WorldWideScience

Sample records for amorphous boron coatings

  1. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  2. Microstructural study of oxidation of carbon-rich amorphous boron carbide coating

    Institute of Scientific and Technical Information of China (English)

    Bin ZENG; Zu-de FENG; Si-wei LI; Yong-sheng LIU

    2008-01-01

    Carbon-rich amorphous boron carbide (BxC) coatings were annealed at 400℃, 700℃, 1000℃ and 1200℃ for 2 h in air atmosphere. The microstructure and composition of the as-deposited and annealed coat-ings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-Raman spectro-scopy and energy dispersive X-ray spectroscopy (EDS). All of the post-anneal characterizations demonstrated the ability of carbon-rich BxC coatings to protect the graphite substrate against oxidation. Different oxidation modes of the coatings were found at low temperature (400℃), moderate temperature (700℃) and high temper-ature (1000℃ and 1200℃). Finally, the feasibility of the application of carbon-rich BxC instead of pyrolytic car-bon (PyC) as a fiber/matrix interlayer in ceramics-matrix composites (CMCs) is discussed here.

  3. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent

    Science.gov (United States)

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-01

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  4. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent.

    Science.gov (United States)

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-30

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  5. Preparation of High Purity Amorphous Boron Powder

    Directory of Open Access Journals (Sweden)

    K.V. Tilekar

    2005-10-01

    Full Text Available Amorphous boron powder of high purity (92-94 % with a particle size of l-2 mm is preferred as a fuel for fuel-rich propellants for integrated rocket ramjets and for igniter formulations. Thispaper describes the studies on process optimisation of two processes, ie, oxidative roasting of boron (roasting boron in air and roasting boron with zinc in an inert medium for preparing high purity boron. Experimental studies reveal that roasting boron with zinc at optimised process conditions yields boron of purity more than 93 per cent, whereas oxidative roasting method yields boron of purity - 92 per cent. Oxidative roasting has comparative edge over the other processes owing to its ease of scale-up and simplicity

  6. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  7. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian;

    1993-01-01

    report on attempts to compact amorphous iron–boron particles prepared by chemical reduction of Fe(II) ions in aqueous solution by NaBH4 (Ref. 2). The particles prepared in this way are pyrophoric, but can be passivated. The small particle size (10–100 nm), characteristic of this preparation technique...

  8. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  9. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    Science.gov (United States)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  10. Ab initio modelling of boron related defects in amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Tiago A.; Torres, Vitor J.B. [Department of Physics, University of Aveiro, Campus Santiago, 3810-193 Aveiro (Portugal)

    2012-10-15

    We have modeled boron related point defects in amorphous silicon, using an ab initio method, the Density functional theory-pseudopotential code Aimpro. The boron atoms were embedded in 64 atom amorphous silicon cubic supercells. The calculations were performed using boron defects in 15 different supercells. These supercells were developed using a modified Wooten-Winer-Weaire bond switching mechanism. In average, the properties of the 15 supercells agree with the observed radial and bond angle distributions, as well the electronic and vibrational density of states and Raman spectra. In amorphous silicon it has been very hard to find real self-interstitials, since for almost all the tested configurations, the amorphous lattice relaxes overall. We found that substitutional boron prefers to be 4-fold coordinated. We find also an intrinsic hole-trap in the non-doped amorphous lattice, which may explain the low efficiency of boron doping. The local vibrational modes are, in average, higher than the correspondent crystalline values (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. The corrosion resistance and neutron-absorbing properties of coatings based on amorphous alloys

    Science.gov (United States)

    Sevryukov, O. N.; Polyansky, A. A.

    2016-04-01

    The object of the present study was the corrosion-resistant amorphizing alloys with an increased content of boron for cladding the surface of metals, rapidly quenched alloys without boron for protective coatings on a high-boron cladding layer, as well as steel samples with a protective coating with a high content of boron and without boron. The aim of the work is to investigate the corrosion resistance of a coating in water at the temperature of 40 °C in conditions of an open access of oxygen for 1000 h, as well as the features of the microstructure of clad samples before and after the corrosion tests. New data on the corrosion resistance of Cr18Ni10Ti steel samples with a protective layer from a rapidly quenched alloy Ni-19Cr-10Si (in wt.%) on a high-boron coating have been obtained.

  12. Shock-induced localized amorphization in boron carbide.

    Science.gov (United States)

    Chen, Mingwei; McCauley, James W; Hemker, Kevin J

    2003-03-01

    High-resolution electron microscope observations of shock-loaded boron carbide have revealed the formation of nanoscale intragranular amorphous bands that occur parallel to specific crystallographic planes and contiguously with apparent cleaved fracture surfaces. This damage mechanism explains the measured, but not previously understood, decrease in the ballistic performance of boron carbide at high impact rates and pressures. The formation of these amorphous bands is also an example of how shock loading can result in the synthesis of novel structures and materials with substantially altered properties.

  13. Depressurization amorphization of single-crystal boron carbide.

    Science.gov (United States)

    Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W

    2009-02-20

    We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices.

  14. Directional amorphization of boron carbide subjected to laser shock compression

    Science.gov (United States)

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.

    2016-10-01

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45˜50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C.

  15. Growth and Physical Structure of Amorphous Boron Carbide Deposited by Magnetron Sputtering on a Silicon Substrate with a Titanium Interlayer

    Directory of Open Access Journals (Sweden)

    Roberto Caniello

    2013-01-01

    Full Text Available Multilayer amorphous boron carbide coatings were produced by radiofrequency magnetron sputtering on silicon substrates. To improve the adhesion, titanium interlayers with different thickness were interposed between the substrate and the coating. Above three hundreds nanometer, the enhanced roughness of the titanium led to the growth of an amorphous boron carbide with a dense and continuing columnar structure, and no delamination effect was observed. Correspondingly, the adhesion of the coating became three time stronger than in the case of a bare silicon substrate. Physical structure and microstructural proprieties of the coatings were investigated by means of a scan electron microscopy, atomic force microscopy and X-ray diffraction. The adhesion of the films was measured by a scratch tester.

  16. Simulation of swift boron clusters traversing amorphous carbon foils

    OpenAIRE

    Heredia Ávalos, Santiago; Abril Sánchez, Isabel; Denton Zanello, Cristian D.; García Molina, Rafael

    2007-01-01

    We use a simulation code to study the interaction of swift boron clusters (Bn+, n=2–6, 14) with amorphous carbon foils. We analyze different aspects of this interaction, such as the evolution of the cluster structure inside the target, the energy and angle distributions at the detector or the stopping power ratio. Our simulation code follows in detail the motion of the cluster fragments through the target and in the vacuum until reaching a detector, taking into account the following interacti...

  17. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-01

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  18. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles.

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-02

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  19. Microstructural Characterization and Wear Properties of Fe-Based Amorphous-Crystalline Coating Deposited by Twin Wire Arc Spraying

    Directory of Open Access Journals (Sweden)

    Ana Arizmendi-Morquecho

    2014-01-01

    Full Text Available Twin wire arc spraying (TWAS was used to produce an amorphous crystalline Fe-based coating on AISI 1018 steel substrate using a commercial powder (140MXC in order to improve microhardness and wear properties. The microstructures of coating were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM as well as the powder precursor. Analysis in the coating showed the formation of an amorphous matrix with boron and tungsten carbides randomly dispersed. At high amplifications were identified boron carbides at interface boron carbide/amorphous matrix by TEM. This kind of carbides growth can be attributed to partial crystallization by heterogeneous nucleation. These interfaces have not been reported in the literature by thermal spraying process. The measurements of average microhardness on amorphous matrix and boron carbides were 9.1 and 23.85 GPa, respectively. By contrast, the microhardness values of unmelted boron carbide in the amorphous phase were higher than in the substrate, approaching 2.14 GPa. The relative wear resistance of coating was 5.6 times that of substrate. These results indicate that the twin wire arc spraying is a promising technique to prepare amorphous crystalline coatings.

  20. Nucleation of amorphous shear bands at nanotwins in boron suboxide

    Science.gov (United States)

    An, Qi; Reddy, K. Madhav; Qian, Jin; Hemker, Kevin J.; Chen, Ming-Wei; Goddard, William A., III

    2016-03-01

    The roles of grain boundaries and twin boundaries in mechanical properties are well understood for metals and alloys. However, for covalent solids, their roles in deformation response to applied stress are not established. Here we characterize the nanotwins in boron suboxide (B6O) with twin boundaries along the planes using both scanning transmission electron microscopy and quantum mechanics. Then, we use quantum mechanics to determine the deformation mechanism for perfect and twinned B6O crystals for both pure shear and biaxial shear deformations. Quantum mechanics suggests that amorphous bands nucleate preferentially at the twin boundaries in B6O because the twinned structure has a lower maximum shear strength by 7.5% compared with perfect structure. These results, which are supported by experimental observations of the coordinated existence of nanotwins and amorphous shear bands in B6O, provide a plausible atomistic explanation for the influence of nanotwins on the deformation behaviour of superhard ceramics.

  1. Quantification of corrosion resistance of a new-class of criticality control materials: thermal-spray coatings of high-boron iron-based amorphous metals - Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Shaw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

    2007-03-28

    An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was produced as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. Earlier studies have shown that ingots and melt-spun ribbons of these materials have good passive film stability in these environments. Thermal spray coatings of these materials have now been produced, and have undergone a variety of corrosion testing, including both atmospheric and long-term immersion testing. The modes and rates of corrosion have been determined in the various environments, and are reported here.

  2. Boronized steels with corundum-baddeleyite coatings

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-07-01

    Full Text Available The paper describes preparation and properties of anti-corrosion and anti-abrasive coatings from corundum-baddeleyite ceramics deposited on surface of low-carbon boronized steel S235JRH-1.0038 (EN 10025-1 by plasma spraying method. Adhesive interlayers Fe2B reaches bond strength of up to 20 MPa in the pull-off tests, the ZrO2 - Al2O3 - SiO2 coatings have a value of fracture adhesion of 4 - 6 MPa. Hardness of these ceramic coatings on steel is as high as 1 800 HV100 and its polarization resistance is 1 600 Ω/cm2 to 4 000 Ω/cm2.

  3. Modelling structure and properties of amorphous silicon boron nitride ceramics

    Directory of Open Access Journals (Sweden)

    Johann Christian Schön

    2011-06-01

    Full Text Available Silicon boron nitride is the parent compound of a new class of high-temperature stable amorphous ceramics constituted of silicon, boron, nitrogen, and carbon, featuring a set of properties that is without precedent, and represents a prototypical random network based on chemical bonds of predominantly covalent character. In contrast to many other amorphous materials of technological interest, a-Si3B3N7 is not produced via glass formation, i.e. by quenching from a melt, the reason being that the binary components, BN and Si3N4, melt incongruently under standard conditions. Neither has it been possible to employ sintering of μm-size powders consisting of binary nitrides BN and Si3N4. Instead, one employs the so-called sol-gel route starting from single component precursors such as TADB ((SiCl3NH(BCl2. In order to determine the atomic structure of this material, it has proven necessary to simulate the actual synthesis route.Many of the exciting properties of these ceramics are closely connected to the details of their amorphous structure. To clarify this structure, it is necessary to employ not only experimental probes on many length scales (X-ray, neutron- and electron scattering; complex NMR experiments; IR- and Raman scattering, but also theoretical approaches. These address the actual synthesis route to a-Si3B3N7, the structural properties, the elastic and vibrational properties, aging and coarsening behaviour, thermal conductivity and the metastable phase diagram both for a-Si3B3N7 and possible silicon boron nitride phases with compositions different from Si3N4: BN = 1 : 3. Here, we present a short comprehensive overview over the insights gained using molecular dynamics and Monte Carlo simulations to explore the energy landscape of a-Si3B3N7, model the actual synthesis route and compute static and transport properties of a-Si3BN7.

  4. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  5. Microstructure and Properties of Plasma Spraying Boron Carbide Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical,mechanical and electrical properties were measured. The results showed that high microhardness,modulus and Iow porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young′s modulus, comparing with that of the bulk materials, is explained by porosity. The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.

  6. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J

    2007-07-18

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials.

  7. Methods of forming boron nitride

    Science.gov (United States)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  8. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan (Jane); Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

    2013-07-09

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  9. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  10. Simulation of swift boron clusters traversing amorphous carbon foils

    Science.gov (United States)

    Heredia-Avalos, Santiago; Abril, Isabel; Denton, Cristian D.; Garcia-Molina, Rafael

    2007-01-01

    We use a simulation code to study the interaction of swift boron clusters ( Bn+ , n=2-6 , 14) with amorphous carbon foils. We analyze different aspects of this interaction, such as the evolution of the cluster structure inside the target, the energy and angle distributions at the detector or the stopping power ratio. Our simulation code follows in detail the motion of the cluster fragments through the target and in the vacuum until reaching a detector, taking into account the following interactions: (i) wake force, (ii) Coulomb repulsion among cluster fragments, (iii) stopping force, and (iv) elastic scattering with the target nuclei. Electron capture and loss by each fragment is also included in the code, affecting the above-mentioned interactions. The clusters size grows inside the foil due mainly to the Coulomb explosion but this increase is less pronounced in the plane transversal to the beam direction because of the alignment effect of the wake forces. We obtain an enhancement of the stopping power ratio that increases with the projectile energy and with the number of molecular constituents. Our results agree very well with the available experimental data for the thicker foils (≳10μg/cm2) and are compatible (within the experimental error bars) for the thinner foils.

