WorldWideScience

Sample records for amorphous carbon films

  1. Characterization of amorphous and nanocrystalline carbon films

    International Nuclear Information System (INIS)

    Chu, Paul K.; Li Liuhe

    2006-01-01

    Amorphous and nanocrystalline carbon films possess special chemical and physical properties such as high chemical inertness, diamond-like properties, and favorable tribological proprieties. The materials usually consist of graphite and diamond microstructures and thus possess properties that lie between the two. Amorphous and nanocrystalline carbon films can exist in different kinds of matrices and are usually doped with a large amount of hydrogen. Thus, carbon films can be classified as polymer-like, diamond-like, or graphite-like based on the main binding framework. In order to characterize the structure, either direct bonding characterization methods or the indirect bonding characterization methods are employed. Examples of techniques utilized to identify the chemical bonds and microstructure of amorphous and nanocrystalline carbon films include optical characterization methods such as Raman spectroscopy, Ultra-violet (UV) Raman spectroscopy, and infrared spectroscopy, electron spectroscopic and microscopic methods such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, transmission electron microscopy, and electron energy loss spectroscopy, surface morphology characterization techniques such as scanning probe microscopy (SPM) as well as other characterization methods such as X-ray reflectivity and nuclear magnetic resonance. In this review, the structures of various types of amorphous carbon films and common characterization techniques are described

  2. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  3. Coaxial carbon plasma gun deposition of amorphous carbon films

    International Nuclear Information System (INIS)

    Sater, D.M.; Gulino, D.A.

    1984-03-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented

  4. Intrinsic graphene field effect transistor on amorphous carbon films

    OpenAIRE

    Tinchev, Savcho

    2013-01-01

    Fabrication of graphene field effect transistor is described which uses an intrinsic graphene on the surface of as deposited hydrogenated amorphous carbon films. Ambipolar characteristic has been demonstrated typical for graphene devices, which changes to unipolar characteristic if the surface graphene was etched in oxygen plasma. Because amorphous carbon films can be growth easily, with unlimited dimensions and no transfer of graphene is necessary, this can open new perspective for graphene ...

  5. Structure and giant magnetoresistance of carbon-based amorphous films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Ma, L.; He, M.F.; Liu, Z.W.; Zeng, D.C.; Gu, Z.F.; Cheng, G.

    2014-01-01

    Pure amorphous carbon (a-C) and Co-doped Co x C 1−x films were prepared on n-Si(100) substrates by dc magnetron sputtering. In Co–C films, the nano-sized amorphous Co particles were homogeneously dispersed in the amorphous cross-linked carbon matrix. The structures of a-C and Co x C 1−x films were investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The results showed that the a-C films were diamond-like carbon (DLC) films. After doping cobalt into DLC film, the sp 3 -hybridized carbon content in DLC composite films almost had no change. The as-deposited Co x C 1−x granular films had larger value of magnetoresistance (MR) than the amorphous carbon film. A very high positive MR, up to 15.5% at magnetic field B = 0.8 T and x = 2.5 at.% was observed in a Co x C 1−x granular film with thickness of 80 nm at room temperature when the external magnetic field was perpendicular to the electric current and the film surface. With increase of the film thickness and Co-doped content, the MR decreased gradually. It remains a challenge to well explain the observed MR effect in the Co x C 1−x granular films. - Highlights: • The amorphous carbon films were diamond-like carbon films. • No carbide appearing, the Co–C composite films form a good metal/insulator system. • A high positive magnetoresistance, up to 15.5% at B = 0.8 T was observed in Co–C films

  6. Bonding topologies in diamondlike amorphous-carbon films

    International Nuclear Information System (INIS)

    Siegal, M. P.; Provencio, P. N.; Tallant, D. R.; Simpson, R. L.; Kleinsorge, B.; Milne, W. I.

    2000-01-01

    The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces; their thicknesses increase with deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies 160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of σ- to π-bonded carbon atoms. (c) 2000 American Institute of Physics

  7. Bonding topologies in diamondlike amorphous-carbon films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; PROVENCIO,PAULA P.; TALLANT,DAVID R.; SIMPSON,REGINA L.; KLEINSORGE,B.; MILNE,W.I.

    2000-01-27

    The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces and their thicknesses increase with increasing deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies < 60 eV and increases for films grown using ion energies > 160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of 4-fold to 3-fold coordinated carbon atoms.

  8. Bonding topologies in diamondlike amorphous-carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Provencio, P. N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Kleinsorge, B. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ, (United Kingdom); Milne, W. I. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ, (United Kingdom)

    2000-04-10

    The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces; their thicknesses increase with deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies <60 eV and increases for films grown using ion energies >160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of {sigma}- to {pi}-bonded carbon atoms. (c) 2000 American Institute of Physics.

  9. Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films

    Science.gov (United States)

    Reyes, R.; Legnani, C.; Ribeiro Pinto, P. M.; Cremona, M.; de Araújo, P. J. G.; Achete, C. A.

    2003-06-01

    White-blue electroluminescent emission with a voltage bias less than 10 V was achieved in rf sputter-deposited amorphous carbon nitride (a-CN) and amorphous silicon carbon nitride (a-SiCN) thin-film-based devices. The heterojunction structures of these devices consist of: Indium tin oxide (ITO), used as a transparent anode; amorphous carbon film as an emission layer, and aluminum as a cathode. The thickness of the carbon films was about 250 Å. In all of the produced diodes, a stable visible emission peaked around 475 nm is observed at room temperature and the emission intensity increases with the current density. For an applied voltage of 14 V, the luminance was about 3 mCd/m2. The electroluminescent properties of the two devices are discussed and compared.

  10. Nanostructural characterization of amorphous diamondlike carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Martinez-Miranda, L. J. [University of Maryland, Department of Materials and Nuclear Engineering, College Park, Maryland 20742 (United States); Barbour, J. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2000-04-15

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetics and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of three- and four-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetics of PLD growth results in films becoming more ''diamondlike,'' i.e., increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film. (c) 2000 The American Physical Society.

  11. Nanostructural characterization of amorphous diamondlike carbon films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; MARTINEZ-MIRANDA,L.J.; BARBOUR,J. CHARLES; SIMPSON,REGINA L.; OVERMYER,DONALD L.

    2000-01-27

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetic and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of 3- and 4-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetic of PLD growth results in films becoming more ``diamondlike'', i.e. increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film.

  12. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Science.gov (United States)

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  13. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoqiang, E-mail: lxq_suse@sina.com [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China); Hao, Junying, E-mail: jyhao@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Xie, Yuntao [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-08-30

    Highlights: • Evolution of nanostructure and properties of the polymeric amorphous carbon films were firstly studied. • Si doping enhanced polymerization of the hydrocarbon chains and Al doping resulted in increase in the ordered carbon clusters of polymeric amorphous carbon films. • Soft polymeric amorphous carbon films exhibited an unconventional frictional behaviors with a superior wear resistance. • The mechanical and vacuum tribological properties of the polymeric amorphous carbon films were significantly improved by Si and Al co-doping. - Abstract: Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  14. Synthesis of Antimony Doped Amorphous Carbon Films

    Science.gov (United States)

    Okuyama, H.; Takashima, M.; Akasaka, H.; Ohtake, N.

    2013-06-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  15. Synthesis of Antimony Doped Amorphous Carbon Films

    International Nuclear Information System (INIS)

    Okuyama, H; Takashima, M; Akasaka, H; Ohtake, N

    2013-01-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp 2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  16. Evaluation of optical properties of the amorphous carbon film on fused silica

    International Nuclear Information System (INIS)

    Baydogan, Nilguen Dogan

    2004-01-01

    Deposition was done using a pulsed filtered cathodic arc with a graphite cathode. The carbon plasma is fully ionised and condenses on the substrate, forming diamond-like material but with amorphous structure. Optical properties of amorphous carbon films on fused-silica glass were investigated and the curves of optical density have a characteristic band at approximately 950 nm. Changes of the colourimetric quantities were evaluated and compared to uncoated fused silica glass. These changes were investigated as a function of the applied substrate bias voltage using the CIE and CIELAB colour systems. It is suggested that the mechanism of absorption is related to an allowed direct transition at the amorphous carbon films on fused silica glass. The optical energy gap of the amorphous carbon film depends on the bias voltage applied to the substrate holder. The optical colour parameters and optical band gap indicated that there is a relation between the dominant wavelength of the reflectance in the visible range and the wavelength of the optical band gap

  17. Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Debabrata [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)]. E-mail: dpradhan@sciborg.uwaterloo.ca; Sharon, Maheshwar [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2007-06-30

    A simple thermal chemical vapor deposition technique is employed for the pyrolysis of a natural precursor 'camphor' and deposition of carbon films on alumina substrate at higher temperatures (600-900 deg. C). X-ray diffraction measurement reveals the amorphous structure of these films. The carbon films properties are found to significantly vary with the deposition temperatures. At higher deposition temperature, films have shown predominately sp{sup 2}-bonded carbon and therefore, higher conductivity and lower optical band gap (Tauc gap). These amorphous carbon (a-C) films are also characterized with Raman and X-ray photoelectron spectroscopy. In addition, electrical and optical properties are measured. The thermoelectric measurement shows these as-grown a-C films are p-type in nature.

  18. Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Ajai, E-mail: ajai.iyer@aalto.fi; Liu, Xuwen; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, POB 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, School of Science, Aalto University, POB 15100, 00076 Espoo (Finland); Johansson, Leena-Sisko [Department of Forest Products Technology, School of Chemical Technology, Aalto University, POB 16400, 00076 Espoo (Finland)

    2015-06-14

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp{sup 3} bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  19. Amorphous Carbon Gold Nanocomposite Thin Films: Structural and Spectro-ellipsometric Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montiel-Gonzalez, Z., E-mail: zeuzmontiel@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Mendoza-Galvan, A. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Queretaro, 76010 Queretaro, Queretaro (Mexico); Rodriguez-Fernandez, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510, Mexico D.F (Mexico)

    2011-07-01

    Spectroscopic Ellipsometry was used to determine the optical and structural properties of amorphous carbon:gold nanocomposite thin films deposited by dc magnetron co-sputtering at different deposition power. The incorporation of gold as small particles distributed in the amorphous carbon matrix was confirmed by X-ray Diffraction, Rutherford Backscattering measurements and High Resolution Transmission Electron Microscopy. Based on these results, an optical model for the films was developed using the Maxwell-Garnett effective medium with the Drude-Lorentz model representing the optical response of gold and the Tauc-Lorentz model for the amorphous carbon. The gold volume fraction and particle size obtained from the fitting processes were comparable to those from the physical characterization. The analysis of the ellipsometric spectra for all the samples showed strong changes in the optical properties of the carbon films as a consequence of the gold incorporation. These changes were correlated to the structural modification observed by Raman Spectroscopy, which indicated a clustering of the sp{sup 2} phase with a subsequent decrease in the optical gap. Finally, measurements of Reflection and Transmission Spectroscopy were carried out and Transmission Electron Microscopy images were obtained in order to support the ellipsometric model results.

  20. Low hydrogen containing amorphous carbon films - Growth and electrochemical properties as lithium battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, V.; Masarapu, Charan; Wei, Bingqing [Department of Mechanical Engineering, University of Delaware, 130 Academy Street, Newark, DE 19716 (United States); Karabacak, Tansel [Department of Applied Science, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States); Teki, Ranganath [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2010-04-02

    Amorphous carbon films were deposited successfully on Cu foils by DC magnetron sputtering technique. Electrochemical performance of the film as lithium battery anode was evaluated across Li metal at 0.2 C rate in a non-aqueous electrolyte. The discharge curves showed unusually low irreversible capacity in the first cycle with a reversible capacity of {proportional_to}810 mAh g{sup -1}, which is at least 2 times higher than that of graphitic carbon. For the first time we report here an amorphous carbon showing such a high reversibility in the first cycle, which is very much limited to the graphitic carbon. The deposited films were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and step profilometer for the structural and surface properties. The hydrogen content of the synthesized films was studied using residual gas analysis (RGA). The low hydrogen content and the low specific surface area of the synthesized amorphous carbon film are considered responsible for such a high first cycle columbic efficiency. The growth mechanism and the reasons for enhanced electrochemical performance of the carbon films are discussed. (author)

  1. Low hydrogen containing amorphous carbon films-Growth and electrochemical properties as lithium battery anodes

    Science.gov (United States)

    Subramanian, V.; Karabacak, Tansel; Masarapu, Charan; Teki, Ranganath; Lu, Toh-Ming; Wei, Bingqing

    Amorphous carbon films were deposited successfully on Cu foils by DC magnetron sputtering technique. Electrochemical performance of the film as lithium battery anode was evaluated across Li metal at 0.2 C rate in a non-aqueous electrolyte. The discharge curves showed unusually low irreversible capacity in the first cycle with a reversible capacity of ∼810 mAh g -1, which is at least 2 times higher than that of graphitic carbon. For the first time we report here an amorphous carbon showing such a high reversibility in the first cycle, which is very much limited to the graphitic carbon. The deposited films were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and step profilometer for the structural and surface properties. The hydrogen content of the synthesized films was studied using residual gas analysis (RGA). The low hydrogen content and the low specific surface area of the synthesized amorphous carbon film are considered responsible for such a high first cycle columbic efficiency. The growth mechanism and the reasons for enhanced electrochemical performance of the carbon films are discussed.

  2. Ternary graphene/amorphous carbon/nickel nanocomposite film for outstanding superhydrophobicity

    Science.gov (United States)

    Zhu, Xiaobo; Zhou, Shengguo; Yan, Qingqing

    2018-04-01

    A novel superhydrophobic ternary graphene/amorphous carbon/nickel (G-Ni/a-C:H) carbon-based film was fabricated by a green approach of high-voltage electrochemical deposition without using aqueous solution, which was systematically investigated including the structure and relating applications on self-cleaning and corrosion resistance. Graphene and nickel nano-particle inserts were effective to tailor the feature of nanocrystallite/amorphous microstructure as well as micro-nanoscale hierarchical rose-petal-like surface for G-Ni/a-C:H carbon-based film. Surprisingly, this deposit could present outstanding superhydrophobicity with the contact angle of 158.98 deg and sliding angle of 2.75 deg without any further surface modification meanwhile it could possess fairly well adhesion. Furthermore, the superhydrophobic G-Ni/a-C:H carbon-based film could exhibit excellent corrosion resistance and self-cleaning performances compared to no graphene incorporated deposit. The procedure of fabricating deposit might be simple, scalable, and environmental friendly, indicating a promising prospect for industrial applications in the field of anti-fouling, anti-corrosion and drag resistance.

  3. Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing

    International Nuclear Information System (INIS)

    McCann, R.; Roy, S.S.; Papakonstantinou, P.; Bain, M.F.; Gamble, H.S.; McLaughlin, J.A.

    2005-01-01

    Tetrahedral amorphous carbon (ta-C) and nitrogenated tetrahedral amorphous carbon films (ta-CN x ), deposited by double bend off plane Filtered Vacuum Cathodic Arc were annealed up to 1000 deg. C in flowing argon for 2 min. Modifications on the chemical bonding structure of the rapidly annealed films, as a function of temperature, were investigated by NEXAFS, X-ray photoelectron and Raman spectroscopies. The interpretation of these spectra is discussed. The results demonstrate that the structure of undoped ta-C films prepared at floating potential with an arc current of 80 A remains stable up to 900 deg. C, whereas that of ta-CN x containing 12 at.% nitrogen is stable up to 700 deg. C. At higher temperatures, all the spectra indicated the predominant formation of graphitic carbon. Through NEXAFS studies, we clearly observed three π* resonance peaks at the ' N K edge structure. The origin of these three peaks is not well established in the literature. However our temperature-dependant study ascertained that the first peak originates from C=N bonds and the third peak originates from the incorporation of nitrogen into the graphite like domains

  4. Crystalline and amorphous carbon nitride films produced by high-energy shock plasma deposition

    International Nuclear Information System (INIS)

    Bursilll, L.A.; Peng, Julin; Gurarie, V.N.; Orlov, A.V.; Prawer, S.

    1995-01-01

    High-energy shock plasma deposition techniques are used to produce carbon-nitride films containing both crystalline and amorphous components. The structures are examined by high-resolution transmission electron microscopy, parallel-electron-energy loss spectroscopy and electron diffraction. The crystalline phase appears to be face-centered cubic with unit cell parameter approx. a=0.63nm and it may be stabilized by calcium and oxygen at about 1-2 at % levels. The carbon atoms appear to have both trigonal and tetrahedral bonding for the crystalline phase. There is PEELS evidence that a significant fraction of the nitrogen atoms have sp 2 trigonal bonds in the crystalline phase. The amorphous carbon-nitride film component varies from essentially graphite, containing virtually no nitrogen, to amorphous carbon-nitride containing up to 10 at % N, where the fraction of sp 3 bonds is significant. 15 refs., 5 figs

  5. Control of wettability of hydrogenated amorphous carbon thin films by laser-assisted micro- and nanostructuring

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Kohler, Robert; Torge, Maika; Trouillet, Vanessa; Danneil, Friederike; Stueber, Michael

    2011-01-01

    A flexible and rapid surface functionalization of amorphous carbon films shows a great potential for various application fields such as biological surfaces and tribological systems. For this purpose, the combination of thin film deposition and subsequent laser material processing was investigated. Amorphous carbon layers doped with hydrogen were deposited on silicon wafers by reactive direct-current magnetron sputtering. Films with three different hydrogen contents were synthesized. Subsequent to the thin film deposition process, UV laser material processing at wavelengths of 193 nm or 248 nm was performed with respect to chemical surface modification and surface structuring on micro- and nanometer scale. Depending on structure size and laser-induced chemical surface modification the adjustment of the surface energy and wetting behaviour in a broad range from hydrophobic to hydrophilic was possible. The chemical modification and the ablation mechanisms near the ablation threshold were strongly influenced by the hydrogen content in amorphous carbon thin films. Structural and chemical information of the as-deposited and modified films was obtained by Raman spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements.

  6. Micro-friction behavior of amorphous carbon films on porous AAO membrane synthesized by the pyrolysis of polyethleneglycol 400

    International Nuclear Information System (INIS)

    Tu, J.P.; Jiang, C.X.; Guo, S.Y.; Fu, M.F.

    2005-01-01

    The amorphous carbon films with different degrees of graphitization were synthesized by the pyrolysis of polyethleneglycol 400 infiltrated in the nano-sized pores of anodic aluminum oxide (AAO) membrane. The morphology and microstructure of the carbon films were characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The micro-friction behavior of the amorphous carbon films sliding against GCr15 steel in ambient air was investigated using a ball-on-disk tester at an applied load of 980 mN and a sliding velocity of 0.2 m s -1 . The graphitization degree in the carbon films had effect on the micro-friction properties. In comparison, the amorphous carbon film with high graphitization degree showed low friction coefficient and high wear resistance. An efficient approach was brought for enhancing the friction performance of aluminum

  7. Micro-friction behavior of amorphous carbon films on porous AAO membrane synthesized by the pyrolysis of polyethleneglycol 400

    Energy Technology Data Exchange (ETDEWEB)

    Tu, J P [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang, C X [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Department of Mechanical and Electronic Engineering, Nanchang University, Nanchang 330029 (China); Guo, S Y [Department of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310033 (China); Fu, M F [Department of Mechanical and Electronic Engineering, Nanchang University, Nanchang 330029 (China)

    2005-05-25

    The amorphous carbon films with different degrees of graphitization were synthesized by the pyrolysis of polyethleneglycol 400 infiltrated in the nano-sized pores of anodic aluminum oxide (AAO) membrane. The morphology and microstructure of the carbon films were characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The micro-friction behavior of the amorphous carbon films sliding against GCr15 steel in ambient air was investigated using a ball-on-disk tester at an applied load of 980 mN and a sliding velocity of 0.2 m s{sup -1}. The graphitization degree in the carbon films had effect on the micro-friction properties. In comparison, the amorphous carbon film with high graphitization degree showed low friction coefficient and high wear resistance. An efficient approach was brought for enhancing the friction performance of aluminum.

  8. Buckling instability in amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X D [CAS Key Laboratory of Basic Plasma Physics, Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Narumi, K [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Naramoto, H [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2007-06-13

    In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 deg. C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with {pi}-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 {mu}m with a height of {approx}500 nm and a wavelength of {approx}8.2 {mu}m. However, the length decreases dramatically to 70 {mu}m as the deposition temperature is increased to 550 deg. C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542)

  9. Buckling instability in amorphous carbon films

    International Nuclear Information System (INIS)

    Zhu, X D; Narumi, K; Naramoto, H

    2007-01-01

    In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 deg. C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with π-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 μm with a height of ∼500 nm and a wavelength of ∼8.2 μm. However, the length decreases dramatically to 70 μm as the deposition temperature is increased to 550 deg. C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542)

  10. Amorphous-tetrahedral diamondlike carbon layered structures resulting from film growth energetics

    Science.gov (United States)

    Siegal, M. P.; Barbour, J. C.; Provencio, P. N.; Tallant, D. R.; Friedmann, T. A.

    1998-08-01

    High-resolution transmission electron microscopy (HRTEM) shows that amorphous-tetrahedral diamondlike carbon (a-tC) films grown by pulsed-laser deposition on Si(100) consist of three-to-four layers, depending on the growth energetics. We estimate the density of each layer using both HRTEM image contrast and Rutherford backscattering spectrometry. The first carbon layer and final surface layer have relatively low density. The bulk of the film between these two layers has higher density. For films grown under the most energetic conditions, there exists a superdense a-tC layer between the interface and bulk layers. The density of all four layers, and the thickness of the surface and interfacial layers, correlate well with the energetics of the depositing carbon species.

  11. Controlled fluoridation of amorphous carbon films deposited at reactive plasma conditions

    Directory of Open Access Journals (Sweden)

    Yoffe Alexander

    2015-09-01

    Full Text Available A study of the correlations between plasma parameters, gas ratios, and deposited amorphous carbon film properties is presented. The injection of a C4F8/Ar/N2 mixture of gases was successfully used in an inductively coupled plasma system for the preparation of amorphous carbon films with different fluoride doping at room-temperature, using silicon as a substrate. This coating was formed at low-pressure and low-energy using an inductively coupled plasma process. A strong dependence between the ratios of gases during deposition and the composition of the substrate compounds was shown. The values of ratios between Ar (or Ar+N2 and C4F8 - 1:1 and between N2 and Ar - 1:2 in the N2/Ar/C4F8 mixture were found as the best for low fluoridated coatings. In addition, an example of improving the etch-passivation in the Bosch procedure was described. Scanning electron microscopy with energy dispersive spectroscopy options, X-ray diffraction, and X-ray reflectivity were used for quantitative analysis of the deposited films.

  12. Amorphous hydrogenated carbon films treated by SF{sub 6} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Marins, N M S; Mota, R P; Santos, D C R; Honda, R Y; Kayama, M E; Kostov, K G; Algatti, M A [Laboratorio de Plasma, Faculdade de Engenharia, UNESP, Av. Dr. Ariberto Pereira da Cunha-333, 12516-410, Guaratingueta, SP (Brazil); Cruz, N C; Rangel, E C, E-mail: nazir@feg.unesp.b [Laboratorio de Plasmas Tecnologicos, Unidade Diferenciada Sorocaba/Ipero, UNESP, Av. Tres de Marco-511, 18085-180, Sorocaba, SP (Brazil)

    2009-05-01

    This work was performed to verify the chemical structure, mechanical and hydrophilic properties of amorphous hydrogenated carbon films prepared by plasma enhanced chemical vapor deposition, using acetylene/argon mixture as monomer. Films were prepared in a cylindrical quartz reactor, fed by 13.56 MHz radiofrequency. The films were grown during 5 min, for power varying from 25 to 125 W at a fixed pressure of 9.5 Pa. After deposition, all samples were treated by SF{sub 6} plasma with the aim of changing their hydrophilic character. Film chemical structure investigated by Raman spectroscopy, revealed the increase of sp{sup 3} hybridized carbon bonds as the plasma power increases. Hardness measurements performed by the nanoindentation technique showed an improvement from 5 GPa to 14 GPa following the increase discharge power. The untreated films presented a hydrophilic character, which slightly diminished after SF{sub 6} plasma treatment.

  13. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique

    International Nuclear Information System (INIS)

    Rebollo, P.B.; Escobar A, L.; Camps C, E.; Haro P, E.; Camacho L, M.A.; Muhl S, S.

    2000-01-01

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 -4 Torr until 7.5 x 10 -2 Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  14. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  15. Heat treatment of cathodic arc deposited amorphous hard carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Ager, J.W. III; Brown, I.G. [and others

    1997-02-01

    Amorphous hard carbon films of varying sp{sup 2}/sp{sup 3} fractions have been deposited on Si using filtered cathodic are deposition with pulsed biasing. The films were heat treated in air up to 550 C. Raman investigation and nanoindentation were performed to study the modification of the films caused by the heat treatment. It was found that films containing a high sp{sup 3} fraction sustain their hardness for temperatures at least up to 400 C, their structure for temperatures up to 500 C, and show a low thickness loss during heat treatment. Films containing at low sp{sup 3} fraction graphitize during the heat treatment, show changes in structure and hardness, and a considerable thickness loss.

  16. Infrared analysis of thin films: amorphous, hydrogenated carbon on silicon

    International Nuclear Information System (INIS)

    Jacob, Wolfgang; Keudell, Achim von; Schwarz-Selinger, Thomas

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, an experimentally measured spectrum has to be simulated using the full formalism including the Kramers-Kronig relation. Infrared absorption spectra and the resulting k spectra in the range of the CH vibrational bands around 3000 cm -1 are presented for a variety of a-C:H layers. The shape and the total intensity of the peak are quite sensitive to the film structure. Soft, polymerlike hydrocarbon layers are characterized by a well structured, intense IR absorption band, while hard, amorphous, hydrogenated carbon layers exhibit a structureless, broad IR absorption band with relative low intensity. The k spectra of the CH vibrational bands can be considered as fingerprint for the type of a-C:H film. (author)

  17. Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications

    KAUST Repository

    Wan, Shanhong

    2015-01-01

    A novel boron nitride nanosheets (BNNSs)-amorphous carbon (a-C) hybrid film has been deposited successfully on silicon substrates by simultaneous electrochemical deposition, and showed a good integrity of this B-C-N composite film by the interfacial bonding. This synthesis can potentially provide the facile control of the B-C-N composite film for the potential optoelectronic devices. This journal is

  18. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation

    International Nuclear Information System (INIS)

    Rebollo P, B.

    2001-01-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp 2 and sp 3 bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  19. Piezoresistive effect observed in flexible amorphous carbon films

    Science.gov (United States)

    Wang, B.; Jiang, Y. C.; Zhao, R.; Liu, G. Z.; He, A. P.; Gao, J.

    2018-05-01

    Amorphous carbon (a-C) films, deposited on Si substrates at 500 °C, were transferred onto flexible polyethylene (PE) substrates by a lift-off method, which overcomes the limit of deposition temperature. After transferring, a-C films exhibited a large piezoresistive effect. Such flexible samples could detect the change of bending angle by attaching them onto Cu foils. The ratio of the bending and non-bending resistances reaches as large as ~27.8, which indicates a potential application as a pressure sensor. Also, the a-C/PE sample revealed an enhanced sensitivity to gas pressure compared with the a-C/Si one. By controlling the bending angle, the sensitivity range can be tuned to shift to a low- or high-pressure region. The fatigue test shows a less than 1% change in resistance after 10 000 bending cycles. Our work provides a route to prepare the flexible and piezoresistive carbon-based devices with high sensitivity, controllable pressure-sensing and high stability.

  20. Surface energy of amorphous carbon films containing iron

    International Nuclear Information System (INIS)

    Chen, J. S.; Lau, S. P.; Tay, B. K.; Chen, G. Y.; Sun, Z.; Tan, Y. Y.; Tan, G.; Chai, J. W.

    2001-01-01

    Iron containing diamond-like amorphous carbon (a-C:Fe) films were deposited by filtered cathodic vacuum arc technique. The influences of Fe content and substrate bias on the surface energy of the films were investigated. The surface energy of a-C:Fe films was determined by the contact angle measurement. Atomic force microscopy, Raman spectroscopy, and x-ray induced photoelectron spectroscopy were employed to analyze the origin of the variation of surface energy with various Fe content and substrate bias. It is found that the contact angle for water increases significantly after incorporating Fe into the films and the films become hydrophobic. The roughness of these films has no effect on the contact angle. The surface energy is reduced from 42.8 to 25 dyne/cm after incorporating Fe into the a-C film (10% Fe in the target), which is due to the reduction of both dispersive and polar component. The reduction in dispersive component is ascribed to the decrease of atomic density of the a-C:Fe films due to the increase in sp 2 bonded carbon. When sp 2 content increases to some extent, the atomic density remains constant and hence dispersive component does not change. The absorption of oxygen on the surface plays an important role in the reduction of the polar component for the a-C:Fe films. It is proposed that such network as (C n - O - Fe) - O - (Fe - O - C n ) may be formed and responsible for the reduction of polar component. [copyright] 2001 American Institute of Physics

  1. Effect of ultraviolet light irradiation on amorphous carbon nitride films

    International Nuclear Information System (INIS)

    Zhang, M.; Nakayama, Y.

    1997-01-01

    The amorphous carbon nitride films were produced using electron cyclotron resonance nitrogen plasma with various mixtures of N 2 and CH 4 gases. The dependence of film structures on the nitrogen incorporation and the structural modifications of the film due to ultraviolet (UV) light irradiation were investigated using infrared and UV-VIS spectroscopy. It is found that UV irradiation results in the decrease of CH bonding, increase of CC and CN double bonding in the film and increase of the optical band gap of the film. It appears that both bond removal and reordering have taken place as a result of UV irradiation. The structural modifications due to nitrogen incorporation and UV light irradiation are explained by a cluster model. copyright 1997 American Institute of Physics

  2. On the properties of nanocomposite amorphous carbon films prepared by off-plane double bend filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Tay, B.K.; Zhang, P.

    2002-01-01

    It is known to deposit hard thin films, such as tetrahedral amorphous carbon (ta-C), using a filtered cathode vacuum arc (FCVA). These ta-C films have interesting and useful properties because of the high sp 3 fraction of carbon atoms (up to 87%) in the film. However, the high internal stress in the films can limit their applications as the film may flake away from the substrate. In order to reduce the internal stress of the ta-C films and in an attempt to improve adhesion of thick films of this type, growth modifications such as incorporating metal into the ta-C films have been carried out. Nanocomposite amorphous carbon films were deposited by FCVA technique using metal-carbon composite target. Atomic force microscopy, Raman, and X-ray photoelectron spectroscopy were used to characterize the morphology and structure of the films. Nanoindenter and surface profilometer were used to determine the hardness, Young's modulus, and internal stress. The same metal composition targets for different elements results in different metal composition in the corresponding nanocomposite amorphous carbon films. We attribute this observation to the dynamic balance deposition effect of the FCVA deposition process. The influence of the type of metallic elements and its composition in the films on the structural, mechanical properties, surface energy and field emission (FE) performance was studied. The incorporation of metal into the films results in the decrease of sp 3 fraction, internal stress in the films, but the hardness and Young's modulus remains at high level. The surface energy of the films increases with incorporating Ni atoms, but decreases after incorporating Fe and Al atoms into the films. After heat-treatment, the incorporation of metal into ta-C films can greatly improve the FE performance

  3. Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guigen, E-mail: wanggghit@yahoo.com [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Kuang Xuping; Zhang Huayu; Zhu Can [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Han Jiecai [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Center for Composite Materials, Harbin Institute of Technology, Harbin 150080 (China); Zuo Hongbo [Center for Composite Materials, Harbin Institute of Technology, Harbin 150080 (China); Ma Hongtao [SAE Technologies Development (Dongguan) Co., Ltd., Dongguan 523087 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The ultra-thin carbon films with different silicon nitride (Si-N) film underlayers were prepared. Black-Right-Pointing-Pointer It highlighted the influences of Si-N underlayers. Black-Right-Pointing-Pointer The carbon films with Si-N underlayers obtained by nitriding especially at the substrate bias of -150 V, can exhibit better corrosion protection properties - Abstract: There are higher technical requirements for protection overcoat of magnetic recording slider used in high-density storage fields for the future. In this study, silicon nitride (Si-N) composition-gradient films were firstly prepared by nitriding of silicon thin films pre-sputtered on silicon wafers and magnetic recording sliders, using microwave electron cyclotron resonance plasma source. The ultra-thin tetrahedral amorphous carbon films were then deposited on the Si-N films by filtered cathodic vacuum arc method. Compared with amorphous carbon overcoats with conventional silicon underlayers, the overcoats with Si-N underlayers obtained by plasma nitriding especially at the substrate bias of -150 V, can provide better corrosion protection for high-density magnetic recording sliders.

  4. Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider

    International Nuclear Information System (INIS)

    Wang Guigen; Kuang Xuping; Zhang Huayu; Zhu Can; Han Jiecai; Zuo Hongbo; Ma Hongtao

    2011-01-01

    Highlights: ► The ultra-thin carbon films with different silicon nitride (Si-N) film underlayers were prepared. ► It highlighted the influences of Si-N underlayers. ► The carbon films with Si-N underlayers obtained by nitriding especially at the substrate bias of −150 V, can exhibit better corrosion protection properties - Abstract: There are higher technical requirements for protection overcoat of magnetic recording slider used in high-density storage fields for the future. In this study, silicon nitride (Si-N) composition-gradient films were firstly prepared by nitriding of silicon thin films pre-sputtered on silicon wafers and magnetic recording sliders, using microwave electron cyclotron resonance plasma source. The ultra-thin tetrahedral amorphous carbon films were then deposited on the Si-N films by filtered cathodic vacuum arc method. Compared with amorphous carbon overcoats with conventional silicon underlayers, the overcoats with Si-N underlayers obtained by plasma nitriding especially at the substrate bias of −150 V, can provide better corrosion protection for high-density magnetic recording sliders.

  5. A Low-Stress, Elastic, and Improved Hardness Hydrogenated Amorphous Carbon Film

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2015-01-01

    Full Text Available The evolution of hydrogenated amorphous carbon films with fullerene-like microstructure was investigated with a different proportion of hydrogen supply in deposition. The results showed at hydrogen flow rate of 50 sccm, the deposited films showed a lower compressive stress (lower 48.6%, higher elastic recovery (higher 19.6%, near elastic recovery rate 90%, and higher hardness (higher 7.4% compared with the films deposited without hydrogen introduction. Structural analysis showed that the films with relatively high sp2 content and low bonded hydrogen content possessed high hardness, elastic recovery rate, and low compressive stress. It was attributed to the curved graphite microstructure, which can form three-dimensional covalently bonded network.

  6. Annealing effect on the microstructure modification and tribological properties of amorphous carbon nitride films

    Science.gov (United States)

    Wang, Zhou; Wang, Chengbing; Wang, Qi; Zhang, Junyan

    2008-10-01

    The influences of thermal annealing on the microstructural and tribological properties of amorphous carbon nitride films were investigated. X-ray photoelectron spectroscopy, Raman spectroscopy, and Fourier transform infrared spectrometer were utilized to characterize bond configuration and chemical state of the films. The results indicated that at low annealing temperatures (200 and 300 °C), the volatile species and surface contamination are easily dissociated without obvious bulk modification; while at high annealing temperatures (400 and 500 °C), the microstructure of carbon nitride films changed and favored a graphitization process, which indicated the growth of more graphitic film structures. The faint Raman signal of C≡N decreased with annealing temperature (TA) and completely disappeared at TA of 500 °C, indicating that nitrile bonds were thermal unstable under high temperature. Surprisingly, the tribological properties of the films showed a remarkably decreasing in friction coefficient as the TA increased; it is attributed to the graphitization of carbon nitride films during thermal annealing, which favored transfer film formation between the carbon nitride films and counterface materials. The transfer films benefit the decrease in coefficient of friction.

  7. Nanocomposite metal amorphous-carbon thin films deposited by hybrid PVD and PECVD technique.

    Science.gov (United States)

    Teixeira, V; Soares, P; Martins, A J; Carneiro, J; Cerqueira, F

    2009-07-01

    Carbon based films can combine the properties of solid lubricating graphite structure and hard diamond crystal structure, i.e., high hardness, chemical inertness, high thermal conductivity and optical transparency without the crystalline structure of diamond. Issues of fundamental importance associated with nanocarbon coatings are reducing stress, improving adhesion and compatibility with substrates. In this work new nanocomposite coatings with improved toughness based in nanocrystalline phases of metals and ceramics embedded in amorphous carbon matrix are being developed within the frame of a research project: nc-MeNxCy/a-C(Me) with Me = Mo, Si, Al, Ti, etc. Carbide forming metal/carbon (Me/C) composite films with Me = Mo, W or Ti possess appropriate properties to overcome the limitation of pure DLC films. These novel coating architectures will be adopted with the objective to decrease residual stress, improve adherence and fracture toughness, obtain low friction coefficient and high wear-resistance. Nanocomposite DLC's films were deposited by hybrid technique using a PVD-Physically Vapor Deposition (magnetron sputtering) and Plasma Enhanced Chemical Vapor Deposition (PECVD), by the use of CH4 gas. The parameters varied were: deposition time, substrate temperature (180 degrees C) and dopant (Si + Mo) of the amorphous carbon matrix. All the depositions were made on silicon wafers and steel substrates precoated with a silicon inter-layer. The characterisation of the film's physico-mechanical properties will be presented in order to understand the influence of the deposition parameters and metal content used within the a-C matrix in the thin film properties. Film microstructure and film hybridization state was characterized by Raman Spectroscopy. In order to characterize morphology SEM and AFM will be used. Film composition was measured by Energy-Dispersive X-ray analysis (EDS) and by X-ray photoelectron spectroscopy (XPS). The contact angle for the produced DLC's on

  8. Fabrication of periodical surface structures by picosecond laser irradiation of carbon thin films: transformation of amorphous carbon in nanographite

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, C.; Dorcioman, G. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania); Bita, B. [National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae Street, Voluntari RO-077190 (Romania); Faculty of Physics, 405 Atomistilor Street, Magurele RO-077125 (Romania); Besleaga, C.; Zgura, I. [National Institute of Materials Physics, 105bis Atomistilor Street, Magurele RO-077125 (Romania); Himcinschi, C. [Institute of Theoretical Physics, TU Bergakademie Freiberg, Freiberg D-09596 (Germany); Popescu, A.C., E-mail: andrei.popescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania)

    2016-12-30

    Highlights: • Ripples obtained on carbon films after irradiation with visible ps laser pulses. • Amorphous carbon was transformed in nanographite following irradiation. • Ripples had a complex morphology, being made of islands of smaller ripples. • Hydrophilic carbon films became hydrophobic after surface structuring. - Abstract: Thin films of carbon were synthesized by ns pulsed laser deposition in vacuum on silicon substrates, starting from graphite targets. Further on, the films were irradiated with a picosecond laser source emitting in visible at 532 nm. After tuning of laser parameters, we obtained a film surface covered by laser induced periodical surface structures (LIPSS). They were investigated by optical, scanning electron and atomic force microscopy. It was observed that changing the irradiation angle influences the LIPSS covered area. At high magnification it was revealed that the LIPSS pattern was quite complex, being composed of other small LIPSS islands, interconnected by bridges of nanoparticles. Raman spectra for the non-irradiated carbon films were typical for a-C type of diamond-like carbon, while the LIPSS spectra were characteristic to nano-graphite. The pristine carbon film was hydrophilic, while the LIPSS covered film surface was hydrophobic.

  9. Structural properties of nitrogenated amorphous carbon films: Influence of deposition temperature and radiofrequency discharge power

    International Nuclear Information System (INIS)

    Lazar, G.; Bouchet-Fabre, B.; Zellama, K.; Clin, M.; Ballutaud, D.; Godet, C.

    2008-01-01

    The structural properties of nitrogenated amorphous carbon deposited by radiofrequency magnetron sputtering of graphite in pure N 2 plasma are investigated as a function of the substrate temperature and radiofrequency discharge power. The film composition is derived from x-ray photoemission spectroscopy, nuclear reaction analysis and elastic recoil detection measurements and the film microstructure is discussed using infrared, Raman, x-ray photoemission and near edge x-ray absorption fine structure spectroscopic results. At low deposition temperature and low radiofrequency power, the films are soft, porous, and easily contaminated with water vapor and other atmospheric components. The concentration of nitrogen in the films is very large for low deposition temperatures (∼33.6 at. % N at 150 deg. C) but decreases strongly when the synthesis temperature increases (∼15 at. % N at 450 deg. C). With increasing deposition temperature and discharge power values, the main observed effects in amorphous carbon nitride alloys are a loss of nitrogen atoms, a smaller hydrogen and oxygen contamination related to the film densification, an increased order of the aromatic sp 2 phase, and a strong change in the nitrogen distribution within the carbon matrix. Structural changes are well correlated with modifications of the optical and transport properties

  10. X-ray and neutron scattering from amorphous diamondlike carbon and hydrocarbon films

    International Nuclear Information System (INIS)

    Findeisen, E.

    1994-10-01

    In this report amorphous, diamondlike, carbon and hydrocarbon films are investigated by two different methods, namely, X-ray scattering and a combination of X-ray and neutron reflectivity. As specular reflectivity probes the scattering length density profile of a sample perpendicular to its surface, the combination of X-ray and neutron reflectivity reveals the nuclei density of both carbon and hydrogen separately. This allows to calculate the concentration of hydrogen in the films, which varies in the presented experiments between 0 and 36 atomic %. This method is a new and nondestructive technique to determine the concentration of hydrogen within an error of about ±1 at. % in samples with sharp interfaces. It is well suited for thin diamondlike carbon films. X-ray scattering is used to obtain structural information on the atomic scale, especially the average carbon-carbon distance and the average coordination number of the carbon atoms. As grazing incidence diffraction experiments were not successful, free-standing films are used for the scattering experiments with synchrotron light. However, the scattered intensity for large scattering vectors is, in spite of the intense primary beam, very weak, and therefore the accuracy of the obtained structural parameter is not sufficient to prove the diamondlike properties also on the atomic scale. (au) (10 tabs., 76 ills., 102 refs.)

  11. Fabrication of C60/amorphous carbon superlattice structures

    International Nuclear Information System (INIS)

    Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2001-01-01

    The nitrogen doping effects in C 60 films by RF plasma source was investigated, and it was found that the nitrogen ion bombardment broke up C 60 molecules and changed them into amorphous carbon. Based on these results, formation of C 60 /amorphous carbon superlattice structure was proposed. The periodic structure of the resulted films was confirmed by XRD measurements, as the preliminary results of fabrication of the superlattice structure

  12. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na; Komvopoulos, Kyriakos

    2013-01-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron

  13. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  14. Band gap engineering of hydrogenated amorphous carbon thin films for solar cell application

    Science.gov (United States)

    Dwivedi, Neeraj; Kumar, Sushil; Dayal, Saurabh; Rauthan, C. M. S.; Panwar, O. S.; Malik, Hitendra K.

    2012-10-01

    In this work, self bias variation, nitrogen introduction and oxygen plasma (OP) treatment approaches have been used for tailoring the band gap of hydrogenated amorphous carbon (a-C:H) thin films. The band gap of a-C:H and modified a- C:H films is varied in the range from 1.25 eV to 3.45 eV, which is found to be nearly equal to the full solar spectrum (1 eV- 3.5 eV). Hence, such a-C:H and modified a-C:H films are found to be potential candidate for the development of full spectrum solar cells. Besides this, computer aided simulation with considering variable band gap a-C:H and modified a- C:H films as window layer for amorphous silicon p-i-n solar cells is also performed by AFORS-HET software and maximum efficiency as ~14 % is realized. Since a-C:H is hard material, hence a-C:H and modified a-C:H films as window layer may avoid the use of additional hard and protective coating particularly in n-i-p configuration.

  15. The effect of substrate bias on titanium carbide/amorphous carbon nanocomposite films deposited by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Zhang, Xu; Liang, Hong; Wu, Zhenglong; Wu, Xiangying; Zhang, Huixing

    2013-01-01

    The titanium carbide/amorphous carbon nanocomposite films have been deposited on silicon substrate by filtered cathodic vacuum arc (FCVA) technology, the effects of substrate bias on composition, structures and mechanical properties of the films are studied by scanning electron spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy and nano-indentation. The results show that the Ti content, deposition rate and hardness at first increase and then decrease with increasing the substrate bias. Maximum hardness of the titanium carbide/amorphous carbon nanocomposite film is 51 Gpa prepared at −400 V. The hardness enhancement may be attributed to the compressive stress and the fraction of crystalline TiC phase due to ion bombardment

  16. Structures and properties of fluorinated amorphous carbon films

    Science.gov (United States)

    Huang, K. P.; Lin, P.; Shih, H. C.

    2004-07-01

    Fluorinated amorphous carbon (a-C:F) films were deposited by radio frequency bias assisted microwave plasma electron cyclotron resonance chemical vapor deposition with tetrafluoromethane (CF4) and acetylene (C2H2) as precursors. The deposition process was performed at two flow ratios R=0.90 and R=0.97, where R=CF4/(CF4+C2H2). The samples were annealed at 300 °C for 30 min. in a N2 atmosphere. Both Fourier transform infrared and electron spectroscopy for chemical analyzer were used to characterize the a-C:F film chemical bond and fluorine concentration, respectively. A high resolution electron energy loss spectrometer was applied to detect the electronic structure. The higher CF4 flow ratio (R=0.97) produced more sp3 linear structure, and it made the a-C:F film smoother and softer. A lifetime of around 0.34 μs and an energy gap of ˜2.75 eV were observed in both the as-deposited and after annealing conditions. The short carriers lifetime in the a-C:F film made the photoluminescence peak blueshift. The annealing changed both the structure and composition of the a-C:F film. The type of fluorocarbon bond and electronic structure characterized the mechanical and physical properties of a-C:F film.

  17. Thermal stability of amorphous carbon films grown by pulsed laser deposition

    Science.gov (United States)

    Friedmann, T. A.; McCarty, K. F.; Barbour, J. C.; Siegal, M. P.; Dibble, Dean C.

    1996-03-01

    The thermal stability in vacuum of amorphous tetrahedrally coordinated carbon (a-tC) films grown on Si has been assessed by in situ Raman spectroscopy. Films were grown in vacuum on room-temperature substrates using laser fluences of 12, 22, and 45 J/cm2 and in a background gas of either hydrogen or nitrogen using a laser fluence of 45 J/cm2. The films grown in vacuum at high fluence (≳20J/cm2) show little change in the a-tC Raman spectra with temperature up to 800 °C. Above this temperature the films convert to glassy carbon (nanocrystalline graphite). Samples grown in vacuum at lower fluence or in a background gas (H2 or N2) at high fluence are not nearly as stable. For all samples, the Raman signal from the Si substrate (observed through the a-tC film) decreases in intensity with annealing temperature indicating that the transparency of the a-tC films is decreasing with temperature. These changes in transparency begin at much lower temperatures (˜200 °C) than the changes in the a-tC Raman band shape and indicate that subtle changes are occurring in the a-tC films at lower temperatures.

  18. Structural and mechanical properties of amorphous carbon films deposited by the dual plasma technique

    Institute of Scientific and Technical Information of China (English)

    Yaohui Wang; Xu Zhang; Xianying Wu; Huixing Zhang; Xiaoji Zhang

    2008-01-01

    Direct current metal filtered cathodic vacuum are (FCVA) and acetylene gas (C2H2) were wielded to synthesize Ti-containing amorphous carbon films on Si (100). The influence of substrate bias voltage and acetylene gas on the microstructure and mechanical properties of the films were investigated. The results show that the phase of TiC in the (111) preferential crystallo-graphic orientation exists in the film, and rite main existing pattern of carbon is sp2. With increasing the acetylene flow rate, the con-tents of Ti and TiC phase of the film gradually reduce; however, the thickness of the film increases. When the substrate bias voltage reaches -600 V, the internal stress of the film reaches 1.6 GPa. The micro-hardness and elastic modulus of the film can reach 33.9 and 237.6 GPa, respectively, and the friction coefficient of the film is 0.25.

  19. Short-pulse-laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon films

    Science.gov (United States)

    Sokolowski-Tinten, Klaus; Ziegler, Wolfgang; von der Linde, Dietrich; Siegal, Michael P.; Overmyer, D. L.

    2005-03-01

    Short-pulse-laser-induced damage and ablation of thin films of amorphous, diamond-like carbon have been investigated. Material removal and damage are caused by fracture of the film and ejection of large fragments. The fragments exhibit a delayed, intense and broadband emission of microsecond duration. Both fracture and emission are attributed to the laser-initiated relaxation of the high internal stresses of the pulse laser deposition-grown films.

  20. Effects of hydrogenation on thermal conductivity of ultrananocrystalline diamond/amorphous carbon composite films prepared via coaxial arc plasma deposition

    Science.gov (United States)

    Takeichi, Satoshi; Nishiyama, Takashi; Tabara, Mitsuru; Kawawaki, Shuichi; Kohno, Masamichi; Takahashi, Koji; Yoshitake, Tsuyoshi

    2018-06-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite (UNCD/a-C:H) and UNCD/non-hydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were prepared via coaxial arc plasma deposition, and their thermal conductivity and interfacial conductance in grain boundaries were measured using a time-domain thermoreflectance method. The interfacial conductance was estimated to be 1,010 and 4,892 MW/(m2·K) for UNCD/a-C:H and UNCD/a-C films, respectively. The reasons for the hydrogenated film having lower interfacial conductance than the non-hydrogenated film are 1) the reduced number of carriers that contribute to heat transport and 2) the hydrogen atoms, which are preferentially located at the grain boundaries and enhance phonon scattering.

  1. Photophysical and photochemical investigations of fullerene presence in amorphous hydrogenated carbon films

    Science.gov (United States)

    Chen, J. Q.; Meeker, D. L.; Barashkov, N. N.

    1997-07-01

    The plasma-enhanced chemical vapor deposition system was used to grow amorphous hydrogenated carbon films deposited on silicon substrates. Extracts of the films were obtained by treatment with boiling cyclohexane solvent. The absorption spectra of these extracts showed the existence of small quantities of fullerenes. Using the molar extinction coefficient of C60 in cyclohexane, the mass of fullerenes in the films was estimated to be about 0.019 mg. C60 induced fluorescence quenching of anthracene was also observed. Additional evidence for the presence of fullerenes was based on their capability to accelerate the photo-oxidation of anthracene through the generation of singlet oxygen with a high quantum yield under ultraviolet irradiation.

  2. Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics.

    Science.gov (United States)

    Constantinou, Marios; Nikolaou, Petros; Koutsokeras, Loukas; Avgeropoulos, Apostolos; Moschovas, Dimitrios; Varotsis, Constantinos; Patsalas, Panos; Kelires, Pantelis; Constantinides, Georgios

    2018-03-30

    This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a-C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a-C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a-C:H:Ag and a-C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  3. Hydrogenated amorphous carbon next deposit after heat treatment

    International Nuclear Information System (INIS)

    Salancon, E.; Durbeck, T.; Schwarz-Selinger, T.; Jacob, W.

    2006-01-01

    One of the main safety problems in the ITER tokamak project is the tritium adsorption in the reactor walls and in particular the deposits which appear after the plasma discharge. These deposits are amorphous hydrogenated carbon films, type polymer (soft a-C:H). The heating of these deposits with a pulse laser is a proposed solution for the tritium desorption. Meanwhile, Gibson and al show that in experimental conditions, products are deposed on the walls before entering the mass spectrometer. The authors present thermo-desorption spectra of different amorphous carbon films. (A.L.B.)

  4. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    Unknown

    moves from low preparation temperature to high preparation temperature. The amorphous .... nm and the interac- tion between the pi-electron clouds of the two layers re- .... sp2 configuration forms to minimize stress and making. C900 films ...

  5. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.; Komvopoulos, K.

    2012-01-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical

  6. Photophysical and photochemical investigations of fullerene presence in amorphous hydrogenated carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.Q.; Meeker, D.L. [The Physics Program, University of Texas at Dallas, Richardson, Texas 75083 (United States); Barashkov, N.N. [Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1997-07-01

    The plasma-enhanced chemical vapor deposition system was used to grow amorphous hydrogenated carbon films deposited on silicon substrates. Extracts of the films were obtained by treatment with boiling cyclohexane solvent. The absorption spectra of these extracts showed the existence of small quantities of fullerenes. Using the molar extinction coefficient of C{sub 60} in cyclohexane, the mass of fullerenes in the films was estimated to be about 0.019 mg. C{sub 60} induced fluorescence quenching of anthracene was also observed. Additional evidence for the presence of fullerenes was based on their capability to accelerate the photo-oxidation of anthracene through the generation of singlet oxygen with a high quantum yield under ultraviolet irradiation. {copyright} {ital 1997 American Institute of Physics.}

  7. Metal (Ag/Ti-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics

    Directory of Open Access Journals (Sweden)

    Marios Constantinou

    2018-03-01

    Full Text Available This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a–C:H:Me of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD and Physical Vapor Deposition (PVD technologies. The a–C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti. The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR, Raman spectroscopy, Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM, Transmission Electron Microscopy (TEM and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a–C:H:Ag and a–C:H:Ti exhibited enhanced nanoscratch resistance (up to +50% and low values of friction coefficient (<0.05, properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  8. Gas desorption during friction of amorphous carbon films

    International Nuclear Information System (INIS)

    Rusanov, A; Fontaine, J; Martin, J-M; Mogne, T L; Nevshupa, R

    2008-01-01

    Gas desorption induced by friction of solids, i.e. tribodesorption, is one of the numerous physical and chemical phenomena, which arise during friction as result of thermal and structural activation of material in a friction zone. Tribodesorption of carbon oxides, hydrocarbons, and water vapours may lead to significant deterioration of ultra high vacuum conditions in modern technological equipment in electronic, optoelectronic industries. Therefore, knowledge of tribodesorption is crucial for the performance and lifetime of vacuum tribosystems. Diamond-like carbon (DLC) coatings are interesting materials for vacuum tribological systems due to their high wear resistance and low friction. Highly hydrogenated amorphous carbon (a-C:H) films are known to exhibit extremely low friction coefficient under high vacuum or inert environment, known as 'superlubricity' or 'superlow friction'. However, the superlow friction period is not always stable and then tends to spontaneous transition to high friction. It is supposed that hydrogen supply from the bulk to the surface is crucial for establishing and maintaining superlow friction. Thus, tribodesorption can serve also as a new technique to determine the role of gases in superlow friction mechanisms. Desorption of various a-C:H films, deposited by PECVD, ion-beam deposition and deposition using diode system, has been studied by means of ultra-high vacuum tribometer equipped with a mass spectrometer. It was found that in superlow friction period desorption rate was below the detection limit in the 0-85 mass range. However, transition from superlow friction to high friction was accompanied by desorption of various gases, mainly of H 2 and CH 4 . During friction transition, surfaces were heavily damaged. In experiments with DLC films with low hydrogen content tribodesorption was significant during the whole experiment, while low friction was not observed. From estimation of maximum surface temperature during sliding contact it

  9. Fabrication of amorphous Si and C anode films via co-sputtering for an all-solid-state battery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.S. [Department of Materials Science and Engineering, Yonsei University Shinchondong, 262 Seongsanno, Seodaemoongu, Seoul 120-749 (Korea, Republic of); Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Lee, S.H. [Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Woo, S.P. [Department of Materials Science and Engineering, Yonsei University Shinchondong, 262 Seongsanno, Seodaemoongu, Seoul 120-749 (Korea, Republic of); Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Kim, H.S. [Department of Mechanical Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Yoon, Y.S., E-mail: benedicto@gachon.ac.kr [Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of)

    2014-08-01

    In this study, a combination of silicon and carbon as the anode material for an all-solid-state battery has been investigated to overcome their individual deficiencies. The capacity of silicon thin films with an input power of 60 W shows dramatic failure after 38 cycles due to serious volume expansion. In contrast, C thin films at 60 W show high stability of cyclic performance and capacity retention. The amorphous silicon and carbon composite reduced the volume expansion of silicon during long term cycles and enhanced the low specific capacity of the carbon. This resistance of the volume expansion might be expected from the cushion effect caused by the carbon, which was confirmed by scanning electron microscope images after a 100 cycle test. These results indicate that amorphous silicon and carbon composite thin films have a high possibility as the stable anode material for an all-solid-state battery. - Highlights: • Amorphous Si/C nanocomposite thin films have been prepared by co-sputtering. • Carbon can act as a cushion effect to prevent volume expansion of Si. • Amorphous Si/C nanocomposite thin films show structure stability at 100 cycles. • Capacity of the amorphous Si/C nanocomposite thin films was enhanced considerably.

  10. Heavy-ion induced desorption yields of amorphous carbon films bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Scrivens, R; Costa Pinto, P; Yin Vallgren, C; Bender, M

    2011-01-01

    During the past decade, intense experimental studies on the heavy-ion induced molecular desorption were performed in several particle accelerator laboratories worldwide in order to understand and overcome large dynamic pressure rises caused by lost beam ions. Different target materials and various coatings were studied for desorption and mitigation techniques were applied to heavy-ion accelerators. For the upgrade of the CERN injector complex, a coating of the Super Proton Synchrotron (SPS) vacuum system with a thin film of amorphous carbon is under study to mitigate the electron cloud effect observed during SPS operation with the nominal proton beam for the Large Hadron Collider (LHC). Since the SPS is also part of the heavy-ion injector chain for LHC, dynamic vacuum studies of amorphous carbon films are important to determine their ion induced desorption yields. At the CERN Heavy Ion Accelerator (LINAC 3), carbon-coated accelerator-type stainless steel vacuum chambers were tested for desorption using 4.2 Me...

