.gov (United States)

    Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.

    To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.

  10. Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films.

    Directory of Open Access Journals (Sweden)

    Yin-Yu Chang

    Full Text Available Tantalum (Ta is a promising metal for biomedical implants or implant coating for orthopedic and dental applications because of its excellent corrosion resistance, fracture toughness, and biocompatibility. This study synthesizes biocompatible tantalum carbide (TaC and TaC/amorphous carbon (a-C coatings with different carbon contents by using a twin-gun magnetron sputtering system to improve their biological properties and explore potential surgical implant or device applications. The carbon content in the deposited coatings was regulated by controlling the magnetron power ratio of the pure graphite and Ta cathodes. The deposited TaC and TaC/a-C coatings exhibited better cell viability of human osteosarcoma cell line MG-63 than the uncoated Ti and Ta-coated samples. Inverted optical and confocal imaging was used to demonstrate the cell adhesion, distribution, and proliferation of each sample at different time points during the whole culture period. The results show that the TaC/a-C coating, which contained two metastable phases (TaC and a-C, was more biocompatible with MG-63 cells compared to the pure Ta coating. This suggests that the TaC/a-C coatings exhibit a better biocompatible performance for MG-63 cells, and they may improve implant osseointegration in clinics.

  11. Scanning transmission electron microscopy analysis of Ge(O)/(graphitic carbon nitride) nanocomposite powder

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro [JEOL USA Inc., 11 Dearborn Road, Peabody, MA 01960 (United States); Sompetch, Kanganit [Department of Chemistry and Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sarakonsri, Thapanee, E-mail: tsarakonsri@gmail.com [Department of Chemistry and Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Shiojiri, Makoto [Kyoto Institute of Technology, Kyoto 606-8585 (Japan); School of Science and Engineering, University of Toyama, Toyama 930-8555 (Japan)

    2015-12-15

    Analytical electron microscopy has revealed the structure of particles that were synthesized by chemical reaction of GeO{sub 2} with NaBH{sub 4} in the basic solution including graphitic carbon nitride (g-C{sub 3}N{sub 4}) powders. The g-C{sub 3}N{sub 4} was arranged by recrystallization of melamine at 600 °C under N{sub 2} gas atmosphere. The samples were dried at 60 °C or 180 °C for 4 h. The g-C{sub 3}N{sub 4} was observed as lamellae of several ten nm or less in size and had an amorphous-like structure with a distorted lattice in an area as small as a few hundred pm in size. The reaction product was Ge(O) particles as fine as several nm in size and composed of Ge and O atoms. Most of the particles must be of GeO{sub 2−x} with the amorphous-like structure that has also a distorted lattice in an area of a few hundred pm in size. In the sample dried at 60 °C, the particles were found to be dispersed in a wide area on the g-C{sub 3}N{sub 4} lamella. It is hard to recognize those particles in TEM images. The particles in the sample dried at 180 °C became larger and were easily observed as isolated lumps. Hence, these powders can be regarded as GeO{sub 2}/g-C{sub 3}N{sub 4} or Ge/GeO{sub 2}/g-C{sub 3}N{sub 4} nanocomposites, and expected to be applicable to anode materials for high energy Li-ion batteries due to Ge catalysis effect, accordingly. - Graphical abstract: STEM analysis of Ge(O)/(graphitic carbon nitride) nanocomposite powder. - Highlights: • Graphitic (g)-C{sub 3}N{sub 4} powder was prepared at 600 °C by recrystallization of melamine. • Ge(O) was prepared by chemical reaction in a solution including the g-C{sub 3}N{sub 4} powders. • The products can be regarded as GeO{sub 2}/g-C{sub 3}N{sub 4} or Ge/GeO{sub 2}/g-C{sub 3}N{sub 4} nanocomposites. • GeO{sub 2} was amorphous several-nm particles and g-C{sub 3}N{sub 4} was amorphous lamella of several 10 nm in size. • We expect them to be applicable for high energy Li-ion battery anode

  12. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Energy Technology Data Exchange (ETDEWEB)

    Tunma, Somruthai [The Graduate School, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Song, Doo-Hoon [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Si-Eun; Kim, Kyoung-Nam [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Han, Jeon-Geon [Center for Advanced Plasma Surface Technology, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746 (Korea, Republic of); Boonyawan, Dheerawan [Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand)

    2013-10-15

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N{sub 2} films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO{sub x} films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH{sub 2} groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  13. Formation of carbon nanotubes on an amorphous Ni{sub 25}Ta{sub 58}N{sub 17} alloy film by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, D. G.; Dubkov, S. V., E-mail: sv.dubkov@gmail.com [National Research University of Electronic Technology MIET (Russian Federation); Pavlov, A. A. [Russian Academy of Sciences, Institute of Nanotechnologies of Microelectronics (Russian Federation); Skorik, S. N. [Technological Center Research and Production Complex (Russian Federation); Trifonov, A. Yu. [Lukin Scientific Research Institute of Physical Problems (Russian Federation); Kirilenko, E. P.; Shulyat’ev, A. S. [National Research University of Electronic Technology MIET (Russian Federation); Shaman, Yu. P. [Technological Center Research and Production Complex (Russian Federation); Rygalin, B. N. [National Research University of Electronic Technology MIET (Russian Federation)

    2016-12-15

    It is shown that it is possible to grow carbon nanotubes on the surface of an amorphous Ni–Ta–N metal alloy film with a low Ni content (~25 at %) by chemical deposition from acetylene at temperature 400–800°C. It is established that the addition of nitrogen into the Ni–Ta alloy composition is favorable for the formation of tantalum nitride and the expulsion of Ni clusters, which act as a catalyst of the growth of carbon nanotubes, onto the surface. From Raman spectroscopy studies, it is found that, as the temperature of synthesis is raised, the quality of nanotubes is improved.

  14. Use of calcination in exposing the entrapped Fe particles from multi-walled carbon nanotubes grown by chemical vapour deposition

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2009-03-01

    Full Text Available behaviour of the as-prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air, at 400°C for 1 h, was found to be an efficient and simple method to extract metallic impurities from the amorphous carbon shells...

  15. Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions.

    Science.gov (United States)

    Gao, G T; Mikulski, Paul T; Harrison, Judith A

    2002-06-19

    Classical molecular dynamics simulations have been conducted to investigate the atomic-scale friction and wear when hydrogen-terminated diamond (111) counterfaces are in sliding contact with diamond (111) surfaces coated with amorphous, hydrogen-free carbon films. Two films, with approximately the same ratio of sp(3)-to-sp(2) carbon, but different thicknesses, have been examined. Both systems give a similar average friction in the load range examined. Above a critical load, a series of tribochemical reactions occur resulting in a significant restructuring of the film. This restructuring is analogous to the "run-in" observed in macroscopic friction experiments and reduces the friction. The contribution of adhesion between the probe (counterface) and the sample to friction was examined by varying the saturation of the counterface. Decreasing the degree of counterface saturation, by reducing the hydrogen termination, increases the friction. Finally, the contribution of long-range interactions to friction was examined by using two potential energy functions that differ only in their long-range forces to examine friction in the same system.

  16. Small particles big effect? - Investigating ice nucleation abilities of soot particles

    Science.gov (United States)

    Mahrt, Fabian; David, Robert O.; Lohmann, Ulrike; Stopford, Chris; Wu, Zhijun; Kanji, Zamin A.

    2017-04-01

    Atmospheric soot particles are primary particles produced by incomplete combustion of biomass and/or fossil fuels. Thus soot mainly originates from anthropogenic emissions, stemming from combustion related processes in transport vehicles, industrial and residential uses. Such soot particles are generally complex mixtures of black carbon (BC) and organic matter (OM) (Bond et al., 2013; Petzold et al., 2013), depending on the sources and the interaction of the primary particles with other atmospheric matter and/or gases BC absorbs solar radiation having a warming effect on global climate. It can also act as a heterogeneous ice nucleating particle (INP) and thus impact cloud-radiation interactions, potentially cooling the climate (Lohmann, 2002). Previous studies, however, have shown conflicting results concerning the ice nucleation ability of soot, limiting the ability to predict its effects on Earth's radiation budget. Here we present a laboratory study where we systematically investigate the ice nucleation behavior of different soot particles. Commercial soot samples are used, including an amorphous, industrial carbon frequently used in coatings and coloring (FW 200, Orion Engineered Carbons) and a fullerene soot (572497 ALDRICH), e.g. used as catalyst. In addition, we use soot generated from a propane flame Combustion Aerosol Standard Generator (miniCAST, JING AG), as a proxy for atmospheric soot particles. The ice nucleation ability of these soot types is tested on size-selected particles for a wide temperature range from 253 K to 218 K, using the Horizontal Ice Nucleation Chamber (HINC), a Continuous Flow Diffusion Chamber (CFDC) (Kanji and Abbatt, 2009). Ice nucleation results from these soot surrogates will be compared to chemically more complex real world samples, collected on filters. Filters will be collected during the 2016/2017 winter haze periods in Beijing, China and represent atmospheric soot particles with sources from both industrial and residential

  17. Monte Carlo calculation of secondary electron emission from carbon-surface by obliquely incident particles

    International Nuclear Information System (INIS)

    Ohya, Kaoru; Kawata, Jun; Mori, Ichiro

    1990-01-01

    Incidence angle dependences of secondary electron emission from a carbon surface by low energy electron and hydrogen atom are calculated using Monte Carlo simulations on the kinetic emission model. The calculation shows very small increase or rather decrease of the secondary electron yield with oblique incidence. It is explained in terms of not only multiple elastic collisions of incident particles with the carbon atoms but also small penetration depth of the particles comparable with the escape depth of secondary electrons. In addition, the two types of secondary electron emission are distinguished by using the secondary electron yield statistics; one is the emission due to trapped particles in the carbon, and the other is that due to backscattered particles. The high-yield component of the statistics on oblique incidence is more suppressed than those on normal incidence. (author)

  18. Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace

    International Nuclear Information System (INIS)

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Bae, Gwi-Nam

    2015-01-01

    As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2–12 μg/m 3 . The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10–420 nm were 10,000–40,000 particles/cm 3 during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1–10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace

  19. Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jun Ho [EcoPictures Co., Ltd (Korea, Republic of); Kim, Jong Bum; Lee, Gwangjae; Bae, Gwi-Nam, E-mail: gnbae@kist.re.kr [Korea Institute of Science and Technology, Center for Environment, Health and Welfare Research (Korea, Republic of)

    2015-02-15

    As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2–12 μg/m{sup 3}. The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10–420 nm were 10,000–40,000 particles/cm{sup 3} during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1–10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace.

  20. Transformation of Graphitic and Amorphous Carbon Dust to Complex Organic Molecules in a Massive Carbon Cycle in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    More than 95% of silicate minerals and other oxides found in meteorites were melted, or vaporized and recondensed in the Solar Nebula prior to their incorporation into meteorite parent bodies. Gravitational accretion energy and heating via radioactive decay further transformed oxide minerals accreted into planetesimals. In such an oxygen-rich environment the carbonaceous dust that fell into the nebula as an intimate mixture with oxide grains should have been almost completely converted to CO. While some pre-collapse, molecular-cloud carbonaceous dust does survive, much in the same manner as do pre-solar oxide grains, such materials constitute only a few percent of meteoritic carbon and are clearly distinguished by elevated D/H, N-15/N-16, C-13/C-12 ratios or noble gas patterns. Carbonaceous Dust in Meteorites: We argue that nearly all of the carbon in meteorites was synthesized in the Solar Nebula from CO and that this CO was generated by the reaction of carbonaceous dust with solid oxides, water or OH. It is probable that some fraction of carbonaceous dust that is newly synthesized in the Solar Nebula is also converted back into CO by additional thermal processing. CO processing might occur on grains in the outer nebula through irradiation of CO-containing ice coatings or in the inner nebula via Fischer-Tropsch type (FTT) reactions on grain surfaces. Large-scale transport of both gaseous reaction products and dust from the inner nebula out to regions where comets formed would spread newly formed carbonaceous materials throughout the solar nebula. Formation of Organic Carbon: Carbon dust in the ISM might easily be described as inorganic graphite or amorphous carbon, with relatively low structural abundances of H, N, O and S . Products of FTT reactions or organics produced via irradiation of icy grains contain abundant aromatic and aliphatic hydrocarbons. aldehydes, keytones, acids, amines and amides.. The net result of the massive nebular carbon cycle is to convert

  1. Amorphous MoS3 Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodium-Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Hualin [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Wang, Lu [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Deng, Shuo [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zeng, Xiaoqiao [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Nie, Kaiqi [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Duchesne, Paul N. [Department of Chemistry, Dalhousie University, Halifax NS B3H 4R2 Canada; Wang, Bo [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Liu, Simon [Department of Chemical Engineering, University of Waterloo, Ontario N2L 3G1 Canada; Zhou, Junhua [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zhao, Feipeng [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Han, Na [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zhang, Peng [Department of Chemistry, Dalhousie University, Halifax NS B3H 4R2 Canada; Zhong, Jun [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Sun, Xuhui [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Li, Youyong [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Li, Yanguang [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Lu, Jun [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA

    2016-11-17

    The search for earth-abundant and high-performance electrode materials for sodium-ion batteries represents an important challenge to current battery research. 2D transition metal dichalcogenides, particularly MoS2, have attracted increasing attention recently, but few of them so far have been able to meet expectations. In this study, it is demonstrated that another phase of molybdenum sulfide—amorphous chain-like MoS3—can be a better choice as the anode material of sodium-ion batteries. Highly compact MoS3 particles infiltrated with carbon nanotubes are prepared via the facile acid precipitation method in ethylene glycol. Compared to crystalline MoS2, the resultant amorphous MoS3 not only exhibits impressive gravimetric performance—featuring excellent specific capacity (≈615 mA h g-1), rate capability (235 mA h g-1 at 20 A g-1), and cycling stability but also shows exceptional volumetric capacity of ≈1000 mA h cm-3 and an areal capacity of >6.0 mA h cm-2 at very high areal loadings of active materials (up to 12 mg cm-2). The experimental results are supported by density functional theory simulations showing that the 1D chains of MoS3 can facilitate the adsorption and diffusion of Na+ ions. At last, it is demonstrated that the MoS3 anode can be paired with an Na3V2(PO4)3 cathode to afford full cells with great capacity and cycling performance.

  2. Extensive FE-SEM/EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Joana [Centro de Geologia, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); DaBoit, Kátia [Institute of Environmental Research and Human Development, IPADHC, Capivari de Baixo, Santa Catarina (Brazil); Flores, Deolinda [Centro de Geologia, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Kronbauer, Marcio A. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Silva, Luis F.O., E-mail: felipeqma@hotmail.com [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Environmental Science and Nanotechnology Department, Catarinense Institute of Environmental Research and Human Development, IPADHC, Capivari de Baixo, Santa Catarina (Brazil)

    2013-05-01

    The generation of anthropogenic carbonaceous matter and mixed crystalline/amorphous mineral ultrafine/nano-particles in the 1 to 100 nm size range by worldwide coal power plants represents serious environmental problems due to their potential hazards. Coal fly ash (CFA) that resulted from anthracite combustion in a Portuguese thermal power plant was studied in this work. The physico-chemical characterization of ultrafine/nano-particles present in the CFA samples and their interaction with environment are the aim of this study. The methodologies applied for this work were field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy with energy dispersive X-ray spectroscopy (HR-TEM/EDS) and time of flight secondary ion mass spectrometry (ToF-SIMS). Some hazardous volatile elements, C, N, S and Hg contents were also determined in the studied samples. Generally, the CFA samples comprise carbonaceous, glassy and metallic solid spheres with some containing mixed amorphous/crystalline phases. The EDS analysis coupled with the FE-SEM and HR-TEM observations of the fly ash particles with 100 to 0.1 nm demonstrates that these materials contain a small but significant proportion of encapsulated HVEs. In addition, the presence of abundant multi-walled carbon nanotubes (MWCNTs) and amorphous carbon particles, both containing hazardous volatile elements (HVEs), was also evidenced by the FE-SEM/EDS and HR-TEM/EDS analysis. A wide range of organic and inorganic compounds was determined by chemical maps obtained in ToF-SIMS analysis. - Highlights: ► We examine changes in the level of ultrafine and nanoparticles of coal mining. ► Increasing geochemical information will increase human health information in this area. ► Electron bean and Tof-SIMS increase area information.

  3. Electron transport determines the electrochemical properties of tetrahedral amorphous carbon (ta-C) thin films

    International Nuclear Information System (INIS)

    Palomäki, Tommi; Wester, Niklas; Caro, Miguel A.; Sainio, Sami; Protopopova, Vera; Koskinen, Jari; Laurila, Tomi

    2017-01-01

    Amorphous carbon based electrodes are very promising for electrochemical sensing applications. In order to better understand their structure-function relationship, the effect of film thickness on the electrochemical properties of tetrahedral amorphous carbon (ta-C) electrodes was investigated. ta-C thin films of 7, 15, 30, 50 and 100 nm were characterized in detail with Raman spectroscopy, transmission electron microscopy (TEM), conductive atomic force microscopy (c-AFM), scanning tunneling spectroscopy (STS) and X-ray absorption spectroscopy (XAS) to assess (i) the surface properties of the films, (ii) the effect of film thickness on their structure and electrical properties and (iii) the subsequent correlation with their electrochemistry. The electrochemical properties were investigated by cyclic voltammetry (CV) using two different outer-sphere redox probes, Ru(NH 3 ) 6 3+/2+ and FcMeOH, and by electrochemical impedance spectroscopy (EIS). Computational simulations using density functional theory (DFT) were carried out to rationalize the experimental findings. The characterization results showed that the sp 2 /sp 3 ratio increased with decreasing ta-C film thickness. This correlated with a decrease in mobility gap value and an increase in the average current through the films, which was also consistent with the computational results. XAS indicated that the surface of the ta-C films was always identical and composed of a sp 2 -rich layer. The CV measurements indicated reversible reaction kinetics for both outer-sphere redox probes at 7 and 15 nm ta-C films with a change to quasi-reversible behavior at a thickness of around 30 nm. The charge transfer resistance, obtained from EIS measurements, decreased with decreasing film thickness in accordance with the CV results. Based on the characterization and electrochemical results, we conclude that the reaction kinetics in the case of outer-sphere redox systems is determined mainly by the electron transport through the

  4. Carbon content and C:N ratio of transparent exopolymeric particles (TEP) produced by bubbling exudates of diatoms

    DEFF Research Database (Denmark)

    Mari, Xavier

    1999-01-01

    The carbon content of transparent exopolymeric particles (TEP) was measured in the laboratory in particles produced by bubbling exudates of the diatom Thalassiosira weissflogii, grown under nitrogen non-limited conditions (N:P = 7). The carbon content of these particles (TEP-C) appears to vary...... a coastal area (Kattegat, Denmark), TEP carbon concentration in the surface mixed layer was on the order of 230 ± 150 µg C l-1. This is high relative to other sources of particulate organic carbon (e.g. phytoplankton) and depending on TEP turnover rates, suggests that TEP is an important pathway...... for dissolved organic carbon in coastal seas. The carbon to nitrogen ratio of TEP was measured from particles formed by bubbling exudates of the diatoms T. weissflogii, Skeletonema costatum, Chaetoceros neogracile and C. affinis. Each of these diatom species was grown under various N:P ratios, from N...