  11. Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic

    Science.gov (United States)

    2014-08-01

    Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic by John D Clayton ARL-RP...Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic John D Clayton Weapons and Materials Research Directorate, ARL...and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  12. The use of amorphous boron powder enhances mechanical alloying in soft magnetic FeNbB alloy: A magnetic study

    Energy Technology Data Exchange (ETDEWEB)

    Ipus, J. J.; Blazquez, J. S.; Franco, V.; Conde, A. [Dpto. Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla (Spain)

    2013-05-07

    Saturation magnetization and magnetic anisotropy have been studied during mechanical alloying of Fe{sub 75}Nb{sub 10}B{sub 15} alloys prepared using crystalline and commercial amorphous boron. The evolution of saturation magnetization indicates a more efficient dissolution of boron into the matrix using amorphous boron, particularly for short milling times. The magnetization of the crystalline phase increases as boron is incorporated into this phase. Two milling time regimes can be used to describe the evolution of magnetic anisotropy: a first regime governed by microstrains and a second one mainly governed by crystal size and amorphous fraction.

  13. Femtosecond Laser Crystallization of Boron-doped Amorphous Hydrogenated Silicon Films

    Directory of Open Access Journals (Sweden)

    P.D. Rybalko

    2016-10-01

    Full Text Available Crystallization of amorphous hydrogenated silicon films with femtosecond laser pulses is one of the promising ways to produce nanocrystalline silicon for photovoltaics. The structure of laser treated films is the most important factor determining materials' electric and photoelectric properties. In this work we investigated the effect of femtosecond laser irradiation of boron doped amorphous hydrogenated silicon films with different fluences on crystalline volume fraction and electrical properties of this material. A sharp increase of conductivity and essential decrease of activation energy of conductivity temperature dependences accompany the crystallization process. The results obtained are explained by increase of boron doping efficiency in crystalline phase of modified silicon film.

  14. Boron carbide (B4C) coating. Deposition and testing

    Science.gov (United States)

    Azizov, E.; Barsuk, V.; Begrambekov, L.; Buzhinsky, O.; Evsin, A.; Gordeev, A.; Grunin, A.; Klimov, N.; Kurnaev, V.; Mazul, I.; Otroshchenko, V.; Putric, A.; Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A.

    2015-08-01

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B4C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B4C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B4C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B4C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  15. Suspension plasma sprayed composite coating using amorphous powder feedstock

    Science.gov (United States)

    Chen, Dianying; Jordan, Eric H.; Gell, Maurice

    2009-03-01

    Al 2O 3-ZrO 2 composite coatings were deposited by the suspension plasma spray process using molecularly mixed amorphous powders. X-ray diffraction (XRD) analysis shows that the as-sprayed coating is composed of α-Al 2O 3 and tetragonal ZrO 2 phases with grain sizes of 26 nm and 18 nm, respectively. The as-sprayed coating has 93% density with a hardness of 9.9 GPa. Heat treatment of the as-sprayed coating reveals that the Al 2O 3 and ZrO 2 phases are homogeneously distributed in the composite coating.

  16. Neutron beam monitor based on a boron-coated GEM

    Institute of Scientific and Technical Information of China (English)

    周健荣; 李仪; 孙志嘉; 刘贲; 王艳凤; 杨桂安; 周良; 许虹; 董静; 杨雷

    2011-01-01

    A new thermal neutron beam monitor with a Gas Electron Multiplier (GEM) is developed to meet the needs of the next generation of neutron facilities. A prototype chamber has been constructed with two 100 mm×100 mm GEM foils. Enriched boron-10 is coated on

  17. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    Science.gov (United States)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu

    2016-09-01

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiCf/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  18. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu, E-mail: lfchen@xmu.edu.cn

    2016-09-30

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiC{sub f}/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  19. Atomistic explanation of shear-induced amorphous band formation in boron carbide.

    Science.gov (United States)

    An, Qi; Goddard, William A; Cheng, Tao

    2014-08-29

    Boron carbide (B4C) is very hard, but its applications are hindered by stress-induced amorphous band formation. To explain this behavior, we used density function theory (Perdew-Burke-Ernzerhof flavor) to examine the response to shear along 11 plausible slip systems. We found that the (0111)/ slip system has the lowest shear strength (consistent with previous experimental studies) and that this slip leads to a unique plastic deformation before failure in which a boron-carbon bond between neighboring icosahedral clusters breaks to form a carbon lone pair (Lewis base) on the C within the icosahedron. Further shear then leads this Lewis base C to form a new bond with the Lewis acidic B in the middle of a CBC chain. This then initiates destruction of this icosahedron. The result is the amorphous structure observed experimentally. We suggest how this insight could be used to strengthen B4C.

  20. Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications

    KAUST Repository

    Wan, Shanhong

    2015-01-01

    A novel boron nitride nanosheets (BNNSs)-amorphous carbon (a-C) hybrid film has been deposited successfully on silicon substrates by simultaneous electrochemical deposition, and showed a good integrity of this B-C-N composite film by the interfacial bonding. This synthesis can potentially provide the facile control of the B-C-N composite film for the potential optoelectronic devices. This journal is

  1. The corrosion resistance of zinc coatings in the presence of boron-doped detonation nanodiamonds (DND)

    Science.gov (United States)

    Burkat, G. K.; Alexandrova, G. S.; Dolmatov, V. Yu; Osmanova, E. D.; Myllymäki, V.; Vehanen, A.

    2017-02-01

    The effect of detonation nanodiamonds, doped with boron (boron-DND) in detonation synthesis on the process of zinc electrochemical deposition from zincate electrolyte is investigated. It is shown that the scattering power (coating uniformity) increases 2-4 times (depending on the concentration of DND-boron electrolyte conductivity does not change, the corrosion resistance of Zn- DND -boron coating increases 2.6 times in 3% NaCl solution (corrosion currents) and 3 times in the climatic chamber.

  2. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, M., E-mail: mmoreno@inaoep.mx [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Delgadillo, N. [Universidad Autónoma de Tlaxcala, Av. Universidad No. 1, Z. P. 90006 Tlaxcala (Mexico); Torres, A. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Ambrosio, R. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, Z. P. 32310 Chihuahua (Mexico); Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico)

    2013-12-02

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E{sub a}) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ{sub RT}), E{sub a} and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E{sub a}, TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors.

  3. Suspension plasma sprayed composite coating using amorphous powder feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dianying [Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 N Eagleville Rd U-3136, Storrs, CT 06269 (United States)], E-mail: chendy@ims.uconn.edu; Jordan, Eric H. [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States); Gell, Maurice [Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 N Eagleville Rd U-3136, Storrs, CT 06269 (United States)

    2009-03-15

    Al{sub 2}O{sub 3}-ZrO{sub 2} composite coatings were deposited by the suspension plasma spray process using molecularly mixed amorphous powders. X-ray diffraction (XRD) analysis shows that the as-sprayed coating is composed of {alpha}-Al{sub 2}O{sub 3} and tetragonal ZrO{sub 2} phases with grain sizes of 26 nm and 18 nm, respectively. The as-sprayed coating has 93% density with a hardness of 9.9 GPa. Heat treatment of the as-sprayed coating reveals that the Al{sub 2}O{sub 3} and ZrO{sub 2} phases are homogeneously distributed in the composite coating.

  4. Superior critical current density obtained in MgB2 bulks via employing carbon-coated boron and minor Cu addition

    Science.gov (United States)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-09-01

    High performance Cu doped MgB2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB2 grains, as well as a high level of homogeneous carbon doping in the MgB2 samples, which significantly enhance the Jc in both Cu doped and undoped bulks compared to MgB2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (Jc) at self fields and low fields (the best values are 7 × 105 A/cm2 at self fields, and 1 × 105 A/cm2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of Jc at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB2 bulks or wires with excellent Jc on an industrial scale.

  5. Complex nanospherulites of zinc oxide and native amorphous boron in the lunar regolith from Mare Crisium

    Science.gov (United States)

    Mokhov, A. V.; Kartashov, P. M.; Gornostaeva, T. A.; Asadulin, En. E.; Bogatikov, O. A.

    2013-01-01

    During the study of tea-colored impact glass fragments from the sample of lunar regolith delivered to Earth by the Luna 24 automatic station by transmission electron microscopy, the composition variations of the previously described high-carbonaceous film, the presence of at least three composition types of glasses, and unusual nanospherulites with Zn-B-N-O composition were discovered. As a part of a nonuniform high-carbonaceous oxygen-bearing film, sites enriched in either Na, S, Si, or Ca were detected. All these sites, as well as the whole film, are electron-amorphous; however, crystalline graphite was also found. Two types of nanospherulites are composed of amorphous ZnO and regular interstratifications of crystalline ZnO and amorphous boron layers with insignificant participation of adsorbed nitrogen. It is supposed that the formation of zinc-boron nanospherulites was caused by a fast-flowing explosive process and probably was modulated by high-frequency acoustic oscillations in a cloud of evaporated high-temperature ionized gas during the impact event.

  6. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  7. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  8. Ion-beam-deposited boron carbide coatings for the extreme ultraviolet.

    Science.gov (United States)

    Blumenstock, G M; Keski-Kuha, R A

    1994-09-01

    The normal-incidence reflectance of ion-beam-deposited boron carbide thin films has been evaluated in the extreme ultraviolet (EUV) spectral region. High-reflectance coatings have been produced with reflectances greater than 30% between 67 and 121.6 nm. This high reflectance makes ion-beam-deposited boron carbide an attractive coating for EUV applications.

  9. In Situ Mechanical Property Measurements of Amorphous Carbon-Boron Nitride Nanotube Nanostructures

    Science.gov (United States)

    Kim, Jae-Woo; Lin, Yi; Nunez, Jennifer Carpena; Siochi, Emilie J.; Wise, Kristopher E.; Connell, John W.; Smith, Michael W.

    2011-01-01

    To understand the mechanical properties of amorphous carbon (a-C)/boron nitride nanotube (BNNT) nanostructures, in situ mechanical tests are conducted inside a transmission electron microscope equipped with an integrated atomic force microscope system. The nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation. We demonstrate multiple in situ tensile, compressive, and lap shear tests with a-C/BNNT hybrid nanostructures. The tensile strength of the a-C/BNNT hybrid nanostructure is 5.29 GPa with about 90 vol% of a-C. The tensile strength and strain of the end-to-end joint structure with a-C welding is 0.8 GPa and 5.2% whereas the lap shear strength of the side-by-side joint structure with a-C is 0.25 GPa.

  10. MONTE-CARLO SIMULATION FOR ATOMIC DEPOSITION OF AMORPHOUS ELECTROLESS Ni80P20 COATING

    Institute of Scientific and Technical Information of China (English)

    K.S. Guan; H.R. Bai; Z.W. Wang; Y.S. Yin

    2002-01-01

    Atomic growth process and structure of Amorphous Electroless Coating have beenstudied, using Monte-Carlo simulation method. The simulation results of amorphousNi80P20 coating show that PDFs are in accordance with practical values. The mi-grations of adatoms in coating's growth are different from that of solidification ofamorphous materials. In some cases, the migrated adatoms in the process of growthof amorphous coating are not enough to occupy all vacancies and traps, so the amor-phous coating is micro-porous. The immovable probability k and the largest migrationdistance of adatoms, which lie on the electroless bath components, affect the PDF,volume density and microporosity remarkably.

  11. Preparation of the cast glass-coated amorphous magnetic microwires

    Science.gov (United States)

    Baranov, S. A.; Yaltychenko, O. V.; Kanarovskii, E. Yu.; Codescu, M. M.

    2016-12-01

    In the present work, the cast glass-coated amorphous microwires manufactured by the Ulitovsky-Taylor method are studied. Interest in the cast glass-coated amorphous microwires has greatly increased in the last few years mainly due to their technological applications, in particular, as the sensor elements in the various devices. Technological aspects of the Ulitovsky-Taylor method for the preparation of the glass-coated microwires with the different radius are analyzed. It is essential that the microwires are manufactured using a rapid solidification technique. The geometrical characteristics of a microwire depend on the physical properties of a metal and of glass, the diameter of the initial glass tube, and the parameters of the heating inductor. The given method provides the microwire geometric parameters of within the wide ranges. Respectively, a metallic core diameter in these microwires can range from 0.5 to 70 μm, and their glass-coating thickness can be varied from 1 to 50 μm. Moreover, the length of the derivable samples can reach up to 104 m. The obtained microwires exhibit the magnetic properties, which are high dependent on the metallic core composition, and similarly as it was done here for the residual stresses, they can be expressed through the microwire geometric parameters.

  12. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    Science.gov (United States)

    Farmer, Joseph C.