  11. Correlation between substrate bias, growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon films

    International Nuclear Information System (INIS)

    Liu Aiping; Zhu Jiaqi; Han Jiecai; Wu Huaping; Jia Zechun

    2007-01-01

    We investigate the growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon (ta-C:P) films which are deposited at different substrate biases by filtered cathodic vacuum arc technique with PH 3 as the dopant source. The films are characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, Raman spectroscopy, residual stress measurement, UV/VIS/NIR absorption spectroscopy and temperature-dependent conductivity measurement. The atomic fraction of phosphorus in the films as a function of substrate bias is obtained by XPS analysis. The optimum bias for phosphorus incorporation is about -80 V. Raman spectra show that the amorphous structures of all samples with atomic-scaled smooth surface are not remarkably changed when PH 3 is implanted, but some small graphitic crystallites are formed. Moreover, phosphorus impurities and higher-energetic impinging ions are favorable for the clustering of sp 2 sites dispersed in sp 3 skeleton and increase the level of structural ordering for ta-C:P films, which further releases the compressive stress and enhances the conductivity of the films. Our analysis establishes an interrelationship between microstructure, stress state, electrical properties, and substrate bias, which helps to understand the deposition mechanism of ta-C:P films

  12. Electron transport determines the electrochemical properties of tetrahedral amorphous carbon (ta-C) thin films

    International Nuclear Information System (INIS)

    Palomäki, Tommi; Wester, Niklas; Caro, Miguel A.; Sainio, Sami; Protopopova, Vera; Koskinen, Jari; Laurila, Tomi

    2017-01-01

    Amorphous carbon based electrodes are very promising for electrochemical sensing applications. In order to better understand their structure-function relationship, the effect of film thickness on the electrochemical properties of tetrahedral amorphous carbon (ta-C) electrodes was investigated. ta-C thin films of 7, 15, 30, 50 and 100 nm were characterized in detail with Raman spectroscopy, transmission electron microscopy (TEM), conductive atomic force microscopy (c-AFM), scanning tunneling spectroscopy (STS) and X-ray absorption spectroscopy (XAS) to assess (i) the surface properties of the films, (ii) the effect of film thickness on their structure and electrical properties and (iii) the subsequent correlation with their electrochemistry. The electrochemical properties were investigated by cyclic voltammetry (CV) using two different outer-sphere redox probes, Ru(NH 3 ) 6 3+/2+ and FcMeOH, and by electrochemical impedance spectroscopy (EIS). Computational simulations using density functional theory (DFT) were carried out to rationalize the experimental findings. The characterization results showed that the sp 2 /sp 3 ratio increased with decreasing ta-C film thickness. This correlated with a decrease in mobility gap value and an increase in the average current through the films, which was also consistent with the computational results. XAS indicated that the surface of the ta-C films was always identical and composed of a sp 2 -rich layer. The CV measurements indicated reversible reaction kinetics for both outer-sphere redox probes at 7 and 15 nm ta-C films with a change to quasi-reversible behavior at a thickness of around 30 nm. The charge transfer resistance, obtained from EIS measurements, decreased with decreasing film thickness in accordance with the CV results. Based on the characterization and electrochemical results, we conclude that the reaction kinetics in the case of outer-sphere redox systems is determined mainly by the electron transport through the

  13. Thermal expansion coefficient measurement from electron diffraction of amorphous films in a TEM.

    Science.gov (United States)

    Hayashida, Misa; Cui, Kai; Malac, Marek; Egerton, Ray

    2018-05-01

    We measured the linear thermal expansion coefficients of amorphous 5-30 nm thick SiN and 17 nm thick Formvar/Carbon (F/C) films using electron diffraction in a transmission electron microscope. Positive thermal expansion coefficient (TEC) was observed in SiN but negative coefficients in the F/C films. In case of amorphous carbon (aC) films, we could not measure TEC because the diffraction radii required several hours to stabilize at a fixed temperature. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  14. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N; Komvopoulos, K

    2014-01-01

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures

  15. Semiconducting Properties of Nanostructured Amorphous Carbon Thin Films Incorporated with Iodine by Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Kamaruzaman, Dayana; Ahmad, Nurfadzilah; Annuar, Ishak; Rusop, Mohamad

    2013-11-01

    Nanostructured iodine-post doped amorphous carbon (a-C:I) thin films were prepared from camphor oil using a thermal chemical vapor deposition (TCVD) technique at different doping temperatures. The structural properties of the films were studied by field-emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), Raman, and Fourier transform infrared (FTIR) studies. FESEM and EDS studies showed successful iodine doping. FTIR and Raman studies showed that the a-C:I thin films consisted of a mixture of sp2- and sp3-bonded carbon atoms. The optical and electrical properties of a-C:I thin films were determined by UV-vis-NIR spectroscopy and current-voltage (I-V) measurement respectively. The optical band gap of a-C thin films decreased upon iodine doping. The highest electrical conductivity was found at 400 °C doping. Heterojunctions are confirmed by rectifying the I-V characteristics of an a-C:I/n-Si junction.

  16. Rapid growth of amorphous carbon films on the inner surface of micron-thick and hollow-core fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Longfei [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Zhou, Xinwei [Department of Mechanical Engineering, Zhejiang University, Zhejiang 310007 (China); Song, Ying [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Ni, Weiyuan [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Niu, Jinhai; Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2013-10-01

    Ultrathick (> 25 μm) carbon films were obtained on the inner surface of hollow and micron-thick quartz fibers by confining CH{sub 4}/He or C{sub 2}H{sub 2}/He microplasmas in their hollow cores. The resulting carbon films were studied by using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The microplasma-enhanced chemical vapor deposition (CVD) technique resulted in the uniform growth of amorphous carbon films on the inner surface of very long (> 1 m) hollow-core fibers. Film deposition is performed by using microplasmas at atmospheric pressure and at 50 Pa. The carbon films obtained with the latter show the smooth inner surfaces and the well continuity across the film/optical fiber. Low-pressure CH{sub 4}/He and C{sub 2}H{sub 2}/He microplasmas can lead to a rapid growth (∼ 2.00 μm/min) of carbon films with their thickness of > 25 μm. The optical emission measurements show that various hydrocarbon species were formed in these depositing microplasmas due to the collisions between CH{sub 4}/C{sub 2}H{sub 2} molecules and energetic species. The microplasma-enhanced CVD technique running without the complicated fabrication processes shows its potentials for rapidly depositing the overlong carbon tubes with their inner diameters of tens of microns. - Highlights: • The microplasma device is applied for coating deposition inside hollow-core fibers. • The microplasma device results in > 25 μm-thick carbon films. • The microplasma device is simple for deposition of ultralong carbon tubes.

  17. Ion-Assisted Pulsed Laser Deposition of amorphous tetrahedral-coordinated carbon films

    Science.gov (United States)

    Friedmann, T. A.; Tallant, D. R.; Sullivan, J. P.; Siegal, M. P.; Simpson, R. L.

    1994-04-01

    A parametric study has been performed of amorphous tetrahedral carbon (a-tC) films produced by ion-assisted pulsed laser deposition (IAPLD). The ion voltage, current density, and feed gas composition (nitrogen in argon) have been varied. The resultant films were characterized by thickness, residual stress, Raman spectroscopy, and electrical resistivity. The Raman spectra have been fit to two gaussian peaks, the so called graphitic (G) peak and the disorder (D) peak. It has been found that the magnitude of the D peak and the residual compressive stress are inversely correlated. At low beam voltages and currents, the magnitude of the D peak is low, increasing as the ion beam voltage and current are raised. The ion beam voltage has the most dramatic effect on the magnitude of the D peak. At low voltages (200-500 V) the magnitude of the D peak is greater for ion beams with high percentages of nitrogen possibly indicative of C-N bonding in the films. At higher voltages (500-1500 V) the D peak intensity is less sensitive to the nitrogen content of the beam.

  18. Platinum containing amorphous hydrogenated carbon (a-C:H/Pt) thin films as selective solar absorbers

    International Nuclear Information System (INIS)

    Lan, Yung-Hsiang; Brahma, Sanjaya; Tzeng, Y.H.; Ting, Jyh-Ming

    2014-01-01

    We have investigated a double-cermet structured thin film in which an a-C:H thin film was used as an anti-reflective (AR) layer and two platinum-containing amorphous hydrogenated carbon (a-C:H/Pt) thin films were used as the double cermet layers. A reactive co-sputter deposition method was used to prepare both the anti-reflective and cermet layers. Effects of the target power and heat treatment were studied. The obtained films were characterized using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy. The optical absorptance and emittance of the as deposited and annealed films were determined using UV–vis-NIR spectroscopy. We show that the optical absorptance of the resulting double-cermet structured thin film is as high as 96% and remains to be 91% after heat treatment at 400 °C, indicating the thermal stability of the film

  19. Amorphous carbon nitrogenated films prepared by plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Durrant, Steven F.; Rangel, Rita C.C.; Kayama, Milton E.; Landers, Richard; Cruz, Nilson C. da

    2006-01-01

    In this work, an investigation was conducted on amorphous hydrogenated-nitrogenated carbon films prepared by plasma immersion ion implantation and deposition. Glow discharge was excited by radiofrequency power (13.56 MHz, 40 W) whereas the substrate-holder was biased with 25 kV negative pulses. The films were deposited from benzene, nitrogen and argon mixtures. The proportion of nitrogen in the chamber feed (R N ) was varied against that of argon, while keeping the total pressure constant (1.3 Pa). From infrared reflectance-absorbance spectroscopy it was observed that the molecular structure of the benzene is not preserved in the film. Nitrogen was incorporated from the plasma while oxygen arose as a contaminant. X-ray photoelectron spectroscopy revealed that N/C and O/C atomic ratios change slightly with R N . Water wettability decreased as the proportion of N in the gas phase increased while surface roughness underwent just small changes. Nanoindentation measurements showed that film deposition by means of ion bombardment was beneficial to the mechanical properties of the film-substrate interface. The intensity of the modifications correlates well with the degree of ion bombardment

  20. Growth Mechanism for Low Temperature PVD Graphene Synthesis on Copper Using Amorphous Carbon

    Science.gov (United States)

    Narula, Udit; Tan, Cher Ming; Lai, Chao Sung

    2017-03-01

    Growth mechanism for synthesizing PVD based Graphene using Amorphous Carbon, catalyzed by Copper is investigated in this work. Different experiments with respect to Amorphous Carbon film thickness, annealing time and temperature are performed for the investigation. Copper film stress and its effect on hydrogen diffusion through the film grain boundaries are found to be the key factors for the growth mechanism, and supported by our Finite Element Modeling. Low temperature growth of Graphene is achieved and the proposed growth mechanism is found to remain valid at low temperatures.

  1. Formation of hydrogenated amorphous carbon films of controlled hardness from a methane plasma

    International Nuclear Information System (INIS)

    Vandentop, G.J.; Kawasaki, M.; Nix, R.M.; Brown, I.G.; Salmeron, M.; Somorjai, G.A.; Department of Chemistry, University of California at Berkeley, Berkeley, California 94720)

    1990-01-01

    Studies of amorphous hydrogenated carbon (a-C:H) film deposition revealed that methyl radicals are the precursor species responsible for the bulk mass deposition of the films, while the ions act to improve the mechanical properties. The films were deposited on Si(100) substrates both on the powered (negatively self-biased) and on the grounded electrodes from a methane rf plasma (13.56 MHz) at 68 to 70 mTorr and 300 to 370 K. The films produced on the powered electrode exhibited superior mechanical properties, such as high hardness. A mass spectrometer was used to identify neutral species and positive ions incident on the electrodes from the plasma, and also to measure ion energies. Methyl radicals were incident on the electrode surface with an estimated flux of 10 16 cm -2 s -1 , for a rf power of 50 W. Methyl radicals appear to be the dominant intermediates in the growth of the soft carbon polymer, and there is a remarkable decrease in deposition rate due to the introduction of NO, a radical scavenger. A novel pulsed biasing technique was used so that the role of ions in the plasma could be studied separately. It was found that the hardness of the films depends on the power supplied by the ions to the growing film surface (the time averaged difference between the plasma potential and the electrode potential), but not on the energy of individual ions. The pulsed biasing technique offers an efficient method to adjust the film hardness by independent control of the neutral radical and ion fluxes to the surface

  2. Revealing the 1 nm/s Extensibility of Nanoscale Amorphous Carbon in a Scanning Electron Microscope

    DEFF Research Database (Denmark)

    Zhang, Wei

    2013-01-01

    In an ultra-high vacuum scanning electron microscope, the edged branches of amorphous carbon film (∼10 nm thickness) can be continuously extended with an eye-identifying speed (on the order of ∼1 nm/s) under electron beam. Such unusual mobility of amorphous carbon may be associated with deformation...... promoted by the electric field, which resulted from an inner secondary electron potential difference from the main trunk of carbon film to the tip end of branches under electron beam. This result demonstrates importance of applying electrical effects to modify properties of carbon materials. It may have...... positive implications to explore some amorphous carbon as electron field emission device. SCANNING 35: 261-264, 2013. © 2012 Wiley Periodicals, Inc....

  3. Influence of deposition temperature and amorphous carbon on microstructure and oxidation resistance of magnetron sputtered nanocomposite Crsbnd C films

    Science.gov (United States)

    Nygren, Kristian; Andersson, Matilda; Högström, Jonas; Fredriksson, Wendy; Edström, Kristina; Nyholm, Leif; Jansson, Ulf

    2014-06-01

    It is known that mechanical and tribological properties of transition metal carbide films can be tailored by adding an amorphous carbon (a-C) phase, thus making them nanocomposites. This paper addresses deposition, microstructure, and for the first time oxidation resistance of magnetron sputtered nanocomposite Crsbnd C/a-C films with emphasis on studies of both phases. By varying the deposition temperature between 20 and 700 °C and alternating the film composition, it was possible to deposit amorphous, nanocomposite, and crystalline Crsbnd C films containing about 70% C and 30% Cr, or 40% C and 60% Cr. The films deposited at temperatures below 300 °C were X-ray amorphous and 500 °C was required to grow crystalline phases. Chronoamperometric polarization at +0.6 V vs. Ag/AgCl (sat. KCl) in hot 1 mM H2SO4 resulted in oxidation of Crsbnd C, yielding Cr2O3 and C, as well as oxidation of C. The oxidation resistance is shown to depend on the deposition temperature and the presence of the a-C phase. Physical characterization of film surfaces show that very thin C/Cr2O3/Crsbnd C layers develop on the present material, which can be used to improve the oxidation resistance of, e.g. stainless steel electrodes.

  4. Ultrahard carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; PROVENCIO,PAULA P.; OVERMYER,DONALD L.; SIMPSON,REGINA L.; MARTINEZ-MIRANDA,L.J.

    2000-01-27

    Modest thermal annealing to 600 C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5--10%. The authors report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approximately} 15% due to the development of the nanocomposite structure.

  5. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na

    2013-08-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp 3 fraction, a relatively thicker layer (bulk film) of constant sp 3 content, and an ultrathin surface layer rich in sp 2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions. Copyright © 2013 Materials Research Society.

  6. Operating method of amorphous thin film semiconductor element

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Koshiro; Ono, Masaharu; Hanabusa, Akira; Osawa, Michio; Arita, Takashi

    1988-05-31

    The existing technologies concerning amorphous thin film semiconductor elements are the technologies concerning the formation of either a thin film transistor or an amorphous Si solar cell on a substrate. In order to drive a thin film transistor for electronic equipment control by the output power of an amorphous Si solar cell, it has been obliged to drive the transistor weth an amorphous solar cell which was formed on a substrate different from that for the transistor. Accordingly, the space for the amorphous solar cell, which was formed on the different substrate, was additionally needed on the substrate for the thin film transistor. In order to solve the above problem, this invention proposes an operating method of an amorphous thin film semiconductor element that after forming an amorphous Si solar cell through lamination on the insulation coating film which covers the thin film transistor formed on the substrate, the thin film transistor is driven by the output power of this solar cell. The invention eliminates the above superfluous space and reduces the size of the amorphous thin film semiconductor element including the electric source. (3 figs)

  7. A comparative chemical network study of HWCVD deposited amorphous silicon and carbon based alloys thin films

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Bibhu P., E-mail: bibhuprasad.swain@gmail.com [Centre for Materials Science and Nanotechnology, Sikkim Manipal Institute of Technology, Majitar, Rangpo Sikkim (India); Swain, Bhabani S.; Hwang, Nong M. [Thin Films and Microstructure Laboratory, Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-03-05

    Highlights: • a-SiC:H, a-SiN:H, a-C:H and a-SiCN:H films were deposited by hot wire chemical vapor deposition. • Evolution of microstructure of a-SiCN:H films deposited at different NH{sub 3} flow rate were analyzed. • The chemical network of Si and C based alloys were studied by FTIR and Raman spectroscopy. -- Abstract: Silicon and carbon based alloys were deposited by hot wire chemical vapor deposition (HWCVD). The microstructure and chemical bonding of these films were characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electron microscopy revealed various microstructures were observed for a-C:H, a-SiC:H, a-SiN:H, a-CN:H and a-SiCN:H films. The microstructure of SiN:H films showed agglomerate spherical grains while a-C:H films showed more fractal surface with branched microstructure. However, a-SiC:H, a-CN:H and a-SiCN:H indicated uniform but intermediate surface fractal microstructure. A series of a-SiCN:H films were deposited with variation of NH{sub 3} flow rate. The nitrogen incorporation in a-SiCN:H films alter the carbon network from sp{sup 2} to sp{sup 3} bonding The detail chemical bonding of amorphous films was analyzed by curve fitting method.

  8. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.

    2012-07-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical and experimental results. The thickness of a-C films deposited at different incidence angles was investigated in the light of Monte Carlo simulations, and the calculated depth profiles were compared with those obtained from high-resolution transmission electron microscopy (TEM). The topography and structure of the a-C films were studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The film thickness decreased with the increase of the incidence angle, while the surface roughness increased and the content of tetrahedral carbon hybridization (sp 3) decreased significantly with the increase of the incidence angle above 45° , measured from the surface normal. TEM, AFM, and XPS results indicate that the smoothest and thinnest a-C films with the highest content of sp 3 carbon bonding were produced for an incidence angle of 45°. The findings of this study have direct implications in ultrahigh-density magnetic recording, where ultrathin and smooth a-C films with high sp 3 contents are of critical importance. © 2012 IEEE.

  9. Ultrahard carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Provencio, P. N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Martinez-Miranda, L. J. [Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2000-05-22

    Modest thermal annealing to 600 degree sign C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5%-10%. We report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approx}15% due to the development of the nanocomposite structure. (c) 2000 American Institute of Physics.

  10. Effect of substrate temperature on corrosion performance of nitrogen doped amorphous carbon thin films in NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Khun, N.W. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, E., E-mail: MEJLiu@ntu.edu.s [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2009-07-01

    Nitrogen doped amorphous carbon (a-C:N) thin films were deposited on p-Si substrates by DC magnetron sputtering at varying substrate temperature from room temperature (RT) to 300 {sup o}C. The bonding structure, surface morphology and adhesion strength of the a-C:N films were investigated by using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch testing. The corrosion behavior of the a-C:N films was evaluated by potentiodynamic polarization test in a 0.6 M NaCl solution. The results indicated that the corrosion resistance of the films depended on the sp{sup 3}-bonded cross-link structure that was significantly affected by the substrate temperature.

  11. Effect of substrate temperature on corrosion performance of nitrogen doped amorphous carbon thin films in NaCl solution

    International Nuclear Information System (INIS)

    Khun, N.W.; Liu, E.

    2009-01-01

    Nitrogen doped amorphous carbon (a-C:N) thin films were deposited on p-Si substrates by DC magnetron sputtering at varying substrate temperature from room temperature (RT) to 300 o C. The bonding structure, surface morphology and adhesion strength of the a-C:N films were investigated by using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch testing. The corrosion behavior of the a-C:N films was evaluated by potentiodynamic polarization test in a 0.6 M NaCl solution. The results indicated that the corrosion resistance of the films depended on the sp 3 -bonded cross-link structure that was significantly affected by the substrate temperature.

  12. Protective amorphous carbon coatings on glass substrates

    Science.gov (United States)

    Silins, Kaspars; Baránková, Hana; Bardos, Ladislav

    2017-11-01

    Thick amorphous carbon films were deposited by the Magnets-in-Motion (M-M) rf linear hollow cathode at varying acetylene contents in Ar in a hybrid PVD/PE-CVD process directly on glass substrates. The hollow cathode plates manufactured from graphite were used as the PVD target. The measurements show that the films can reach thickness of up to 50 μm at deposition rates of up to 2.5 μm/min. Scratch test measurements confirm that well adhering films several μm thick can be achieved at C2H2 contents of up to 0.5%.

  13. Re-crystallization of ITO films after carbon irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Usman, Muhammad, E-mail: usmanm@ncp.edu.pk [Experimental Physics Laboratories, National Centre for Physics, Shahdara Valley Road, Quaid-i-Azam University, Islamabad (Pakistan); Khan, Shahid, E-mail: shahidkhan@zju.edu.cn [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Khan, Majid [Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan); Abbas, Turab Ali [Experimental Physics Laboratories, National Centre for Physics, Shahdara Valley Road, Quaid-i-Azam University, Islamabad (Pakistan)

    2017-01-15

    Highlights: • Carbon irradiation on ITO destroys crystal structure until threshold ion fluence. • Carbon irradiation induced amorphization in ITO is recoverable at higher fluence. • Optical transmittance is reduced after carbon irradiation. • Electrical resistivity is increased after irradiation with carbon ions in ITO. • Bandgap is reduced with increasing fluence of carbon irradiation. - Abstract: 2.0 MeV carbon ion irradiation effects on Indium Tin Oxide (ITO) thin films on glass substrate are investigated. The films are irradiated with carbon ions in the fluence range of 1 × 10{sup 13} to 1 × 10{sup 15} ions/cm{sup 2}. The irradiation induced effects in ITO are compared before and after ion bombardment by systematic study of structural, optical and electrical properties of the films. The XRD results show polycrystalline nature of un-irradiated ITO films which turns to amorphous state after 1 × 10{sup 13} ions/cm{sup 2} fluence of carbon ions. Further increase in ion fluence to 1 × 10{sup 14} ions/cm{sup 2} re-crystallizes the structure and retains for even higher fluences. A gradual decrease in the electrical conductivity and transmittance of irradiated samples is observed with increasing ion fluence. The band gap of the films is observed to be decreased after carbon irradiation.

  14. Re-crystallization of ITO films after carbon irradiation

    International Nuclear Information System (INIS)

    Usman, Muhammad; Khan, Shahid; Khan, Majid; Abbas, Turab Ali

    2017-01-01

    Highlights: • Carbon irradiation on ITO destroys crystal structure until threshold ion fluence. • Carbon irradiation induced amorphization in ITO is recoverable at higher fluence. • Optical transmittance is reduced after carbon irradiation. • Electrical resistivity is increased after irradiation with carbon ions in ITO. • Bandgap is reduced with increasing fluence of carbon irradiation. - Abstract: 2.0 MeV carbon ion irradiation effects on Indium Tin Oxide (ITO) thin films on glass substrate are investigated. The films are irradiated with carbon ions in the fluence range of 1 × 10"1"3 to 1 × 10"1"5 ions/cm"2. The irradiation induced effects in ITO are compared before and after ion bombardment by systematic study of structural, optical and electrical properties of the films. The XRD results show polycrystalline nature of un-irradiated ITO films which turns to amorphous state after 1 × 10"1"3 ions/cm"2 fluence of carbon ions. Further increase in ion fluence to 1 × 10"1"4 ions/cm"2 re-crystallizes the structure and retains for even higher fluences. A gradual decrease in the electrical conductivity and transmittance of irradiated samples is observed with increasing ion fluence. The band gap of the films is observed to be decreased after carbon irradiation.

  15. Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions.

    Science.gov (United States)

    Gao, G T; Mikulski, Paul T; Harrison, Judith A

    2002-06-19

    Classical molecular dynamics simulations have been conducted to investigate the atomic-scale friction and wear when hydrogen-terminated diamond (111) counterfaces are in sliding contact with diamond (111) surfaces coated with amorphous, hydrogen-free carbon films. Two films, with approximately the same ratio of sp(3)-to-sp(2) carbon, but different thicknesses, have been examined. Both systems give a similar average friction in the load range examined. Above a critical load, a series of tribochemical reactions occur resulting in a significant restructuring of the film. This restructuring is analogous to the "run-in" observed in macroscopic friction experiments and reduces the friction. The contribution of adhesion between the probe (counterface) and the sample to friction was examined by varying the saturation of the counterface. Decreasing the degree of counterface saturation, by reducing the hydrogen termination, increases the friction. Finally, the contribution of long-range interactions to friction was examined by using two potential energy functions that differ only in their long-range forces to examine friction in the same system.

  16. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N

    2014-05-16

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures were simulated by varying the deposition energy of carbon atoms in the range of 1-120 eV. Intrinsic film characteristics (e.g. density and internal stress) were determined after the system reached equilibrium. Short- and intermediate-range carbon atom ordering is examined in the context of atomic hybridization and ring connectivity simulation results. It is shown that relatively high deposition energy (i.e., 80 eV) yields a multilayer film structure consisting of an intermixing layer, bulk film and surface layer, consistent with the classical subplantation model. The highest film density (3.3 g cm-3), sp3 fraction (∼43%), and intermediate-range carbon atom ordering correspond to a deposition energy of ∼80 eV, which is in good agreement with experimental findings. © 2014 IOP Publishing Ltd.

  17. Deposition of amorphous carbon films using Ar and/or N{sub 2} magnetron sputter with ring permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Haruhisa, E-mail: rdhkino@ipc.shizuoka.ac.jp; Kubota, Masaya; Ohno, Genji

    2012-11-15

    Magnetron sputter with a rotating ring permanent magnet using Ar and/or N{sub 2} gases were first used to form amorphous carbon (a-C and a-CN{sub x}) films on p-Si wafers set on a grounded lower electrode. The a-C film was hard while the a-CN{sub x} films were soft. These films include a little O and H atoms unintentionally. Optical band gap, refractive index, Fourier transform infrared spectroscopy absorption spectra, hardness and field emission threshold electric field were significantly different between a-C and a-CN{sub x} films. The optical band gap of the a-C film was 0.7 eV while those of a-CN{sub x} films were almost constant at about 1.25 eV. The low field emission threshold electric field of 13 V/{mu}m was obtained in hard a-C film.

  18. Tribological properties of nitrogen-containing amorphous carbon film produced by dc plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhang Wei; Wazumi, Koichiro; Tanaka, Akihiro; Koga, Yoshinori

    2003-01-01

    The nitrogen-contained amorphous carbon (a-C:N) films were deposited in a dc plasma chemical vapor deposition system with different substrate bias voltages. The structural, mechanical, and tribological properties of the a-C:N films were investigated. The influence of the bias voltage on the tribological behaviors of the a-C:N films was evaluated under various environments (dry air, O 2 , N 2 , and vacuum) using a ball-on-disk friction tester. It showed that the sp 3 C and hydrogen concentration of the a-C:N films decreases with increasing the bias voltage. However, the nitrogen concentration increases with increasing the bias voltage. As a result, the hardness and internal stress decrease and the critical load for fracturing increases as the substrate bias increases. For the tribological properties of the a-C:N films, the friction coefficient of the films slightly decreases in the environments of N 2 , O 2 , or dry air, but increases slightly in the vacuum environment by increasing the bias voltage. It indicates that the incorporated nitrogen in the a-C:N films would decrease the friction coefficient of the films in N 2 or O 2 environments, but slightly increases the friction coefficient of the films in a vacuum. The excellent wear resistance of the a-C:N films, in the level of 10 -9 -10 -8 mm 3 /Nm, can be observed in N 2 , vacuum, and dry air environments. In addition, the effect of the bias voltage on the wear rate of the a-C:N films becomes less obvious by nitrogen incorporation. So, we suggest the incorporated nitrogen, which bonded to carbon and restrained the increase of the fraction of sp 2 C-C, would restrain the wear of the a-C:N films in different environments, especially in dry air

  19. Investigations of metal contacts to amorphous evaporated Ge films and amorphous sputtered Si films

    International Nuclear Information System (INIS)

    Hafiz, M.; Mgbenu, E.; Tove, P.A.; Norde, H.; Petersson, S.

    1976-02-01

    Amorphous Ge or Si films have been used as ohmic contacts to high-resistivity n-silicon radiation detectors. One interesting property of this contact is that it does not inject minority carriers even when the depletion region extends up to the contact thus generating an extracting field there. The function of this contact is not yet fully explored. One part problem is the role of the metal films used as external contacts to the amorphous film. In this report the function of different contacting metals, such as Au, Al, Cr are investigated by measuring the I-V-characteristics of sandwich structures with two metals on both sides of the amorphous evaporated (Ge) and sputtered (Si) film (of typical thickness 1000 A). It was found that while the symmetric structures Au-αGe-Au and Cr-αGe-Cr were low-resistive (leading to resistivity values of approximately 10 5 Ωcm for the αGe film), Al-αGe-Al structures showed much higher resistance and were also polarity dependent. The former feature was found also for unsymmetric structures, i.e. Cr-αGe-Au, Cr-αGe-Al. (Auth.)

  20. Spectroscopic properties of nitrogen doped hydrogenated amorphous carbon films grown by radio frequency plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Hayashi, Y.; Yu, G.; Rahman, M. M.; Krishna, K. M.; Soga, T.; Jimbo, T.; Umeno, M.

    2001-01-01

    Nitrogen doped hydrogenated amorphous carbon thin films have been deposited by rf plasma-enhanced chemical vapor deposition using CH 4 as the source of carbon and with different nitrogen flow rates (N 2 /CH 4 gas ratios between 0 and 3), at 300 K. The dependence modifications of the optical and the structural properties on nitrogen incorporation were investigated using different spectroscopic techniques, such as, Raman spectroscopy, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, electron spin resonance (ESR), photoluminescence (PL) and spectroscopic ellipsometry (SE). Raman spectroscopy and IR absorption reveal an increase in sp 2 -bonded carbon or a change in sp 2 domain size with increasing nitrogen flow rate. It is found that the configuration of nitrogen atoms incorporated into an amorphous carbon network gradually changes from nitrogen atoms surrounded by three (σ bonded) to two (π bonded) neighboring carbons with increasing nitrogen flow rate. Tauc optical gap is reduced from 2.6 to 2.0 eV, and the ESR spin density and the peak-to-peak linewidth increase sharply with increasing nitrogen flow rate. Excellent agreement has been found between the measured SE data and modeled spectra, in which an empirical dielectric function of amorphous materials and a linear void distribution along the thickness have been assumed. The influence of nitrogen on the electronic density of states is explained based on the optical properties measured by UV-VIS and PL including nitrogen lone pair band. [copyright] 2001 American Institute of Physics

  1. Implantation of xenon in amorphous carbon and silicon for brachytherapy application

    International Nuclear Information System (INIS)

    Marques, F.C.; Barbieri, P.F.; Viana, G.A.; Silva, D.S. da

    2013-01-01

    We report a procedure to implant high dose of xenon atoms (Xe) in amorphous carbon, a-C, and amorphous silicon, a-Si, for application in brachytherapy seeds. An ion beam assisted deposition (IBAD) system was used for the deposition of the films, where one ion gun was used for sputtering a carbon (or silicon) target, while the other ion gun was used to simultaneously bombard the growing film with a beam of xenon ion Xe + in the 0–300 eV range. Xe atoms were implanted into the film with concentration up to 5.5 at.%, obtained with Xe bombardment energy in the 50–150 eV range. X-ray absorption spectroscopy was used to investigate the local arrangement of the implanted Xe atoms through the Xe L III absorption edge (4.75 keV). It was observed that Xe atoms tend to agglomerate in nanoclusters in a-C and are dispersed in a-Si.

  2. Short pulse laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon

    Energy Technology Data Exchange (ETDEWEB)

    SOKOLOWSKI-TINTEN,K.; VON DER LINDE,D.; SIEGAL,MICHAEL P.; OVERMYER,DONALD L.

    2000-02-07

    Short pulse laser damage and ablation of amorphous, diamond-like carbon films is investigated. Material removal is due to fracture of the film and ejection of large fragments, which exhibit a broadband emission of microsecond duration.

  3. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    International Nuclear Information System (INIS)

    Martinez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-01-01

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 C. Film surfaces roughen upon annealing to 300 C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films

  4. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-07-23

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 C. Film surfaces roughen upon annealing to 300 C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films.

  5. Thin films of hydrogenated amorphous carbon (a-C:H) obtained through chemical vapor deposition assisted by plasma

    International Nuclear Information System (INIS)

    Mejia H, J.A.; Camps C, E.E.; Escobar A, L.; Romero H, S.; Chirino O, S.; Muhl S, S.

    2004-01-01

    Films of hydrogenated amorphous carbon (a-C:H) were deposited using one source of microwave plasma with magnetic field (type ECR), using mixtures of H 2 /CH 4 in relationship of 80/20 and 95/05 as precursory gases, with work pressures of 4X10 -4 to 6x10 -4 Torr and an incident power of the discharge of microwaves with a constant value of 400 W. It was analyzed the influence among the properties of the films, as the deposit rate, the composition and the bonding types, and the deposit conditions, such as the flow rates of the precursory gases and the polarization voltage of the sample holders. (Author)

  6. Influence of disorder on localization and density of states in amorphous carbon nitride thin films systems rich in π-bonded carbon atoms

    International Nuclear Information System (INIS)

    Alibart, F.; Lejeune, M.; Durand Drouhin, O.; Zellama, K.; Benlahsen, M.

    2010-01-01

    We discuss in this paper the evolution of both the density of states (DOS) located between the band-tail states and the DOS around the Fermi level N(E F ) in amorphous carbon nitride films (a-CN x ) as a function of the total nitrogen partial pressure ratio in the Ar/N 2 plasma mixture. The films were deposited by three different deposition techniques and their microstructure was characterized using a combination of infrared and Raman spectroscopy and optical transmission experiments, completed with electrical conductivity measurements, as a function of temperature. The observed changes in the optoelectronic properties are attributed to the modification in the atomic bonding structures, which were induced by N incorporation, accompanied by an increase in the sp 2 carbon bonding configurations and their relative disorder. The electrical conductivity variation was interpreted in terms of local effects on the nature and energy distribution of π and π* states.

  7. Substrate temperature influence on the trombogenicity in amorphous carbon nitride thin coatings

    International Nuclear Information System (INIS)

    Galeano-Osorio, D.S.; Vargas, S.; Lopez-Cordoba, L.M.; Ospina, R.; Restrepo-Parra, E.; Arango, P.J.

    2010-01-01

    Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained. During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (T room ), 100 deg. C, 150 deg. C and 200 deg. C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films. Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 deg. C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 ± 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the I D /I G or sp 3 /sp 2 ratio and not by the absolute sp 3 or sp 2 concentration.

  8. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation; Sintesis y caracterizacion de peliculas delgadas de carbono amorfo nitrurado, depositadas por ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo P, B

    2001-07-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp{sup 2} and sp{sup 3} bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  9. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  10. Role of carbon atoms in the remote plasma deposition of hydrogenated amorphous carbon

    International Nuclear Information System (INIS)

    Benedikt, J.; Wisse, M.; Woen, R.V.; Engeln, R.; Sanden, M.C.M. van de

    2003-01-01

    The aim of this article is to determine the role of carbon atoms in the growth of hydrogenated amorphous carbon (a-C:H) films by means of an argon/acetylene expanding thermal plasma. Cavity ring down absorption spectroscopy is used to detect metastable carbon atoms by probing the 1s 2 2s 2 2p 3s 1 P 1 2 2s 2 2p 2 1 S 0 electronic transition. In addition to absorption measurements, the emission of the same transition is monitored by means of optical emission spectroscopy. These two measurements provide information about the local production of the C atoms and about their reactivity in the gas phase. It will be shown that under growth conditions in an Ar/C 2 H 2 expanding thermal plasma, the metastable carbon density is also representative for the ground state carbon density. From obtained results it is concluded that the carbon atoms react rapidly with acetylene in the gas phase and therefore their contribution to the growth of hard diamond-like a-C:H films can be neglected. Only at low acetylene flows, the condition when soft polymer-like films are deposited, carbon atoms are detected close to the substrate and can possibly contribute to the film growth

  11. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-01-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  12. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu Xuanyong; Chu, Paul K.; Ding Chuanxian

    2007-01-01

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans

  13. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuanyong [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China) and Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: xyliu@mail.sic.ac.cn; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk; Ding Chuanxian [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2007-01-15

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter <1 0 0> silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans.

  14. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique; Deposito de peliculas delgadas de carbono amorfo nitrurado utilizando la tecnica de ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo, P.B.; Escobar A, L.; Camps C, E. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, C.P. 52045 Salazar, Estado de Mexico (Mexico); Haro P, E.; Camacho L, M.A. [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa (Mexico); Muhl S, S. [Instituto de Investigacion en Materiales, UNAM (Mexico)

    2000-07-01

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 {sup -4} Torr until 7.5 x 10 {sup -2} Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  15. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    Science.gov (United States)

    Martínez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-07-01

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 °C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 °C. Film surfaces roughen upon annealing to 300 °C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 °C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films.

  16. Thin films of amorphous nitrogenated carbon a-CN{sub x}: Electron transfer and surface reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Tamiasso-Martinhon, P.; Cachet, H.; Debiemme-Chouvy, C.; Deslouis, C. [Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques, CNRS, UPR15-LISE, 4 Place Jussieu, Paris F-75005 (France)

    2008-08-01

    The electrochemical behaviour of thin films of nitrogenated amorphous carbon a-CN{sub x} is similar to that of boron-doped diamond, with a wide potential window in aqueous media. They are elaborated by cathodic sputtering of a graphite target in an Ar-N{sub 2} active plasma for varying nitrogen contents, determined by XPS (0.06 {<=} x {<=} 0.39). Their electrochemical reactivity is sensitive to the surface state. The present study reports on the influence of electrochemical pre treatment on the electronic transfer rate of a fast redox system ferri-ferrocyanide, by focusing on the direction of the potential excursion. On the other hand, the role of both the pH and the potential on the interfacial capacitance in the presence of Na{sub 2}SO{sub 4} without redox species is documented. The results show up the sensitivity of the film surface to the electrochemical conditions. (author)

  17. Substrate temperature influence on the trombogenicity in amorphous carbon nitride thin coatings

    Energy Technology Data Exchange (ETDEWEB)

    Galeano-Osorio, D.S.; Vargas, S.; Lopez-Cordoba, L.M.; Ospina, R. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia); Arango, P.J. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia)

    2010-10-01

    Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained. During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (T{sub room}), 100 deg. C, 150 deg. C and 200 deg. C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films. Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 deg. C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 {+-} 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the I{sub D}/I{sub G} or sp{sup 3}/sp{sup 2} ratio and not by the absolute sp{sup 3} or sp{sup 2} concentration.

  18. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  19. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes/polymer composite thin film.

    Science.gov (United States)

    Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert

    2018-01-09

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.

  20. Growth, characterisation and electronic applications of amorphous hydrogenated carbon

    International Nuclear Information System (INIS)

    Paul, S.

    2000-11-01

    My thesis proposes solutions to a number of riddles associated with the material, hydrogenated amorphous carbon, (a-C:H). This material has lately generated interest in the electronic engineering community, owing to some remarkable properties. The characterisation of amorphous carbon films, grown by radio frequency plasma enhanced chemical vapour deposition has been reported. The coexistence of multiple phases in the same a-C:H film manifests itself in the inconsistent electrical behaviour of different parts of the film, thus rendering it difficult to predict the nature of films. For the first time, in this thesis, a reliable prediction of Schottky contact formation on a-C:H films is reported. A novel and simple development on a Scanning Electron Microscope, configured to study the electrical properties of the grown a-C:H films, has been reported. Since device performance is crucially linked to the density of states in the film, a study of the same was undertaken in my doctoral research. I present a mathematical formalism to estimate the density of states in a-C:H. The most commonly used metal, (aluminium), for contact formation on a-C:H films, has been concluded to be the least suitable. On the basis of the study presented in this thesis, copper and chromium are judged to be the best alternatives. The resilience of a-C:H/Si heterostructures under high voltages (upto 900 V) has been reported in this thesis for the first time. The performance of a-C:H grown at room temperature on GaAs, has been studied and concluded to be satisfactory on the basis of good adherence and low leakage currents. Such a structure was motivated by the applicability in Metal Insulator Semiconductor Field Effect Transistors (MISFET). (author)

  1. Controllable Electrochemical Activities by Oxidative Treatment toward Inner-Sphere Redox Systems at N-Doped Hydrogenated Amorphous Carbon Films

    Directory of Open Access Journals (Sweden)

    Yoriko Tanaka

    2012-01-01

    Full Text Available The electrochemical activity of the surface of Nitrogen-doped hydrogenated amorphous carbon thin films (a-CNH, N-doped DLC toward the inner sphere redox species is controllable by modifying the surface termination. At the oxygen plasma treated N-doped DLC surface (O-DLC, the surface functional groups containing carbon doubly bonded to oxygen (C=O, which improves adsorption of polar molecules, were generated. By oxidative treatment, the electron-transfer rate for dopamine (DA positively charged inner-sphere redox analyte could be improved at the N-doped DLC surface. For redox reaction of 2,4-dichlorophenol, which induces an inevitable fouling of the anode surface by forming passivating films, the DLC surfaces exhibited remarkably higher stability and reproducibility of the electrode performance. This is due to the electrochemical decomposition of the passive films without the interference of oxygen evolution by applying higher potential. The N-doped DLC film can offer benefits as the polarizable electrode surface with the higher reactivity and higher stability toward inner-sphere redox species. By making use of these controllable electrochemical reactivity at the O-DLC surface, the selective detection of DA in the mixed solution of DA and uric acid could be achieved.

  2. High throughput deposition of hydrogenated amorphous carbon coatings on rubber with expanding thermal plasma

    NARCIS (Netherlands)

    Pei, Y.T.; Eivani, A.R.; Zaharia, T.; Kazantis, A.V.; Sanden, van de M.C.M.; De Hosson, J.T.M.

    2014-01-01

    Flexible hydrogenated amorphous carbon (a-C:H) thin film coated on rubbers has shown outstanding protection of rubber seals from friction and wear. This work concentrates on the potential advances of expanding thermal plasma (ETP) process for a high throughput deposition of a-C:H thin films in

  3. Nitrided FeB amorphous thin films for magneto mechanical systems

    International Nuclear Information System (INIS)

    Fernandez-Martinez, I.; Martin-Gonzalez, M.S.; Gonzalez-Arrabal, R.; Alvarez-Sanchez, R.; Briones, F.; Costa-Kraemer, J.L.

    2008-01-01

    The structural, magnetic and magnetoelastic properties of Fe-B-N amorphous films, sputtered from a Fe 80 B 20 target, in a mixture of argon and nitrogen gas, are studied for different nitrogen partial pressures. Nitrogen incorporates into the film preserving the amorphous structure, and modifying magnetic properties. The amount of nitrogen that incorporates into the amorphous structure is found to scale linearly with the nitrogen partial pressure during film growth. The structure, magnetization, field evolution, magnetic anisotropy and magnetostrictive behaviour are determined for films with different nitrogen content. An ∼20% increase of both the saturation magnetization and the magnetostriction constant values is found for moderate (∼8%) nitrogen content when compared to those for pure Fe 80 B 20 amorphous films. These improved properties, together with the still low coercivity of the amorphous films offer great potential for their use in magnetostrictive micro and nano magneto mechanical actuator devices

  4. Electrochemical properties of N-doped hydrogenated amorphous carbon films fabricated by plasma-enhanced chemical vapor deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yoriko; Furuta, Masahiro; Kuriyama, Koichi; Kuwabara, Ryosuke; Katsuki, Yukiko [Division of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan); Kondo, Takeshi [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Fujishima, Akira [Kanagawa Advanced Science and Technology (KAST), 3-2-1, Sakato, Takatsu-ku, Kawasaki-shi, Kanagawa 213-0012 (Japan); Honda, Kensuke, E-mail: khonda@yamaguchi-u.ac.j [Division of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan)

    2011-01-01

    Nitrogen-doped hydrogenated amorphous carbon thin films (a-C:N:H, N-doped DLC) were synthesized with microwave-assisted plasma-enhanced chemical vapor deposition widely used for DLC coating such as the inner surface of PET bottles. The electrochemical properties of N-doped DLC surfaces that can be useful in the application as an electrochemical sensor were investigated. N-doped DLC was easily fabricated using the vapor of nitrogen contained hydrocarbon as carbon and nitrogen source. A N/C ratio of resulting N-doped DLC films was 0.08 and atomic ratio of sp{sup 3}/sp{sup 2}-bonded carbons was 25/75. The electrical resistivity and optical gap were 0.695 {Omega} cm and 0.38 eV, respectively. N-doped DLC thin film was found to be an ideal polarizable electrode material with physical stability and chemical inertness. The film has a wide working potential range over 3 V, low double-layer capacitance, and high resistance to electrochemically induced corrosion in strong acid media, which were the same level as those for boron-doped diamond (BDD). The charge transfer rates for the inorganic redox species, Fe{sup 2+/3+} and Fe(CN){sub 6}{sup 4-/3-} at N-doped DLC were sufficiently high. The redox reaction of Ce{sup 2+/3+} with standard potential higher than H{sub 2}O/O{sub 2} were observed due to the wider potential window. At N-doped DLC, the change of the kinetics of Fe(CN){sub 6}{sup 3-/4-} by surface oxidation is different from that at BDD. The rate of Fe(CN){sub 6}{sup 3-/4-} was not varied before and after oxidative treatment on N-doped DLC includes sp{sup 2} carbons, which indicates high durability of the electrochemical activity against surface oxidation.

  5. Photodecomposition of Hg - Photo - CVD monosilane. Application to hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Aka, B.

    1989-04-01

    The construction of a Hg-photo-CVD device is discussed. The system enables the manufacturing of hydrogenous thin films of amorphous silicon from monosilane compound. The reaction mechanisms taking place in the gaseous phase and at the surface, and the optimal conditions for the amorphous silicon film growth are studied. The analysis technique is based on the measurement of the difference between the condensation points of the gaseous components of the mixture obtained from the monosilane photolysis. A kinetic simplified model is proposed. Conductivity measurements are performed and the heat treatment effects are analyzed. Trace amounts of oxygen and carbon are found in the material. No Hg traces are detected by SIMS analysis [fr

  6. Gas barrier properties of hydrogenated amorphous carbon films coated on polyethylene terephthalate by plasma polymerization in argon/n-hexane gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Polonskyi, Oleksandr; Kylián, Ondřej, E-mail: ondrej.kylian@gmail.com; Petr, Martin; Choukourov, Andrei; Hanuš, Jan; Biederman, Hynek

    2013-07-01

    Hydrogenated amorphous carbon thin films were deposited by RF plasma polymerization in argon/n-hexane gas mixture on polyethylene terephthalate (PET) foils. It was found that such deposited films may significantly improve the barrier properties of PET. It was demonstrated that the principal parameter that influences barrier properties of such deposited films towards oxygen and water vapor is the density of the coatings. Moreover, it was shown that for achieving good barrier properties it is advantageous to deposit coatings with very low thickness. According to the presented results, optimal thickness of the coating should not be higher than several tens of nm. - Highlights: • a-C:H films were prepared by plasma polymerization in Ar/n-hexane atmosphere. • Barrier properties of coatings are dependent on their density and thickness. • Highest barrier properties were observed for films with thickness 15 nm.

  7. Ultrathin diamond-like carbon films deposited by filtered carbon vacuum arcs

    International Nuclear Information System (INIS)

    Anders, Andre; Fong, Walton; Kulkarni, Ashok; Ryan, Francis W.; Bhatia, C. Singh

    2001-01-01

    Ultrathin ( and lt; 5 nm) hard carbon films are of great interest to the magnetic storage industry as the areal density approaches 100 Gbit/in(sup 2). These films are used as overcoats to protect the magnetic layers on disk media and the active elements of the read-write slider. Tetrahedral amorphous carbon films can be produced by filtered cathodic arc deposition, but the films will only be accepted by the storage industry only if the ''macroparticle'' issue has been solved. Better plasma filters have been developed over recent years. Emphasis is put on the promising twist filter system - a compact, open structure that operates with pulsed arcs and high magnetic field. Based on corrosion tests it is shown that the macroparticle reduction by the twist filter is satisfactory for this demanding application, while plasma throughput is very high. Ultrathin hard carbon films have been synthesized using S-filter and twist filter systems. Film properties such as hardness, elastic modulus, wear, and corrosion resistance have been tested

  8. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film

    Science.gov (United States)

    Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.

    2018-03-01

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  9. Low temperature CVD growth of ultrathin carbon films

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2016-05-01

    Full Text Available We demonstrate the low temperature, large area growth of ultrathin carbon films by chemical vapor deposition under atmospheric pressure on various substrates. In particularly, uniform and continuous carbon films with the thickness of 2-5 nm were successfully grown at a temperature as low as 500 oC on copper foils, as well as glass substrates coated with a 100 nm thick copper layer. The characterizations revealed that the low-temperature-grown carbon films consist on few short, curved graphene layers and thin amorphous carbon films. Particularly, the low-temperature grown samples exhibited over 90% transmittance at a wavelength range of 400-750 nm and comparable sheet resistance in contrast with the 1000oC-grown one. This low-temperature growth method may offer a facile way to directly prepare visible ultrathin carbon films on various substrate surfaces that are compatible with temperatures (500-600oC used in several device processing technologies.

  10. Physical–chemical and biological behavior of an amorphous calcium phosphate thin film produced by RF-magnetron sputtering

    International Nuclear Information System (INIS)

    Santos, Euler A. dos; Moldovan, Simona; Mateescu, Mihaela; Faerber, Jacques; Acosta, Manuel; Pelletier, Hervé; Anselme, Karine; Werckmann, Jacques

    2012-01-01

    This work evaluates the thermal reactivity and the biological reactivity of an amorphous calcium phosphate thin film produced by radio frequency (RF) magnetron sputtering onto titanium substrates. The analyses showed that the sputtering conditions used in this work led to the deposition of an amorphous calcium phosphate. The thermal treatment of this amorphous coating in the presence of H 2 O and CO 2 promoted the formation of a carbonated HA crystalline coating with the entrance of CO 3 2− ions into the hydroxyl HA lattice. When immersed in culture medium, the amorphous and carbonated coatings exhibited a remarkable instability. The presence of proteins increased the dissolution process, which was confirmed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Moreover, the carbonated HA coating induced precipitation independently of the presence of proteins under dynamic conditions. Despite this surface instability, this reactive calcium phosphate significantly improved the cellular behavior. The cell proliferation was higher on the Ticp than on the calcium phosphate coatings, but the two coatings increased cellular spreading and stress fiber formation. In this sense, the presence of reactive calcium phosphate coatings can stimulate cellular behavior. - Highlights: ► Functionalization of Ti with reactive CaP thin film by RF-magnetron sputtering. ► De-hydroxylation facilitating the insertion of CO 3 2− into the HA lattice. ► High surface reactivity in the presence of culture medium. ► Cell behavior improved by the presence of reactive films.

  11. Charging of carbon thin films in scanning and phase-plate transmission electron microscopy

    DEFF Research Database (Denmark)

    Hettler, Simon; Kano, Emi; Dries, Manuel

    2018-01-01

    A systematic study on charging of carbon thin films under intense electron-beam irradiation was performed in a transmission electron microscope to identify the underlying physics for the functionality of hole-free phase plates. Thin amorphous carbon films fabricated by different deposition techni...

  12. Amorphous Cu-Ag films with high stability

    International Nuclear Information System (INIS)

    Reda, I.M.; Hafner, J.; Pongratz, P.; Wagendristel, A.; Bangert, H.; Bhat, P.K.

    1982-06-01

    Films produced by quenching Cu-Ag vapour onto cooled substrates at liquid nitrogen temperature have been investigated using electron microscopy, electron diffraction and electrical resistivity measurements. In the composition range from 30 to 70 at% Cu the as quenched films are amorphous, and within the range of 35 to 63 at% Cu the amorphous phase is stable above room temperature with a maximum crystallization temperature Tsub(c)=381 K at 47.5 at% Cu. Crystallization results in the formation of a supersaturated fcc solid solution which decomposes in a second crystallization step. The effect of deposition rate, film thickness, temperature and surface of the substrate, and most importantly of the composition on the transition temperatures has been investigated. A comparative study of the formation of amorphous phases in a wide variety of Cu-based alloys is presented. (author)

  13. Evolution of sp2 networks with substrate temperature in amorphous carbon films: Experiment and theory

    International Nuclear Information System (INIS)

    Gago, R.; Vinnichenko, M.; Jaeger, H.U.; Maitz, M.F.; Belov, A.Yu.; Jimenez, I.; Huang, N.; Sun, H.

    2005-01-01

    The evolution of sp 2 hybrids in amorphous carbon (a-C) films deposited at different substrate temperatures was studied experimentally and theoretically. The bonding structure of a-C films prepared by filtered cathodic vacuum arc was assessed by the combination of visible Raman spectroscopy, x-ray absorption, and spectroscopic ellipsometry, while a-C structures were generated by molecular-dynamics deposition simulations with the Brenner interatomic potential to determine theoretical sp 2 site distributions. The experimental results show a transition from tetrahedral a-C (ta-C) to sp 2 -rich structures at ∼500 K. The sp 2 hybrids are mainly arranged in chains or pairs whereas graphitic structures are only promoted for sp 2 fractions above 80%. The theoretical analysis confirms the preferred pairing of isolated sp 2 sites in ta-C, the coalescence of sp 2 clusters for medium sp 2 fractions, and the pronounced formation of rings for sp 2 fractions >80%. However, the dominance of sixfold rings is not reproduced theoretically, probably related to the functional form of the interatomic potential used

  14. Structure-property relations in amorphous carbon for photovoltaics

    International Nuclear Information System (INIS)

    Risplendi, Francesca; Cicero, Giancarlo; Bernardi, Marco; Grossman, Jeffrey C.

    2014-01-01

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles molecular dynamics and density functional theory calculations to generate and analyze a set of a-C structures with a range of densities and hydrogen concentrations. We demonstrate that optical and electronic properties of interest in PV can be widely tuned by varying the density and hydrogen content. For example, sunlight absorption in a-C films can significantly exceed that of a same thickness of a-Si for a range of densities and H contents in a-C. Our results highlight promising features of a-C as the active layer material of thin-film solar cells.

  15. Structure-property relations in amorphous carbon for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Risplendi, Francesca; Cicero, Giancarlo [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy); Bernardi, Marco [Department of Physics, University of California, Berkeley, California 94720 (United States); Grossman, Jeffrey C., E-mail: jcg@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-07-28

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles molecular dynamics and density functional theory calculations to generate and analyze a set of a-C structures with a range of densities and hydrogen concentrations. We demonstrate that optical and electronic properties of interest in PV can be widely tuned by varying the density and hydrogen content. For example, sunlight absorption in a-C films can significantly exceed that of a same thickness of a-Si for a range of densities and H contents in a-C. Our results highlight promising features of a-C as the active layer material of thin-film solar cells.

  16. Enhancement of sp3 hybridized C in amorphous carbon films by Ar ion bombardment and Si incorporation

    International Nuclear Information System (INIS)

    Jung, Hae-Suk; Park, Hyung-Ho; Mendieta, I.R.; Smith, D.A.

    2003-01-01

    We report an effective method of increasing the sp 3 hybridization fraction in sputtered amorphous carbon (a-C) film by the combination of Ar ion bombardment and Si incorporation. In the deposition of an a-C film, Ar ion bombardment by controlling the applied bias voltage plays a role in creating high stress in film and causes the local bonding configuration to change to a sp 3 hybridized bond. Simultaneously, the incorporated Si in an a-C network breaks the sp 2 hybridized bonded ring and promotes the formation of a sp 3 hybridized bond. This enhancement of the sp 3 hybridized bonding characteristic is maximized for an a-C film with 23 at. % of Si and 100-150 V of applied bias voltage. In this region, the increase of resistivity, optical band gap, and mechanical hardness of a-C is attributed to the reduction of the sp 2 hybridized bonded ring and increased fraction of the sp 3 hybridized bond. However, at a higher bias voltage above 150 V, the enhancement effect is reduced due to the resputtering and thermally activated reconversion of a sp 3 to a sp 2 hybridized bond

  17. Thermal conductivity of sputtered amorphous Ge films

    International Nuclear Information System (INIS)

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka

    2014-01-01

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids

  18. Studies of hydrogen incorporation in hydrogenated amorphous carbon films by infrared absorption spectroscopy

    International Nuclear Information System (INIS)

    Alameh, R.; Bounouh, Y.; Sadki, A.; Naud, C.; Theye, M.L.

    1997-01-01

    Author.Hydrogenated amorphous carbon (a-C:H) films presently attract considerable interest because of their potential applications in the domain of multifunctional coatings: transparent in the infrared, very hard, chemically inert, etc...This material is rather complex since it contains C atoms in both sp 3 (diamond) and sp 2 (graphite) electronic configurations, as well as a large concentration of H atoms. Its properties are strongly dependent on the deposition conditions which determine the film microstructure, i.e. the relative proportions of sp 3 and sp 2 C sites, their connection in the network and the hydrogen bonding modes. It has been suggested that the sp 2 C sites tend to cluster into unsaturated chains ans rings, which are then embedded in the sp 3 C sites m atrix . Hydrogen incorporation plays a crucial role in this intrinsic microheterogeneity, which determines the electronic properties, and especially the gap value, of a-C:H. We here present and discuss the results of Fourrier transform infrared absorption spectroscopy measurements performed on a-C:H films prepared under different conditions and submitted to controlled annealing cycles, which exhibit quite different optical gap values (from 1 to 2.5 eV). We carefully analyze the absorption bands detected in the 400-7500 cm -1 spectral range in terms of the vibration modes of C-H and C-C bonds in different local environments and we interpret the results in relation with the film microstructure and optical properties. Special attention is also paid to the absorption background and to the variations of the whole absorption spectra with measurement temperature

  19. Charged Nanowire-Directed Growth of Amorphous Calcium Carbonate Nanosheets in a Mixed Solvent for Biomimetic Composite Films.

    Science.gov (United States)

    Liu, Yangyi; Liu, Lei; Chen, Si-Ming; Chang, Fu-Jia; Mao, Li-Bo; Gao, Huai-Ling; Ma, Tao; Yu, Shu-Hong

    2018-04-19

    Bio-inspired mineralization is an effective way for fabricating complicated inorganic materials, which inspires us to develop new methods to synthesize materials with fascinating properties. In this article, we report that the charged tellurium nanowires (TeNWs) can be used as bio-macromolecule analogues to direct the formation of amorphous calcium carbonate (ACC) nanosheets (ACCNs) in a mixed solvent. The effects of surface charges and the concentration of the TeNWs on the formation of ACCNs have been investigated. Particularly, the produced ACCNs can be functionalized by Fe3O4 nanoparticles to produce magnetic ACC/Fe3O4 hybrid nanosheets, which can be used to construct ACC/Fe3O4 composite films through a self-evaporation process. Moreover, sodium alginate-ACC nanocomposite films with remarkable toughness and good transmittance can also be fabricated by using such ACCNs as nanoscale building blocks. This mineralization approach in a mixed solvent using charged tellurium nanowires as bio-macromolecule analogues provides a new way for the synthesis of ACCNs, which can be used as nanoscale building blocks for fabrication of biomimetic composite films.