  5. Biochemical transformation of calciprotein particles in uraemia.

    Science.gov (United States)

    Smith, Edward R; Hewitson, Tim D; Hanssen, Eric; Holt, Stephen G

    2018-05-01

    Calciprotein particles (CPP) have emerged as nanoscale mediators of phosphate-induced toxicity in Chronic Kidney Disease (CKD). Uraemia favors ripening of the particle mineral content from the amorphous (CPP-I) to the crystalline state (CPP-II) but the pathophysiological significance of this transformation is uncertain. Clinical studies suggest an association between CPP ripening and inflammation, vascular dysfunction and mortality. Although ripening has been modelled in vitro, it is unknown whether particles synthesised in serum resemble their in vivo counterparts. Here we show that in vitro formation and ripening of CPP in uraemic serum is characterised by extensive physiochemical rearrangements involving the accretion of mineral, loss of surface charge and transformation of the mineral phase from a spherical arrangement of diffuse domains of amorphous calcium phosphate to densely-packed lamellar aggregates of crystalline hydroxyapatite. These physiochemical changes were paralleled by enrichment with small soluble apolipoproteins, complement factors and the binding of fatty acids. In comparison, endogenous CPP represent a highly heterogeneous mixture of particles with characteristics mostly intermediate to synthetic CPP-I and CPP-II, but are also uniquely enriched for carbonate-substituted apatite, DNA fragments, small RNA and microbe-derived components. Pathway analysis of protein enrichment predicted the activation of cell death and pro-inflammatory processes by endogenous CPP and synthetic CPP-II alike. This comprehensive characterisation validates the use of CPP-II generated in uraemic serum as in vitro equivalents of their endogenous counterparts and provides insight into the nature and pathological significance of CPP in CKD, which may act as vehicles for various bioactive ligands. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Hierarchical Mn₂O₃ Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances.

    Science.gov (United States)

    Gong, Feilong; Lu, Shuang; Peng, Lifang; Zhou, Jing; Kong, Jinming; Jia, Dianzeng; Li, Feng

    2017-11-23

    Porous Mn₂O₃ microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn₂O₃ microspheres by first producing MnCO₃ microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO₃ microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn₂O₃ nanorods consisting of microspheres. The C@Mn₂O₃ microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn₂O₃ microspheres prepared at 500 °C show high specific capacitances of 383.87 F g -1 at current density of 0.5 A g -1 , and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn₂O₃ microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg -1 at power density of 500.00 W kg -1 , and a maximum power density of 20.14 kW kg -1 at energy density of 46.8 Wh kg -1 . We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon.

  7. Compaction of Chemically Prepared Amorphous Fe-B nanoparticles

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Bødker, Franz; Mørup, Steen

    1997-01-01

    We report on attempts to compact chemically prepared amorphous iron-boron particles. The praticles have a size of about 100 nm and are pyrophoric. We have made a special die for uniaxial pressing in which the compaction can be performed at elevated temperature without exposing the powder to air...

  8. Synthesis of Stacked-Cup Carbon Nanotubes in a Metal Free Low Temperature System

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A.; Johnson, Natasha M.; Farmer, Kevin D.; Roberts, Kenneth P.; Hussaini, Syed R.

    2011-01-01

    Stacked-cup carbon nanotubes were formed by either Fischer-Tropsch type or Haber Bosch type reactions in a metal free system. Graphite particles were used as the catalyst. The samples were heated at 600 C in a gas mixture of CO 75 Torr, N2 75 Torr and H2 550 Torr for three days. Trans mission electron microscope analysis of the catalyst surface at the completion of the experiment recognized the growth of nanotubes. They were 10-50 nm in diameter and approximately 1 micrometer in length. They had a hollow channel of 5-20 nm in the center. The nanotubes may have grown on graphite surfaces by the CO disproportionation reaction and the surface tension of the carbon nucleus may have determined the diameter. Although, generally, the diameter of a carbon nanotube depends on the size of the cataly1ic particles, the diameter of the nanotubes on graphite particles was independent of the particle size and significantly confined within a narrow range compared with that produced using catalytic amorphous iron-silicate nanoparticles. Therefore, they must have an unknown formation process that is different than the generally accepted mechanism.

  9. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    Science.gov (United States)

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  10. Study and characterization of an integrated circuit-deposited hydrogenated amorphous silicon sensor for the detection of particles and radiations; Etude et caracterisation d'un capteur en silicium amorphe hydrogene depose sur circuit integre pour la detection de particules et de rayonnements

    Energy Technology Data Exchange (ETDEWEB)

    Despeisse, M

    2006-03-15

    Next generation experiments at the European laboratory of particle physics (CERN) require particle detector alternatives to actual silicon detectors. This thesis presents a novel detector technology, which is based on the deposition of a hydrogenated amorphous silicon sensor on top of an integrated circuit. Performance and limitations of this technology have been assessed for the first time in this thesis in the context of particle detectors. Specific integrated circuits have been designed and the detector segmentation, the interface sensor-chip and the sensor leakage current have been studied in details. The signal induced by the track of an ionizing particle in the sensor has been characterized and results on the signal speed, amplitude and on the sensor resistance to radiation are presented. The results are promising regarding the use of this novel technology for radiation detection, though limitations have been shown for particle physics application. (author)

  11. On electronic structure of polymer-derived amorphous silicon carbide ceramics

    Science.gov (United States)

    Wang, Kewei; Li, Xuqin; Ma, Baisheng; Wang, Yiguang; Zhang, Ligong; An, Linan

    2014-06-01

    The electronic structure of polymer-derived amorphous silicon carbide ceramics was studied by combining measurements of temperature-dependent conductivity and optical absorption. By comparing the experimental results to theoretical models, electronic structure was constructed for a carbon-rich amorphous silicon carbide, which revealed several unique features, such as deep defect energy level, wide band-tail band, and overlap between the band-tail band and defect level. These unique features were discussed in terms of the microstructure of the material and used to explain the electric behavior.

  12. The influence of transport phenomena on the fluidized bed combustion of a single carbon particle

    NARCIS (Netherlands)

    Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    The burning rate and temperature of the carbon particles are known to affect the efficiency of a fluidized bed combustor, and also the emission levels of undesired noxious components. The main results of an extensive study on the fluidized bed combustion behaviour of a single carbon particle [1] are

  13. Effect of borohydride addition rate on chemically prepared amorphous Fe-B particles

    International Nuclear Information System (INIS)

    Koch, C.B.; Morup, S.; Linderoth, S.

    1991-01-01

    Amorphous Fe-B alloys can be prepared by reacting aqueous solutions of Fe salts and NaBH 4 . In this paper the effect of the addition rate of the NaBH 4 solution to the FeSO 4 solution on the precipitate is investigated. The chemical composition of the amorphous alloys formed varies between Fe 79 B 21 and Fe 68 B 32 . The hyperfine parameters of the alloys, derived from Mossbauer spectra, show a decrease from 29 to 25 T of the magnetic hyperfine field and an increase from 0.19 to 0.28 mms -1 of the isomer shift with increasing NaBH 4 addition rate. The results suggest that alloys with different structures but identical composition may be produced by chemical reduction

  14. On the reproducibility of heterogeneous nucleation in amorphous Al{sub 85}Ni{sub 10}Ce{sub 5} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, P. [Oxford Univ. (United Kingdom). Dept. of Materials; Greer, A.L. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom)

    1997-06-15

    Amorphous aluminium alloys can be successfully used as a matrix in which to study heterogeneous nucleation of {alpha}-Al on embedded conventional grain-refiner particles. The nucleation potency of a particle can be estimated from the extent of Al crystal growth on the particle during the glass-forming quench. The extent of growth is, of course, also dependent on the exact quenching conditions. However, the devitrification behaviour of the amorphous matrix can be used as an indicator of the quenching conditions, thereby permitting a comparative study of the nucleation potency. (orig.)

  15. Thin films of hydrogenated amorphous carbon (a-C:H) obtained through chemical vapor deposition assisted by plasma

    International Nuclear Information System (INIS)

    Mejia H, J.A.; Camps C, E.E.; Escobar A, L.; Romero H, S.; Chirino O, S.; Muhl S, S.

    2004-01-01

    Films of hydrogenated amorphous carbon (a-C:H) were deposited using one source of microwave plasma with magnetic field (type ECR), using mixtures of H 2 /CH 4 in relationship of 80/20 and 95/05 as precursory gases, with work pressures of 4X10 -4 to 6x10 -4 Torr and an incident power of the discharge of microwaves with a constant value of 400 W. It was analyzed the influence among the properties of the films, as the deposit rate, the composition and the bonding types, and the deposit conditions, such as the flow rates of the precursory gases and the polarization voltage of the sample holders. (Author)

  16. Particle size distribution and property of bacteria attached to carbon fines in drinking water treatment

    Directory of Open Access Journals (Sweden)

    Wang Leilei

    2008-06-01

    Full Text Available The quantitative change and size distribution of particles in the effluents from a sand filter and a granular activated carbon (GAC filter in a drinking water treatment plant were investigated. The average total concentration of particles in the sand filter effluent during a filter cycle was 148 particles/mL, 27 of which were larger than 2 µm in size. The concentration in the GAC effluent (561 particles/mL was significantly greater than that in the sand filter effluent. The concentration of particles larger than 2 µm in the GAC filter effluent reached 201 particles/mL, with the amount of particles with sizes between 2 µm and 15 µm increasing. The most probable number (MPN of carbon fines reached 43 unit/L after six hours and fines between 0.45 µm and 8.0 µm accounted for more than 50%. The total concentration of outflowing bacteria in the GAC filter effluent, 350 CFU (colony-forming units/mL, was greater than that in the sand filter effluent, 210 CFU/mL. The desorbed bacteria concentration reached an average of 310 CFU/mg fines. The disinfection efficiency of desorbed bacteria was lower than 40% with 1.5 mg/L of chlorine. The disinfection effect showed that the inactivation rate with 2.0 mg/L of chloramine (90% was higher than that with chlorine (70%. Experimental results indicated that the high particle concentration in raw water and sedimentation effluent led to high levels of outflowing particles in the sand filter effluent. The activated carbon fines in the effluent accounted for a small proportion of the total particle amount, but the existing bacteria attached to carbon fines may influence the drinking water safety. The disinfection efficiency of desorbed bacteria was lower than that of free bacteria with chlorine, and the disinfection effect on bacteria attached to carbon fines with chloramine was better than that with only chlorine.

  17. Temporal succession in carbon incorporation from macromolecules by particle-attached bacteria in marine microcosms: Particle-attached bacteria incorporating organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Mayali, Xavier [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stewart, Benjamin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mabery, Shalini [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weber, Peter K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-21

    Here, we investigated bacterial carbon assimilation from stable isotope-labelled macromolecular substrates (proteins; lipids; and two types of polysaccharides, starch and cellobiose) while attached to killed diatom detrital particles during laboratory microcosms incubated for 17 days. Using Chip-SIP (secondary ion mass spectrometry analysis of RNA microarrays), we identified generalist operational taxonomic units (OTUs) from the Gammaproteobacteria, belonging to the genera Colwellia, Glaciecola, Pseudoalteromonas and Rheinheimera, and from the Bacteroidetes, genera Owenweeksia and Maribacter, that incorporated the four tested substrates throughout the incubation period. Many of these OTUs exhibited the highest isotope incorporation relative to the others, indicating that they were likely the most active. Additional OTUs from the Gammaproteobacteria, Bacteroidetes and Alphaproteobacteria exhibited generally (but not always) lower activity and did not incorporate all tested substrates at all times, showing species succession in organic carbon incorporation. We also found evidence to suggest that both generalist and specialist OTUs changed their relative substrate incorporation over time, presumably in response to changing substrate availability as the particles aged. This pattern was demonstrated by temporal succession from relatively higher starch incorporation early in the incubations, eventually switching to higher cellobiose incorporation after 2 weeks.

  18. Self-sensing piezoresistive cement composite loaded with carbon black particles

    KAUST Repository

    Monteiro, André O.; Cachim, Paulo B.; Da Costa, Pedro M. F. J.

    2017-01-01

    Strain sensors can be embedded in civil engineering infrastructures to perform real-time service life monitoring. Here, the sensing capability of piezoresistive cement-based composites loaded with carbon black (CB) particles is investigated. Several

  19. Thermal Protection of Carbon Fiber-Reinforced Composites by Ceramic Particles

    Directory of Open Access Journals (Sweden)

    Baljinder Kandola

    2016-06-01

    Full Text Available The thermal barrier efficiency of two types of ceramic particle, glass flakes and aluminum titanate, dispersed on the surface of carbon-fiber epoxy composites, has been evaluated using a cone calorimeter at 35 and 50 kW/m2, in addition to temperature gradients through the samples’ thicknesses, measured by inserting thermocouples on the exposed and back surfaces during the cone tests. Two techniques of dispersing ceramic particles on the surface have been employed, one where particles were dispersed on semi-cured laminate and the other where their dispersion in a phenolic resin was applied on the laminate surface, using the same method as used previously for glass fiber composites. The morphology and durability of the coatings to water absorption, peeling, impact and flexural tension were also studied and compared with those previously reported for glass-fiber epoxy composites. With both methods, uniform coatings could be achieved, which were durable to peeling or water absorption with a minimal adverse effect on the mechanical properties of composites. While all these properties were comparable to those previously observed for glass fiber composites, the ceramic particles have seen to be more effective on this less flammable, carbon fiber composite substrate.

  20. Elemental and organic carbon in flue gas particles of various wood combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaegauf, C.; Schmid, M.; Guentert, P.

    2005-12-15

    The airborne particulate matter (PM) in the environment is of ever increasing concern to authorities and the public. The major fractions of particles in wood combustion processes are in the size less than 1 micron, typically in the range of 30 to 300 nm. Of specific interest is the content of the elemental carbon (EC) and organic carbon (OC) in the particles since these substances are known for its particular potential as carcinogens. Various wood combustion systems have been analysed (wood chip boiler, pellet boiler, wood log boiler, wood stove and open fire). The sampling of the particles was done by mean of a multi-stage particle sizing sampler cascade impactor. The impactor classifies the particles collected according to their size. The 7 stages classify the particles between 0.4 and 9 microns aerodynamic diameter. The analytical method for determining the content of EC and OC in the particles is based on coulometry. The coulometer measures the conductivity of CO{sub 2} released by oxidation of EC in the samples at 650 {sup o}C. The OC content is determined by pyrolysis of the particle samples in helium atmosphere.

  1. EPR and UV spectrometry investigation of sucrose irradiated with carbon particles

    International Nuclear Information System (INIS)

    Karakirova, Yordanka; Yordanov, Nicola D.

    2010-01-01

    Solid state/EPR (SS/EPR) dosimeters of carbon ions irradiated sucrose are studied with EPR, and their water solutions - with UV spectroscopy. Doses between 20 and 200 Gy are used with linear energy transfer (LET) values for carbon ions of 63, 77, 96 and 230 keV μm -1 . After irradiation all samples show typical for irradiated sucrose EPR and UV spectra. The obtained data are compared with those previously reported for nitrogen particles and gamma rays irradiated sucrose. The identical shape of both the EPR and UV spectra of irradiated with various type radiation samples suggests that generated free radicals are not influenced by the nature of radiation. The lack of difference in the line width of the separate lines or the whole EPR spectrum, obtained for gamma and heavy particles irradiation, suggests negligible spin-spin interaction among the radiation-generated free radicals in the samples. The linear dependence of the EPR response on the absorbed dose radiation is found to be higher when generated by gamma rays, than by the same absorbed dose of heavy particles. In addition, the EPR response for carbon ions is higher than that for nitrogen ions. Water solutions of irradiated sucrose exhibit UV spectrum with absorption maximum at 267 nm, attributed to the recombination products of free radicals. The UV band intensity depends on the absorbed dose radiation. The UV spectra obtained for carbon, nitrogen and gamma rays irradiated sucrose are also compared.

  2. Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra

    Science.gov (United States)

    Godet, Christian; David, Denis

    2017-12-01

    Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.