    2011-12-13

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  13. Model creation and electronic structure calculation of amorphous hydrogenated boron carbide

    Science.gov (United States)

    Belhadj Larbi, Mohammed

    Boron-rich solids are of great interest for many applications, particularly, amorphous hydrogenated boron carbide (a-BC:H) thin films are a leading candidate for numerous applications such as: heterostructure materials, neutron detectors, and photovoltaic energy conversion. Despite this importance, the local structural properties of these materials are not well-known, and very few theoretical studies for this family of disordered solids exist in the literature. In order to optimize this material for its potential applications the structure property relationships need to be discovered. We use a hybrid method in this endeavor---which is to the best of our knowledge the first in the literature---to model and calculate the electronic structure of amorphous hydrogenated boron carbide (a-BC:H). A combination of classical molecular dynamics using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and ab initio quantum mechanical simulations using the Vienna ab initio simulation package (VASP) have been conducted to create geometry optimized models that consist of a disordered hydrogenated twelve-vertex boron carbide icosahedra, with hydrogenated carbon cross-linkers. Then, the density functional theory (DFT) based orthogonalized linear combination of atomic orbitals (OLCAO) method was used to calculate the total and partial density of states (TDOS, PDOS), the complex dielectric function epsilon, and the radial pair distribution function (RPDF). The RPDF data stand as predictions that may be compared with future experimental electron or neutron diffraction data. The electronic structure simulations were not able to demonstrate a band gap of the same nature as that seen in prior experimental work, a general trend of the composition-properties relationship was established. The content of hydrogen and boron was found to be directly proportional to the decrease in the number of available states near the fermi energy, and inversely proportional to the

  14. Evolution of structure and infrared radiation properties for ferrite-based amorphous coating

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lei [State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); Fan, Xi’an, E-mail: groupfxa@163.com [State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); Zhang, Jianyi [State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); Hu, Xiaoming [Suzhou Sagreon New Materials Co., Ltd, Zhangjiagang 215625 (China); Li, Guangqiang; Zhang, Zhan [State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2014-10-15

    Highlights: • The ferrite-based amorphous infrared radiation coating was prepared by plasma spraying. • The coating could keep amorphous structure when the temperature was below 700 °C. • The amorphous structure can improve the emissivity of ferrite-based coatings. • The amorphous coating exhibited a higher emissivity than that by brushing process. • The coating has an excellent thermal shock resistance and can work at 1000 °C. - Abstract: The ferrite-based amorphous coatings with high infrared radiation properties have been successfully prepared on the surface of carbon steel substrate by plasma spraying process. The phase, morphology, microstructure, thermal behavior and infrared emissivity were determined by X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and infrared spectroscopy. The prepared coating could keep amorphous structure when the ambient temperature was below 700 °C and it would crystallize gradually with further increasing the temperature. The amorphous structure is confirmed to be constructive for improving the emissivity of ferrite-based coatings, especially in the 3–8 μm band. The emissivity of the amorphous coating obtained by plasma spraying was over 0.8 in 3–8 μm band at 800 °C, which was higher than that of the coating with same composition prepared by conventional brushing method. The excellent thermal shock resistance of the coatings makes them to be good candidates for sensible energy-saving materials, which could work for long term at 1000 °C.

  15. Iron-Based Amorphous Coatings Produced by HVOF Thermal Spray Processing-Coating Structure and Properties

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, M B

    2008-03-26

    The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.

  16. Electrochemical evaluation of corrosion and tribocorrosion behaviour of amorphous and nanocrystalline cobalt–tungsten electrodeposited coatings

    Energy Technology Data Exchange (ETDEWEB)

    Fathollahzade, N.; Raeissi, K., E-mail: k_raeissi@cc.iut.ac.ir

    2014-11-14

    Amorphous and nanocrystalline Co–W coatings were electrodeposited on copper substrates from a citrate–ammonia bath. The coatings showed nodular surface morphologies, but a microcrack network was detected in the amorphous coating. However, a better corrosion resistance was achieved for the amorphous coating. During sliding under open circuit potential (OCP) condition, the potential of amorphous coating gradually became more active probably due to the widening of wear scar, and thus expansion of active area. The amorphous coatings showed a higher volume loss at OCP probably due to its lower microhardness. In anodic sliding, a sharp increase in current density was observed due to mass transport and depassivation effects. In all sliding conditions, the proportion of mass transport was higher than wear accelerated corrosion, which implied that the dissolution reaction of the coatings was mainly a mass-transport controlled process. The results also showed that the effect of sliding on degradation is more intense for the nanocrystalline coating. For both coatings, the formation of the superficial microcracks in the vicinity of wear scars indicating on a surface fatigue wear mechanism. - Highlights: • Mass-transport effect had higher proportion in tribocorrosion of Co–W coatings. • The major electrochemical-wear degradation was for the nanocrystalline coating. • The higher proportion of wear accelerated corrosion was for the amorphous coating. • Superficial microcracks were formed near scars due to the coatings brittleness.

  17. Investigation of Amorphous/Nanocrystalline Iron-Based Thermal Barrier Coatings

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Königstein, T.

    2017-02-01

    Because of their favorable thermophysical properties, good machinability and low material costs, iron-based coatings which exhibit a highly amorphous/nanocrystalline microstructure are currently in the focus of research. Considering the crystallization temperature of the material, iron-based coatings might be the next generation of thermal barrier coatings (TBCs) for low-temperature systems, reducing thermal losses. The objective of this research project is the development of highly amorphous, iron-based coatings. For this purpose, amorphous feedstock materials with different chromium contents have been developed and characterized regarding their microstructures, phase compositions, crystallization temperatures and amorphous content. The results show that the amorphous content is reduced with increasing particle size and chromium content. The coatings were deposited by air plasma spraying (APS) and high-velocity oxygen fuel spraying (HVOF). It is shown that all coatings exhibit amorphous structures. HVOF coatings show a smaller amount of amorphous content compared to the feedstock materials, indicating crystallization occurring in not fully melted particles or insufficient rapid cooling. The APS process can increase the amount of amorphous content compared to the feedstock material, as shown for x Cr = 15%. All coatings proof good thermal shock behavior. Lowest thermal diffusivity values were determined for APS coatings, which confirms the potential of iron-based TBCs.

  18. Investigation of Amorphous/Nanocrystalline Iron-Based Thermal Barrier Coatings

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Königstein, T.

    2017-01-01

    Because of their favorable thermophysical properties, good machinability and low material costs, iron-based coatings which exhibit a highly amorphous/nanocrystalline microstructure are currently in the focus of research. Considering the crystallization temperature of the material, iron-based coatings might be the next generation of thermal barrier coatings (TBCs) for low-temperature systems, reducing thermal losses. The objective of this research project is the development of highly amorphous, iron-based coatings. For this purpose, amorphous feedstock materials with different chromium contents have been developed and characterized regarding their microstructures, phase compositions, crystallization temperatures and amorphous content. The results show that the amorphous content is reduced with increasing particle size and chromium content. The coatings were deposited by air plasma spraying (APS) and high-velocity oxygen fuel spraying (HVOF). It is shown that all coatings exhibit amorphous structures. HVOF coatings show a smaller amount of amorphous content compared to the feedstock materials, indicating crystallization occurring in not fully melted particles or insufficient rapid cooling. The APS process can increase the amount of amorphous content compared to the feedstock material, as shown for x Cr = 15%. All coatings proof good thermal shock behavior. Lowest thermal diffusivity values were determined for APS coatings, which confirms the potential of iron-based TBCs.

  19. AUTOCATALYTIC REDUCTION AND CHARACTERISTICS OF BORON-CONTAINING COATINGS

    Directory of Open Access Journals (Sweden)

    V. Covaliov

    2013-06-01

    Full Text Available The research results of the plating conditions, chemical composition and properties of Ni-B coatings and Ni-Re-B, Ni-Mo-B and Ni-W-B alloys are given. It was shown that introduction of alloying elements (Re, Мо and W in the composition of Ni-containing coatings modifies the catalytic activity of the alloys’ surface, with regard to the parallel reactions of dimethylamino-borane (DMAB heterogeneous hydrolysis, Ni reduction and evolving of the molecular hydrogen. It was found that with the increase in concentration of alloying element, boron content in the coatings is decreased to the trace amounts. The effect of alloys composition on hydrogen evolving overvoltage was studied. Due to the low overvoltage of hydrogen evolving (HE on the alloy Ni-Re-B surface (11 at.% Re, it can be used as electrode for hydrogen generation from water in the electrolytic cell with novel design and improved technical-economic indicators.

  20. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Energy Technology Data Exchange (ETDEWEB)

    Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Buzhinskiy, O. I. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation); Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  1. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Science.gov (United States)

    Airapetov, A. A.; Begrambekov, L. B.; Buzhinskiy, O. I.; Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A.

    2015-12-01

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400-1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  2. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    Science.gov (United States)

    Ma, Qiang; Zhou, Fei; Gao, Song; Wu, Zhiwei; Wang, Qianzhi; Chen, Kangmin; Zhou, Zhifeng; Li, Lawrence Kwok-Yan

    2016-07-01

    Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB2 target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB2 target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB2 target current of 2 A, and then decreased gradually with further increasing the CrB2 target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  3. Fabrication and microstructure of Fe-based amorphous composite coatings by laser cladding

    Institute of Scientific and Technical Information of China (English)

    Zhu Qingjun; Zou Zengda; Qu Shiyao; Wang Xinhong

    2008-01-01

    Fe-based amorphous composite coatings were fabricated on AISI 1045 steel by laser cladding. The results of the X-ray diffraction and transmission electron microscopy analyses show the coating is composed of an amorphous phase in majority and a nanocrystalline phase in minority. Phase composition of the coating changes along the depth of the coating. The reasonable scanning speed for fabricating an amorphous composite coating is 3 500mm/min when the laser power is 4 800W and the laser beam diameter is 2mm. If the scanning speed is lower than 3 500mm/min, the intensity of the two main diffraction peaks in X-ray diffraction patterns of the coatings decreases with the scanning speeds increasing. At the same time, a broad halo peak emerges and enlarges. High laser power and fast scanning speed are the essential conditions of amorphization. The coating exhibits high microhardness.

  4. Low-level boron doping and light-induced effects in amorphous silicon pin solar cells

    Science.gov (United States)

    Moeller, M.; Rauscher, B.; Kruehler, W.; Plaettner, R.; Pfleiderer, H.

    Amorphous silicon solar cells with the structure pin/ITO produced in the laboratory show an AM1 efficiency of up to 7.4 percent on 6 sq mm. The impact of doping the i-layer slightly with boron on the cell performance was studied together with its possible influence on the cell stability. Cells exposed to continuous AM1 illumination (up to 2000 hours) show a degradation of the efficiency. Differences in the bias-voltage during the deposition lead to significant differences in the stability whereas the influence of boron doping was not so prominent. The nu-tau-products for electrons and holes were shown to degrade differently through light-soaking for different doping-level. A further investigation was made by evaluating the frequency dependence of the capacitance via a new p i n junction model to obtain the density of states and the drift field in the i-layer for doping and light-soaking.

  5. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiang [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Zhou, Fei, E-mail: fzhou@nuaa.edu.cn [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Gao, Song; Wu, Zhiwei; Wang, Qianzhi [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Chen, Kangmin [Center of Analysis, Jiangsu University, Zhenjiang 212013 (China); Zhou, Zhifeng; Li, Lawrence Kwok-Yan [Advanced Coatings Applied Research Laboratory, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)

    2016-07-30

    Highlights: • Cr-B-N coatings were deposited via adjusting the CrB{sub 2} target current. • Cr-B-N nanocomposite coatings consisted of CrN nanograins and amorphous BN phase. • The hardness of Cr-B-N coating increased firstly, and then decreased with increasing CrB{sub 2} target current. • The frictional behavior of Cr-B-N coatings deposited at different CrB{sub 2} target currents was compared in deionized water. • In comparison to CrN coatings, Cr-B-N coatings exhibited superior tribological properties in water. - Abstract: Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB{sub 2} target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB{sub 2} target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB{sub 2} target current of 2 A, and then decreased gradually with further increasing the CrB{sub 2} target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  6. Characterization and Hydrodesulfurization Properties of Catalysts Derived from Amorphous Metal-boron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Parks, Greg; Pease, Melissa; Layman, Kathryn A.; Burns, Autumn W.; Bussell, Mark E.; Wang, Xianqin; Hanson, Jonathan; Rodriguez, Jose A.

    2007-01-22

    Unsupported and silica-supported amorphous metal-boron materials (Ni-B, Mo-O-B, and Ni-Mo-O-B) were prepared by NaBH4 reduction of aqueous or impregnated metal salts. The resulting materials were characterized by a range of techniques, including conventional and time-resolved X-ray diffraction. The latter technique was used to determine the onset of crystallization of the amorphous materials during annealing in He flow and to identify the phases formed. Annealing of unsupported Ni-B resulted in the crystallization of predominantly Ni3B, followed by Ni metal, whereas Ni-B/SiO2 formed Ni and then NiO. There was no evidence for crystallization of B-containing phases for Mo-O-B or Mo-O-B/SiO2 on annealing; instead, the predominant phase formed was MoO2. In general, the phases formed for Ni-Mo-O-B and Ni-Mo-O-B/SiO2 were consistent with those formed in the monometallic materials, but at higher annealing temperatures. Catalysts prepared by sulfiding Ni-B/SiO2 and Ni-Mo-O-B/SiO2 materials had significantly higher thiophene HDS activities than conventionally prepared sulfided Ni/SiO2 and Ni-Mo/SiO2 catalysts, whereas a sulfided Mo-O-B/SiO2 catalyst had a dramatically lower HDS activity than a sulfided Mo/SiO2 catalyst.