  20. Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices

    Science.gov (United States)

    Chen, Yu-Ze; Medina, Henry; Lin, Hung-Chiao; Tsai, Hung-Wei; Su, Teng-Yu; Chueh, Yu-Lun

    2015-01-01

    Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a-C) film surprisingly undergoes a noticeable transformation to crystalline graphene. Furthermore, the thickness of graphene could be controlled, depending on the thickness of the pre-deposited a-C film. The transformation mechanism was investigated and explained in detail. This approach enables development of a one-step process to fabricate electrical devices made of all carbon material, highlighting the uniqueness of the novel approach for developing graphene electronic devices. Interestingly, the carbon electrodes made directly on the graphene layer by our approach offer a good ohmic contact compared with the Schottky barriers usually observed on graphene devices using metals as electrodes.Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a

  1. Amorphous Terfenol-D films using nanosecond pulsed laser deposition

    International Nuclear Information System (INIS)

    Ma, James; O'Brien, Daniel T.; Kovar, Desiderio

    2009-01-01

    Thin films of Terfenol-D were produced by nanosecond pulsed laser deposition (PLD) at two fluences. Electron dispersive spectroscopy conducted using scanning electron and transmission electron microscopes showed that the film compositions were similar to that of the PLD target. Contrary to previous assertions that suggested that nanosecond PLD results in crystalline films, X-ray diffraction and transmission electron microscopy analysis showed that the films produced at both fluences were amorphous. Splatters present on the film had similar compositions to the overall film and were also amorphous. Magnetic measurements showed that the films had high saturation magnetization and magnetostriction, similar to high quality films produced using other physical vapor deposition methods.

  2. Preparation of hydrogenated amorphous carbon films using a microsecond-pulsed DC capacitive-coupled plasma chemical vapor deposition system operated at high frequency up to 400 kHz

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-06-01

    Hydrogenated amorphous carbon (a-C:H) films are deposited on silicon (Si) substrates using a high-repetition microsecond-pulsed DC plasma chemical vapor deposition (CVD) system from acetylene (C2H2) at a gas pressure of 15 Pa inside a custom-made vacuum chamber. The plasma discharge characteristics, hydrocarbon species, and the microstructure of the resulting films are examined at various pulse repetition rates from 50 to 400 kHz and a fixed duty cycle of 50%. The optical emission spectra confirmed the increase in electron excitation energy from 1.09 to 1.82 eV and the decrease in the intensity ratio of CH/C2 from 1.04 to 0.75 with increasing pulse frequency, indicating the enhanced electron impact dissociation of C2H2 gas. With increasing pulse frequency, the deposition rate gradually increased, reaching a maximum rate of 60 nm/min at 200 kHz, after which a progressive decrease was noted, whereas the deposition area was almost uniform for all the prepared films. Clear trends of increasing sp3 content (amorphization) and decreasing hydrogen (H) content in the films were observed as the pulse repetition rate increased, while most of the hydrogen atoms bonded to carbon atoms by sp3 hybridization rather than by sp2 hybridization.

  3. The production of UV Absorber amorphous cerium sulfide thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kariper, İshak Afşin, E-mail: akariper@gmail.com [Faculty of Education, Erciyes University, Kayseri (Turkey)

    2017-10-15

    This study investigates the production of cerium sulfide (CeSx) amorphous thin films on substrates (commercial glass) by chemical bath deposition at different pH levels. The transmittance, absorption, optical band gap and refractive index of the films are measured by UV/VIS Spectrum. According to XRD analysis, the films show amorphous structure in the baths with pH: 1 to 5. It has been observed that the optical and structural properties of the films depend on pH value of the bath. The optical band gap (2.08 eV to 3.16 eV) of the films changes with the film thickness (23 nm to 1144 nm). We show that the refractive index has a positive relationship with the film thickness, where the values of 1.93, 1.45, 1.42, 2.60 and 1.39 are obtained for the former, and 34, 560, 509, 23 and 1144 nm (at 550 nm wavelength) for the latter. We compare the optical properties of amorphous and crystal form of CeSx thin films. We show that the optical band gaps of the amorphous CeS{sub x} are lower than that of crystal CeS{sub x} . (author)

  4. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    Science.gov (United States)

    Reyes, R.; Cremona, M.; Achete, C. A.

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq3) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq3/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  5. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, R [Facultad de Ingenieria Quimica y Textil, Universidad Nacional de Ingenieria, Av. Tupac Amaru SN, Lima (Peru); Cremona, M [Departamento de Fisica, PontifIcia Universidade Catolica de Rio de Janeiro, PUC-Rio, Cx. Postal 38071, Rio de Janeiro, RJ, CEP 22453-970 (Brazil); Achete, C A, E-mail: rreyes@uni.edu.pe [Departamento de Engenheria Metalurgica e de Materiais, Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro, RJ, CEP 21945-970 (Brazil)

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq{sub 3}) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq{sub 3}/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  6. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    International Nuclear Information System (INIS)

    Reyes, R; Cremona, M; Achete, C A

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq 3 ) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq 3 /Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  7. A study of the chemical, mechanical, and surface properties of thin films of hydrogenated amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Vandentop, G.J.

    1990-07-01

    Amorphous hydrogenated carbon (a-C:H) films were studied with the objective of elucidating the nucleation and growth mechanisms, and the origin of their unique physical properties. The films were deposited onto Si(100) substrates both on the powered (negatively self-biased) and on the grounded electrodes from methane in an rf plasma (13.56 MHz) at 65 mTorr and 300 to 370 K. The films produced at the powered electrode exhibited superior mechanical properties, such as high hardness. A mass spectrometer was used to identify neutral species and positive ions incident on the electrodes from the plasma, and also to measure ion energies. The effect of varying ion energy flux on the properties of a-C:H films was investigated using a novel pulsed biasing technique. It was demonstrated that ions were not the dominant deposition species as the total ion flux measured was insufficient to account for the observed deposition rate. The interface between thin films of a-C:H and silicon substrates was investigated using angle resolved x-ray photoelectron spectroscopy. A silicon carbide layer was detected at the interface of a hard a-C:H film formed at the powered electrode. At the grounded electrode, where the kinetic energy is low, no interfacial carbide layer was observed. Scanning tunneling microscopy and high energy electron energy loss spectroscopy was used to investigate the initial stages of growth of a-C:H films. On graphite substrates, films formed at the powered electrode were observed to nucleate in clusters approximately 50 {Angstrom} in diameter, while at the grounded electrode no cluster formation was observed. 58 figs.

  8. Low-energy excitations in amorphous films of silicon and germanium

    International Nuclear Information System (INIS)

    Liu, X.; Pohl, R.O.

    1998-01-01

    We present measurements of internal friction and shear modulus of amorphous Si (a-Si) and amorphous Ge (a-Ge) films on double-paddle oscillators at 5500 Hz from 0.5 K up to room temperature. The temperature- independent plateau in internal friction below 10 K, which is common to all amorphous solids, also exists in these films. However, its magnitude is smaller than found for all other amorphous solids studied to date. Furthermore, it depends critically on the deposition methods. For a-Si films, it decreases in the sequence of electron-beam evaporation, sputtering, self-ion implantation, and hot-wire chemical-vapor deposition (HWCVD). Annealing can also reduce the internal friction of the amorphous films considerably. Hydrogenated a-Si with 1 at.% H prepared by HWCVD leads to an internal friction more than two orders of magnitude smaller than observed for all other amorphous solids. The internal friction increases after the hydrogen is removed by effusion. Our results are compared with earlier measurements on a-Si and a-Ge films, none of which had the sensitivity achieved here. The variability of the low-energy tunneling states in the a-Si and a-Ge films may be a consequence of the tetrahedrally bonded covalent continuous random network. The perfection of this network, however, depends critically on the preparation conditions, with hydrogen incorporation playing a particularly important role. copyright 1998 The American Physical Society

  9. Short-range order in amorphous thin films of indium selenides

    International Nuclear Information System (INIS)

    Zakharov, V.P.; Poltavtsev, Yu.G.; Sheremet, G.P.

    1982-01-01

    A structure of the short-range order and a character of interatomic interactions in indium selenides Insub(1-x)Sesub(x) with 0.333 <= x <= 0.75, obtained in the form of amorphous films 0.05-0.80 μm thick are studied using electron diffraction method. It is found out that mostly tetrahedrical coordination of nearest neighbours in the vicinity of indium atoms is characteristic for studied amorphous films, and coordination of selenium atoms is different. Amorphous film with x=0.75 posesses a considereably microheterogeneous structure of the short-range order, which is characterized by the presence of microunclusions of amorphous selenium and atoms of indium, octohedrically coordinated by selenium atoms

  10. Thermal annealing of amorphous Ti-Si-O thin films

    OpenAIRE

    Hodroj , Abbas; Chaix-Pluchery , Odette; Audier , Marc; Gottlieb , Ulrich; Deschanvres , Jean-Luc

    2008-01-01

    International audience; Ti-Si-O thin films were deposited using an aerosol chemical vapor deposition process at atmospheric pressure. The film structure and microstructure were analysed using several techniques before and after thermal annealing. Diffraction results indicate that the films remain X-ray amorphous after annealing whereas Fourier transform infrared spectroscopy gives evidence of a phase segregation between amorphous SiO2 and well crystallized anatase TiO2. Crystallization of ana...

  11. Effects of ion beam bombardment of carbon thin films deposited onto tungsten carbide and tool steels

    Energy Technology Data Exchange (ETDEWEB)

    Awazu, Kaoru; Yoshida, Hiroyuki [Industrial Research Inst. of Ishikawa (Japan); Watanabe, Hiroshi [Gakushuin Univ., Tokyo (Japan); Iwaki, Masaya; Guzman, L [RIKEN, Saitama (Japan)

    1992-04-15

    A study was made of the effects of argon ion bombardment of carbon thin films deposited onto WC and tool steels. Carbon thin film deposition was performed at various temperatures ranging from 200degC to 350degC, using C{sub 6}H{sub 6} gas. Argon ion beam bombardment of the films was carried out at an energy of 150 keV with a dose of 1x10{sup 16} ions cm{sup -2}. The hardness and adhesion of the films were measured by means of Knoop hardness and scratch tests respectively. The structure of the carbon films was estimated by laser Raman spectroscopy, and the relations were investigated between the mechanical properties and the structure of the films. The hardness of carbon thin films increases as their deposition temperature decreases; this tendency corresponds to the increase in amorphous structure estimated by Raman spectra. Argon ion bombardment results in constant hardness and fraction of amorphous structure. Argon ion beam bombardment of films prior to additional carbon deposition may cause the adhesion of the subsequently deposited films to improve. It is concluded that argon ion beam bombardment is useful for improving the properties of carbon films deposited onto WC and tool steels. (orig.).

  12. Effects of ion beam bombardment of carbon thin films deposited onto tungsten carbide and tool steels

    International Nuclear Information System (INIS)

    Awazu, Kaoru; Yoshida, Hiroyuki; Watanabe, Hiroshi; Iwaki, Masaya; Guzman, L.

    1992-01-01

    A study was made of the effects of argon ion bombardment of carbon thin films deposited onto WC and tool steels. Carbon thin film deposition was performed at various temperatures ranging from 200degC to 350degC, using C 6 H 6 gas. Argon ion beam bombardment of the films was carried out at an energy of 150 keV with a dose of 1x10 16 ions cm -2 . The hardness and adhesion of the films were measured by means of Knoop hardness and scratch tests respectively. The structure of the carbon films was estimated by laser Raman spectroscopy, and the relations were investigated between the mechanical properties and the structure of the films. The hardness of carbon thin films increases as their deposition temperature decreases; this tendency corresponds to the increase in amorphous structure estimated by Raman spectra. Argon ion bombardment results in constant hardness and fraction of amorphous structure. Argon ion beam bombardment of films prior to additional carbon deposition may cause the adhesion of the subsequently deposited films to improve. It is concluded that argon ion beam bombardment is useful for improving the properties of carbon films deposited onto WC and tool steels. (orig.)

  13. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Science.gov (United States)

    Hwang, Jeongwoon; Ihm, Jisoon; Lee, Kwang-Ryeol; Kim, Seungchul

    2015-01-01

    We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV). As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries. PMID:28347087

  14. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jeongwoon Hwang

    2015-10-01

    Full Text Available We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV. As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries.

  15. Effect of high substrate bias and hydrogen and nitrogen incorporation on filtered cathodic vacuum arc deposited tetrahedral amorphous carbon films

    International Nuclear Information System (INIS)

    Panwar, O.S.; Khan, Mohd. Alim; Kumar, Mahesh; Shivaprasad, S.M.; Satyanarayana, B.S.; Dixit, P.N.; Bhattacharyya, R.; Khan, M.Y.

    2008-01-01

    The application of a sufficiently high negative substrate bias, during the growth of tetrahedral amorphous carbon (ta-C), is usually associated with low sp 3 bonding configuration and stressed films. However, in an effort to understand and utilize the higher pseudo thermo dynamical conditions during the film growth, at high negative substrate bias (- 300 V), reported here is a study on ta-C films grown under different hydrogen and nitrogen concentration. As grown ta-C films were studied under different negative substrate bias conditions. The variation of the sp 3 content and sp 3 /sp 2 ratio in the ta-C films exhibits a trend similar to those reported in literature, with a subtle variation in this report being the substrate bias voltage, which was observed to be around - 200 V, for obtaining the highest sp 3 (80%) bonding and sp 3 /sp 2 (3.95) ratio. The hydrogen and nitrogen incorporated ta-C films studied, at a bias of - 300 V, show an increase in sp 3 (87-91%) bonding and sp 3 /sp 2 (7-10) ratio in the range of studies reported. The inference is drawn on the basis of the set of data obtained from measurements carried out using X-ray photoelectron spectroscopy, X-ray induced Auger electron spectroscopy and Raman spectroscopy of as grown and hydrogen and nitrogen incorporated ta-C films deposited using an S bend filtered cathodic vacuum arc system. The study indicates the possibility of further tailoring ta-C film properties and also extending capabilities of the cathodic arc system for developing carbon based films for electronics and tribological applications

  16. Effect of high substrate bias and hydrogen and nitrogen incorporation on filtered cathodic vacuum arc deposited tetrahedral amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India)], E-mail: ospanwar@mail.nplindia.ernet.in; Khan, Mohd. Alim [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Kumar, Mahesh; Shivaprasad, S.M. [Surface Physics and Nanostructures Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Satyanarayana, B.S. [MIT Innovation Centre and Electronics and Communication Department, Manipal Institute of Technology, Manipal-579104 (India); Dixit, P.N. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Bhattacharyya, R. [Emeritus Scientist, National Physical Laboratory, New Delhi-110012 (India); Khan, M.Y. [Department of Physics, Jamia Millia Islamia, Central University, New Delhi-110025 (India)

    2008-02-29

    The application of a sufficiently high negative substrate bias, during the growth of tetrahedral amorphous carbon (ta-C), is usually associated with low sp{sup 3} bonding configuration and stressed films. However, in an effort to understand and utilize the higher pseudo thermo dynamical conditions during the film growth, at high negative substrate bias (- 300 V), reported here is a study on ta-C films grown under different hydrogen and nitrogen concentration. As grown ta-C films were studied under different negative substrate bias conditions. The variation of the sp{sup 3} content and sp{sup 3}/sp{sup 2} ratio in the ta-C films exhibits a trend similar to those reported in literature, with a subtle variation in this report being the substrate bias voltage, which was observed to be around - 200 V, for obtaining the highest sp{sup 3} (80%) bonding and sp{sup 3}/sp{sup 2} (3.95) ratio. The hydrogen and nitrogen incorporated ta-C films studied, at a bias of - 300 V, show an increase in sp{sup 3} (87-91%) bonding and sp{sup 3}/sp{sup 2} (7-10) ratio in the range of studies reported. The inference is drawn on the basis of the set of data obtained from measurements carried out using X-ray photoelectron spectroscopy, X-ray induced Auger electron spectroscopy and Raman spectroscopy of as grown and hydrogen and nitrogen incorporated ta-C films deposited using an S bend filtered cathodic vacuum arc system. The study indicates the possibility of further tailoring ta-C film properties and also extending capabilities of the cathodic arc system for developing carbon based films for electronics and tribological applications.

  17. Effects of phosphorus on the electrical characteristics of plasma deposited hydrogenated amorphous silicon carbide thin films

    Science.gov (United States)

    Alcinkaya, Burak; Sel, Kivanc

    2018-01-01

    The properties of phosphorus doped hydrogenated amorphous silicon carbide (a-SiCx:H) thin films, that were deposited by plasma enhanced chemical vapor deposition technique with four different carbon contents (x), were analyzed and compared with those of the intrinsic a-SiCx:H thin films. The carbon contents of the films were determined by X-ray photoelectron spectroscopy. The thickness and optical energies, such as Tauc, E04 and Urbach energies, of the thin films were determined by UV-Visible transmittance spectroscopy. The electrical properties of the films, such as conductivities and activation energies were analyzed by temperature dependent current-voltage measurements. Finally, the conduction mechanisms of the films were investigated by numerical analysis, in which the standard transport mechanism in the extended states and the nearest neighbor hopping mechanism in the band tail states were taken into consideration. It was determined that, by the effect of phosphorus doping the dominant conduction mechanism was the standard transport mechanism for all carbon contents.

  18. Crystallization kinetics of amorphous aluminum-tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Car, T.; Radic, N. [Rugjer Boskovic Inst., Zagreb (Croatia). Div. of Mater. Sci.; Ivkov, J. [Institute of Physics, Bijenicka 46, P.O.B. 304, HR-10000 Zagreb (Croatia); Babic, E.; Tonejc, A. [Faculty of Sciences, Physics Department, Bijenicka 32, P.O.B. 162, HR-10000 Zagreb (Croatia)

    1999-01-01

    Crystallization kinetics of the amorphous Al-W thin films under non-isothermal conditions was examined by continuous in situ electrical resistance measurements in vacuum. The estimated crystallization temperature of amorphous films in the composition series of the Al{sub 82}W{sub 18} to Al{sub 62}W{sub 38} compounds ranged from 800 K to 920 K. The activation energy for the crystallization and the Avrami exponent were determined. The results indicated that the crystallization mechanism in films with higher tungsten content was a diffusion-controlled process, whereas in films with the composition similar to the stoichiometric compound (Al{sub 4}W), the interface-controlled crystallization probably occurred. (orig.) With 4 figs., 1 tab., 26 refs.

  19. Formation of carbon nanotubes on an amorphous Ni{sub 25}Ta{sub 58}N{sub 17} alloy film by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, D. G.; Dubkov, S. V., E-mail: sv.dubkov@gmail.com [National Research University of Electronic Technology MIET (Russian Federation); Pavlov, A. A. [Russian Academy of Sciences, Institute of Nanotechnologies of Microelectronics (Russian Federation); Skorik, S. N. [Technological Center Research and Production Complex (Russian Federation); Trifonov, A. Yu. [Lukin Scientific Research Institute of Physical Problems (Russian Federation); Kirilenko, E. P.; Shulyat’ev, A. S. [National Research University of Electronic Technology MIET (Russian Federation); Shaman, Yu. P. [Technological Center Research and Production Complex (Russian Federation); Rygalin, B. N. [National Research University of Electronic Technology MIET (Russian Federation)

    2016-12-15

    It is shown that it is possible to grow carbon nanotubes on the surface of an amorphous Ni–Ta–N metal alloy film with a low Ni content (~25 at %) by chemical deposition from acetylene at temperature 400–800°C. It is established that the addition of nitrogen into the Ni–Ta alloy composition is favorable for the formation of tantalum nitride and the expulsion of Ni clusters, which act as a catalyst of the growth of carbon nanotubes, onto the surface. From Raman spectroscopy studies, it is found that, as the temperature of synthesis is raised, the quality of nanotubes is improved.

  20. Effect of nitrogen plasma afterglow on the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films

    Science.gov (United States)

    Kayed, Kamal

    2018-06-01

    The aim of this paper is to investigate the relationship between the micro structure and the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films prepared by laser ablation method. The study results show that the charge effect coefficient (E) is not just a correction factor. We found that the changes in this coefficient value due to incorporation of nitrogen atoms into the carbon network are related to the spatial configurations of the sp2 bonded carbon atoms, order degree and sp2 clusters size. In addition, results show that the curve E vs. C(sp3)-N is a characteristic curve of the micro structure. This means that using this curve makes it easy to sorting the samples according to the micro structure (hexagonal rings or chains).

  1. Electrochemical deposition of carbon films on titanium in molten LiCl–KCl–K2CO3

    International Nuclear Information System (INIS)

    Song, Qiushi; Xu, Qian; Wang, Yang; Shang, Xujing; Li, Zaiyuan

    2012-01-01

    Electrodeposition of carbon films on the oxide-scale-coated titanium has been performed in a LiCl–KCl–K 2 CO 3 melt, which are characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction analysis. The electrochemical process of carbon deposition is investigated by cyclic voltammetry on the graphite, titanium and oxide-scale-coated titanium electrodes. The particle-size-gradient carbon films over the oxide-scale-coated titanium can be achieved by electrodeposition under the controlled potentials for avoiding codeposition of lithium carbide. The deposited carbon films are comprised of micron-sized ‘quasi-spherical’ carbon particles with graphitized and amorphous phases. The cyclic voltammetry behavior on the graphite, titanium and oxide-scale-coated titanium electrodes shows that CO 3 2− ions are reduced most favorably on the graphite for the three electrodes. Lithium ions can discharge under the less negative potential on the electrode containing carbon compared with titanium electrode because of the formation of lithium carbide from the reaction between lithium and carbon. - Highlights: ► Carbon films are prepared on oxide-scale-coated titanium in a LiCl–KCl–K 2 CO 3 melt. ► The films comprise micron-size ‘quasi-spherical’ carbon particles. ► The films present particle-size-gradient. ► The particles contain graphitized and amorphous phases. ► The prepared carbon films are more electrochemically active than graphite.

  2. Structural, optical and mechanical properties of amorphous and crystalline alumina thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nayar, Priyanka [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Khanna, Atul, E-mail: akphysics@yahoo.com [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Kabiraj, D.; Abhilash, S.R. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Beake, Ben D.; Losset, Yannick [Micro Materials Limited, Unit 3, Wrexham Technology Park, Wrexham LL13 7YP (United Kingdom); Chen, Banghao [Chemistry and Biochemistry Department, Florida State University, Tallahassee 32306 (United States)

    2014-10-01

    Thin films of amorphous alumina of thickness 350 nm were deposited on fused silica substrates by electron beam evaporation. Amorphous films were annealed at several temperatures in the range: 400–1130 °C and changes in film crystallinity, short-range structure, optical and mechanical properties were studied. X-ray diffraction studies found that crystallization starts at 800 °C and produces γ and δ-alumina, the latter phase grows with heat treatment and the sample was mostly δ and θ-alumina after annealing at 1130 °C. The as-deposited amorphous alumina films have low hardness of 5 to 8 GPa, which increases to 11 to 12 GPa in crystalline sample. {sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance was used to study the short-range order of amorphous and crystalline alumina films and it was found that amorphous alumina film contains AlO{sub 5} and AlO{sub 4} structural units in the ratio of 1:2. The concentration of AlO{sub 5} was significantly suppressed in crystalline film, which contains 48% of Al{sup 3+} ions in AlO{sub 6}, 7% in AlO{sub 5} and 45% in AlO{sub 4} units. - Highlights: • Structure–property correlations in alumina films grown by electron-beam evaporation • Amorphous films crystallize into γ and δ-alumina on annealing in air at 800 °C. • δ and θ-alumina films are stable up to 1130 °C and do not transform to α-phase. • Amorphous alumina films contain {sup [5]}Al and {sup [4]}Al structural units in the ratio of 1:2. • {sup [5]}Al decreases whereas {sup [6]}Al concentration increases on crystallization.

  3. Superhard PVD carbon films deposited with different gradients with and without additions of titanium and silicon

    International Nuclear Information System (INIS)

    Bauer, C.

    2003-10-01

    This work focusses on thin carbon-based films, deposited by magnetron sputtering with additional argon ion bombardment (0 eV to 800 eV) without extra adhesive layer on hard metal inserts. As one possibility of increasing the reduced adherence of hard carbon films the deposition of films with additions of titanium and silicon is studied. The aim of this work is to examine the influence of a modification of the transition between substrate and film by realizing three different types of deposition gradients. The pure carbon films are amorphous, the dominant network of atoms is formed by sp 2 bonded atoms. The amount of sp 3 bonded atoms is up to 30% and is influenced by the bombarding argon ion energy. Carbon films with additions of silicon are amorphous, only in films with a high amount of titanium (approx. 20 at%) nanocomposites of titanium carbide crystals with diameters of less than 5 nm in an amorphous carbon matrix were found. The mechanical properties and the behavior of single layer carbon films strongly depend on the argon ion energy. An increase of this energy leads to higher film hardness and higher residual stress and results in the delamination of superhard carbon films on hard metal substrates. The adhesion of single layer films for ion energies of more than 200 eV is significantly improved by additions of titanium and silicon, respectively. The addition of 23 at% silicon and titanium, respectively leads to a high reduction of the residual stress. In a non-reactive PVD process thin films were deposited with a continuously gradient in chemical composition. The results of the investigations of the films with two different concentrations of titanium and silicon, respectively show that carbon-based films with a good adhesion could be deposited. The combination of the two gradients in structure and properties and in chemical composition leads in the system with carbon and silicon carbide to hard and very adhesive films. Especially for carbon films with a high

  4. Formation of carbon quantum dots and nanodiamonds in laser ablation of a carbon film

    Science.gov (United States)

    Sidorov, A. I.; Lebedev, V. F.; Kobranova, A. A.; Nashchekin, A. V.

    2018-01-01

    We have experimentally shown that nanosecond near-IR pulsed laser ablation of a thin amorphous carbon film produces carbon quantum dots with a graphite structure and nanodiamonds with a characteristic size of 20 - 500 nm on the substrate surface. The formation of these nanostructures is confirmed by electron microscopic images, luminescence spectra and Raman spectra. The mechanisms explaining the observed effects are proposed.

  5. Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbon-Nitrogen for Oxygen Reduction: Discerning and Refactoring Chaotic Bonds

    DEFF Research Database (Denmark)

    Zhang, Caihong; Zhang, Wei; Wang, Dong

    2017-01-01

    Mild annealing enables inactive nitrogen (N)-doped amorphous carbon (a-C) films abundant with chaotic bonds prepared by magnetron sputtering to become effective for the oxygen reduction reaction (ORR) by virtue of generating pyridinic N. The rhythmic variation of ORR activity elaborates well...... on the subtle evolution of the amorphous C−N bonds conferred by spectroscopic analysis....

  6. Me-Si-C (Me= Nb, Ti or Zr) : Nanocomposite and Amorphous Thin Films

    OpenAIRE

    Tengstrand, Olof

    2012-01-01

    This thesis investigates thin films of the transition metal carbide systems Ti-Si-C, Nb-Si-C, and Zr-Si-C, deposited at a low substrate temperature (350 °C) with dc magnetron sputtering in an Ar discharge. Both the electrical and mechanical properties of these systems are highly affected by their structure. For Nb-Si-C, both the ternary Nb-Si-C and the binary Nb-C are studied. I show pure NbC films to consist of crystalline NbC grains embedded in a matrix of amorphous carbon. The best combina...

  7. Ultrafast carrier dynamics in tetrahedral amorphous carbon: carrier trapping versus electron-hole recombination

    International Nuclear Information System (INIS)

    Carpene, E; Mancini, E; Dallera, C; Schwen, D; Ronning, C; Silvestri, S De

    2007-01-01

    We report the investigation of the ultrafast carrier dynamics in thin tetrahedral amorphous carbon films by means of femtosecond time-resolved reflectivity. We estimated the electron-phonon relaxation time of a few hundred femtoseconds and we observed that under low optical excitation photo-generated carriers decay according to two distinct mechanisms attributed to trapping by defect states and direct electron-hole recombination. With high excitation, when photo-carrier and trap densities are comparable, a unique temporal evolution develops, as the time dependence of the trapping process becomes degenerate with the electron-hole recombination. This experimental evidence highlights the role of defects in the ultrafast electronic dynamics and is not specific to this particular form of carbon, but has general validity for amorphous and disordered semiconductors

  8. Thermal oxidation of Zr–Cu–Al–Ni amorphous metal thin films

    International Nuclear Information System (INIS)

    Oleksak, R.P.; Hostetler, E.B.; Flynn, B.T.; McGlone, J.M.; Landau, N.P.; Wager, J.F.; Stickle, W.F.; Herman, G.S.

    2015-01-01

    The initial stages of thermal oxidation for Zr–Cu–Al–Ni amorphous metal thin films were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The as-deposited films had oxygen incorporated during sputter deposition, which helped to stabilize the amorphous phase. After annealing in air at 300 °C for short times (5 min) this oxygen was found to segregate to the surface or buried interface. Annealing at 300 °C for longer times leads to significant composition variation in both vertical and lateral directions, and formation of a surface oxide layer that consists primarily of Zr and Al oxides. Surface oxide formation was initially limited by back-diffusion of Cu and Ni ( 30 min). The oxidation properties are largely consistent with previous observations of Zr–Cu–Al–Ni metallic glasses, however some discrepancies were observed which could be explained by the unique sample geometry of the amorphous metal thin films. - Highlights: • Thermal oxidation of amorphous Zr–Cu–Al–Ni thin films was investigated. • Significant short-range inhomogeneities were observed in the amorphous films. • An accumulation of Cu and Ni occurs at the oxide/metal interface. • Diffusion of Zr was found to limit oxide film growth.

  9. Carbon nitride films synthesized by NH3-ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Song, H.W.; Cui, F.Z.; He, X.M.; Li, W.Z.; Li, H.D.

    1994-01-01

    Carbon nitride thin film films have been prepared by NH 3 -ion-beam-assisted deposition with bombardment energies of 200-800 eV at room temperature. These films have been characterized by transmission electron microscopy. Auger electron spectroscopy and x-ray photoelectron spectroscopy for chemical analysis. It was found that the structure of the films varied with the bombardment energy. In the case of 400 eV bombardment, the tiny crystallites immersed on an amorphous matrix were identified to be β-C 3 N 4 . X-ray photoelectron spectroscopy indicated that some carbon atoms and nitrogen atoms form unpolarized covalent bonds in these films. (Author)

  10. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes.

    Science.gov (United States)

    Tali, S A Safiabadi; Soleimani-Amiri, S; Sanaee, Z; Mohajerzadeh, S

    2017-02-10

    We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploits C 2 H 2 and N 2 gases as the sources of carbon and nitrogen constituents and can be applied to various micro and nanostructures. Although as-deposited a-C:N films have a porous surface, their porosity can be significantly improved through a modification process consisting of Ni-assisted annealing and etching steps. The electrochemical analyses demonstrated the superior performance of the modified a-C:N as a supercapacitor active material, where specific capacitance densities as high as 42 F/g and 8.5 mF/cm 2 (45 F/cm 3 ) on silicon microrod arrays were achieved. Furthermore, this supercapacitor electrode showed less than 6% degradation of capacitance over 5000 cycles of a galvanostatic charge-discharge test. It also exhibited a relatively high energy density of 2.3 × 10 3  Wh/m 3 (8.3 × 10 6  J/m 3 ) and ultra-high power density of 2.6 × 10 8  W/m 3 which is among the highest reported values.

  11. Surface morphology and grain analysis of successively industrially grown amorphous hydrogenated carbon films (a-C:H) on silicon

    Science.gov (United States)

    Catena, Alberto; McJunkin, Thomas; Agnello, Simonpietro; Gelardi, Franco M.; Wehner, Stefan; Fischer, Christian B.

    2015-08-01

    Silicon (1 0 0) has been gradually covered by amorphous hydrogenated carbon (a-C:H) films via an industrial process. Two types of these diamond-like carbon (DLC) coatings, one more flexible (f-DLC) and one more robust (r-DLC), have been investigated. Both types have been grown by a radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. Surface morphologies have been studied in detail by atomic force microscopy (AFM) and Raman spectroscopy has been used to investigate the DLC structure. Both types appeared to have very similar morphology and sp2 carbon arrangement. The average height and area for single grains have been analyzed for all depositions. A random distribution of grain heights was found for both types. The individual grain structures between the f- and r-type revealed differences: the shape for the f-DLC grains is steeper than for the r-DLC grains. By correlating the average grain heights to the average grain areas for all depositions a limited region is identified, suggesting a certain regularity during the DLC deposition mechanisms that confines both values. A growth of the sp2 carbon entities for high r-DLC depositions is revealed and connected to a structural rearrangement of carbon atom hybridizations and hydrogen content in the DLC structure.

  12. Deuterium retention properties of co-deposited carbon films produced at wall gaps

    International Nuclear Information System (INIS)

    Nobuta, Yuji; Kanazawa, Jun; Yamauchi, Yuji; Hino, Tomoaki; Yokoyama, Kenji; Suzuki, Satoshi; Ezato, Koichiro; Enoeda, Mikio; Akiba, Masato; Akamaru, Satoshi; Hatano, Yuji

    2013-01-01

    Deuterium retention properties in co-deposited carbon film produced in gap and the relationship between this retention behavior and the crystal structure of carbon film were investigated. In the case of a wide gap, the atomic ratio of deuterium to carbon (D/C) in the film was almost constant at any depth in the gap, while in the case of a narrow gap the D/C ratio decreased with increasing distance from the gap entrance. The micro structure of carbon film tended to be more amorphous for the film produced at locations deeper in the gap. Thermal desorption spectra of D 2 in the film produced near the gap entrance showed one broad main peak at around 1100 K, while that in the film produced near the bottom showed very sharp peaks at around 950 K. This difference in desorption behavior was related with the differences of micro structure. (author)

  13. Optical waveguiding in amorphous tellurium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Ranu; Gupta, Vinay; Dawar, A.L.; Sreenivas, K

    2003-11-24

    Optical waveguiding characteristics of amorphous TeO{sub 2-x} films deposited by reactive sputtering under different O{sub 2}:Ar gas mixtures are investigated on fused quartz and Corning glass substrates. Infra-red absorption band in the range 641-658 cm{sup -1} confirmed the formation of a Te-O bond, and a 20:80 O{sub 2}:Ar gas mixture ratio is found to be optimum for achieving highly uniform and transparent films at a high deposition rate. As grown amorphous films exhibited a large band gap (3.76 eV); a high refractive index value (2.042-2.052) with low dispersion over a wide wavelength range of 500-2000 nm. Optical waveguiding with low propagation loss of 0.26 dB/cm at 633 nm is observed on films subjected to a post-deposition annealing treatment at 200 deg. C. Packing density and etch rates have been determined and correlated with the lowering of optical propagation loss in the annealed films.

  14. Barrier properties to surrogates of hydrogenated carbon nano-films deposited on PET by plasma-enhanced chemical vapour deposition.

    Science.gov (United States)

    Oliveira, Éder C; Echegoyen, Yolanda; Nerin, Cristina; Cruz, Sandra A

    2014-01-01

    Poly(ethylene terephthalate) resin was contaminated with a series of surrogates using a US Food and Drug Administration protocol. The contaminated samples were coated with two different kinds of hydrogenated amorphous carbon thin films (a-C:H): one with diamond-like hydrogenated amorphous carbon and another with polymer-like hydrogenated carbon (PLCH) phases. To evaluate the barrier properties of the a-C:H films, migration assays were performed using food simulants. After the tests, analysis by gas chromatography with different detectors was carried out. The appearance of the films before and after the migration experiments was studied by field emission scanning electron microscopy. The results showed that a-C:H films have good barrier properties for most of the evaluated compounds, mainly when they are deposited as PLCH phase.

  15. Chemical vapor deposition of amorphous ruthenium-phosphorus alloy films

    International Nuclear Information System (INIS)

    Shin Jinhong; Waheed, Abdul; Winkenwerder, Wyatt A.; Kim, Hyun-Woo; Agapiou, Kyriacos; Jones, Richard A.; Hwang, Gyeong S.; Ekerdt, John G.

    2007-01-01

    Chemical vapor deposition growth of amorphous ruthenium-phosphorus films on SiO 2 containing ∼ 15% phosphorus is reported. cis-Ruthenium(II)dihydridotetrakis-(trimethylphosphine), cis-RuH 2 (PMe 3 ) 4 (Me = CH 3 ) was used at growth temperatures ranging from 525 to 575 K. Both Ru and P are zero-valent. The films are metastable, becoming increasingly more polycrystalline upon annealing to 775 and 975 K. Surface studies illustrate that demethylation is quite efficient near 560 K. Precursor adsorption at 135 K or 210 K and heating reveal the precursor undergoes a complex decomposition process in which the hydride and trimethylphosphine ligands are lost at temperatures as low at 280 K. Phosphorus and its manner of incorporation appear responsible for the amorphous-like character. Molecular dynamics simulations are presented to suggest the local structure in the films and the causes for phosphorus stabilizing the amorphous phase

  16. Increased field-emission site density from regrown carbon nanotube films

    International Nuclear Information System (INIS)

    Wang, Y.Y.; Gupta, S.; Liang, M.; Nemanich, R.J.

    2005-01-01

    Electron field-emission properties of as-grown, etched, and regrown carbon nanotube thin films were investigated. The aligned carbon nanotube films were deposited by the microwave plasma-assisted chemical vapor deposition technique. The surface of the as-grown film contained a carbon nanotube mat of amorphous carbon and entangled nanotubes with some tubes protruding from the surface. Hydrogen plasma etching resulted in the removal of the surface layer, and regrowth on the etched surface displayed the formation of a new carbon nanotube mat. The emission site density and the current-voltage dependence of the field emission from all of the samples were analyzed. The results showed that the as-grown sample had a few strong emission spots and a relatively high emission current density (∼20 μA/cm 2 at 1 V/μm), while the regrown sample exhibited a significantly increased emission site density

  17. Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Fedoseeva, Yu. V., E-mail: fedoseeva@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Pozdnyakov, G.A. [Khristianovich Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk 630090 (Russian Federation); Okotrub, A.V.; Kanygin, M.A. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nastaushev, Yu. V. [Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Vilkov, O.Y. [St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Bulusheva, L.G. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-11-01

    Highlights: • A deposition of supersonic methane plasma flow on silicon substrate produces amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) film. • The thickness, composition, and wettability of the film depend on the substrate temperature. • A rise of the substrate temperature from 500 to 700 °C promotes the sp{sup 3}-hybridization carbon formation. - Abstract: Since amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) films are promising engineering materials a study of the structure and composition of the films depending on the conditions of synthesis is important for controlling of their physicochemical properties. Here, we used the methods of scanning and transmission electron microscopy, X-ray photoelectron, near-edge X-ray absorption fine structure, Fourier transform infrared and Raman spectroscopy to reveal changes in the chemical connectivity of CO{sub x}H{sub y} films grown on silicon substrates heated to 300, 500, and 700 °C using a supersonic flow of methane plasma. It was found that the CO{sub x}H{sub y} films, deposited at 300 and 500 °C, were mainly composed of the sp{sup 2}-hybridized carbon areas with various oxygen species. A rise of the substrate temperature caused an increase of the portion of tetrahedral carbon atoms as well as carboxyl and hydroxyl groups. With growth of the substrate temperature, the film thickness reduced monotonically from 400 to 180 nm, while the film adhesion improved substantially. The films, deposited at lower temperatures, showed high hydrophilicity due to porosity and presence of oxygenated groups both at the surface and in the bulk.

  18. Large-deformation and high-strength amorphous porous carbon nanospheres

    Science.gov (United States)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  19. Intrinsic charge trapping in amorphous oxide films: status and challenges

    Science.gov (United States)

    Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.

    2018-06-01

    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection

  20. Sizeable magnetic circular dichroism of artificially precipitated Co clusters in amorphous carbon

    Directory of Open Access Journals (Sweden)

    H. S. Hsu

    2012-09-01

    Full Text Available This study examines sizeable magnetic circular dichroism (MCD in Co(20%-doped amorphous carbon (a-C films. While as-grown films exhibit a non-detectable MCD signal, films that undergo rapid thermal annealing (RTA at 600°C in a vacuum yield broad MCD spectra with a large amplitude of ∼3.9 × 104 deg/cm in saturation field 0.78 T at the σ-σ* gap transition (∼5.5 eV. In such films after RTA, the metastable Co-C bonding is decomposed and suitable Co nanoparticles/a-C interfaces are thus formed. Our results indicate that the large change in MCD is contributed from Co nanoparticles and associated with the spin-dependent electronic structure at the Co/a-C interfaces.

  1. The relation between lattice order and energy resolved momentum densities in carbon films

    International Nuclear Information System (INIS)

    Vos, M.; Storer, P.; Cai, Y.Q.; McCarthy, I.E.; Weigold, E.

    1994-06-01

    The (e,2e) technique is well known to be able to measure the momentum profiles of the electron orbitals in molecules. In crystalline solids energy levels are replaced by bands, and the momentum profiles simplify to energy dependent delta functions. In this paper the development from a molecular to a crystalline picture of the electronic structure is illustrated using a simple model of a linear chain of atoms of increasing length. This model is used to get some insight into the (e,2e) momentum profiles expected for disordered solids. These results are compared to the experimental data for carbon films with different degrees of order, i.e amorphous carbon films, annealed amorphous carbon films and highly oriented pyrolitic graphite (HOPG) films. The focus is on the influence of disorder on (e,2e) spectra. The intensity of the π electron contribution is suppressed in HOPG, due to the orientation chosen. In the annealed evaporated samples, the planes of graphite atoms have random orientation and the π electrons are clearly seen. With increasing order the momentum profiles show increasingly well defined peaks. 16 refs., 7 figs

  2. Highly stable carbon-doped Cu films on barrierless Si

    International Nuclear Information System (INIS)

    Zhang, X.Y.; Li, X.N.; Nie, L.F.; Chu, J.P.; Wang, Q.; Lin, C.H.; Dong, C.

    2011-01-01

    Electrical resistivities and thermal stabilities of carbon-doped Cu films on silicon have been investigated. The films were prepared by magnetron sputtering using a Cu-C alloy target. After annealing at 400 deg. C for 1 h, the resistivity maintains a low level at 2.7 μΩ-cm and no Cu-Si reaction is detected in the film by X-ray diffraction (XRD) and transmission electron microscopy (TEM) observations. According to the secondary ion mass spectroscopy (SIMS) results, carbon is enriched near the interfacial region of Cu(C)/Si, and is considered responsible for the growth of an amorphous Cu(C)/Si interlayer that inhibits the Cu-Si inter-diffusion. Fine Cu grains, less than 100 nm, were present in the Cu(C) films after long-term and high-temperature annealings. The effect of C shows a combination of forming a self-passivated interface barrier layer and maintaining a fine-grained structure of Cu. A low current leakage measured on this Cu(C) film also provides further evidence for the carbon-induced diffusion barrier interlayer performance.

  3. Superlubricity and wearless sliding in diamondlike carbon films

    International Nuclear Information System (INIS)

    Erdemir, A.

    2001-01-01

    Diamondlike carbon (DLC) films have attracted great interest in recent years mainly because of their unusual optical, electrical, mechanical, and tribological properties. Such properties are currently being exploited for a wide range of engineering applications including magnetic hard disks, gears, sliding and roller bearings, scratch resistant glasses, biomedical implants, etc. Systematic studies on carbon-based materials in our laboratory have led to the development of a new class of amorphous DLC films that provide extremely low friction and wear coefficients of 0.001 to 0.005 and 10(sup -11) to 10(sup -10) mm(sup 3) /N.m, respectively, when tested in inert-gas or high-vacuum environments. These films were produced in highly hydrogenated gas discharge plasmas by a plasma enhanced chemical vapor deposition process at room temperature. The carbon source gases used in the deposition of these films included methane, acetylene, and ethylene. Tribological studies in our laboratory have established a very close correlation between the composition of the plasmas and the friction and wear coefficients of the resultant DLC films. Specifically, the friction and wear coefficients of DLC films grown in plasmas with higher hydrogen-to-carbon ratios were much lower than films derived from source gases with lower hydrogen-to-carbon ratios. Fundamental tribological and surface analytical studies have led us to conclude that hydrogen (within the film, as well as on the sliding surfaces) is extremely important for the superlubricity and wearless sliding behavior of these films. Based on these studies, a mechanistic model is proposed to explain the superlow friction and wear properties of the new DLC films

  4. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Chiba, Kiyoshi; Takahashi, Toshiyuki; Kageyama, Takashi; Oda, Hironori

    2005-01-01

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H 2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (140 nm)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  5. Effects of gas residence time of CH4/H2 on sp2 fraction of amorphous carbon films and dissociated methyl density during radical-injection plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Sugiura, Hirotsugu; Jia, Lingyun; Kondo, Hiroki; Ishikawa, Kenji; Tsutsumi, Takayoshi; Hayashi, Toshio; Takeda, Keigo; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Quadruple mass spectrometric measurements of CH3 density during radical-injection plasma-enhanced chemical vapor deposition to consider the sp2 fraction of amorphous carbon (a-C) films were performed. The sp2 fraction of the a-C films reached a minimum of 46%, where the CH3 density was maximum for a residence time of 6 ms. The sp2 fraction of the a-C films was tailored with the gaseous phase CH3 density during the deposition. This knowledge is useful for understanding the formation mechanism of bonding structures in the a-C films, which enables the precise control of their electronic properties.

  6. Stress impedance effects in flexible amorphous FeCoSiB magnetoelastic films

    International Nuclear Information System (INIS)

    Zhang Wanli; Peng Bin; Su Ding; Tang Rujun; Jiang Hongchuan

    2008-01-01

    Amorphous FeCoSiB films were deposited on the flexible polyimide substrates (Kapton type (VN)) by DC magnetron sputtering. Stress impedance (SI) effects of the flexible amorphous FeCoSiB magnetoelastic films were investigated in details. The results show that a large stress impedance effect can be observed in the flexible amorphous FeCoSiB magnetoelastic films. And the results also show a bias magnetic field plays an important role in the stress impedance of FeCoSiB films. Applied a bias magnetic field during depositing can induce obvious in-plane anisotropy in the FeCoSiB films, and a larger SI effect can be obtained with a stronger anisotropy in FeCoSiB films. Argon pressure has a significant effect on the SI effect of the FeCoSiB films. The SI of the FeCoSiB films reaches a maximum of 7.6% at argon pressure of 1.5 Pa, which can be explained by the change of residual stress in FeCoSiB films

  7. Photoluminescence properties of BaMoO4 amorphous thin films

    International Nuclear Information System (INIS)

    Marques, Ana Paula Azevedo; Melo, Dulce M.A. de; Longo, Elson; Paskocimas, Carlos A.; Pizani, Paulo S.; Leite, Edson R.

    2005-01-01

    BaMoO 4 amorphous and crystalline thin films were prepared from polymeric precursors. The BaMoO 4 was deposited onto Si wafers by means of the spinning technique. The structure and optical properties of the resulting films were characterized by FTIR reflectance spectra, X-ray diffraction (XRD), atomic force microscopy (AFM) and optical reflectance. The bond Mo-O present in BaMoO 4 was confirmed by FTIR reflectance spectra. XRD characterization showed that thin films heat-treated at 600 and 200 deg. C presented the scheelite-type crystalline phase and amorphous, respectively. AFM analyses showed a considerable variation in surface morphology by comparing samples heat-treated at 200 and 600 deg. C. The reflectivity spectra showed two bands, positioned at 3.38 and 4.37 eV that were attributed to the excitonic state of Ba 2+ and electronic transitions within MoO 2- 4 , respectively. The optical band gaps of BaMoO 4 were 3.38 and 2.19 eV, for crystalline (600 deg. C/2 h) and amorphous (200 deg. C/8 h) films, respectively. The room-temperature luminescence spectra revealed an intense single-emission band in the visible region. The PL intensity of these materials was increased upon heat-treatment. The excellent optical properties observed for BaMoO 4 amorphous thin films suggested that this material is a highly promising candidate for photoluminescent applications

  8. Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating film

    Science.gov (United States)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Imai, Takahiro; Suda, Yoshiyuki; Takikawa, Hirofumi; Kamiya, Masao; Taki, Makoto; Hasegawa, Yushi; Tsuji, Nobuhiro; Kaneko, Satoru; Kunitsugu, Shinsuke; Habuchi, Hitoe; Kiyohara, Shuji; Ito, Mikio; Yick, Sam; Bendavid, Avi; Martin, Phil

    2018-01-01

    Diamond-like carbon (DLC) films, which are amorphous carbon films, have been used as hard-coating films for protecting the surface of mechanical parts. Nitrogen-containing DLC (N-DLC) films are expected as conductive hard-coating materials. N-DLC films are expected in applications such as protective films for contact pins, which are used in the electrical check process of integrated circuit chips. In this study, N-DLC films are prepared using the T-shaped filtered arc deposition (T-FAD) method, and film properties are investigated. Film hardness and film density decreased when the N content increased in the films because the number of graphite structures in the DLC film increased as the N content increased. These trends are similar to the results of a previous study. The electrical resistivity of N-DLC films changed from 0.26 to 8.8 Ω cm with a change in the nanoindentation hardness from 17 to 27 GPa. The N-DLC films fabricated by the T-FAD method showed high mechanical hardness and low electrical resistivity.

  9. Control of amorphous films properties in the case of combined sputtering of targets

    International Nuclear Information System (INIS)

    Okunev, V.D.; Yurov, A.G.

    1979-01-01

    A possibility of controlling amorphous film properties produced by combined sputtering of two targets: was investigated one of the targets was made of a basis material-polycrystalline CdGeAs 2 , the other one was made of a material of additives. As the additives the Ni,Co elements with low chemical activity and the Cu,Te additives with high chemical activity were used. Besides, to study the effect of deviation from amorphous CdGeAs 2 stoichiometry on film properties, the Gd,Ge,As additives were investigated. The various additives influence on electric conductivity of amorphous films has been studied. It is shown that approximately 1 at% Ni or Co contents results in reducing film specific resistance by 6 orders. Cu and Te introduction results in the change of the structure and type of amorphous layer conductivity. The conclusion has been drawn, that introduction of the elements with high chemical activity can be used as the method of producing films with new physicochemical properties

  10. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaopu, E-mail: xl6ba@virginia.edu; Ma, Chung T.; Poon, S. Joseph, E-mail: sjp9x@virginia.edu [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Devaraj, Arun [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Spurgeon, Steven R.; Comes, Ryan B. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  11. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ou-Yang, Wei, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectronics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  12. Induced anisotropy in amorphous Sm-Co sputtered films

    International Nuclear Information System (INIS)

    Chen, K.; Hegde, H.; Cadieu, F.J.

    1992-01-01

    The variation of the in-the-film-plane anisotropy constant, K u , with composition and the magnitude of the field, H s , applied in plane during the sputter deposition of amorphous Sm x Co 1-x , 0.08≤x≤0.40, thin films has been studied. We demonstrate here that with a large H s , 5.0 kOe, a well defined and large in-the-film-plane anisotropy can be obtained. An exceptionally high value of K u =3.3x10 6 erg/cm 3 has been obtained. For the loop measured along the in-plane hard direction, the opening of the loop was undetectable, and the loop along the easy axis was a perfect rectangle. For certain conditions, the anisotropy field measured perpendicular to the film plane when corrected for demagnetization (N d =4π) was the same as that for the in-plane measurements. It is concluded that surface induced short range ordering was the origin of the anisotropy observed in amorphous films deposited in a magnetic field. The formation mechanism is different from that of the short range ordering induced by field annealing

  13. Structure and density for As23Se67Ge10 amorphous films

    International Nuclear Information System (INIS)

    Shchurova, T.N.; Savchenko, N.D.

    1999-01-01

    The effect of thermal annealing and argon laser irradiation on structure and volume for thin amorphous As 23 Se 67 Ge 10 films deposited by thermal evaporation has been investigated. The short-range structure for the annealed films has been found to be more ordered as compared to the irradiated films. The decrease in film volume under thermal annealing and its increase under laser irradiation have been shown. The changes in film volume have been discussed in the context of non-ergodic model for the amorphous state equilibrium taking into account forces acting from the substrate

  14. On the crystallization of amorphous germanium films

    Science.gov (United States)

    Edelman, F.; Komem, Y.; Bendayan, M.; Beserman, R.

    1993-06-01

    The incubation time for crystallization of amorphous Ge (a-Ge) films, deposited by e-gun, was studied as a function of temperature between 150 and 500°C by means of both in situ transmission electron microscopy and Raman scattering spectroscopy. The temperature dependence of t0 follows an Arrhenius curve with an activation energy of 2.0 eV for free-sustained a-Ge films. In the case where the a-Ge films were on Si 3N 4 substrate, the activation energy of the incubation process was 1.3 eV.

  15. Glow discharge-deposited amorphous silicon films for low-cost solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Grabmaier, J G; Plaettner, R D; Stetter, W [Siemens A.G., Muenchen (Germany, F.R.). Forschungslaboratorien

    1980-01-01

    Due to their high absorption constant, glow discharge-deposited amorphous silicon (a-Si) films are of great interest for low-cost solar cells. Using SiH/sub 4/ and SiX/sub 4//H/sub 2/ (X = Cl or F) gas mixtures in an inductively or capacitively excited reactor, a-Si films with thicknesses up to several micrometers were deposited on substrates of glass, silica and silicon. The optical and electrical properties of the films were determined by measuring the IR absorption spectra, dark conductivity, photoconductivity, and photoluminescence. Hydrogen, chlorine, or fluorine were incorporated in the films in order to passivate dangling bonds in the amorphous network.

  16. Quantifying clustering in disordered carbon thin films

    International Nuclear Information System (INIS)

    Carey, J.D.

    2006-01-01

    The quantification of disorder and the effects of clustering in the sp 2 phase of amorphous carbon thin films are discussed. The sp 2 phase is described in terms of disordered nanometer-sized conductive sp 2 clusters embedded in a less conductive sp 3 matrix. Quantification of the clustering of the sp 2 phase is estimated from optical as well as from electron and nuclear magnetic resonance methods. Unlike in other disordered group IV thin film semiconductors, we show that care must be exercised in attributing a meaning to the Urbach energy extracted from absorption measurements in the disordered carbon system. The influence of structural disorder, associated with sp 2 clusters of similar size, and topological disorder due to undistorted clusters of different sizes is also discussed. Extensions of this description to other systems are also presented

  17. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    Science.gov (United States)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  18. Role of carbon in boron suboxide thin films

    International Nuclear Information System (INIS)

    Music, Denis; Kugler, Veronika M.; Czigany, Zsolt; Flink, Axel; Werner, Oskar; Schneider, Jochen M.; Hultman, Lars; Helmersson, Ulf

    2003-01-01

    Boron suboxide thin films, with controlled carbon content, were grown by rf dual magnetron sputtering of boron and carbon targets in an argon-oxygen atmosphere. Film composition, structure, mechanical, and electrical properties were evaluated with x-ray photoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, transmission electron microscopy, nanoindentation, and high-frequency capacitance-voltage measurements. X-ray amorphous B-O-C films (O/B=0.02) showed an increase in density from 2.0 to 2.4 g/cm 3 as C content was increased from 0 to 0.6 at. % and the film with the highest density had nanocrystalline inclusions. The density increase occurred most likely due to the formation of B-C bonds, which are shorter than B-B bonds. All measured material properties were found to depend strongly on the C content and thus film density. The elastic modulus increased from 188 to 281 GPa with the increasing C content, while the relative dielectric constant decreased from 19.2 to 0.9. Hence, B-O-C films show a potential for protective coatings and even for application in electronic and optical devices

  19. A novel synthesis method for large area metallic amorphous/nanocrystal films by the glow-discharge plasma technique

    International Nuclear Information System (INIS)

    Xu Jiang; Xu Zhong; Tao Jie; Liu Zili; Chen Zheyuan; Zhu Wenhui

    2007-01-01

    Two large-area metallic amorphous/nanocrystal films were prepared on AZ31 magnesium alloy and pure iron substrates by the double glow-discharge plasma technique. The formation mechanism of the novel amorphous films did not follow the established empirical rules for large glass-forming ability. The amorphous films were composed of binary alloys with a difference in the atomic diameter of alloying constituents of less than 12%, and an amorphous film of pure iron was successfully obtained

  20. Mo-containing tetrahedral amorphous carbon deposited by dual filtered cathodic vacuum arc with selective pulsed bias voltage

    International Nuclear Information System (INIS)

    Pasaja, Nitisak; Sansongsiri, Sakon; Intarasiri, Saweat; Vilaithong, Thiraphat; Anders, Andre

    2007-01-01

    Metal-containing tetrahedral amorphous carbon films were produced by dual filtered cathodic vacuum arc plasma sources operated in sequentially pulsed mode. Negatively pulsed bias was applied to the substrate when carbon plasma was generated, whereas it was absent when the molybdenum plasma was presented. Film thickness was measured after deposition by profilometry. Glass slides with silver pads were used as substrates for the measurement of the sheet resistance. The microstructure and composition of the films were characterized by Raman spectroscopy and Rutherford backscattering, respectively. It was found that the electrical resistivity decreases with an increase of the Mo content, which can be ascribed to an increase of the sp 2 content and an increase of the sp 2 cluster size

  1. Amorphization reaction in thin films of elemental Cu and Y

    Science.gov (United States)

    Johnson, R. W.; Ahn, C. C.; Ratner, E. R.

    1989-10-01

    Compositionally modulated thin films of Cu and Y were prepared in an ultrahigh-vacuum dc ion-beam deposition chamber. The amorphization reaction was monitored by in situ x-ray-diffraction measurements. Growth of amorphous Cu1-xYx is observed at room temperature with the initial formation of a Cu-rich amorphous phase. Further annealing in the presence of unreacted Y leads to Y enrichment of the amorphous phase. Growth of crystalline CuY is observed for T=469 K. Transmission-electron-microscopy measurements provide real-space imaging of the amorphous interlayer and growth morphology. Models are developed, incorporating metastable interfacial and bulk free-energy diagrams, for the early stage of the amorphization reaction.

  2. Friction and wear measurements of sputtered MoS/sub x/ films amorphized by ion bombardment

    International Nuclear Information System (INIS)

    Mikkelsen, N.J.; Chevallier, J.; Soerensen, G.; Straede, C.A.