  3. Amorphous carbon nitrogenated films prepared by plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Durrant, Steven F.; Rangel, Rita C.C.; Kayama, Milton E.; Landers, Richard; Cruz, Nilson C. da

    2006-01-01

    In this work, an investigation was conducted on amorphous hydrogenated-nitrogenated carbon films prepared by plasma immersion ion implantation and deposition. Glow discharge was excited by radiofrequency power (13.56 MHz, 40 W) whereas the substrate-holder was biased with 25 kV negative pulses. The films were deposited from benzene, nitrogen and argon mixtures. The proportion of nitrogen in the chamber feed (R N ) was varied against that of argon, while keeping the total pressure constant (1.3 Pa). From infrared reflectance-absorbance spectroscopy it was observed that the molecular structure of the benzene is not preserved in the film. Nitrogen was incorporated from the plasma while oxygen arose as a contaminant. X-ray photoelectron spectroscopy revealed that N/C and O/C atomic ratios change slightly with R N . Water wettability decreased as the proportion of N in the gas phase increased while surface roughness underwent just small changes. Nanoindentation measurements showed that film deposition by means of ion bombardment was beneficial to the mechanical properties of the film-substrate interface. The intensity of the modifications correlates well with the degree of ion bombardment

  4. Microporous polystyrene particles for selective carbon dioxide capture.

    Science.gov (United States)

    Kaliva, Maria; Armatas, Gerasimos S; Vamvakaki, Maria

    2012-02-07

    This study presents the synthesis of microporous polystyrene particles and the potential use of these materials in CO(2) capture for biogas purification. Highly cross-linked polystyrene particles are synthesized by the emulsion copolymerization of styrene (St) and divinylbenzene (DVB) in water. The cross-link density of the polymer is varied by altering the St/DVB molar ratio. The size and the morphology of the particles are characterized by scanning and transmission electron microscopy. Following supercritical point drying with carbon dioxide or lyophilization from benzene, the polystyrene nanoparticles exhibit a significant surface area and permanent microporosity. The dried particles comprising 35 mol % St and 65 mol % DVB possess the largest surface area, ∼205 m(2)/g measured by Brunauer-Emmett-Teller and ∼185 m(2)/g measured by the Dubinin-Radushkevich method, and a total pore volume of 1.10 cm(3)/g. Low pressure measurements suggest that the microporous polystyrene particles exhibit a good separation performance of CO(2) over CH(4), with separation factors in the range of ∼7-13 (268 K, CO(2)/CH(4) = 5/95 gas mixture), which renders them attractive candidates for use in gas separation processes.

  5. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  6. Chemical Composition of the Graphitic Black Carbon Fraction in Riverine and Marine Sediments at Submicron Scales using Carbon X-ray Spectromicroscopy

    International Nuclear Information System (INIS)

    Haberstroh, P.; Brandes, J.; Gelinas, Y.; Dickens, A.; Wirick, S.; Cody, G.

    2006-01-01

    The chemical composition of the graphitic black carbon (GBC) fraction of marine organic matter was explored in several marine and freshwater sedimentary environments along the west coast of North America and the Pacific Ocean. Analysis by carbon x-ray absorption near edge structure (C-XANES) spectroscopy and scanning transmission x-ray microscopy (STXM) show the GBC-fraction of Stillaguamish River surface sediments to be dominated by more highly-ordered and impure forms of graphite, together forming about 80% of the GBC, with a smaller percent of an aliphatic carbon component. Eel River Margin surface sediments had very little highly-ordered graphite, and were instead dominated by amorphous carbon and to a lesser extent, impure graphite. However, the GBC of surface sediments from the Washington State Slope and the Mexico Margin were composed almost solely of amorphous carbon. Pre-anthropogenic, highly-oxidized deep-sea sediments from the open Equatorial Pacific Ocean contained over half their GBC in different forms of graphite as well as highly-aliphatic carbon, low aromatic/highly-acidic aliphatic carbon, low aromatic/highly aliphatic carbon, and amorphous forms of carbon. Our results clearly show the impact of graphite and amorphous C phases in the BC fraction in modern riverine sediments and nearby marine shelf deposits. The pre-anthropogenic Equatorial Pacific GBC fraction is remarkable in the existence of highly-ordered graphite

  7. Influence of the particle size of activated mineral carbon on the phenol and chlorophenol adsorption

    International Nuclear Information System (INIS)

    Garcia M, A.

    2001-01-01

    Water pollution by phenolic compounds is a problem that requires a solution since these phenolic compounds are not completely biodegradable, they accumulate through the food chains and they are quite toxic when enter in contact with living organisms. In human beings, ingestion or contact of the skin with this type of compounds produces irritation and damages mainly to the liver and kidneys. In fact, the Environmental Protection Agency of the United States (EPA assigned nine phenolic compounds among the 275 most toxic substances in 1991. Phenols are found in wastewater from agriculture and industry, because phenolic compounds are used as pesticides and in diverse industrial activities. The treatment of this type of water is not simple because they are generally composed of a mixture of residuals with different chemical nature A useful method for the removal of phenols is the adsorption by activated carbon, since this material has a great surface area and it can be regenerated. The adsorption process depends, among other factors, on the activated carbon characteristics. When they are modified, their capacity to remove pollutants from the water changes. The effect of activated carbon particle size on the removal of phenolic compounds has not been completely studied. Therefore, the aim of this work was to determine the influence of the mineral activated carbon particle size on the phenol and 4-chloro phenol adsorption in aqueous solution, on adsorption column system. The results of the present work indicate that the mineral activated carbon particle size has a very important influence on the adsorption of phenol and 4-chloro phenol. When the particles were smaller, the retention quantities of phenol and 4-chloro phenol increased. This behavior was related to the particle characteristics of the mineral activated carbon such as surface area and pore volume, while other factors such as elementary composition of the activated carbon did not influence the adsorption process

  8. The influence of conductive additives and inter-particle voids in carbon EDLC electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pandolfo, A.G.; Wilson, G.J.; Huynh, T.D.; Hollenkamp, A.F. [CSIRO - Energy Technology, Bayview Avenue, Clayton, Vic 3168 (Australia)

    2010-10-15

    Through the interpretation of porosity and intrusion data, and correlation to the electrochemical response, this study has confirmed that are not only carbon blacks (CBs) very effective in improving the electrical connectivity of a carbon electrode coating, but they also significantly modify the porosity of the electrode coating and thereby also influence ionic diffusion. CBs are more effective conductive fillers than graphites in EDLC electrodes. The highly branched structure of CBs allows multiple electrical contact points and results in a lower electrode electronic resistance. CBs can decrease inter-particle porosity (both volume and size) and introduce additional porosity that is characteristic of the type of carbon employed. It is observed that electrode coatings prepared from a carbon slurry have a highly macroporous structure and that electrolyte accessibility to individual activated carbon particles is unlikely to be the limiting factor to accessing capacitance. Electrochemical testing has confirmed the strong relationship between bulk electrode resistance and the accessibility of capacitance at different rates. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. [Carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand land.

    Science.gov (United States)

    Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier

    2016-11-18

    The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.

  10. [Effects of land use type on the distribution of organic carbon in different sized soil particles effects of land use type on the distribution of organic carbon in different sized soil particles and its relationships to herb biomass in hilly red soil region of South China].

    Science.gov (United States)

    Li, Zhong-Wu; Guo, Wang; Wang, Xiao-Yan; Shen, Wei-Ping; Zhang, Xue; Chen, Xiao-Lin; Zhang, Yue-Nan

    2012-04-01

    The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass.

  11. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N

    2014-05-16

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures were simulated by varying the deposition energy of carbon atoms in the range of 1-120 eV. Intrinsic film characteristics (e.g. density and internal stress) were determined after the system reached equilibrium. Short- and intermediate-range carbon atom ordering is examined in the context of atomic hybridization and ring connectivity simulation results. It is shown that relatively high deposition energy (i.e., 80 eV) yields a multilayer film structure consisting of an intermixing layer, bulk film and surface layer, consistent with the classical subplantation model. The highest film density (3.3 g cm-3), sp3 fraction (∼43%), and intermediate-range carbon atom ordering correspond to a deposition energy of ∼80 eV, which is in good agreement with experimental findings. © 2014 IOP Publishing Ltd.

  12. A simple chemical synthesis of amorphous carbon nanotubes–MnO{sub 2} flake hybrids for cold cathode application

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sourav [Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India); Banerjee, Diptonil; Das, Nirmalya Sankar [School of Material Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India); Chattopadhyay, Kalyan Kumar, E-mail: kalyan_chattopadhyay@yahoo.com [Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India); School of Material Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India)

    2015-08-30

    Highlights: • Amorphous carbon nanotubes (aCNTs) have been synthesized chemically. • The walls of the aCNTs have been anchored by MnO{sub 2} nanoflakes. • It is seen for the first time that MnO{sub 2} modified aCNTs show much better field emission property. • Experimental result has also been supported theoretically. • This can acts as doorstep to develop a new hybrid system as a novel cold cathode material. - Abstract: A simple approach has been implemented to synthesize amorphous carbon nanotubes (a-CNTs) and manganese oxide (MnO{sub 2}) hybrid nanostructure at temperature as low as ∼250 °C in open atmosphere. Microscopic studies of the samples revealed that the walls of the a-CNTs were coated uniformly by MnO{sub 2} nanoflakes. The composition of the as prepared sample was studied with the help of energy dispersive X-ray and X-ray photoelectron spectroscopy. Electron field emission study was done in a custom built high vacuum field emission setup for the prepared a-CNT and manganese oxide (MnO{sub 2}) hybrid nanostructure. It is seen that the performance of the a-CNTs as cold cathode emitter has been enhanced greatly when MnO{sub 2} nanoflakes were coated uniformly over it. The turn on field has been reduced from 7.17 to value as low as 3.82 V/mm with enhancement factor increases from 2428 to 6965. Finite element based simulation study theoretically confirms the enhancement of field emission properties of as prepared MnO{sub 2} nanoflake coated a-CNTs. The results have been explained due to enhanced surface roughness leading to higher enhancement factor and overall increase of emission sites.

  13. Effect of Co crystallinity on Co/CNT catalytic activity in CO/CO{sub 2} hydrogenation and CO disproportionation

    Energy Technology Data Exchange (ETDEWEB)

    Chernyak, Sergei A., E-mail: chernyak.msu@gmail.com [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Department of Physical Chemistry, Leninsky Avenue 31, Moscow 119991 (Russian Federation); Suslova, Evgeniya V.; Egorov, Alexander V.; Maslakov, Konstantin I. [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Savilov, Serguei V.; Lunin, Valery V. [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Department of Physical Chemistry, Leninsky Avenue 31, Moscow 119991 (Russian Federation)

    2016-05-30

    Highlights: • Amorphous and crystalline Co supported on CNTs were obtained by tuning of CNT surface. • CO and CO{sub 2} hydrogenation does not occur on amorphous Co particles. • Thermal activation of amorphous Co led to crystallization of metal. • Amorphous Co promotes CO disproportionation. • Carbon shells around the amorphous metal particles after the CO hydrogenation. - Abstract: Carbon nanotubes (CNTs) with different degree of surface oxidation were used as supports for 5 wt.% Co catalysts. CNTs and Co/CNT catalysts were analyzed by XPS, nitrogen adsorption, TEM and electron diffraction to reveal their structure. High oxidation degree of CNT surface (8.6 at.% of O) and low Co loading led to predominantly amorphous Co species. This resulted in the absence of catalytic activity in both CO and CO{sub 2} hydrogenation in opposite to the catalyst supported on less oxidized CNTs (5.4 at.% of O) where Co species were found to be crystalline. Thermal treatment of inactive catalyst in H{sub 2} and He led to the formation of Co crystal phase which was active in catalysis. Co particle size in catalyst supported on strongly oxidized CNTs was unchanged during CO hydrogenation in opposite to Co supported on less oxidized CNTs. Carbon shell formation on the surface of amorphous Co particles during CO hydrogenation was revealed, which testified CO disproportionation. Qualitative mechanism of CO hydrogenation on small Co particles was proposed.

  14. Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time

    Energy Technology Data Exchange (ETDEWEB)

    Lala, S. [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal (India); Brahmachari, S.; Das, P.K. [Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032 (India); Das, D. [UGC-DAE Consortium for Scientific Research, Kolkata-700098 (India); Kar, T. [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India); Pradhan, S.K., E-mail: skp_bu@yahoo.com [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal (India)

    2014-09-01

    Single phase nanocrystalline biocompatible A-type carbonated hydroxyapatite (A-cHAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO{sub 3} and CaHPO{sub 4}.2H{sub 2}O powders in open air at room temperature within 2 h of milling. The A-type carbonation in HAp is confirmed by FTIR analysis. Structural and microstructure parameters of as-milled powders are obtained from both Rietveld's powder structure refinement analysis and transmission electron microscopy. Size and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Mechanical alloying causes amorphization of a part of crystalline A-cHAp which is analogous to native bone mineral. Some primary bond lengths of as-milled samples are critically measured. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay test reveals high percentage of cell viability and hence confirms the biocompatibility of the sample. The overall results indicate that the processed A-cHAp has a chemical composition very close to that of biological apatite. - Graphical abstract: Biocompatible A-Type Carbonated Hydroxyapatite (A-cHAp) has been synthesized by mechanical alloying in polycrystalline form within 2 h of milling. The shape and position of CO channel have been shown. - Highlights: • A-cHAp phase is completed within 2 h of milling. • FTIR analysis confirms A-type carbonation in HAp. • Amorphization of a part of crystalline A-cHAp. • Particle size and strain are anaisotropic in nature. • High cell viability under MTT assay.

  15. Platinum containing amorphous hydrogenated carbon (a-C:H/Pt) thin films as selective solar absorbers

    International Nuclear Information System (INIS)

    Lan, Yung-Hsiang; Brahma, Sanjaya; Tzeng, Y.H.; Ting, Jyh-Ming

    2014-01-01

    We have investigated a double-cermet structured thin film in which an a-C:H thin film was used as an anti-reflective (AR) layer and two platinum-containing amorphous hydrogenated carbon (a-C:H/Pt) thin films were used as the double cermet layers. A reactive co-sputter deposition method was used to prepare both the anti-reflective and cermet layers. Effects of the target power and heat treatment were studied. The obtained films were characterized using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy. The optical absorptance and emittance of the as deposited and annealed films were determined using UV–vis-NIR spectroscopy. We show that the optical absorptance of the resulting double-cermet structured thin film is as high as 96% and remains to be 91% after heat treatment at 400 °C, indicating the thermal stability of the film

  16. Thin films of amorphous nitrogenated carbon a-CN{sub x}: Electron transfer and surface reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Tamiasso-Martinhon, P.; Cachet, H.; Debiemme-Chouvy, C.; Deslouis, C. [Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques, CNRS, UPR15-LISE, 4 Place Jussieu, Paris F-75005 (France)

    2008-08-01

    The electrochemical behaviour of thin films of nitrogenated amorphous carbon a-CN{sub x} is similar to that of boron-doped diamond, with a wide potential window in aqueous media. They are elaborated by cathodic sputtering of a graphite target in an Ar-N{sub 2} active plasma for varying nitrogen contents, determined by XPS (0.06 {<=} x {<=} 0.39). Their electrochemical reactivity is sensitive to the surface state. The present study reports on the influence of electrochemical pre treatment on the electronic transfer rate of a fast redox system ferri-ferrocyanide, by focusing on the direction of the potential excursion. On the other hand, the role of both the pH and the potential on the interfacial capacitance in the presence of Na{sub 2}SO{sub 4} without redox species is documented. The results show up the sensitivity of the film surface to the electrochemical conditions. (author)

  17. Effect of substrate temperature on corrosion performance of nitrogen doped amorphous carbon thin films in NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Khun, N.W. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, E., E-mail: MEJLiu@ntu.edu.s [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2009-07-01

    Nitrogen doped amorphous carbon (a-C:N) thin films were deposited on p-Si substrates by DC magnetron sputtering at varying substrate temperature from room temperature (RT) to 300 {sup o}C. The bonding structure, surface morphology and adhesion strength of the a-C:N films were investigated by using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch testing. The corrosion behavior of the a-C:N films was evaluated by potentiodynamic polarization test in a 0.6 M NaCl solution. The results indicated that the corrosion resistance of the films depended on the sp{sup 3}-bonded cross-link structure that was significantly affected by the substrate temperature.

  18. Effect of substrate temperature on corrosion performance of nitrogen doped amorphous carbon thin films in NaCl solution

    International Nuclear Information System (INIS)

    Khun, N.W.; Liu, E.

    2009-01-01

    Nitrogen doped amorphous carbon (a-C:N) thin films were deposited on p-Si substrates by DC magnetron sputtering at varying substrate temperature from room temperature (RT) to 300 o C. The bonding structure, surface morphology and adhesion strength of the a-C:N films were investigated by using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch testing. The corrosion behavior of the a-C:N films was evaluated by potentiodynamic polarization test in a 0.6 M NaCl solution. The results indicated that the corrosion resistance of the films depended on the sp 3 -bonded cross-link structure that was significantly affected by the substrate temperature.

  19. Formation of hydrogenated amorphous carbon films of controlled hardness from a methane plasma

    International Nuclear Information System (INIS)

    Vandentop, G.J.; Kawasaki, M.; Nix, R.M.; Brown, I.G.; Salmeron, M.; Somorjai, G.A.; Department of Chemistry, University of California at Berkeley, Berkeley, California 94720)

    1990-01-01

    Studies of amorphous hydrogenated carbon (a-C:H) film deposition revealed that methyl radicals are the precursor species responsible for the bulk mass deposition of the films, while the ions act to improve the mechanical properties. The films were deposited on Si(100) substrates both on the powered (negatively self-biased) and on the grounded electrodes from a methane rf plasma (13.56 MHz) at 68 to 70 mTorr and 300 to 370 K. The films produced on the powered electrode exhibited superior mechanical properties, such as high hardness. A mass spectrometer was used to identify neutral species and positive ions incident on the electrodes from the plasma, and also to measure ion energies. Methyl radicals were incident on the electrode surface with an estimated flux of 10 16 cm -2 s -1 , for a rf power of 50 W. Methyl radicals appear to be the dominant intermediates in the growth of the soft carbon polymer, and there is a remarkable decrease in deposition rate due to the introduction of NO, a radical scavenger. A novel pulsed biasing technique was used so that the role of ions in the plasma could be studied separately. It was found that the hardness of the films depends on the power supplied by the ions to the growing film surface (the time averaged difference between the plasma potential and the electrode potential), but not on the energy of individual ions. The pulsed biasing technique offers an efficient method to adjust the film hardness by independent control of the neutral radical and ion fluxes to the surface

  20. Effect of silica particle size on macrophage inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Toshimasa Kusaka

    Full Text Available Amorphous silica particles, such as nanoparticles (<100 nm diameter particles, are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation. Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.