  7. Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic

    Directory of Open Access Journals (Sweden)

    John D. Clayton

    2014-07-01

    Full Text Available A nonlinear continuum phase field theory is developed to describe amorphization of crystalline elastic solids under shear and/or pressure loading. An order parameter describes the local degree of crystallinity. Elastic coefficients can depend on the order parameter, inelastic volume change may accompany the transition from crystal to amorphous phase, and transitional regions parallel to bands of amorphous material are penalized by interfacial surface energy. Analytical and simple numerical solutions are obtained for an idealized isotropic version of the general theory, for an element of material subjected to compressive and/or shear loading. Solutions compare favorably with experimental evidence and atomic simulations of amorphization in boron carbide, demonstrating the tendency for structural collapse and strength loss with increasing shear deformation and superposed pressure.

  8. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  9. Effect of amorphous fluorinated coatings on photocatalytic properties of anodized titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Persico, Federico [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy); Sansotera, Maurizio, E-mail: maurizio.sansotera@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy); Diamanti, Maria Vittoria [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Magagnin, Luca; Venturini, Francesco; Navarrini, Walter [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2013-10-31

    The photocatalytic activity promoted by anodized titanium surfaces coated with different amorphous perfluoropolymers was evaluated. A copolymer between tetrafluoroethylene and perfluoro-4-trifluoromethoxy-1,3-dioxole and two perfluoropolyethers containing ammonium phosphate and triethoxysilane functionalities, respectively, were tested as coating materials. These coatings revealed good adhesion to the anodized titanium substrate and conferred to it both hydrophobicity and oleophobicity. The photocatalytic activity of the coating on anodized titanium was evaluated by monitoring the degradation of stearic acid via Infrared spectroscopy. The degradation rate of stearic acid was reduced but not set to zero by the presence of the fluorinated coatings, leading to the development of advanced functional coatings. The morphological variations of the coatings as a result of photocatalysis were also determined by atomic force microscopy. - Highlights: • Coated anodized titanium surfaces show a decreased wettability. • Evaluation of the stability of perfluorinated coatings towards photocatalysis. • Amorphous perfluorinated coatings do not hinder photocatalytic activity.

  10. Manufacture of iron-based, amorphous coatings with high fracture toughness

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Königstein, T.

    2017-03-01

    Amorphous iron-based material have excellent corrosion behaviour, show good tribological performances and exhibit interesting thermophysical properties. The deposition as a coating system by thermal spraying technology is an innovative approach to manufacture these materials. In this study, the mechanical properties of three iron-based amorphous coatings with different chromium content xCr = 0, 5 and 15 at.% are presented deposited by means of High Velocity Oxygen Fuel Spraying. For the determination of the amorphous content the linear relationship between crystallization energy and amount of amorphous structures is used. Comparing the crystallization energies of amorphous ribbons manufactured by melt spinning to those of feedstock materials and free standing coatings, assumptions regarding the amorphous contents are drawn. The results show that the amorphous content in the feedstock material is influenced by the amount of chromium content. Furthermore, the amorphous content of all coatings do not exceed those of the feedstock materials. Powder xCr = 15 at.% and the corresponding coating exhibit smallest amount of amorphous structure, presumably due to a not fully melted state of the impacting particles. The values of fracture toughness of the coatings are determined by means of indentation and subsequent measurement of the crack lengths. Furthermore, values of indentation modulus and hardness are measured and compared to each other. While length of indentation cracks decreases with increasing chromium content, an increase in indention modulus and hardness is observed. In comparison to ceramic reference YSZ and the steel reference 1.4404, all amorphous coatings show promising properties such as low indentation crack lengths and high hardness.

  11. Characterization and Hydrodesulfurization Properties of Catalysts Derived from Amorphous Metal-Boron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Parks,G.; Pease, M.; Burns, A.; Layman, K.; Bussell, M.; Wang, X.; Hanson, J.; Rodriquez, J.

    2007-01-01

    Unsupported and silica-supported amorphous metal-boron materials (Ni-B, Mo-O-B, and Ni-Mo-O-B) were prepared by NaBH{sub 4} reduction of aqueous or impregnated metal salts. The resulting materials were characterized by a range of techniques, including conventional and time-resolved X-ray diffraction. The latter technique was used to determine the onset of crystallization of the amorphous materials during annealing in He flow and to identify the phases formed. Annealing of unsupported Ni-B resulted in the crystallization of predominantly Ni{sub 3}B, followed by Ni metal, whereas Ni-B/SiO{sub 2} formed Ni and then NiO. There was no evidence for crystallization of B-containing phases for Mo-O-B or Mo-O-B/SiO{sub 2} on annealing; instead, the predominant phase formed was MoO{sub 2}. In general, the phases formed for Ni-Mo-O-B and Ni-Mo-O-B/SiO2 were consistent with those formed in the monometallic materials, but at higher annealing temperatures. Catalysts prepared by sulfiding Ni-B/SiO{sub 2} and Ni-Mo-O-B/SiO{sub 2} materials had significantly higher thiophene HDS activities than conventionally prepared sulfided Ni/SiO2 and Ni-Mo/SiO{sub 2} catalysts, whereas a sulfided Mo-O-B/SiO{sub 2} catalyst had a dramatically lower HDS activity than a sulfided Mo/SiO{sub 2} catalyst.

  12. Properties of boron and phosphorous incorporated tetrahedral amorphous carbon films grown using filtered cathodic vacuum arc process

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Khan, Mohd Alim [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Satyanarayana, B.S. [40, Sreeniketan, NDSE 24, New Delhi 110096 (India); Kumar, Sushil; Ishpal [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2010-04-15

    This paper reports the electrical, mechanical, structural and field emission properties of as grown and also boron and phosphorous incorporated tetrahedral amorphous carbon (ta-C) films, deposited using a filtered cathodic vacuum arc process. The effect of varying boron and phosphorous content (up to 2.0 at.% in to ta-C) on the conductivity ({sigma}{sub D}), activation energy ({Delta}E{sub 1}), hardness, microstructure, emission threshold (E{sub turn-ON}) and emission current density (J) at 12.5 V/{mu}m of ta-C: B and ta-C: P films deposited at a high negative substrate bias of -300 V are reported. It is observed that both boron and phosphorous incorporation leads to a nearly an order increase in {sigma}{sub D} and corresponding decrease in {Delta}E{sub 1} and a slight increase in hardness as compared to as grown ta-C films. In the case of field assisted electron emission, it is observed that E{sub turn-ON} increases and J decreases. The changes are attributed to the changes in the sp{sup 3}/sp{sup 2} ratio of the films due to boron and phosphorous incorporation. The effect of boron on ta-C is to give a p-type effect whereas the effect of phosphorous gives n-type doping effect.

  13. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  14. Magnetic anisotropy in rapidly quenched amorphous glass-coated nanowires

    Science.gov (United States)

    Óvári, T.-A.; Rotărescu, C.; Atițoaie, A.; Corodeanu, S.; Lupu, N.; Chiriac, H.

    2016-07-01

    Results on the roles played by the magnetoelastic and magnetostatic anisotropy terms in the magnetic behavior of glass-coated magnetostrictive amorphous nanowires prepared by means of rapid solidification are reported. Their contributions have been analyzed both experimentally, through hysteresis loop measurements, and theoretically, using micromagnetic simulations. All the investigated samples exhibit a magnetically bistable behavior, characterized by a single-step magnetization reversal when the applied field reaches a critical threshold value, called switching field. The combined interpretation of the experimental and theoretical data allows one to understand the effect of the magnetoelastic term on the value of the switching field, on one hand, and the effect of the magnetostatic term on the nucleation mechanism on the other, both with an essential impact on the characteristics of the nanowires' magnetic bistability. The results are crucial for understanding the basic magnetic properties of these novel rapidly solidified ultrathin magnetic wires, as well as for tailoring their properties according to the specific requirements of various sensing applications.

  15. Marine corrosion protective coatings of hexagonal boron nitride thin films on stainless steel.

    Science.gov (United States)

    Husain, Esam; Narayanan, Tharangattu N; Taha-Tijerina, Jose Jaime; Vinod, Soumya; Vajtai, Robert; Ajayan, Pulickel M

    2013-05-22

    Recently, two-dimensional, layered materials such as graphene and hexagonal boron nitride (h-BN) have been identified as interesting materials for a range of applications. Here, we demonstrate the corrosion prevention applications of h-BN in marine coatings. The performance of h-BN/polymer hybrid coatings, applied on stainless steel, were evaluated using electrochemical techniques in simulated seawater media [marine media]. h-BN/polymer coating shows an efficient corrosion protection with a low corrosion current density of 5.14 × 10(-8) A/cm(2) and corrosion rate of 1.19 × 10(-3) mm/year and it is attributed to the hydrofobic, inert and dielectric nature of boron nitride. The results indicated that the stainless steel with coatings exhibited improved corrosion resistance. Electrochemical impedance spectroscopy and potentiodynamic analysis were used to propose a mechanism for the increased corrosion resistance of h-BN coatings.

  16. Boron carbide (B{sub 4}C) coating. Deposition and testing

    Energy Technology Data Exchange (ETDEWEB)

    Azizov, E.; Barsuk, V. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Begrambekov, L., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Buzhinsky, O. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Evsin, A.; Gordeev, A.; Grunin, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Klimov, N. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Kurnaev, V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Mazul, I. [Federal State Unitary Interprise Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA Efremov), St-Peterburg (Russian Federation); Otroshchenko, V.; Putric, A. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-08-15

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B{sub 4}C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B{sub 4}C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B{sub 4}C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B{sub 4}C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  17. Improvements in Boron Plate Coating Technology for Higher Efficiency Neutron Detection and Coincidence Counting Error Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. The comparison data is presented in this report.

  18. Hexagonal Boron Nitride Nanosheets as High-Performance Binder-Free Fire-Resistant Wood Coatings.

    Science.gov (United States)

    Liu, Juanjuan; Kutty, Rajendrannair Govindan; Zheng, Qingshen; Eswariah, Varrla; Sreejith, Sivaramapanicker; Liu, Zheng

    2017-01-01

    Hexagonal boron nitride (h-BN) nanosheets are synthesized through a facile shear force liquid phase exfoliation method and their use as a binder-free oxidation and fire-resistant wood coating is demonstrated. Characterized by intrinsic low thermal diffusivity and thermal effusivity, h-BN nanosheet coatings show an excellent fire resistance and oxidation resistance up to 900 °C in air.

  19. Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating.

    Science.gov (United States)

    Capece, Maxx; Davé, Rajesh

    2015-06-01

    Although amorphous solid drug formulations may be advantageous for enhancing the bioavailability of poorly soluble active pharmaceutical ingredients, they exhibit poor physical stability and undergo recrystallization. To address this limitation, this study investigates stability issues associated with amorphous solids through analysis of the crystallization behavior for acetaminophen (APAP), known as a fast crystallizer, using a modified form of the Avrami equation that kinetically models both surface and bulk crystallization. It is found that surface-enhanced crystallization, occurring faster at the free surface than in the bulk, is the major impediment to the stability of amorphous APAP. It is hypothesized that a novel use of a dry-polymer-coating process referred to as mechanical-dry-polymer-coating may be used to inhibit surface crystallization and enhance stability. The proposed process, which is examined, simultaneously mills and coats amorphous solids with polymer, while avoiding solvents or solutions, which may otherwise cause stability or crystallization issues during coating. It is shown that solid dispersions of APAP (64% loading) with a small particle size (28 μm) could be prepared and coated with the polymer, carnauba wax, in a vibratory ball mill. The resulting amorphous solid was found to have excellent stability as a result of inhibition of surface crystallization.

  20. Influence of boron doping on mechanical and tribological properties in multilayer CVD-diamond coating systems

    Indian Academy of Sciences (India)

    SAJAD HUSSAIN DIN; M A SHAH; N A SHEIKH; K A NAJAR; K RAMASUBRAMANIAN; S BALAJI; M S RAMACHANDRA RAO

    2016-12-01

    Titanium alloy (Ti6Al4V) substrates were deposited with smooth multilayer coatings, by hot filament chemical vapour deposition technique. The effect of boron doping on lattice parameter, residual stresses, hardness and coefficient of friction in multilayer-diamond coating system was studied. The frictional behaviour of the coatings was studied using a ball-on-disc micro-tribometer by sliding the coated samples of titanium alloy (Ti6Al4V) substrates against alumina (Al$_2$O$_3$) balls, and increasing normal load from 1 to 10N. The average friction coefficient decreased from 0.36 to 0.29 for undoped multilayer-diamond coating system and from 0.33 to 0.18 for borondoped (BD) multilayer-diamond coating system. The average indentation depths for undoped and BD multilayerdiamond coating systems were found to be equal to $\\sim$58 and $\\sim$65 nm, respectively, and their hardness values were 60 and 55~GPa, respectively.

  1. Tribological behaviour of mechanically synthesized titanium-boron carbide nanostructured coating.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2012-08-01

    In this paper, titanium-boron carbide (Ti/B4C) nanocomposite coatings with different B4C nanoparticles contents were fabricated by surface mechanical attrition treatment (SMAT) method by using B4C nanoparticles with average nanoparticle size of 40 nm. The characteristics of the nanopowder and coatings were evaluated by microhardness test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Friction and wear performances of nanocomposite coatings and pure titanium substrate were comparatively investigated, with the effect of the boron carbide content on the friction and wear behaviours to be emphasized. The results show the microhardness, friction and wear behaviours of nanocomposite coatings are closely related with boron carbide nanoparticle content. Nanocomposite coating with low B4C content shows somewhat (slight) increased microhardness and wear resistance than pure titanium substrate, while nanocomposite coating with high B4C content has much better (sharp increase) wear resistance than pure titanium substrate. The effect of B4C nanoparticles on microhardness and wear resistance was discussed.