    1988-01-01

    The present study presents an experimental evidence for amorphization of rf sputtered MoS/sub x/ films by ion bombardment. Even at low doses (3 x 10 15 ions/cm 2 ) of 400 keV argon ions a complete amorphization was confirmed by x-ray diffraction analysis and transmission electron microscopy. As a result of the ion bombardment the film density increased 100% to almost the bulk value for MoS 2 . The friction coefficient for ion beam amorphized MoS/sub x/ was measured to be 0.04 in agreement with the values reported for crystalline films but disagreeing considerably with the friction coefficient of 0.4 previously reported for amorphous films

  3. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    Science.gov (United States)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  4. Phase transitions of ferromagnetic Ising films with amorphous surfaces

    International Nuclear Information System (INIS)

    Saber, M.; Ainane, A.; Dujardin, F.; Stebe, B.

    1997-08-01

    The critical behavior of a ferromagnetic Ising film with amorphous surfaces is studied within the framework of the effective field theory. The dependence of the critical temperature on exchange interaction strength ratio, film thickness, and structural fluctuation parameter is presented. It is found that an order-disorder magnetic transition occurs by varying the thickness of the film. Such a result is in agreement with experiments performed recently on Fe-films. (author). 39 refs, 4 figs

  5. Moessbauer and magnetic resonance experiments on amorphous iron-silicon films

    International Nuclear Information System (INIS)

    Bansal, C.; Campbell, S.J.; Stewart, A.M.

    1982-01-01

    Moessbauer measurements at room temperature and 4.2 K, and room temperature magnetic resonance measurments on a series of amorphous Fesub(x)Sisub(1-x) thin films (0.23 <= x <= 0.81) are presented. The concentration dependence of the isomer shifts and quadrupole splittings provides information on the nature of the local coordination in these amorphous materials. Analysis of the distributions of magnetic hyperfine splitting combined with the presence of multiple resonance in the magnetic resonance data indiates that magnetoanisotropy plays a dominant role in determining the magnetic behaviour of these films. (orig.)

  6. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Bakoglidis, Konstantinos D.; Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars

    2015-01-01

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN x ) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN x films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N 2 /Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V s , was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V s  ≥ 60 V, V s  ≥ 100 V, and V s  = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V s for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V s , while CN x films deposited by MFMS showed residual stresses up to −4.2 GPa. Nanoindentation showed a significant

  7. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    International Nuclear Information System (INIS)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-01-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N 2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO x films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH 2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  8. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Science.gov (United States)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-10-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiOx films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV-vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of sbnd NH2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  9. Enhancement of photovoltaic effects and photoconductivity observed in Co-doped amorphous carbon/silicon heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y. C.; Gao, J., E-mail: jugao@hku.hk [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu (China)

    2016-08-22

    Co-doped amorphous carbon (Co-C)/silicon heterostructures were fabricated by growing Co-C films on n-type Si substrates using pulsed laser deposition. A photovoltaic effect (PVE) has been observed at room temperature. Open-circuit voltage V{sub oc} = 320 mV and short-circuit current density J{sub sc }= 5.62 mA/cm{sup 2} were measured under illumination of 532-nm light with the power of 100 mW/cm{sup 2}. In contrast, undoped amorphous carbon/Si heterostructures revealed no significant PVE. Based on the PVE and photoconductivity (PC) investigated at different temperatures, it was found that the energy conversion efficiency increased with increasing the temperature and reached the maximum at room temperature, while the photoconductivity showed a reverse temperature dependence. The observed competition between PVE and PC was correlated with the way to distribute absorbed photons. The possible mechanism, explaining the enhanced PVE and PC in the Co-C/Si heterostructures, might be attributed to light absorption enhanced by localized surface plasmons in Co nanoparticles embedded in the carbon matrix.

  10. Oxygen reduction activity of N-doped carbon-based films prepared by pulsed laser deposition

    Science.gov (United States)

    Hakoda, Teruyuki; Yamamoto, Shunya; Kawaguchi, Kazuhiro; Yamaki, Tetsuya; Kobayashi, Tomohiro; Yoshikawa, Masahito

    2010-12-01

    Carbon-based films with nitrogen species on their surface were prepared on a glassy carbon (GC) substrate for application as a non-platinum cathode catalyst for polymer electrolyte fuel cells. Cobalt and carbon were deposited in the presence of N 2 gas using a pulsed laser deposition method and then the metal Co was removed by HCl-washing treatment. Oxygen reduction reaction (ORR) activity was electrochemically determined using a rotating disk electrode system in which the film samples on the GC substrate were replaceable. The ORR activity increased with the temperature of the GC substrate during deposition. A carbon-based film prepared at 600 °C in the presence of N 2 at 66.7 Pa showed the highest ORR activity among the tested samples (0.66 V vs. NHE). This film was composed of amorphous carbons doped with pyridine type nitrogen atoms on its surface.

  11. Transition metal carbide nanocomposite and amorphous thin films

    OpenAIRE

    Tengstrand, Olof

    2014-01-01

    This thesis explores thin films of binary and ternary transition metal carbides, in the Nb-C, Ti-Si-C, Nb-Si-C, Zr-Si-C, and Nb-Ge-C systems. The electrical and mechanical properties of these systems are affected by their structure and here both nanocomposite and amorphous thin films are thus investigated. By appropriate choice of transition metal and composition the films can be designed to be multifunctional with a combination of properties, such as low electric resistivity, low contact res...

  12. Influence of thermal heating on diamond-like carbon film properties prepared by filtered cathodic arc

    International Nuclear Information System (INIS)

    Khamnualthong, N.; Siangchaew, K.; Limsuwan, P.

    2013-01-01

    Tetrahedral amorphous diamond-like carbon (ta-DLC) films were deposited on magnetic recording heads using the filtered cathodic arc method. The deposited film thickness was on the order of several nanometers. The DLC films were then annealed to 100 °C–300 °C for 30 and 60 min, and the structure of the ta-DLC films was investigated using Raman spectroscopy, where the gross changes were observed in the Raman D and G peaks. Detailed interpretation concluded that there was sp 2 clustering as a function of temperature, and there was no sp 3 -to-sp 2 conversion after heating up to 300 °C. Furthermore, X-ray photoelectron spectroscopy suggested that oxidation of both the ta-DLC film and the adhesion layer occurs at 300 °C. Additionally, more film wear was observed with heating as measured by a nanoindenter. - Highlights: • Tetrahedral-amorphous diamond-like carbon (ta-DLC) by filtered cathodic arc • ta-DLC used in magnetic recording head as head overcoat • ta-DLC thickness range of less than 2 nm • ta-DLC property dependence on heating • Temperature effect range of up to 300 °C

  13. EXAFS study of the stability of amorphous TbFe thin films

    International Nuclear Information System (INIS)

    Samant, M.G.; Marinero, E.E.; Robinson, C.; Cargill, G.S.

    1989-01-01

    This paper discusses the measurement of the local atomic structure of Fe in Au doped Tb-Fe thin film alloys by the use of EXAFS. The as deposited sample shows structural features which are essentially identical to those of the undoped films. Au additions stabilizes the amorphous structure against recrystallization, however, the loss of magnetic anisotropy under thermal annealing is not reduced. This demonstrates that magnetic relaxation in these alloys does not involve crystallization of the amorphous structure

  14. Deposition and microstructure of Ti-containing diamond-like carbon nanocomposite films

    International Nuclear Information System (INIS)

    Yang, Won Jae; Sekino, Tohru; Shim, Kwang Bo; Niihara, Koichi; Auh, Keun Ho

    2005-01-01

    Ti-containing diamond-like carbon (DLC) films were deposited by plasma decomposition of CH 4 /Ar gas mixtures with an introduction of tetrakis(dimethylamino)titanium (TDMAT, Ti[(CH 3 ) 2 N] 4 ), which was used as a precursor of titanium. The films deposited were found to be nanocomposite coatings consisting of TiN nanocrystalline clusters and amorphous hydrocarbon (a-C:H), indicating that the nanocrystalline clusters were embedded in the DLC matrix. The crystallinity of TiN clusters, as well as the Ti atomic concentrations in the films, increased with an increase of substrate temperature. The substrate temperature applied to form a crystalline phase in the DLC matrix induced a graphitization of amorphous hydrocarbon matrix. The increase of volume fraction of TiN nanocrystalline clusters in the DLC matrix enhanced the mechanical properties of nanostructured coatings, although the graphite-like structural transition of DLC matrix happened due to the applied heating

  15. Evolution of optical properties and band structure from amorphous to crystalline Ga2O3 films

    Science.gov (United States)

    Zhang, Fabi; Li, Haiou; Cui, Yi-Tao; Li, Guo-Ling; Guo, Qixin

    2018-04-01

    The optical properties and band structure evolution from amorphous to crystalline Ga2O3 films was investigated in this work. Amorphous and crystalline Ga2O3 films were obtained by changing the growth substrate temperatures of pulsed laser deposition and the crystallinity increase with the rising of substrate temperature. The bandgap value and ultraviolet emission intensity of the films increase with the rising of crystallinity as observed by means of spectrophotometer and cathodoluminescence spectroscopy. Abrupt bandgap value and CL emission variations were observed when amorphous to crystalline transition took place. X-ray photoelectron spectroscopy core level spectra reveal that more oxygen vacancies and disorders exist in amorphous Ga2O3 film grown at lower substrate temperature. The valence band spectra of hard X-ray photoelectron spectroscopy present the main contribution from Ga 4sp for crystalline film deposited at substrate temperature of 500 oC, while extra subgap states has been observed in amorphous film deposited at 300 oC. The oxygen vacancy and the extra subgap density of states are suggested to be the parts of origin of bandgap and CL spectra variations. The experimental data above yields a realistic picture of optical properties and band structure variation for the amorphous to crystalline transition of Ga2O3 films.

  16. Impulse holograms in amorphous semiconductor films

    International Nuclear Information System (INIS)

    Ozols, A.; Ivanovs, G.; Lazarevs, S.

    2002-01-01

    Impulse hologram recording in amorphous chalcogenide semiconductor films with pulse duration from minutes to picoseconds is considered. Nanosecond pulses are shown to be optimal due to the nonlinearity to films. Millisecond impulse hologram recording is experimentally studied. It is found that about 500 times lower exposure is needed to reach the same diffraction efficiency when compared to CW case. The millisecond recording is non-permanent. A nonlinear photoinduced recharging of localized states in the band gap is found to be responsible for the millisecond recording. It can be applied for non-permanent optical storage and optical information processing. (authors)

  17. Negative ion emission at field electron emission from amorphous (alpha-C:H) carbon

    CERN Document Server

    Bernatskij, D P; Ivanov-Omskij, V I; Pavlov, V G; Zvonareva, T K

    2001-01-01

    The study on the electrons field emission from the plane cathode surface on the basis of the amorphous carbon film (alpha-C:H) is carried out. The methodology, making it possible to accomplish simultaneously the registration of the emission currents and visually observe the distribution of the emission centers on the plane emitter surface is developed. The analysis of the oscillograms indicated that apart from the proper electron constituent the negative ions of hydrogen (H sup - and H sub 2 sup -), carbon (C sup -) and hydrocarbon (CH sub n sup -) are observed. The ions emission is connected with the processes of formation and degradation of the local emission centers

  18. Properties of amorphous silicon thin films synthesized by reactive particle beam assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyeong-Ho; Jang, Jin-Nyoung; Hong, MunPyo; Kwon, Kwang-Ho; Park, Hyung-Ho

    2010-01-01

    Amorphous silicon thin films were formed by chemical vapor deposition of reactive particle beam assisted inductively coupled plasma type with various reflector bias voltages. During the deposition, the substrate was heated at 150 o C. The effects of reflector bias voltage on the physical and chemical properties of the films were systematically studied. X-ray diffraction and Raman spectroscopy results showed that the deposited films were amorphous and the films under higher reflector voltage had higher internal energy to be easily crystallized. The chemical state of amorphous silicon films was revealed as metallic bonding of Si atoms by using X-ray photoelectron spectroscopy. An increase in reflector voltage induced an increase of surface morphology of films and optical bandgap and a decrease of photoconductivity.

  19. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    International Nuclear Information System (INIS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-01-01

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al 2 O 3 films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively

  20. Recent Experimental Results on Amorphous Carbon Coatings for Electron Cloud Mitigation

    CERN Document Server

    Yin Vallgren, C; Chiggiato, P; Costa Pinto, P; Neupert, H; Taborelli, M; Rumolo, G; Shaposhnikova, E; Vollenberg, W

    2011-01-01

    Amorphous carbon (a-C) thin films, produced in different coating configurations by using DC magnetron sputtering, have been investigated in laboratory for low secondary electron yield (SEY) applications. After the coatings had shown a reliable low initial SEY, the a-C thin films have been applied in the CERN Super Proton Synchrotron (SPS) and tested with Large Hadron Collider (LHC) type beams.Currently, we have used a-C thin film coated in so-called liner configuration for the electron cloud monitors. In addition the vacuum chambers of three dipole magnets have been coated and inserted into the machine. After describing the different configurations used for the coatings, results of the tests in the machine and a summary of the analyses after extraction will be presented. Based on comparison between different coating configurations, a new series of coatings has been applied on three further dipole magnet vacuum chambers. They have been installed and will be tested in coming machine development runs.

  1. Elastic properties of amorphous thin films studied by Rayleigh waves

    International Nuclear Information System (INIS)

    Schwarz, R.B.; Rubin, J.B.

    1993-01-01

    Physical vapor deposition in ultra-high vacuum was used to co-deposit nickel and zirconium onto quartz single crystals and grow amorphous Ni 1-x Zr x (0.1 < x < 0.87) thin film. A high-resolution surface acoustic wave technique was developed for in situ measurement of film shear moduli. The modulus has narrow maxima at x = 0. 17, 0.22, 0.43, 0.5, 0.63, and 0.72, reflecting short-range ordering and formation of aggregates in amorphous phase. It is proposed that the aggregates correspond to polytetrahedral atom arrangements limited in size by geometrical frustration

  2. A diamond-like carbon film for wear protection of steel

    International Nuclear Information System (INIS)

    Harris, S.J.; Weiner, A.M.; Tung, S.C.; Simko, S.J.; Militello, M.C.

    1993-01-01

    We have deposited diamond-like carbon (DLC) and amorphous SiN films on a tool steel coupon. In order to make the DLC adhere to the metal, we used an interlayer of amorphous SiN, taking advantage of the fact that the SiN coating adheres to the metal and the DLC adheres to the SiN. The DLC/SiN-coated substrate showed a significant reduction in friction compared with either uncoated or SiN-coated substrates in our laboratory bench tester after lubricated sliding for 30 h. In addition, on the basis of surface profilometry analysis, the DLC/SiN-coated plate showed less wear and a much smoother surface. The films were analyzed using X-ray photo-electron spectroscopy and sputter depth profiling. Our results suggest that DLC is a promising coating for wear protection. (orig.)

  3. Optical and luminescence properties of hydrogenated amorphous carbon

    International Nuclear Information System (INIS)

    Rusli

    1996-03-01

    In this thesis, the optical and luminescence properties of hydrogenated amorphous carbon(a - C:H) thin films deposited using a Plasma Enhanced Chemical Vapour Deposition (PECVD) system are studied. A photoluminescence (PL) measuring system with a wavelength range of 300nm to 900nm, used for the above study, has been set up as a main part of the research. Firstly, a simple yet powerful method developed to solve for the optical constants and thickness of a - C : H deposited on Si is presented. This is followed by an investigation into the optical properties of band gap modulated a - C : H thin films superlattice structures. a - C : H films, obtained from a wide range of deposition conditions, are then characterised in terms of their optical absorption, infrared absorption, Raman scattering, fraction of sp 2 to sp 3 bondings and unpaired electron spin density. Their PL characteristics, such as the peak emission energy, spectral bandwidth, quantum efficiency, fatigue and polarisation memory are investigated in relation to their microstructure. The results, taken together with those obtained from photoconductivity study and electric field quenching of PL, are used to understand the origin of the strong PL in a - C : H. Preliminary work on a - C : H electroluminescent celbis also presented. (author)

  4. Evolution of optical properties and band structure from amorphous to crystalline Ga2O3 films

    Directory of Open Access Journals (Sweden)

    Fabi Zhang

    2018-04-01

    Full Text Available The optical properties and band structure evolution from amorphous to crystalline Ga2O3 films was investigated in this work. Amorphous and crystalline Ga2O3 films were obtained by changing the growth substrate temperatures of pulsed laser deposition and the crystallinity increase with the rising of substrate temperature. The bandgap value and ultraviolet emission intensity of the films increase with the rising of crystallinity as observed by means of spectrophotometer and cathodoluminescence spectroscopy. Abrupt bandgap value and CL emission variations were observed when amorphous to crystalline transition took place. X-ray photoelectron spectroscopy core level spectra reveal that more oxygen vacancies and disorders exist in amorphous Ga2O3 film grown at lower substrate temperature. The valence band spectra of hard X-ray photoelectron spectroscopy present the main contribution from Ga 4sp for crystalline film deposited at substrate temperature of 500 oC, while extra subgap states has been observed in amorphous film deposited at 300 oC. The oxygen vacancy and the extra subgap density of states are suggested to be the parts of origin of bandgap and CL spectra variations. The experimental data above yields a realistic picture of optical properties and band structure variation for the amorphous to crystalline transition of Ga2O3 films.

  5. Thermoelectric effects of amorphous Ga-Sn-O thin film

    Science.gov (United States)

    Matsuda, Tokiyoshi; Uenuma, Mutsunori; Kimura, Mutsumi

    2017-07-01

    The thermoelectric effects of an amorphous Ga-Sn-O (a-GTO) thin film have been evaluated as a physical parameter of a novel oxide semiconductor. Currently, a-GTO thin films are greatly desired not only because they do not contain rare metals and are therefore free from problems on the exhaustion of resources and the increase in cost but also because their initial characteristics and performance stabilities are excellent when they are used in thin-film transistors. In this study, an a-GTO thin film was deposited on a quartz substrate by RF magnetron sputtering and postannealing was performed in air at 350 °C for 1 h using an annealing furnace. The Seebeck coefficient and electrical conductivity of the a-GTO thin film were -137 µV/K and 31.8 S/cm at room temperature, and -183 µV/K and 43.8 S/cm at 397 K, respectively, and as a result, the power factor was 1.47 µW/(cm·K2) at 397 K; these values were roughly as high as those of amorphous In-Ga-Zn-O (a-IGZO) thin films. Therefore, a-GTO thin films will be a candidate material for thermoelectric devices fabricated in a large area at a low cost by controlling the carrier mobility, carrier density, device structures, and so forth.

  6. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    Film adhesion in amorphous silicon solar cells. A R M YUSOFF*, M N SYAHRUL and K HENKEL. Malaysia Energy Centre, 8th Floor, North Wing, Sapura @ Mines, 7, Jalan Tasik, The Mines Resort City,. 43300 Seri Kembangan, Selangor Darul Ehsan. MS received 11 April 2007. Abstract. A major issue encountered ...

  7. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bakoglidis, Konstantinos D., E-mail: konba@ifm.liu.se; Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2015-09-15

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN{sub x}) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN{sub x} films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N{sub 2}/Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V{sub s}, was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V{sub s} ≥ 60 V, V{sub s} ≥ 100 V, and V{sub s} = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V{sub s} for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V{sub s}, while CN{sub x} films deposited by MFMS showed residual stresses up to −4.2

  8. Fast diffusion and nucleation of the amorphous phase in Ni--Zr films

    International Nuclear Information System (INIS)

    Ehrhart, P.; Averback, R.S.; Hahn, H.; Yadavalli, S.; Flynn, C.P.

    1988-01-01

    The nucleation of the amorphous phase by solid-state reactions has been investigated on single-crystal Zr films grown by molecular beam epitaxy and covered in situ with either polycrystalline Ni, amorphous (a-) NiZr, or single-crystalline Zr 99 N 01 films. Interfacial reactions were investigated by backscattering analysis or secondary ion mass spectroscopy. The amorphizing reaction occurred only in the specimen with the a-NiZr overlayer, although fast Ni diffusion through the single-crystalline Zr layer was observed in all three specimens. The nucleation behavior of a-NiZr is attributed to the combination of high-Ni and low-Zr mobility in crystalline Zr

  9. Optical response of thin amorphous films to infrared radiation

    Science.gov (United States)

    Orosco, J.; Coimbra, C. F. M.

    2018-03-01

    We briefly review the electrical-optical response of materials to radiative forcing within the formalism of the Kramers-Kronig relations. A commensurate set of criteria is described that must be met by any frequency-domain model representing the time-domain response of a real (i.e., physically possible) material. The criteria are applied to the Brendel-Bormann (BB) oscillator, a model that was originally introduced for its fidelity at reproducing the non-Lorentzian peak broadening experimentally observed in the infrared absorption by thin amorphous films but has since been used for many other common materials. We show that the BB model fails to satisfy the established physical criteria. Taking an alternative approach to the model derivation, a physically consistent model is proposed. This model provides the appropriate line-shape broadening for modeling the infrared optical response of thin amorphous films while adhering strictly to the Kramers-Kronig criteria. Experimental data for amorphous alumina (Al2O3 ) and amorphous quartz silica (SiO2) are used to obtain model parametrizations for both the noncausal BB model and the proposed causal model. The proposed model satisfies consistency criteria required by the underlying physics and reproduces the experimental data with better fidelity (and often with fewer parameters) than previously proposed permittivity models.

  10. Structural stability of hydrogenated amorphous carbon overcoats used in heat-assisted magnetic recording investigated by rapid thermal annealing

    KAUST Repository

    Wang, N.; Komvopoulos, K.; Rose, F.; Marchon, B.

    2013-01-01

    Ultrathin amorphous carbon (a-C) films are extensively used as protective overcoats of magnetic recording media. Increasing demands for even higher storage densities have necessitated the development of new storage technologies, such as heat-assisted magnetic recording (HAMR), which uses laser-assisted heating to record data on high-stability media that can store single bits in extremely small areas (∼1 Tbit/in.2). Because HAMR relies on locally changing the coercivity of the magnetic medium by raising the temperature above the Curie temperature for data to be stored by the magnetic write field, it raises a concern about the structural stability of the ultrathin a-C film. In this study, rapid thermal annealing (RTA) experiments were performed to examine the thermal stability of ultrathin hydrogenated amorphous carbon (a-C:H) films deposited by plasma-enhanced chemical vapor deposition. Structural changes in the a-C:H films caused by RTA were investigated by x-ray photoelectron spectroscopy, Raman spectroscopy, x-ray reflectivity, and conductive atomic force microscopy. The results show that the films exhibit thermal stability up to a maximum temperature in the range of 400-450 °C. Heating above this critical temperature leads to hydrogen depletion and sp 2 clustering. The critical temperature determined by the results of this study represents an upper bound of the temperature rise due to laser heating in HAMR hard-disk drives and the Curie temperature of magnetic materials used in HAMR hard disks. © 2013 American Institute of Physics.

  11. Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide

    International Nuclear Information System (INIS)

    Barranco, V.; Pico, F.; Ibanez, J.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Kimura, M.; Oya, A.; Rojas, R.M.; Amarilla, J.M.; Rojo, J.M.

    2009-01-01

    Composites consisting of ruthenium oxide particles deposited on amorphous carbon nanofibres are prepared by a repetitive impregnation procedure. The choice of amorphous carbon nanofibres as support of amorphous ruthenium oxide leads to composites in which the deposited oxide consists of aggregates of extremely small primary particles (1-1.5 nm-size) and showing high porosity (specific surface area of 450 m 2 g -1 ). This special deposition of the oxide seems to favour: (i) high oxide capacitance (1000 Fg -1 ) at high oxide loadings (up to 20 wt%) and (ii) high capacitance retention (ca. 80% from the initial oxide capacitance) at high current densities (200 mA cm -2 ). Amorphous carbon nanofibres are suitable supports for amorphous ruthenium oxide and perhaps for other amorphous oxides acting as active electrode materials.

  12. Imaging and thickness measurement of amorphous intergranular films using TEM

    International Nuclear Information System (INIS)

    MacLaren, I.

    2004-01-01

    Fresnel fringe analysis is shown to be unreliable for grain boundaries in yttrium-doped alumina: the determined thicknesses do not agree well with those measured from high resolution transmission electron microscopy (HRTEM), the asymmetry between under- and overfocus is very large, and Fresnel fringes are sometimes shown at boundaries which contain no amorphous film. An alternative approach to the analysis of HRTEM images of grain boundary films is demonstrated: Fourier filtering is used to remove the lattice fringes from the image thereby significantly enhancing the visibility of the intergranular films. The apparent film thickness shows a discrepancy between measurements from the original HRTEM image and the filtered image. It was shown that fringe delocalisation and diffuseness of the amorphous/crystalline interfaces will lead to a significant underestimate of the thickness in unprocessed HRTEM images. In contrast to this, the average thickness can be much more accurately measured from the Fourier-filtered image, provided the boundary is oriented accurately edge-on

  13. Directed dewetting of amorphous silicon film by a donut-shaped laser pulse

    International Nuclear Information System (INIS)

    Yoo, Jae-Hyuck; Zheng, Cheng; Grigoropoulos, Costas P; In, Jung Bin; Sakellari, Ioanna; Raman, Rajesh N; Matthews, Manyalibo J; Elhadj, Selim

    2015-01-01

    Irradiation of a thin film with a beam-shaped laser is proposed to achieve site-selectively controlled dewetting of the film into nanoscale structures. As a proof of concept, the laser-directed dewetting of an amorphous silicon thin film on a glass substrate is demonstrated using a donut-shaped laser beam. Upon irradiation of a single laser pulse, the silicon film melts and dewets on the substrate surface. The irradiation with the donut beam induces an unconventional lateral temperature profile in the film, leading to thermocapillary-induced transport of the molten silicon to the center of the beam spot. Upon solidification, the ultrathin amorphous silicon film is transformed to a crystalline silicon nanodome of increased height. This morphological change enables further dimensional reduction of the nanodome as well as removal of the surrounding film material by isotropic silicon etching. These results suggest that laser-based dewetting of thin films can be an effective way for scalable manufacturing of patterned nanostructures. (paper)

  14. Directed dewetting of amorphous silicon film by a donut-shaped laser pulse.

    Science.gov (United States)

    Yoo, Jae-Hyuck; In, Jung Bin; Zheng, Cheng; Sakellari, Ioanna; Raman, Rajesh N; Matthews, Manyalibo J; Elhadj, Selim; Grigoropoulos, Costas P

    2015-04-24

    Irradiation of a thin film with a beam-shaped laser is proposed to achieve site-selectively controlled dewetting of the film into nanoscale structures. As a proof of concept, the laser-directed dewetting of an amorphous silicon thin film on a glass substrate is demonstrated using a donut-shaped laser beam. Upon irradiation of a single laser pulse, the silicon film melts and dewets on the substrate surface. The irradiation with the donut beam induces an unconventional lateral temperature profile in the film, leading to thermocapillary-induced transport of the molten silicon to the center of the beam spot. Upon solidification, the ultrathin amorphous silicon film is transformed to a crystalline silicon nanodome of increased height. This morphological change enables further dimensional reduction of the nanodome as well as removal of the surrounding film material by isotropic silicon etching. These results suggest that laser-based dewetting of thin films can be an effective way for scalable manufacturing of patterned nanostructures.

  15. Passive film growth on carbon steel and its nanoscale features at various passivating potentials

    International Nuclear Information System (INIS)

    Li, Yuan; Cheng, Y. Frank

    2017-01-01

    Highlights: • Imaged the topography of passivated steel at various film-forming potentials. • Characterized the nanoscale features of passive films. • Determined the composition of passive films formed at various potentials. - Abstract: In this work, the passivation and topographic sub-structure of passive films on a carbon steel in a carbonate/bicarbonate solution was characterized by electrochemical measurements, atomic force microscopy and X-ray photoelectron spectroscopy. When passivating at a potential near the active-passive transition, the film contains the mixture of Fe_3O_4, Fe_2O_3 and FeOOH, with numerous nanoscale features. As the film-forming potential shifts positively, the passive film becomes more compact and the nanoscale features disappear. When the film is formed at a passive potential where the oxygen evolution is enabled, the content of FeOOH in the film increases, resulting in an amorphous topography and reduced corrosion resistance.

  16. Amorphous molecular junctions produced by ion irradiation on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Zhenxia; Yu Liping; Zhang Wei; Ding Yinfeng; Li Yulan; Han Jiaguang; Zhu Zhiyuan; Xu Hongjie; He Guowei; Chen Yi; Hu Gang

    2004-01-01

    Experiments and molecular dynamics have demonstrated that electron irradiation could create molecular junctions between crossed single-wall carbon nanotubes. Recently molecular dynamics computation predicted that ion irradiation could also join single-walled carbon nanotubes. Employing carbon ion irradiation on multi-walled carbon nanotubes, we find that these nanotubes evolve into amorphous carbon nanowires, more importantly, during the process of which various molecular junctions of amorphous nanowires are formed by welding from crossed carbon nanotubes. It demonstrates that ion-beam irradiation could be an effective way not only for the welding of nanotubes but also for the formation of nanowire junctions

  17. Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Seong Shan Yap

    2015-01-01

    Full Text Available Nanostructured diamond-like carbon (DLC films instead of the ultrasmooth film were obtained by pulsed laser ablation of pyrolytic graphite. Deposition was performed at room temperature in vacuum with substrates placed at off-axis position. The configuration utilized high density plasma plume arriving at low effective angle for the formation of nanostructured DLC. Nanostructures with maximum size of 50 nm were deposited as compared to the ultrasmooth DLC films obtained in a conventional deposition. The Raman spectra of the films confirmed that the films were diamond-like/amorphous in nature. Although grown at an angle, ion energy of >35 eV was obtained at the off-axis position. This was proposed to be responsible for subplantation growth of sp3 hybridized carbon. The condensation of energetic clusters and oblique angle deposition correspondingly gave rise to the formation of nanostructured DLC in this study.

  18. Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate

    International Nuclear Information System (INIS)

    Yan Xingbin; Xu Tao; Chen Gang; Yang Shengrong; Liu Huiwen; Xue Qunji

    2004-01-01

    Carbon nitride films (CN x films) were deposited on Si(100) substrates by the electrolysis of methanol-urea solution at high voltage, atmospheric pressure, and low temperature. The microstructure and morphology of the resulting CN x films were analysed by means of Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectrometry (FTIR), x-ray diffraction (XRD), and atomic force microscopy. The tribological properties of the CN x films were examined on an UMT-2MT friction and wear test rig. The Raman spectrum showed two characteristic bands: a graphite G band and a disordered D band of carbon, which suggested the presence of an amorphous carbon matrix. XPS and FTIR measurements suggested the existence of both single and double carbon-nitride bonds in the film and the hydrogenation of the carbon nitride phase. The XRD spectrum showed various peaks of different d values, which could confirm the existence of the polycrystalline carbon nitride phase. The hydrogenated CN x films were compact and uniform, with a root mean square roughness of about 18 nm. The films showed excellent friction-reduction and wear-resistance, with the friction coefficient in the stable phase being about 0.08. In addition, the growth mechanism of the CN x films in liquid phase electro-deposition was discussed as well. It was assumed that the molecules of CH 3 OH and CO(NH 2 ) 2 were polarized under high electric field, and the CN x film was formed on the substrate through the reaction of the -CH 3 and -NH 2 groups on the cathode

  19. Paramagnetic defects in hydrogenated amorphous carbon powders

    International Nuclear Information System (INIS)

    Keeble, D J; Robb, K M; Smith, G M; Mkami, H El; Rodil, S E; Robertson, J

    2003-01-01

    Hydrogenated amorphous carbon materials typically contain high concentrations of paramagnetic defects, the density of which can be quantified by electron paramagnetic resonance (EPR). In this work EPR measurements near 9.5, 94, and 189 GHz have been performed on polymeric and diamond-like hydrogenated amorphous carbon (a-C:H) powder samples. A similar single resonance line was observed at all frequencies for the two forms of a-C:H studied. No contributions to the spectrum from centres with resolved anisotropic g-values as reported earlier were detected. An increase in linewidth with microwave frequency was observed. Possible contributions to this frequency dependence are discussed

  20. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    Science.gov (United States)

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition.

  1. Depth-resolution imaging of crystalline nanoclusters attached on and embedded in amorphous films using aberration-corrected TEM

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Jun, E-mail: yamasaki@uhvem.osaka-u.ac.jp [Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Mori, Masayuki [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Hirata, Akihiko [Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Hirotsu, Yoshihiko [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Tanaka, Nobuo [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-04-15

    For observations of crystalline nanoclusters, the features and capabilities of depth-resolution imaging by aberration-corrected transmission electron microscopy (TEM) were investigated using image simulations and experiments for two types of samples. The first sample was gold clusters attached on an amorphous carbon film. The experimental through-focal series indicated that the focal plane for the cluster was shifted 3 nm from that for the supporting film. This difference is due to the depth-resolution imaging of the cluster and film, the mid-planes of which are separated by 3 nm along the depth direction (the electron incident direction). On the basis of this information, the three-dimensional configuration of the sample, such as the film thickness of 2 nm, was successfully illustrated. The second sample was a Zr{sub 66.7}Ni{sub 33.3} metallic glass including a medium-range-order (MRO) structure, which was approximately considered to be a crystalline cluster with a diameter of 1.6 nm. In the experimental through-focal series, the lattice fringe of the MRO cluster was visible at limited focal conditions. Image simulations reproduced well the focal conditions and also indicated a structural condition for the visualization that the embedded cluster must be apart from the mid-plane of the matrix film. Similar to the case of the first sample, this result can be explained by the idea that the “effective focal planes” for the film and cluster are at different heights. This type of depth-resolution phase contrast imaging is possible only in aberration-corrected TEM and when the sample has a simple structure and is sufficiently thin for the kinematical scattering approximation. - Highlights: • Depth-resolution imaging by aberration-corrected TEM was demonstrated. • Thickness of a carbon film supporting gold nano-crystals was successfully estimated. • A crystalline nanocluster embedded in an amorphous matrix was successfully observed. • It was clarified that

  2. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Energy Technology Data Exchange (ETDEWEB)

    Tunma, Somruthai [The Graduate School, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Song, Doo-Hoon [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Si-Eun; Kim, Kyoung-Nam [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Han, Jeon-Geon [Center for Advanced Plasma Surface Technology, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746 (Korea, Republic of); Boonyawan, Dheerawan [Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand)

    2013-10-15

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N{sub 2} films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO{sub x} films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH{sub 2} groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  3. Chemical states and optical properties of thermally evaporated Ge-Te and Ge-Sb-Te amorphous thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Singh, D.; Shandhu, S. [Semiconductor Laboratory, Department of Physics, Guru Nanak Dev University Amritsar (India); Thangaraj, R., E-mail: rthangaraj@rediffmail.com [Semiconductor Laboratory, Department of Physics, Guru Nanak Dev University Amritsar (India)

    2012-07-15

    Thin amorphous films of Ge{sub 22}Sb{sub 22}Te{sub 56} and Ge{sub 50}Te{sub 50} have been prepared from their respective polycrystalline bulk on glass substrates by thermal evaporation technique. The amorphous nature of the films was checked with X-ray diffraction studies. Amorphous-to-crystalline transition of the films has been induced by thermal annealing and the structural phases have been identified by X-ray diffraction. The phase transformation temperature of the films was evaluated by temperature dependent sheet resistance measurement. The chemical structure of the amorphous films has been investigated using X-ray photoelectron spectroscopy and the role of Sb in phase change Ge{sub 22}Sb{sub 22}Te{sub 56} film is discussed. Survey and core level (Ge 3d, Te 3d, Te 4d, Sb 3p, Sb 3d, O 1s, C 1s) band spectra has been recorded and analyzed. For optical studies, the transmittance and the reflectance spectra were measured over the wavelength ranges 400-2500 nm using UV-vis-NIR spectroscopy. The optical band gap, refractive index and extinction coefficient are also presented for thermally evaporated amorphous thin films.

  4. Formation and structure of V-Zr amorphous alloy thin films

    KAUST Repository

    King, Daniel J M

    2015-01-01

    Although the equilibrium phase diagram predicts that alloys in the central part of the V-Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V-Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to the first and second nearest neighbours in the system.

  5. Electrodeposited porous and amorphous copper oxide film for application in supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Patake, V.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, (M.S.) (India); Joshi, S.S. [Clean Energy Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of); Lokhande, C.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, (M.S.) (India); Clean Energy Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: l_chandrakant@yahoo.com; Joo, Oh-Shim [Clean Energy Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: joocat@kist.rre.kr

    2009-03-15

    In present study, the porous amorphous copper oxide thin films have been deposited from alkaline sulphate bath. The cathodic electrodeposition method was employed to deposit copper oxide film at room temperature on stainless steel substrate. Their structural and surface morphological properties were investigated by means of X-ray diffraction (XRD) and scanning electron micrograph (SEM), respectively. To propose this as a new material for possible application in the supercapacitor, its electrochemical properties have been studied in aqueous 1 M Na{sub 2}SO{sub 4} electrolyte using cyclic voltammetry. The structural analysis from XRD pattern showed the formation of amorphous copper oxide film on the substrate. The surface morphological studies from scanning electron micrographs revealed the formation of porous cauliflower-like copper oxide film. The cyclic voltammetric curves showed symmetric nature and increase in capacitance with increase in film thickness. The maximum specific capacitance of 36 F g{sup -1} was exhibited for the 0.6959 mg cm{sup -2} film thickness. This shows that low-cost copper oxide electrode will be a potential application in supercapacitor.

  6. Multi-jump magnetic switching in ion-beam sputtered amorphous Co20Fe60B20 thin films

    International Nuclear Information System (INIS)

    Raju, M.; Chaudhary, Sujeet; Pandya, D. K.

    2013-01-01

    Unconventional multi-jump magnetization reversal and significant in-plane uniaxial magnetic anisotropy (UMA) in the ion-beam sputtered amorphous Co 20 Fe 60 B 20 (5–75 nm) thin films grown on Si/amorphous SiO 2 are reported. While such multi-jump behavior is observed in CoFeB(10 nm) film when the magnetic field is applied at 10°–20° away from the easy-axis, the same is observed in CoFeB(12.5 nm) film when the magnetic field is 45°–55° away from easy-axis. Unlike the previous reports of multi-jump switching in epitaxial films, their observance in the present case of amorphous CoFeB is remarkable. This multi-jump switching is found to disappear when the films are crystallized by annealing at 420 °C. The deposition geometry and the energy of the sputtered species appear to intrinsically induce a kind of bond orientation anisotropy in the films, which leads to the UMA in the as-grown amorphous CoFeB films. Exploitation of such multi-jump switching in amorphous CoFeB thin films could be of technological significance because of their applications in spintronic devices

  7. Tungsten oxide nanowires grown on amorphous-like tungsten films

    International Nuclear Information System (INIS)

    Dellasega, D; Pezzoli, A; Russo, V; Passoni, M; Pietralunga, S M; Nasi, L; Conti, C; Vahid, M J; Tagliaferri, A

    2015-01-01

    Tungsten oxide nanowires have been synthesized by vacuum annealing in the range 500–710 °C from amorphous-like tungsten films, deposited on a Si(100) substrate by pulsed laser deposition (PLD) in the presence of a He background pressure. The oxygen required for the nanowires formation is already adsorbed in the W matrix before annealing, its amount depending on deposition parameters. Nanowire crystalline phase and stoichiometry depend on annealing temperature, ranging from W_1_8O_4_9-Magneli phase to monoclinic WO_3. Sufficiently long annealing induces the formation of micrometer-long nanowires, up to 3.6 μm with an aspect ratio up to 90. Oxide nanowire growth appears to be triggered by the crystallization of the underlying amorphous W film, promoting their synthesis at low temperatures. (paper)

  8. Growth Mechanism and Origin of High s p3 Content in Tetrahedral Amorphous Carbon

    Science.gov (United States)

    Caro, Miguel A.; Deringer, Volker L.; Koskinen, Jari; Laurila, Tomi; Csányi, Gábor

    2018-04-01

    We study the deposition of tetrahedral amorphous carbon (ta-C) films from molecular dynamics simulations based on a machine-learned interatomic potential trained from density-functional theory data. For the first time, the high s p3 fractions in excess of 85% observed experimentally are reproduced by means of computational simulation, and the deposition energy dependence of the film's characteristics is also accurately described. High confidence in the potential and direct access to the atomic interactions allow us to infer the microscopic growth mechanism in this material. While the widespread view is that ta-C grows by "subplantation," we show that the so-called "peening" model is actually the dominant mechanism responsible for the high s p3 content. We show that pressure waves lead to bond rearrangement away from the impact site of the incident ion, and high s p3 fractions arise from a delicate balance of transitions between three- and fourfold coordinated carbon atoms. These results open the door for a microscopic understanding of carbon nanostructure formation with an unprecedented level of predictive power.

  9. Evolution of structural and electrical properties of carbon films from amorphous carbon to nanocrystalline graphene on quartz glass by HFCVD.

    Science.gov (United States)

    Zhai, Zihao; Shen, Honglie; Chen, Jieyi; Li, Xuemei; Jiang, Ye

    2018-04-25

    Direct growth of graphene films on glass is of great importance but has so far met with limited success. The non-catalytic property of glass results in the low decomposition ability of hydrocarbon precursors, especially at reduced temperatures (structural and electrical properties of carbon films deposited on quartz glass at 850 °C by hot-filament chemical vapor deposition (HFCVD). The results revealed that the obtained a-C films were all graphite-like carbon films. Structural transition of the deposited films from a-C to nanocrystalline graphene was achieved by raising the hydrogen dilution ratios from 10 % to over 80 %. Based on systematically structural and chemical characterizations, a schematic process with three steps including sp2 chains aggregation, aromatic rings formation and sp3 bonds etch was proposed to interpret the structural evolution. The nanocrystalline graphene films grown on glass by HFCVD exhibited good electrical performance with a carrier mobility of 36.76 cm2/(V·s) and a resistivity of 5.24×10-3 Ω·cm over an area of 1 cm2. Temperature-dependent electrical characterizations revealed that the electronic transport in carbon films was dominated by defect, localised and extended states respectively when increasing the temperature from 75 K to 292 K. The nanocrystalline graphene films presented higher carrier mobility and lower carrier concentration than a-C films, which was mainly attributed to their smaller conductive activation energy. The present investigation provides an effective way for direct growth of graphene films on glass at reduced temperatures and also offers useful insights into the understanding of structural and electrical relationship between a-C and graphene.

  10. Erosion behavior of soft, amorphous deuterated carbon films by heat treatment in air and under vacuum

    International Nuclear Information System (INIS)

    Maruyama, K.

    1999-01-01

    The erosion of soft a-C:D films by heat treatment in air and under vacuum is studied by ion-beam analysis. When the films are heated in air above 500 K, the film thickness and the areal densities of C and especially D decrease, and oxygen is incorporated in the films. The initial atomic loss rates of carbon and deuterium from the films are 2.6 x 10 17 C atoms cm -2 h -1 and 4.8 x 10 17 D atoms cm -2 h -1 at 550 K. However, after D depletion the films show a resistivity against further erosion due to annealing in air. When the films are heated under vacuum erosion starts at about 600 K and all components including D decrease proportionally to the film thickness. Thermal desorption spectroscopy of the films reveals the evolution of C x D y type hydrocarbons. Infrared analysis shows that the incorporated oxygen is chemically bonded to carbon. The thermally-activated decomposition of the soft a-C:D films is compared to that of hard a-C:D films and a reaction scheme is suggested. (orig.)

  11. Passive film growth on carbon steel and its nanoscale features at various passivating potentials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Cheng, Y. Frank, E-mail: fcheng@ucalgary.ca

    2017-02-28

    Highlights: • Imaged the topography of passivated steel at various film-forming potentials. • Characterized the nanoscale features of passive films. • Determined the composition of passive films formed at various potentials. - Abstract: In this work, the passivation and topographic sub-structure of passive films on a carbon steel in a carbonate/bicarbonate solution was characterized by electrochemical measurements, atomic force microscopy and X-ray photoelectron spectroscopy. When passivating at a potential near the active-passive transition, the film contains the mixture of Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3} and FeOOH, with numerous nanoscale features. As the film-forming potential shifts positively, the passive film becomes more compact and the nanoscale features disappear. When the film is formed at a passive potential where the oxygen evolution is enabled, the content of FeOOH in the film increases, resulting in an amorphous topography and reduced corrosion resistance.

  12. Preparation of mesoporous carbon nitride structure by the dealloying of Ni/a-CN nanocomposite films

    Science.gov (United States)

    Zhou, Han; Shen, Yongqing; Huang, Jie; Liao, Bin; Wu, Xianying; Zhang, Xu

    2018-05-01

    The preparation of mesoporous carbon nitride (p-CN) structure by the selective dealloying process of Ni/a-CN nanocomposite films is investigated. The composition and structure of the Ni/a-CN nanocomposite films and porous carbon nitride (p-CN) films are determined by scan electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Phase separated structure including nickel carbide phase and the surrounding amorphous carbon nitride (a-CN) matrix are detected for the as-deposited films. Though the bulk diffusion is introduced in the film during the annealing process, the grain sizes for the post-annealed films are around 10 nm and change little comparing with the ones of the as-deposited films, which is associated with the thermostability of the CN surrounding in the film. The p-CN skeleton with its pore size around 12.5 nm is formed by etching the post-annealed films, indicative of the stability of the phase separated structure during the annealing process.

  13. Characterization of amorphous silicon films by Rutherford backscattering spectrometry. [1. 5-MeV Ho/sup +/

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, K; Imura, T; Iwami, M; Hiraki, A [Osaka Univ., Suita (Japan). Dept. of Electrical Engineering; Satou, M [Government Industrial Research Inst., Osaka, Ikeda (Japan); Fujimoto, F [Tokyo Univ. (Japan). Coll. of General Education; Hamakawa, Y [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science; Minomura, S [Tokyo Univ. (Japan). Inst. for Solid State Physics; Tanaka, K [Electrotechnical Lab., Tanashi, Tokyo (Japan)

    1980-01-01

    Rutherford backscattering spectrometry (RBS) was applied to the characterization of amorphous silicon films prepared by glow discharge in silane, tetrode- and diode-sputterings of silicon target in ambient argon or hydrogen diluted by argon. This method was able to detect at least 5 at.% hydrogen atoms in amorphous silicon through the change of stopping power. Hydrogen content in films made by glow discharge at the substrate temperature 25/sup 0/C to 300/sup 0/C and at 2 torr of silane gas varied from 50% to 20%. A strong trend was found for oxygen to dissolve into films: Films produced by diode sputtering in argon gas with higher pressure than 3 x 10/sup -2/ torr absorbed oxygen. The potential and fitness of the RBS method for the characterization of amorphous silicon films are emphasized and demonstrated.

  14. Short-range order parameters in amorphous YBaS4X7(X-S, SE, TE) films

    International Nuclear Information System (INIS)

    Hajiyev, E.S.

    2005-01-01

    Full text : Electron scattering intensity curves from amorphous YbAs 4 X 7 (X-S, SE, TE) films have ben obtained by the transmission electron diffraction (TED) method with rotation sector before screen up. The energy of electrons was 100 keV. Amorphous samples were crystallized and the composition of the products were measured by TED. The atomic radial distribution function has been calculated by the Fourier synthesis of intensities in the TED of amorphous YbAs 4 X 7 (X-S, SE, TE) films. The interatomic average distances of As - S (Se, Te) and As-Yb + 2 and partial coordination numbers have been estimated in these thilms. Based on these numbers, chemical orders in these films differ. This difference is due to differing topological order in the amorphous YbAs 4 X 7 (X-S, SE, TE) films

  15. Possibility for hole doping into amorphous InGaZnO4 films prepared by RF sputtering

    International Nuclear Information System (INIS)

    Kobayashi, Kenkichiro; Kohno, Yoshiumi; Tomita, Yasumasa; Maeda, Yasuhisa; Matsushima, Shigenori

    2011-01-01

    Amorphous InGaZnO 4 (IGZO) films codoped with Al and N atoms were prepared by sputtering of targets consisting of IGZO and AlN powders in Ar + O 2 atmospheres. No hole-conductivity is seen in films deposited at 2 x 10 -3 Torr, whereas hole-conductivity is found in films deposited at 2 x 10 -2 Torr at radio frequency powers of 60-80 W in 0.3-0.6% O 2 atmospheres. The amorphous p-type IGZO film has the resistivity of 210 Wcm, hole-density of 7.5 x 10 17 cm -3 , and mobility of 0.4 cm 2 /Vs. The rectification characteristic is obtained for a device constructed from Au, amorphous p-type IGZO, and amorphous n-type IGZO. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    Manis-Levy, Hadar; Mintz, Moshe H.; Livneh, Tsachi; Zukerman Ido; Raveh, Avi

    2014-01-01

    The effect of radio-frequency (RF) or low-frequency (LF) bias voltage on the formation of amorphous hydrogenated carbon (a-C:H) films was studied on silicon substrates with a low methane (CH 4 ) concentration (2–10 vol.%) in CH 4 +Ar mixtures. The bias substrate was applied either by RF (13.56 MHz) or by LF (150 kHz) power supply. The highest hardness values (∼18–22 GPa) with lower hydrogen content in the films (∼20 at.%) deposited at 10 vol.% CH 4 , was achieved by using the RF bias. However, the films deposited using the LF bias, under similar RF plasma generation power and CH 4 concentration (50 W and 10 vol.%, respectively), displayed lower hardness (∼6–12 GPa) with high hydrogen content (∼40 at.%). The structures analyzed by Fourier Transform Infrared (FTIR) and Raman scattering measurements provide an indication of trans-polyacetylene structure formation. However, its excessive formation in the films deposited by the LF bias method is consistent with its higher bonded hydrogen concentration and low level of hardness, as compared to the film prepared by the RF bias method. It was found that the effect of RF bias on the film structure and properties is stronger than the effect of the low-frequency (LF) bias under identical radio-frequency (RF) powered electrode and identical PECVD (plasma enhanced chemical vapor deposition) system configuration. (plasma technology)

  17. Stabilization of iron and molybdenum amorphous state with interstitials under high rates of cooling

    International Nuclear Information System (INIS)

    Barmin, Yu.V.; Vavilova, V.V.; Verevkin, A.G.; Gertsen, A.T.; Kovneristyj, Yu.K.; Kotyurgin, E.A.; Mirkin, B.V.; Palij, N.A.

    1993-01-01

    Amorphous solidification of iron and molybdenum is investigated in thin films and on surface laser irradiated on air at 10 12 and 10 8 /Ks cooling rates correspondingly. Amorphous solidification occurs during ion plasma spraying in thin films of 50 nm at saturation of carbon and oxygen atoms in the ratio of C:0=2.3, but amorphous state is absent at room temperature. Metastable fcc phase, among bcc, is formed by crystallization

  18. Resistance switching at the nanometre scale in amorphous carbon

    International Nuclear Information System (INIS)

    Sebastian, Abu; Rossel, Christophe; Pozidis, Haralampos; Eleftheriou, Evangelos; Pauza, Andrew; Shelby, Robert M; RodrIguez, Arantxa Fraile

    2011-01-01

    The electrical transport and resistance switching mechanism in amorphous carbon (a-C) is investigated at the nanoscale. The electrical conduction in a-C thin films is shown to be captured well by a Poole-Frenkel transport model that involves nonisolated traps. Moreover, at high electric fields a field-induced threshold switching phenomenon is observed. The following resistance change is attributed to Joule heating and subsequent localized thermal annealing. We demonstrate that the mechanism is mostly due to clustering of the existing sp 2 sites within the sp 3 matrix. The electrical conduction behaviour, field-induced switching and Joule-heating-induced rearrangement of atomic order resulting in a resistance change are all reminiscent of conventional phase-change memory materials. This suggests the potential of a-C as a similar nonvolatile memory candidate material.

  19. Photoconductivity studies on amorphous and crystalline TiO{sub 2} films doped with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Valverde-Aguilar, G.; Garcia-Macedo, J.A. [Universidad Nacional Autonoma de Mexico, Departamento de Estado Solido, Instituto de Fisica, Mexico D.F. (Mexico); Renteria-Tapia, V. [Universidad de Guadalajara, Centro Universitario de los Valles, Departamento de Ciencias Naturales y Exactas, Ameca, Jalisco (Mexico); Aguilar-Franco, M. [Universidad Nacional Autonoma de Mexico, Departamento de Fisica Quimica, Instituto de Fisica, Mexico D.F. (Mexico)

    2011-06-15

    In this work, amorphous and crystalline TiO{sub 2} films were synthesized by the sol-gel process at room temperature. The TiO{sub 2} films were doped with gold nanoparticles. The films were spin-coated on glass wafers. The crystalline samples were annealed at 100 C for 30 minutes and sintered at 520 C for 2 h. All films were characterized using X-ray diffraction, transmission electronic microscopy and UV-Vis absorption spectroscopy. Two crystalline phases, anatase and rutile, were formed in the matrix TiO{sub 2} and TiO{sub 2}/Au. An absorption peak was located at 570 nm (amorphous) and 645 nm (anatase). Photoconductivity studies were performed on these films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Crystalline TiO{sub 2}/Au films are more photoconductive than the amorphous ones. (orig.)

  20. Microwave plasma chemical synthesis of nanocrystalline carbon film structures and study their properties

    Science.gov (United States)

    Bushuev, N.; Yafarov, R.; Timoshenkov, V.; Orlov, S.; Starykh, D.

    2015-08-01

    The self-organization effect of diamond nanocrystals in polymer-graphite and carbon films is detected. The carbon materials deposition was carried from ethanol vapors out at low pressure using a highly non-equilibrium microwave plasma. Deposition processes of carbon film structures (diamond, graphite, graphene) is defined. Deposition processes of nanocrystalline structures containing diamond and graphite phases in different volume ratios is identified. The solid film was obtained under different conditions of microwave plasma chemical synthesis. We investigated the electrical properties of the nanocrystalline carbon films and identified it's from various factors. Influence of diamond-graphite film deposition mode in non-equilibrium microwave plasma at low pressure on emission characteristics was established. This effect is justified using the cluster model of the structure of amorphous carbon. It was shown that the reduction of bound hydrogen in carbon structures leads to a decrease in the threshold electric field of emission from 20-30 V/m to 5 V/m. Reducing the operating voltage field emission can improve mechanical stability of the synthesized film diamond-graphite emitters. Current density emission at least 20 A/cm2 was obtained. Nanocrystalline carbon film materials can be used to create a variety of functional elements in micro- and nanoelectronics and photonics such as cold electron source for emission in vacuum devices, photonic devices, cathodoluminescent flat display, highly efficient white light sources. The obtained graphene carbon net structure (with a net size about 6 μm) may be used for the manufacture of large-area transparent electrode for solar cells and cathodoluminescent light sources

  1. Chronological change of electrical resistance in GeCu2Te3 amorphous film induced by surface oxidation

    International Nuclear Information System (INIS)

    Saito, Yuta; Shindo, Satoshi; Sutou, Yuji; Koike, Junichi

    2014-01-01

    Unusual chronological electrical resistance change behavior was investigated for amorphous GeCu 2 Te 3 phase change material. More than a 1 order decrease of electrical resistance was observed in the air even at room temperature. The resistance of the amorphous film gradually increased with increasing temperature and then showed a drop upon crystallization. Such unusual behavior was attributed to the oxidation of the amorphous GeCu 2 Te 3 film. From the compositional depth profile measurement, the GeCu 2 Te 3 film without any capping layer was oxidized in air at room temperature and the formed oxide was mainly composed of germanium oxide. Consequently, a highly-conductive Cu-rich layer was formed in the vicinity of the surface of the film, which reduced the total resistance of the film. The present results could provide insight into the chronological change of electrical resistance in amorphous chalcogenide materials, indicating that not only relaxation of the amorphous, but also a large atomic diffusion contributes to the chronological resistance change. (paper)

  2. Structure and gas-barrier properties of amorphous hydrogenated carbon films deposited on inner walls of cylindrical polyethylene terephthalate by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Jing; Gong Chunzhi; Tian Xiubo; Yang Shiqin; Fu, Ricky K.Y.; Chu, Paul K.

    2009-01-01

    The influence of radio-frequency (RF) power on the structure and gas permeation through amorphous hydrogenated carbon films deposited on cylindrical polyethylene terephthalate (PET) samples is investigated. The results show that a higher radio-frequency power leads to a smaller sp 3 /sp 2 value but produces fewer defects with smaller size. The permeability of PET samples decreases significantly after a-C:H deposition and the RF only exerts a small influence. However, the coating uniformity, color, and wettability of the surface are affected by the RF power. A higher RF power results in to better uniformity and it may be attributed to the combination of the high-density plasma and sample heating.

  3. Hydrothermal crystallization of amorphous titania films deposited using low temperature atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.R.G. [Institute of Materials Engineering, ANSTO, PMB 1, Menai, NSW 2234 (Australia)], E-mail: drm@ansto.gov.au; Triani, G.; Zhang, Z. [Institute of Materials Engineering, ANSTO, PMB 1, Menai, NSW 2234 (Australia)

    2008-10-01

    A two stage process (atomic layer deposition, followed by hydrothermal treatment) for producing crystalline titania thin films at temperatures compatible with polymeric substrates (< 130 deg. C) has been assessed. Titania thin films were deposited at 80 deg. C using atomic layer deposition. They were extremely flat, uniform and almost entirely amorphous. They also contained relatively high levels of residual Cl from the precursor. After hydrothermal treatment at 120 deg. C for 1 day, > 50% of the film had crystallized. Crystallization was complete after 10 days of hydrothermal treatment. Crystallization of the film resulted in the formation of coarse grained anatase. Residual Cl was completely expelled from the film upon crystallization. As a result of the amorphous to crystalline transformation voids formed at the crystallization front. Inward and lateral crystal growth resulted in voids being localized to the film/substrate interface and crystallite perimeters resulting in pinholing. Both these phenomena resulted in films with poor adhesion and film integrity was severely compromised.

  4. Amorphous Hafnium-Indium-Zinc Oxide Semiconductor Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (α-HfIZO thin film transistors (TFTs. Co-sputtering-processed α-HfIZO thin films have shown an amorphous phase in nature. We could modulate the In, Hf, and Zn components by changing the co-sputtering power. Additionally, the chemical composition of α-HfIZO had a significant effect on reliability, hysteresis, field-effect mobility (μFE, carrier concentration, and subthreshold swing (S of the device. Our results indicated that we could successfully and easily fabricate α-HfIZO TFTs with excellent performance by the co-sputtering process. Co-sputtering-processed α-HfIZO TFTs were fabricated with an on/off current ratio of ~106, higher mobility, and a subthreshold slope as steep as 0.55 V/dec.