  1. Anti-corrosive Effects of Multi-Walled Carbon Nano Tube and Zinc Particle Shapes on Zinc Ethyl Silicate Coated Carbon Steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, JiMan; Shon, MinYoung; Kwak, SamTak [Pukyong National University, Busan (Korea, Republic of)

    2016-01-15

    Zinc ethyl silicate coatings containing multi walled carbon nanotubes (MWCNTs) were prepared, to which we added spherical and flake shaped zinc particles. The anti-corrosive effects of MWCNTs and zinc shapes on the zinc ethyl silicate coated carbon steel was examined, using electrochemical impedance spectroscopy and corrosion potential measurement. The results of EIS and corrosion potential measurement showed that the zinc ethyl silicate coated with flake shaped zinc particles and MWCNT showed lesser protection to corrosion. These outcomes were in agreement with previous results of corrosion potential and corrosion occurrence.

  2. Synthesis and high temperature stability of amorphous Si(B)CN-MWCNT composite nanowires

    Science.gov (United States)

    Bhandavat, Romil; Singh, Gurpreet

    2012-02-01

    We demonstrate synthesis of a hybrid nanowire structure consisting of an amorphous polymer-derived silicon boron-carbonitride (Si-B-C-N) shell with a multiwalled carbon nanotube core. This was achieved through a novel process involving preparation of a boron-modified liquid polymeric precursor through a reaction of trimethyl borate and polyureasilazane under atmospheric conditions; followed by conversion of polymer to glass-ceramic on carbon nanotube surfaces through controlled heating. Chemical structure of the polymer was studied by liquid-NMR while evolution of various ceramic phases was studied by Raman spectroscopy, solid-NMR, Fourier transform infrared and X-ray photoelectron spectroscopy. Electron microscopy and X-ray diffraction confirms presence of amorphous Si(B)CN coating on individual nanotubes for all specimen processed below 1400 degree C. Thermogravimetric analysis, followed by TEM revealed high temperature stability of the carbon nanotube core in flowing air up to 1300 degree C.

  3. Effect of large aspect ratio of biomass particles on carbon burnout in a utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    D. Gera; M.P. Mathur; M.C. Freeman; Allen Robinson [Fluent, Inc./NETL, Morgantown, WV (United States)

    2002-12-01

    This paper reports on the development and validation of comprehensive combustion sub models that include the effect of large aspect ratio of biomass (switchgrass) particles on carbon burnout and temperature distribution inside the particles. Temperature and carbon burnout data are compared from two different models that are formulated by assuming (i) the particles are cylindrical and conduct heat internally, and (ii) the particles are spherical without internal heat conduction, i.e., no temperature gradient exists inside the particle. It was inferred that the latter model significantly underpredicted the temperature of the particle and, consequently, the burnout. Additionally, some results from cofiring biomass (10% heat input) with pulverized coal (90% heat input) are compared with the pulverized coal (100% heat input) simulations and coal experiments in a tangentially fired 150 MW{sub e} utility boiler. 26 refs., 7 figs., 4 tabs.

  4. Filtration of Oil-furnace Carbon Black Dust Particles from the Tail Gases by Filter Bags With PTFE Membrane

    Directory of Open Access Journals (Sweden)

    Čuzela, D.

    2010-01-01

    Full Text Available During the industrial production of oil furnace carbon black, tail gases containing oil-furnace carbon black dust particles are emitted to the atmosphere. In the carbon black plant, Petrokemija d. d., there are six exhaust stacks for tail gases. Each of them has installed process equipment for cleaning tail gases. Efficiency of cleaning mainly depends on equipment construction and cleaning technology. The vicinity of the town, quality of the air in the region of Kutina, regarding floating particles PM10, and corporate responsibility for further enviromental improvement, imposes development of new methods that will decrease the emmision of oil-furnace carbon black dust particles in the air. Combining centrifugal percipitator and filter, special construction of cyclofilter for filtration of oil-furnace carbon black dust particles from tail gases by using PTFE (polytetrafluoroethylene membrane filter bags, was designed. Developed filtration technique provides η = 99.9 % efficiency of filtration. Construction part of the filter contains the newest generation of PTFE membrane filter bags with the ability of jet pulse cleaning. Using the PTFE membrane filter bags technology, filtration efficiency for oil-furnace carbon black dust particles in tail gases of maximum γ=5mgm-3can be achieved. The filtration efficiency was monitored continuously measuring the concentration of the oil-furnace carbon black dust particles in the tail gases with the help of in situ electronic probe. The accomplished filtration technology is the base for the installation of the PTFE membrane filter bags in the main operation filters which will provide better protection of the air in the town of Kutina against floating particles PM10.

  5. Compositional characterization of carbon electrode material: A study using simultaneous TG-DTA-FTIR

    International Nuclear Information System (INIS)

    Raje, Naina; Aacherekar, Darshana A.; Reddy, A.V.R.

    2009-01-01

    Present work describes the application of thermal methods, especially the evolved gas analysis (EGA) for the compositional characterization of carbon electrode material with respect to its organic, amorphous and graphitic carbon content. Trace levels of organic carbon present in the amorphous carbon samples were determined qualitatively by using FTIR absorption spectroscopy. Amorphous and graphitic carbon content in synthetic mixture samples were determined quantitatively using simultaneous TG-DTA-FTIR measurements. FTIR system was calibrated using the measured absorption signal of the evolved carbon dioxide due to the decomposition of cadmium carbonate. Inter-comparison studies using TG-FTIR measurements show that simultaneous FTIR spectroscopy is an effective complementary quantitative measurement technique for thermogravimetric analysis involving the complex decomposition reaction processes.

  6. Contribution to the analysis of hydrogenated amorphous silicon by nuclear methods

    International Nuclear Information System (INIS)

    Jeannerot, Luc.

    1981-01-01

    The physico chemical characterization of hydrogenated amorphous silicon thin films (0,5 to 2 μm thick) makes use of nuclear microanalysis for quantitative determination and depth profiling of the elements hydrogen, oxygen, argon and carbon. Concerning the methods, performances of the hydrogen analysis using the 1 H( 15 N, αγ) nuclear reaction are presented emphasizing the precision and the analytical consequences of the interaction ion-material. For charged particles data processing (mainly Rutherford backscattering) computer treatments have been developed either for concentration profile obtention as for spectra prediction of given material configurations. The essential results concerning hydrogenated silicon prepared by RF sputtering are on one hand the correlation between the oxygen incorporation and the beam-induced hydrogen effusion and in the other hand the role of the substrate in the impurities incorporation. From the study of the elaboration conditions of the material a tentative interpretation is made for the incorporation and the role of oxygen [fr

  7. Single particle inclusive spectra resulting from the collision of relativistic protons, deuterons, alpha particles, and carbon ions with nuclei

    International Nuclear Information System (INIS)

    Papp, J.

    1975-05-01

    The yields of positive and negative particles resulting from the collision of 1.05 GeV/nucleon and 2.1 GeV/nucleon protons, deuterons, alpha particles, and 1.05 GeV/nucleon carbon nuclei with various targets have been measured. Single particle inclusive cross sections for production of π + , π - , p, d, 3 H, 3 He, and 4 He at 2.5 0 (lab) were obtained. How the results bear on the concepts of limiting fragmentation and scaling, the structure of the alpha particle and deuteron, and the possibility of ''coherent'' production of pions by heavy ions are discussed. (U.S.)

  8. Kinetic model for transformation from nano-sized amorphous $TiO_2$ to anatase

    OpenAIRE

    Madras, Giridhar; McCoy, Benjamin J

    2006-01-01

    We propose a kinetic model for the transformation of nano-sized amorphous $TiO_2$ to anatase with associated coarsening by coalescence. Based on population balance (distribution kinetics) equations for the size distributions, the model applies a first-order rate expression for transformation combined with Smoluchowski coalescence for the coarsening particles. Size distribution moments (number and mass of particles) lead to dynamic expressions for extent of reaction and average anatase particl...

  9. Synthesis of carbon nanotubes by pyrolysis of solid Ni(dmg)2

    International Nuclear Information System (INIS)

    Kordatos, K.; Vlasopoulos, A.D.; Strikos, S.; Ntziouni, A.; Gavela, S.; Trasobares, S.; Kasselouri-Rigopoulou, V.

    2009-01-01

    We describe the high yield synthesis of multi-walled carbon nanotubes (MWCNTs) and the determination of the optimum production conditions. The method involves the catalytic pyrolysis of solid Ni(dmg) 2 under an Ar atmosphere. The obtained materials were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy and thermogravimetry analysis (TGA). The data revealed the formation of MWCNTs surrounded by a varying quantity of byproducts such as amorphous carbon and metallic particles, depending mainly on the reaction temperature. Pyrolysis of Ni(dmg) 2 at 900 deg. C results in the production of nanotube material with the highest degree of crystallinity

  10. Stabilized amorphous glibenclamide nanoparticles by high-gravity technique

    International Nuclear Information System (INIS)

    Yu Lei; Li Caixia; Le Yuan; Chen Jianfeng; Zou Haikui

    2011-01-01

    Highlights: · Amorphous glibenclamide nanoparticles of 220 nm are obtained using the high-gravity technique. · The dissolution rate of these nanoparticles achieves 85% in 5 min, while those of the raw glibenclamide and the commercial glibenclamide tablet only reach 35% and 55% respectively during the same period. · The morphology, particle size, crystalline form and dissolution rate of these nanoparticles almost remain constant after keeping more than 70 days. - Abstract: The stable amorphous glibenclamide nanoparticles was obtained via anti-solvent precipitation using the high-gravity technique in this study. The effects of operating variables on the particle size were investigated. The properties of glibenclamide nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and dissolution test. The prepared glibenclamide nanoparticles had a mean size of 220 nm within a narrow distribution. The dissolution rate of glibenclamide nanoparticles was obviously faster than that of the raw glibenclamide or the commercial glibenclamide tablet. It achieved 85% in 5 min, while those of the raw glibenclamide and the commercial glibenclamide tablet achieved 35% and 55% respectively during the same period. The physical stability of the nanoparticles was tested after storing for more than 70 days at room conditions. Their morphology, particle size, crystalline form and dissolution rate almost remained constant during storage.

  11. Method to produce carbon-cladded nuclear fuel particles

    International Nuclear Information System (INIS)

    Sturge, D.W.; Meaden, G.W.

    1978-01-01

    In the method charges of micro-spherules of fuel element are designed to have two carbon layers, whereby a one aims to achieve a uniform granulation (standard measurement). Two drums are used for this purpose connected behind one another. The micro-spherules coated with the first layer (phenolformaldehyde resin coated graphite particles) leave the first drum and enter the second one. Following the coating with a second layer, the micro-spherules are introduced into a grain size separator. The spherules that are too small are directly recycled into the second drum and those ones that are too large are recycled into the first drum after removing the graphite layers. The method may also be applied to metal cladded particles to manufacture cermet fuels. (RW) [de

  12. Neutron diffraction and thermal studies of amorphous CS2 realised by low-temperature vapour deposition

    International Nuclear Information System (INIS)

    Yamamuro, O.; Matsuo, T.; Onoda-Yamamuro, N.; Takeda, K.; Munemura, H.; Tanaka, S.; Misawa, M.

    2003-01-01

    We have succeeded in preparing amorphous carbon disulphide (CS 2 ) by depositing its vapour on a cold substrate at 10 K. Complete formation of the amorphous state has been confirmed by neutron diffraction and differential thermal analysis (DTA). The amorphous sample crystallized at ca. 70 K, which is lower than the hypothetical glass transition temperature (92 K) estimated from the DTA data of the (CS 2 ) x (S 2 Cl 2 ) 1-x binary mixture. CS 2 , a symmetric linear tri-atomic molecule, is the simplest of the amorphized molecular substances whose structural and thermal information has been reported so far. Comparison of the static structure factors S(Q) has shown that the orientational correlation of CS 2 molecules may be much stronger in the amorphous state than in the liquid state at higher temperature. (authors)

  13. Electrochemical determination of paraquat in citric fruit based on electrodeposition of silver particles onto carbon paste electrode

    OpenAIRE

    Abdelfettah Farahi; Mounia Achak; Laila El Gaini; Moulay Abderrahim El Mhammedi; Mina Bakasse

    2015-01-01

    Carbon paste electrodes (CPEs) modified with silver particles present an interesting tool in the determination of paraquat (PQ) using square wave voltammetry. Metallic silver particle deposits have been obtained via electrochemical deposition in acidic media using cyclic voltammetry. Scanning electron microscopy and X-ray diffraction measurements show that the silver particles are deposited onto carbon surfaces in aggregate form. The response of PQ with modified electrode (Ag-CPE) related to ...

  14. Radiation amorphization of materials

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Chernyaeva, T.P.

    1993-01-01

    The results of experimental and theoretical research on radiation amorphization are presented in this analytical review. Mechanism and driving forces of radiation amorphization are described, kinetic and thermodynamic conditions of amorphization are formulated. Compositional criteria of radiation amorphization are presented, that allow to predict irradiation behaviour of materials, their tendency to radiation amorphization. Mechanism of transition from crystalline state to amorphous state are considered depending on dose, temperature, structure of primary radiation damage and flux level. (author). 134 refs., 4 tab., 25 fig

  15. Methods of amorphization and investigation of the amorphous state

    OpenAIRE

    EINFALT, TOMAŽ; PLANINŠEK, ODON; HROVAT, KLEMEN

    2013-01-01

    The amorphous form of pharmaceutical materials represents the most energetic solid state of a material. It provides advantages in terms of dissolution rate and bioavailability. This review presents the methods of solid-state amorphization described in literature (supercooling of liquids, milling, lyophilization, spray drying, dehydration of crystalline hydrates), with the emphasis on milling. Furthermore, we describe how amorphous state of pharmaceuticals differ depending on method of prepara...

  16. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na

    2013-08-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp 3 fraction, a relatively thicker layer (bulk film) of constant sp 3 content, and an ultrathin surface layer rich in sp 2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions. Copyright © 2013 Materials Research Society.

  17. Efficient cold cathode emission in crystalline-amorphous hybrid: Study on carbon nanotube-cadmium selenide system

    Science.gov (United States)

    Sarkar, S.; Banerjee, D.; Das, N. S.; Ghorai, U. K.; Sen, D.; Chattopadhyay, K. K.

    2018-03-01

    Cadmium Selenide (CdSe) quantum dot (QD) decorated amorphous carbon nanotubes (a-CNTs) hybrids have been synthesized by simple chemical process. The samples were characterized by field emission scanning and transmission electron microscopy, Fourier transformed infrared spectroscopy, Raman and UV-Vis spectroscopy. Lattice image obtained from transmission electron microscopic study confirms the successful attachment of CdSe QDs. It is seen that hybrid samples show an enhanced cold emission properties with good stability. The results have been explained in terms of increased roughness, more numbers of emitting sites and favorable band bending induced electron transport. ANSYS software based calculation has also supported the result. Also a first principle based study has been done which shows that due to the formation of hybrid structure there is a profound upward shift in the Fermi level, i.e. a decrease of work function, which is believed to be another key reason for the observed improved field emission performance.

  18. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator

    Science.gov (United States)

    Amstad, Esther; Gopinadhan, Manesh; Holtze, Christian; Osuji, Chinedum O.; Brenner, Michael P.; Spaepen, Frans; Weitz, David A.

    2015-08-01

    Amorphous nanoparticles (a-NPs) have physicochemical properties distinctly different from those of the corresponding bulk crystals; for example, their solubility is much higher. However, many materials have a high propensity to crystallize and are difficult to formulate in an amorphous structure without stabilizers. We fabricated a microfluidic nebulator that can produce amorphous NPs from a wide range of materials, even including pure table salt (NaCl). By using supersonic air flow, the nebulator produces drops that are so small that they dry before crystal nuclei can form. The small size of the resulting spray-dried a-NPs limits the probability of crystal nucleation in any given particle during storage. The kinetic stability of the a-NPs—on the order of months—is advantageous for hydrophobic drug molecules.

  19. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation; Sintesis y caracterizacion de peliculas delgadas de carbono amorfo nitrurado, depositadas por ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo P, B

    2001-07-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp{sup 2} and sp{sup 3} bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  20. Indirect involvement of armorphous carbon layer on convective heat transfer enhancement using carbon nanofibers

    NARCIS (Netherlands)

    Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2015-01-01

    In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nanostructures was achieved using catalytic

  1. Characteristics of activated carbon remove sulfur particles against smog.

    Science.gov (United States)

    Ge, Shengbo; Liu, Zhenling; Furuta, Yuzo; Peng, Wanxi

    2017-09-01

    Sulfur particles, which could cause diseases, were the main powder of smog. And activated carbon had the very adsorption characteristics. Therefore, five sulfur particles were adsorbed by activated carbon and were analyzed by FT-IR. The optimal adsorption time were 120 min of Na 2 SO 3 , 120 min of Na 2 S 2 O 8 , 120 min of Na 2 SO 4 , 120 min of Fe 2 (SO 4 ) 3 and 120 min of S. FT-IR spectra showed that activated carbon had the eight characteristic absorption of S-S stretch, H 2 O stretch, O-H stretch, -C-H stretch, conjugated C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 O stretch or CC stretch, CH 2 bend, C-O stretch and acetylenic C-H bend vibrations at 3850 cm -1 , 3740 cm -1 , 3430 cm -1 , 2920 cm -1 , 1630 cm -1 , 1390 cm -1 , 1110 cm -1 and 600 cm -1 , respectively. For Na 2 SO 3 , the peaks at 2920 cm -1 , 1630 cm -1 , 1390 cm -1 and 1110 cm -1 achieved the maximum at 20 min. For Na 2 S 2 O 8 , the peaks at 3850 cm -1 , 3740 cm -1 and 2920 cm -1 achieved the maximum at 60 min. The peaks at 1390 cm -1 , 1110 cm -1 and 600 cm -1 achieved the maximum at 40 min. For Na 2 SO 4 , the peaks at 3430 cm -1 , 2920 cm -1 , 1630 cm -1 , 1390 cm -1 , 1110 cm -1 and 600 cm -1 achieved the maximum at 60 min. For Fe 2 (SO 4 ) 3 , the peaks at 1390 cm -1 , 1110 cm -1 and 600 cm -1 achieved the maximum at 20 min. For S, the peaks at 1630 cm -1 , 1390 cm -1 and 600 cm -1 achieved the maximum at 120 min. It provided that activated carbon could remove sulfur particles from smog air to restrain many anaphylactic diseases.