  2. Boron deposition from fused salts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.L.

    1980-08-01

    A partial evaluation of the feasibility of a process to electrodeposit pure coherent coatings of elemental boron from molten fluorides has been performed. The deposit produced was powdery and acicular, unless the fluoride melt was purified to have very low oxygen concentration. When the oxygen activity was reduced in the melt by addition of crystalline elemental boron, dense, amorphous boron deposit was produced. The boron deposits produced had cracks but were otherwise pure and dense and ranged up to 0.35 mm thick. Information derived during this project suggests that similar deposits might be obtained crack-free up to 1.00 mm thick by process modifications and improvements.

  3. Crystallization Process of Heat-treated Amorphous Ni-P Alloy Coating

    Directory of Open Access Journals (Sweden)

    JIN Shi-wei

    2016-09-01

    Full Text Available Amorphous Ni-P alloy coatings were prepared on 45 carbon steel blocks using electrodeposition method. The thermal effect and quality change of Ni-P alloy coating under heating rate of 20℃/min were analyzed by differential scanning calorimetry (DSC and thermogravimetry (TG. Coatings were heat-treated at 300℃ and 400℃ for 0, 15, 30, 45, 60, 75min respectively, coating surface was characterized by scanning electron microscope (SEM, energy dispersive spectrometer (EDS, X-ray diffraction (XRD, microhardness tester. The result shows that the exothermic peak of Ni-P alloy coating appears at 284.8℃, coating quality and elemental composition are stable during the heat treatment. Crystallization process experiences a transformation of amorphous, metastable state NiP and Ni5P2, stable state Ni3P. The microhardness of coating can be improved remarkably after heat treatment, namely, the maximum value of heat-treated coating is 1036.56HV, which is nearly 2 times as hard as as-deposited coating. The corrosion resistance of heat-treated Ni-P alloy coating in NaCl solution is inferior to as-deposited coating, but they are both much better than 45 carbon steel substrate.

  4. Preparation and properties of amorphous titania-coated zinc oxide nanoparticles

    Science.gov (United States)

    Liao, Min-Hung; Hsu, Chih-Hsiung; Chen, Dong-Hwang

    2006-07-01

    Amorphous TiO 2-coated ZnO nanoparticles were prepared by the solvothermal synthesis of ZnO nanoparticles in ethanol and the followed by sol-gel coating of TiO 2 nanolayer. The analyses of X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that the resultant ZnO nanoparticles were hexagonal with a wurtzite structure and a mean diameter of about 60 nm. Also, after TiO 2 coating, the TEM images clearly indicated the darker ZnO nanoparticles being surrounded by the lighter amorphous TiO 2 layers. The zeta potential analysis revealed the pH dependence of zeta potentials for ZnO nanoparticles shifted completely to that for TiO 2 nanoparticles after TiO 2 coating, confirming the formation of core-shell structure and suggesting the coating of TiO 2 was achieved via the adhesion of the hydrolyzed species Ti-O - to the positively charged surface of ZnO nanoparticles. Furthermore, the analyses of Fourier transform infrared (FTIR) and Raman spectra were also conducted to confirm that amorphous TiO 2 were indeed coated on the surface of ZnO nanoparticles. In addition, the analyses of ultraviolet-visible (UV-VIS) and photoluminescence (PL) spectra revealed that the absorbance of amorphous TiO 2-coated ZnO nanoparticles at 375 nm gradually decreased with an increase in the Ti/Zn molar ratio and the time for TiO 2 coating, and the emission intensity of ZnO cores could be significantly enhanced by the amorphous TiO 2 shell.

  5. Recent progress in the synthesis and characterization of amorphous and crystalline carbon nitride coatings

    CERN Document Server

    Widlow, I

    2000-01-01

    This review summarizes our most recent findings in the structure and properties of amorphous and crystalline carbon nitride coatings, synthesized by reactive magnetron sputtering. By careful control of the plasma conditions via proper choice of process parameters such as substrate bias, target power and gas pressure, one can precisely control film structure and properties. With this approach, we were able to produce amorphous carbon nitride films with controlled hardness and surface roughness. In particular, we can synthesize ultrathin (1 nm thick) amorphous carbon nitride films to be sufficiently dense and uniform that they provide adequate corrosion protection for hard disk applications. We demonstrated the strong correlation between ZrN (111) texture and hardness in CN sub x /ZrN superlattice coatings. Raman spectroscopy and near-edge X-ray absorption show the predominance of sp sup 3 -bonded carbon in these superlattice coatings.

  6. Boron

    Science.gov (United States)

    ... an eye wash. Boron was used as a food preservative between 1870 and 1920, and during World Wars ... chemical symbol), B (symbole chimique), Borate, Borate de Sodium, Borates, Bore, Boric Acid, Boric Anhydride, Boric Tartrate, ...

  7. Preparation and Characterization of Mg1-xB2 Bulk Samples and Cu/Nb Sheathed Wires with Low Grade Amorphous Boron Powder

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Alexiou, Aikaterini; Rubesova, Katerina;

    2014-01-01

    MgB2 bulk and wire samples were prepared using cheap, low grade amorphous boron powders. Based on chemical analysis performed on the starting reagents, three nominal stoichiometries were studied. It was found that the structural and superconducting properties of the bulk samples were not affected...

  8. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    Science.gov (United States)

    Chraska, T.; Pala, Z.; Mušálek, R.; Medřický, J.; Vilémová, M.

    2015-04-01

    Alumina-zirconia ceramic material has been plasma sprayed using a water-stabilized plasma torch to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization, while at the same time, a uniaxial pressure of 80 MPa has been applied to their surface. After such post-treatment, the ceramic samples are crystalline and have very low open porosity. The post-treated material exhibits high hardness and significantly increased flexural strength. The post-treated samples have a microstructure that is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.

  9. Microtribology of Nitrogen-doped Amorphous Carbon Coatings

    Institute of Scientific and Technical Information of China (English)

    Dong F. Wang

    2004-01-01

    The friction, wear and lubrication of carbon nitride coatings on silicon substrates are studied using a spherical diamond counter-face with nano-scale asperities. The first part of this paper clarifies the coating thickness effect on frictional behavior of carbon nitride coatings. The second part of this paper reports empirical data on wear properties in repeated sliding contacts through in situ examination and post-sliding observation. The third part will concentrate on wear mechanisms for the transition from "No observable wear particles" to "Wear particle generation." In light of the above tribological study, the application of carbon nitride coatings to MicroElectroMechanical system (MEMS) is therefore discussed from view points of both microtribology and micromachining.

  10. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code.

    Science.gov (United States)

    Jamil, M; Rhee, J T; Kim, H G; Ahmad, Farzana; Jeon, Y J

    2014-10-22

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5cm(2) configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection.

  11. The local physical structure of amorphous hydrogenated boron carbide: insights from magic angle spinning solid-state NMR spectroscopy.

    Science.gov (United States)

    Paquette, Michelle M; Li, Wenjing; Sky Driver, M; Karki, Sudarshan; Caruso, A N; Oyler, Nathan A

    2011-11-01

    Magic angle spinning solid-state nuclear magnetic resonance spectroscopy techniques are applied to the elucidation of the local physical structure of an intermediate product in the plasma-enhanced chemical vapour deposition of thin-film amorphous hydrogenated boron carbide (B(x)C:H(y)) from an orthocarborane precursor. Experimental chemical shifts are compared with theoretical shift predictions from ab initio calculations of model molecular compounds to assign atomic chemical environments, while Lee-Goldburg cross-polarization and heteronuclear recoupling experiments are used to confirm atomic connectivities. A model for the B(x)C:H(y) intermediate is proposed wherein the solid is dominated by predominantly hydrogenated carborane icosahedra that are lightly cross-linked via nonhydrogenated intraicosahedral B atoms, either directly through B-B bonds or through extraicosahedral hydrocarbon chains. While there is no clear evidence for extraicosahedral B aside from boron oxides, ∼40% of the C is found to exist as extraicosahedral hydrocarbon species that are intimately bound within the icosahedral network rather than in segregated phases.

  12. Preparation and characterization of boron nitride coatings on carbon fibers from borazine by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li Junsheng, E-mail: charlesljs@163.com [State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha, 410073 (China); Zhang Changrui; Li Bin [State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha, 410073 (China)

    2011-06-15

    Boron nitride (BN) coatings were deposited on carbon fibers by chemical vapor deposition (CVD) using borazine as single source precursor. The deposited coatings were characterized by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The effect of temperatures on growth kinetics, morphology, composition and structure of the coatings was investigated. In the low temperature range of 900 deg. C-1000 deg. C, the growth rate increased with increasing temperature complying with Arrhenius law, and an apparent active energy of 72 kJ/mol was calculated. The coating surface was smooth and compact, and the coatings uniformly deposited on individual fibers of carbon fiber bundles. The growth was controlled by surface reaction. At 1000 deg. C, the deposition rate reached a maximum (2.5 {mu}m/h). At the same time, the limiting step of the growth translated to be mass-transportation. Above 1100 deg. C, the growth rate decreased drastically due to the occurrence of gas-phase nucleation. Moreover, the coating surface became loose and rough. Composition and structure examinations revealed that stoichiometric BN coatings with turbostratic structure were obtained below 1000 deg. C, while hexagonal BN coatings were deposited above 1100 deg. C. A penetration of carbon element from the fibers to the coatings was observed.

  13. Characterization of microstructure and mechanical behavior of sputter deposited Ti-containing amorphous carbon coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B.; Cao, D. M.; Meng, W. J.; Xu, J.; Tittsworth, R. C.; Rehn, L. E.; Baldo, P. M.; Doll, G. L.; Materials Science Division; Louisiana State Univ.; The Timken Company

    2001-12-03

    We report on the characterization of microstructure and mechanical properties of sputter deposited Ti-containing amorphous carbon (Ti-aC) coatings as a function of Ti composition. Ti-aC coatings have been deposited by unbalanced magnetron sputter deposition, in an industrial-scale four-target coating deposition system. The composition and microstructure of the Ti-aC coatings have been characterized in detail by combining the techniques of Rutherford backscattering spectrometry (RBS) and hydrogen elastic recoil detection (ERD), transmission electron microscopy (TEM), X-ray absorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. At Ti compositions <4at.%, Ti atoms dissolve in an amorphous carbon (a-C) matrix. The dissolution limit of Ti atoms in an a-C matrix is determined to be between 4 and 8 at.%. At Ti compositions >8 at.%, XANES and EXAFS data indicate that the average Ti atomic bonding environment in Ti-aC coatings resembles that in cubic B1-TiC, consistent with TEM observation of precipitation of TiC nanocrystallites in the a-C matrix. Beyond the Ti dissolution limit, the Ti-aC coatings are nanocomposites with nanocrystalline TiC clusters embedded in an a-C matrix. A large scale, quasi one-dimensional composition modulation in the Ti-aC coatings was observed due to the particular coating deposition geometry. Elastic stiffness and hardness of the Ti-aC coatings were measured by instrumented nanoindentation and found to vary systematically as a function of Ti composition. Unlubricated friction coefficient of Ti-aC coatings against WC-Co balls was found to increase as the Ti composition increases. As Ti composition increases, the overall mechanical behavior of the Ti-aC coatings becomes more TiC-like.

  14. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dhandapani, Vishnu Shankar [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Subbiah, Ramesh [Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejon 305-333 (Korea, Republic of); Thangavel, Elangovan [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Arumugam, Madhankumar [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Park, Kwideok [Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejon 305-333 (Korea, Republic of); Gasem, Zuhair M. [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Veeraragavan, Veeravazhuthi, E-mail: vv.vazhuthi@gmail.com [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Kim, Dae-Eun, E-mail: kimde@yonsei.ac.kr [Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-05-15

    Highlights: • a-C:Ti nanocomposite coatings were prepared on 316L stainless steel by using R.F. magnetron sputtering method. • Properties of the nanocomposite coatings were analyzed with respect to titanium content. • Corrosion resistance, biocompatibility and hydrophobicity of nanocomposite coating were enhanced with increasing titanium content. • Coating with 2.33 at.% titanium showed superior tribological properties compared to other coatings. - Abstract: Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp{sup 2} bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  15. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution

    Science.gov (United States)

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-01

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  16. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Science.gov (United States)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  17. Inprovement of Field Emission Properties of PBS Thin Films by Amorphous Carbon Coating

    Directory of Open Access Journals (Sweden)

    S. Jana

    2011-01-01

    Full Text Available Lead sulfide (PbS nanocrystalline thin films were synthesized at room temperature via chemical bath deposition on both silicon and glass substrates and coated with amorphous carbon of different thickness by varying deposition time in plasma enhanced chemical vapor deposition technique. The as prepared samples were characterized by X-ray diffraction (XRD, field emission scanning electron microscope (FESEM and atomic force microscope (AFM. XRD study reveals that coating of amorphous carbon does not change the crystal structure of PbS. From FESEM images it is seen that the average size of PbS nanoparticle does not exceed 100 nm, though sometomes small cubic particles agglomerated to form bigger particles. The coating of amorphous carbon can be clearly visible by the FESEM as well as from AFM micrographs. Field emission study show a significant betterment for the carbon coated sample as compared to the pure PbS. The effect of inter-electrode distance on the field emission characteristics of best field emitting sample has been studied for three different inter-electrode distances.