  5. Carbon and nitrogen co-doping self-assembled MoS{sub 2} multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoqin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Xu, Jiao; Chai, Liqiang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); He, Tengfei [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Yu, Fucheng [School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Wang, Peng, E-mail: pengwang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-01

    Highlights: • Mo–S–C–N composite films were synthesized by using reactive magnetron sputtering. • A self-assembled multilayer structure with periodicity in the nanometer scale was formed in the composite film. • The hardness of Mo–S–C–N film deposited at optimized parameter reaches up to 9.76 GPa. • The wear rate of deposited Mo–S–C–N film both in vacuum and ambient atmosphere decreases dramatically. - Abstract: Mo–S–C–N composite films were prepared using reactive magnetron sputtering of graphite and MoS{sub 2} targets in argon and nitrogen atmospheres. The effects of carbon/nitrogen co-doping and carbon concentration on the composition, microstructure, mechanical and tribological properties of deposited films have been investigated by various characterization techniques. The results show that the deposited films comprise MoS{sub 2} nanocrystalline and amorphous carbon, and the incorporating nitrogen forms Mo-N and C–N chemical bonds. Increasing carbon concentration leads to the increase of sp{sup 2} carbon fraction in the films. Furthermore, the high-resolution transmission electron microscopy reveals that a self-assembled multilayer structure with periodicity in the nanometer scale is formed in the Mo–S–C–N film. Benefiting from the composite and self-assembled multilayer structures, the hardness of Mo–S–C–N film deposited at optimized parameter reaches up to 9.76 GPa, and corresponding friction experiment indicates that this composite films display low friction coefficient and high wear resistance both in vacuum and ambient air conditions.

  6. Laser Raman microprobe spectroscopy as a diagnostic for the characterisation of diamond and diamond like carbon (DLC) thin films

    International Nuclear Information System (INIS)

    Johnston, C.

    1990-10-01

    Invariably when manufacturing an artificial diamond film a mixture of carbon is deposited - tetragonally bonded (diamond), trigonally bonded (graphite) and other allotropic crystalline forms and amorphous carbons. This imposes a need for careful analysis to determine exactly what carbon types constitute the films. Raman spectroscopy is particularly sensitive to crystal and atomic structure and has a number of advantages which make it one of the most useful techniques for interrogating diamond and DLC thin films. Although Raman spectroscopy alone cannot fully characterise the film, it can give more information than simply what particular form of carbon or other impurities are present in the film. It can be used to determine the ratio of sp 2 to sp 3 bonding within the film, and to some extent the crystallite or domain size and the internal stress of the film. The use of laser Raman microprobe spectroscopy as a diagnostic tool in the analysis of diamond and DLC thin films is demonstrated for a variety of carbon films on various substrates and the characterisation of these films is discussed. (author)

  7. Amorphous Silicon-Germanium Films with Embedded Nanocrystals for Thermal Detectors with Very High Sensitivity

    Directory of Open Access Journals (Sweden)

    Cesar Calleja

    2016-01-01

    Full Text Available We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nanocrystals in a plasma enhanced chemical vapor deposition (PECVD reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR, which is a signature of the sensitivity in thermal detectors (microbolometers. Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9% K−1. Our results show that amorphous silicon-germanium films with embedded nanocrystals can be used as thermosensitive films in high performance infrared focal plane arrays (IRFPAs used in commercial thermal cameras.

  8. Non-localized deformation in Cu−Zr multi-layer amorphous films under tension

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, C. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, H. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Cao, Q.P.; Wang, X.D. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Hu, J.W. [Hangzhou Workers Amateur University, Hangzhou 310027 (China); Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-09-05

    In metallic glasses (MGs), plastic deformation at room temperature is dominated by highly localized shear bands. Here we report the non-localized deformation under tension in Cu−Zr multi-layer MGs with a pure amorphous structure using large-scale atomistic simulations. It is demonstrated that amorphous samples with high layer numbers, composed of Cu{sub 64}Zr{sub 36} and Cu{sub 40}Zr{sub 60}, or Cu{sub 64}Zr{sub 36} and Cu{sub 50}Zr{sub 50}, present obviously non-localized deformation behavior. We reveal that the deformation behavior of the multi-layer-structured MG films is related but not determined by the deformation behavior of the composed individual layers. The criterion for the deformation mode change for MGs with a pure amorphous structure, in generally, was suggested, i.e., the competition between the elastic-energy density stored and the energy density needed for forming one mature shear band in MGs. Our results provide a promising strategy for designing tensile ductile MGs with a pure amorphous structure at room temperature. - Highlights: • Tensile deformation behaviors in multi-layer MG films. • Films with high layer numbers confirmed with a non-localized deformation behavior. • The deformation mode is reasonably controlled by whether U{sub p} larger than U{sub SB.}.

  9. Fabrication of Hydrogenated Amorphous Germanium Thin Layer Film and ItsCharacterization

    International Nuclear Information System (INIS)

    Agus-Santoso; Lely-Susita RM; Tjipto-Sujitno

    2000-01-01

    Fabrication of hydrogenated amorphous Germanium thin film by vacuumevaporation method and then deposition with hydrogen atom by glow dischargeplasma radio frequency has been done. This germanium amorphous (a-Ge) thinfilm involves a lot of dangling bonds in the network due to the irregularityof the atomic structures and it will decrease is conductivity. To improve theband properties of (a-Ge) thin film layer a hydrogenated plasma isintroduced. Process of introducing of the hydrogen into the a-Ge film is meanto reduce the dangling bonds so that the best electric conductivity of a Ge:Hthin film will obtained. To identify the hydrogen atom in the sample acharacterization using infrared spectrometer has been done, as well as themeasurement of conductivity of the samples. From the characterization usinginfrared spectroscopy the existence of hydrogen atom was found at absorptionpeak with wave number 1637.5 cm -1 , while the optimum conductivity of thesample 1634.86 Ω -1 cm -1 was achieved at 343 o K. (author)

  10. From empirical to ab initio: transferable potentials in the atomistic simulation of amorphous carbons

    International Nuclear Information System (INIS)

    Marks, N.A.; Goringe, C.M.; McKenzie, D.R.; McCulloch, D.G.; Royal Melbourne Institute of Technology University, Melbourne, VIC

    2000-01-01

    Full text: Silicon is often described as the prototype covalent material, and when it comes to developing atomistic models this situation is well described by the sentiment that 'everything works for silicon'. The same cannot be said for carbon though, where the interaction potential has always proved problematical, be it with empirical, tight-binding or ab initio methods. Thus far the most decisive contributions to understanding amorphous carbon networks have come from ab initio simulations using the Car-Parrinello method, where the fully quantum treatment of the valence electrons has provided unexpected insight into the local structure. However such first principles calculations are restricted spatially and temporally to systems with approximately 100 atoms and times of order one picosecond. There is therefore demand for less expensive techniques capable of resolving important questions whose solution can only to found with larger simulations running for longer times. In the case of tetrahedral amorphous carbon, such issues include the release of compressive stress through annealing, the origin of graphitic surface layers and the nature of the film growth process and thermal spike. Against this background tight-binding molecular dynamics has emerged as a popular alternative to first principles methods, and our group has an ongoing program to understand film growth using one of the efficient variants of tight-binding. Another direction of research is a new empirical potential based on the Environment Dependent Interaction Potential (EDIP) recently developed for silicon. The EDIP approach represents a promising direction for empirical potentials through its use of ab initio data to motivate the functional form as well as the more conventional parametrisation. By inverting ab initio cohesive energy curves the authors of EDIP arrived at a pair potential expression which reduces to the well-known Stillinger-Weber form at integer coordination, while providing

  11. Constitution, microstructure, mechanical properties, and performance of magnetron-sputtered carbon films with additions of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C. [Forschungszentrum Karlsruhe GmbH, Institut fuer Materialforschung I, Postfach 3640, 76021 Karlsruhe (Germany); Leiste, H.; Stueber, M.; Ulrich, S.; Holleck, H.

    2003-11-01

    Amorphous carbon films with additions of silicon were deposited by non-reactive magnetron sputtering on WC-Co hard metal and on silicon substrates. The targets were hot-pressed, homogenous mixtures of graphite and silicon carbide powder. Additional argon ion bombardment of the growing film was applied by a substrate bias varied between 0V and -800 V. The deposited amorphous carbon films with two different silicon contents (5 at.% and 23 at.% respectively) were characterised with respect to their microstructure, density, thickness, residual stress, Vickers hardness, Young's modulus, critical load of failure, friction coefficient, and wear behaviour. The residual stress of the carbon films could be remarkably lowered by silicon additions (23 at.%). The hardness reached high values (2200 HV0.05) and the friction coefficient for unlubricated sliding friction against a steel (1.3505) counterpart was as low as 0.06. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Amorphe Kohlenstoffschichten mit Zusaetzen von Silizium wurden nichtreaktiv durch Magnetronzerstaeubung auf Substraten aus WC-Co Hartmetall und Silizium abgeschieden. Die neuartigen Targets wurden durch Heisspressen einer homogenen Mischung aus Graphit- und Siliziumcarbidpulver hergestellt. Durch Anlegen einer elektrischen Substratvorspannung von 0 V bis -800 V wurden die aufwachsenden Schichten zusaetzlich mit Argonionen unterschiedlicher Energie beschossen. Die abgeschiedenen amorphen Kohlenstoffschichten mit Zusaetzen von Silizium (5 at% bzw. 23 at%) wurden hinsichtlich Struktur, Dichte, Dicke, Eigenspannungen, Vickershaerte, reduziertem Elastizitaetsmodul, kritischer Last des Versagens im Ritztest, Reibwert und Verschleissverhalten untersucht. Fuer Schichten mit hohem Siliziumgehalt (23 at%) erfolgte eine erhebliche Reduzierung der Eigenspannung, die Haerte wurde bei sehr hohen Werten stabilisiert (2200 HV0,05) und der Reibungskoeffizient fuer ungeschmierte Gleitreibung gegen Stahl (1

  12. Structure of the short-range atomic order of WO3 amorphous films

    International Nuclear Information System (INIS)

    Olevskij, S.S.; Sergeev, M.S.; Tolstikhina, A.L.; Avilov, A.S.; Shkornyakov, S.M.; Semiletov, S.A.

    1984-01-01

    To study the causes of electrochromism manifestation in thin tungsten oxide films, the structure of WO 3 amorphous films has been investigated. The films were obtained by three different methods: by W(CO) 6 tungsten carbonyl pyrolysis, by high-frequency ion-plasma sputtering of a target prepared by WO 3 powder sintering, and by WO 3 powder thermal evaporation. Monocrystalline wafers of silicon and sodium chloride were used as substrates. The structure of short-range order in WO 3 amorphous films varies versus, the method of preparation in compliance with the type of polyhedral elements, (WO 6 , WO 5 ) and with the character of their packing (contacts via edges or vertices). Manifestation of electroc ro mism in WO 3 films prepared by varions methods and having different structure of short-range order is supposed to be realized through various mechanisms. One cannot exclude a potential simultaneous effect of the two coloration mechanisms

  13. Structural and electrical properties of amorphous carbon–sulfur ...

    Indian Academy of Sciences (India)

    Unknown

    Amorphous carbon films; pyrolysis; scanning electron microscopy; electrical properties; thermal analysis. 1. Introduction ... phorus compounds may have useful mechanical or elec- .... SEM images of a-C:S samples with different S/P values.

  14. Deposition of carbon nitride films by vacuum ion diode with explosive emission

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A.; Perry, A.J. [New Jersey Inst. of Tech., Newark (United States); Elkind, A.; Kalmukov, A.

    1997-10-31

    Carbon nitride films were synthesized using a novel technique based on the pulsed high voltage ion/electron diode with explosive emission (pulsed voltage 200-700 kV pulsed current 100-500 Acm{sup -2} (ions) 150-2000 Acm{sup -2} (electrons)). The method and its novel features are discussed as well as its application to the formation of the crystalline {beta}-phase in C{sub 3}N{sub 4} films. Mixed elemental nitrogen and carbon films are formed by sequential deposition then subjected to ion and/or electron beam mixing to synthesize the C{sub 3}N{sub 4} structure. The experimental conditions used for this pulsed process are described and the efficiency of the method for nitrogen incorporation is demonstrated. The results presented indicate that {beta}-C{sub 3}N{sub 4} crystallites are formed in an amorphous matrix. (orig.) 20 refs.

  15. Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability.

    Science.gov (United States)

    Peltola, Emilia; Wester, Niklas; Holt, Katherine B; Johansson, Leena-Sisko; Koskinen, Jari; Myllymäki, Vesa; Laurila, Tomi

    2017-02-15

    We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups ND andante or amine ND amine , carboxyl ND vox or hydroxyl groups ND H and drop-casted or spray-coated onto substrate. By utilizing these novel structures we show that (i) the detection limit for dopamine can be improved by two orders of magnitude [from 10µM to 50nM] in comparison to ta-C thin film electrodes and (ii) the coating method significantly affects electrochemical properties of NDs and (iii) the ND coatings selectively promote cell viability. ND andante and ND H showed most promising electrochemical properties. The viability of human mesenchymal stem cells and osteoblastic SaOS-2 cells was increased on all ND surfaces, whereas the viability of mouse neural stem cells and rat neuroblastic cells was improved on ND andante and ND H and reduced on ND amine and ND vox. The viability of C6 cells remained unchanged, indicating that these surfaces will not cause excess gliosis. In summary, we demonstrated here that by using functionalized NDs on ta-C thin films we can significantly improve sensitivity towards dopamine as well as selectively promote cell viability. Thus, these novel carbon nanostructures provide an interesting concept for development of various in vivo targeted sensor solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Crystalline and amorphous phases in carbon nitride films produced by intense high-pressure plasma

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Orlov, A.V.; Bursill, L.A.; JuLin, P.; Nugent, K.W.; Chon, J.W.; Prawer, S.

    1997-01-01

    Carbon-nitride films are prepared using a high-intensity pulsed plasma deposition technique. A wide range of nitrogen pressure and discharge intensity are used to investigate their effect on the morphology, nitrogen content, structure, bonding, phase composition and mechanical characteristics of the CN films deposited. Increasing the nitrogen pressure from 0.1 atm to 10 atm results in an increase of nitrogen incorporation into CN films to maximum of 45 at %. Under the high-energy density deposition conditions which involve ablation of the quartz substrate the CN films are found to incorporate in excess of 60 at %N. Raman spectra of these films contain sharp peaks characteristic of a distinct crystalline CN phase. TEM diffraction patterns for the films deposited below 1 atm unambiguously show the presence of micron-sized crystals displaying a cubic symmetry. (authors)

  17. Demonstration of thin film pair distribution function analysis (tfPDF for the study of local structure in amorphous and crystalline thin films

    Directory of Open Access Journals (Sweden)

    Kirsten M. Ø. Jensen

    2015-09-01

    Full Text Available By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF analysis have been obtained from thin films (tf, suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The `tfPDF' method is illustrated through studies of as-deposited (i.e. amorphous and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.

  18. Properties of amorphous rare earth-transition metal thin films relevant to thermomagnetic recording

    International Nuclear Information System (INIS)

    Biesterbos, J.W.M.

    1979-01-01

    Properties of amorphous RE-(Fe, Co) thin films relevant to thermomagnetic recording are reviewed. Attention is paid to the writing-, reading- and erasure process. The advantages and disadvantages of the amorphous materials are considered. Experimental data on the writing process are given

  19. Properties of Amorphous Carbon Microspheres Synthesised by Palm Oil-CVD Method

    International Nuclear Information System (INIS)

    Zobir, S. A. M.; Zainal, Z.; Sarijo, S. H.; Rusop, M.

    2011-01-01

    Amorphous carbon microspheres were synthesized using a dual-furnace chemical vapour deposition method at 800-1000 deg. C. Palm oil-based cooking oil (PO) and zinc nitrate solution was used as a carbon source and catalyst precursor, respectively with PO to zinc nitrate ratio of 30:20 (v/v) and a silicon wafer as the sample target. Regular microsphere shape of the amorphous carbons was obtained and a uniform microsphere structure improved as the carbonization temperature increased from 800 to 1000 deg. C. At 800 deg. C, no regular microspheres were formed but more uniform structure is observed at 900 deg. C. Generally the microspheres size is uniform when the heating temperature was increased to 1000 deg. C, but the presence of mixed sizes can still be observed. X-ray diffraction patterns show the presence of oxide of carbon, ZnO phase together with Zn oxalate phase. Raman spectra show two broad peaks characteristic to amorphous carbon at 1344 and 1582 cm -1 for the D and G bands, respectively. These bands become more prominent as the preparation temperature increased from 800 to 1000 deg. C. This is in agreement with the formation of amorphous carbon microspheres as shown by the FESEM study and other Zn-based phases as a result of the oxidation process of the palm oil as the carbon source and the zinc nitrate as the catalyst precursor, respectively.

  20. Apparatus and process for deposition of hard carbon films

    Science.gov (United States)

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-03

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  1. Direct-current substrate bias effects on amorphous silicon sputter-deposited films for thin film transistor fabrication

    International Nuclear Information System (INIS)

    Jun, Seung-Ik; Rack, Philip D.; McKnight, Timothy E.; Melechko, Anatoli V.; Simpson, Michael L.

    2005-01-01

    The effect that direct current (dc) substrate bias has on radio frequency-sputter-deposited amorphous silicon (a-Si) films has been investigated. The substrate bias produces a denser a-Si film with fewer defects compared to unbiased films. The reduced number of defects results in a higher resistivity because defect-mediated conduction paths are reduced. Thin film transistors (TFTs) that were completely sputter deposited were fabricated and characterized. The TFT with the biased a-Si film showed lower leakage (off-state) current, higher on/off current ratio, and higher transconductance (field effect mobility) than the TFT with the unbiased a-Si film

  2. Ga–Ge–Te amorphous thin films fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Němec, P.; Nazabal, V.; Dussauze, M.; Ma, H.-L.; Bouyrie, Y.; Zhang, X.-H.

    2013-01-01

    UV pulsed laser deposition was employed for the fabrication of amorphous Ga–Ge–Te thin films. The local structure of the bulk glasses as well as corresponding thin films was studied using Raman scattering spectroscopy; the main structural motifs were found to be [GeTe 4 ], eventually [GaTe 4 ] corner-sharing tetrahedra and disordered Te chains. Optical functions of the films (refractive index, extinction coefficient) were characterized by variable angle spectroscopic ellipsometry. Photostability experiments showed all Ga–Ge–Te laser deposited films to be stable against 1550 nm laser irradiation in an as-deposited state. In an annealed state, the most photostable composition seems to be Ga 10 Ge 15 Te 75 . This particular composition was further studied from the point of view of thermal stability and stability against ageing in as-deposited state. - Highlights: ► Pulsed laser deposition was used for fabrication of amorphous Ga–Ge–Te thin films. ► GeTe 4 , eventually GaTe 4 tetrahedra and disordered Te chains form the film structure. ► Optical functions of Ge–Ga–Te films were characterized by spectroscopic ellipsometry. ► All as-deposited Ga–Ge–Te thin films are stable against 1550 nm irradiation. ► In annealed state, the most photostable composition seems to be Ga 10 Ge 15 Te 75

  3. Optical and electrical properties of polycrystalline and amorphous Al-Ti thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Borca, C. N.; Rechendorff, Kristian

    2016-01-01

    The structural, optical, and transport properties of sputter-deposited Al-Ti thin films have been investigated as a function of Ti alloying with a concentration ranging from 2% to 46%. The optical reflectivity of Al-Ti films at visible and near-infrared wavelengths decreases with increasing Ti...... content. Xray absorption fine structure measurements reveal that the atomic ordering around Ti atoms increases with increasing Ti content up to 20% and then decreases as a result of a transition from a polycrystalline to amorphous structure. The transport properties of the Al-Ti films are influenced...... by electron scattering at the grain boundaries in the case of polycrystalline films and static defects, such as antisite effects and vacancies in the case of the amorphous alloys. The combination of Ti having a real refractive index (n) comparable with the extinction coefficient (k) and Al with n much smaller...

  4. Highly textured Nd-Fe-B films grown on amorphous substrates

    International Nuclear Information System (INIS)

    Hannemann, Ullrich; Melcher, Steffen; Faehler, Sebastian

    2004-01-01

    Thin films with an almost perfect alignment of Nd 2 Fe 14 B grains with the c-axis (easy magnetisation direction) perpendicular to the film plane were achieved on amorphous SiN substrates using pulsed laser deposition. The texture arises due to epitaxial growth on a Ta(1 1 0) buffer deposited prior to the Nd-Fe-B film. Out-of-plane coercivity of 1.3 T and remanence to saturation magnetisation ratio around 0.95 are obtained for Nd-rich films. An analysis of the coercivity mechanism shows that the switching mechanism is nucleation dominated, independent of the Nd content

  5. Highly textured Nd-Fe-B films grown on amorphous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, Ullrich E-mail: u.hannemann@ifw-dresden.de; Melcher, Steffen; Faehler, Sebastian

    2004-05-01

    Thin films with an almost perfect alignment of Nd{sub 2}Fe{sub 14}B grains with the c-axis (easy magnetisation direction) perpendicular to the film plane were achieved on amorphous SiN substrates using pulsed laser deposition. The texture arises due to epitaxial growth on a Ta(1 1 0) buffer deposited prior to the Nd-Fe-B film. Out-of-plane coercivity of 1.3 T and remanence to saturation magnetisation ratio around 0.95 are obtained for Nd-rich films. An analysis of the coercivity mechanism shows that the switching mechanism is nucleation dominated, independent of the Nd content.

  6. Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures

    International Nuclear Information System (INIS)

    Cinibulk, M.K.; Kleebe, H.; Schneider, G.A.; Ruehle, M.

    1993-01-01

    High-temperature microstructure of an MgO-hot-pressed Si 3 N 4 and a Yb 2 O 3 + Al 2 O 3 -sintered/annealed Si 3 N 4 were obtained by quenching thin specimens from temperatures between 1,350 and 1,550 C. Quenching materials from 1,350 C produced no observable exchanges in the secondary phases at triple-grain junctions or along grain boundaries. Although quenching from temperatures of ∼1,450 C also showed no significant changes in the general microstructure or morphology of the Si 3 N 4 grains, the amorphous intergranular film thickness increased substantially from an initial ∼1 nm in the slowly cooled material to 1.5--9 nm in the quenched materials. The variability of film thickness in a given material suggests a nonequilibrium state. Specimens quenched from 1,550 C revealed once again thin (1-nm) intergranular films at all high-angle grain boundaries, indicating an equilibrium condition. The changes observed in intergranular-film thickness by high-resolution electron microscopy can be related to the eutectic temperature of the system and to diffusional and viscous processes occurring in the amorphous intergranular film during the high-temperature anneal prior to quenching

  7. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  8. Amorphous Dielectric Thin Films with Extremely Low Mechanical Loss

    Directory of Open Access Journals (Sweden)

    Liu X.

    2015-04-01

    Full Text Available The ubiquitous low-energy excitations are one of the universal phenomena of amorphous solids. These excitations dominate the acoustic, dielectric, and thermal properties of structurally disordered solids. One exception has been a type of hydrogenated amorphous silicon (a-Si:H with 1 at.% H. Using low temperature elastic and thermal measurements of electron-beam evap-orated amorphous silicon (a-Si, we show that TLS can be eliminated in this system as the films become denser and more structurally ordered under certain deposition conditions. Our results demonstrate that TLS are not intrinsic to the glassy state but instead reside in low density regions of the amorphous network. This work obviates the role hydrogen was previously thought to play in removing TLS in a-Si:H and favors an ideal four-fold covalently bonded amorphous structure as the cause for the disappearance of TLS. Our result supports the notion that a-Si can be made a “perfect glass” with “crystal-like” properties, thus offering an encouraging opportunity to use it as a simple crystal dielectric alternative in applications, such as in modern quantum devices where TLS are the source of dissipation, decoherence and 1/f noise.

  9. Amorphous silicon films doped with BF3 and PF5

    International Nuclear Information System (INIS)

    Ortiz, A.; Muhl, S.; Sanchez, A.; Monroy, R.; Pickin, W.

    1984-01-01

    By using gaseous discharge process, thin films of hydrogenated amorphous silicon (a-Si:H) were produced. This process consists of Silane (SiH 4 ) decomposition at low pressure, in a chamber. (A.C.A.S.) [pt

  10. Amorphous Silicon-Germanium Films with Embedded Nano crystals for Thermal Detectors with Very High Sensitivity

    International Nuclear Information System (INIS)

    Calleja, C.; Torres, A.; Rosales-Quintero, P.; Moreno, M.

    2016-01-01

    We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nano crystals in a plasma enhanced chemical vapor deposition (PECVD) reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR), which is a signature of the sensitivity in thermal detectors (micro bolometers). Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9%K -1 ). Our results show that amorphous silicon-germanium films with embedded nano crystals can be used as thermo sensitive films in high performance infrared focal plane arrays (IRFPAs) used in commercial thermal cameras.

  11. Fracture properties of hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Matsuda, Y.; King, S.W.; Bielefeld, J.; Xu, J.; Dauskardt, R.H.

    2012-01-01

    The cohesive fracture properties of hydrogenated amorphous silicon carbide (a-SiC:H) thin films in moist environments are reported. Films with stoichiometric compositions (C/Si ≈ 1) exhibited a decreasing cohesive fracture energy with decreasing film density similar to other silica-based hybrid organic–inorganic films. However, lower density a-SiC:H films with non-stoichiometric compositions (C/Si ≈ 5) exhibited much higher cohesive fracture energy than the films with higher density stoichiometric compositions. One of the non-stoichiometric films exhibited fracture energy (∼9.5 J m −2 ) greater than that of dense silica glasses. The increased fracture energy was due to crack-tip plasticity, as demonstrated by significant pileup formation during nanoindentation and a fracture energy dependence on film thickness. The a-SiC:H films also exhibited a very low sensitivity to moisture-assisted cracking compared with other silica-based hybrid films. A new atomistic fracture model is presented to describe the observed moisture-assisted cracking in terms of the limited Si-O-Si suboxide bond formation that occurs in the films.

  12. Electronic Power System Application of Diamond-Like Carbon Films

    Science.gov (United States)

    Wu, Richard L. C.; Kosai, H.; Fries-Carr, S.; Weimer, J.; Freeman, M.; Schwarze, G. E.

    2003-01-01

    A prototype manufacturing technology for producing high volume efficiency and high energy density diamond-like carbon (DLC) capacitors has been developed. Unique dual ion-beam deposition and web-handling systems have been designed and constructed to deposit high quality DLC films simultaneously on both sides of capacitor grade aluminum foil and aluminum-coated polymer films. An optimized process, using inductively coupled RF ion sources, has been used to synthesize electrically robust DLC films. DLC films are amorphous and highly flexible, making them suitable for the production of wound capacitors. DLC capacitors are reliable and stable over a wide range of AC frequencies from 20 Hz to 1 MHz, and over a temperature range from .500 C to 3000 C. The compact DLC capacitors offer at least a 50% decrease in weight and volume and a greater than 50% increase in temperature handling capability over equal value capacitors built with existing technologies. The DLC capacitors will be suitable for high temperature, high voltage, pulsed power and filter applications.

  13. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    Equer, B.

    1988-01-01

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described [fr

  14. Electron irradiation effects in amorphous antimony thin films obtained by cluster-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, G.; Treilleux, M.; Santos Aires, F.; Cabaud, B.; Melinon, P.; Hoareau, A. (Lyon-1 Univ., 69 - Villeurbanne (France))

    1991-03-01

    In order to understand the differences existing between films obtained with a classical molecular beam deposition (MBD) and the new low-energy cluster beam deposition (LECBD), transmission electron microscopy has been used to characterize the first stages of antimony LECBD. Antimony deposits are discontinuous and amorphous up to 2 nm in thickness. They are formed with isolated amorphous antimony particles surrounded by an amorphous antimony oxide shell. Moreover, under electron beam exposure in the microscope, an amorphous-crystal transformation has been observed in the oxide shell. Electron irradiation induces the formation of a crystallized antimony oxide (Sb{sub 2}O{sub 3}) around the amorphous antimony core. (author).

  15. Magnetic properties of amorphous Tb-Fe thin films with an artificially layered structure

    International Nuclear Information System (INIS)

    Sato, N.

    1986-01-01

    An alternating terbium-iron (Tb-Fe) multilayer structure artificially made in amorphous Tb-Fe thin films gives rise to excellent magnetic properties of large perpendicular uniaxial anisotropy, large saturation magnetization, and large coercivity over a wide range of Tb composition in the films. The films are superior to amorphous Tb-Fe alloy thin films, especially when they are piled up with a monatomic layer of Tb and several atomic layers of Fe in an alternating fashion. Small-angle x-ray diffraction analysis confirmed the layering of monatomic layers of Tb and Fe, where the periodicity of the layers was found to be about 5.9 A. Direct evidence for an artificially layered structure was obtained by transmission electron microscopic and Auger electron spectroscopic observations. Together with magnetic measurements of hysteresis loops and torque curves, it has been concluded that the most important origin of the large magnetic uniaxial anisotropy can be attributed to the Tb-Fe pairs aligned perpendicular to the films

  16. Ultras-stable Physical Vapor Deposited Amorphous Teflon Films with Extreme Fictive Temperature Reduction

    Science.gov (United States)

    McKenna, Gregory; Yoon, Heedong; Koh, Yung; Simon, Sindee

    In the present work, we have produced highly stable amorphous fluoropolymer (Teflon AF® 1600) films to study the calorimetric and relaxation behavior in the deep in the glassy regime. Physical vapor deposition (PVD) was used to produce 110 to 700 nm PVD films with substrate temperature ranging from 0.70 Tg to 0.90 Tg. Fictive temperature (Tf) was measured using Flash DSC with 600 K/s heating and cooling rates. Consistent with prior observations for small molecular weight glasses, large enthalpy overshoots were observed in the stable amorphous Teflon films. The Tf reduction for the stable Teflon films deposited in the vicinity of 0.85 Tg was approximately 70 K compared to the Tgof the rejuvenated system. The relaxation behavior of stable Teflon films was measured using the TTU bubble inflation technique and following Struik's protocol in the temperature range from Tf to Tg. The results show that the relaxation time decreases with increasing aging time implying that devitrification is occurring in this regime.

  17. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes

    Science.gov (United States)

    Coppedè, Nicola; Valitova, Irina; Mahvash, Farzaneh; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Santato, Clara; Martel, Richard; Cicoira, Fabio

    2014-12-01

    The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs.

  18. NO2 sensing properties of amorphous silicon films

    International Nuclear Information System (INIS)

    Georgieva, V; Gadjanova, V; Donkov, N; Stefanov, P; Sendova-Vassileva, M; Grechnikov, A

    2012-01-01

    The sensitivity to NO 2 was studied of amorphous silicon thin films obtained by e-beam evaporation. The process was carried out at an operational-mode vacuum of 1.5x10 -5 Torr at a deposition rate of 170 nm/min. The layer's structure was analyzed by Raman spectroscopy, while its composition was determined by X-ray photoemission spectroscopy (XPS). To estimate their sensitivity to NO 2 , the Si films were deposited on a 16-MHz quartz crystal microbalance (QCM) and the correlation was used between the QCM frequency variation and the mass-loading after exposure to NO 2 in concentrations from 10 ppm to 5000 ppm. A considerable sensitivity of the films was found in the interval 1000 ppm-2500 ppm NO 2 , leading to frequency shifts from 131 Hz to 208 Hz. The results obtained on the films' sorption properties can be applied to the development sensor elements.

  19. Far-infrared reflection-absorption spectroscopy of amorphous and polycrystalline gallium arsenide films

    International Nuclear Information System (INIS)

    Gregory, J.R.

    1992-01-01

    We have reported far-infrared reflection absorption spectra (30-320CM -1 ) at 30 and 310K for nine films of non-stoichiometric GaAs. The FIRRAS measurements were performed using the grazing incidence FIR double-modulation spectroscopy technique first described by DaCosta and Coleman. The films were fabricated by molecular beam deposition on metallized substrates for two As/Ga molecular beam flux ratios. The films were characterized by depth profilometry, IRAS, XRD, and x-ray microprobe analysis. Film thicknesses ranged from 800 to 5800 angstrom and compositions were 45-50% As for a MB flux ratio of 0.29 and 60-70% As for a ratio of 1.12. FIRRAS measurements were made and characterizations performed for as-deposited films and for 5 hour anneals at 473, 573, 673 and 723 degrees C. Vibrational spectra of the crystallized films were interpreted in terms of the exact reflectivity of a thin dielectric film on a conducting substrate, using a classical Lorentzian dielectric function for the response of the film. Resonances appearing in the open-quote forbidden close-quote region between the TO and LO frequencies were modelled with an effective medium approximation and are interpreted as arising from small-scale surface roughness. The behavior of the amorphous film spectra were examined within two models. The effective force constant model describes the variation of the reflection-absorption maxima with measured crystallite size in terms of the effective vibration frequency of 1-D atomic chains having force constants distributed according to the parameters of the crystalline-to-amorphous relaxation length and the crystalline to amorphous force constant ratio. The dielectric function continuum model uses the relaxation of the crystal momentum selection rule to calculate the reflection-absorption spectrum based on a dielectric function in which the oscillator strength is the normalized product of a constant dipole strength and the smoothed vibrational density of states

  20. Memristive effects in oxygenated amorphous carbon nanodevices

    Science.gov (United States)

    Bachmann, T. A.; Koelmans, W. W.; Jonnalagadda, V. P.; Le Gallo, M.; Santini, C. A.; Sebastian, A.; Eleftheriou, E.; Craciun, M. F.; Wright, C. D.

    2018-01-01

    Computing with resistive-switching (memristive) memory devices has shown much recent progress and offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and memory, which limits the performance of conventional computer architectures. Due to their good scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral amorphous carbon or ta-C, typically suffer from a low cycling endurance. A material that has proven to be capable of combining the advantages of elemental carbon-based memories with simple fabrication methods and good endurance performance for binary memory applications is oxygenated amorphous carbon, or a-CO x . Here, we examine the memristive capabilities of nanoscale a-CO x devices, in particular their ability to provide the multilevel and accumulation properties that underpin computing type applications. We show the successful operation of nanoscale a-CO x memory cells for both the storage of multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and simultaneously store the computed result in the self-same a-CO x cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses.

  1. Magnetic and other properties and sputtering behavior of Co-base amorphous alloy films

    International Nuclear Information System (INIS)

    Hayashi, K.; Hayakawa, M.; Ochiai, Y.; Matsuda, H.; Ishikawa, W.; Iwasaki, Y.; Aso, K.

    1987-01-01

    Magnetic and other properties of Co-base amorphous alloy films prepared by sputtering are investigated. A detailed magnetic phase diagram with saturation magnetic flux density, crystallization temperature, and zero-magnetostrictive line on Co-Ta-Zr amorphous alloys were obtained, and the technical knowhow to make a film with well-reproducible characteristics by widely changing the sputtering conditions was related with these physical properties. Especially on alloy sputtering, a phenomenological model for elucidating a composition difference between film and target is presented. After these studies, the film characteristics of B/sub s/ = 12 kG, T/sub x/ = 450 0 C, chemical bondλ/sub s/chemical bond -8 , H/sub c/<10 mOe, and permeabilities of μ(1 MHz) = 7000, μ(100 MHz) = 2000 for the single film of 2 μm in thickness and of μ(1 MHz) = 4000, μ(100 MHz) = 800 for the insulator-sandwiched multilayered film of 10 μm are obtained, and these well-balanced values enable us to apply the materials for high-frequency recording head

  2. Structural, nanomechanical and variable range hopping conduction behavior of nanocrystalline carbon thin films deposited by the ambient environment assisted filtered cathodic jet carbon arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Rawal, Ishpal; Tripathi, R.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Srivastava, A.K. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Kumar, Mahesh [Ultrafast Opto-Electronics and Tetrahertz Photonics Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India)

    2015-04-15

    Highlights: • Nanocrystalline carbon thin films are grown by filtered cathodic jet carbon arc process. • Effect of gaseous environment on the properties of carbon films has been studied. • The structural and nanomechanical properties of carbon thin films have been studied. • The VRH conduction behavior in nanocrystalline carbon thin films has been studied. - Abstract: This paper reports the deposition and characterization of nanocrystalline carbon thin films by filtered cathodic jet carbon arc technique assisted with three different gaseous environments of helium, nitrogen and hydrogen. All the films are nanocrystalline in nature as observed from the high resolution transmission electron microscopic (HRTEM) measurements, which suggests that the nanocrystallites of size ∼10–50 nm are embedded though out the amorphous matrix. X-ray photoelectron spectroscopic studies suggest that the film deposited under the nitrogen gaseous environment has the highest sp{sup 3}/sp{sup 2} ratio accompanied with the highest hardness of ∼18.34 GPa observed from the nanoindentation technique. The film deposited under the helium gaseous environment has the highest ratio of the area under the Raman D peak to G peak (A{sub D}/A{sub G}) and the highest conductivity (∼2.23 S/cm) at room temperature, whereas, the film deposited under the hydrogen environment has the lowest conductivity value (2.27 × 10{sup −7} S/cm). The temperature dependent dc conduction behavior of all the nanocrystalline carbon thin films has been analyzed in the light of Mott’s variable range hopping (VRH) conduction mechanism and observed that all the films obey three dimension VRH conduction mechanism for the charge transport.

  3. Correlation of magnetic and mechanical properties of hydrogenated, compositionally modulated, amorphous Fe80Zr20 films (abstract)

    International Nuclear Information System (INIS)

    Rengarajan, S.; Yun, E.J.; Lee, B.H.; Cho, B.I.; Walser, R.M.

    1996-01-01

    Recent research has demonstrated that large amounts of hydrogen can be electrolytically incorporated in amorphous, compositionally modulated (CM) FeZr films. The first irreversible changes in the magnetic state of an electrolytically hydrogenated iron-rich amorphous alloy were observed. The hydrogen-induced changes in the magnetization were interpreted in terms of specific structural rearrangements. In this work, simultaneous measurements of the variations in the magnetization and mechanical properties of these films were measured as a function of hydrogen charging to further clarify the hydrogen-induced structure changes. The Young close-quote s moduli E and internal friction d of as-deposited, and as-hydrogenated CM Fe 80 Zr 20 thin films were calculated from the displacements of a vibrating composite cantilever, measured using a laser heterodyne interferometer (LHI) having a displacement sensitivity of ∼0.01 A. E and d were measured using the resonant frequency method. CM films with thickness 1390 A and modulation wavelength ∼10 A were deposited on glass cantilevers (5 mm long, 2 mm wide, and 150 μm thick) by sequentially sputtering (rf diode) elemental Fe and Zr targets. The samples were electrolytically hydrogenated for various times in 2 N phosphoric acid with a current density of 26.3 mA/cm 2 . The maximum change in magnetization of the film (from 71.5 to 551 emu/cm 3 ) was observed after 5 min. During this time, E increased 18-fold from 535 GPa to 9.63 TPa. The unusually high Young close-quote s modulus of the as-deposited CM film is comparable to those previously observed in other CM films. The change is three times larger than the change in the E of carbon steel at the martensitic transformation, and nine times larger than the hydrogen induced increase in E of pure single crystals of iron. (Abstract Truncated)

  4. Effect of helium gas pressure on dc conduction mechanism and EMI shielding properties of nanocrystalline carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rawal, Ishpal, E-mail: rawalishpal@gmail.com [Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007 (India); Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Tripathi, R.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Singh, Avanish Pratap; Dhawan, S.K. [Polymeric and Soft Materials Group, Physics Engineering of Carbon, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Srivastava, A.K. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2015-05-05

    This paper reports the effect of helium partial pressures ∼1.2 × 10{sup −5} (base pressure), 1.4 × 10{sup −4}, 8.6 × 10{sup −3} and 0.1 mbar on the variable range hopping conduction in nanocrystalline carbon thin films deposited by filtered cathodic jet carbon arc technique. High resolution transmission electron microscopy studies suggest the random distribution of nanocrystallites (∼3–7 nm) in the amorphous matrix. The DC conduction behavior of the deposited nanocrystalline films has been studied in the light of Mott's variable range hopping (VRH) model and found to obey three dimensional VRH conduction. The randomly distributed nanocrystallites in amorphous matrix may lead to change in the distribution of density of states near Fermi level and hence, the conduction behavior. The enhanced electrical conductivity of the deposited films due to the helium environment makes them suitable for electromagnetic interference shielding applications. The sample deposited at a helium partial pressure of 0.1 mbar has a value of shielding effectiveness ∼7.84 dB at 18 GHz frequency. - Highlights: • Nanocrystalline carbon thin films (NCTF) has been deposited by FCJCA technique. • Effect of helium gas pressure has been studied on the properties of NCTF. • Investigation of EMI shielding properties of NCTF has been carried out.

  5. Optical characteristic and gap states distribution of amorphous SnO2:(Zn, In) film

    International Nuclear Information System (INIS)

    Zhang Zhi-Guo

    2010-01-01

    In this paper the fabrication technique of amorphous SnO 2 :(Zn, In) film is presented. The transmittance and gap-states distribution of the film are given. The experimental results of gap-states distribution are compared with the calculated results by using the facts of short range order and lattice vacancy defect of the gap states theory. The distribution of gap state has been proved to be discontinuous due to the short-range order of amorphous structure. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Achievement report for fiscal 1981 on Sunshine Program research and development. Research and development of amorphous solar cells (Research and development of amorphous solar cells on flexible film substrates); 1981 nendo amorphous taiyo denchi no kenkyu kaihatsu seika hokokusho. Kadosei film wo kiban to suru amorphous taiyo denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-31

    Efforts will be made to reduce the cost, increase efficiency, and enlarge cell areas and, at the same time, to establish the foundation of a roll-up type solar cell manufacturing process which is required for the implementation of mass production. In an inverted pin/ITO (indium-tin oxide) hetero-face structure cell installed on a polymer film substrate, a conversion efficiency of 5.33% is achieved in the case of a solar cell whose n-layer is of the amorphous phase, and 6.36% in the case of a cell of the microcrystallized phase. A roll-up type glow discharge CVD (chemical vapor deposition) unit is designed and experimentally built, which is for the realization of large area cells. It is now duly expected that an undoped (i-type) a-Si:H film will be deposited to a thickness of approximately 5000A. As the result of a first-step screening conducted in search of amorphous solar cell sealing materials, some applicable plastic materials are selected. The future is bright of amorphous solar cells on polymer film substrates. (NEDO)

  7. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    Science.gov (United States)

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants. Copyright © 2015. Published by Elsevier B.V.

  8. Pair distribution functions of amorphous organic thin films from synchrotron X-ray scattering in transmission mode

    Directory of Open Access Journals (Sweden)

    Chenyang Shi

    2017-09-01

    Full Text Available Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accurate in situ structural studies for a wide range of materials.

  9. Optically induced paramagnetism in amorphous hydrogenated silicon nitride thin films

    International Nuclear Information System (INIS)

    Warren, W.L.; Kanicki, J.; Buchwald, W.R.; Rong, F.C.; Harmatz, M.

    1992-01-01

    This paper reports that the creation mechanisms of Si and N dangling bond defect centers in amorphous hydrogenated silicon nitride thin films by ultra-violet (UV) illumination are investigated. The creation efficiency and density of Si centers in the N-rich films are independent of illumination temperature, strongly suggesting that the creation mechanism of the spins in electronic in nature, i.e., a charge transfer mechanism. However, our results suggest that the creation of the Si dangling bond in the Si-rich films are different. Last, we find that the creation of the N dangling-bond in N-rich films can be fit to a stretched exponential time dependence, which is characteristic of dispersive charge transport

  10. Amorphous ITO thin films prepared by DC sputtering for electrochromic applications

    International Nuclear Information System (INIS)

    Teixeira, V.; Cui, H.N.; Meng, L.J.; Fortunato, E.; Martins, R.

    2002-01-01

    Indium-Tin-Oxide (ITO) thin films were deposited on glass substrates using DC magnetron reactive sputtering at different bias voltages and substrate temperatures. Some improvements were obtained on film properties, microstructure and other physical characteristics for different conditions. Amorphous and polycrystalline films can be obtained for various deposition conditions. The transmission, absorption, spectral and diffuse reflection of ITO films were measured in some ranges of UV-Vis-NIR. The refractive index (n), Energy band gap E g and the surface roughness of the film were derived from the measured spectra data. The carrier density (n c ) and the carrier mobility (μ) of the film micro conductive properties were discussed. The films exhibited suitable optical transmittance and conductivity for electrochromic applications

  11. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    International Nuclear Information System (INIS)

    He, Y.Y.; Zhang, G.F.; Zhao, Y.; Liu, D.D.; Cong, Y.; Buck, V.

    2015-01-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect

  12. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.Y. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Zhang, G.F. [School of Materials Science and Engineering, Dalian University of Technology, 116024, Dalian China (China); Zhao, Y.; Liu, D.D. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Cong, Y., E-mail: congyan@ciomp.ac.cn [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Buck, V. [Thin Film Technology Group, Faculty of Physics, University Duisburg-Essen and CeNIDE, 47057 Duisburg (Germany)

    2015-09-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect.

  13. Designed synthesis of tunable amorphous carbon nanotubes (a ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Designed synthesis of tunable amorphous carbon nanotubes (a-CNTs) by a novel route and their oxidation resistance properties by Longlong. Xu et al (pp 1397–1402).

  14. The application of Car-Parrinello molecular dynamics to the study of tetrahedral amorphous carbon

    International Nuclear Information System (INIS)

    McKenzie, D.R.; McCulloch, D.G.; Goringe, C.M.

    1998-01-01

    The Car-Parrinello method for carrying out molecular dynamics enables the forces between atoms to be calculated by solving Schroedinger's equation for the valence electrons using Density Functional Theory. The method is capable of giving good structural predictions for amorphous network solids by quenching from the melt, even in situations where the bonding changes from one site to another. In amorphous carbon where, depending on its environment, carbon may show sp 2 or sp 3 bonds. The method is applied here to the study of network solids using the example of tetrahedral amorphous carbon

  15. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Coppedè, Nicola; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Valitova, Irina; Cicoira, Fabio; Mahvash, Farzaneh; Santato, Clara; Martel, Richard

    2014-01-01

    The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs. (paper)

  16. Effect of Sb on physical properties and microstructures of laser nano/amorphous-composite film

    International Nuclear Information System (INIS)

    Li, Jia-Ning; Gong, Shui-Li; Sun, Mei; Shan, Fei-Hu; Wang, Xi-Chang; Jiang, Shuai

    2013-01-01

    A nano/amorphous-composite film was fabricated by laser cladding (LC) of the Co–Ti–B 4 C–Sb mixed powders on a TA15 alloy. Such film mainly consisted of Ti–Al, Co–Ti, Co–Sb intermetallics, TiC, TiB 2 , TiB, and the amorphous phases. Experimental results indicated that the crystal systems of TiB 2 (hexagonal)/TiC (cubic) and Sb (rhombohedral) played important role on the formation of such film. Due to the mismatch of these crystals systems and mutual immiscibility of the metallic components, Sb was not incorporated in TiB 2 /TiC, but formed separate nuclei during the film growth. Thus, the growth of TiB 2 /TiC was stopped by the Sb nucleus in such LC molten pool, so as to form the nanoscale particles

  17. Effect of Sb on physical properties and microstructures of laser nano/amorphous-composite film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia-Ning, E-mail: jn2369@163.com [Science and Technology on Power Beam Processes Laboratory, Beijing (China); Aviation Industry Corporation of China, Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China); Gong, Shui-Li, E-mail: gongshuili@sina.com [Science and Technology on Power Beam Processes Laboratory, Beijing (China); Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China); Sun, Mei; Shan, Fei-Hu; Wang, Xi-Chang [Science and Technology on Power Beam Processes Laboratory, Beijing (China); Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China); Jiang, Shuai [Science and Technology on Power Beam Processes Laboratory, Beijing (China); Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China); Department of Materials Science and Engineering, China University of Petroleum, Qingdao 266580 (China)

    2013-11-01

    A nano/amorphous-composite film was fabricated by laser cladding (LC) of the Co–Ti–B{sub 4}C–Sb mixed powders on a TA15 alloy. Such film mainly consisted of Ti–Al, Co–Ti, Co–Sb intermetallics, TiC, TiB{sub 2}, TiB, and the amorphous phases. Experimental results indicated that the crystal systems of TiB{sub 2} (hexagonal)/TiC (cubic) and Sb (rhombohedral) played important role on the formation of such film. Due to the mismatch of these crystals systems and mutual immiscibility of the metallic components, Sb was not incorporated in TiB{sub 2}/TiC, but formed separate nuclei during the film growth. Thus, the growth of TiB{sub 2}/TiC was stopped by the Sb nucleus in such LC molten pool, so as to form the nanoscale particles.

  18. The effect of empirical potential functions on modeling of amorphous carbon using molecular dynamics method

    International Nuclear Information System (INIS)

    Li, Longqiu; Xu, Ming; Song, Wenping; Ovcharenko, Andrey; Zhang, Guangyu; Jia, Ding

    2013-01-01

    Empirical potentials have a strong effect on the hybridization and structure of amorphous carbon and are of great importance in molecular dynamics (MD) simulations. In this work, amorphous carbon at densities ranging from 2.0 to 3.2 g/cm 3 was modeled by a liquid quenching method using Tersoff, 2nd REBO, and ReaxFF empirical potentials. The hybridization, structure and radial distribution function G(r) of carbon atoms were analyzed as a function of the three potentials mentioned above. The ReaxFF potential is capable to model the change of the structure of amorphous carbon and MD results are in a good agreement with experimental results and density function theory (DFT) at low density of 2.6 g/cm 3 and below. The 2nd REBO potential can be used when amorphous carbon has a very low density of 2.4 g/cm 3 and below. Considering the computational efficiency, the Tersoff potential is recommended to model amorphous carbon at a high density of 2.6 g/cm 3 and above. In addition, the influence of the quenching time on the hybridization content obtained with the three potentials is discussed.

  19. Microscopic and macroscopic inhomogeneity of magnetization and anistropy in amorphous rare earth/transition metal films

    International Nuclear Information System (INIS)

    Hafner, D.; Hoffmann, H.

    1979-01-01

    Amorphous Gd/Co and Gd/Co/Mo-films are investigated by measuring the field dependence of the susceptibility. This allows a determination of the value and sign of the perpendicular uniaxial anisotropy as well as the value of the effective ripple stray field. The measurements are made at spots of 50 to 100 μm diameter, allowing one to scan the film surface. Measurements from a spot on the film surface and at the opposing spot on the film-glass substrate interface are performed simultaneously. In this way the anisotropy at two related points on both surfaces of the film can be compared. In general the results show the existence of a ripple stray field which can be accounted for by inhomogeneities in the amorphous films. The perpendicular anisotropy at the free film surface is always lower than the perpendicular anisotropy at the film-substrate interface. In some cases the magnetization at the film surface is in-plane, while at the substrate the magnetization is out-of-plane. The reduction of the perpendicular anisotropy is an ageing effect due to oxidation. (author)

  20. Citrate effects on amorphous calcium carbonate (ACC) structure, stability, and crystallization

    DEFF Research Database (Denmark)

    Tobler, Dominique Jeanette; Rodriguez Blanco, Juan Diego; Dideriksen, Knud

    2015-01-01

    Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid-mineral inte......Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid...

  1. Combined HRTEM and PEELS analysis of nanoporous and amorphous carbon

    International Nuclear Information System (INIS)

    Peng, J.L.; Fan, X. D.; Bursill, L.A.

    1997-01-01

    Both the mass density (1.37 kgm/m 3 ) and sp 2 +sp 3 bonding fraction (0.15) were determined for an unusual nanoporous amorphous carbon consisting of curved single graphitic sheets. A combination of high-resolution transmission electron microscopy (HRTEM) and parallel electron energy loss spectroscopy (PEELS) was used. The values of these two parameters provide important constraints for the determination of the structure of this relatively low density variety of nanoporous carbon. The results are relevant also in the search for negatively-curved Schwarzite-related carbon structures. New date are also presented for highly-oriented pyrollytic graphite (HOPG), chemically vapour deposited (CVD) diamond, C 60 , glassy carbon (GC) and evaporated amorphous carbon (EAC); these are compared with the results for NAC. Kramers-Kronig analysis (KKA) of the low-loss PEELS data shows that the band gaps of both NAC and EAC are collapsed relative to that of CVD diamond. 18 refs., 2 tabs., 3 figs

  2. Combined HRTEM and PEELS analysis of nanoporous and amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Peng, J.L.; Fan, X. D.; Bursill, L.A.

    1997-06-01

    Both the mass density (1.37 kgm/m{sup 3}) and sp{sup 2}+sp{sup 3} bonding fraction (0.15) were determined for an unusual nanoporous amorphous carbon consisting of curved single graphitic sheets. A combination of high-resolution transmission electron microscopy (HRTEM) and parallel electron energy loss spectroscopy (PEELS) was used. The values of these two parameters provide important constraints for the determination of the structure of this relatively low density variety of nanoporous carbon. The results are relevant also in the search for negatively-curved Schwarzite-related carbon structures. New date are also presented for highly-oriented pyrollytic graphite (HOPG), chemically vapour deposited (CVD) diamond, C{sub 60}, glassy carbon (GC) and evaporated amorphous carbon (EAC); these are compared with the results for NAC. Kramers-Kronig analysis (KKA) of the low-loss PEELS data shows that the band gaps of both NAC and EAC are collapsed relative to that of CVD diamond. 18 refs., 2 tabs., 3 figs.

  3. Amorphous carbon enhancement of hydrogen penetration into UO2

    International Nuclear Information System (INIS)

    Zalkind, S.; Shamir, N.; Gouder, T.; Akhvlediani, R.; Hoffman, A.

    2014-01-01

    In a previous study, it was demonstrated that an amorphous carbon layer, deposited on a native oxide covered uranium surface, significantly enhances the interaction of hydrogen with the uranium metal. Fig. 1[2], demonstrates the preferential hydrogen attack (forming uranium hydride) on the carbon covered area of the naturally oxidized uranium metal

  4. Preparation and characterization of polymer-derived amorphous silicon carbide with silicon-rich stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Iwasaka, Akira [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Takagishi, Hideyuki [Faculty of Symbiotic System Science, Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1296 (Japan); Shimoda, Tatsuya [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-08-01

    Polydihydrosilane with pendant hexyl groups was synthesized to obtain silicon-rich amorphous silicon carbide (a-SiC) films via the solution route. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage. Therefore, the polymer provides sufficient purity for the fabrication of semiconducting a-SiC. Here, we investigated the correlation of Si/C stoichiometry between the polymer and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. Experimental results suggested that the excess carbon that did not participate in Si−C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in resultant a-SiC film was < 50 at.%; namely, the polymer provided silicon-rich a-SiC, whereas the conventionally used polycarbosilane inevitably provides carbon-rich one. These features of this unusual polymer open up a frontier of polymer-derived SiC and solution-processed SiC electronics. - Highlights: • Polymeric precursor solution for silicon carbide (SiC) is synthesized. • Semiconducting amorphous SiC is prepared via solution route. • The excess carbon is decomposed during cross-linking resulting in Si-rich SiC films. • The grown SiC films contain substantial amount of hydrogen atoms as SiH{sub n}/CH{sub n} entities. • Presence of CH{sub n} entities induces dangling bonds, causing poor electrical properties.

  5. Nanopillar arrays of amorphous carbon nitride

    Science.gov (United States)

    Sai Krishna, Katla; Pavan Kumar, B. V. V. S.; Eswaramoorthy, Muthusamy

    2011-07-01

    Nanopillar arrays of amorphous carbon nitride have been prepared using anodic aluminum oxide (AAO) membrane as a template. The amine groups present on the surface of these nanopillars were exploited for functionalization with oleic acid in order to stabilize the nanostructure at the aqueous-organic interface and also for the immobilization of metal nanoparticles and protein. These immobilised nanoparticles were found to have good catalytic activity.

  6. Tribological behavior and film formation mechanisms of carbon nanopearls

    Science.gov (United States)

    Hunter, Chad Nicholas

    Carbon nanopearls (CNPs) are amorphous carbon spheres that contain concentrically-oriented nanometer-sized graphitic flakes. Because of their spherical shape, size (˜150 nm), and structure consisting of concentrically oriented nano-sized sp2 flakes, CNPs are of interest for tribological applications, in particular for use in solid lubricant coatings. These studies were focused on investigating mechanisms of CNP lubrication, development of methods to deposit CNP onto substrates, synthesizing CNP-gold hybrid films using Matrix Assisted Pulsed Laser Evaporation (MAPLE) and magnetron sputtering, and studying plasmas and other species present during film deposition using an Electrostatic Quadrupole Plasma (EQP) analyzer. CNPs deposited onto silicon using drop casting with methanol showed good lubricating properties in sliding contacts under dry conditions, where a transfer film was created in which morphology changed from nano-sized spheres to micron-sized agglomerates consisting of many highly deformed CNPs in which the nano-sized graphene flakes are sheared from the wrapped layer structure of the CNPs. The morphology of carbon nanopearl films deposited using a MAPLE system equipped with a 248 nm KrF excimer laser source was found to be influenced by multiple factors, including composition of the matrix solvent, laser energy and repetition rate, background pressure, and substrate temperature. The best parameters for depositing CNP films that are disperse, droplet-free and have the maximum amount of material deposited are as follows: toluene matrix, 700 mJ, 1 Hz, 100°C substrate temperature, and unregulated vacuum pressure. During depositions using MAPLE and sputtering in argon, electron ionization of toluene vapor generated from the MAPLE target and charge exchange reactions between toluene vapor and the argon plasma generated by the magnetron caused carbon to be deposited onto the gold sputter target. Thin films deposited under these conditions contained high

  7. Electron diffraction on amorphous and crystalline AuAl2 , AuGa2 and AuIn2 thin films

    International Nuclear Information System (INIS)

    Bohorquez, A.

    1991-01-01

    Experimental (in situ) measurements of electron diffraction and resistivity of amorphous and crystalline AuAl 2 , AuGa 2 and AuIn 2 thin films were performed. Thin films were produced by quench condensation. Interference and atomic distribution functions were analyzed assuming the same short range order for the three systems in the amorphous phase. The experimental results do not agree with this assumption, giving evidence that the short range order is not the same for the three amorphous systems. Further discussion of interference and atomic distribution functions shows a more evident tendency in amorphous AuIn 2 where short order of AuIn 2 and In can be inferred. (Author)

  8. Investigation of electrochemical behaviour and structure of oxide films on Ni60Nb40 alloy in amorphous and crystalline states

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Skvortsova, I.B.; Gorodetskij, A.E.; Bogomolov, D.B.