  2. Structural Features of Carbons Produced Using Glucose, Lactose, and Saccharose

    Science.gov (United States)

    Myronyuk, Ivan F.; Mandzyuk, Volodymyr I.; Sachko, Volodymyr M.; Gun'ko, Volodymyr M.

    2016-11-01

    Glucose, lactose, and saccharose were used as precursors to prepare chars at 400 °C then activated at 800 °C or 1000 °C in closed vessels with controlled amounts of oxygen penetrating through nanopores in the vessel walls. There are correlations between the porosity, amounts of residual O- and H-containing functionalities, and electroconductivity of amorphous carbons studied. The pore size distributions calculated using the nitrogen adsorption isotherms and TEM images show that all carbons are mainly nanoporous with certain contribution of narrow mesopores (at pore half-width x < 5 nm). Oxidizing activation by oxygen penetrating into the closed vessels with chars through nanopores can more strongly change the outer layers of char particles than the inner pores. Therefore, despite relatively great burn-off degree, the textural characteristics are relatively low for activated carbons.

  3. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  4. Etching characteristics and application of physical-vapor-deposited amorphous carbon for multilevel resist

    International Nuclear Information System (INIS)

    Kim, H. T.; Kwon, B. S.; Lee, N.-E.; Park, Y. S.; Cho, H. J.; Hong, B.

    2008-01-01

    For the fabrication of a multilevel resist (MLR) based on a very thin, physical-vapor-deposited (PVD) amorphous carbon (a-C) layer, the etching characteristics of the PVD a-C layer with a SiO x hard mask were investigated in a dual-frequency superimposed capacitively coupled plasma etcher by varying the following process parameters in O 2 /N 2 /Ar plasmas: high-frequency/low-frequency combination (f HF /f LF ), HF/LF power ratio (P HF /P LF ), and O 2 and N 2 flow rates. The very thin nature of the a-C layer helps to keep the aspect ratio of the etched features low. The etch rate of the PVD a-C layer increased with decreasing f HF /f LF combination and increasing P LF and was initially increased but then decreased with increasing N 2 flow rate in O 2 /N 2 /Ar plasmas. The application of a 30 nm PVD a-C layer in the MLR structure of ArF PR/BARC/SiO x /PVD a-C/TEOS oxide supported the possibility of using a very thin PVD a-C layer as an etch-mask layer for the TEOS-oxide layer

  5. Carbon/Clay nanostructured composite obtained by hydrothermal method; Compositos nanoestruturados carbono/argila obtidos por metodo hidotermico

    Energy Technology Data Exchange (ETDEWEB)

    Barin, G.B.; Bispo, T.S.; Gimenez, I.F.; Barreto, L.S., E-mail: gabriela.borin@gmail.co [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Souza Filho, A.G. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica

    2010-07-01

    The development of strategies for converting biomass into useful materials, more efficient energy carrier and / or hydrogen storage is shown a key issue for the present and future. Carbon nanostructure can be obtained by severe processing techniques such as arc discharge, chemical deposition and catalyzed pyrolysis of organic compounds. In this study we used hydrothermal methods for obtaining nanostructured composites of carbon / clay. To this end, we used coir dust and special clays. The samples were characterized by infrared spectroscopy, X-ray diffraction and Raman. The presence of the D band at 1350 cm{sup -1} in the Raman spectrum shows the formation of amorphous carbon with particle size of about 8.85 nm. (author)

  6. Hierarchical Mn2O3 Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances

    Science.gov (United States)

    Gong, Feilong; Lu, Shuang; Peng, Lifang; Zhou, Jing; Kong, Jinming; Jia, Dianzeng; Li, Feng

    2017-01-01

    Porous Mn2O3 microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn2O3 microspheres by first producing MnCO3 microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO3 microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn2O3 nanorods consisting of microspheres. The C@Mn2O3 microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn2O3 microspheres prepared at 500 °C show high specific capacitances of 383.87 F g−1 at current density of 0.5 A g−1, and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn2O3 microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg−1 at power density of 500.00 W kg−1, and a maximum power density of 20.14 kW kg−1 at energy density of 46.8 Wh kg−1. We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon. PMID:29168756

  7. Hierarchical Mn2O3 Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances

    Directory of Open Access Journals (Sweden)

    Feilong Gong

    2017-11-01

    Full Text Available Porous Mn2O3 microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn2O3 microspheres by first producing MnCO3 microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO3 microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn2O3 nanorods consisting of microspheres. The C@Mn2O3 microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn2O3 microspheres prepared at 500 °C show high specific capacitances of 383.87 F g−1 at current density of 0.5 A g−1, and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn2O3 microspheres after annealed at 500 °C and activated carbon (AC show an energy density of up to 77.8 Wh kg−1 at power density of 500.00 W kg−1, and a maximum power density of 20.14 kW kg−1 at energy density of 46.8 Wh kg−1. We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D hierarchical structure in-situ coated with carbon.

  8. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilin [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Gu, Yunle [School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Zili [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Wang, Weimin, E-mail: wangwm@hotmail.com [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Fu, Zhengyi [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2013-06-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH{sub 4} played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B{sub 2}O{sub 3} and KBH{sub 4} as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH{sub 4} played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed.

  9. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    International Nuclear Information System (INIS)

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-01-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH 4 played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B 2 O 3 and KBH 4 as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH 4 played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed

  10. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    Science.gov (United States)

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  11. From Detailed Description of Chemical Reacting Carbon Particles to Subgrid Models for CFD

    Directory of Open Access Journals (Sweden)

    Schulze S.

    2013-04-01

    Full Text Available This work is devoted to the development and validation of a sub-model for the partial oxidation of a spherical char particle moving in an air/steam atmosphere. The particle diameter is 2 mm. The coal particle is represented by moisture- and ash-free nonporous carbon while the coal rank is implemented using semi-global reaction rate expressions taken from the literature. The submodel includes six gaseous chemical species (O2, CO2, CO, H2O, H2, N2. Three heterogeneous reactions are employed, along with two homogeneous semi-global reactions, namely carbon monoxide oxidation and the water-gas-shift reaction. The distinguishing feature of the subgrid model is that it takes into account the influence of homogeneous reactions on integral characteristics such as carbon combustion rates and particle temperature. The sub-model was validated by comparing its results with a comprehensive CFD-based model resolving the issues of bulk flow and boundary layer around the particle. In this model, the Navier-Stokes equations coupled with the energy and species conservation equations were used to solve the problem by means of the pseudo-steady state approach. At the surface of the particle, the balance of mass, energy and species concentration was applied including the effect of the Stefan flow and heat loss due to radiation at the surface of the particle. Good agreement was achieved between the sub-model and the CFD-based model. Additionally, the CFD-based model was verified against experimental data published in the literature (Makino et al. (2003 Combust. Flame 132, 743-753. Good agreement was achieved between numerically predicted and experimentally obtained data for input conditions corresponding to the kinetically controlled regime. The maximal discrepancy (10% between the experiments and the numerical results was observed in the diffusion-controlled regime. Finally, we discuss the influence of the Reynolds number, the ambient O2 mass fraction and the ambient

  12. Characterization of diamond amorphized by ion implantation

    International Nuclear Information System (INIS)

    Allen, W.R.; Lee, E.H.

    1992-01-01

    Single crystal diamond has been implanted at 1 MeV with 2 x 10 20 Ar/m 2 . Rutherford backscattering spectrometry in a channeled geometry revealed a broad amorphized region underlying a thin, partially crystalline layer. Raman spectroscopy disclosed modifications in the bonding characteristic of the appearance of non-diamond carbon. The complementary nature of the two analysis techniques is demonstrated. The Knoop hardness of the implanted diamond was reduced by implantation

  13. Finite size effects in a model for platicity of amorphous composites

    DEFF Research Database (Denmark)

    Tyukodi, Botond; Lemarchand, Claire A.; Hansen, Jesper Schmidt

    2016-01-01

    We discuss the plastic behavior of an amorphous matrix reinforced by hard particles. A mesoscopic depinning-like model accounting for Eshelby elastic interactions is implemented. Only the effect of a plastic disorder is considered. Numerical results show a complex size dependence of the effective...

  14. Thermal conductivity of the amorphous and nanocrystalline phases of the beech wood biocarbon nanocomposite

    Science.gov (United States)

    Kartenko, N. F.; Orlova, T. S.; Parfen'eva, L. S.; Smirnov, B. I.; Smirnov, I. A.

    2014-11-01

    Natural composites (biocarbons) obtained by carbonization of beech wood at different carbonization temperatures T carb in the range of 800-2400°C have been studied using X-ray diffraction. The composites consist of an amorphous matrix and nanocrystallites of graphite and graphene. The volume fractions of the amorphous and nanocrystalline phases as functions of T carb have been determined. Temperature dependences of the phonon thermal conductivity κ( T) of the biocarbons with different temperatures T carb (1000 and 2400°C) have been analyzed in the range of 5-300 K. It has been shown that the behavior of κ( T) of the biocarbon with T carb = 1000°C is controlled by the amorphous phase in the range of 5-50 K and by the nanocrystalline phase in the range of 100-300 K. The character of κ( T) of the biocarbon with T carb = 2400°C is determined by the heat transfer (scattering) in the nanocrystalline phase over the entire temperature range of 5-300 K.

  15. Carbon Particles in Airway Macrophage as a Surrogate Marker in the Early Detection of Lung Diseases

    Directory of Open Access Journals (Sweden)

    NK Kalappanavar

    2012-03-01

    Full Text Available Background: It has been shown that inhalation of carbonaceous particulate matter may impair lung function in children. Objective: Using the carbon content of airway macrophages as a marker of individual exposure to particulate matter derived from fossil fuel, we sought direct evidence for this association. Methods: 300 children from puffed rice industrial areas and 300 children from population living in green zone were selected randomly. Airway macrophages were obtained from healthy children through sputum induction, and the grading of ultrafine carbon particles in airway macrophages was measured. Pulmonary function was also measured by spirometry. Results: Pulmonary function tests showed that in industrial area 42.6% and 20.3% of children had moderate obstructive airway disease and restrictive airway disease, respectively. In the green zone area, 7% of children had obstructive airway disease and 6% had restrictive airway disease. Evaluation of airway macrophages for ultrafine carbon particles revealed that in industrial area there were ultrafine carbon particles of grade 2 in 23% of subjects and grade 3 in 8.33% of individuals with obstructive airway disease. In the green zone area, the rates were 1.67% and 0.7%, respectively. Conclusion: The study provides a first evidence of the strong association between air pollution and development of airway diseases. Carbon particles in the sputum can be used as a marker for air pollution.

  16. Theory of amorphous ices.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  17. Investigation of the milling-induced thermal behavior of crystalline and amorphous griseofulvin.

    Science.gov (United States)

    Trasi, Niraj S; Boerrigter, Stephan X M; Byrn, Stephen Robert

    2010-07-01

    To gain a better understanding of the physical state and the unusual thermal behavior of milled griseofulvin. Griseofulvin crystals and amorphous melt quench samples were milled in a vibrating ball mill for different times and then analyzed using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). Modulated DSC (mDSC) and annealing studies were done for the milled amorphous samples to further probe the effects of milling. Milling of griseofulvin crystals results in decrease in crystallinity and amorphization of the compound. A double peak is seen for crystallization in the DSC, which is also seen for the milled melt quench sample. Both enthalpy and temperature of crystallization decrease for the milled melt quenched sample. Tg is visible under the first peak with the mDSC, and annealing shows that increasing milling time results in faster crystallization upon storage. Milling of griseofulvin results in the formation of an amorphous form and not a mesophase. It increases the amount of surface created and the overall energy of the amorphous griseofulvin, which leads to a decreased temperature of crystallization. The two exotherms in the DSC are due to some particles having nuclei on the surface.

  18. Crystallization of biogenic hydrous amorphous silica

    Science.gov (United States)

    Kyono, A.; Yokooji, M.; Chiba, T.; Tamura, T.; Tuji, A.

    2017-12-01

    Diatom, Nitzschia cf. frustulum, collected from Lake Yogo, Siga prefecture, Japan was cultured in laboratory. Organic components of the diatom cell were removed by washing with acetone and sodium hypochlorite. The remaining frustules were studied by SEM-EDX, FTIR spectroscopy, and synchrotron X-ray diffraction. The results showed that the spindle-shaped morphology of diatom frustule was composed of hydrous amorphous silica. Pressure induced phase transformation of the diatom frustule was investigated by in situ Raman spectroscopic analysis. With exposure to 0.3 GPa at 100 oC, Raman band corresponding to quartz occurred at ν = 465 cm-1. In addition, Raman bands known as a characteristic Raman pattern of moganite was also observed at 501 cm-1. From the integral ratio of Raman bands, the moganite content in the probed area was estimated to be approximately 50 wt%. With the pressure and temperature effect, the initial morphology of diatom frustule was completely lost and totally changed to a characteristic spherical particle with a diameter of about 2 mm. With keeping the compression of 5.7 GPa at 100 oC, a Raman band assignable to coesite appeared at 538 cm-1. That is, with the compression and heating, the hydrous amorphous silica can be readily crystallized into quartz, moganite, and coesite. The first-principles calculations revealed that a disiloxane molecule stabilized in a trans configuration is twisted 60o and changed into the cis configuration with a close approach of water molecule. It is therefore a reasonable assumption that during crystallization of hydrous amorphous silica, the Si-O-Si bridging unit with the cis configuration would survive as a structural defect and then crystallized into moganite by keeping the geometry. This hypothesis is adaptable to the phase transformation from hydrous amorphous silica to coesite as well, because coesite has the four-membered rings and easily formed from the hydrous amorphous silica under high pressure and high

  19. Characterisation of Fe-bearing particles and colloids in the Lena River basin, NE Russia

    Science.gov (United States)

    Hirst, Catherine; Andersson, Per S.; Shaw, Samuel; Burke, Ian T.; Kutscher, Liselott; Murphy, Melissa J.; Maximov, Trofim; Pokrovsky, Oleg S.; Mörth, Carl-Magnus; Porcelli, Don

    2017-09-01

    Rivers are significant contributors of Fe to the ocean. However, the characteristics of chemically reactive Fe remain poorly constrained, especially in large Arctic rivers, which drain landscapes highly susceptible to climate change and carbon cycle alteration. The aim of this study was a detailed characterisation (size, mineralogy, and speciation) of riverine Fe-bearing particles (>0.22 μm) and colloids (1 kDa-0.22 μm) and their association with organic carbon (OC), in the Lena River and tributaries, which drain a catchment almost entirely underlain by permafrost. Samples from the main channel and tributaries representing watersheds that span a wide range in topography and lithology were taken after the spring flood in June 2013 and summer baseflow in July 2012. Fe-bearing particles were identified, using Transmission Electron Microscopy, as large (200 nm-1 μm) aggregates of smaller (20-30 nm) spherical colloids of chemically-reactive ferrihydrite. In contrast, there were also large (500 nm-1 μm) aggregates of clay (illite) particles and smaller (100-200 nm) iron oxide particles (dominantly hematite) that contain poorly reactive Fe. TEM imaging and Scanning Transmission X-ray microscopy (STXM) indicated that the ferrihydrite is present as discrete particles within networks of amorphous particulate organic carbon (POC) and attached to the surface of primary produced organic matter and clay particles. Together, these larger particles act as the main carriers of nanoscale ferrihydrite in the Lena River basin. The chemically reactive ferrihydrite accounts for on average 70 ± 15% of the total suspended Fe in the Lena River and tributaries. These observations place important constraints on Fe and OC cycling in the Lena River catchment area and Fe-bearing particle transport to the Arctic Ocean.

  20. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique; Deposito de peliculas delgadas de carbono amorfo nitrurado utilizando la tecnica de ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo, P.B.; Escobar A, L.; Camps C, E. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, C.P. 52045 Salazar, Estado de Mexico (Mexico); Haro P, E.; Camacho L, M.A. [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa (Mexico); Muhl S, S. [Instituto de Investigacion en Materiales, UNAM (Mexico)

    2000-07-01

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 {sup -4} Torr until 7.5 x 10 {sup -2} Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  1. Plasmon excitation in single wall carbon nanotubes by penetrating charged particles

    International Nuclear Information System (INIS)

    Segui, Silvina; Gervasoni, Juana L; Arista, Néstor R; Mowbray, Duncan J; Mišković, Zoran L

    2012-01-01

    In this work we study the excitation of plasmons due to the incidence of a charged particle passing through a single wall carbon nanotube. We use a quantized hydrodynamic, in which the σ and π electrons characteristic of these carbonaceous structures are depicted as two interacting 2-dimensional fluids, to calculate the average number of plasmons excited. We analyze the contribution of the different plasmon modes in a variety of configurations, and study the energy lost by the incident particle.

  2. Development of amorphous carbon protective coatings on poly(vinyl)chloride

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Souza, Eduardo S. de; Moraes, Francine S. de; Marins, Nazir M.S.; Schreiner, Wido H.; Cruz, Nilson C.

    2010-01-01

    The great versatility of polymers has promoted their application in a series of ordinary situations. The development of specific devices from polymers, however, requires modifications to fit specific stipulations. In this work the surface properties of thin films grown onto polyvinylchloride (PVC) were investigated. Hydrogenated amorphous carbon films were deposited onto commercial PVC plates from acetylene and argon plasmas excited by radiofrequency (13.56 MHz, 70 W) power. The proportion of acetylene in the gas feed was varied against that of argon, keeping the total pressure constant at 2.5 Pa. Deposition time was 1800 s. Film elemental composition was analyzed by X-ray photoelectron spectroscopy, XPS. Water contact angle measurements were performed using the sessile drop technique. The root mean squared roughness was derived from 50 x 50 μm 2 surface topographic images, acquired by scanning probe microscopy. Nanoindentation and pin-on-disk techniques were employed on the determination of film hardness and sliding wear, respectively. Oxidation resistance was obtained through the etching rate of the samples in oxygen radiofrequency (1.3 Pa, 50 W) plasmas. From XPS analysis it was detected oxygen and nitrogen contamination in all the samples. It was also found that sp 3 /sp 2 ratio depends on the proportion of argon in the plasma. At lower argon concentrations, hardness, wear and oxidation resistances were all improved with respect to the uncoated PVC. In such conditions, the surface wettability is low indicating a moderate receptivity to water. This combination of properties, ascribed to a balance between the ion bombardment and deposition processes, is suitable for materials exposed to rigorous weathering conditions.