  18. GMI effect in CuO coated Co-based amorphous ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Taysioglu, Asli Ayten [Department of Physics, Sciences and Arts Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey); Peksoz, Ahmet, E-mail: peksoz@uludag.edu.t [Department of Physics, Sciences and Arts Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey); Kaya, Yunus [Department of Chemistry, Sciences and Arts Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey); Derebasi, Naim [Department of Physics, Sciences and Arts Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey); Irez, Gazi [Department of Chemistry, Sciences and Arts Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey); Kaynak, Gokay [Department of Physics, Sciences and Arts Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey)

    2009-11-13

    A Copper oxide (CuO) film has been grown on a surface of Co-based amorphous ribbon using chemical successive ionic layer adsorption and reaction technique, at room temperature and atmosphere pressure. The influence of coating and width of ribbon on giant magneto impedance have been investigated over a frequency range from 0.1 to 3 MHz and under a static magnetic field between -8 and +8 kA/m. The results showed that Co-based amorphous ribbons, which are coated CuO film, have a significant effect on the magnitude and operation frequency for the giant magneto impedance effect as compared to the samples without coating. The highest giant magneto impedance effect was found to be 14.90 on 5 mm width coated ribbon, which is 60% higher than the sample without coating. A surface observation of these samples has been carried out by an atomic force microscope. The AFM images reveal the difference between surfaces of coated and as-cast sample.

  19. Experimental Investigation of Multipacting Suppression by amorphous Carbon Coatings

    CERN Document Server

    Holz, Michael

    The presence of electron cloud is considered as the most important limitation concerning the quality of the particle beam in the accelerators, especially with respect to the forthcoming LHC luminosity upgrade. The electron cloud can be mitigated by coating the vacuum beam chambers with thin films of low secondary electron yield (SEY). This technique is applied to two stand-alone main bending dipoles of the SPS, where the RF power is fed through a tungsten wire, stretched inside the vacuum chamber. A dipole with a bare stainless steel chamber shows a clear power threshold initiating an abrupt rise in reflected power and pressure. The effect is enhanced at RF frequencies corresponding to electron cyclotron resonances for given magnetic fields. The first results of a fully coated beam chamber do not exhibit any pressure rise or reflected RF power up to the maximum available input power. Here, reflected power has been observed only once and could not be reproduced. The results of a partially coated beam chamber s...

  20. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  1. Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property

    Science.gov (United States)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong

    Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.

  2. Electroless deposition of nickel-boron coatings using low frequency ultrasonic agitation: Effect of ultrasonic frequency on the coatings.

    Science.gov (United States)

    Bonin, L; Bains, N; Vitry, V; Cobley, A J

    2017-01-30

    The effect of ultrasound on the properties of Nickel-Boron (NiB) coatings was investigated. NiB coatings were fabricated by electroless deposition using either ultrasonic or mechanical agitation. The deposition of Ni occurred in an aqueous bath containing a reducible metal salt (nickel chloride), reducing agent (sodium borohydride), complexing agent (ethylenediamine) and stabilizer (lead tungstate). Due to the instability of the borohydride in acidic, neutral and slightly alkaline media, pH was controlled at pH 12±1 in order to avoid destabilizing the bath. Deposition was performed in three different configurations: one with a classical mechanical agitation at 300rpm and the other two employing ultrasound at a frequency of either 20 or 35kHz. The microstructures of the electroless coatings were characterized by a combination of optical Microscopy and Scanning Electron Microscope (SEM). The chemistry of the coatings was determined by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) after dissolution in aqua regia. The mechanical properties of the coatings were established by a combination of roughness measurements, Vickers microhardness and pin-on-disk tribology tests. Lastly, the corrosion properties were analysed by potentiodynamic polarization. The results showed that low frequency ultrasonic agitation could be used to produce coatings from an alkaline NiB bath and that the thickness of coatings obtained could be increased by over 50% compared to those produced using mechanical agitation. Although ultrasonic agitation produced a smoother coating and some alteration of the deposit morphology was observed, the mechanical and corrosion properties were very similar to those found when using mechanical agitation.

  3. Functionalized hexagonal boron nitride nano-coatings for protection of transparent plastics

    Science.gov (United States)

    Van Tran, Thu; Usta, Aybala; Asmatulu, Ramazan

    2016-04-01

    Nanocoating is the result of a coating application of nanomaterials to build a consistent network of molecules in a paint to protect the surfaces of various materials and devices. Hexagonal Boron Nitride (h-BN) is in two dimensional form with excellent thermal, mechanical and chemical properties. These BN nanocoatings are also a thermally insulating material for heat management. After adding functionalized h-BNs into paints or other coatings, they will absorb the harmful UV part of sunlight and prevent coating against the environmental degradations. The impacts of the environmental factors on the coatings can be substantially eliminated. In the present study, h-BNs were modified with [2-(2-Aminoethylamino) propyl] trimethoxysilane and uniformly dispersed into the polyurethane coatings with different amounts, such as 0.1, 0.2, 0.4, and 0.8wt% to increase hardness and water resistance, and decrease the UV degradation level of coatings and transparent plastics. The prepared samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), UV-Vis Spectroscopy, Scanning Electron Microscope (SEM), Water Contact Angle, and Differential Scanning Calorimeter (DSC). The test results showed that the nanocoatings with functionalized h-BN provided excellent physical and chemical behaviors against the UV and other physical degradations on the substrates.

  4. Boron-coated straws as a replacement for 3He-based neutron detectors

    Science.gov (United States)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.

  5. A boron-coated ionization chamber for ultra-cold neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, D.J., E-mail: dsalvat@indiana.edu [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Morris, C.L.; Wang, Z. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Adamek, E.R. [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Bacon, J. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Hickerson, K.P. [California Institute of Technology, Pasadena, CA 91125 (United States); Hoagland, J.; Holley, A.T. [North Carolina State University, Raleigh, NC 27695 (United States); Liu, C.-Y. [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Makela, M.; Ramsey, J. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Reid, A. [North Carolina State University, Raleigh, NC 27695 (United States); Rios, R. [Idaho State University, Pocatello, ID 83209 (United States); Saunders, A.; Sjue, S.K.L. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); VornDick, B.; Young, A.R. [North Carolina State University, Raleigh, NC 27695 (United States)

    2012-11-01

    The design and performance of a boron-coated ionization chamber for the detection of ultra-cold neutrons (UCN) are presented. We detect UCN from the solid deuterium-based UCN source at the Los Alamos Neutron Science Center. Our results indicate comparable efficiency to {sup 3}He ionization chambers and proportional counters currently used at the UCN source. In addition, the ion chamber is used to detect thermal neutrons; a comparison of the thermal neutron and UCN pulse-height spectra indicates that UCN mostly capture near the layer surface.

  6. Static tensile and tensile creep testing of four boron nitride coated ceramic fibers at elevated temperatures

    Science.gov (United States)

    Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.

    1989-01-01

    Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.

  7. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non-3He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  8. Tailoring the optical and hydrophobic property of zinc oxide nanorod by coating with amorphous graphene

    Science.gov (United States)

    Pahari, D.; Das, N. S.; Das, B.; Chattopadhyay, K. K.; Banerjee, D.

    2016-09-01

    Zinc oxide (ZnO) nanorods were synthesized at room temperature on potassium permanganate activated silicon and glass substrate by simple chemical method using zinc acetate as precursor. To modify the surface energy of the as prepared ZnO thin films the samples were coated with amorphous graphene (a-G) synthesized by un-zipping of chemically synthesized amorphous carbon nanotubes (a-CNTs). All the pure and coated samples were characterized by x-ray diffraction, field emission scanning electron microscope, Raman spectroscopy, and Fourier transformed infrared spectroscopy. The roughness analysis of the as prepared samples was done by atomic force microscopic analysis. The detail optical properties of all the samples were studied with the help of a UV-Visible spectrophotometer. The surface energy of the as prepared pure and coated samples was calculated by measuring the contact angle of two different liquids. It is seen that the water repellence of ZnO nanorods got increased after they are being coated with a-Gs. Also even after UV irradiation the contact angle remain same unlike the case for the uncoated sample where the contact angle gets decreased significantly after UV irradiation. Existing Cassie-Wenzel model has been employed along with the Owen's approach to determine the different components of surface energy.

  9. Tailoring the Mechanical Properties of High-Aspect-Ratio Carbon Nanotube Arrays using Amorphous Silicon Carbide Coatings

    NARCIS (Netherlands)

    Poelma, R.H.; Morana, B.; Vollebregt, S.; Schlangen, H.E.J.G.; Van Zeijl, H.W.; Fan, X.; Zhang, G.Q.

    2014-01-01

    The porous nature of carbon nanotube (CNT) arrays allows for the unique opportunity to tailor their mechanical response by the infiltration and deposition of nanoscale conformal coatings. Here, we fabricate novel photo-lithographically defined CNT pillars that are conformally coated with amorphous s

  10. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-09-20

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  11. Dextran-coated superparamagnetic amorphous Fe–Co nanoalloy for magnetic resonance imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    An, Lu; Yu, Yanrong; Li, Xuejian; Liu, Wei [The Key Laboratory of Resource Chemistry of Ministry of Education and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Yang, Hong, E-mail: yanghong@shnu.edu.cn [The Key Laboratory of Resource Chemistry of Ministry of Education and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Wu, Dongmei [Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Yang, Shiping, E-mail: shipingy@shnu.edu.cn [The Key Laboratory of Resource Chemistry of Ministry of Education and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China)

    2014-01-01

    Graphical abstract: A dextran-coated Fe–Co nanoalloy was developed serving as a sensitive contrast agent for magnetic resonance imaging applications. - Highlights: • Amorphous Fe–Co nanoalloy was prepared via wet chemical reduction approach. • The Fe–Co nanoalloy is water-soluble, stable, and biocompatible. • The Fe–Co nanoalloy is superparamagnetic. • The Fe–Co nanoalloy exhibits T{sub 2}-weighted MR enhancement both in vitro and in vivo. - Abstract: For magnetic resonance imaging applications, a facile approach for water-soluble dextran coated amorphous Fe–Co nanoalloy was developed. The as-synthesized nanoalloy had a diameter of 9 nm with a narrow size distribution and showed superparamagnetic property with a saturated magnetization (Ms) of 25 emu/g. In vitro cytotoxicity test revealed that it was biocompatible at a concentration below 120 μg/mL. It can be uptaken by HeLa cells effectively and resulted in the obvious T{sub 2} effect after internalization. Biodistribution studies in conjunction with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) confirmed that Fe–Co nanoalloy was preferentially accumulated in lung and spleen after intravenous injection for 4 h. In vivo MRI, dextran-coated Fe–Co nanoalloy can serve as a sensitive contrast agent for MR imaging, especially in the spleen, so we believe that it maybe hold great promise for diagnosis of splenic disease by appropriately functionalizing their surface.

  12. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru; Chuchkova, Lyubov V., E-mail: twitty-kun@mail.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation)

    2015-10-27

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  13. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    Science.gov (United States)

    Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.

    2015-10-01

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  14. Phosphorus- and boron-doped hydrogenated amorphous silicon films prepared using vaporized liquid cyclopentasilane

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292 (Japan); Takagishi, Hideyuki; Shen, Zhongrong; Ohdaira, Keisuke; Shimoda, Tatsuya [Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292 (Japan); Japan Science and Technology Agency, ALCA, Nomi, Ishikawa, 923-1211 (Japan)

    2015-08-31

    A simple, inexpensive method for fabricating a hydrogenated amorphous silicon (a-Si:H) film using thermal chemical vapor deposition from cyclopentasilane (CPS) at atmospheric pressure with a substrate temperature of 370 °C is described. The reactant gas was generated from liquid CPS by vaporization in the deposition chamber. The vaporized CPS gas was transformed immediately into a-Si:H film on a heated substrate. The a-Si:H films could be doped either n- or p-type by dissolving appropriate amounts of white phosphorus or decaborane, respectively, in the liquid CPS before vaporization. This process allows deposition of doped a-Si:H films of photovoltaic device-quality without the need for handling, storage, or transportation of large amounts of gaseous reactants. - Highlights: • B and P doped a-Si:H films made from liquid materials is presented. • Decaborane and white phosphorus is dissolved in the liquid materials. • A simple, inexpensive method for fabricating a-Si:H films using non-vacuum process. • The doped a-Si:H films with usable quality for photovoltaic devices are deposited.