    1987-01-01

    Electrochemical properties of Ni 60 Nb 40 alloy in amorphous and crystalline states as well as structure of oxide films forming during anode polarization in electrolytes on the surface of this alloy in both its states are investigated. It is stated that increased passive ability of Ni 60 Nb 40 alloys in amorphous state and high efficiency of chlorine evolution (2 n NaCl+HCl up to pH=0) anode process in comparison with crystalline state are defined by increased homogeneity and uniformity of passive films forming on amorphous alloy and their increased electron conductivity, that is in direct dependence on different structure of passive films forming on alloys in amorphous and crystalline states

  9. High-frequency permeability in double-layered structure of amorphous Co-Ta-Zr films

    International Nuclear Information System (INIS)

    Ochiai, Y.; Hayakawa, M.; Hayashi, K.; Aso, K.

    1988-01-01

    The high-frequency permeability of amorphous Co-Ta-Zr films was studied and the frequency dependence was described in terms of the eddy-current-loss formula. For the double-layered structure intervened with SiO 2 film, the degradation of the permeability became apparent with the decrease of SiO 2 thickness

  10. Novel Transrotational Solid State Order Discovered by TEM in Crystallizing Amorphous Films

    Science.gov (United States)

    Kolosov, Vladimir

    Exotic thin crystals with unexpected transrotational microstructures have been discovered by transmission electron microscopy (TEM) for crystal growth in thin (10-100 nm) amorphous films of different chemical nature (oxides, chalcogenides, metals and alloys) prepared by various methods. Primarily we use our TEM bend contour technique. The unusual phenomenon can be traced in situ in TEM column: dislocation independent regular internal bending of crystal lattice planes in a growing crystal. Such transrotation (unit cell trans lation is complicated by small rotationrealized round an axis lying in the film plane) can result in strong regular lattice orientation gradients (up to 300 degrees per micrometer) of different geometries: cylindrical, ellipsoidal, toroidal, saddle, etc. Transrotation is increasing as the film gets thinner. Transrotational crystal resembles ideal single crystal enclosed in a curved space. Transrotational micro crystals have been eventually recognized by other authors in some vital thin film materials, i.e. PCMs for memory, silicides, SrTiO3. Atomic model and possible mechanisms of the phenomenon are discussed. New transrotational nanocrystalline model of amorphous state is also proposed Support of RF Ministry of Education and Science is acknowledged.

  11. Characteristics of RuO2-SnO2 nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors

    International Nuclear Information System (INIS)

    Kim, Han-Ki; Choi, Sun-Hee; Yoon, Young Soo; Chang, Sung-Yong; Ok, Young-Woo; Seong, Tae-Yeon

    2005-01-01

    The characteristics of RuO 2 -SnO 2 nanocrystalline-embedded amorphous electrode, grown by DC reactive sputtering, was investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM), and transmission electron diffraction (TED) examination results showed that Sn and Ru metal cosputtered electrode in O 2 /Ar ambient have RuO 2 -SnO 2 nanocrystallines in an amorphous oxide matrix. It is shown that the cyclic voltammorgram (CV) result of the RuO 2 -SnO 2 nanocrystalline-embedded amorphous film in 0.5 M H 2 SO 4 liquid electrolyte is similar to a bulk-type supercapacitor behavior with a specific capacitance of 62.2 mF/cm 2 μm. This suggests that the RuO 2 -SnO 2 nanocrystalline-embedded amorphous film can be employed in hybrid all-solid state energy storage devises as an electrode of supercapacitor

  12. Vapor annealing synthesis of non-epitaxial MgB2 films on glassy carbon

    Science.gov (United States)

    Baker, A. A.; Bayu Aji, L. B.; Bae, J. H.; Stavrou, E.; Steich, D. J.; McCall, S. K.; Kucheyev, S. O.

    2018-05-01

    We describe the fabrication and characterization of 25–800 nm thick MgB2 films on glassy carbon substrates by Mg vapor annealing of sputter-deposited amorphous B films. Results demonstrate a critical role of both the initial B film thickness and the temperature–time profile on the microstructure, elemental composition, and superconducting properties of the resultant MgB2 films. Films with thicknesses of 55 nm and below exhibit a smooth surface, with a roughness of 1.1 nm, while thicker films have surface morphology consisting of elongated nano-crystallites. The suppression of the superconducting transition temperature for thin films scales linearly with the oxygen impurity concentration and also correlates with the amount of lattice disorder probed by Raman scattering. The best results are obtained by a rapid (12 min) anneal at 850 °C with large temperature ramp and cooling rates of ∼540 °C min‑1. Such fast processing suppresses the deleterious oxygen uptake.

  13. Self-organized formation of metal-carbon nanostructures by hyperthermal ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hannstein, I.K.

    2006-04-26

    The quasi-simultaneous deposition of mass-selected hyperthermal carbon and metal ions results in a variety of interesting film morphologies, depending on the metal used and the deposition conditions. The observed features are of the order of a few nanometres and are therefore interesting for future potential applications in the various fields of nanotechnology. The present study focuses on the structural analysis of amorphous carbon films containing either copper, silver, gold, or iron using amongst others Rutherford Backscattering Spectroscopy, High Resolution Transmission Electron Microscopy, and Energy Dispersive X-Ray Spectroscopy. The film morphologies found are as follows: copper-containing films consist of copper nanoclusters with sizes ranging from about 3 to 9 nm uniformly distributed throughout the amorphous carbon matrix. The cluster size hereby rises with the copper content of the films. The silver containing films decompose into a pure amorphous carbon film with silver agglomerates at the surface. Both, the gold- and the iron-containing films show a multilayer structure of metal-rich layers with higher cluster density separated by metal-depleted amorphous carbon layers. The layer distances are of the order of up to 15 nm in the case of gold-carbon films and 7 nm in the case of iron-carbon films. The formation of theses different structures cannot be treated in the context of conventional self-organization mechanisms basing upon thermal diffusion and equilibrium thermodynamics. Instead, an ion-induced atomic transport, sputtering effects, and the stability of small metal clusters were taken into account in order to model the structure formation processes. A similar multilayer morphology was recently also reported in the literature for metal-carbon films grown by magnetron sputtering techniques. In order to investigate, whether the mechanisms are the same as in the case of the ion beam deposited films described above, first experiments were conducted

  14. Thin films of hydrogenated amorphous carbon (a-C:H) obtained through chemical vapor deposition assisted by plasma; Peliculas delgadas de carbono amorfo hidrogenado (a-C:H) obtenidas mediante deposito quimico de vapores asistido por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mejia H, J.A.; Camps C, E.E.; Escobar A, L.; Romero H, S.; Chirino O, S. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Muhl S, S. [IIM-UNAM, 04510 Mexico D.F. (Mexico)

    2004-07-01

    Films of hydrogenated amorphous carbon (a-C:H) were deposited using one source of microwave plasma with magnetic field (type ECR), using mixtures of H{sub 2}/CH{sub 4} in relationship of 80/20 and 95/05 as precursory gases, with work pressures of 4X10{sup -4} to 6x10{sup -4} Torr and an incident power of the discharge of microwaves with a constant value of 400 W. It was analyzed the influence among the properties of the films, as the deposit rate, the composition and the bonding types, and the deposit conditions, such as the flow rates of the precursory gases and the polarization voltage of the sample holders. (Author)

  15. Oxygen effect of transparent conducting amorphous Indium Zinc Tin Oxide films on Polyimide substrate for flexible electrode

    International Nuclear Information System (INIS)

    Ko, Yoon Duk; Lee, Chang Hun; Moon, Doo Kyung; Kim, Young Sung

    2013-01-01

    This paper discusses the effect of oxygen on the transparent conducting properties and mechanical durability of the amorphous indium zinc tin oxide (IZTO) films. IZTO films deposited on flexible clear polyimide (PI) substrate using pulsed direct current (DC) magnetron sputtering at room temperature under various oxygen partial pressures. All IZTO films deposited at room temperature exhibit an amorphous structure. The electrical and optical properties of the IZTO films were sensitively influenced by oxygen partial pressures. At optimized deposition condition of 3.0% oxygen partial pressure, the IZTO film shows the lowest resistivity of 6.4 × 10 −4 Ωcm, high transmittance of over 80% in the visible range, and figure of merit value of 3.6 × 10 −3 Ω −1 without any heat controls. In addition, high work function and good mechanical flexibility of amorphous IZTO films are beneficial to flexible applications. It is proven that the proper oxygen partial pressure is important parameter to enhance the transparent conducting properties of IZTO films on PI substrate deposited at room temperature. - Highlights: • Indium zinc tin oxide (IZTO) films were deposited on polyimide at room temperature. • Transparent conducting properties of IZTO were influenced with oxygen partial pressure. • The smooth surface and high work function of IZTO were beneficial to anode layer. • The mechanical reliability of IZTO shows better performance to indium tin oxide film

  16. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    International Nuclear Information System (INIS)

    Wang, Xiaoping; Wang, Jinye; Wang, Lijun

    2016-01-01

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibits the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm"2 at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.

  17. Thermally-activated internal friction peaks in amorphous films of Nb3Ge and Nb3Si

    International Nuclear Information System (INIS)

    Berry, B.S.; Pritchet, W.C.

    1978-01-01

    A large number of the thermally-activated internal friction peaks observed in crystalline solids are associated with the general mechanism of stress-induced directional short-range ordering. These peaks are an indirect but nevertheless valuable structural probe, and provide an important means of obtaining quantitative information on the kinetics of local atomic movements. This paper deals with what are thought to be the first-known examples of such peaks in the field of metallic glasses. The peaks have been observed in amorphous films of Nb 3 Ge and Nb 3 Si which are both superconductors with transition temperatures Tsub(c) near 3.6K. Although Tsub(c) is thus well below the record values of approximately equal to 23K reported for crystalline films of Nb 3 Ge, Tsuei has found the amorphous films to be much superior mechanically to their crystalline counterparts. Consequently, the amorphous films have technological interest as an easily-handled source from which the brittle high-Tsub(c) phase may be obtained by a final in-situ anneal. (author)

  18. An amorphous Si-O film tribo-induced by natural hydrosilicate powders on ferrous surface

    International Nuclear Information System (INIS)

    Zhang, Baosen; Xu, Binshi; Xu, Yi; Ba, Zhixin; Wang, Zhangzhong

    2013-01-01

    The tribological properties of surface-coated serpentine powders suspended in oil were evaluated using an Optimal SRV-IV oscillating friction and wear tester. The worn surface and the tribo-induced protective film were characterized by scanning electron microscope and focused ion beam (SEM/FIB) work station, energy dispersive spectroscopy (EDS) and transmission electron microscope (TEM). Results indicate that with 0.5 wt% addition of serpentine powders to oil, the friction coefficient and wear rate significantly decrease referenced to those of the base oil alone. An amorphous SiO x film with amorphous SiO x particles inserted has formed on the worn surface undergoing the interactions between serpentine particles and friction surfaces. The protective film with excellent lubricating ability and mechanical properties is responsible for the reduced friction and wear.

  19. Direct measurement of free-energy barrier to nucleation of crystallites in amorphous silicon thin films

    Science.gov (United States)

    Shi, Frank G.

    1994-01-01

    A method is introduced to measure the free-energy barrier W(sup *), the activation energy, and activation entropy to nucleation of crystallites in amorphous solids, independent of the energy barrier to growth. The method allows one to determine the temperature dependence of W(sup *), and the effect of the preparation conditions of the initial amorphous phase, the dopants, and the crystallization methds on W(sup *). The method is applied to determine the free-energy barrier to nucleation of crystallites in amorphous silicon (a-Si) thin films. For thermally induced nucleation in a-Si thin films with annealing temperatures in the range of from 824 to 983 K, the free-energy barrier W(sup *) to nucleation of silicon crystals is about 2.0 - 2.1 eV regardless of the preparation conditions of the films. The observation supports the idea that a-Si transforms into an intermediate amorphous state through the structural relaxation prior to the onset of nucleation of crystallites in a-Si. The observation also indicates that the activation entropy may be an insignificant part of the free-energy barrier for the nucleation of crystallites in a-Si. Compared with the free-energy barrier to nucleation of crystallites in undoped a-Si films, a significant reduction is observed in the free-energy barrier to nucleation in Cu-doped a-Si films. For a-Si under irradiation of Xe(2+) at 10(exp 5) eV, the free-energy barrier to ion-induced nucleation of crystallites is shown to be about half of the value associated with thermal-induced nucleation of crystallites in a-Si under the otherwise same conditions, which is much more significant than previously expected. The present method has a general kinetic basis; it thus should be equally applicable to nucleation of crystallites in any amorphous elemental semiconductors and semiconductor alloys, metallic and polymeric glasses, and to nucleation of crystallites in melts and solutions.

  20. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Oliveira, M. H.; Viana, G. A.; de Lima, M. M.; Cros, A.; Cantarero, A.; Marques, F. C.

    2010-12-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH4) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  1. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Oliveira, M. H. Jr.; Viana, G. A.; Marques, F. C.; Lima, M. M. Jr. de; Cros, A.; Cantarero, A.

    2010-01-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH 4 ) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  2. Theoretical investigation of magnetic properties in interfaces of magnetic nanoparticles and amorphous carbons

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shih-Jye, E-mail: sjs@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Hsu, Hua-Shu [Department of Applied Physics, National Pingtung University, Pingtung 900, Taiwan (China); Ovchinnikov, Sergei [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036 (Russian Federation); Chen, Guan-Long [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China)

    2017-06-15

    Highlights: • The interfaces of amorphous carbons will be graphited and antiferromagnetic. • The ferromagnetism on the Co interfaces is induced by the medium electrons. • The spin-wave excitation will change between the acoustic and optical modes. • The charge exchange in the interfaces changes the magnetism of the interfaces. - Abstract: Based on the experimental finding of the exchange bias in amorphous carbon samples with embedded Co nanoparticles and on the graphited character of the amorphous carbon interface confirmed by molecular dynamics simulations we have proposed the interface of graphited carbon to be antiferromagnetic. A theoretical model, which comprises the Kondo interactions in the interfaces of Co nanoparticles and the induced antiferromagnetic interactions in the graphited carbons, is employed to evaluate the ferromagnetism of the interfaces of Co nanoparticles. We have shown that the ferromagnetism of interfaces of Co nanoparticles will be enhanced by the increase of antiferromagnetic interaction as well as the increase of electron density in the graphited carbons. In particular, we found that the antiferromagnetic interactions in graphited carbons will change the spin-wave excitation in interfaces of Co nanoparticles from the quasiacoustic mode to the quasioptical one.

  3. Electrical and optical properties of amorphous indium zinc oxide films

    International Nuclear Information System (INIS)

    Ito, N.; Sato, Y.; Song, P.K.; Kaijio, A.; Inoue, K.; Shigesato, Y.

    2006-01-01

    Valence electron control and electron transport mechanisms on the amorphous indium zinc oxide (IZO) films were investigated. The amorphous IZO films were deposited by dc magnetron sputtering using an oxide ceramic IZO target (89.3 wt.% In 2 O 3 and 10.7 wt.% ZnO). N-type impurity dopings, such as Sn, Al or F, could not lead to the increase in carrier density in the IZO. Whereas, H 2 introduction into the IZO deposition process was confirmed to be effective to increase carrier density. By 30% H 2 introduction into the deposition process, carrier density increased from 3.08 x 10 2 to 7.65 x 10 2 cm -3 , which must be originated in generations of oxygen vacancies or interstitial Zn 2+ ions. Decrease in the transmittance in the near infrared region and increase in the optical band gap were observed with the H 2 introduction, which corresponded to the increase in carrier density. The lowest resistivity of 3.39 x 10 -4 Ω cm was obtained by 10% H 2 introduction without substrate heating during the deposition

  4. Electrochemically synthesized amorphous and crystalline nanowires: dissimilar nanomechanical behavior in comparison with homologous flat films

    Science.gov (United States)

    Zeeshan, M. A.; Esqué-de Los Ojos, D.; Castro-Hartmann, P.; Guerrero, M.; Nogués, J.; Suriñach, S.; Baró, M. D.; Nelson, B. J.; Pané, S.; Pellicer, E.; Sort, J.

    2016-01-01

    The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (φ ~ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires requires taking the curved geometry of the indented surface and sink-in effects into account. These findings are of high relevance for optimizing the performance of new, mechanically-robust, nanoscale materials for increasingly complex miniaturized devices.The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (φ ~ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires

  5. The influence of methane/argon plasma composition on the formation of the hydrogenated amorphous carbon films

    International Nuclear Information System (INIS)

    Chen, Hsin-Hung; Liao, Jiunn-Der; Weng, Chih-Chiang; Hsieh, Jui-Fu; Chang, Chia-Wei; Lin, Chao-Hsien; Cho, Ting-Pin

    2011-01-01

    The quality of the a-C:H films was particularly correlated with the mixed ratio of methane/argon plasma. For a constant supply of energy and flowing rate, the optical emission from H α intensity linearly increased with the addition of methane in argon plasma, while that from intensities of radiation of diatmoic radicals (CH*and C 2 *) exponentially decreased. For the a-C:H films, the added methane in argon plasma tended to raise the quantity of hydrogenated carbon or sp 3 C-H structure, which exponentially decreased the nano-hardness and friction coefficient of the films. In contrast, the electric resistance of the films enlarged dramatically with the increase of the methane content in argon plasma. It is therefore advantageous to balance the mechanical properties and electrical resistance of the a-C:H film by adjusting plasma composition in the course of the film-growing process.

  6. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Li Haixia; Cheng Fangyi; Zhu Zhiqiang; Bai Hongmei; Tao Zhanliang; Chen Jun

    2011-01-01

    Research highlights: → Amorphous Si thin films have been deposited on copper foam substrate by radio-frequency (rf) magnetron sputtering. → The as-prepared Si/Cu films with interconnected 3-dimensional structure are employed as anode materials of rechargeable lithium-ion batteries, showing that the electrode properties are greatly affected by the deposition temperature. → The film electrode deposited at an optimum temperature of 300 deg. C delivers a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. → The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm 2 /s. → The combination of rf magnetron sputtering and cooper foam substrate is an efficient route to prepare amorphous Si films with high capacity and cyclability due to the efficient ionic diffusion and interface contact with a good conductive current collector. - Abstract: Amorphous Si thin films, which have been deposited on copper foam by radio-frequency (rf) magnetron sputtering, are employed as anode materials of rechargeable lithium-ion batteries. The morphologies and structures of the as-prepared Si thin films are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Electrochemical performance of lithium-ion batteries with the as-prepared Si films as the anode materials is investigated by cyclic voltammetry and charge-discharge measurements. The results show that the electrode properties of the prepared amorphous Si films are greatly affected by the deposition temperature. The film electrode deposited at an optimum temperature of 300 deg. C can deliver a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm

  7. Charge ordering in amorphous WOx films

    International Nuclear Information System (INIS)

    Kopelevich, Yakov; Silva, Robson R. da; Rougier, Aline; Luk'yanchuk, Igor A.

    2008-01-01

    We observed highly anisotropic viscous electronic conducting phase in amorphous WO 1.55 films that occurs below a current (I)- and frequency (f)-dependent temperature T*(I, f). At T< T*(I, f) the rotational symmetry of randomly disordered electronic background is broken leading to the appearance of mutually perpendicular metallic- and insulating-like states. A rich dynamic behavior of the electronic matter occurring at T< T*(I, f) provides evidence for an interplay between pinning effects and electron-electron interactions. The results suggest a dynamic crystallization of the disordered electronic matter, viz. formation of sliding Wigner crystal, as well as the occurrence of quantum liquid-like crystal or stripe phase at low drives

  8. Rapid fabrication of transparent conductive films with controllable sheet resistance on glass substrates by laser annealing of diamond-like carbon films

    International Nuclear Information System (INIS)

    Lee, Keunhee; Ki, Hyungson

    2016-01-01

    We report a laser-based method for directly fabricating large-area, transparent conductive films with customizable electrical resistance on glass. In this method, a diamond-like carbon (DLC) film is deposited first on a glass substrate by pulsed laser deposition, which is then annealed in a helium shielding environment by a 2 kW continuous-wave fiber laser with a wavelength of 1070 nm, which is transparent to glass but is absorbed by DLC to transform the amorphous carbons to graphene. When a 510 nm thick film was annealed at a scanning speed of 1 m/s by a 200 μm top-hat laser beam, the sp 3 fraction was decreased from 43.1% to 8.1% after the annealing process, and the transformed film showed a transparency of ∼80% (at 550 nm) and a sheet resistance of ∼2050 Ω/sq. We also showed that sheet resistance and transparency can be controlled by changing processing parameters. To show the scalability of the method, a 15 mm wide line beam was used to produce a 15 mm × 15 mm film. This method is simple, fully scalable, transfer-free and catalyst-free, and we believe that the fabricated films can have many applications with further research, such as transparent heating films, electromagnetic shielding films, and transparent electrodes.

  9. Spectroscopy and structural properties of amorphous and nanocrystalline silicon carbide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Halindintwali, Sylvain; Knoesen, D.; Julies, B.A.; Arendse, C.J.; Muller, T. [University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Gengler, Regis Y.N.; Rudolf, P.; Loosdrecht, P.H.M. van [Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen (Netherlands)

    2011-09-15

    Amorphous SiC:H thin films were grown by hot wire chemical vapour deposition from a SiH{sub 4}/CH{sub 4}/H{sub 2} mixture at a substrate temperature below 400 C. Thermal annealing in an argon environment up to 900 C shows that the films crystallize as {mu}c-Si:H and SiC with a porous microstructure that favours an oxidation process. By a combination of spectroscopic tools comprising Fourier transform infrared, Raman scattering and X-rays photoelectron spectroscopy we show that the films evolve from the amorphous SiH{sub x}/SiCH{sub 2} structure to nanocrystalline Si and SiC upon annealing at a temperature of 900 C. A strong RT photoluminescence peak of similar shape has been observed at around 420 nm in both as-deposited and annealed samples. Time-resolved luminescence measurements reveal that this peak is fast decaying with lifetimes ranging from 0.5 to {proportional_to}1.1 ns. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Conduction mechanism in amorphous InGaZnO thin film transistors

    NARCIS (Netherlands)

    Bhoolokam, A.; Nag, M.; Steudel, S.; Genoe, J.; Gelinck, G.; Kadashchuk, A.; Groeseneken, G.; Heremans, P.

    2016-01-01

    We validate a model which is a combination of multiple trapping and release and percolation model for describing the conduction mechanism in amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFT). We show that using just multiple trapping and release or percolation model is

  11. X-ray scattering of calcite thin films deposited by atomic layer deposition: Studies in air and in calcite saturated water solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hudak, Michael R.; Lerner, Allan [Earth and Environmental Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Grubbs, Robert K. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); Wang, Shanmin [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Zhang, Zhan; Karapetrova, Evguenia [Advance Photon Source, Argonne National Laboratory, 9700S Cass Ave, Argonne, IL 60439 (United States); Hickmott, Donald [Earth and Environmental Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Majewski, Jaroslaw, E-mail: jarek@lanl.gov [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2014-08-28

    Carbonates are one of the most abundant groups of minerals in earth systems and are important in many geological settings and industrial processes. Calcite (CaCO{sub 3}) thin films produced by atomic layer deposition offer a method to evaluate the surficial properties of carbonates as well as interactions at the carbonate–fluid interface. Using synchrotron X-ray reflectivity and X-ray diffraction, these films are observed to be porous, polycrystalline, and have crystallites oriented with the major (104) calcite cleavage plane parallel to the surface of the z-cut single crystal quartz substrate. An Al{sub 2}O{sub 3} buffer layer, present between quartz and the calcite film, does not affect the as-deposited film, but does influence how the films reorganize in contact with fluid. Without a buffer layer, calcite reorients its crystallites to have populations of (006) and (030) parallel to the substrate, while those with an Al{sub 2}O{sub 3} buffer layer become more amorphous. Amorphous films may represent an analog to amorphous calcium carbonate and provide insights into that material's thermophysical behavior. Due to a higher percentage of pore spaces available for fluid infiltration, films deposited at higher temperature make the calcite thin films more susceptible to amorphization. These films are chemically similar, but structurally dissimilar to bulk natural calcite. Nevertheless, they can be a complementary system to traditional single crystal X-ray surface scattering studies on carbonates, particularly for important but less common minerals, to evaluate mineral–fluid interfacial interactions. - Highlights: • Atomic layer deposition (ALD) used to produce calcite films. • Calcite film orientation and crystallinity depend on ALD parameters. • ALD calcite films can be both crystalline and amorphous. • Interaction of water with films can re-orient or amorphize the films. • ALD calcite films may be useful to study carbonate–fluid interfacial

  12. X-ray scattering of calcite thin films deposited by atomic layer deposition: Studies in air and in calcite saturated water solution

    International Nuclear Information System (INIS)

    Wang, Peng; Hudak, Michael R.; Lerner, Allan; Grubbs, Robert K.; Wang, Shanmin; Zhang, Zhan; Karapetrova, Evguenia; Hickmott, Donald; Majewski, Jaroslaw

    2014-01-01

    Carbonates are one of the most abundant groups of minerals in earth systems and are important in many geological settings and industrial processes. Calcite (CaCO 3 ) thin films produced by atomic layer deposition offer a method to evaluate the surficial properties of carbonates as well as interactions at the carbonate–fluid interface. Using synchrotron X-ray reflectivity and X-ray diffraction, these films are observed to be porous, polycrystalline, and have crystallites oriented with the major (104) calcite cleavage plane parallel to the surface of the z-cut single crystal quartz substrate. An Al 2 O 3 buffer layer, present between quartz and the calcite film, does not affect the as-deposited film, but does influence how the films reorganize in contact with fluid. Without a buffer layer, calcite reorients its crystallites to have populations of (006) and (030) parallel to the substrate, while those with an Al 2 O 3 buffer layer become more amorphous. Amorphous films may represent an analog to amorphous calcium carbonate and provide insights into that material's thermophysical behavior. Due to a higher percentage of pore spaces available for fluid infiltration, films deposited at higher temperature make the calcite thin films more susceptible to amorphization. These films are chemically similar, but structurally dissimilar to bulk natural calcite. Nevertheless, they can be a complementary system to traditional single crystal X-ray surface scattering studies on carbonates, particularly for important but less common minerals, to evaluate mineral–fluid interfacial interactions. - Highlights: • Atomic layer deposition (ALD) used to produce calcite films. • Calcite film orientation and crystallinity depend on ALD parameters. • ALD calcite films can be both crystalline and amorphous. • Interaction of water with films can re-orient or amorphize the films. • ALD calcite films may be useful to study carbonate–fluid interfacial interactions

  13. Cu incorporated amorphous diamond like carbon (DLC) composites: An efficient electron field emitter over a wide range of temperature

    Science.gov (United States)

    Ahmed, Sk Faruque; Alam, Md Shahbaz; Mukherjee, Nillohit

    2018-03-01

    The effect of temperature on the electron field emission properties of copper incorporated amorphous diamond like carbon (a-Cu:DLC) thin films have been reported. The a-Cu:DLC thin films have been deposited on indium tin oxide (ITO) coated glass and silicon substrate by the radio frequency sputtering process. The chemical composition of the films was investigated using X-ray photoelectron spectroscopy and the micro structure was established using high resolution transmission electron microscopy. The sp2 and sp3 bonding ratio in the a-Cu:DLC have been analyzed by the Fourier transformed infrared spectroscopy studies. The material showed excellent electron field emission properties; which was optimized by varying the copper atomic percentage and temperature of the films. It was found that the threshold field and effective emission barrier were reduced significantly by copper incorporation as well as temperature and a detailed explanation towards emission mechanism has been provided.

  14. Room temperature pulsed laser deposition of Si{sub x} C thin films in different compositions

    Energy Technology Data Exchange (ETDEWEB)

    Hanyecz, I.; Budai, J. [University of Szeged, Department of Optics and Quantum Electronics, P.O. Box 406, Szeged (Hungary); Oszko, A. [University of Szeged, Department of Solid State and Radiochemistry, P.O. Box 168, Szeged (Hungary); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, Budapest (Hungary); Toth, Z. [Research Group on Laser Physics of the Hungarian Academy of Sciences, P.O. Box 406, Szeged (Hungary)

    2010-09-15

    Amorphous silicon-carbon alloy films in different compositions were prepared by pulsed laser deposition from two-component targets containing pure silicon and carbon parts. The silicon-carbon ratio in the films was varied by adjusting the number of laser shots on the constituent silicon and carbon targets. The composition, optical properties, thickness, and bonding structure of the films were determined by backscattering spectrometry, spectroscopic ellipsometry, and X-ray photoelectron spectroscopy, respectively. Backscattering spectrometry data were used to determine the deposition rate of silicon and carbon. This enabled the calculation of the number of the shots onto each target to reach a predefined composition. As the film composition changed from carbon to silicon, it was shown that the microscopic and macroscopic properties of the films also changed from a diamond-like carbon phase to an amorphous silicon phase via graphite- and silicon-carbide-like composite. (orig.)

  15. Enhancement of Ti-containing hydrogenated carbon (Ti-C:H) films by high-power plasma-sputtering

    International Nuclear Information System (INIS)

    Gwo, Jyh; Chu, Chun-Lin; Tsai, Ming-Jui; Lee, Shyong

    2012-01-01

    Ti-containing amorphous hydrogenated carbon (Ti-C:H) thin films were deposited on stainless steel SS304 substrates by high-power pulsed magnetron sputtering (HPPMS) in an atmosphere of mixed Ar and C 2 H 2 gases using titanium metal as the cathodic material. The multilayer structure of the deposited film had a Ti-TiC-DLC gradient to improve adhesion and reduce residual stress. This study investigates the effects of substrate bias and target-to-substrate distance on the mechanical properties of Ti-C:H films. Film properties, including composition, morphology, microstructure, mechanical, and tribology, were examined by glow discharge spectroscopy (GDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and a nanoindenter and a pin-on-disk tribometer. Experiments revealed impressive results.

  16. Enhancement of Ti-containing hydrogenated carbon (Tisbnd C:H) films by high-power plasma-sputtering

    Science.gov (United States)

    Gwo, Jyh; Chu, Chun-Lin; Tsai, Ming-Jui; Lee, Shyong

    2012-02-01

    Ti-containing amorphous hydrogenated carbon (Tisbnd C:H) thin films were deposited on stainless steel SS304 substrates by high-power pulsed magnetron sputtering (HPPMS) in an atmosphere of mixed Ar and C2H2 gases using titanium metal as the cathodic material. The multilayer structure of the deposited film had a Tisbnd TiCsbnd DLC gradient to improve adhesion and reduce residual stress. This study investigates the effects of substrate bias and target-to-substrate distance on the mechanical properties of Tisbnd C:H films. Film properties, including composition, morphology, microstructure, mechanical, and tribology, were examined by glow discharge spectroscopy (GDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and a nanoindenter and a pin-on-disk tribometer. Experiments revealed impressive results.

  17. AC electrical conductivity in amorphous indium selenide thin films

    International Nuclear Information System (INIS)

    Di Giulio, H.; Rella, R.; Tepore, A.

    1987-01-01

    In order to obtain additional information about the nature of the conduction mechanism in amorphous InSe films results of an experimental study concerning the frequency and temperature dependence of the ac conductivity are reported. The measurements were performed on specimens of different thickness and different electrode contact areas. The results can be explained assuming that conduction occurs by phonon-assisted hopping between localized states near the Fermi level

  18. Effects of ZnO addition on electrical and structural properties of amorphous SnO2 thin films

    International Nuclear Information System (INIS)

    Ko, J.H.; Kim, I.H.; Kim, D.; Lee, K.S.; Lee, T.S.; Jeong, J.-H.; Cheong, B.; Baik, Y.J.; Kim, W.M.

    2006-01-01

    Amorphous Zn-Sn-O (ZTO) thin films with relative Zn contents (= [at.% Zn]/([at.% Zn] + [at.% Sn])) of 0, 0.08 and 0.27 were fabricated by co-sputtering of SnO 2 and ZnO targets at room temperature. Changes in structural, electrical and optical properties together with electron transport properties were examined upon post-annealing treatment in the temperature range from 200 to 600 deg. C in vacuum and in air. Characterization by XRD showed that an amorphous ZTO thin film crystallized at higher temperatures with increasing Zn content. Crystallized ZTO films with a relative Zn content of 0.27 might not contain a single SnO 2 phase which is observed in the films of the other compositions. Amorphous ZTO films showed decreasing electrical resistivities with increasing annealing temperature, having a minimum value of 1 x 10 - 3 Ω cm. Upon crystallization, the resistivities increased drastically, which was attributed to poor crystallinity of the crystallized films. All the ZTO films were found to be degenerate semiconductors with non-parabolic conduction bands having effective masses varying from 0.15 to 0.3 in the carrier concentration range of 6 x 10 18 to 2 x 10 2 cm - 3 . As for a ZTO film with a relative Zn content of 0.27, the degree of non-parabolicity was much lower compared with films of the other compositions, leading to a relatively stable mobility over a wide range of carrier concentration

  19. Development of amorphous carbon protective coatings on poly(vinyl)chloride

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Souza, Eduardo S. de; Moraes, Francine S. de; Marins, Nazir M.S.; Schreiner, Wido H.; Cruz, Nilson C.

    2010-01-01

    The great versatility of polymers has promoted their application in a series of ordinary situations. The development of specific devices from polymers, however, requires modifications to fit specific stipulations. In this work the surface properties of thin films grown onto polyvinylchloride (PVC) were investigated. Hydrogenated amorphous carbon films were deposited onto commercial PVC plates from acetylene and argon plasmas excited by radiofrequency (13.56 MHz, 70 W) power. The proportion of acetylene in the gas feed was varied against that of argon, keeping the total pressure constant at 2.5 Pa. Deposition time was 1800 s. Film elemental composition was analyzed by X-ray photoelectron spectroscopy, XPS. Water contact angle measurements were performed using the sessile drop technique. The root mean squared roughness was derived from 50 x 50 μm 2 surface topographic images, acquired by scanning probe microscopy. Nanoindentation and pin-on-disk techniques were employed on the determination of film hardness and sliding wear, respectively. Oxidation resistance was obtained through the etching rate of the samples in oxygen radiofrequency (1.3 Pa, 50 W) plasmas. From XPS analysis it was detected oxygen and nitrogen contamination in all the samples. It was also found that sp 3 /sp 2 ratio depends on the proportion of argon in the plasma. At lower argon concentrations, hardness, wear and oxidation resistances were all improved with respect to the uncoated PVC. In such conditions, the surface wettability is low indicating a moderate receptivity to water. This combination of properties, ascribed to a balance between the ion bombardment and deposition processes, is suitable for materials exposed to rigorous weathering conditions.

  20. Sputtering of amorphous carbon layers studied by laser induced fluorescence

    International Nuclear Information System (INIS)

    Pasch, E.

    1992-07-01

    In order to minimize the radiation losses, it is desirable to keep the plasmas in nuclear fusion devices free of high-Z-impurities. Therefore, the walls of TEXTOR and other tokamaks are covered with thin layers of amorphous carbon layers (a-C:H) or amorphous carbon/boron layers (a-C/B:H). The sputtering behaviour of these layers has been studied under bombardment by Ar + ions with energies of 1.5 keV and current densities of a few mA/cm 2 . Investigations of these coatings were carried out with the object to measure the velocity distribution of the sputtered atoms and the sputtered yields by laser induced fluorescence in the vacuum ultraviolet. (orig.)

  1. Convective heat transfer enhancement using Carbon nanofibers (CNFs): influence of amorphous carbon layer on heat transfer performance

    NARCIS (Netherlands)

    Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2013-01-01

    In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nano structures was achieved using catalytic

  2. Magnetron sputtered transparent conductive zinc-oxide stabilized amorphous indium oxide thin films on polyethylene terephthalate substrates at ambient temperature

    International Nuclear Information System (INIS)

    Yan, Y.; Zhang, X.-F.; Ding, Y.-T.

    2013-01-01

    Amorphous transparent conducting zinc-oxide stabilized indium oxide thin films, named amorphous indium zinc oxide (a-IZO), were deposited by direct current magnetron sputtering at ambient temperature on flexible polyethylene terephthalate substrates. It has been demonstrated that the electrical resistivity could attain as low as ∼ 5 × 10 −4 Ω cm, which was noticeably lower than amorphous indium tin oxide films prepared at the same condition, while the visible transmittance exceeded 84% with the refractive index of 1.85–2.00. In our experiments, introduction of oxygen gas appeared to be beneficial to the improvement of the transparency and electrical conductivity. Both free carrier absorption and indirect transition were observed and Burstein–Moss effect proved a-IZO to be a degenerated amorphous semiconductor. However, the linear relation between the optical band gap and the band tail width which usually observed in covalent amorphous semiconductor such as a-Si:H was not conserved. Besides, porosity could greatly determine the resistivity and optical constants for the thickness variation at this deposition condition. Furthermore, a broad photoluminescence peak around 510 nm was identified when more than 1.5 sccm oxygen was introduced. - Highlights: ► Highly conducting amorphous zinc-oxide stabilized indium oxide thin films were prepared. ► The films were fabricated on polyethylene terephthalate at ambient temperature. ► Introduction of oxygen can improve the transparency and electrical conductivity. ► The linear relation between optical band gap and band tail width was not conserved

  3. Growth of amorphous TeOx (2≤x≤3) thin film by radio frequency sputtering

    International Nuclear Information System (INIS)

    Dewan, Namrata; Gupta, Vinay; Sreenivas, K.; Katiyar, R. S.

    2007-01-01

    Thin films of Tellurium oxide TeO x over a wide range of x (2 to 3) were prepared by radio frequency diode sputtering at room temperature on corning glass and quartz substrate. The deposited films are amorphous in nature and IR spectroscopy reveals the formation of Te-O bond. X-ray photoelectron spectroscopy shows the variation in the stoichiometry of TeO x film from x=2 to 3 with an increase in oxygen percentage (25 to 100%) in processing sputtering gas composition. Raman spectroscopy depicts the formation of TeO 3 trigonal pyramid besides TeO 4 disphenoid in the amorphous TeO x film with increase in the value of x. The varying stoichiometry of TeO x thin film (x=2 to 3) was found to influence the optical, electrical, and elastic properties. The optical band gap of film increases from 3.8 to 4.2 eV with increasing x and is attributed to the decrease in density. The elastic constants (C 11 and C 44 ) of the deposited films are lower than the corresponding value reported for TeO 2 single crystal

  4. Optical characterisation of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Mellassi, K.; Chafik El Idrissi, M.; Chouiyakh, A.; Rjeb, A.; Barhdadi, A.

    2000-09-01

    The present work is devoted to the study of some optical properties of hydrogenated amorphous silicon (a-Si:H) thin films prepared by radio-frequency cathodic sputtering technique. It is essentially focused on investigating separately the effects of increasing partial hydrogen pressure during the deposition stage, and the effects of post deposition thermal annealing on the main optical parameters of the deposited layers (refraction index, optical gap Urbach energy, etc.). We show that low hydrogen pressures allow a saturation of the dangling bonds in the material, while high pressures lead to the creation of new defects. We also show that thermal annealing under moderate temperatures allows a good improvement of the structural quality of deposited films. (author)

  5. Spectroscopic ellipsometry characterization of amorphous and crystalline TiO{sub 2} thin films grown by atomic layer deposition at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Saha, D., E-mail: babaisps@rrcat.gov.in [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Ajimsha, R.S. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Rajiv, K.; Mukherjee, C. [Mechanical and Optical Support Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Gupta, M. [UGC-DAE Consortium, Indore Centre, Khandwa Road, Indore 452017 (India); Misra, P.; Kukreja, L.M. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-10-01

    Highlights: • Refractive index was found to be increased from amorphous to the nanocrystalline films. • Refractive index was found to be inversely proportional with growth per cycle. • Large-grained anatase films showed lower refractive indices than the amorphous films. • Roughness was taken into consideration due to the columnar growths of crystalline films. - Abstract: TiO{sub 2} thin films of widely different structural and morphological characteristics were grown on Si (1 0 0) substrates using Atomic Layer Deposition (ALD) by varying the substrate temperature (T{sub s}) in a wide range (50 °C ≤ T{sub s} ≤ 400 °C). Spectroscopic ellipsometry (SE) measurements were carried out to investigate the effect of growth temperature on the optical properties of the films. Measured SE data were analyzed by considering double layer optical model for the sample together with the single oscillator Tauc-Lorentz dispersion relation. Surface roughness was taken into consideration due to the columnar growths of grains in crystalline films. The refractive index was found to be increased from amorphous (T{sub s} ≤ 150 °C) to the nanocrystalline films (250{sup 0} < T{sub s} ≤ 400 °C). The pronounced surface roughening for the large-grained anatase film obtained at the amorphous to crystalline phase transformation temperature of 200 °C, impeded SE measurement. The dispersions of refractive indices below the interband absorption edge were found to be strongly correlated with the single oscillator Wemple–DiDomenico (WD) model. The increase in dispersion energy parameter in WD model from disordered amorphous to the more ordered nanocrystalline films was found to be associated with the increase in the film density and coordination number.

  6. Nano-Impact (Fatigue Characterization of As-Deposited Amorphous Nitinol Thin Film

    Directory of Open Access Journals (Sweden)

    Rehan Ahmed

    2012-08-01

    Full Text Available This paper presents nano-impact (low cycle fatigue behavior of as-deposited amorphous nitinol (TiNi thin film deposited on Si wafer. The nitinol film was 3.5 µm thick and was deposited by the sputtering process. Nano-impact tests were conducted to comprehend the localized fatigue performance and failure modes of thin film using a calibrated nano-indenter NanoTest™, equipped with standard diamond Berkovich and conical indenter in the load range of 0.5 mN to 100 mN. Each nano-impact test was conducted for a total of 1000 fatigue cycles. Depth sensing approach was adapted to understand the mechanisms of film failure. Based on the depth-time data and surface observations of films using atomic force microscope, it is concluded that the shape of the indenter test probe is critical in inducing the localized indentation stress and film failure. The measurement technique proposed in this paper can be used to optimize the design of nitinol thin films.

  7. RIR MAPLE procedure for deposition of carbon rich Si/C/H films

    International Nuclear Information System (INIS)

    Dřínek, Vladislav; Strašák, Tomáš; Novotný, Filip; Fajgar, Radek; Bastl, Zdeněk

    2014-01-01

    We applied the resonant infrared matrix assisted pulsed laser evaporation (RIR MAPLE) technique to demonstrate a new approach to a controlled deposition of carbon rich amorphous Si/C/H film. In absence of radicals and accelerated species commonly generated in PECVD and sputtering setups, the RIR MAPLE method does not decompose precursor molecules. Moreover, unlike the standard MAPLE procedure, in which solvent molecules absorb laser energy from excimer or near infrared lasers, we applied the pulsed TEA CO 2 laser to excite the dendrimer precursor molecules in a frozen target. In this manner we achieved just cross-linking of the starting precursor on substrates and the deposition of carbon rich Si/C/H film. The film was analyzed by Fourier Transformed Infrared (FTIR), UV/VIS, Raman and X-ray Photoelectron (XPS) spectroscopy and Atomic Force Microscopy (AFM) technique. According to analyses the film retained the precursor elemental composition free of graphitic (sp 2 ) clusters. In course of reaction only the peripheral allyl groups containing C=C bonds were opened to achieve cross-linking. Whereas annealing to 300 °C was necessary for the elimination of =C–H 1 , 2 bonds in the films prepared at 200 °C, those bonds vanished completely for the films prepared at substrate temperature 255 °C. The film posseses a smooth surface with root mean square (RMS) parameter up to 10 nm within scanned distance 2.5 μm.

  8. RIR MAPLE procedure for deposition of carbon rich Si/C/H films

    Energy Technology Data Exchange (ETDEWEB)

    Dřínek, Vladislav, E-mail: drinek@icpf.cas.cz [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Rozvojova 135, 165 02 Prague 6 (Czech Republic); Strašák, Tomáš [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Rozvojova 135, 165 02 Prague 6 (Czech Republic); Novotný, Filip [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 115 19 Prague (Czech Republic); Fajgar, Radek [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Rozvojova 135, 165 02 Prague 6 (Czech Republic); Bastl, Zdeněk [J. Heyrovsky Institute of Physical Chemistry of the ASCR, v. v. i., Dolejškova 2155/3, 182 23 Prague 8 (Czech Republic)

    2014-02-15

    We applied the resonant infrared matrix assisted pulsed laser evaporation (RIR MAPLE) technique to demonstrate a new approach to a controlled deposition of carbon rich amorphous Si/C/H film. In absence of radicals and accelerated species commonly generated in PECVD and sputtering setups, the RIR MAPLE method does not decompose precursor molecules. Moreover, unlike the standard MAPLE procedure, in which solvent molecules absorb laser energy from excimer or near infrared lasers, we applied the pulsed TEA CO{sub 2} laser to excite the dendrimer precursor molecules in a frozen target. In this manner we achieved just cross-linking of the starting precursor on substrates and the deposition of carbon rich Si/C/H film. The film was analyzed by Fourier Transformed Infrared (FTIR), UV/VIS, Raman and X-ray Photoelectron (XPS) spectroscopy and Atomic Force Microscopy (AFM) technique. According to analyses the film retained the precursor elemental composition free of graphitic (sp{sup 2}) clusters. In course of reaction only the peripheral allyl groups containing C=C bonds were opened to achieve cross-linking. Whereas annealing to 300 °C was necessary for the elimination of =C–H{sub 1}, {sub 2} bonds in the films prepared at 200 °C, those bonds vanished completely for the films prepared at substrate temperature 255 °C. The film posseses a smooth surface with root mean square (RMS) parameter up to 10 nm within scanned distance 2.5 μm.

  9. Charge transport in amorphous InGaZnO thin-film transistors

    NARCIS (Netherlands)

    Germs, W.C.; Adriaans, W.H.; Tripathi, A.K.; Roelofs, W.S.C.; Cobb, B.; Janssen, R.A.J.; Gelinck, G.H.; Kemerink, M.

    2012-01-01

    We investigate the mechanism of charge transport in indium gallium zinc oxide (a-IGZO), an amorphous metal-oxide semiconductor. We measured the field-effect mobility and the Seebeck coefficient (S=ΔV/ΔT) of a-IGZO in thin-film transistors as a function of charge-carrier density for different

  10. Charge transport in amorphous InGaZnO thin film transistors

    NARCIS (Netherlands)

    Germs, W.C.; Adriaans, W.H.; Tripathi, A.K.; Roelofs, W.S.C.; Cobb, B.; Janssen, R.A.J.; Gelinck, G.H.; Kemerink, M.

    2012-01-01

    We investigate the mechanism of charge transport in indium gallium zinc oxide (a-IGZO), an amorphous metal-oxide semiconductor. We measured the field-effect mobility and the Seebeck coefficient (S=¿V/¿T) of a-IGZO in thin-film transistors as a function of charge-carrier density for different

  11. 4.0-nm-thick amorphous Nb–Ni film as a conducting diffusion barrier layer for integrating ferroelectric capacitor on Si

    International Nuclear Information System (INIS)

    Dai, X.H.; Guo, J.X.; Zhang, L.; Jia, D.M.; Qi, C.G.; Zhou, Y.; Li, X.H.; Shi, J.B.; Fu, Y.J.; Wang, Y.L.; Lou, J.Z.; Ma, L.X.; Zhao, H.D.; Liu, B.T.

    2015-01-01

    Highlights: • 4-nm-thick amorphous Nb–Ni film is first used as the conducting barrier layer. • No obvious interdiffusion/reaction can be found from the LSCO/PZT/LSCO/Nb–Ni/Si. • The LSCO/PZT/LSCO capacitor, measured at 5 V, possesses very good properties. • Ultrathin amorphous Nb–Ni film is ideal to fabricate silicon-based FRAM. - Abstract: We have successfully integrated La 0.5 Sr 0.5 CoO 3 /PbZr 0.4 Ti 0.6 O 3 /La 0.5 Sr 0.5 CoO 3 (LSCO/PZT/LSCO) capacitors on silicon substrate using a ∼4.0-nm-thick amorphous Nb–Ni film as the conducting diffusion barrier layer. Transmission electron microscopy technique confirms that the Nb–Ni film is still amorphous after fabrication of the capacitors, and the interfaces related to Nb–Ni are clean and sharp without any findable interdiffusion/reaction. The LSCO/PZT/LSCO capacitor, measured at 5 V, possesses very good properties, such as large remanent polarization of ∼22.1 μC/cm 2 , small coercive voltage of ∼1.27 V, good fatigue-resistance, and small pulse width dependence, implying that ultrathin amorphous Nb–Ni film is ideal as the conducting diffusion barrier layer to fabricate high-density silicon-based ferroelectric random access memories

  12. 4.0-nm-thick amorphous Nb–Ni film as a conducting diffusion barrier layer for integrating ferroelectric capacitor on Si

    Energy Technology Data Exchange (ETDEWEB)

    Dai, X.H. [Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University, Hebei 071002 (China); College of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401 (China); Guo, J.X.; Zhang, L.; Jia, D.M.; Qi, C.G.; Zhou, Y.; Li, X.H.; Shi, J.B.; Fu, Y.J.; Wang, Y.L.; Lou, J.Z. [Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University, Hebei 071002 (China); Ma, L.X. [Department of Physics, Blinn College, Bryan, TX 77805 (United States); Zhao, H.D. [College of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401 (China); Liu, B.T., E-mail: btliu@hbu.cn [Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University, Hebei 071002 (China)

    2015-10-05

    Highlights: • 4-nm-thick amorphous Nb–Ni film is first used as the conducting barrier layer. • No obvious interdiffusion/reaction can be found from the LSCO/PZT/LSCO/Nb–Ni/Si. • The LSCO/PZT/LSCO capacitor, measured at 5 V, possesses very good properties. • Ultrathin amorphous Nb–Ni film is ideal to fabricate silicon-based FRAM. - Abstract: We have successfully integrated La{sub 0.5}Sr{sub 0.5}CoO{sub 3}/PbZr{sub 0.4}Ti{sub 0.6}O{sub 3}/La{sub 0.5}Sr{sub 0.5}CoO{sub 3} (LSCO/PZT/LSCO) capacitors on silicon substrate using a ∼4.0-nm-thick amorphous Nb–Ni film as the conducting diffusion barrier layer. Transmission electron microscopy technique confirms that the Nb–Ni film is still amorphous after fabrication of the capacitors, and the interfaces related to Nb–Ni are clean and sharp without any findable interdiffusion/reaction. The LSCO/PZT/LSCO capacitor, measured at 5 V, possesses very good properties, such as large remanent polarization of ∼22.1 μC/cm{sup 2}, small coercive voltage of ∼1.27 V, good fatigue-resistance, and small pulse width dependence, implying that ultrathin amorphous Nb–Ni film is ideal as the conducting diffusion barrier layer to fabricate high-density silicon-based ferroelectric random access memories.

  13. Amorphous TiO2 doped with carbon for visible light photodegradation of rhodamine B and 4-chlorophenol

    International Nuclear Information System (INIS)

    Shao, Penghui; Tian, Jiayu; Zhao, Zhiwei; Shi, Wenxin; Gao, Shanshan; Cui, Fuyi

    2015-01-01

    Graphical abstract: - Highlights: • Amorphous TiO 2 doped with carbon is prepared as a visible photocatalyst. • RhB and 4-chlorophenol are decomposed effectively by carbon-doped amorphous TiO 2 . • The mechanism for visible light photocatalysis is discussed detailedly. - Abstract: Visible light photocatalytic activity of amorphous TiO 2 doped with carbon is prepared by a facile sol-gel route for the first time. The most active sample with mesostructure of amorphous phase, high surface area (273 m 2 g −1 ) and large pore volume (0.33 cm 3 g −1 ) is identified by X-ray diffractometer, Raman spectrometer, transmission electron microscope and N 2 adsorption–desorption isotherms. In addition, the most active sample is characterized by Fourier transform-infrared spectrometer, X-ray photoelectron spectrometer, UV–vis diffuse reflectance spectrometer and luminescence spectrometer. The results show that the most active sample with oxygenic groups has a narrower bandgap and lower recombination of electron–hole, due to the carbon doping and phase of amorphous. Effective photodegradation capability and stability of rhodamine B and colorless 4-chlorophenol are verified by photocatalytic tests under visible light irradiation. A possible mechanism of amorphous TiO 2 doped with carbon for visible light photocatalysis is proposed. The findings of this paper will provide new insights to design visible light-induced photocatalyst based on amorphous TiO 2 for organic removal

  14. Residual stress change by thermal annealing in amorphous Sm-Fe-B thin films

    International Nuclear Information System (INIS)

    Na, S.M.; Suh, S.J.; Kim, H.J.; Lim, S.H.

    2002-01-01

    The change in the residual stress and its effect on mechanical bending and magnetic properties of sputtered amorphous Sm-Fe-B thin films are investigated as a function of annealing temperature. Two stress components of intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film are used to explain the stress state in as-deposited thin films, and the annealing temperature dependence of residual stress, mechanical bending and magnetic properties

  15. Amorphous calcium carbonate particles form coral skeletons

    Science.gov (United States)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.; Gilbert, Pupa U. P. A.

    2017-09-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  16. Preparation and characterization of amorphous manganese sulfide thin films by SILAR method

    International Nuclear Information System (INIS)

    Pathan, H.M.; Kale, S.S.; Lokhande, C.D.; Han, Sung-Hwan; Joo, Oh-Shim

    2007-01-01

    Manganese sulfide thin films were deposited by a simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method using manganese acetate as a manganese and sodium sulfide as sulfide ion sources, respectively. Manganese sulfide films were characterized for their structural, surface morphological and optical properties by means of X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques. The as-deposited film on glass substrate was amorphous. The optical band gap of the film was found to be thickness dependent. As thickness increases optical band gap was found to be increase. The water angle contact was found to be 34 o , suggesting hydrophilic nature of manganese sulfide thin films. The presence of Mn and S in thin film was confirmed by energy dispersive X-ray analysis

  17. Characterization of amorphous multilayered ZnO-SnO2 heterostructure thin films and their field effect electronic properties

    International Nuclear Information System (INIS)

    Lee, Su-Jae; Hwang, Chi-Sun; Pi, Jae-Eun; Yang, Jong-Heon; Oh, Himchan; Cho, Sung Haeng; Cho, Kyoung-Ik; Chu, Hye Yong

    2014-01-01

    Multilayered ZnO-SnO 2 heterostructure thin films were produced using pulsed laser ablation of pie-shaped ZnO-SnO 2 oxides target, and their structural and field effect electronic transport properties were investigated as a function of the thickness of the ZnO and SnO 2 layers. The films have an amorphous multilayered heterostructure composed of the periodic stacking of the ZnO and SnO 2 layers. The field effect electronic properties of amorphous multilayered ZnO-SnO 2 heterostructure thin film transistors (TFTs) are highly dependent on the thickness of the ZnO and SnO 2 layers. The highest electron mobility of 37 cm 2 /V s, a low subthreshold swing of a 0.19 V/decade, a threshold voltage of 0.13 V, and a high drain current on-to-off ratio of ∼10 10 obtained for the amorphous multilayered ZnO(1.5 nm)-SnO 2 (1.5 nm) heterostructure TFTs. These results are presumed to be due to the unique electronic structure of an amorphous multilayered ZnO-SnO 2 heterostructure film consisting of ZnO, SnO 2 , and ZnO-SnO 2 interface layers

  18. Crystallinity, etchability, electrical and mechanical properties of Ga doped amorphous indium tin oxide thin films deposited by direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Hyun-Jun; Song, Pung-Keun

    2014-01-01

    Indium tin oxide (ITO) and Ga-doped ITO (ITO:Ga) films were deposited on glass and polyimide (PI) substrates by direct current (DC) magnetron sputtering using different ITO:Ga targets (doped-Ga: 0, 0.1 and 2.9 wt.%). The films were deposited with a thickness of 50 nm and then post-annealed at various temperatures (room temperature-250 °C) in a vacuum chamber for 30 min. The amorphous ITO:Ga (0.1 wt.% Ga) films post-annealed at 220 °C exhibited relatively low resistivity (4.622x10 −4 Ω cm), indicating that the crystallinity of the ITO:Ga films decreased with increasing Ga content. In addition, the amorphous ITO:Ga films showed a better surface morphology, etchability and mechanical properties than the ITO films. - Highlights: • The Ga doped indium tin oxide (ITO) films crystallized at higher temperatures than the ITO films. • The amorphisation of ITO films increases with increasing Ga content. • Similar resistivity was observed between crystalline ITO and amorphous Ga doped ITO films. • Etching property of ITO film was improved with increasing Ga content

  19. Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique

    International Nuclear Information System (INIS)

    Abdel Rafea, M; Roushdy, N

    2009-01-01

    Amorphous copper oxide films were deposited using the SILAR technique. Both Cu 2 O and CuO crystallographic phases exist in deposited and annealed films. Crystallization and growth processes by annealing at temperatures up to 823 K form grains with nano- and micro-spherical shapes. The calculated crystallite size from the XRD measurement was found to be in the range 14-21 nm while nano-spheres in the diameter range 50-100 nm were observed by SEM micrographs. The band gap for amorphous film was found to be 2.3 eV which increased slowly to 2.4 eV by annealing the film at 373 K. This was explained by defect redistribution in amorphous films. Annealing in the temperature range 373-673 K decreased the band gap gradually to 1.85 eV. The decrease of the band gap with annealing temperature in the range 373-673 K agrees well with the Brus model of the energy gap confinement effect in nanostructured semiconducting materials. Annealing in the temperature range 673-823 K decreases the band gap slowly to 1.7 eV due to the smaller contribution of the confinement effect. Below 573 K, Cu 2 O is the most probable crystalline phase in the film, while Cu 2 O and CuO crystalline phases may coexist at annealing temperatures above 573 K due to further oxidation of Cu 2 O. A wider transmittance spectral window in the visible region was obtained by controlling the annealing conditions of the amorphous copper oxide film and its applicability to the window layer of solar cell was suggested.