  3. Characterization of calcium carbonate sorbent particle in furnace environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Soo [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Jung, Jae Hee [Environment Sensor System Research Center, KIST 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791 (Korea, Republic of); Keel, Sang In; Yun, Jin Han; Min, Tai Jin [Environmental Systems Research Division, KIMM 104 Sinseongno, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Kim, Sang Soo, E-mail: sskim@kaist.ac.kr [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO{sub 2} and NO{sub X} emissions. Furthermore, sulfation reaction mechanism under CO{sub 2}-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO{sub 3}) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO{sub 3}, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO{sub 3} sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO{sub 2} atmosphere due to the higher CO{sub 2} partial pressure. Instead, the sintering effect was dominant in the CO{sub 2} atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO{sub 2} atmospheres.

  4. Characterization of calcium carbonate sorbent particle in furnace environment

    International Nuclear Information System (INIS)

    Lee, Kang Soo; Jung, Jae Hee; Keel, Sang In; Yun, Jin Han; Min, Tai Jin; Kim, Sang Soo

    2012-01-01

    The oxy-fuel combustion system is a promising technology to control CO 2 and NO X emissions. Furthermore, sulfation reaction mechanism under CO 2 -rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO 3 ) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO 3 , which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO 3 sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO 2 atmosphere due to the higher CO 2 partial pressure. Instead, the sintering effect was dominant in the CO 2 atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain–subgrain structure model in both the air and CO 2 atmospheres.

  5. Confinement of Amorphous Lactose in Pores Formed Upon Co-Spray Drying With Nanoparticles.

    Science.gov (United States)

    Hellrup, Joel; Mahlin, Denny

    2017-01-01

    This study aims at investigating factors influencing humidity-induced recrystallization of amorphous lactose, produced by co-spray drying with particles of cellulose nanocrystals or sodium montmorillonite. In particular, the focus is on how the nanoparticle shape and surface properties influence the nanometer to micrometer length scale nanofiller arrangement in the nanocomposites and how the arrangements influence the mechanisms involved in the inhibition of the amorphous to crystalline transition. The nanocomposites were produced by co-spray drying. Solid-state transformations were analyzed at 60%-94% relative humidity using X-ray powder diffraction, microcalorimetry, and light microscopy. The recrystallization rate constant for the lactose/cellulose nanocrystals and lactose/sodium montmorillonite nanocomposites was lowered at nanofiller contents higher than 60% and was stable for months at 80% nanofiller. The most likely explanation to these results is spontaneous formations of mesoporous particle networks that the lactose is confined upon co-spray drying at high filler content. Compartmentalization and rigidification of the amorphous lactose proved to be less important mechanisms involved in the stabilization of lactose in the nanocomposites. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    Energy Technology Data Exchange (ETDEWEB)

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.; Iskandar, Ferry, E-mail: ferry@fi.itb.ac.id; Abdullah, Mikrajuddin; Khairurrijal [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Ganesha 10 Bandung, Indonesia 40132 (Indonesia); Ogi, Takashi; Okuyama, Kikuo [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, Japan 739-8527 (Japan)

    2015-04-16

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained by varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.

  7. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir

    2013-09-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon (Ar) are utilized to establish the flame, whereas titanium tetraisopropoxide is used as the precursor for TiO2. The nanoparticles are characterized using high-resolution transmission electron microscopy, with elemental mapping (of C, O, and Ti), X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis. The growth of pure anatase TiO2 nanoparticles occurs when Ar and H2 are used as the precursor carrier gas, while the growth of carbon-coated nanoparticles ensues when Ar and ethylene (C2H4) are used as the precursor carrier gas. A uniform coating of 3-5nm of carbon is observed around TiO2 particles. The growth of highly crystalline TiO2 nanoparticles is dependent on the gas flow rate of the precursor carrier and amorphous particles are observed at high flow rates. Carbon coating occurs only on crystalline nanoparticles, suggesting a possible growth mechanism of carbon-coated TiO2 nanoparticles. © 2013 The Combustion Institute.

  8. Effect of nanoparticles as lubricant additives on friction and wear behavior of tetrahedral amorphous carbon (ta-C coating

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2018-03-01

    Full Text Available As diamond like carbon (DLC coating becomes increasingly popular in providing low friction and wear under lubricated conditions, the effect of various oil additives on tribological behavior of DLC coating is drawing more attention. Various oil additives, such as ZnDTP and MoDTC, have been widely used in automobile engine industry to pursuit excellent tribological performance in the insufficient lubrication condition. Although such commercial oil additives have been proven to reduce friction or/and wear to some extent, usage of such high -SAPS (sulphuric ash, phosphor, sulfphur conventional additives is bound to arouse concerns due to environmental reasons. In this research, we investigate the effect of two nanoparticle oil additives, which are cerium oxide (CeO2 and zirconium dioxide (ZrO2, on friction and wear of non-hydrogen tetrahedral amorphous carbon (ta-C coating. The results show that by adding ZrO2 nanoparticle, the friction of DLC coating could be reduced about 32% compared to non-additive base oil scenario, but specific wear rate increases by 40%. When CeO2 nanoparticle is used, friction increases by 22% compared to non-additive base oil scenario, however wear decreases by nearly 77%.

  9. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    International Nuclear Information System (INIS)

    Schlagenhauf, Lukas; Kuo, Yu-Ying; Bahk, Yeon Kyoung; Nüesch, Frank; Wang, Jing

    2015-01-01

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected

  10. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    Science.gov (United States)

    Schlagenhauf, Lukas; Kuo, Yu-Ying; Bahk, Yeon Kyoung; Nüesch, Frank; Wang, Jing

    2015-11-01

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected.

  11. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Schlagenhauf, Lukas [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Functional Polymers (Switzerland); Kuo, Yu-Ying; Bahk, Yeon Kyoung [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies (Switzerland); Nüesch, Frank [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Functional Polymers (Switzerland); Wang, Jing, E-mail: Jing.Wang@ifu.baug.ethz.ch [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies (Switzerland)

    2015-11-15

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected.

  12. Behaviour of TEM metal grids during in-situ heating experiments.

    Science.gov (United States)

    Zhang, Zaoli; Su, Dangsheng

    2009-05-01

    The stability of Ni, Cu, Mo and Au transmission electron microscope (TEM) grids coated with ultra-thin amorphous carbon (alpha-C) or silicon monoxide film is examined by in-situ heating up to a temperature in the range 500-850 degrees C in a transmission electron microscope. It is demonstrated that some grids can generate nano-particles either due to the surface diffusion of metal atoms on amorphous film or due to the metal evaporation/redeposition. The emergence of nano-particles can complicate experimental observations, particularly in in-situ heating studies of dynamic behaviours of nano-materials in TEM. The most widely used Cu grid covered with amorphous carbon is unstable, and numerous Cu nano-particles start to form once the heating temperature reaches 600 degrees C. In the case of Ni grid covered with alpha-C film, a large number of Ni nano-crystals occur immediately when the temperature approaches 600 degrees C, accompanied by the graphitization of amorphous carbon. In contrast, both Mo and Au grids covered with alpha-C film exhibit good stability at elevated temperature, for instance, up to 680 and 850 degrees C for Mo and Au, respectively, and any other metal nano-particles are detected. Cu grid covered Si monoxide thin film is stable up to 550 degrees C, but Si nano-crystals appear under intensive electron beam. The generated nano-particles are well characterized by spectroscopic techniques (EDXS/EELS) and high-resolution TEM. The mechanism of nano-particle formation is addressed based on the interactions between the metal grid and the amorphous carbon film and on the sublimation of metal.

  13. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  14. Neutron diffraction and thermal studies of amorphous CS{sub 2} realised by low-temperature vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, O.; Matsuo, T. [Osaka Univ., Dept. of Chemistry, Graduate School of Sciences (Japan); Onoda-Yamamuro, N. [Tokyo Denki Univ., College of Sciences and Technology (Japan); Takeda, K. [Naruto Univ., Dept. of Chemistry, Tokushima (Japan); Munemura, H.; Tanaka, S.; Misawa, M. [Niigata Univ. (Japan). Faculty of Science

    2003-08-01

    We have succeeded in preparing amorphous carbon disulphide (CS{sub 2}) by depositing its vapour on a cold substrate at 10 K. Complete formation of the amorphous state has been confirmed by neutron diffraction and differential thermal analysis (DTA). The amorphous sample crystallized at ca. 70 K, which is lower than the hypothetical glass transition temperature (92 K) estimated from the DTA data of the (CS{sub 2}){sub x}(S{sub 2}Cl{sub 2}){sub 1-x} binary mixture. CS{sub 2}, a symmetric linear tri-atomic molecule, is the simplest of the amorphized molecular substances whose structural and thermal information has been reported so far. Comparison of the static structure factors S(Q) has shown that the orientational correlation of CS{sub 2} molecules may be much stronger in the amorphous state than in the liquid state at higher temperature. (authors)

  15. Particle Size Effects on Fenton Regeneration of MTBE-spent Activated Carbon

    Science.gov (United States)

    Fenton-driven regeneration of spent granular activated carbon (GAC) is a developing technology that may reduce water treatment costs. In this study, the effect of GAC particle size on Fenton-driven oxidation of methyl tert-butyl ether (MTBE)-spent GAC was evaluated. The GAC was...

  16. A general method to coat colloidal particles with titiana

    NARCIS (Netherlands)

    Demirors, A.F.; van Blaaderen, A.; Imhof, A.

    2010-01-01

    We describe a general one-pot method for coating colloidal particles with amorphous titania. Various colloidal particles such as silica particles, large silver colloids, gibbsite platelets, and polystyrene spheres were successfully coated with a titania shell. Although there are several ways of

  17. A comparative chemical network study of HWCVD deposited amorphous silicon and carbon based alloys thin films

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Bibhu P., E-mail: bibhuprasad.swain@gmail.com [Centre for Materials Science and Nanotechnology, Sikkim Manipal Institute of Technology, Majitar, Rangpo Sikkim (India); Swain, Bhabani S.; Hwang, Nong M. [Thin Films and Microstructure Laboratory, Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-03-05

    Highlights: • a-SiC:H, a-SiN:H, a-C:H and a-SiCN:H films were deposited by hot wire chemical vapor deposition. • Evolution of microstructure of a-SiCN:H films deposited at different NH{sub 3} flow rate were analyzed. • The chemical network of Si and C based alloys were studied by FTIR and Raman spectroscopy. -- Abstract: Silicon and carbon based alloys were deposited by hot wire chemical vapor deposition (HWCVD). The microstructure and chemical bonding of these films were characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electron microscopy revealed various microstructures were observed for a-C:H, a-SiC:H, a-SiN:H, a-CN:H and a-SiCN:H films. The microstructure of SiN:H films showed agglomerate spherical grains while a-C:H films showed more fractal surface with branched microstructure. However, a-SiC:H, a-CN:H and a-SiCN:H indicated uniform but intermediate surface fractal microstructure. A series of a-SiCN:H films were deposited with variation of NH{sub 3} flow rate. The nitrogen incorporation in a-SiCN:H films alter the carbon network from sp{sup 2} to sp{sup 3} bonding The detail chemical bonding of amorphous films was analyzed by curve fitting method.

  18. Food-grade Pickering stabilisation of foams by in situ hydrophobisation of calcium carbonate particles

    NARCIS (Netherlands)

    Binks, Bernard P.; Muijlwijk, K.; Koman, Henriëtte; Poortinga, A.T.

    2017-01-01

    The aim of this study was to investigate the possibility of stabilising foam bubbles in water by adsorption of calcium carbonate (CaCO3) particles. Because CaCO3 is hydrophilic and not surface-active, particles were hydrophobised in situ with several emulsifiers. The used emulsifiers were food-grade

  19. Food-grade pickering stabilisation of foams by in situ hydrophobisation of calcium carbonate particles

    NARCIS (Netherlands)

    Binks, B.P.; Muijlwijk, K.; Koman, H.; Poortinga, A.T.

    2017-01-01

    The aim of this study was to investigate the possibility of stabilising foam bubbles in water by adsorption of calcium carbonate (CaCO3) particles. Because CaCO3 is hydrophilic and not surface-active, particles were hydrophobised in situ with several emulsifiers. The used emulsifiers were food-grade

  20. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices

    Science.gov (United States)

    Chen, Yu-Ze; Medina, Henry; Lin, Hung-Chiao; Tsai, Hung-Wei; Su, Teng-Yu; Chueh, Yu-Lun

    2015-01-01

    Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a-C) film surprisingly undergoes a noticeable transformation to crystalline graphene. Furthermore, the thickness of graphene could be controlled, depending on the thickness of the pre-deposited a-C film. The transformation mechanism was investigated and explained in detail. This approach enables development of a one-step process to fabricate electrical devices made of all carbon material, highlighting the uniqueness of the novel approach for developing graphene electronic devices. Interestingly, the carbon electrodes made directly on the graphene layer by our approach offer a good ohmic contact compared with the Schottky barriers usually observed on graphene devices using metals as electrodes.Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a

  2. Electron stimulated reactions of methyl iodide coadsorbed with amorphous solid water

    International Nuclear Information System (INIS)

    Perry, C. C.; Faradzhev, N. S.; Madey, T. E.; Fairbrother, D. H.

    2007-01-01

    The electron stimulated reactions of methyl iodide (MeI) adsorbed on and suspended within amorphous solid water (ice) were studied using a combination of postirradiation temperature programmed desorption and reflection absorption infrared spectroscopy. For MeI adsorbed on top of amorphous solid water (ice), electron beam irradiation is responsible for both structural and chemical transformations within the overlayer. Electron stimulated reactions of MeI result principally in the formation of methyl radicals and solvated iodide anions. The cross section for electron stimulated decomposition of MeI is comparable to the gas phase value and is only weakly dependent upon the local environment. For both adsorbed MeI and suspended MeI, reactions of methyl radicals within MeI clusters lead to the formation of ethane, ethyl iodide, and diiodomethane. In contrast, reactions between the products of methyl iodide and water dissociation are responsible for the formation of methanol and carbon dioxide. Methane, formed as a result of reactions between methyl radicals and either parent MeI molecules or hydrogen atoms, is also observed. The product distribution is found to depend on the film's initial chemical composition as well as the electron fluence. Results from this study highlight the similarities in the carbon-containing products formed when monohalomethanes coadsorbed with amorphous solid water are irradiated by either electrons or photons

  3. Carbon Fiber Damage in Particle Beam

    CERN Document Server

    Dehning, B; Kroyer, T; Meyer, M; Sapinski, M

    2011-01-01

    Carbon fibers are commonly used as moving targets in beam wire scanners. The heating of the fiber due to energy loss of the particles travelling through is simulated with Geant4. The heating induced by the beam electromagnetic field is estimated with ANSYS. The heat transfer and sublimation processes are modelled. Due to the model nonlinearity, a numerical approach based on discretization of the wire movement is used to solve it for particular beams. Radiation damage to the fiber is estimated with SRIM. The model is tested with available SPS and LEP data and a dedicated damage test on the SPS beam is performed followed by a post-mortem analysis of the wire remnants. Predictions for the LHC beams are made.

  4. The surface chemical reactivity of particles and its impact on human health

    Science.gov (United States)

    Setyan, A.; Sauvain, J. J.; Riediker, M.; Guillemin, M.; Rossi, M. J.

    2017-12-01

    The chemical composition of the particle-air interface is the gateway to chemical reactions of gases with condensed phase particles. It is of prime importance to understand the reactivity of particles and their interaction with surrounding gases, biological membranes, and solid supports. We used a Knudsen flow reactor to quantify functional groups on the surface of a few selected particle types. This technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. Six probe gases have been selected for the identification and quantification of important functional groups: N(CH3)3 for the titration of acidic sites, NH2OH for the detection of carbonyl functions (aldehydes and ketones) and/or oxidized sites owing to its strong reducing properties, CF3COOH and HCl for basic sites of different strength, O3 and NO2 for oxidizable groups. We also studied the kinetics of the reactions between particles and probe gases (uptake coefficient γ0). We tested the surface chemical composition and oxidation states of laboratory-generated aerosols (3 amorphous carbons, 2 flame soots, 2 Diesel particles, 2 secondary organic aerosols [SOA], 4 multiwall carbon nanotubes [MWCNT], 3 TiO2, and 2 metal salts) and of aerosols sampled in several bus depots. The sampling of particles in the bus depots was accompanied by the collection of urine samples of mechanics working full-time in these bus depots, and the quantification of 8-hydroxy-2'-deoxyguanosine, a biomarker of oxidative stress. The increase in oxidative stress biomarker levels over a working day was correlated (pcellular antioxidants.

  5. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  6. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  7. AmAMorph: Finite State Morphological Analyzer for Amazighe

    Directory of Open Access Journals (Sweden)

    Fatima Zahra Nejme

    2016-03-01

    Full Text Available This paper presents AmAMorph, a morphological analyzer for Amazighe language using a system based on the NooJ linguistic development environment. The paper begins with the development of Amazighe lexicons with large coverage formalization. The built electronic lexicons, named ‘NAmLex’, ‘VAmLex’ and ‘PAmLex’ which stand for ‘Noun Amazighe Lexicon’, ‘Verb Amazighe Lexicon’ and ‘Particles Amazighe Lexicon’, link inflectional, morphological, and syntacticsemantic information to the list of lemmas. Automated inflectional and derivational routines are applied to each lemma producing over inflected forms. To our knowledge,AmAMorph is the first morphological analyzer for Amazighe. It identifies the component morphemes of the forms using large coverage morphological grammars. Along with the description of how the analyzer is implemented, this paper gives an evaluation of the analyzer.

  8. Annealing Effects on the Magnetization of Co-Ni-B Amorphous Nanoparticles

    International Nuclear Information System (INIS)

    Vargas, J.M.