  15. High critical current densities in bulk MgB{sub 2} fabricated using amorphous boron

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, Miryala; Kenta, Nozaki; Murakami, Masato [Superconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548 (Japan); Koblischka, Michael R. [Institute of Experimental Physics, Saarland University, P.O. Box 151150, 66041 Saarbruecken (Germany)

    2015-10-15

    We prepared bulk MgB{sub 2} from high-purity commercial powders of Mg metal (99.9% purity) and amorphous B (99% purity) powders using a single-step solid state reaction at 775 C for varying sintering duration from 1 to 10 h in pure argon atmosphere. X-ray diffraction analysis showed that all the samples were single phase MgB{sub 2}. The magnetization measurements confirmed a sharp superconducting transition with T{sub c,onset} at around 38.2-38.8 K. The critical current density (J{sub c}) values for the MgB{sub 2} samples produced at 1 h sintering time is the highest one in all processed materials here. Scanning electron microscopy analyses indicated that the sintering time has a crucial influence on the grain size. As a result, the highest J{sub c} value of 270 kA cm{sup -2} at 20 K and self-field was achieved in the sample produced at 775 C for 1 h. Our results clearly demonstrate that the optimization of the sintering conditions is essential to improve the bulk MgB{sub 2} performance. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Characterization and antibacterial performance of ZrCN/amorphous carbon coatings deposited on titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chih-Ho [School of Medicine, China Medical University, Taichung, 404 Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@mail2000.com.tw [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin, Taiwan (China); Huang, Heng-Li [School of Dentistry, China Medical University, Taichung, Taiwan (China); Kao, Ho-Yi [Department of Materials Science and Engineering, Mingdao University, Changhua, Taiwan (China)

    2011-12-30

    Titanium (Ti)-based materials have been used for dental/orthopedic implants due to their excellent biological compatibility, superior mechanical strength and high corrosion resistance. The osseointegration of Ti implants is related to their composition and surface treatment. Better biocompatibility and anti-bacterial performances of Ti implant are beneficial for the osseointegration and for avoiding the infection after implantation surgery. In this study, nanocomposite ZrCN/amorphous carbon (a-C) coatings with different carbon contents were deposited on a bio-grade pure Ti implant material. A cathodic-arc evaporation system with plasma enhanced duct equipment was used for the deposition of ZrCN/a-C coatings. Reactive gas (N{sub 2}) and C{sub 2}H{sub 2} activated by the zirconium plasma in the evaporation process were used to deposit the ZrCN/a-C coatings. To verify the susceptibility of implant surface to bacterial adhesion, Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), one of the major pathogen frequently found in the dental implant-associated infections, was chosen for in vitro anti-bacterial analyses. In addition, the biocompatibility of human gingival fibroblast (HGF) cells on coatings was also evaluated by a cell proliferation assay. The results suggested that the ZrCN/a-C coatings with carbon content higher than 12.7 at.% can improve antibacterial performance with excellent HGF cell compatibility as well.

  17. Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Meng, W. J.; Tittsworth, R. C.; Rehn, L. E.; Materials Science Division; Louisana State Univ.

    2000-12-01

    Using the techniques of reactive magnetron sputter deposition and inductively coupled plasma (ICP) assisted hybrid physical vapor deposition (PVD)/chemical vapor deposition (CVD), we have synthesized a wide variety of metal-free amorphous hydrocarbon (a-C:H) and Ti-containing hydrocarbon (Ti-C:H) coatings. Coating elastic modulus and hardness have been measured by the technique of instrumented nanoindentation and related to Ti and hydrogen compositions. We show that both metal and hydrogen compositions significantly influence the mechanical properties of Ti-C:H coatings. The microstructure of Ti-C:H coatings is further characterized by transmission electron microscopy (TEM), X-ray absorption near edge structure (XANES) spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. XANES spectroscopy and high-resolution TEM examination of Ti-C:H specimens shows that the dissolution limit of Ti atoms in an a-C:H matrix is between 0.9 and 2.5 at.%. Beyond the Ti dissolution limit, precipitation of nanocrystalline B1-TiC cluster occurs and Ti-C:H coatings are in fact TiC/a-C:H thin film nanocomposites. Measurements of the average Ti bonding environment in TiC/a-C:H nanocomposites by EXAFS spectroscopy are consistent with a microstructure in which bulk-like B1-TiC clusters are embedded in an a-C:H matrix.

  18. Fabrication of barium/strontium carbonate coated amorphous carbon nanotubes as an improved field emitter

    Science.gov (United States)

    Maity, S.; Jha, A.; Das, N. S.; Chattopadhyay, K. K.

    2013-02-01

    Amorphous carbon nanotubes (aCNTs) were synthesized by a chemical reaction between ferrocene and ammonium chloride at a temperature ˜250 ∘C in an air furnace. As-synthesized aCNTs were coated with the barium/strontium carbonate through a simple chemical process. The coating of barium/strontium carbonate was confirmed by a high resolution transmission electron microscopy, X-ray diffraction, and Fourier transformed infrared spectroscopy. Morphology of the as-prepared samples was studied by field emission scanning electron microscopy. Thermal gravimetric analysis showed that barium/strontium carbonate coated aCNTs are more stable than the pristine aCNTs. As-prepared barium/strontium carbonate coated aCNTs showed significantly improved field emission properties with a turn-on field as low as 2.5 V/μm. The variation of field emission characteristics of the barium/strontium carbonate coated aCNTs with interelectrode distances was also studied.

  19. The influence of hydrogen on the chemical, mechanical, optical/electronic, and electrical transport properties of amorphous hydrogenated boron carbide

    Science.gov (United States)

    Nordell, Bradley J.; Karki, Sudarshan; Nguyen, Thuong D.; Rulis, Paul; Caruso, A. N.; Purohit, Sudhaunshu S.; Li, Han; King, Sean W.; Dutta, Dhanadeep; Gidley, David; Lanford, William A.; Paquette, Michelle M.

    2015-07-01

    Because of its high electrical resistivity, low dielectric constant (κ), high thermal neutron capture cross section, and robust chemical, thermal, and mechanical properties, amorphous hydrogenated boron carbide (a-BxC:Hy) has garnered interest as a material for low-κ dielectric and solid-state neutron detection applications. Herein, we investigate the relationships between chemical structure (atomic concentration B, C, H, and O), physical/mechanical properties (density, porosity, hardness, and Young's modulus), electronic structure [band gap, Urbach energy (EU), and Tauc parameter (B1/2)], optical/dielectric properties (frequency-dependent dielectric constant), and electrical transport properties (resistivity and leakage current) through the analysis of a large series of a-BxC:Hy thin films grown by plasma-enhanced chemical vapor deposition from ortho-carborane. The resulting films exhibit a wide range of properties including H concentration from 10% to 45%, density from 0.9 to 2.3 g/cm3, Young's modulus from 10 to 340 GPa, band gap from 1.7 to 3.8 eV, Urbach energy from 0.1 to 0.7 eV, dielectric constant from 3.1 to 7.6, and electrical resistivity from 1010 to 1015 Ω cm. Hydrogen concentration is found to correlate directly with thin-film density, and both are used to map and explain the other material properties. Hardness and Young's modulus exhibit a direct power law relationship with density above ˜1.3 g/cm3 (or below ˜35% H), below which they plateau, providing evidence for a rigidity percolation threshold. An increase in band gap and decrease in dielectric constant with increasing H concentration are explained by a decrease in network connectivity as well as mass/electron density. An increase in disorder, as measured by the parameters EU and B1/2, with increasing H concentration is explained by the release of strain in the network and associated decrease in structural disorder. All of these correlations in a-BxC:Hy are found to be very similar to those

  20. Boron nitride composites

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  1. Airbrush Spray Coating of Amorphous Titanium Dioxide for Inverted Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Luca La Notte

    2012-01-01

    Full Text Available One of the main topics of organic photovoltaics manufacturing is the need for simple, low cost, and large area compatible techniques. Solution-based processes are the best candidates to achieve this aim. Among these, airbrush spray coating has successfully applied to deposit both active and PEDOT layers of bulk-heterojunction solar cells. However, this technique is not yet sufficiently studied for interfacial layers (electron and hole transporting layers or optical spacers. In this paper, we show that amorphous titanium dioxide ( films, obtained with an airbrush from a solution of titanium (IV isopropoxide diluted in isopropanol, are successfully deposited on glass and PET substrates. Good surface covering results from the coalescence of droplets after optimizing the spray coating system. Simple inverted polymer solar cells are fabricated using as electron transporting layer obtaining encouraging electrical performances (% on glass/FTO and 0.7% on PET/ITO substrates.

  2. Microstructure of Cu-based Amorphous Composite Coatings on AZ91D Magnesium Alloy by Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    Kaijin Huang; Changsheng Xie; T.M.Yue

    2009-01-01

    To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of Cu47Ti34Zr11Ni8 and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by laser cladding, respectively. SEM (scanning electron microscopy), EDS (energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and TEM (transmission electron microscopy) techniques were employed to study the phases of the coatings. The results show that the coatings mainly consist of amorphous phase and different intermetallic compounds. The reason of formation of amorphous phase and the function of SiC particles were explained in details.

  3. Substrate temperature influence on the trombogenicity in amorphous carbon nitride thin coatings

    Energy Technology Data Exchange (ETDEWEB)

    Galeano-Osorio, D.S.; Vargas, S.; Lopez-Cordoba, L.M.; Ospina, R. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia); Arango, P.J. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia)

    2010-10-01

    Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained. During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (T{sub room}), 100 deg. C, 150 deg. C and 200 deg. C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films. Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 deg. C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 {+-} 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the I{sub D}/I{sub G} or sp{sup 3}/sp{sup 2} ratio and not by the absolute sp{sup 3} or sp{sup 2} concentration.

  4. Magnetic and microwave properties of glass-coated amorphous ferromagnetic microwires

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Glass-coated amorphous FeCuNbSiB microwires were prepared by Taylor-Ulitovsky technique. X-ray diffractometry and scanning electron microscopy were used to investigate the microstructure and morphology of the glass-coated microwires respectively. The vibrating sample magnetometer and vector network analyzer were used to study the magnetostatic and microwave properties of glass-coated microwires. The experimental results show that the effective anisotropy of an array of 150 microwires of 10 mm in length is large than that of one microwire of 10 mm in diameter and an array of 150 microwires of 1 mm in diameter. The natural ferromagnetic resonance takes place as the microwave magnetic component is perpendicular to the microwires axis, and the electric dipole resonance takes place as the microwire is long or the short microwire concentration is moderate. The natural ferromagnetic resonance shifts to higher frequency with the larger microwire concentration. The electric dipole resonance is governed by the microwires length and concentration. The glass-coated FeCuNbSiB microwires can be used to design EMI filters and microwave absorbing materials.

  5. Effect of Boron-Doped Diamond Interlayer on Cutting Performance of Diamond Coated Micro Drills for Graphite Machining

    Directory of Open Access Journals (Sweden)

    Zhiming Zhang

    2013-07-01

    Full Text Available Thin boron doped diamond (BDD film is deposited from trimethyl borate/acetone/hydrogen mixture on Co-cemented tungsten carbide (WC-Co micro drills by using the hot filament chemical vapor deposition (HFCVD technique. The boron peak on Raman spectrum confirms the boron incorporation in diamond film. This film is used as an interlayer for subsequent CVD of micro-crystalline diamond (MCD film. The Rockwell indentation test shows that boron doping could effectively improve the adhesive strength on substrate of as deposited thin diamond films. Dry drilling of graphite is chosen to check the multilayer (BDD + MCD film performance. For the sake of comparison, machining tests are also carried out under identical conditions using BDD and MCD coated micro drills with no interlayer. The wear mechanism of the tools has been identified and correlated with the criterion used to evaluate the tool life. The results show that the multilayer (BDD + MCD coated micro drill exhibits the longest tool life. Therefore, thin BDD interlayer is proved to be a new viable alternative and a suitable option for adherent diamond coatings on micro cutting tools.

  6. Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating - A molecular dynamic study

    Science.gov (United States)

    Badjian, H.; Setoodeh, A. R.

    2017-02-01

    Synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) have led to immense studies due to their many interesting functional features such as piezoelectricity, high temperature resistance to oxygen, electrical insulation, high thermal conductivity and very long lengths as physical features. In order to utilize the superior properties of pristine and defected carbon nanotubes (CNTs), a hybrid nanotube is proposed in this study by forming BNNTs surface coating on the CNTs. The benefits of such coating on the tensile and buckling behavior of single-walled CNTs (SWCNTs) are illustrated through molecular dynamics (MD) simulations of the resulted nanostructures during the deformation. The AIREBO and Tersoff-Brenner potentials are employed to model the interatomic forces between the carbon and boron nitride atoms, respectively. The effects of chiral indices, aspect ratio, presence of mono-vacancy defects and coating dimension on coated/non-coated CNTs are examined. It is demonstrated that the coated defective CNTs exhibit remarkably enhanced ultimate strength, buckling load capacity and Young's modulus. The proposed coating not only enhances the mechanical properties of the resulted nanostructure, but also conceals it from few external factors impacting the behavior of the CNT such as humidity and high temperature.