  20. Dry Etching Characteristics of Amorphous Indium-Gallium-Zinc-Oxide Thin Films

    International Nuclear Information System (INIS)

    Zheng Yanbin; Li Guang; Wang Wenlong; Li Xiuchang; Jiang Zhigang

    2012-01-01

    Amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) backplane technology is the best candidate for flat panel displays (FPDs). In this paper, a-IGZO TFT structures are described. The effects of etch parameters (rf power, dc-bias voltage and gas pressure) on the etch rate and etch profile are discussed. Three kinds of gas mixtures are compared in the dry etching process of a-IGZO thin films. Lastly, three problems are pointed out that need to be addressed in the dry etching process of a-IGZO TFTs. (plasma technology)

  1. Room temperature photoluminescence spectrum modeling of hydrogenated amorphous silicon carbide thin films by a joint density of tail states approach and its application to plasma deposited hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Sel, Kıvanç; Güneş, İbrahim

    2012-01-01

    Room temperature photoluminescence (PL) spectrum of hydrogenated amorphous silicon carbide (a-SiC x :H) thin films was modeled by a joint density of tail states approach. In the frame of these analyses, the density of tail states was defined in terms of empirical Gaussian functions for conduction and valance bands. The PL spectrum was represented in terms of an integral of joint density of states functions and Fermi distribution function. The analyses were performed for various values of energy band gap, Fermi energy and disorder parameter, which is a parameter that represents the width of the energy band tails. Finally, the model was applied to the measured room temperature PL spectra of a-SiC x :H thin films deposited by plasma enhanced chemical vapor deposition system, with various carbon contents, which were determined by X-ray photoelectron spectroscopy measurements. The energy band gap and disorder parameters of the conduction and valance band tails were determined and compared with the optical energies and Urbach energies, obtained by UV–Visible transmittance measurements. As a result of the analyses, it was observed that the proposed model sufficiently represents the room temperature PL spectra of a-SiC x :H thin films. - Highlights: ► Photoluminescence spectra (PL) of the films were modeled. ► In the model, joint density of tail states and Fermi distribution function are used. ► Various values of energy band gap, Fermi energy and disorder parameter are applied. ► The model was applied to the measured PL of the films. ► The proposed model represented the room temperature PL spectrum of the films.

  2. Characterization of carbon nanotubes grown on Fe70Pd30 film

    International Nuclear Information System (INIS)

    Khan, Zishan H.; Islam, S.S.; Kung, S.C.; Perng, T.P.; Khan, Samina; Tripathi, K.N.; Agarwal, Monika; Zulfequar, M.; Husain, M.

    2006-01-01

    Carbon nanotubes have been synthesized by a LPCVD on nanocrystalline Fe-Pd film. CNTs are grown for 30min and 1h respectively. From the SEM images, the diameter of these nanotubes varies from 40-80nm and the length is several micro-meter approximately. TEM observations suggest that the CNTs are multi-walled and the structure changes from ordinary geometry of CNTs to bamboo shaped. We have observed sharp G and D bands in the Raman spectra of these carbon nanotubes. Higher D-band is observed for the carbon nanotubes grown for longer time (1h), showing that these nanotubes contain more amorphous carbon. The field emission measurements for these CNTs are also performed. For CNTs grown for longer time (1h), a superior turn-on field of 4.88V/μm (when the current density achieves 10μA/cm 2 ) is obtained and a current density of 29.36mA/cm 2 can be generated at 9.59V/μm

  3. Specific heat of amorphous 3He films and confined liquid 3He

    International Nuclear Information System (INIS)

    Golov, A.; Pobell, F.

    1995-01-01

    We have measured the heat capacities of 3 He films and liquid 3 He in porous Vycor glass at 10 to 600 mK. With increasing the film thickness front 1 to 3 atomic layers , the specific heat evolves gradually from that typical to solid to that of liquid 3 He. At about 2 atomic layers, however, its low-temperature part is nearly temperature-independent; we interpret this as a result of gradual freezing of spins in an amorphous solid 3 He film with decreasing the temperature. The contribution of liquid 3 He in the center of the Vycor pores can be described as the specific heat of bulk liquid 3 He at corresponding pressures in the range 0 to 28 bar. The thickness of amorphous solid on the pore walls increases with external pressure roughly linearly. Preplating the walls with 4 He allows to determine the positions of 3 He atoms contributing to the surface specific heat at 10 to 50 mK. In addition, the contribution from the specific heat of 3 He- 4 He mixing at 100 to 600 mK is discussed as a function of pressure and amount of 4 He

  4. Charge storage characteristics and tunneling mechanism of amorphous Ge-doped HfO{sub x} films

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, X.Y.; Zhang, S.Y.; Zhang, T.; Wang, R.X.; Li, L.T.; Zhang, Y. [Southwest University, School of Physical Science and Technology, Chongqing (China); Dai, J.Y. [The Hong Kong Polytechnic University, Department of Applied Physics, Hong Kong (China)

    2016-09-15

    Amorphous Ge-doped HfO{sub x} films have been deposited on p-Si(100) substrates by means of RF magnetron sputtering. Microstructural investigations reveal the partial oxidation of doped Ge atoms in the amorphous HfO{sub x} matrix and the existence of HfSiO{sub x} interfacial layer. Capacitance-voltage hysteresis of the Ag-/Ge-doped HfO{sub x}/Si/Ag memory capacitor exhibits a memory window of 3.15 V which can maintain for >5 x 10{sup 4} cycles. Current-voltage characteristics reveal that Poole-Frenkel tunneling is responsible for electron transport in the Ge-doped HfO{sub x} film. (orig.)

  5. Tuning the optoelectronic properties of amorphous MoOx films by reactive sputtering

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; Fabrim, Zacarias Eduardo; Ahmadpour, Mehrad

    2015-01-01

    In this letter, we report on the effect of oxygen partial pressure and sputtering power on amorphous DC-sputtered MoOx films. We observe abrupt changes in the optoelectronic properties of the reported films by increasing the oxygen partial pressure from 1.00 ? 10?3 mbar to 1.37 ? 10?3 mbar during...... significantly the microstructure of the studied films. The presence of states within the band gap due to the lack of oxygen is the most probable mechanism for generat- ing a change in electrical conductivity as well as optical absorption in DC-sputtered MoOx. The large tuning range of the optoelectronic...... properties in these films holds strong promise for their implementation in optoelectronic devices....

  6. ZnTe Amorphous Semiconductor Nanowires Array Electrodeposited into Polycarbonate Membrane Thin Films

    International Nuclear Information System (INIS)

    Ohgai, T; Ikeda, T; Ohta, J

    2013-01-01

    ZnTe amorphous semiconductor nanowires array was electrodeposited into the nanochannels of ion-track etched polycarbonate membrane thin films from acidic aqueous solution at 313 K. ZnTe electrodeposits with Zn-rich composition was obtained over the wide range of cathode potential from −0.8 V to −1.1 V and the growth rate of ZnTe amorphous nanowires was around 3 nm.sec −1 at the cathode potential of −0.8 V. Cylindrical shape of the nanowires was precisely transferred from the nanochannels and the aspect ratio reached up to ca. 40. ZnTe amorphous phase electrodeposited at 313 K was crystallized by annealing at 683 K and the band gap energy of ZnTe crystalline phase reached up to ca. 2.13 eV.

  7. Plasma-deposited a-C(N) H films

    CERN Document Server

    Franceschini, D E

    2000-01-01

    The growth behaviour, film structure and mechanical properties of plasma-deposited amorphous hydrogenated carbon-nitrogen films are shortly reviewed. The effect of nitrogen-containing gas addition to the deposition to the hydrocarbon atmospheres used is discussed, considering the modifications observed in the chemical composition growth kinetics, carbon atom hybridisation and chemical bonding arrangements of a-C(N):H films. The overall structure behaviour is correlated to the variation of the mechanical properties.

  8. Protolytic carbon film technology

    Energy Technology Data Exchange (ETDEWEB)

    Renschler, C.L.; White, C.A.

    1996-04-01

    This paper presents a technique for the deposition of polyacrylonitrile (PAN) on virtually any surface allowing carbon film formation with only the caveat that the substrate must withstand carbonization temperatures of at least 600 degrees centigrade. The influence of processing conditions upon the structure and properties of the carbonized film is discussed. Electrical conductivity, microstructure, and morphology control are also described.

  9. Role of nucleation in nanodiamond film growth

    International Nuclear Information System (INIS)

    Lifshitz, Y.; Lee, C.H.; Wu, Y.; Zhang, W.J.; Bello, I.; Lee, S.T.

    2006-01-01

    Nanodiamond films were deposited using different microwave plasma chemical vapor deposition schemes following several nucleation pretreatment methods. The nucleation efficiency and the films structure were investigated using scanning and transmission electron microscopy and Raman spectroscopy. C 2 dimer growth (CH 4 and H 2 in 90% Ar) cannot nucleate diamond and works only on existing diamond surfaces. The methyl radical process (up to 20% CH 4 in H 2 ) allows some nucleation probability on appropriate substrates. Prolonged bias enhanced nucleation initiates both diamond nucleation and growth. C 2 dimer growth results in pure nanodiamond free of amorphous carbon, while prolonged bias enhanced nucleation forms an amorphous carbon/nanodiamond composite

  10. The bonding of protective films of amorphic diamond to titanium

    Science.gov (United States)

    Collins, C. B.; Davanloo, F.; Lee, T. J.; Jander, D. R.; You, J. H.; Park, H.; Pivin, J. C.

    1992-04-01

    Films of amorphic diamond can be deposited from laser plasma ions without the use of catalysts such as hydrogen or fluorine. Prepared without columnar patterns of growth, the layers of this material have been reported to have ``bulk'' values of mechanical properties that have suggested their usage as protective coatings for metals. Described here is a study of the bonding and properties realized in one such example, the deposition of amorphic diamond on titanium. Measurements with Rutherford backscattering spectrometry and transmission electron microscopy showed that the diamond coatings deposited from laser plasmas were chemically bonded to Ti substrates in 100-200-Å-thick interfacial layers containing some crystalline precipitates of TiC. Resistance to wear was estimated with a modified sand blaster and in all cases the coating was worn away without any rupture or deterioration of the bonding layer. Such wear was greatly reduced and lifetimes of the coated samples were increased by a factor of better than 300 with only 2.7 μm of amorphic diamond.

  11. XPS study of the ultrathin a-C:H films deposited onto ion beam nitrided AISI 316 steel

    International Nuclear Information System (INIS)

    Meskinis, S.; Andrulevicius, M.; Kopustinskas, V.; Tamulevicius, S.

    2005-01-01

    Effects of the steel surface treatment by nitrogen ion beam and subsequent deposition of the diamond-like carbon (hydrogenated amorphous carbon (a-C:H) and nitrogen doped hydrogenated amorphous carbon (a-CN x :H)) films were investigated by means of the X-ray photoelectron spectroscopy (XPS). Experimental results show that nitrogen ion beam treatment of the AISI 316 steel surface even at room temperature results in the formation of the Cr and Fe nitrides. Replacement of the respective metal oxides by the nitrides takes place. Formation of the C-N bonds was observed for both ultrathin a-C:H and ultrathin a-CN x :H layers deposited onto the nitrided steel. Some Fe and/or Cr nitrides still were presented at the interface after the film deposition, too. Increased adhesion between the steel substrate and hydrogenated amorphous carbon layer after the ion beam nitridation was explained by three main factors. The first two is steel surface deoxidisation/passivation by nitrogen as a result of the ion beam treatment. The third one is carbon nitride formation at the nitrided steel-hydrogenated amorphous carbon (or a-CN x :H) film interface

  12. Effect of deposition parameter on hardness of amorphous carbon film prepared by plasma immersion ion implantation using C2H2

    International Nuclear Information System (INIS)

    Mitsuo, A.; Uchida, S.; Morikawa, K.; Kawaguchi, M.; Shiotani, K.; Suzuki, H.

    2007-01-01

    Carbon films were deposited on a cemented carbide substrate and silicon wafer at various bias voltages, acetylene (C 2 H 2 ) pressures and process times by plasma immersion ion implantation (PIII). In order to investigate the substrate temperature, the tool steel substrate was also simultaneously treated. The final substrate temperature was estimated from the hardness of the tool steel substrate. The surface and cross-sectional morphology of the deposited films were observed using a scanning electron microscope (SEM). Depth profiles of the carbon were obtained by Auger electron spectroscopy (AES). Raman spectroscopy was employed for the structural evaluation of the films. The hardness of the deposited films was measured using a nano-indenter with the maximum load of 0.5 mN. A variety of film hardnesses between 10 to 24 GPa was obtained. The hardness of the carbon films decreased with the increasing bias voltage, C 2 H 2 pressure and process time, although the intensity ratio of the disordered peak to graphitic peak in the Raman spectrum increased. It was considered that the decrease in the film hardness was caused by a stress reduction accompanied by a heating effect during the process as each PIII process parameter significantly influenced the substrate temperature

  13. Diagnostics of capacitively-coupled hydrocarbon plasmas for deposition of diamond-like carbon films using quadrupole mass spectrometry and Langmuir probe

    Science.gov (United States)

    Oda, Akinori; Fukai, Shun; Kousaka, Hiroyuki; Ohta, Takayuki

    2015-09-01

    Diamond-like carbon (DLC) films are the hydrogenated amorphous carbon films, which contains a mixture of sp2- and sp3-bonded carbon. The DLC films have been widely used for various applications, such as automotive, semiconductors, medical devices, since have excellent material properties in lower friction, higher chemical stability, higher hardness, higher wear resistance. Until now, numerous investigations on the DLC films using plasma assisted chemical vapor deposition have been done. For precise control of coating technique of DLC films, it is enormously important to clarify the fundamental properties in hydrocarbon plasmas, as a source of hydrocarbon ions and radicals. In this paper, the fundamental properties in a low pressure radio-frequency hydrocarbon (Ar/CH4 (1 %) gas mixture) plasmas have been diagnosed using a quadrupole mass spectrometer (HIDEN ANARYTICAL Ltd., EQP-300) and Langmuir probe system (HIDEN ANARYTICAL Ltd., ESPion). This work was partly supported by KAKENHI (No.26420247), and a ``Grant for Advanced Industrial Technology Development (No.11B06004d)'' in 2011 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

  14. Characteristics of diamond – like carbon(DLC film deposited by PACVD process

    Directory of Open Access Journals (Sweden)

    Krzysztof Lukaszkowicz

    2016-10-01

    Full Text Available Diamond – like carbon (DLC film is promising materials for many technical and engineering applications. DLC films are used in many different industries for example: in medicine, in electronics, in optics and the automotive industry. They have excellent tribological properties (low friction coefficient, chemical inertness and high mechanical hardness. This paper provides an analysis of the microstructure, mechanical and tribological properties of DLC films. In the study of the coating used several surface sensitive techniques and methods, i.e. High Resolution Transmission Electron Microscopy (HRTEM, Scanning Electron Microscopy (SEM, Raman spectroscopy and tribological tests like ball-on-disc. HRTEM investigation shows an amorphous character of DLC layer. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.02-0.03. The investigated coating reveals high wear resistance. The coating demonstrated a good adhesion to the substrate.

  15. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Science.gov (United States)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  16. Grazing incidence X-ray absorption characterization of amorphous Zn-Sn-O thin film

    Science.gov (United States)

    Moffitt, S. L.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2016-05-01

    We report a surface structure study of an amorphous Zn-Sn-O (a-ZTO) transparent conducting film using the grazing incidence X-ray absorption spectroscopy technique. By setting the measuring angles far below the critical angle at which the total external reflection occurs, the details of the surface structure of a film or bulk can be successfully accessed. The results show that unlike in the film where Zn is severely under coordinated (N < 4), it is fully coordinated (N = 4) near the surface while the coordination number around Sn is slightly smaller near the surface than in the film. Despite a 30% Zn doping, the local structure in the film is rutile-like.

  17. Heat capacity of amorphous and disordered Nb3Ge thin films

    International Nuclear Information System (INIS)

    Rao, N.A.H.K.

    1979-06-01

    Heat capacity measurements on 1000 to 1500A thick amorphous Nb 3 Ge and granular Al films have been carried out using an ac technique. The major goal of the experiment was to study the effect of thermal fluctuations, both above and below the superconducting transition temperature T/sub c/, in dirty, short meanfree path materials

  18. Polyamorphism and substructure of short-range order in amorphous boron films

    International Nuclear Information System (INIS)

    Palatnik, L.S.; Nechitajlo, A.A.; Koz'ma, A.A.

    1981-01-01

    The structure and substructure of boron amorphous films are studied in detail. Amorphous condensate of Bsup(a) boron is built of the same (but only disorientedly located) 12 B icosahedrons as boron crystalline modifications: B 105 -equilibrium β-rhombic, metastable: B 50 -tetragonal, B 12 -α-rhombohedral Coordination number for Bsup(a) (Z 1 =6.4) is lower than in B 105 (Z 1 =6.6) but higher than in B 50 modification (Z 1 =6.1). In crystalline modifications B 105 , B 50 , B 12 coordination numbers ω in first coordination spheres of icosahedrons are equal to ν 105 =6+4.6=10.6; ν 50 =10+3=14; ν 12 =6 respectively. Both amorphous modifications of boron Bsub(1)sup(a) and Bsub(15)sup(a) are analogs to B 50 in respect of the short-range order of icosahedron location. The difference between them is in ''substructure'' of short-range order: part of boron atoms (approximately 12%) do not occupy the vertices (so that vacancies appear) and enter the emptinesses between icosahedrons. In other words, the structure B 50 is the model basis of both amorphous phases [ru

  19. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  20. Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix.

    Science.gov (United States)

    Grabowski, Christopher A; Fillery, Scott P; Westing, Nicholas M; Chi, Changzai; Meth, Jeffrey S; Durstock, Michael F; Vaia, Richard A

    2013-06-26

    The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic-polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure-performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdown-field exclusion and agglomeration-have been mitigated in this experiment to focus on what impact the polymer and polymer-nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5-15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.

  1. Dissociation of carbon dioxide and creation of carbon particles and films at room temperature

    Science.gov (United States)

    Fukuda, Takahiro; Maekawa, Toru; Hasumura, Takashi; Rantonen, Nyrki; Ishii, Koji; Nakajima, Yoshikata; Hanajiri, Tatsuro; Yoshida, Yoshikazu; Whitby, Raymond; Mikhalovsky, Sergey

    2007-09-01

    As fluids approach their gas-liquid critical points, the physical properties such as the specific heat and compressibility diverge due to the formation of large molecular clusters. Incident light cannot penetrate near-critical fluids because of the large clusters, a phenomenon known as critical opalescence. In this paper, we irradiate near-critical carbon dioxide (ncCO2), the critical temperature and pressure of which are 31.0°C and 7.38 MPa, with a laser beam of 213, 266, 355 and 532 nm wavelength and show that CO2 is dissociated and particles are produced when the system is set so close to the critical point that critical opalescence occurs in the case of 213 and 266 nm wavelength, whereas no particles are produced when the temperature is made to deviate from the critical value. We also apply a dc electric field to ncCO2 during irradiation with a laser beam of 213 and 266 nm wavelength and find that particles are formed on both anode and cathode. As the intensity of the electric field increases, films are formed on the electrodes. Electron diffraction patterns and energy-dispersive x-ray, Auger electron, x-ray photoelectron and Raman spectroscopic analyses show that the particles and films are composed of amorphous carbon.

  2. Dissociation of carbon dioxide and creation of carbon particles and films at room temperature

    International Nuclear Information System (INIS)

    Fukuda, Takahiro; Maekawa, Toru; Hasumura, Takashi; Rantonen, Nyrki; Ishii, Koji; Nakajima, Yoshikata; Hanajiri, Tatsuro; Yoshida, Yoshikazu; Whitby, Raymond; Mikhalovsky, Sergey

    2007-01-01

    As fluids approach their gas-liquid critical points, the physical properties such as the specific heat and compressibility diverge due to the formation of large molecular clusters. Incident light cannot penetrate near-critical fluids because of the large clusters, a phenomenon known as critical opalescence. In this paper, we irradiate near-critical carbon dioxide (ncCO 2 ), the critical temperature and pressure of which are 31.0 0 C and 7.38 MPa, with a laser beam of 213, 266, 355 and 532 nm wavelength and show that CO 2 is dissociated and particles are produced when the system is set so close to the critical point that critical opalescence occurs in the case of 213 and 266 nm wavelength, whereas no particles are produced when the temperature is made to deviate from the critical value. We also apply a dc electric field to ncCO 2 during irradiation with a laser beam of 213 and 266 nm wavelength and find that particles are formed on both anode and cathode. As the intensity of the electric field increases, films are formed on the electrodes. Electron diffraction patterns and energy-dispersive x-ray, Auger electron, x-ray photoelectron and Raman spectroscopic analyses show that the particles and films are composed of amorphous carbon

  3. In situ growth rate measurements during plasma-enhanced chemical vapour deposition of vertically aligned multiwall carbon nanotube films

    International Nuclear Information System (INIS)

    Joensson, M; Nerushev, O A; Campbell, E E B

    2007-01-01

    In situ laser reflectivity measurements are used to monitor the growth of multiwalled carbon nanotube (MWCNT) films grown by DC plasma-enhanced chemical vapour deposition (PECVD) from an iron catalyst film deposited on a silicon wafer. In contrast to thermal CVD growth, there is no initial increase in the growth rate; instead, the initial growth rate is high (as much as 10 μm min -1 ) and then drops off rapidly to reach a steady level (2 μm min -1 ) for times beyond 1 min. We show that a limiting factor for growing thick films of multiwalled nanotubes (MWNTs) using PECVD can be the formation of an amorphous carbon layer at the top of the growing nanotubes. In situ reflectivity measurements provide a convenient technique for detecting the onset of the growth of this layer

  4. Amorphous Ultrathin SnO2 Films by Atomic Layer Deposition on Graphene Network as Highly Stable Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Xie, Ming; Sun, Xiang; George, Steven M; Zhou, Changgong; Lian, Jie; Zhou, Yun

    2015-12-23

    Amorphous SnO2 (a-SnO2) thin films were conformally coated onto the surface of reduced graphene oxide (G) using atomic layer deposition (ALD). The electrochemical characteristics of the a-SnO2/G nanocomposites were then determined using cyclic voltammetry and galvanostatic charge/discharge curves. Because the SnO2 ALD films were ultrathin and amorphous, the impact of the large volume expansion of SnO2 upon cycling was greatly reduced. With as few as five formation cycles best reported in the literature, a-SnO2/G nanocomposites reached stable capacities of 800 mAh g(-1) at 100 mA g(-1) and 450 mAh g(-1) at 1000 mA g(-1). The capacity from a-SnO2 is higher than the bulk theoretical values. The extra capacity is attributed to additional interfacial charge storage resulting from the high surface area of the a-SnO2/G nanocomposites. These results demonstrate that metal oxide ALD on high surface area conducting carbon substrates can be used to fabricate high power and high capacity electrode materials for lithium-ion batteries.

  5. Mechanochemical treatment of amorphous carbon from brown sphagnum moss for the preparation of carbon nanotubes

    International Nuclear Information System (INIS)

    Onishchenko, D.V.

    2013-01-01

    Under consideration is the mechanism of multiwalled nanotubes formation during mechanical activation of amorphous carbon synthesized by pyrolysis of sphagnum moss. The formation of nanotubes has been shown to take place in the array of carbon particles. A complex study of the sorption characteristics of carbon nanotubes has been carried out. The dependence of the sorption capacity of carbon nanotubes on their storage time, as well as the effect of the process parameters of nanotubes formation on their ability for oxidative modification, is represented. (authors)

  6. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    Science.gov (United States)

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  7. Optical properties of amorphous Ba0.7Sr0.3TiO3 thin films obtained by metal organic decomposition technique

    Science.gov (United States)

    Qiu, Fei; Xu, Zhimou

    2009-08-01

    In this study, the amorphous Ba0.7Sr0.3TiO3 (BST0.7) thin films were grown onto fused quartz and silicon substrates at low temperature by using a metal organic decomposition (MOD)-spin-coating procedure. The optical transmittance spectrum of amorphous BST0.7 thin films on fused quartz substrates has been recorded in the wavelength range 190~900 nm. The films were highly transparent for wavelengths longer than 330 nm; the transmission drops rapidly at 330 nm, and the cutoff wavelength occurs at about 260 nm. In addition, we also report the amorphous BST0.7 thin film groove-buried type waveguides with 90° bent structure fabricated on Si substrates with 1.65 μm thick SiO2 thermal oxide layer. The design, fabrication and optical losses of amorphous BST0.7 optical waveguides were presented. The amorphous BST0.7 thin films were grown onto the SiO2/Si substrates by using a metal organic decomposition (MOD)-spin-coating procedure. The optical propagation losses were about 12.8 and 9.4 dB/cm respectively for the 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. The 90° bent structures with a small curvature of micrometers were designed on the basis of a double corner mirror structure. The bend losses were about 1.2 and 0.9 dB respectively for 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. It is expected for amorphous BST0.7 thin films to be used not only in the passive optical interconnection in monolithic OEICs but also in active waveguide devices on the Si chip.

  8. Carbon films produced from ionic liquid carbon precursors

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  9. Stabilization of amorphous calcium carbonate by controlling its particle size

    NARCIS (Netherlands)

    Nudelman, F.; Sonmezler, E.; Bomans, P.H.H.; With, de G.; Sommerdijk, N.A.J.M.

    2010-01-01

    Amorphous calcium carbonate (ACC) nanoparticles of different size are prepared using a flow system. Post-synthesis stabilization with a layer of poly[(a,ß)-DL-aspartic acid] leads to stabilization of the ACC, but only for particles

  10. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, M., E-mail: mmoreno@inaoep.mx [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Delgadillo, N. [Universidad Autónoma de Tlaxcala, Av. Universidad No. 1, Z. P. 90006 Tlaxcala (Mexico); Torres, A. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Ambrosio, R. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, Z. P. 32310 Chihuahua (Mexico); Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico)

    2013-12-02

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E{sub a}) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ{sub RT}), E{sub a} and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E{sub a}, TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors.

  11. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    International Nuclear Information System (INIS)

    Moreno, M.; Delgadillo, N.; Torres, A.; Ambrosio, R.; Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W.

    2013-01-01

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E a ) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ RT ), E a and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E a , TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors

  12. TEM characterization of nanodiamond thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Qin, L.-C.; Zhou, D.; Krauss, A. R.; Gruen, D. M.; Chemistry

    1998-05-01

    The microstructure of thin films grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) from fullerene C{sub 60} precursors has been characterized by scanning electron microscopy (SEM), selected-area electron diffraction (SAED), bright-field electron microscopy, high-resolution electron microscopy (HREM), and parallel electron energy loss spectroscopy (PEELS). The films are composed of nanosize crystallites of diamond, and no graphitic or amorphous phases were observed. The diamond crystallite size measured from lattice images shows that most grains range between 3-5 nm, reflecting a gamma distribution. SAED gave no evidence of either sp2-bonded glassy carbon or sp3-bonded diamondlike amorphous carbon. The sp2-bonded configuration found in PEELS was attributed to grain boundary carbon atoms, which constitute 5-10% of the total. Occasionally observed larger diamond grains tend to be highly faulted.

  13. Achievement report for fiscal 1991 on Sunshine Program-entrusted research and development. Research and development of amorphous silicon solar cells (Research on amorphous silicon interface); 1991 nendo amorphous silicon taiyo denchi no kenkyu kaihatsu seika hokokusho. Amorphous silicon no kaimen no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    The amorphous solar cell interface has been under study for the enhancement of efficiency and reliability in amorphous solar cells, and this is the compilation of the results achieved in fiscal 1991. In the effort to enhance delta-doped amorphous silicon solar cell efficiency, an amorphous Si solar cell is built using a ZnO film as the transparent conductive film. As the result, an a-Si solar cell with a conversion efficiency of 11.5% is obtained. In the research on the suppression of photodegradation in a-Si, from the viewpoint that a reduction in the amount of hydrogen contained excessively in the film will be effective in decelerating photodegradation, a photoexcited hydrogen radical treatment method is newly proposed, and basic studies are conducted on it. As the result, it is found that an a-Si film processed by a 20-second hydrogen treatment at a substrate temperature of 460 degrees C exhibits a lower photodegradation rate than an ordinary a-Si film. In the research on the deposition of amorphous Si film, a VHF frequency is used instead of 13.56MHz for plasma, and an amorphous Si film is deposited efficiently at a lower voltage at which ions cause less damage. (NEDO)

  14. Fabrication of amorphous silicon nanoribbons by atomic force microscope tip-induced local oxidation for thin film device applications

    International Nuclear Information System (INIS)

    Pichon, L; Rogel, R; Demami, F

    2010-01-01

    We demonstrate the feasibility of induced local oxidation of amorphous silicon by atomic force microscopy. The resulting local oxide is used as a mask for the elaboration of a thin film silicon resistor. A thin amorphous silicon layer deposited on a glass substrate is locally oxidized following narrow continuous lines. The corresponding oxide line is then used as a mask during plasma etching of the amorphous layer leading to the formation of a nanoribbon. Such an amorphous silicon nanoribbon is used for the fabrication of the resistor

  15. Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra

    Science.gov (United States)

    Godet, Christian; David, Denis

    2017-12-01

    Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.

  16. Electromechanical properties of amorphous In-Zn-Sn-O transparent conducting film deposited at various substrate temperatures on polyimide substrate

    Science.gov (United States)

    Kim, Young Sung; Lee, Eun Kyung; Eun, Kyoungtae; Choa, Sung-Hoon

    2015-09-01

    The electromechanical properties of the amorphous In-Zn-Sn-O (IZTO) film deposited at various substrate temperatures were investigated by bending, stretching, twisting, and cyclic bending fatigue tests. Amorphous IZTO films were grown on a transparent polyimide substrate using a pulsed DC magnetron sputtering system at different substrate temperatures ranging from room temperature to 200 °C. A single oxide alloyed ceramic target (In2O3: 80 wt %, ZnO: 10 wt %, SnO2: 10 wt % composition) was used. The amorphous IZTO film deposited at 150 °C exhibited an optimized electrical resistivity of 5.8 × 10-4 Ω cm, optical transmittance of 87%, and figure of merit of 8.3 × 10-3 Ω-1. The outer bending tests showed that the critical bending radius decreased as substrate temperature increased. On the other hand, in the inner bending tests, the critical bending radius increased with an increase in substrate temperature. The differences in the bendability of IZTO films for the outer and inner bending tests could be attributed to the internal residual stress of the films. The uniaxial stretching tests also showed the effects of the internal stress on the mechanical flexibility of the film. The bending and stretching test results demonstrated that the IZTO film had higher bendability and stretchability than the conventional ITO film. The IZTO film could withstand 10,000 bending cycles at a bending radius of 10 mm. The effect of the surface roughness on the mechanical durability of all IZTO films was very small due to their very smooth surfaces.

  17. Investigation of plasma dynamics during the growth of amorphous titanium dioxide thin films

    Science.gov (United States)

    Kim, Jin-Soo; Jee, Hyeok; Yu, Young-Hun; Seo, Hye-Won

    2018-06-01

    We have grown amorphous titanium dioxide thin films by reactive DC sputtering method using a different argon/oxygen partial pressure at a room temperature. The plasma dynamics of the process, reactive and sputtered gas particles was investigated via optical emission spectroscopy. We then studied the correlations between the plasma states and the structural/optical properties of the films. The growth rate and morphology of the titanium dioxide thin films turned out to be contingent with the population and the energy profile of Ar, O, and TiO plasma. In particular, the films grown under energetic TiO plasma have shown a direct band-to-band transition with an optical energy band gap up to ∼4.2 eV.

  18. Spectroscopic ellipsometry characterization of amorphous and crystalline TiO2 thin films grown by atomic layer deposition at different temperatures

    Science.gov (United States)

    Saha, D.; Ajimsha, R. S.; Rajiv, K.; Mukherjee, C.; Gupta, M.; Misra, P.; Kukreja, L. M.

    2014-10-01

    TiO2 thin films of widely different structural and morphological characteristics were grown on Si (1 0 0) substrates using Atomic Layer Deposition (ALD) by varying the substrate temperature (Ts) in a wide range (50 °C ≤ Ts ≤ 400 °C). Spectroscopic ellipsometry (SE) measurements were carried out to investigate the effect of growth temperature on the optical properties of the films. Measured SE data were analyzed by considering double layer optical model for the sample together with the single oscillator Tauc-Lorentz dispersion relation. Surface roughness was taken into consideration due to the columnar growths of grains in crystalline films. The refractive index was found to be increased from amorphous (Ts ≤ 150 °C) to the nanocrystalline films (2500 < Ts ≤ 400 °C). The pronounced surface roughening for the large-grained anatase film obtained at the amorphous to crystalline phase transformation temperature of 200 °C, impeded SE measurement. The dispersions of refractive indices below the interband absorption edge were found to be strongly correlated with the single oscillator Wemple-DiDomenico (WD) model. The increase in dispersion energy parameter in WD model from disordered amorphous to the more ordered nanocrystalline films was found to be associated with the increase in the film density and coordination number.

  19. Emission of blue light from hydrogenated amorphous silicon carbide

    Science.gov (United States)

    Nevin, W. A.; Yamagishi, H.; Yamaguchi, M.; Tawada, Y.

    1994-04-01

    THE development of new electroluminescent materials is of current technological interest for use in flat-screen full-colour displays1. For such applications, amorphous inorganic semiconductors appear particularly promising, in view of the ease with which uniform films with good mechanical and electronic properties can be deposited over large areas2. Luminescence has been reported1 in the red-green part of the spectrum from amorphous silicon carbide prepared from gas-phase mixtures of silane and a carbon-containing species (usually methane or ethylene). But it is not possible to achieve blue luminescence by this approach. Here we show that the use of an aromatic species-xylene-as the source of carbon during deposition results in a form of amorphous silicon carbide that exhibits strong blue luminescence. The underlying structure of this material seems to be an unusual combination of an inorganic silicon carbide lattice with a substantial 'organic' π-conjugated carbon system, the latter dominating the emission properties. Moreover, the material can be readily doped with an electron acceptor in a manner similar to organic semiconductors3, and might therefore find applications as a conductivity- or colour-based chemical sensor.

  20. Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films.

    Directory of Open Access Journals (Sweden)

    Yin-Yu Chang

    Full Text Available Tantalum (Ta is a promising metal for biomedical implants or implant coating for orthopedic and dental applications because of its excellent corrosion resistance, fracture toughness, and biocompatibility. This study synthesizes biocompatible tantalum carbide (TaC and TaC/amorphous carbon (a-C coatings with different carbon contents by using a twin-gun magnetron sputtering system to improve their biological properties and explore potential surgical implant or device applications. The carbon content in the deposited coatings was regulated by controlling the magnetron power ratio of the pure graphite and Ta cathodes. The deposited TaC and TaC/a-C coatings exhibited better cell viability of human osteosarcoma cell line MG-63 than the uncoated Ti and Ta-coated samples. Inverted optical and confocal imaging was used to demonstrate the cell adhesion, distribution, and proliferation of each sample at different time points during the whole culture period. The results show that the TaC/a-C coating, which contained two metastable phases (TaC and a-C, was more biocompatible with MG-63 cells compared to the pure Ta coating. This suggests that the TaC/a-C coatings exhibit a better biocompatible performance for MG-63 cells, and they may improve implant osseointegration in clinics.

  1. Characteristics of RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Ki [Core Technology Laboratory, Samsung SDI, 575 Shin-dong, Youngtong-Gu, Suwon, Gyeonggi-Do 442-391 (Korea, Republic of)]. E-mail: hanki1031.kim@samsung.com; Choi, Sun-Hee [Nano Materials Research Center, Korea Institute of Science and Technology (KIST), PO Box 131 Choengryang, Seoul 130-650 (Korea, Republic of); Yoon, Young Soo [Department of Advanced Fusion Technology (DAFT), Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Chang, Sung-Yong [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of); Ok, Young-Woo [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of); Seong, Tae-Yeon [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of)

    2005-03-22

    The characteristics of RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous electrode, grown by DC reactive sputtering, was investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM), and transmission electron diffraction (TED) examination results showed that Sn and Ru metal cosputtered electrode in O{sub 2}/Ar ambient have RuO{sub 2}-SnO{sub 2} nanocrystallines in an amorphous oxide matrix. It is shown that the cyclic voltammorgram (CV) result of the RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous film in 0.5 M H{sub 2}SO{sub 4} liquid electrolyte is similar to a bulk-type supercapacitor behavior with a specific capacitance of 62.2 mF/cm{sup 2} {mu}m. This suggests that the RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous film can be employed in hybrid all-solid state energy storage devises as an electrode of supercapacitor.

  2. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures

    International Nuclear Information System (INIS)

    Hilali, Mohamed M; Banerjee, Sanjay; Sreenivasan, S V; Yang Shuqiang; Miller, Mike; Xu, Frank

    2012-01-01

    In this paper, we have explored manufacturable approaches to sub-wavelength controlled three-dimensional (3D) nano-patterns with the goal of significantly enhancing the photocurrent in amorphous silicon solar cells. Here we demonstrate efficiency enhancement of about 50% over typical flat a-Si thin-film solar cells, and report an enhancement of 20% in optical absorption over Asahi textured glass by fabricating sub-wavelength nano-patterned a-Si on glass substrates. External quantum efficiency showed superior results for the 3D nano-patterned thin-film solar cells due to enhancement of broadband optical absorption. The results further indicate that this enhanced light trapping is achieved with minimal parasitic absorption losses in the deposited transparent conductive oxide for the nano-patterned substrate thin-film amorphous silicon solar cell configuration. Optical simulations are in good agreement with experimental results, and also show a significant enhancement in optical absorption, quantum efficiency and photocurrent. (paper)

  3. Covalently bonded disordered thin-film materials. Materials Research Society symposium proceedings Volume 498

    International Nuclear Information System (INIS)

    Siegal, M.P.; Milne, W.I.; Jaskie, J.E.

    1998-01-01

    The current and potential impact of covalently bonded disordered thin films is enormous. These materials are amorphous-to-nanocrystalline structures made from light atomic weight elements from the first row of the periodic table. Examples include amorphous tetrahedral diamond-like carbon, boron nitride, carbon nitride, boron carbide, and boron-carbon-nitride. These materials are under development for use as novel low-power, high-visibility elements in flat-panel display technologies, cold-cathode sources for microsensors and vacuum microelectronics, encapsulants for both environmental protection and microelectronics, optical coatings for laser windows, and ultra-hard tribological coatings. researchers from 17 countries and a broad range of academic institutions, national laboratories and industrial organizations come together in this volume to report on the status of key areas and recent discoveries. More specifically, the volume is organized into five sections. The first four highlight ongoing work primarily in the area of amorphous/nanocrystalline (disordered) carbon thin films; theoretical and experimental structural characterization; electrical and optical characterizations; growth methods; and cold-cathode electron emission results. The fifth section describes the growth, characterization and application of boron- and carbon-nitride thin films

  4. A graphene oxide-carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials

    International Nuclear Information System (INIS)

    Zhang Lina; Zhang Haoxu; Zhou Ruifeng; Chen Zhuo; Li Qunqing; Fan Shoushan; Jiang Kaili; Ge Guanglu; Liu Renxiao

    2011-01-01

    A novel grid for use in transmission electron microscopy is developed. The supporting film of the grid is composed of thin graphene oxide films overlying a super-aligned carbon nanotube network. The composite film combines the advantages of graphene oxide and carbon nanotube networks and has the following properties: it is ultra-thin, it has a large flat and smooth effective supporting area with a homogeneous amorphous appearance, high stability, and good conductivity. The graphene oxide-carbon nanotube grid has a distinct advantage when characterizing the fine structure of a mass of nanomaterials over conventional amorphous carbon grids. Clear high-resolution transmission electron microscopy images of various nanomaterials are obtained easily using the new grids.

  5. Influence of the additive Ag for crystallization of amorphous Ge-Sb-Te thin films

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki-Ho; Kim, Sung-Won; Seo, Jae-Hee [Faculty of Applied Chemical Engineering, Chonnam National University, 300 Yongbong-dong, Kwangju 500-757 (Korea, Republic of); Lee, Hyun-Yong, E-mail: hyleee@chonnam.ac.k [Faculty of Applied Chemical Engineering, Chonnam National University, 300 Yongbong-dong, Kwangju 500-757 (Korea, Republic of)

    2009-05-29

    We have investigated the optical and amorphous-to-crystalline transition properties in four-types of chalcogenide thin films; Ge{sub 2}Sb{sub 2}Te{sub 5}, Ge{sub 8}Sb{sub 2}Te{sub 11}, Ag-Ge{sub 2}Sb{sub 2}Te{sub 5} and Ag-Ge{sub 8}Sb{sub 2}Te{sub 11}. Crystallization was caused by nano-pulse illumination ({lambda} = 658 nm) with power (P) of 1-17 mW and pulse duration (t) of 10-460 ns, and the morphologies of crystallized spots were observed by SEM and microscope. It was found that the crystallized spot nearby linearly increases in size with increasing the illuminating energy (E = P {center_dot} t) and eventually ablated out by over illumination. Changes in the optical transmittance of as-deposited and annealed films were measured using a UV-vis-IR spectrophotometer. In addition, a speed of amorphous-to-crystalline transition was evaluated by detecting the reflection response signals for the nano-pulse scanning. Conclusively, the Ge{sub 8}Sb{sub 2}Te{sub 11} film has a faster crystallization speed than the Ge{sub 2}Sb{sub 2}Te{sub 5} film despite its higher crystallization temperature. The crystallization speed was largely improved by adding Ag in Ge{sub 2}Sb{sub 2}Te{sub 5} film but not in Ge{sub 8}Sb{sub 2}Te{sub 11} film. To explain these results, we considered a heat confinement by electron hopping.

  6. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    International Nuclear Information System (INIS)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-01-01

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO 2 ). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer et al. [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kh o o is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface deformation. Hence, surface deformation caused by liquid

  7. Damage-free back channel wet-etch process in amorphous indium-zinc-oxide thin-film transistors using a carbon-nanofilm barrier layer.

    Science.gov (United States)

    Luo, Dongxiang; Zhao, Mingjie; Xu, Miao; Li, Min; Chen, Zikai; Wang, Lang; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2014-07-23

    Amorphous indium-zinc-oxide thin film transistors (IZO-TFTs) with damage-free back channel wet-etch (BCE) process were investigated. A carbon (C) nanofilm was inserted into the interface between IZO layer and source/drain (S/D) electrodes as a barrier layer. Transmittance electron microscope images revealed that the 3 nm-thick C nanofilm exhibited a good corrosion resistance to a commonly used H3PO4-based etchant and could be easily eliminated. The TFT device with a 3 nm-thick C barrier layer showed a saturated field effect mobility of 14.4 cm(2) V(-1) s(-1), a subthreshold swing of 0.21 V/decade, an on-to-off current ratio of 8.3 × 10(10), and a threshold voltage of 2.0 V. The favorable electrical performance of this kind of IZO-TFTs was due to the protection of the inserted C to IZO layer in the back-channel-etch process. Moreover, the low contact resistance of the devices was proved to be due to the graphitization of the C nanofilms after annealing. In addition, the hysteresis and thermal stress testing confirmed that the usage of C barrier nanofilms is an effective method to fabricate the damage-free BCE-type devices with high reliability.

  8. Suppression of hydrogenated carbon film deposition by scavenger techniques and their application to the tritium inventory control of fusion devices

    International Nuclear Information System (INIS)

    Tabares, F.L.; Tafalla, D.; Tanarro, I.; Herrero, V.J.; Islyaikin, A.; Maffiotte, C.

    2002-01-01

    The well-known radical and ion scavenger techniques of application in amorphous hydrogenated carbon film deposition studies are investigated in relation to the mechanism of tritium and deuterium co-deposition in carbon-dominated fusion devices. A particularly successful scheme results from the injection of nitrogen into methane/hydrogen plasmas for conditions close to those prevailing in the divertor region of present fusion devices. A complete suppression of the a-C : H film deposition has been achieved for N 2 /CH 4 ratios close to one in methane (5%)/hydrogen DC plasma. The implications of these findings in the tritium retention control in future fusion reactors are addressed. (author). Letter-to-the-editor

  9. Amorphous indium gallium zinc oxide thin film grown by pulse laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Bhaumik V., E-mail: bhaumik-phy@yahoo.co.in; Joshi, U. S. [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad-380 009 (India)

    2016-05-23

    Highly electrically conducting and transparent in visible light IGZO thin film were grown on glass substrate at substrate temperature of 400 C by a pulse laser deposition techniques. Structural, surface, electrical, and optical properties of IGZO thin films were investigated at room temperature. Smooth surface morphology and amorphous nature of the film has been confirmed from the AFM and GIXRD analysis. A resistivity down to 7.7×10{sup −3} V cm was reproducibly obtained while maintaining optical transmission exceeding 70% at wavelengths from 340 to 780 nm. The carrier densities of the film was obtain to the value 1.9×10{sup 18} cm{sup 3}, while the Hall mobility of the IGZO thin film was 16 cm{sup 2} V{sup −1}S{sup −1}.

  10. Hydroxyapatite-diamondlike carbon nanocomposite films

    International Nuclear Information System (INIS)

    Narayan, Roger J.

    2005-01-01

    Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Conventional plasma-sprayed hydroxyapatite coatings demonstrate poor adhesion and poor mechanical integrity. We have developed hydroxyapatite-diamondlike carbon bilayer film. The diamondlike carbon interlayer serves to prevent metal ion release and improve adhesion of the hydroxyapatite film. These films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, nanoindentation, and microscratch adhesion testing. Based on the results of this study, hydroxyapatite-diamondlike carbon bilayers demonstrate promise for use in several orthopedic implants

  11. Hydroxyapatite-diamondlike carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Roger J. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)]. E-mail: roger.narayan@mse.gatech.edu

    2005-05-15

    Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Conventional plasma-sprayed hydroxyapatite coatings demonstrate poor adhesion and poor mechanical integrity. We have developed hydroxyapatite-diamondlike carbon bilayer film. The diamondlike carbon interlayer serves to prevent metal ion release and improve adhesion of the hydroxyapatite film. These films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, nanoindentation, and microscratch adhesion testing. Based on the results of this study, hydroxyapatite-diamondlike carbon bilayers demonstrate promise for use in several orthopedic implants.

  12. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, Andreas, E-mail: A.Markwitz@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Gupta, Prasanth [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, Berit [GNS Science, Lower Hutt (New Zealand); Hübner, René [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Leveneur, Jerome; Zondervan, Albert [GNS Science, Lower Hutt (New Zealand); Becker, Hans-Werner [RUBION, Ruhr-University Bochum (Germany)

    2016-03-15

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction {sup 1}H({sup 15}N, αγ){sup 12}C (E{sub res} = 6.385 MeV). The films produced at 3.0–10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp{sup 2} hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  13. Carbon film electrodes for super capacitor applications

    Science.gov (United States)

    Tan, Ming X.

    1999-01-01

    A microporous carbon film for use as electrodes in energy strorage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm.sup.2 and 1 g/cm.sup.2 and a gravimetric capacitance of about between 120 F/g and 315 F/g.

  14. Enhanced stability of thin film transistors with double-stacked amorphous IWO/IWO:N channel layer

    Science.gov (United States)

    Lin, Dong; Pi, Shubin; Yang, Jianwen; Tiwari, Nidhi; Ren, Jinhua; Zhang, Qun; Liu, Po-Tsun; Shieh, Han-Ping

    2018-06-01

    In this work, bottom-gate top-contact thin film transistors with double-stacked amorphous IWO/IWO:N channel layer were fabricated. Herein, amorphous IWO and N-doped IWO were deposited as front and back channel layers, respectively, by radio-frequency magnetron sputtering. The electrical characteristics of the bi-layer-channel thin film transistors (TFTs) were examined and compared with those of single-layer-channel (i.e., amorphous IWO or IWO:N) TFTs. It was demonstrated to exhibit a high mobility of 27.2 cm2 V‑1 s‑1 and an on/off current ratio of 107. Compared to the single peers, bi-layer a-IWO/IWO:N TFTs showed smaller hysteresis and higher stability under negative bias stress and negative bias temperature stress. The enhanced performance could be attributed to its unique double-stacked channel configuration, which successfully combined the merits of the TFTs with IWO and IWO:N channels. The underlying IWO thin film provided percolation paths for electron transport, meanwhile, the top IWO:N layer reduced the bulk trap densities. In addition, the IWO channel/gate insulator interface had reduced defects, and IWO:N back channel surface was insensitive to the ambient atmosphere. Overall, the proposed bi-layer a-IWO/IWO:N TFTs show potential for practical applications due to its possibly long-term serviceability.

  15. A. C. conduction behaviour in amorphous WO 3 /CEO 2 thin film ...

    African Journals Online (AJOL)

    A. C. conduction behaviour in amorphous WO3/CEO2 thin film. B Yagoubi, C A Hogarth, A Boukorrt. Abstract. No Abstract. Technologies Avancees Vol. 17 2005: pp. 5-8. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/ta.v17i1.18478.

  16. Dissociation of carbon dioxide and creation of carbon particles and films at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Takahiro [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Maekawa, Toru [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Hasumura, Takashi [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Rantonen, Nyrki [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Ishii, Koji [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Nakajima, Yoshikata [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Hanajiri, Tatsuro [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Yoshida, Yoshikazu [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Whitby, Raymond [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockroft Building, Lewes Road, Brighton BN2 4GJ (United Kingdom); Mikhalovsky, Sergey [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockroft Building, Lewes Road, Brighton BN2 4GJ (United Kingdom)

    2007-09-15

    As fluids approach their gas-liquid critical points, the physical properties such as the specific heat and compressibility diverge due to the formation of large molecular clusters. Incident light cannot penetrate near-critical fluids because of the large clusters, a phenomenon known as critical opalescence. In this paper, we irradiate near-critical carbon dioxide (ncCO{sub 2}), the critical temperature and pressure of which are 31.0{sup 0}C and 7.38 MPa, with a laser beam of 213, 266, 355 and 532 nm wavelength and show that CO{sub 2} is dissociated and particles are produced when the system is set so close to the critical point that critical opalescence occurs in the case of 213 and 266 nm wavelength, whereas no particles are produced when the temperature is made to deviate from the critical value. We also apply a dc electric field to ncCO{sub 2} during irradiation with a laser beam of 213 and 266 nm wavelength and find that particles are formed on both anode and cathode. As the intensity of the electric field increases, films are formed on the electrodes. Electron diffraction patterns and energy-dispersive x-ray, Auger electron, x-ray photoelectron and Raman spectroscopic analyses show that the particles and films are composed of amorphous carbon.

  17. Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance

    International Nuclear Information System (INIS)

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki

    2015-01-01

    This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O 2 , H 2 O, and N 2 O as the reactive gases. Experimental results show that the electrical properties of the N 2 O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for the performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N 2 O introduction into the deposition process, where the field mobility reach to 30.8 cm 2 V –1 s –1 , which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT

  18. Amorphization and recrystallization processes in monocrystalline beta silicon carbide thin films

    International Nuclear Information System (INIS)

    Edmond, J.A.; Withrow, S.P.; Kong, H.S.; Davis, R.F.

    1985-01-01

    Individual, as well as multiple doses of 27 Al + , 31 P + , 28 Si + , and 28 Si + and 12 C + , were implanted into (100) oriented monocrystalline β-SiC films. The critical energy of approx. =16 eV/atom required for the amorphization of β-SiC via implantation of 27 Al + and 31 P + was determined using the TRIM84 computer program for calculation of the damage-energy profiles coupled with the results of RBS/ion channeling analyses. In order to recrystallize amorphized layers created by the individual implantation of all four ion species, thermal annealing at 1600, 1700, or 1800 0 C was employed. Characterization of the recrystallized layers was performed using XTEM. Examples of SPE regrown layers containing precipitates and dislocation loops, highly faulted-microtwinned regions, and random crystallites were observed

  19. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    International Nuclear Information System (INIS)

    Mouro, J.; Gualdino, A.; Chu, V.; Conde, J. P.

    2013-01-01

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n + -type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force

  20. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Técnico (IST), 1049-001 Lisbon (Portugal)

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  1. Cell survival in carbon beams - comparison of amorphous track model predictions

    DEFF Research Database (Denmark)

    Grzanka, L.; Greilich, S.; Korcyl, M.

    Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under i....... Amorphous track modelling of luminescence detector efficiency in proton and carbon beams. 4.Tsuruoka C, Suzuki M, Kanai T, et al. LET and ion species dependence for cell killing in normal human skin fibroblasts. Radiat Res. 2005;163:494-500.......Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under ion....... [2] . In addition, a new approach based on microdosimetric distributions is presented and investigated [3] . Material and methods: A suitable software library embrasing the mentioned amorphous track models including numerous submodels with respect to delta-electron range models, radial dose...

  2. Amorphous-crystalline interface evolution during Solid Phase Epitaxy Regrowth of SiGe films amorphized by ion implantation

    International Nuclear Information System (INIS)

    D'Angelo, D.; Piro, A.M.; Mirabella, S.; Bongiorno, C.; Romano, L.; Terrasi, A.; Grimaldi, M.G.

    2007-01-01

    Transmission Electron Microscopy was combined with Time Resolved Reflectivity to study the amorphous-crystalline (a-c) interface evolution during Solid Phase Epitaxy Regrowth (SPER) of Si 0.83 Ge 0.17 films deposited on Si by Molecular Beam Epitaxy and amorphized with Ge + ion implantation. Starting from the Si/SiGe interface, a 20 nm thick layer regrows free of defects with the same SPER rate of pure Si. The remaining SiGe regrows with planar defects and dislocations, accompanied by a decrease of the SPER velocity. The sample was also studied after implantation with B or P. In these cases, the SPER rate raises following the doping concentration profile, but no difference in the defect-free layer thickness was observed compared to the un-implanted sample. On the other hand, B or P introduction reduces the a-c interface roughness, while B-P co-implantation produces roughness comparable to the un-implanted sample

  3. Synthesis and characterization of boron carbon nitride films by radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.F.; Bello, I.; Lei, M.K.; Lee, C.S.; Lee, S.T. [City Univ. of Hong Kong, Kowloon (Hong Kong). Dept. of Physics and Materials Science; Li, K.Y. [Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Kowloon (Hong Kong)

    2000-06-01

    Boron carbon nitride (BCN) films were deposited on silicon substrates by radio frequency (r.f.) (13.56 MHz) magnetron sputtering from hexagonal boron nitride (h-BN) and graphite targets in an Ar-N{sub 2} gas mixture of a constant pressure of 1.0 Pa. During deposition, the substrates were maintained at a temperature of 400 C and negatively biased using a pulsed voltage with a frequency of 330 kHz. Different analysis techniques such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD) and scanning Auger electron microscopy (SAM) were used for characterization. In addition, the mechanical and tribological properties of the films were investigated by nano-indentation and micro-scratching. The carbon concentration in the films could be adjusted by the coverage area of a graphite sheet on the h-BN target, and decreased with increasing bias voltage. It was found that the ternary compound films within the B-C-N composition triangle possessed a less ordered structure. B--N, B--C and C--N chemical bonds were established in the films, and no phase separation of graphite and h-BN occurred. At zero bias voltage, amorphous BC{sub 2}N films with atomically smooth surface could be obtained, and the microfriction coefficient was 0.11 under a normal load of 1000 {mu}N. Hardness as determined by nano-indentation was usually in the range of 10-30 GPa, whereas the Young's modulus was within 100-200 GPa. (orig.)

  4. Reversible electrical resistance switching in GeSbTe thin films : An electrolytic approach without amorphous-crystalline phase-change

    NARCIS (Netherlands)

    Pandian, Ramanathaswamy; Kooi, Bart J.; Palasantzas, George; De Hosson, Jeff Th. M.; Wouters, DJ; Hong, S; Soss, S; Auciello, O

    2008-01-01

    Besides the well-known resistance switching originating from the amorphous-crystalline phase-change in GeSbTe thin films, we demonstrate another switching mechanism named 'polarity-dependent resistance (PDR) switching'. 'Me electrical resistance of the film switches between a low- and high-state

  5. Enhanced photoluminescence from ring resonators in hydrogenated amorphous silicon thin films at telecommunications wavelengths.

    Science.gov (United States)

    Patton, Ryan J; Wood, Michael G; Reano, Ronald M

    2017-11-01

    We report enhanced photoluminescence in the telecommunications wavelength range in ring resonators patterned in hydrogenated amorphous silicon thin films deposited via low-temperature plasma enhanced chemical vapor deposition. The thin films exhibit broadband photoluminescence that is enhanced by up to 5 dB by the resonant modes of the ring resonators due to the Purcell effect. Ellipsometry measurements of the thin films show a refractive index comparable to crystalline silicon and an extinction coefficient on the order of 0.001 from 1300 nm to 1600 nm wavelengths. The results are promising for chip-scale integrated optical light sources.

  6. Glass transition and intermixing of amorphous water and methanol

    International Nuclear Information System (INIS)

    Souda, Ryutaro

    2004-01-01

    The diffusion of molecules in amorphous water and methanol films has been investigated on the basis of time-of-flight secondary ion mass spectrometry as a function of temperature. The glass-liquid transition of the amorphous water film occurs at 130-145 K as confirmed from the surface segregation of embedded methanol molecules. The morphology of the pure amorphous water film changes drastically at 160 K as a consequence of dewetting induced by the surface tension and the strongly decreased viscosity of the film. The morphology of the amorphous methanol film changes at 115 K following the self-diffusion onset at 80 K. The binary films of water and heavy methanol are intermixed completely at 136 K as evidenced by the occurrence of the H/D exchange

  7. Effects of flexible substrate thickness on Al-induced crystallization of amorphous Ge thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Naoki [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Toko, Kaoru, E-mail: toko@bk.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, Noriyuki; Yoshizawa, Noriko [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan); Suemasu, Takashi [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2015-05-29

    Amorphous germanium (a-Ge) thin films were directly crystallized on flexible plastic substrates at 325 °C using Al-induced crystallization. The thickness of the plastic substrate strongly influenced the crystal quality of the resulting polycrystalline Ge layers. Using a thicker substrate lowered the stress on the a-Ge layer during annealing, which increased the grain size and fraction of (111)-oriented grains within the Ge layer. Employing a 125-μm-thick substrate led to 95% (111)-oriented Ge with grains having an average size of 100 μm. Transmission electron microscopy demonstrated that the Ge grains had a low-defect density. Production of high-quality Ge films on plastic substrates allows for the possibility for developing Ge-based electronic and optical devices on inexpensive flexible substrates. - Highlights: • Polycrystalline Ge thin films are directly formed on flexible plastic substrates. • Al-induced crystallization allows the low-temperature growth (325 °C) of amorphous Ge. • The substrate bending during annealing strongly influences the crystal quality of poly-Ge. • A thick substrate (125 μm) leads to 95% (111)-oriented Ge with grains 100 μm in size.