    2001-01-01

    Chemically prepared (Co x Ni 1-x ) 1 00 -y B y (x=0.5, 0.75, 1; y∼30) amorphous fine particles were characterized by x-ray diffraction, DTA and TGA, and in-situ magnetic measurement as a function of annealing temperature in an inert atmosphere.Magnetic measurement performed in as prepared and ∼150C degree annealed samples show an increase of the saturation magnetization and magnetic moment after thermal tretment.Room temperature magnetization increases by factors of ∼3 in average.These measurements may indicate a local re-ordering of the amorphous phase at temperatures much lower than the full crystallization temperature

  9. Origin of temperature-induced low friction of sputtered Si-containing amorphous carbon coatings

    International Nuclear Information System (INIS)

    Jantschner, O.; Field, S.K.; Holec, D.; Fian, A.; Music, D.; Schneider, J.M.; Zorn, K.; Mitterer, C.

    2015-01-01

    This work reports on a tribological study of magnetron-sputtered silicon-containing amorphous carbon thin films vs. their alumina counterparts. Temperature cycling during ball-on-disk tests in humid air revealed a decrease in the coefficient of friction from 0.3 to <0.02 beyond 240 ± 15 °C. Systematic variation of the environment confirmed oxygen to be responsible for the low friction. X-ray photoelectron spectroscopy of the wear tracks indicates oxidation of Si-C bonds and formation of Si-O-C bonds, followed by further oxidation to SiO 2 above 450 °C. Ab initio molecular dynamics simulations of gas interactions with the a-C surface revealed dissociation of O 2 and the formation of oxides. Additional density functional theory calculations of Si incorporation into a graphene layer, resembling the surface of the film, showed preferential attraction of gaseous species (H, O, -OH, H 2 O), to Si-sites as compared to C-sites. Hence, the temperature- and atmosphere-induced changes in friction coefficient can be understood based on correlative X-ray photoelectron spectroscopy and ab initio data: the formation of Si-O-C bonds stemming from a reaction of the as-deposited coating with atmosphere in the tribological contact is observed by theory and experiment

  10. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Science.gov (United States)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  11. Physical–chemical and biological behavior of an amorphous calcium phosphate thin film produced by RF-magnetron sputtering

    International Nuclear Information System (INIS)

    Santos, Euler A. dos; Moldovan, Simona; Mateescu, Mihaela; Faerber, Jacques; Acosta, Manuel; Pelletier, Hervé; Anselme, Karine; Werckmann, Jacques

    2012-01-01

    This work evaluates the thermal reactivity and the biological reactivity of an amorphous calcium phosphate thin film produced by radio frequency (RF) magnetron sputtering onto titanium substrates. The analyses showed that the sputtering conditions used in this work led to the deposition of an amorphous calcium phosphate. The thermal treatment of this amorphous coating in the presence of H 2 O and CO 2 promoted the formation of a carbonated HA crystalline coating with the entrance of CO 3 2− ions into the hydroxyl HA lattice. When immersed in culture medium, the amorphous and carbonated coatings exhibited a remarkable instability. The presence of proteins increased the dissolution process, which was confirmed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Moreover, the carbonated HA coating induced precipitation independently of the presence of proteins under dynamic conditions. Despite this surface instability, this reactive calcium phosphate significantly improved the cellular behavior. The cell proliferation was higher on the Ticp than on the calcium phosphate coatings, but the two coatings increased cellular spreading and stress fiber formation. In this sense, the presence of reactive calcium phosphate coatings can stimulate cellular behavior. - Highlights: ► Functionalization of Ti with reactive CaP thin film by RF-magnetron sputtering. ► De-hydroxylation facilitating the insertion of CO 3 2− into the HA lattice. ► High surface reactivity in the presence of culture medium. ► Cell behavior improved by the presence of reactive films.

  12. Fluidized bed reactor for processing particles coated with carbon

    International Nuclear Information System (INIS)

    Marschollek, M.; Simon, W.; Walter, C.

    1978-01-01

    The carbon coating of production returns of these particles first has to be removed before the heavy metal core released can be reprocessed. For reasons of criticality, removal of burnt-up particles downwards must be possible in the fluidized bed reactor even if the reactor diameter is greater than 800 mm, and the material temperatures must not exceed 650 0 C. It consists of an upper cylindrical and a lower conical part, where, according to the invention, the gas distributor heads in the conical part are situated in several planes above one another for the fluidisation and combustion gas and where they are evently distributed over the reactor crossection, so that an even flow profile is achieved over the reactor cross section. (HP) [de

  13. Evolution of sp2 networks with substrate temperature in amorphous carbon films: Experiment and theory

    International Nuclear Information System (INIS)

    Gago, R.; Vinnichenko, M.; Jaeger, H.U.; Maitz, M.F.; Belov, A.Yu.; Jimenez, I.; Huang, N.; Sun, H.

    2005-01-01

    The evolution of sp 2 hybrids in amorphous carbon (a-C) films deposited at different substrate temperatures was studied experimentally and theoretically. The bonding structure of a-C films prepared by filtered cathodic vacuum arc was assessed by the combination of visible Raman spectroscopy, x-ray absorption, and spectroscopic ellipsometry, while a-C structures were generated by molecular-dynamics deposition simulations with the Brenner interatomic potential to determine theoretical sp 2 site distributions. The experimental results show a transition from tetrahedral a-C (ta-C) to sp 2 -rich structures at ∼500 K. The sp 2 hybrids are mainly arranged in chains or pairs whereas graphitic structures are only promoted for sp 2 fractions above 80%. The theoretical analysis confirms the preferred pairing of isolated sp 2 sites in ta-C, the coalescence of sp 2 clusters for medium sp 2 fractions, and the pronounced formation of rings for sp 2 fractions >80%. However, the dominance of sixfold rings is not reproduced theoretically, probably related to the functional form of the interatomic potential used

  14. An amorphous Si-O film tribo-induced by natural hydrosilicate powders on ferrous surface

    International Nuclear Information System (INIS)

    Zhang, Baosen; Xu, Binshi; Xu, Yi; Ba, Zhixin; Wang, Zhangzhong

    2013-01-01

    The tribological properties of surface-coated serpentine powders suspended in oil were evaluated using an Optimal SRV-IV oscillating friction and wear tester. The worn surface and the tribo-induced protective film were characterized by scanning electron microscope and focused ion beam (SEM/FIB) work station, energy dispersive spectroscopy (EDS) and transmission electron microscope (TEM). Results indicate that with 0.5 wt% addition of serpentine powders to oil, the friction coefficient and wear rate significantly decrease referenced to those of the base oil alone. An amorphous SiO x film with amorphous SiO x particles inserted has formed on the worn surface undergoing the interactions between serpentine particles and friction surfaces. The protective film with excellent lubricating ability and mechanical properties is responsible for the reduced friction and wear.

  15. XMCD study of CoPt nanoparticles embedded in MgO and amorphous carbon matrices

    International Nuclear Information System (INIS)

    Tournus, F.; Blanc, N.; Tamion, A.; Ohresser, P.; Perez, A.; Dupuis, V.

    2008-01-01

    We report the synthesis and characterization of CoPt nanoparticles, using X-ray magnetic circular dichroism (XMCD) at the Co L 2,3 edges. Clusters are produced in ultra-high vacuum conditions, following a physical route, and embedded in non-metallic matrices: MgO and amorphous carbon (a-C). In MgO, Co atoms are partially oxidized, which goes with a μ L /μ S enhancement. On the contrary, a-C appears as a very suitable matrix. In particular, annealing of CoPt cluster embedded in a-C is able to promote L 1 0 chemical order, without alteration of the sample. This transformation, which has been directly evidenced by transmission electron microscopy observations, is accompanied by a striking augmentation of μ S , μ L and the μ L /μ S ratio of Co. The presence of Pt leads to an enhanced Co magnetic moment, as compared to Co bulk, even for the chemically disordered alloy. Moreover, the high value of 1.91μ B /at. measured for μ S is unusual for Co and must be a signature of chemical order in CoPt alloy nanoparticles

  16. Electrochemical properties of N-doped hydrogenated amorphous carbon films fabricated by plasma-enhanced chemical vapor deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yoriko; Furuta, Masahiro; Kuriyama, Koichi; Kuwabara, Ryosuke; Katsuki, Yukiko [Division of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan); Kondo, Takeshi [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Fujishima, Akira [Kanagawa Advanced Science and Technology (KAST), 3-2-1, Sakato, Takatsu-ku, Kawasaki-shi, Kanagawa 213-0012 (Japan); Honda, Kensuke, E-mail: khonda@yamaguchi-u.ac.j [Division of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan)

    2011-01-01

    Nitrogen-doped hydrogenated amorphous carbon thin films (a-C:N:H, N-doped DLC) were synthesized with microwave-assisted plasma-enhanced chemical vapor deposition widely used for DLC coating such as the inner surface of PET bottles. The electrochemical properties of N-doped DLC surfaces that can be useful in the application as an electrochemical sensor were investigated. N-doped DLC was easily fabricated using the vapor of nitrogen contained hydrocarbon as carbon and nitrogen source. A N/C ratio of resulting N-doped DLC films was 0.08 and atomic ratio of sp{sup 3}/sp{sup 2}-bonded carbons was 25/75. The electrical resistivity and optical gap were 0.695 {Omega} cm and 0.38 eV, respectively. N-doped DLC thin film was found to be an ideal polarizable electrode material with physical stability and chemical inertness. The film has a wide working potential range over 3 V, low double-layer capacitance, and high resistance to electrochemically induced corrosion in strong acid media, which were the same level as those for boron-doped diamond (BDD). The charge transfer rates for the inorganic redox species, Fe{sup 2+/3+} and Fe(CN){sub 6}{sup 4-/3-} at N-doped DLC were sufficiently high. The redox reaction of Ce{sup 2+/3+} with standard potential higher than H{sub 2}O/O{sub 2} were observed due to the wider potential window. At N-doped DLC, the change of the kinetics of Fe(CN){sub 6}{sup 3-/4-} by surface oxidation is different from that at BDD. The rate of Fe(CN){sub 6}{sup 3-/4-} was not varied before and after oxidative treatment on N-doped DLC includes sp{sup 2} carbons, which indicates high durability of the electrochemical activity against surface oxidation.

  17. Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow

    NARCIS (Netherlands)

    van der Mei, Henny C.; Atema-Smit, Jelly; Jager, Debbie; Langworthy, Don E.; Collias, Dimitris I.; Mitchell, Michael D.; Busscher, Henk J.

    2008-01-01

    In rural areas around the world, people often rely on water filtration plants using activated carbon particles for safe water supply. Depending on the carbon surface, adhering microorganisms die or grow to form a biofilm. Assays to assess the efficacy of activated carbons in bacterial removal do not

  18. Preparation and Optimization of Amorphous Ursodeoxycholic Acid Nano-suspensions by Nanoprecipitation based on Acid-base Neutralization for Enhanced Dissolution.

    Science.gov (United States)

    Xie, Yike; Chen, Zhongjian; Su, Rui; Li, Ye; Qi, Jianping; Wu, Wei; Lu, Yi

    2017-01-01

    Ursodeoxycholic acid, usually used to dissolve cholesterol gallstones in clinic, is a typical hydrophobic drug with poor oral bioavailability due to dissolution rate-limited performance. The objective of this study was to increase the dissolution of ursodeoxycholic acid by amorphous nanosuspensions. Nanoprecipitation based on acid-base neutralization was used to prepare the nanosuspensions with central composite design to optimize the formula. The nanosuspensions were characterized by particle size, morphology, crystallology and dissolution. The ursodeoxycholic acid nanosuspensions showed mean particle size around 380 nm with polydispersion index value about 0.25. Scanning electron microscope observed high coverage of HPMC-E50 onto the surface of the nanosuspensions. Differential scanning calorimetry and powder X-ray diffractometry revealed amorphous structure of the ursodeoxycholic acid nanosuspensions. A significant increase of dissolution in acidic media was achieved by the amorphous nanosuspensions compared with the physical mixture. It can be predicted that the amorphous nanosuspensions show great potential in improving the oral bioavailability of ursodeoxycholic acid. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions

    International Nuclear Information System (INIS)

    Long, Christopher M.; Nascarella, Marc A.; Valberg, Peter A.

    2013-01-01

    Airborne particles containing elemental carbon (EC) are currently at the forefront of scientific and regulatory scrutiny, including black carbon, carbon black, and engineered carbon-based nanomaterials, e.g., carbon nanotubes, fullerenes, and graphene. Scientists and regulators sometimes group these EC-containing particles together, for example, interchangeably using the terms carbon black and black carbon despite one being a manufactured product with well-controlled properties and the other being an undesired, incomplete-combustion byproduct with diverse properties. In this critical review, we synthesize information on the contrasting properties of EC-containing particles in order to highlight significant differences that can affect hazard potential. We demonstrate why carbon black should not be considered a model particle representative of either combustion soots or engineered carbon-based nanomaterials. Overall, scientific studies need to distinguish these highly different EC-containing particles with care and precision so as to forestall unwarranted extrapolation of properties, hazard potential, and study conclusions from one material to another. -- Highlights: •Major classes of elemental carbon-containing particles have distinct properties. •Despite similar names, carbon black should not be confused with black carbon. •Carbon black is distinguished by a high EC content and well-controlled properties. •Black carbon particles are characterized by their heterogenous properties. •Carbon black is not a model particle representative of engineered nanomaterials. -- This review demonstrates the significant physical and chemical distinctions between elemental carbon-containing particles e.g., carbon black, black carbon, and engineered nanomaterials

  20. Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating.

    Science.gov (United States)

    Capece, Maxx; Davé, Rajesh

    2015-06-01

    Although amorphous solid drug formulations may be advantageous for enhancing the bioavailability of poorly soluble active pharmaceutical ingredients, they exhibit poor physical stability and undergo recrystallization. To address this limitation, this study investigates stability issues associated with amorphous solids through analysis of the crystallization behavior for acetaminophen (APAP), known as a fast crystallizer, using a modified form of the Avrami equation that kinetically models both surface and bulk crystallization. It is found that surface-enhanced crystallization, occurring faster at the free surface than in the bulk, is the major impediment to the stability of amorphous APAP. It is hypothesized that a novel use of a dry-polymer-coating process referred to as mechanical-dry-polymer-coating may be used to inhibit surface crystallization and enhance stability. The proposed process, which is examined, simultaneously mills and coats amorphous solids with polymer, while avoiding solvents or solutions, which may otherwise cause stability or crystallization issues during coating. It is shown that solid dispersions of APAP (64% loading) with a small particle size (28 μm) could be prepared and coated with the polymer, carnauba wax, in a vibratory ball mill. The resulting amorphous solid was found to have excellent stability as a result of inhibition of surface crystallization. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Amorphous structure evolution of high power diode laser cladded Fe–Co–B–Si–Nb coatings

    International Nuclear Information System (INIS)

    Zhu Yanyan; Li Zhuguo; Huang Jian; Li Min; Li Ruifeng; Wu Yixiong

    2012-01-01

    Highlights: ► Fabricated amorphous composited coating by high power diode laser cladding with single track. ► Lower dilution and higher scanning speed are desired to obtain higher amorphous phase fraction. ► White spots phase with high content of Nb embedded in the amorphous matrix. - Abstract: Fe–Co–B–Si–Nb coatings were fabricated on the surface of low carbon steel using high power diode laser cladding of [(Fe 0.5 Co 0.5 ) 0.75 B 0.2 Si 0.05 ] 95.7 Nb 4.3 amorphous powders at three different scanning speeds of 6, 17 and 50 m/s. At each scanning speed, laser power was optimized to obtain low dilution ratio. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy with energy dispersive spectrometer and electron probe micro analysis were carried out to characterize the microstructure and chemical composition of the cladded coatings. Differential scanning calorimetry was also carried out to investigate the fraction of the amorphous phase. The results showed that dilution ratio and scanning speed were the two main factors for fabricating Fe–Co–B–Si–Nb amorphous coating by high power diode laser cladding. Low dilution ratio was crucial for the formation of amorphous phase. When the dilution ratio was low, the fraction of amorphous phase in the cladded coatings increased upon increasing the scanning speed.

  2. Preparation of hydrogenated amorphous carbon films using a microsecond-pulsed DC capacitive-coupled plasma chemical vapor deposition system operated at high frequency up to 400 kHz

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-06-01

    Hydrogenated amorphous carbon (a-C:H) films are deposited on silicon (Si) substrates using a high-repetition microsecond-pulsed DC plasma chemical vapor deposition (CVD) system from acetylene (C2H2) at a gas pressure of 15 Pa inside a custom-made vacuum chamber. The plasma discharge characteristics, hydrocarbon species, and the microstructure of the resulting films are examined at various pulse repetition rates from 50 to 400 kHz and a fixed duty cycle of 50%. The optical emission spectra confirmed the increase in electron excitation energy from 1.09 to 1.82 eV and the decrease in the intensity ratio of CH/C2 from 1.04 to 0.75 with increasing pulse frequency, indicating the enhanced electron impact dissociation of C2H2 gas. With increasing pulse frequency, the deposition rate gradually increased, reaching a maximum rate of 60 nm/min at 200 kHz, after which a progressive decrease was noted, whereas the deposition area was almost uniform for all the prepared films. Clear trends of increasing sp3 content (amorphization) and decreasing hydrogen (H) content in the films were observed as the pulse repetition rate increased, while most of the hydrogen atoms bonded to carbon atoms by sp3 hybridization rather than by sp2 hybridization.

  3. Surfactant Assisted Stabilization of Carbon Nanotubes Synthesized by a Spray Pyrolysis Method

    Directory of Open Access Journals (Sweden)

    D. Mendoza-Cachú

    2017-01-01

    Full Text Available Surface modification of carbon nanotubes has been an interesting issue from a composites materials point of view. A nanotubes agglomeration has to be avoided to achieve a homogeneous dispersion in a composite matrix. In this research, we report on the synthesis of carbon nanotubes using a variant of the chemical vapor deposition technique known as spray pyrolysis method. X-ray diffraction (XRD, transmission electron microscopy (TEM, and scanning electron microscopy (SEM studies showed that the synthesized products had an aligned structure with low purity degree, high content of catalyst particles, and a smaller amount of amorphous carbon. A secondary method was applied, which involves an acidic treatment that dissolves contaminant particles to enhance the purity of the nanotubes. Microstructural analysis, which includes XRD and SEM, indicates an effective reduction of impurities. Dispersion of the nanotubes was assessed using different surfactants, such as sodium dodecyl-sulfate (SDS and ethylenediaminetetraacetic acid (EDTA. Finally, Raman spectroscopy, UV-Vis, and SEM techniques confirm that better results were obtained with EDTA. For EDTA and SDS surfactants, low concentrations of 0.3 mg/mL and 0.2 mg/mL were most efficient, respectively.