  8. Structural and biocompatible characterization of TiC/a:C nanocomposite thin films

    International Nuclear Information System (INIS)

    Balázsi, K.; Vandrovcová, M.; Bačáková, L.; Balázsi, Cs.

    2013-01-01

    In this work, sputtered TiC/amorphous C thin films have been developed in order to be applied as potential barrier coating for interfering of Ti ions from pure Ti or Ti alloy implants. Our experiments were based on magnetron sputtering method, because the vacuum deposition provides great flexibility for manipulating material chemistry and structure, leading to films and coatings with special properties. The films have been deposited on silicon (001) substrates with 300 nm thick oxidized silicon sublayer at 200 °C deposition temperature as model substrate. Transmission electron microscopy has been used for structural investigations. Thin films consisted of ∼ 20 nm TiC columnar crystals embedded by 5 nm thin amorphous carbon matrix. MG63 osteoblast cells have been applied for in vitro study of TiC nanocomposites. The cell culture tests give strong evidence of thin films biocompatibility. Highlights: ► The main goal of this work is the relatively easy preparation of nanocomposite TiC thin films by dc magnetron sputtering. ► TEM and HREM were applied for structural characterization of columnar TiC nanocrystals and amorphous carbon matrix. ► The biocompatibility of films was showed by MG63 human osteoblast like cells during 1, 3 and 7 days seeding

  9. Manipulation of magnetic and magneto-transport properties of amorphous CoO1–v films

    International Nuclear Information System (INIS)

    Cao, Yan-ling; Zhang, Kun; Li, Huan-huan; Tian, Yu-feng; Yan, Shi-shen; Xiao, Shu-qin; Chen, Yan-xue; Kang, Shi-shou; Liu, Guo-lei; Mei, Liang-mo

    2015-01-01

    The magnetic and magneto-transport properties of amorphous CoO 1−v films have been systematically studied and manipulated by changing the concentration of oxygen vacancies. A giant exchange bias field H E ≈4380 Oe and a large coercivity H C ≈8500 Oe are observed at 5 K for the composite films. And, a metal to insulator transition has been demonstrated in CoO 1−v films by decreasing the concentration of oxygen vacancies. Moreover, a remarkable decrease of the exchange bias and a slight increase of the saturation magnetization can be obtained by modifying the microstructures through post-thermal annealing. - Highlights: • Magnetic and magneto-transport properties of amorphous CoO 1−v are studied. • A giant exchange bias effect with H E ≈4380 Oe and H C ≈8500 Oe is observed at 5 K. • A metal–insulator transition is observed in CoO 1−v by changing the oxygen pressure. • The exchange bias decreases while saturation magnetization increases with annealing

  10. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    Science.gov (United States)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-11-01

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO2). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer etal . [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kho≪1, where k is the wavenumber of the perturbation and ho is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface

  11. Interdispersed amorphous MnO{sub x}-carbon nanocomposites with superior electrochemical performance as lithium-storage material

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Juchen; Wang, Chunsheng [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD (United States); Liu, Qing; Zachariah, Michael R. [Department of Chemistry and Biochemistry, University of Maryland, College Park, MD (United States)

    2012-02-22

    The realization of manganese oxide anode materials for lithium-ion batteries is hindered by inferior cycle stability, rate capability, and high overpotential induced by the agglomeration of manganese metal grains, low conductivity of manganese oxide, and the high stress/strain in the crystalline manganese oxide structure during the repeated lithiation/delithiation process. To overcome these challenges, unique amorphous MnO{sub x}-C nanocomposite particles with interdispersed carbon are synthesized using aerosol spray pyrolysis. The carbon filled in the pores of amorphous MnO{sub x} blocks the penetration of liquid electrolyte to the inside of MnO{sub x}, thus reducing the formation of a solid electrolyte interphase and lowering the irreversible capacity. The high electronic and lithium-ion conductivity of carbon also enhances the rate capability. Moreover, the interdispersed carbon functions as a barrier structure to prevent manganese grain agglomeration. The amorphous structure of MnO{sub x} brings additional benefits by reducing the stress/strain of the conversion reaction, thus lowering lithiation/delithiation overpotential. As the result, the amorphous MnO{sub x}-C particles demonstrated the best performance as an anode material for lithium-ion batteries to date. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Origin of temperature-induced low friction of sputtered Si-containing amorphous carbon coatings

    International Nuclear Information System (INIS)

    Jantschner, O.; Field, S.K.; Holec, D.; Fian, A.; Music, D.; Schneider, J.M.; Zorn, K.; Mitterer, C.

    2015-01-01

    This work reports on a tribological study of magnetron-sputtered silicon-containing amorphous carbon thin films vs. their alumina counterparts. Temperature cycling during ball-on-disk tests in humid air revealed a decrease in the coefficient of friction from 0.3 to <0.02 beyond 240 ± 15 °C. Systematic variation of the environment confirmed oxygen to be responsible for the low friction. X-ray photoelectron spectroscopy of the wear tracks indicates oxidation of Si-C bonds and formation of Si-O-C bonds, followed by further oxidation to SiO 2 above 450 °C. Ab initio molecular dynamics simulations of gas interactions with the a-C surface revealed dissociation of O 2 and the formation of oxides. Additional density functional theory calculations of Si incorporation into a graphene layer, resembling the surface of the film, showed preferential attraction of gaseous species (H, O, -OH, H 2 O), to Si-sites as compared to C-sites. Hence, the temperature- and atmosphere-induced changes in friction coefficient can be understood based on correlative X-ray photoelectron spectroscopy and ab initio data: the formation of Si-O-C bonds stemming from a reaction of the as-deposited coating with atmosphere in the tribological contact is observed by theory and experiment

  13. Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources

    International Nuclear Information System (INIS)

    Dai Wei; Wang Aiying

    2011-01-01

    Research highlights: → Weak carbide former, Al element, was incorporated into DLC films using a hybrid ion beams system comprising an anode-layer ion source and a magnetron sputtering unit. → The structure disorder of the films tended to decrease with Al atoms doping, which resulted in the distinct reduction of the film internal stress and hardness, but the internal stress dropped faster than the hardness. → The DLC films with low internal stress and high hardness can be acquired by Al incorporation. - Abstract: Metal incorporation is one of the most effective methods for relaxing internal stress in diamond-like carbon (DLC) films. It was reported that the chemical state of the incorporated metal atoms has a significant influence on the film internal stress. The doped atoms embedding in the DLC matrix without bonding with C atoms can reduce the structure disorder of the DLC films through bond angle distortion and thus relax the internal stress of the films. In present paper, Al atoms, which are inert to carbon, were incorporated into the DLC films deposited by a hybrid ion beams system comprising an anode-layer ion source and a magnetron sputtering unit. The film composition, microstructure and atomic bond structure were characterized using X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy. The internal stress, mechanical properties and tribogoical behavior were studied as a function of Al concentration using a stress-tester, nanoindentation and ball-on-disc tribo-tester, respectively. The results indicated that the incorporated Al atoms were dissolved in the DLC matrix without bonding with C atoms and the films exhibited the feature of amorphous carbon. The structure disorder of the films tended to decrease with Al atoms incorporation. This resulted in the distinct reduction of the internal stress in the films. All Al-DLC films exhibited a lower friction coefficient compared with pure DLC film. The formation of the

  14. Thin film transistor performance of amorphous indium–zinc oxide semiconductor thin film prepared by ultraviolet photoassisted sol–gel processing

    Science.gov (United States)

    Kodzasa, Takehito; Nobeshima, Taiki; Kuribara, Kazunori; Yoshida, Manabu

    2018-05-01

    We have fabricated an amorphous indium–zinc oxide (IZO, In/Zn = 3/1) semiconductor thin-film transistor (AOS-TFT) by the sol–gel technique using ultraviolet (UV) photoirradiation and post-treatment in high-pressure O2 at 200 °C. The obtained TFT showed a hole carrier mobility of 0.02 cm2 V‑1 s‑1 and an on/off current ratio of 106. UV photoirradiation leads to the decomposition of the organic agents and hydroxide group in the IZO gel film. Furthermore, the post-treatment annealing at a high O2 pressure of more than 0.6 MPa leads to the filling of the oxygen vacancies in a poor metal–oxygen network in the IZO film.

  15. Investigation into short-range order, electric conductivity and optical absorption edge of indium selenide thin amorphous films

    International Nuclear Information System (INIS)

    Bilyj, M.N.; Didyk, G.V.; Stetsiv, Ya.I.; Yurechko, R.Ya.

    1980-01-01

    Thin amorphous films of InSe have been obtained by the method of discrete vacuum evaporation of about 10 -2 Pa. The short-range order is investigated according to the radial distribution curves. The temperature and film thickness are shown to affect the character of conductivity. The width of the forbidden band determined by the fundamental absorption edge is found to depend on the time of film annealing

  16. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2018-05-01

    Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

  17. Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate

    International Nuclear Information System (INIS)

    Versteegh, E.A.A.; Black, S.; Hodson, M.E.

    2017-01-01

    In this study we investigate carbon isotope fractionation during the crystallization of biogenic calcium carbonate. Several species of earthworm including Lumbricus terrestris secrete CaCO_3. Initially a milky fluid comprising micro-spherules of amorphous CaCO_3 (ACC) is secreted into pouches of the earthworm calciferous gland. The micro-spherules coalesce and crystalize to form millimetre scale granules, largely comprising calcite. These are secreted into the earthworm intestine and from there into the soil. L. terrestris were cultured for 28 days in two different soils, moistened with three different mineral waters at 10, 16 and 20 °C. The milky fluid in the calciferous glands, granules in the pouches of the calciferous glands and granules excreted into the soil were collected and analysed by FTIR spectroscopy to determine the form of CaCO_3 present and by IRMS to determine δ"1"3C values. The milky fluid was ACC. Granules removed from the pouches and soil were largely calcite; the granules removed from the pouches contained more residual ACC than those recovered from the soil. The δ"1"3C values of milky fluid and pouch granules became significantly more negative with increasing temperature (p ≤ 0.001). For samples from each temperature treatment, δ"1"3C values became significantly (p ≤ 0.001) more negative from the milky fluid to the pouch granules to the soil granules (−13.77, −14.69 and −15.00 respectively at 10 °C; −14.37, −15.07 and −15.18 respectively at 16 °C and −14.89, −15.41 and −15.65 respectively at 20 °C). Fractionation of C isotopes occurred as the ACC recrystallized to form calcite with the fractionation factor ε_c_a_l_c_i_t_e_-_A_C_C = −1.20 ± 0.52‰. This is consistent with the crystallization involving dissolution and reprecipitation rather than a solid state rearrangement. Although C isotopic fractionation has previously been described between different species of dissolved inorganic carbon

  18. Momentum-dependent excitation processes in crystalline and amorphous films of conjugated oligomers

    International Nuclear Information System (INIS)

    Zojer, E.; Knupfer, M.; Shuai, Z.; Fink, J.; Bredas, J.L.; Hoerhold, H.-H.; Grimme, J.; Scherf, U.; Benincori, T.; Leising, G.

    2000-01-01

    The electronic structure of periodic materials is usually described on the basis of band-structure models, in which each state is not only characterized by its energy but also by the corresponding electron momentum. In this paper we present investigations of momentum-dependent excitation processes in a number of molecular crystals and amorphous thin films. For our studies we have chosen ladder-type quinquephenyl (5LP), distyrylbenzene (3PV), a substituted quinquephenylenevinylene (5PV), and a bridged quarterthienyl (4TB). These substances are representative for several classes of conjugated organic materials. Their physical properties are dominated by the molecular building blocks. The investigated films, however, also allow us to study differences in the characteristics of crystalline (3PV and 4TB), partly amorphous (5LP) and fully amorphous (5PV) systems. Momentum-dependent excitations are induced by inelastic electron scattering in electron-energy-loss spectroscopy (EELS) experiments. The experimental data are compared to molecule based post-Hartree-Fock quantum-chemical simulations performed with the intermediate neglect of differential overlap (INDO) approach coupled to a configuration interaction (CI) technique applying the proper momentum-dependent transition matrix elements. Our results show that even in relatively small systems the molecular electronic states can be characterized by an associated range in momentum space. In addition, differences between inelastic electron scattering spectra for low values of momentum transfer and the optical data obtained for the crystalline samples underline the strong impact of light propagation on the absorption characteristics of highly anisotropic crystalline materials

  19. Optical constants and band edge of amorphous zinc oxide thin films

    International Nuclear Information System (INIS)

    Khoshman, Jebreel M.; Kordesch, Martin E.

    2007-01-01

    The optical characteristics of amorphous zinc oxide (a-ZnO) thin films grown by radio frequency reactive magnetron sputtering on various substrates at temperature -8 -0.32, respectively. The band edge of the films on Si (100) and quartz has been determined by spectroscopic ellipsometry (3.39 ± 0.05 eV) and spectrophotometric (3.35 ± 0.05 eV) methods, respectively. From the angle dependence of the p-polarized reflectivity we deduce a Brewster angle of 60.5 deg. Measurement of the polarized optical properties shows a high transmissivity (81%-99%) and low absorptivity (< 5%) in the visible and near infrared regions at different angles of incidence. Also, we found that there was a higher absorptivity for wavelength < 370 nm. This wavelength, ∼ 370 nm, therefore indicated that the band edge for a-ZnO thin films is about 3.35 eV

  20. Measurement and Analysis of Composition and Depth Profile of H in Amorphous Si1−xCx:H Films

    International Nuclear Information System (INIS)

    Wei, Hua; Shu-De, Yao; Kun, Wang; Zhi-Bo, Ding

    2008-01-01

    Composition in amorphous Si 1−X C x :H heteroepitaxial thin films on Si (100) by plasma enhanced chemical vapour deposition (PECVD) is analysed. The unknown x (0.45–0.57) and the depth profile of hydrogen in the thin films are characterized by Rutherford backscattering spectrum (RBS), resonance-nuclear reaction analysis (R-NRA) and elastic recoil detection (ERD), respectively. In addition, the depth profile of hydrogen in the unannealed thin films is compared to that of the annealed thin films with rapid thermal annealing (RTA) or laser spike annealing (LSA) in nitrogen atmosphere. The results indicate that the stoichiometric amorphous SiC can be produced by PECVD when the ratio of CH 4 /SiH 4 is approximately equal to 25. The content of hydrogen decreases suddenly from 35% to 1% after 1150° C annealing. RTA can reduce hydrogen in SiC films effectively than LSA. (cross-disciplinary physics and related areas of science and technology)

  1. Mechanical stability of the diamond-like carbon film on nitinol vascular stents under cyclic loading

    International Nuclear Information System (INIS)

    Kim, Hyun-Jong; Moon, Myoung-Woon; Lee, Kwang-Ryeol; Seok, Hyun-Kwang; Han, Seung-Hee; Ryu, Jae-Woo; Shin, Kyong-Min; Oh, Kyu Hwan

    2008-01-01

    The mechanical stability of diamond-like carbon (DLC) films coated on nitinol vascular stents was investigated under cyclic loading condition by employing a stent crimping system. DLC films were coated on the vascular stent of a three dimensional structure by using a hybrid ion beam system with rotating jig. The cracking or delamination of the DLC coating occurred dominantly near the hinge connecting the V-shaped segments of the stent where the maximum strain was induced by a cyclic loading of contraction and extension. However the failures were significantly suppressed as the amorphous Si (a-Si) buffer layer thickness increased. Interfacial adhesion strength was estimated from the spalled crack size in the DLC coating for various values of the a-Si buffer layer thickness

  2. Low-temperature crystallization of amorphous silicon and amorphous germanium by soft X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Heya, Akira, E-mail: heya@eng.u-hyogo.ac.jp [Department of Materials Science and Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671–2280 (Japan); Kanda, Kazuhiro [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan); Toko, Kaoru; Sadoh, Taizoh [Department of Electronics, Kyushu University, 744 Nishi-ku, Motooka, Fukuoka 819–0395 (Japan); Amano, Sho [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan); Matsuo, Naoto [Department of Materials Science and Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671–2280 (Japan); Miyamoto, Shuji [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan); Miyao, Masanobu [Department of Electronics, Kyushu University, 744 Nishi-ku, Motooka, Fukuoka 819–0395 (Japan); Mochizuki, Takayasu [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan)

    2013-05-01

    The low-temperature-crystallization effects of soft X-ray irradiation on the structural properties of amorphous Si and amorphous Ge films were investigated. From the differences in crystallization between Si and Ge, it was found that the effects of soft X-ray irradiation on the crystallization strongly depended on the energy band gap and energy level. The crystallization temperatures of the amorphous Si and amorphous Ge films decreased from 953 K to 853 K and 773 K to 663 K, respectively. The decrease in crystallization temperature was also related to atoms transitioning into a quasi-nucleic phase in the films. The ratio of electron excitation and migration effects to thermal effects was controlled using the storage-ring current (photon flux density). Therefore, we believe that low-temperature crystallization can be realized by controlling atomic migration through electron excitation. - Highlights: • This work investigates the crystallization mechanism for soft X-ray irradiation. • The soft X-ray crystallization depended on the energy band gap and energy level. • The decrease in the crystallization temperature for Si and Ge films was 100 K. • This decrement was related to atoms transitioning into a quasi-nucleic phase.

  3. Morphology and kinetics of crystals growth in amorphous films of Cr2O3, deposited by laser ablation

    Science.gov (United States)

    Bagmut, Aleksandr

    2018-06-01

    An electron microscopic investigation was performed on the structure and kinetics of the crystallization of amorphous Cr2O3 films, deposited by pulsed laser sputtering of chromium target in an oxygen atmosphere. The crystallization was initiated by the action of an electron beam on an amorphous film in the column of a transmission electron microscope. The kinetic curves were plotted on the basis of a frame-by-frame analysis of the video recorded during the crystallization of the film. It was found that the amorphous phase - crystal phase transition in Cr2O3 films occurs as a layer polymorphic crystallization and is characterized by the values of the dimensionless relative length unit δ0 ≈ 2000-3100. The action of the electron beam initiates the formation of crystals of two basic morphological forms: disk-shaped and sickle-shaped. Growth of a disk-shaped crystals is characterized by a constant rate v and the quadratic dependence of the fraction of the crystalline phase x on the time t. Sickle-shaped crystal at an initial stage, as it grows, becomes as ring-shaped and disk-shaped crystal. The growth of a sickle-shaped crystal is characterized by normal and tangential velocity components, which depend on the time as ∼√t and as ∼1/√t respectively The end point of the arc at the interface between the amorphous and crystalline phases as the crystal grows describes a curve, which is similar to the Fermat helix. For sickle-shaped, as well as for disk-shaped crystals, the degree of crystallinity x ∼ t2.

  4. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    International Nuclear Information System (INIS)

    Drera, G.; Mozzati, M.C.; Colombi, P.; Salvinelli, G.; Pagliara, S.; Visentin, D.; Sangaletti, L.

    2015-01-01

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al 2 O 3 substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al 2 O 3 substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions

  5. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Drera, G. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Mozzati, M.C. [CNISM, Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia (Italy); Colombi, P. [CSMT Gestione s.c.a.r.l, Via Branze 45, 25123 Brescia (Italy); Salvinelli, G.; Pagliara, S.; Visentin, D. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Sangaletti, L., E-mail: sangalet@dmf.unicatt.it [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy)

    2015-09-01

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al{sub 2}O{sub 3} substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al{sub 2}O{sub 3} substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions.

  6. Scaling of anomalous hall effect in amorphous CoFeB Films with accompanying quantum correction

    KAUST Repository

    Zhang, Yan; Mi, Wenbo; Wang, Xiaocha; Guo, Zaibing

    2015-01-01

    Scaling of anomalous Hall effect in amorphous CoFeB films with thickness ranging from 2 to 160 nm have been investigated. We have found that the scaling relationship between longitudinal (ρxx) and anomalous Hall (ρAH) resistivity is distinctly

  7. Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Palneedi, Haribabu [Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Functional Ceramics Group, Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of); Maurya, Deepam; Priya, Shashank [Bio-inspired Materials and Devices Laboratory (BMDL), Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Kim, Gi-Yeop; Choi, Si-Young, E-mail: youngchoi@kims.re.kr [Materials Modeling and Characterization Department, Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of); Kang, Suk-Joong L. [Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kim, Kwang-Ho [School of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Ryu, Jungho, E-mail: jhryu@kims.re.kr [Functional Ceramics Group, Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of)

    2015-07-06

    A highly dense, 4 μm-thick Pb(Zr,Ti)O{sub 3} (PZT) film is deposited on amorphous magnetostrictive Metglas foil (FeBSi) by granule spray in vacuum process at room temperature, followed by its localized annealing with a continuous-wave 560 nm ytterbium fiber laser radiation. This longer-wavelength laser radiation is able to anneal the whole of thick PZT film layer without any deteriorative effects, such as chemical reaction and/or atomic diffusion, at the interface and crystallization of amorphous Metglas substrate. Greatly enhanced dielectric and ferroelectric properties of the annealed PZT are attributed to its better crystallinity and grain growth induced by laser irradiation. As a result, a colossal off-resonance magnetoelectric (ME) voltage coefficient that is two orders of magnitude larger than previously reported output from PZT/Metglas film-composites is achieved. The present work addresses the problems involved in the fabrication of PZT/Metglas film-composites and opens up emerging possibilities in employing piezoelectric materials with low thermal budget substrates (suitable for integrated electronics) and designing laminate composites for ME based devices.

  8. Amorphous and crystalline In_2O_3-based transparent conducting films for photovoltaics

    International Nuclear Information System (INIS)

    Koida, Takashi

    2017-01-01

    We reported solar cells with reduced electrical and optical losses using hydrogen-doped In_2O_3 (In_2O_3:H) transparent conducting layers with low sheet resistance and high transparence characteristics. The transparent conducting oxide (TCO) films were prepared by solid-phase crystallization of amorphous (a-) In_2O_3:H films grown by magnetron sputtering. The polycrystalline (poly-) In_2O_3:H films exhibited electron mobilities (over 100 cm"2V"-"1 s"-"1) 2 and 3 times greater than those of conventional TCO films. This paper describes (i) the current status of the electrical properties of In_2O_3-based TCO; (ii) the structural and optoelectrical properties of the a-In_2O_3:H and poly-In_2O_3:H films, focusing on the inhomogeneity and stability characteristics of the films; and (iii) the electrical properties of bilayer TCO. The potential of these high mobility TCO films for solar cells was also described. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Structural anisotropy in amorphous SnO2 film probed by X-ray absorption spectroscopy

    Science.gov (United States)

    Zhu, Q.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2013-07-01

    Polarization-dependent X-ray absorption measurements reveal the existence of structural anisotropy in amorphous (a-) SnO2 film. The anisotropy is readily seen for the second neighbor interaction whose magnitude differs along three measured directions. The differences can be well accounted for by 10%-20% variation in the Debye-Waller factor. Instead of a single Gaussian distribution found in crystalline SnO2, the Sn-O bond distribution is bimodal in a-SnO2 whose separation shows a weak angular dependence. The oxygen vacancies, existing in the a-SnO2 film in the order of 1021 cm-3, distribute preferentially along the film surface direction.

  10. Highly Enhanced Raman Scattering on Carbonized Polymer Films.

    Science.gov (United States)

    Yoon, Jong-Chul; Hwang, Jongha; Thiyagarajan, Pradheep; Ruoff, Rodney S; Jang, Ji-Hyun

    2017-06-28

    We have discovered a carbonized polymer film to be a reliable and durable carbon-based substrate for carbon enhanced Raman scattering (CERS). Commercially available SU8 was spin coated and carbonized (c-SU8) to yield a film optimized to have a favorable Fermi level position for efficient charge transfer, which results in a significant Raman scattering enhancement under mild measurement conditions. A highly sensitive CERS (detection limit of 10 -8 M) that was uniform over a large area was achieved on a patterned c-SU8 film and the Raman signal intensity has remained constant for 2 years. This approach works not only for the CMOS-compatible c-SU8 film but for any carbonized film with the correct composition and Fermi level, as demonstrated with carbonized-PVA (poly(vinyl alcohol)) and carbonized-PVP (polyvinylpyrollidone) films. Our study certainly expands the rather narrow range of Raman-active material platforms to include robust carbon-based films readily obtained from polymer precursors. As it uses broadly applicable and cheap polymers, it could offer great advantages in the development of practical devices for chemical/bio analysis and sensors.

  11. Influence of source and drain contacts on the properties of indium-gallium-zinc-oxide thin-film transistors based on amorphous carbon nanofilm as barrier layer.

    Science.gov (United States)

    Luo, Dongxiang; Xu, Hua; Zhao, Mingjie; Li, Min; Xu, Miao; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2015-02-18

    Amorphous indium-gallium-zinc-oxide thin film transistors (α-IGZO TFTs) with damage-free back channel wet-etch (BCE) process were achieved by introducing a carbon nanofilm as a barrier layer. We investigate the effects of different source-and-drain (S/D) materials on TFT performance. We find the TFT with Ti/C S/D electrodes exhibits a superior performance with higher output current, lower threshold voltage, and higher effective electron mobility compared to that of Mo/C S/D electrodes. Transmittance electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are employed to analysis the interfacial interaction between S/D metal/C/α-IGZO layers. The results indicate that the better performance of TFTs with Ti/C electrodes should be attributed to the formations of Ti-C and Ti-O at the Ti/C-contact regions, which lead to a lower contact resistance, whereas Mo film is relatively stable and does not react easily with C nanofilm, resulting in a nonohmic contact behavior between Mo/C and α-IGZO layer. However, both kinds of α-IGZO TFTs show good stability under thermal bias stress, indicating that the inserted C nanofilms could avoid the impact on the α-IGZO channel regions during S/D electrodes formation. Finally, we successfully fabricated a high-definition active-matrix organic lighting emitting diode prototype driven by α-IGZO TFTs with Ti/C electrodes in a pilot line.

  12. Effect of silane dilution on intrinsic stress in glow discharge hydrogenated amorphous silicon films

    Science.gov (United States)

    Harbison, J. P.; Williams, A. J.; Lang, D. V.

    1984-02-01

    Measurements of the intrinsic stress in hydrogenated amorphous silicon (a-Si : H) films grown by rf glow discharge decomposition of silane diluted to varying degrees in argon are presented. Films are found to grow under exceedingly high compressive stress. Low values of macroscopic film density and low stress values are found to correlate with high growth rate. An abrupt drop in stress occurs between 2 and 3% silane at precisely the point where columnar growth morphology appears. No corresponding abrupt change is noted in density, growth rate, or plasma species concentrations as determined by optical emissioin spectroscopy. Finally a model of diffusive incorporation of hydrogen or some gaseous impurity during growth into the bulk of the film behind the growing interface is proposed to explain the results.

  13. The Role of Ambient Gas and Pressure on the Structuring of Hard Diamond-Like Carbon Films Synthesized by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Andrei C. Popescu

    2015-06-01

    Full Text Available Hard carbon thin films were synthesized on Si (100 and quartz substrates by the Pulsed Laser Deposition (PLD technique in vacuum or methane ambient to study their suitability for applications requiring high mechanical resistance. The deposited films’ surface morphology was investigated by scanning electron microscopy, crystalline status by X-ray diffraction, packing and density by X-ray reflectivity, chemical bonding by Raman and X-ray photoelectron spectroscopy, adherence by “pull-out” measurements and mechanical properties by nanoindentation tests. Films synthesized in vacuum were a-C DLC type, while films synthesized in methane were categorized as a-C:H. The majority of PLD films consisted of two layers: one low density layer towards the surface and a higher density layer in contact with the substrate. The deposition gas pressure played a crucial role on films thickness, component layers thickness ratio, structure and mechanical properties. The films were smooth, amorphous and composed of a mixture of sp3-sp2 carbon, with sp3 content ranging between 50% and 90%. The thickness and density of the two constituent layers of a film directly determined its mechanical properties.

  14. Stoichiometric carbon nitride synthesized by ion beam sputtering and post nitrogen ion implantation

    International Nuclear Information System (INIS)

    Valizadeh, R.; Colligon, J.S.; Katardiev, I.V.; Faunce, C.A.; Donnelly, S.E.

    1998-01-01

    Full text: Carbon nitride films have been deposited on Si (100) by ion beam sputtering a vitreous graphite target with nitrogen and argon ions with and without concurrent N2 ion bombardment at room temperature. The sputtering beam energy was 1000 eV and the assisted beam energy was 300 eV with ion / atom arrival ratio ranging from 0.5 to 5. The carbon nitride films were deposited both as single layer directly on silicon substrate and as multilayer between two layers of stoichiometric amorphous silicon nitride and polycrystalline titanium nitride. The deposited films were implanted ex-situ with 30 keV nitrogen ions with various doses ranging from 1E17 to 4E17 ions.cm -2 and 2 GeV xenon ion with a dose of 1E12 ions.cm -2 . The nitrogen concentration of the films was measured with Rutherford Backscattering (RBS), Secondary Neutral Mass Spectrometry (SNMS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The nitrogen concentration for as deposited sample was 34 at% and stoichiometric carbon nitride C 3 N 4 was achieved by post nitrogen implantation of the multi-layered films. Post bombardment of single layer carbon nitride films lead to reduction in the total nitrogen concentration. Carbon K edge structure obtained from PEELS analysis suggested that the amorphous C 3 N 4 matrix was predominantly sp 2 bonded. This was confirmed by Fourier Transforrn Infra-Red Spectroscopy (FTIR) analysis of the single CN layer which showed the nitrogen was mostly bonded with carbon in nitrile (C≡N) and imine (C=N) groups. The microstructure of the film was determined by Transmission Electron Microscopy (TEM) which indicated that the films were amorphous

  15. INFLUENCE OF THE SILICON INTERLAYER ON DIAMOND-LIKE CARBON FILMS DEPOSITED ON GLASS SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Deiler Antonio Lima Oliveira

    2012-06-01

    Full Text Available Diamond-like carbon (DLC films as a hard protective coating have achieved great success in a diversity of technological applications. However, adhesion of DLC films to substrates can restrict their applications. The influence of a silicon interlayer in order to improve DLC adhesion on glass substrates was investigated. Amorphous silicon interlayer and DLC films were deposited using plasma enhanced chemical vapor deposition from silane and methane, respectively. The bonding structure, transmittance, refraction index, and adherence of the films were also evaluated regarding the thickness of the silicon interlayer. Raman scattering spectroscopy did not show any substantial difference in DLC structure due to the interlayer thickness of the silicon. Optical measurements showed a sharp decrease of transmittance in the ultra-violet region caused by the fundamental absorption of the light. In addition, the absorption edge of transmittance shifted toward longer wavelength side in the ultra-violet region as the thickness of the silicon interlayer increased. The tribological results showed an increase of DLC adherence as the silicon interlayer increased, which was characterized by less cracks around the grooves.

  16. Three-dimensional structure of Au nanoparticles supported on amorphous silica and carbon substrates

    International Nuclear Information System (INIS)

    Bruma, A; Li, Z Y

    2012-01-01

    Scanning Transmission Electron Microscope (STEM) has been employed to study the three-dimensional structure of gold (Au) nanoparticles deposited by means of thermal evaporation in high vacuum on amorphous silica (a-SiO 2 ) and amorphous carbon (a-C) supports. By performing quantitative analysis on the evolution of the high angle annular dark field (HAADF) images, we studied the influence of the nature and the temperature of support on the growth mode of gold nanoparticles.

  17. One-step liquid phase chemical method to prepare carbon-based amorphous molybdenum sulfides: As the effective hydrogen evolution reaction catalysts

    International Nuclear Information System (INIS)

    Guo, Mengmeng; Wu, Qikang; Yu, Miaomiao; Wang, Yinling; Li, Maoguo

    2017-01-01

    Two different kinds of carbon-based amorphous molybdenum sulfide composite catalysts (activated carbon supported amorphous molybdenum sulfide and acetylene black supported amorphous molybdenum sulfide) had been prepared in a facile and scalable one-step liquid phase chemical method. The morphological and structural information of catalysts was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and it’s electro-catalytic HER activity were evaluated by linear sweep voltammetry(LSV), amperometric i-t technology and AC impedance technology. The as-prepared carbon-based amorphous molybdenum sulfides showed greatly enhanced electro-catalytic activity for HER compared with pure amorphous molybdenum sulfides. Especially, the nano-sized acetylene black supported molybdenum sulfide exhibited excellent electro-catalytic HER performances with a low onset potential of −116 mV versus reverse hydrogen electrode (RHE) and a small Tafel slope of 51 mV per decade.

  18. Ultra low nanowear in novel chromium/amorphous chromium carbide nanocomposite films

    Science.gov (United States)

    Yate, Luis; Martínez-de-Olcoz, Leyre; Esteve, Joan; Lousa, Arturo

    2017-10-01

    In this work, we report the first observation of novel nanocomposite thin films consisting of nanocrystalline chromium embedded in an amorphous chromium carbide matrix (nc-Cr/a-CrC) with relatively high hardness (∼22,3 GPa) and ultra low nanowear. The films were deposited onto silicon substrates using a magnetic filtered cathodic arc deposition system at various negative bias voltages, from 50 to 450 V. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) suggested the co-existence of chromium and chromium carbide phases, while high resolution transmission electron microscopy (HRTEM) confirmed the presence of the nc-Cr/a-CrC structure. The friction coefficient measured with the ball-on disk technique and the nanowear results showed a strong correlation between the macro and nano-tribological properties of the samples. These novel nanocomposite films show promising properties as solid lubricant and wear resistant coatings with relatively high hardness, low friction coefficient and ultra low nanowear.

  19. Investigation of the degradation of a thin-film hydrogenated amorphous silicon photovoltaic module

    Energy Technology Data Exchange (ETDEWEB)

    van Dyk, E.E.; Audouard, A.; Meyer, E.L. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Woolard, C.D. [Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2007-01-23

    The degradation of a thin-film hydrogenated single-junction amorphous silicon (a-Si:H) photovoltaic (PV) module has been studied. We investigated the different modes of electrical and physical degradation of a-Si:H PV modules by employing a degradation and failure assessment procedure used in conjunction with analytical techniques, including, scanning electron microscopy (SEM) and thermogravimetry. This paper reveals that due to their thickness, thin films are very sensitive to the type of degradation observed. Moreover, this paper deals with the problems associated with the module encapsulant, poly(ethylene-co-vinylacetate) (EVA). The main objective of this study was to establish the influence of outdoor environmental conditions on the performance of a thin-film PV module comprising a-Si:H single-junction cells. (author)

  20. Evidence for the concentration induced extinction of gas sensitivity in amorphous and nanostructured Te thin films

    International Nuclear Information System (INIS)

    Tsiulyanu, D.; Mocreac, O.; Enachi, M.; Volodina, G.

    2013-01-01

    The extinction of sensitivity to nitrogen dioxide induced by high gas concentration have been observed in ultrathin tellurium films. The phenomenon becomes apparent in both continuous and nanostructured films shown by AFM, SEM and XRD analyses to be in amorphous state. Sensitivity of 30 nm thickness Te film decreases near linearly with concentration increase between 150 and 500 ppb of nitrogen dioxide. The results are explained in terms of formation of a nitrogen dioxide catalytic gate in which a molecule adsorbs (and desorbs) without reacting. (authors)

  1. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide

    Directory of Open Access Journals (Sweden)

    Imas Noviyana

    2017-06-01

    Full Text Available Top-contact bottom-gate thin film transistors (TFTs with zinc-rich indium zinc tin oxide (IZTO active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C.

  2. Carbon nanostructure formation driven by energetic particles

    International Nuclear Information System (INIS)

    Zhu Zhiyuan; Gong Jinlong; Zhu Dezhang

    2006-01-01

    Carbon nanostructures, especially carbon nanotubes (CNTs), have been envisaged to be the building blocks of a variety of nanoscale devices and materials. The inherent nanometer-size and ability of being either metallic or semiconductive of CNTs lead to their application in nanoelectronics. Excellent mechanical characteristics of CNTs suggest their use as structural reinforcements. However, to fully exploit the potential applications, effective means of tailoring CNT properties must be developed. Irradiation of materials with energetic particles beams (ions and electrons) is a standard and important tool for modifying material properties. Irradiation makes it possible to dope the samples, to create local amorphous region or vice versa, recrystallize the lattice and even drive a phase transition. In this paper, we report our results of (1) phase transfromation from carbon nanotubes to nanocrystalline diamond driven by hydrogen plasma, (2) onion-like nanostructure from carbon nanotubes driven by ion beams of several tens keV, and (3) amorphous carbon nanowire network formation by ion beam irradiation. Structural phase transformation from multiwalled carbon nanotubes to nanocrystalline diamond by hydrogen plasma post-treatment was carried out. Ultrahigh equivalent diamond nucleation density of more than 1011 nuclei/cm 2 was obtained. The diamond formation and growth mechanisms were proposed to be the consequence of the formation of sp3 bonded amorphous carbon clusters. The hydrogen chemisorption on curved graphite network and the energy deposited on CNTs by continuous impingement of activated molecular or atomic hydrogen are responsible for the formation of amorphous carbon matrix. Diamond nucleates and grows in the way similar to that of diamond chemical vapor deposition processes on amorphous carbon films. Furthermore, single crystalline diamond nanorods of 4-8 nm in diameter and up to 200 nm in length have been successfully synthesized by hydrogen plasma post

  3. Evolution of Defect Structures and Deep Subgap States during Annealing of Amorphous In-Ga-Zn Oxide for Thin-Film Transistors

    Science.gov (United States)

    Jia, Junjun; Suko, Ayaka; Shigesato, Yuzo; Okajima, Toshihiro; Inoue, Keiko; Hosomi, Hiroyuki

    2018-01-01

    We investigate the evolution behavior of defect structures and the subgap states in In-Ga-Zn oxide (IGZO) films with increasing postannealing temperature by means of extended x-ray absorption fine-structure (EXAFS) measurements, positron annihilation lifetime spectroscopy (PALS), and cathodoluminescence (CL) spectroscopy, aiming to understand the relationship between defect structures and subgap states. EXAFS measurements reveal the varied oxygen coordination numbers around cations during postannealing and confirm two types of point defects, namely, excess oxygen around Ga atoms and oxygen deficiency around In and/or Zn atoms. PALS suggests the existence of cation-vacancy (VM )-related clusters with neutral or negative charge in both amorphous and polycrystalline IGZO films. CL spectra show a main emission band at approximately 1.85 eV for IGZO films, and a distinct shoulder located at about 2.15 eV for IGZO films postannealed above 600 °C . These two emission bands are assigned to a recombination between the electrons in the conduction band and/or in the shallow donor levels near the conduction band and the acceptors trapped above the valence-band maximum. The shallow donors are attributed to the oxygen deficiency, and the acceptors are thought to possibly arise from the excess oxygen or the VM-related clusters. These results open up an alternative route for understanding the device instability of amorphous IGZO-based thin-film transistors, especially the presence of the neutral or negatively charged VM-related clusters in amorphous IGZO films.

  4. Controlling the competing magnetic anisotropy energies in FineMET amorphous thin films with ultra-soft magnetic properties

    Directory of Open Access Journals (Sweden)

    Ansar Masood

    2017-05-01

    Full Text Available Thickness dependent competing magnetic anisotropy energies were investigated to explore the global magnetic behaviours of FineMET amorphous thin films. A dominant perpendicular magnetization component in the as-deposited state of thinner films was observed due to high magnetoelastic anisotropy energy which arises from stresses induced at the substrate-film interface. This perpendicular magnetization component decreases with increasing film thickness. Thermal annealing at elevated temperature revealed a significant influence on the magnetization state of the FineMET thin films and controlled annealing steps leads to ultra-soft magnetic properties, making these thin films alloys ideal for a wide range of applications.

  5. Engineering Graphene Films from Coal

    Science.gov (United States)

    Vijapur, Santosh H.

    Graphene is a unique material with remarkable properties suitable for a wide array of applications. Chemical vapor deposition (CVD) is a simple technique for synthesis of large area and high quality graphene films on various metal substrates. Among the metal substrates, copper has been shown to be an excellent support for the growth of graphene films. Traditionally, hydrocarbon gases are used for the graphene synthesis via CVD. Unconventional solid carbon sources such as various polymers and food waste have also shown great potential for synthesis of graphene films. Coal is one such carbon enriched and abundantly available unconventional source. Utilization of coal as a carbon source to synthesize large area, transparent, and high quality few-layer graphene films via CVD has been demonstrated in the present work. Hydrocarbon gases are released as products of coal pyrolysis at temperatures ≥400 °C. This study hypothesized that, these hydrocarbon gases act as precursors for the synthesis of graphene films on the copper substrate. Hence, atmospheric pressure CVD and low temperature of 400 °C were utilized initially for the production of graphene films. These conditions were suitable for the formation of amorphous carbon (a-C) films but not crystalline graphene films that were the objective of this work. The synthesized a-C films on the copper substrate were shown to be uniform and transparent with large surface area. The thickness and surface roughness of the a-C films were determined to have typical values of 5 nm and 0.55 nm, respectively. The a-C film has >95 % optical transmittance and sheet resistivity of 0.6 MO sq-1. These values are comparable to other carbon thin films synthesized at higher temperatures. Further, the a-C films were transferred onto any type of substrate such as silicon wafer and titanium foil, and can be utilized for diverse applications. However, crystalline graphene films were not produced by implementing atmospheric pressure CVD and low

  6. van der Waals epitaxy of SnS film on single crystal graphene buffer layer on amorphous SiO2/Si

    Science.gov (United States)

    Xiang, Yu; Yang, Yunbo; Guo, Fawen; Sun, Xin; Lu, Zonghuan; Mohanty, Dibyajyoti; Bhat, Ishwara; Washington, Morris; Lu, Toh-Ming; Wang, Gwo-Ching

    2018-03-01

    Conventional hetero-epitaxial films are typically grown on lattice and symmetry matched single crystal substrates. We demonstrated the epitaxial growth of orthorhombic SnS film (∼500 nm thick) on single crystal, monolayer graphene that was transferred on the amorphous SiO2/Si substrate. Using X-ray pole figure analysis we examined the structure, quality and epitaxy relationship of the SnS film grown on the single crystal graphene and compared it with the SnS film grown on commercial polycrystalline graphene. We showed that the SnS films grown on both single crystal and polycrystalline graphene have two sets of orientation domains. However, the crystallinity and grain size of the SnS film improve when grown on the single crystal graphene. Reflection high-energy electron diffraction measurements show that the near surface texture has more phases as compared with that of the entire film. The surface texture of a film will influence the growth and quality of film grown on top of it as well as the interface formed. Our result offers an alternative approach to grow a hetero-epitaxial film on an amorphous substrate through a single crystal graphene buffer layer. This strategy of growing high quality epitaxial thin film has potential applications in optoelectronics.

  7. Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Zhong; Tian Wenhuai; Liu Xiaohe; Yang Rong; Li Xingguo

    2007-01-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles

  8. Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors

    KAUST Repository

    Zhu, Shijin; Zhang, Jie; Ma, Junjun; Zhang, Yuxin; Yao, Kexin

    2015-01-01

    Coaxial mesoporous MnO2/amorphous-carbon nanotubes have been synthesized via a facile and cost-effective strategy at room temperature. The coaxial double nanotubes of inner (outer) MnO2 and outer (inner) amorphous carbon can be obtained via fine tuning the preparative factors (e.g., deposition order and processing temperature). Furthermore, the electrochemical properties of the coaxial nanotubes were evaluated by cycle voltammetric (CV) and galvanostatic charge-discharge (GC) measurements. The as-prepared coaxial double nanotubes of outer MnO2 and inner amorphous carbon exhibit the optimized pseudocapacitance performance (362 F g-1) with good cycling stability, and ideal rate capability owning to the unique nanostructures. When assembled into two-electrode asymmetric supercapacitor, an energy density of 22.56 W h kg-1 at a power density of 224.9 W kg-1 is obtained. These findings provide a new and facile approach to fabricate high-performance electrode for supercapacitors.

  9. Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors

    KAUST Repository

    Zhu, Shijin

    2015-03-01

    Coaxial mesoporous MnO2/amorphous-carbon nanotubes have been synthesized via a facile and cost-effective strategy at room temperature. The coaxial double nanotubes of inner (outer) MnO2 and outer (inner) amorphous carbon can be obtained via fine tuning the preparative factors (e.g., deposition order and processing temperature). Furthermore, the electrochemical properties of the coaxial nanotubes were evaluated by cycle voltammetric (CV) and galvanostatic charge-discharge (GC) measurements. The as-prepared coaxial double nanotubes of outer MnO2 and inner amorphous carbon exhibit the optimized pseudocapacitance performance (362 F g-1) with good cycling stability, and ideal rate capability owning to the unique nanostructures. When assembled into two-electrode asymmetric supercapacitor, an energy density of 22.56 W h kg-1 at a power density of 224.9 W kg-1 is obtained. These findings provide a new and facile approach to fabricate high-performance electrode for supercapacitors.

  10. Amorphous indium tin oxide films deposited on flexible substrates by facing target sputtering at room temperature

    International Nuclear Information System (INIS)

    Xiao, Yu; Gao, Fangyuan; Dong, Guobo; Guo, Tingting; Liu, Qirong; Ye, Di; Diao, Xungang

    2014-01-01

    Indium tin oxide (ITO) thin films were deposited on polyethylene terephthalate substrates using a DC facing target sputtering (DC-FTS) system at room temperature. The sputtering conditions including oxygen partial pressure and discharge current were varied from 0% to 4% and 0.5 A to 1.3 A, respectively. X-ray diffraction and scanning electron microscopy were used to study the structure and surface morphology of as-prepared films. All the films exhibited amorphous structures and smooth surfaces. The dependence of electrical and optical properties on various deposition parameters was investigated by a linear array four-point probe, Hall-effect measurements, and ultraviolet/visible spectrophotometry. A lowest sheet resistance of 17.4 Ω/square, a lowest resistivity of 3.61 × 10 −4 Ω cm, and an average relative transmittance over 88% in the visible range were obtained under the optimal deposition conditions. The relationship between the Hall mobility (μ) and carrier concentration (n) was interpreted by a functional relation of μ ∼ n −0.127 , which indicated that ionized donor scattering was the dominant electron scattering mechanism. It is also confirmed that the carrier concentration in ITO films prepared by the DC-FTS system is mainly controlled by the number of activated Sn donors rather than oxygen vacancies. - Highlights: • ITO thin films were grown on PET substrates by DC facing target sputtering system. • All the films were prepared at room temperature and exhibited amorphous structure. • Highly conductive and transparent ITO thin films were obtained. • The dominant ionized donor scattering mechanism was suggested

  11. Amorphous indium tin oxide films deposited on flexible substrates by facing target sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yu [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Gao, Fangyuan, E-mail: gaofangyuan@buaa.edu.cn [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Dong, Guobo; Guo, Tingting; Liu, Qirong [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Ye, Di [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100191 (China); Diao, Xungang [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)

    2014-04-01

    Indium tin oxide (ITO) thin films were deposited on polyethylene terephthalate substrates using a DC facing target sputtering (DC-FTS) system at room temperature. The sputtering conditions including oxygen partial pressure and discharge current were varied from 0% to 4% and 0.5 A to 1.3 A, respectively. X-ray diffraction and scanning electron microscopy were used to study the structure and surface morphology of as-prepared films. All the films exhibited amorphous structures and smooth surfaces. The dependence of electrical and optical properties on various deposition parameters was investigated by a linear array four-point probe, Hall-effect measurements, and ultraviolet/visible spectrophotometry. A lowest sheet resistance of 17.4 Ω/square, a lowest resistivity of 3.61 × 10{sup −4} Ω cm, and an average relative transmittance over 88% in the visible range were obtained under the optimal deposition conditions. The relationship between the Hall mobility (μ) and carrier concentration (n) was interpreted by a functional relation of μ ∼ n{sup −0.127}, which indicated that ionized donor scattering was the dominant electron scattering mechanism. It is also confirmed that the carrier concentration in ITO films prepared by the DC-FTS system is mainly controlled by the number of activated Sn donors rather than oxygen vacancies. - Highlights: • ITO thin films were grown on PET substrates by DC facing target sputtering system. • All the films were prepared at room temperature and exhibited amorphous structure. • Highly conductive and transparent ITO thin films were obtained. • The dominant ionized donor scattering mechanism was suggested.

  12. Effects of thickness on the statistical properties of the Barkhausen noise in amorphous films

    International Nuclear Information System (INIS)

    Santi, L.; Bohn, F.; Viegas, A.D.C.; Durin, G.; Magni, A.; Bonin, R.; Zapperi, S.; Sommer, R.L.

    2006-01-01

    The statistical properties of the Barkhausen noise (BN) in thin amorphous films are studied as a function of both the nominal composition and the thickness. BN was observed in single films with nominal compositions Fe 73.5 Cu 1 Nb 3 Si 22.5-x B x (with x=4 and 9) in the thickness range 20nm-5μm. The distributions of Barkhausen jump sizes and duration times were obtained and fitted to power laws with critical exponents τ=1.25+/-0.05 and α=1.60+/-0.05, respectively

  13. Anisotropy, magnetostriction and local chemical order in amorphous TbxFe1-x (0.1films

    International Nuclear Information System (INIS)

    Hernando, A.; Prados, C.; Prieto, C.

    1996-01-01

    Local chemical order in amorphous TbFe thin films has been investigated in a variety of compositions, using EXAFS, magnetostriction and anisotropy measurements. Data reported here are consistent with a density of Fe-Tb pairs in the film plane larger than in the perpendicular direction. (orig.)

  14. First principles-based multiparadigm, multiscale strategy for simulating complex materials processes with applications to amorphous SiC films

    Energy Technology Data Exchange (ETDEWEB)

    Naserifar, Saber [Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211 (United States); Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Goddard, William A. [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Tsotsis, Theodore T.; Sahimi, Muhammad, E-mail: moe@usc.edu [Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211 (United States)

    2015-05-07

    Progress has recently been made in developing reactive force fields to describe chemical reactions in systems too large for quantum mechanical (QM) methods. In particular, ReaxFF, a force field with parameters that are obtained solely from fitting QM reaction data, has been used to predict structures and properties of many materials. Important applications require, however, determination of the final structures produced by such complex processes as chemical vapor deposition, atomic layer deposition, and formation of ceramic films by pyrolysis of polymers. This requires the force field to properly describe the formation of other products of the process, in addition to yielding the final structure of the material. We describe a strategy for accomplishing this and present an example of its use for forming amorphous SiC films that have a wide variety of applications. Extensive reactive molecular dynamics (MD) simulations have been carried out to simulate the pyrolysis of hydridopolycarbosilane. The reaction products all agree with the experimental data. After removing the reaction products, the system is cooled down to room temperature at which it produces amorphous SiC film, for which the computed radial distribution function, x-ray diffraction pattern, and the equation of state describing the three main SiC polytypes agree with the data and with the QM calculations. Extensive MD simulations have also been carried out to compute other structural properties, as well the effective diffusivities of light gases in the amorphous SiC film.

  15. Chromium-modified a-C films with advanced structural, mechanical and corrosive-resistant characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Miao Yi [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Jiang, Xiaohong, E-mail: jxh0668@sina.com [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Piliptsou, D.G., E-mail: pdg_@mail.ru [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Zhuang, Yuzhao; Rogachev, A.V.; Rudenkov, A.S. [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Balmakou, A. [Faculty of Material Science and Technology, Slovak University of Technology, Trnava 91724 (Slovakia)

    2016-08-30

    Highlights: • Influence of the chromium interlayer on the structure and mechanical properties of a-C:Cr films. • Residual stress and wear of a-C:Cr and Cr/a-C varies due to their phase and surface morphology. • Chromium-modified a-C films with advanced structural, mechanical and corrosive-resistant characteristics. - Abstract: To improve structural, mechanical and chemical properties of diamond-like carbon films, we developed amorphous carbon chromium-modified composite films fabricated by means of cathode magnetic filtered arc deposition. The properties were analyzed by Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy for the purpose of the structure characterization, elemental analysis and topology examination. Moreover, we also assessed residual stress, the coefficient of friction, hardness, the elastic modulus and corrosion parameters through X-ray double-crystal surface profilometry, tribo-testing, nanoindenter-testing, as well as contact angle measurements and potentiodynamic polarization analysis. As a result of a comparative analysis, we revealed a substantial improvement in the characteristics of developed composite films in comparison with amorphous carbon films. For example, Cr-modification is resulted, in greater integrated performance, toughness and corrosion resistance; the residual stress was reduced substantially.

  16. Physical characterization of sputter-deposited amorphous tungsten oxynitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, O.R.; Moreno Tarango, A.J. [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Murphy, N.R. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base (WPAFB), Dayton, OH 45433 (United States); Phinney, L.C.; Hossain, K. [Amethyst Research Inc., 123 Case Circle, Ardmore, OK 73401 (United States); Ramana, C.V., E-mail: rvchintalapalle@utep.edu [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States)

    2015-12-01

    Tungsten oxynitride (W–O–N) thin films were deposited onto silicon (100) and quartz substrates using direct current (DC) sputtering. Composition variations in the W–O–N films were obtained by varying the nitrogen gas flow rate from 0 to 20 sccm, while keeping the total gas flow constant at 40 sccm using 20 sccm of argon with the balance comprised of oxygen. The resulting crystallinity, optical properties, and chemical composition of the DC sputtered W–O–N films were evaluated. All the W–O–N films measured were shown to be amorphous using X-ray diffraction. Spectrophotometry results indicate that the optical parameters, namely, the transmission magnitude and band gap (E{sub g}), are highly dependent on the nitrogen content in the reactive gas mixture. Within the W–O–N system, E{sub g} was able to be precisely tailored between 2.9 eV and 1.9 eV, corresponding to fully stoichiometric WO{sub 3} and highly nitrided W–O–N, respectively. Rutherford backscattering spectrometry (RBS) coupled with X-ray photoelectron spectroscopy (XPS) measurements indicate that the composition of the films varies from WO{sub 3} to W–O–N composite oxynitride films. - Highlights: • W–O–N films of ~ 100 nm thick were sputter-deposited by varying nitrogen gas flow rate. • Nitrogen incorporation into W-oxide is effective at or after 9 sccm flow rate of nitrogen. • The band gap significantly decreases from ~ 3.0 eV to ~ 2.1 eV with progressive increase in nitrogen content. • A composite oxide-semiconductor of W–O–N is proposed to explain the optical properties.

  17. Ion irradiation enhanced crystal nucleation in amorphous Si thin films

    International Nuclear Information System (INIS)

    Im, J.S.; Atwater, H.A.

    1990-01-01

    The nucleation kinetics of the amorphous-to-crystal transition of Si films under 1.5 MeV Xe + irradiation have been investigated by means of in situ transmission electron microscopy in the temperature range T=500--580 degree C. After an incubation period during which negligible nucleation occurs, a constant nucleation rate was observed in steady state, suggesting that homogeneous nucleation occurred. Compared to thermal crystallization, a significant enhancement in the nucleation rate during high-energy ion irradiation (five to seven orders of magnitude) was observed with an apparent activation energy of 3.9±0.75 eV

  18. Effects of crystallization on structural and dielectric properties of thin amorphous films of (1 - x)BaTiO3-xSrTiO3 (x=0-0.5, 1.0)

    Science.gov (United States)

    Kawano, H.; Morii, K.; Nakayama, Y.

    1993-05-01

    The possibilities for fabricating solid solutions of (Ba1-x,Srx)TiO3 (x≤0.5,1.0) by crystallization of amorphous films and for improving their dielectric properties by adjusting the Sr content were investigated. Thin amorphous films were prepared from powder targets consisting of mixtures of BaTiO3 and SrTiO3 by sputtering with a neutralized Ar-ion beam. The amorphous films crystallized into (Ba1-x, Srx)TiO3 solid solutions with a cubic perovskite-type structure after annealing in air at 923 K for more than 1 h. The Debye-type dielectric relaxation was observed for the amorphous films, whereas the crystallized films showed paraelectric behavior. The relative dielectric constants were of the order of 20 for the amorphous samples, but increased greatly after crystallization to about 60-200, depending on the composition; a larger increase in the dielectric constant was observed in the higher Sr content films, in the range x≤0.5, which could be correlated with an increase in the grain size of the crystallites. The crystallization processes responsible for the difference in the grain size are discussed based on the microstructural observations.

  19. Photo-expansion in Ge-As-S amorphous film monitored by diital holograpic microscopy and atomic force microscopy

    Czech Academy of Sciences Publication Activity Database

    Knotek, P.; Arseva, D.; Vateva, E.; Tichý, Ladislav

    2009-01-01

    Roč. 11, č. 4 (2009), s. 391-394 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z40500505 Keywords : amorphous chalcogenide films Subject RIV: CA - Inorganic Chemistry Impact factor: 0.433, year: 2009

  20. Thermodynamic properties of the amorphous and crystalline modifications of carbon and the metastable synthesis of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Guencheva, V.; Grantscharova, E.; Gutzow, I. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Physical Chemistry

    2001-07-01

    The temperature dependencies of the thermodynamic properties of the little known (or even hypothetical) undercooled carbon melt and of the glasses that could be obtained from it at appropriate cooling rates are constructed. This is done using both a general thermodynamic formalism to estimate equilibrium properties of undercooled glass-forming melts and the expected analogy in properties of Fourth Group Elements. A comparison of the hypothetical carbon glasses with amorphous materials, obtained by the pyrolisis of organic resins, usually called vitreous (or glassy) carbon, is made. It turns out that from a thermodynamic point of view existing vitreous carbon materials, although characterized by an amorphous, frozen-in structure, differ significantly from the carbon glasses, which could be obtained by a splat-cool-quench of the carbon melt. It is shown also that the hypothetical carbon glasses should have at any temperature a thermodynamic potential, significantly higher than that of diamond. Thus they could be used as a source of constant supersaturation in metastable diamond synthesis. Existing amorphous carbon materials, although showing considerably lower thermodynamic potentials than the hypothetical carbon glasses, could also be used as sources of constant supersaturation in a process of isothermal diamond synthesis if their thermodynamic potential is additionally increased (e.g. by mechano-chemical treatment or by dispersion into nano-size scale). Theoretical estimates made in terms of Ostwald's Rule of Stages indicate that in processes of metastable isothermal diamond synthesis additional kinetic factors (e.g. influencing the formation of sp{sup 3} - carbon structures in the ambient phase) and the introduction of active substrates (e.g. diamond powder) are to be of significance in the realization of this thermodynamic possibility. (orig.)