  4. Reciprocating sliding behaviour of self-mated amorphous diamond-like carbon coatings on Si3N4 ceramics under tribological stress

    International Nuclear Information System (INIS)

    Vila, M.; Abreu, C.S.; Salgueiredo, E.; Almeida, F.A.; Fernandes, A.J.S.; Costa, F.M.; Gomes, J.R.; Silva, R.F.

    2006-01-01

    Amorphous diamond-like carbon films grown by magnetron sputtering have been deposited on silicon nitride based substrates for tribological purposes. A conductive Si 3 N 4 /30% vol.TiN composite was produced for bias substrate application. Friction and wear properties of carbon coated self-mated pairs were assessed using a reciprocal motion ball-on-flat setup in unlubricated conditions with applied normal loads of 3 N and 5 N. The worn surfaces were studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) in order to identify the prevalent wear mechanism. Unbiased and biased substrates behaved differently, the former undergoing premature delamination while the latter endured the tribological test conditions (3 N, ∼ 43 m). Very low friction coefficient values of ∼ 0.015 were sustained assuring remarkable wear behaviour. Surface grooving and wear debris accumulation in the sliding track lead to a roughness increase from the nominal rms value of ∼ 12 nm to ∼ 97 nm, although no weight loss and surface profile modification was quantifiable

  5. Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite.

    Science.gov (United States)

    Xiao, Junwu; Wang, Zhining; Tang, Yecang; Yang, Shihe

    2010-04-06

    A phospholipid monolayer, approximately half the bilayer structure of a biological membrane, can be regarded as an ideal model for investigating biomineralization on biological membranes. In this work on the biomimetic mineralization of CaCO(3) under a phospholipid monolayer, we show the initial heterogeneous nucleation of amorphous calcium carbonate precursor (ACC) nanoparticles at the air-water interface, their subsequent transformation into the metastable vaterite phase instead of the most thermodynamically stable calcite phase, and the ultimate phase transformation to calcite. Furthermore, the spontaneity of the transformation from vaterite to calcite was found to be closely related to the surface tension; high surface pressure could inhibit the process, highlighting the determinant of surface energy. To understand better the mechanisms for ACC formation and the transformation from ACC to vaterite and to calcite, in situ Brewster angle microscopy (BAM), ex situ scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction analysis were employed. This work has clarified the crystallization process of calcium carbonate under phospholipid monolayers and therefore may further our understanding of the biomineralization processes induced by cellular membranes.

  6. Characterization of carbonated serpentine using XPS and TEM

    International Nuclear Information System (INIS)

    Schulze, Roland K.; Hill, Mary Ann; Field, Robert D.; Papin, Pallas A.; Hanrahan, Robert J.; Byler, Darrin D.

    2004-01-01

    With the increasing concentration volume of carbon dioxide in the atmosphere, there has been an increasing interest in carbon dioxide sequestration. One method is to store the carbon dioxide in mineral form, reacting solution dissolved CO 2 to precipitate carbonates. In order to understand whether or not such an endeavor is feasible, the carbonation reaction must first be understood. In this study, the surface of ground serpentine, untreated, heat treated and following a carbonation experiment, has been characterized using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results indicate that the mechanism for the reaction involves dissolution of the serpentine through the formation of an amorphous phase and subsequent precipitation of magnesite. The rate limiting step appears to be the diffusion of Mg out of the amorphous phase

  7. Particle size analysis on density, surface morphology and specific capacitance of carbon electrode from rubber wood sawdust

    Science.gov (United States)

    Taer, E.; Kurniasih, B.; Sari, F. P.; Zulkifli, Taslim, R.; Sugianto, Purnama, A.; Apriwandi, Susanti, Y.

    2018-02-01

    The particle size analysis for supercapacitor carbon electrodes from rubber wood sawdust (SGKK) has been done successfully. The electrode particle size was reviewed against the properties such as density, degree of crystallinity, surface morphology and specific capacitance. The variations in particle size were made by different treatment on the grinding and sieving process. The sample particle size was distinguished as 53-100 µm for 20 h (SA), 38-53 µm for 20 h (SB) and < 38 µm with variations of grinding time for 40 h (SC) and 80 h (SD) respectively. All of the samples were activated by 0.4 M KOH solution. Carbon electrodes were carbonized at temperature of 600oC in N2 gas environment and then followed by CO2 gas activation at a temperature of 900oC for 2 h. The densities for each variation in the particle size were 1.034 g cm-3, 0.849 g cm-3, 0.892 g cm-3 and 0.982 g cm-3 respectively. The morphological study identified the distance between the particles more closely at 38-53 µm (SB) particle size. The electrochemical properties of supercapacitor cells have been investigated using electrochemical methods such as impedance spectroscopy and charge-discharge at constant current using Solatron 1280 tools. Electrochemical properties testing results have shown SB samples with a particle size of 38-53 µm produce supercapacitor cells with optimum capacitive performance.

  8. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes/polymer composite thin film.

    Science.gov (United States)

    Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert

    2018-01-09

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.

  9. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability.

    Science.gov (United States)

    Aditya, N P; Yang, Hanjoo; Kim, Saehoon; Ko, Sanghoon

    2015-03-01

    Curcumin has low aqueous stability and solubility in its native form. It also has a low bioavailability which presents a major barrier to its use in fortifying food products. The aim of this work was to reduce the size of curcumin crystals to the nanoscale and subsequently stabilize them in an amorphous form. To this end, amorphous curcumin nanosuspensions were fabricated using the antisolvent precipitation method with β-lactoglobulin (β-lg) as a stabilizer. The resulting amorphous curcumin nanosuspensions were in the size range of 150-175 nm with unimodal size distribution. The curcumin particles were amorphous and were molecularly dispersed within the β-lg as confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The solubility of the amorphous curcumin nanosuspension was enhanced ∼35-fold due to the reduced size and lower crystallinity. Among the formulations, the amorphous curcumin nanosuspensions stabilized with β-lg and prepared at pH 3.4 (β-lg-cur 3.4), showed maximum aqueous stability which was >90% after 30 days. An in vitro study using Caco-2 cell lines showed a significant increase in curcumin bioavailability after stabilization with β-lg. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu Xuanyong; Chu, Paul K.; Ding Chuanxian

    2007-01-01

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans

  11. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuanyong [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China) and Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: xyliu@mail.sic.ac.cn; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk; Ding Chuanxian [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2007-01-15

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter <1 0 0> silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans.

  12. Solid Particle Erosion Behaviors of Carbon-Fiber Epoxy Composite and Pure Titanium

    Science.gov (United States)

    Cai, Feng; Gao, Feng; Pant, Shashank; Huang, Xiao; Yang, Qi

    2016-01-01

    Rotor blades of Bell CH-146 Griffon helicopter experience excessive solid particle erosion at low altitudes in desert environment. The rotor blade is made of an advanced light-weight composite which, however, has a low resistance to solid particle erosion. Coatings have been developed and applied to protect the composite blade. However, due to the influence of coating process on composite material, the compatibility between coating and composite base, and the challenges of repairing damaged coatings as well as the inconsistency between the old and new coatings, replaceable thin metal shielding is an alternative approach; and titanium, due to its high-specific strength and better formability, is an ideal candidate. This work investigates solid particle erosion behaviors of carbon-fiber epoxy composite and titanium in order to assess the feasibility of titanium as a viable candidate for erosion shielding. Experiment results showed that carbon-fiber epoxy composite showed a brittle erosion behavior, whereas titanium showed a ductile erosion mode. The erosion rate on composite was 1.5 times of that on titanium at impingement angle 15° and increased to 5 times at impact angle 90°.

  13. FIRST INFRARED BAND STRENGTHS FOR AMORPHOUS CO{sub 2}, AN OVERLOOKED COMPONENT OF INTERSTELLAR ICES

    Energy Technology Data Exchange (ETDEWEB)

    Gerakines, Perry A.; Hudson, Reggie L., E-mail: Reggie.Hudson@NASA.gov [Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-08-01

    Solid carbon dioxide (CO{sub 2}) has long been recognized as a component of both interstellar and solar system ices, but a recent literature search has revealed significant qualitative and quantitative discrepancies in the laboratory spectra on which the abundances of extraterrestrial CO{sub 2} are based. Here we report new infrared (IR) spectra of amorphous CO{sub 2}-ice along with band intensities (band strengths) of four mid-IR absorptions, the first such results in the literature. A possible thickness dependence for amorphous-CO{sub 2} IR band shapes and positions also is investigated, and the three discordant reports of amorphous CO{sub 2} spectra in the literature are addressed. Applications of our results are discussed with an emphasis on laboratory investigations and results from astronomical observations. A careful comparison with earlier work shows that the IR spectra calculated from several databases for CO{sub 2} ices, all ices being made near 10 K, are not for amorphous CO{sub 2}, but rather for crystalline CO{sub 2} or crystalline-amorphous mixtures.

  14. Amorphous phase formation in intermetallic Mg2Ni alloy synthesized by ethanol wet milling

    International Nuclear Information System (INIS)

    Wang, H.-W.; Chyou, S.-D.; Wang, S.-H.; Yang, M.-W.; Hsu, C.-Y.; Tien, H.-C.; Huang, N.-N.

    2009-01-01

    The hydriding/dehydriding properties of an intermetallic Mg 2 Ni alloy synthesized by wet ball milling in ethanol have been investigated. The appearance of the particle surface after different milling methods is one obvious difference. The alloyed powders prepared by either dry milling or wet milling under ethanol were characterized for phase content by X-ray diffractometer (XRD). The results show that two broad diffuse peaks, which are an ionic-organic-Mg amorphous material, appear in addition to the nickel element peaks. This unexpected amorphous phase has the special hydrogen absorbing/desorbing features.

  15. Spatial and seasonal variations of the chemical, mineralogical and morphological features of quasi-ultrafine particles (PM{sub 0.49}) at urban sites

    Energy Technology Data Exchange (ETDEWEB)

    Samara, Constantini, E-mail: csamara@chem.auth.gr [Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University, GR-54124 Thessaloniki (Greece); Kantiranis, Nikolaos; Kollias, Panagiotis [Department of Geology, Division of Mineralogy-Petrology-Economic Geology, Aristotle University, GR-54124 Thessaloniki (Greece); Planou, Styliani; Kouras, Athanasios; Besis, Athanasios; Manoli, Evangelia; Voutsa, Dimitra [Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University, GR-54124 Thessaloniki (Greece)

    2016-05-15

    Combining chemical and physical-structural information of particles is a key issue in PM investigations. Chemical, mineralogical, and morphological characterization of quasi-ultrafine particles (PM{sub 0.49}) was carried out at two urban sites of varying traffic-influence (roadside and urban background) in Thessaloniki, northern Greece, during the cold and the warm period of 2013. Bulk analyses of chemical species included organic and elemental carbon (OC, EC), water soluble organic carbon (WSOC), ionic species (NO{sub 3}{sup −}, SO{sub 4}{sup 2−}, Cl{sup −}, Na{sup +}, NH{sub 4}{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}) and trace elements (As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Zn, Pt, Pd, Rh, Ru, and Ir). X-ray diffractometry (XRD) was employed for the mineralogical analysis of PM{sub 0.49} in order to identify and quantify amorphous and crystalline phases. In addition, scanning electron microscopy coupled with energy dispersive spectrometry (SEM-EDS) was employed for morphological characterization and elemental microanalysis of individual particles. Findings of this work could provide the basis for designing epidemiological and toxicity studies to mitigate population exposure to UFPs. - Highlights: • Chemical, mineralogical, and morphological features of PM{sub 0.49} were investigated. • PM{sub 0.49} levels were highest at the traffic site during wintertime. • PM{sub 0.49} mass was dominated by OM, minerals, EC and secondary ions. • Chemical mass closure showed significant seasonal and spatial variations. • Mineralogical composition was dominated by the organic amorphous phase.

  16. Low-cost carbon-based counter electrodes for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Barberio, M; Imbrogno, A; Bonanno, A; Xu, F; Grosso, D R

    2015-01-01

    In this work, we present the realization of four carbon-based counter electrodes for dye-sensitized solar cells. The photovoltaic behaviours of counter electrodes realized with graphene, multiwalled carbon nanotubes, and nanocomposites of multiwalled carbon nanotubes and metal nanoparticles are compared with those of classical electrodes (amorphous carbon and platinum). Our results show an increase of about 50% in PCE for graphene and Ag/carbon nanotube electrodes with respect to amorphous carbon and of 25% in comparison to platinum. An improvement in cell stability is also observed; in fact, the PCE of all carbon-based cells assumes a constant value during a period of one month while that with the Pt electrode decreases by 50% in one week. (paper)

  17. Evolution of the magnesium incorporated amorphous calcium phosphate to nano-crystallized hydroxyapatite in alkaline solution

    Science.gov (United States)

    Zhang, Xiao-Juan; Lin, Dong-Yang; Yan, Xiao-Hui; Wang, Xiao-Xiang

    2011-12-01

    A homogeneous amorphous calcium phosphate (ACP) coating containing magnesium was achieved on titanium substrates by electrochemical deposition (ECD). Its amorphous structure is confirmed by transmission electron microscope (TEM) together with grazing reflection absorption infrared spectroscopy (IR) spectrometer. In the images of high-resolution transmission electron microscope (HRTEM), the ACP spheres are assembled by nano-particles with the diameter of 5-10 nm. In the alkaline environment, nucleation of hydroxyapatite (HAP) occurs on the surfaces of ACP spheres. By consuming the Ca and PO 4 ions inside the ACP spheres, the HAP nuclei grow outward. Confirmed by TEM, the ACP spheres converse to hollow HAP spheres composed of HAP nano-needles. The coating is finally constructed by the HAP nano-needles, which are themselves aggregated by numerous nano-particles.

  18. AmAMorph: Finite State Morphological Analyzer for Amazighe

    OpenAIRE

    Fatima Zahra Nejme; Siham Boulaknadel; Driss Aboutajdine

    2016-01-01

    This paper presents AmAMorph, a morphological analyzer for Amazighe language using a system based on the NooJ linguistic development environment. The paper begins with the development of Amazighe lexicons with large coverage formalization. The built electronic lexicons, named ‘NAmLex’, ‘VAmLex’ and ‘PAmLex’ which stand for ‘Noun Amazighe Lexicon’, ‘Verb Amazighe Lexicon’ and ‘Particles Amazighe Lexicon’, link inflectional, morphological, and syntacticsemantic information to the list of lemmas...

  19. Soot, unburned carbon and ultrafine particle emissions from air- and oxy-coal flames

    International Nuclear Information System (INIS)

    Morris, W.J.; Yu, Dunxi; Wendt, J.O.L.

    2010-01-01

    Oxy-coal combustion is one possible solution for the mitigation of greenhouse gases. In this process coal is burned in oxygen, rather than air, and the temperatures in the boiler are mitigated by recycling flue gases, so that the inlet mixture may contain either 27 % O 2 to match adiabatic flame temperatures, or 32 % O 2 to match gaseous radiation heat fluxes in the combustion chamber. However, a major issue for heat transfer from coal combustion is the radiative heat transmission from soot. For this research, air and oxy coal firing were compared regarding the emission of soot. A 100 kW down-fired laboratory combustor was used to determine effects of switching from air to oxy-firing on soot, unburned carbon and ultrafine particle emissions from practical pulverized coal flames. Of interest here were potential chemical effects of substitution of the N 2 in air by CO 2 in practical pulverized coal flames. The oxy-coal configuration investigated used once-through CO 2 , simulating cleaned flue gas recycle with all contaminants and water removed. Three coals were each burned in: a) air, b) 27 % O 2 / 73 % CO 2 , c) 32 % O 2 / 68 % CO 2 . Tests were conducted at (nominally) 3 %, 2 %, 1 % and 0 % O 2 in the exhaust (dry basis). For each condition, particulate samples were iso kinetically withdrawn far from the radiant zone, and analyzed using a photoacoustic analyzer (PA) for black carbon, a scanning mobility particle sizer (SMPS) for ultrafine particles, and a total sample loss on ignition (LOI) method for unburned carbon in ash. Data suggest that at low stoichiometric ratios, ultrafine particles consist primarily of black carbon, which, for the bituminous coal, is produced in lesser amounts under oxy-fired conditions than under the air-fired condition, even when adiabatic flame temperatures are matched. However, significant changes in mineral matter vaporization were not observed unless the flames were hotter. These and other results are interpreted in the light of

  20. Controllable Electrochemical Activities by Oxidative Treatment toward Inner-Sphere Redox Systems at N-Doped Hydrogenated Amorphous Carbon Films

    Directory of Open Access Journals (Sweden)

    Yoriko Tanaka

    2012-01-01

    Full Text Available The electrochemical activity of the surface of Nitrogen-doped hydrogenated amorphous carbon thin films (a-CNH, N-doped DLC toward the inner sphere redox species is controllable by modifying the surface termination. At the oxygen plasma treated N-doped DLC surface (O-DLC, the surface functional groups containing carbon doubly bonded to oxygen (C=O, which improves adsorption of polar molecules, were generated. By oxidative treatment, the electron-transfer rate for dopamine (DA positively charged inner-sphere redox analyte could be improved at the N-doped DLC surface. For redox reaction of 2,4-dichlorophenol, which induces an inevitable fouling of the anode surface by forming passivating films, the DLC surfaces exhibited remarkably higher stability and reproducibility of the electrode performance. This is due to the electrochemical decomposition of the passive films without the interference of oxygen evolution by applying higher potential. The N-doped DLC film can offer benefits as the polarizable electrode surface with the higher reactivity and higher stability toward inner-sphere redox species. By making use of these controllable electrochemical reactivity at the O-DLC surface, the selective detection of DA in the mixed solution of DA and uric acid could be achieved.