  7. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  8. Improved Tribological Performance of Amorphous Carbon (a-C Coating by ZrO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jinzhu Tang

    2016-09-01

    Full Text Available Nanomaterials, such as Graphene, h-BN nanoparticles and MoS2 nanotubes, have shown their ability in improving the tribological performance of amorphous carbon (a-C coatings. In the current study, the effectiveness of ZrO2 nanoparticles (ZrO2-NPs in lubricating the self-mated nonhydrogenated a-C contacts was investigated in boundary lubrication regime. The results showed that 13% less friction and 50% less wear compared to the base oil were achieved by employing ZrO2-NPs in the base oil in self-mated a-C contacts. Via analyzing the ZrO2-NPs and the worn a-C surface after tests, it was found that the improved lubrication by ZrO2-NPs was based on “polishing effects”, which is a new phenomenon observed between a-C and nanoparticles. Under the “polishing effect”, micro-plateaus with extremely smooth surface and uniform height were produced on the analyzed a-C surface. The resulting topography of the a-C coating is suitable for ZrO2-NPs to act as nano-bearings between rubbing surfaces. Especially, the ZrO2-NPs exhibited excellent mechanical and chemical stability, even under the severe service condition, suggesting that the combination of nonhydrogenated a-C coating with ZrO2-NPs is an effective, long lasting and environment-friendly lubrication solution.

  9. The influence of hydrogen on the chemical, mechanical, optical/electronic, and electrical transport properties of amorphous hydrogenated boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Nordell, Bradley J.; Karki, Sudarshan; Nguyen, Thuong D.; Rulis, Paul; Caruso, A. N.; Paquette, Michelle M., E-mail: paquettem@umkc.edu [Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, Missouri 64110 (United States); Purohit, Sudhaunshu S. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110 (United States); Li, Han; King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Dutta, Dhanadeep; Gidley, David [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Lanford, William A. [Department of Physics, University at Albany, Albany, New York 12222 (United States)

    2015-07-21

    Because of its high electrical resistivity, low dielectric constant (κ), high thermal neutron capture cross section, and robust chemical, thermal, and mechanical properties, amorphous hydrogenated boron carbide (a-B{sub x}C:H{sub y}) has garnered interest as a material for low-κ dielectric and solid-state neutron detection applications. Herein, we investigate the relationships between chemical structure (atomic concentration B, C, H, and O), physical/mechanical properties (density, porosity, hardness, and Young's modulus), electronic structure [band gap, Urbach energy (E{sub U}), and Tauc parameter (B{sup 1/2})], optical/dielectric properties (frequency-dependent dielectric constant), and electrical transport properties (resistivity and leakage current) through the analysis of a large series of a-B{sub x}C:H{sub y} thin films grown by plasma-enhanced chemical vapor deposition from ortho-carborane. The resulting films exhibit a wide range of properties including H concentration from 10% to 45%, density from 0.9 to 2.3 g/cm{sup 3}, Young's modulus from 10 to 340 GPa, band gap from 1.7 to 3.8 eV, Urbach energy from 0.1 to 0.7 eV, dielectric constant from 3.1 to 7.6, and electrical resistivity from 10{sup 10} to 10{sup 15} Ω cm. Hydrogen concentration is found to correlate directly with thin-film density, and both are used to map and explain the other material properties. Hardness and Young's modulus exhibit a direct power law relationship with density above ∼1.3 g/cm{sup 3} (or below ∼35% H), below which they plateau, providing evidence for a rigidity percolation threshold. An increase in band gap and decrease in dielectric constant with increasing H concentration are explained by a decrease in network connectivity as well as mass/electron density. An increase in disorder, as measured by the parameters E{sub U} and B{sup 1/2}, with increasing H concentration is explained by the release of strain in the network and associated decrease in

  10. Suppressing bacterial interaction with copper surfaces through graphene and hexagonal-boron nitride coatings.

    Science.gov (United States)

    Parra, Carolina; Montero-Silva, Francisco; Henríquez, Ricardo; Flores, Marcos; Garín, Carolina; Ramírez, Cristian; Moreno, Macarena; Correa, Jonathan; Seeger, Michael; Häberle, Patricio

    2015-04-01

    Understanding biological interaction with graphene and hexagonal-boron nitride (h-BN) membranes has become essential for the incorporation of these unique materials in contact with living organisms. Previous reports show contradictions regarding the bacterial interaction with graphene sheets on metals. Here, we present a comprehensive study of the interaction of bacteria with copper substrates coated with single-layer graphene and h-BN. Our results demonstrate that such graphitic coatings substantially suppress interaction between bacteria and underlying Cu substrates, acting as an effective barrier to prevent physical contact. Bacteria do not "feel" the strong antibacterial effect of Cu, and the substrate does not suffer biocorrosion due to bacteria contact. Effectiveness of these systems as barriers can be understood in terms of graphene and h-BN impermeability to transfer Cu(2+) ions, even when graphene and h-BN domain boundary defects are present. Our results seem to indicate that as-grown graphene and h-BN films could successfully protect metals, preventing their corrosion in biological and medical applications.

  11. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Science.gov (United States)

    Cui, Mingjun; Ren, Siming; Chen, Jia; Liu, Shuan; Zhang, Guangan; Zhao, Haichao; Wang, Liping; Xue, Qunji

    2017-03-01

    Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT-) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT-, as proved by Raman and UV-vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 106 Ω cm2) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  12. Wet chemical treatment of boron doped emitters on n-type (1 0 0) c-Si prior to amorphous silicon passivation

    Energy Technology Data Exchange (ETDEWEB)

    Meddeb, H., E-mail: hosny.meddeb@gmail.com [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Research and Technology Center of Energy, Photovoltaic Department, Borj-Cedria Science and Technology Park, BP 95, 2050 (Tunisia); University of Carthage, Faculty of Sciences of Bizerta (Tunisia); Bearda, T.; Recaman Payo, M.; Abdelwahab, I. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Abdulraheem, Y. [Electrical Engineering Department, College of Engineering & Petroleum, Kuwait University, P.O. Box 5969, 13060 Safat (Kuwait); Ezzaouia, H. [Research and Technology Center of Energy, Photovoltaic Department, Borj-Cedria Science and Technology Park, BP 95, 2050 (Tunisia); Gordon, I.; Szlufcik, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Poortmans, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Electrical Engineering (ESAT), K.U. Leuven, 3001 Leuven (Belgium); Faculty of Sciences, University of Hasselt, Martelarenlaan 42, 3500 Hasselt (Belgium)

    2015-02-15

    Highlights: • The influence of the cleaning process using different HF-based cleaning on the amorphous silicon passivation of homojunction boron doped emitters is analyzed. • The effect of boron doping level on surface characteristics after wet chemical cleaning: For heavily doped surfaces, the reduction in contact angle was less pronounced, which proves that such surfaces are more resistant to oxide formation and remain hydrophobic for a longer time. In the case of low HF concentration, XPS measurements show higher oxygen concentrations for samples with higher doping level, probably due to the incomplete removal of the native oxide. • Higher effective lifetime is achieved at lower doping for all considered different chemical pre-treatments. • A post-deposition annealing improves the passivation level yielding emitter saturation currents determined by Auger recombination in the order of 70 fA/cm{sup 2} and below. • The dominance of Auger recombination over other type of B-induced defects on lifetime quality in the case of our p+ emitter. - Abstract: The influence of the cleaning process on the amorphous silicon passivation of homojunction emitters is investigated. A significant variation in the passivation quality following different cleaning sequences is not observed, even though differences in cleaning performance are evident. These results point out the effectiveness of our cleaning treatment and provide a hydrogen termination for intrinsic amorphous silicon passivation. A post-deposition treatment improves the passivation level yielding emitter saturation currents determined by Auger recombination in the order of 70 fA/cm{sup 2} and below.

  13. SaOS-2 cell response to macro-porous boron-incorporated TiO2 coating prepared by micro-arc oxidation on titanium.

    Science.gov (United States)

    Huang, Qianli; Elkhooly, Tarek A; Liu, Xujie; Zhang, Ranran; Yang, Xing; Shen, Zhijian; Feng, Qingling

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO2 coating (B-TiO2 coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO2 coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO2 coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO2 coating. The spreading of SaOS-2 cells on B-TiO2 coating was faster than that on TiO2 coating. The proliferation rate of SaOS-2 cells cultured on B-TiO2 decreased after 5days of culture compared to that on TiO2 coating. SaOS-2 cells cultured on B-TiO2 coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO2 coating. The present findings suggest that B-TiO2 coating is a promising candidate surface for orthopedic implants.

  14. Microstructure and Wear Properties of Fe-based Amorphous Coatings Deposited by High-velocity Oxygen Fuel Spraying

    Institute of Scientific and Technical Information of China (English)

    Gang WANG; Ping XIAO; Zhong-jia HUANG; Ru-jie HE

    2016-01-01

    Fe-based powder with a composition of Fe42·87 Cr15·98 Mo16·33 C15·94 B8·88 (at·%)was used to fabricate coatings by high-velocity oxygen fuel spraying.The effects of the spraying parameters on the microstructure and the wear properties of the Fe-based alloy coatings were systematically studied.The results showed that the obtained Fe-based coatings with a thickness of about 400μm consisted of a large-volume amorphous phase and some nanocrystals.With increasing the fuel and oxygen flow rates,the porosity of the obtained coatings decreased.The coating deposited un-der optimized parameters exhibited the lowest porosity of 2·8%.The excellent wear resistance of this coating was at-tributed to the properties of the amorphous matrix and the presence of nanocrystals homogeneously distributed with-in the matrix.The wear mechanism of the coatings was discussed on the basis of observations of the worn surfaces.

  15. Ni-WC composite coatings by carburizing electrodeposited amorphous and nanocrystalline Ni-W alloys

    Science.gov (United States)

    Latif, Saadia; Mehmood, Mazhar; Ahmad, Jamil; Aslam, Muhammad; Ahmed, Maqsood; Zhang, Zhi-dong

    2010-03-01

    In situ formation of tungsten carbide in the matrix of FCC nickel has been achieved by carburizing of the electrodeposited Ni-W alloy coatings. The size of the carbide particles ranges between 100 and 500 nm. The carbide phase is also present in the form of very small precipitates inside the nickel grains. The size of such precipitates is between 10 and 40 nm. The carburizing environment was created by introducing a flowing mixture of vaporized 95.5% alcohol (0.25 ml/min, liquid) and argon (0.5 L/min, gas) into the carburizing furnace. Supersaturated nature of electrodeposited amorphous and nanocrystalline alloys, in addition to high diffusivity, have been attributed for the formation of carbide phase in the deposits at a temperature range of 700-850 °C. The carbide-metal interface is clean and the composite coatings are compact. Hardness values up to about 1100 KHN are achieved. Hardness increases with tungsten content and carburizing temperature.

  16. Ni-WC composite coatings by carburizing electrodeposited amorphous and nanocrystalline Ni-W alloys

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Saadia [National Centre for Nanotechnology, Department of Chemical and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650 (Pakistan); Mehmood, Mazhar, E-mail: mazhar@pieas.edu.pk [National Centre for Nanotechnology, Department of Chemical and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650 (Pakistan); Ahmad, Jamil; Aslam, Muhammad [National Centre for Nanotechnology, Department of Chemical and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650 (Pakistan); Ahmed, Maqsood [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Zhang Zhidong [Institute of Metals Research, Chinese Academy of Science, Shenyang (China)

    2010-03-01

    In situ formation of tungsten carbide in the matrix of FCC nickel has been achieved by carburizing of the electrodeposited Ni-W alloy coatings. The size of the carbide particles ranges between 100 and 500 nm. The carbide phase is also present in the form of very small precipitates inside the nickel grains. The size of such precipitates is between 10 and 40 nm. The carburizing environment was created by introducing a flowing mixture of vaporized 95.5% alcohol (0.25 ml/min, liquid) and argon (0.5 L/min, gas) into the carburizing furnace. Supersaturated nature of electrodeposited amorphous and nanocrystalline alloys, in addition to high diffusivity, have been attributed for the formation of carbide phase in the deposits at a temperature range of 700-850 deg. C. The carbide-metal interface is clean and the composite coatings are compact. Hardness values up to about 1100 KHN are achieved. Hardness increases with tungsten content and carburizing temperature.

  17. Metallic amorphous electrodeposited molybdenum coating from aqueous electrolyte: Structural, electrical and morphological properties under current density

    Science.gov (United States)

    Nemla, Fatima; Cherrad, Djellal

    2016-07-01

    Molybdenum coatings are extensively utilized as back contact for CIGS-based solar cells. However, their electrodeposition from aqueous electrolyte still sophisticates, since long time, owing to the high reactivity with oxygen. In this study, we present a successful 30 min electrodeposition experiment of somewhat thick (∼0.98-2.9 μm) and of moderate surface roughness RMS (∼47-58 nm), metallic bright Mo coating from aqueous electrolyte containing molybdate ions. XRD analysis and Hall Effect measurements have been used to confirm the presence of Mo. The crystal structure of deposits was slightly amorphous in nature to body centred cubic structure (bcc) Mo (110), (211) and (220) face. Lattice parameters exhibit some weak fluctuated tensile stress when compared to the reference lattice parameter. Additionally, our calculated lattice parameters are in good agreement with some previous works from literature. Discussions on the grain growth prove that they are constrained by grain boundary energy not the thickness effect. Further discussions were made on the electrical resistivity and surface morphology. Resonance scattering of Fermi electrons are expected to contribute towards the variation in the film resistivity through the carrier mobility limitation. However, studied samples might be qualified as candidates for solar cell application.

  18. Effect of Boron on Microstructure and Microhardness Properties of Mo-Si-B Based Coatings Produced Via TIG Process

    Directory of Open Access Journals (Sweden)

    Islak S.

    2016-09-01

    Full Text Available In this study, Mo-Si-B based coatings were produced using tungsten inert gas (TIG process on the medium carbon steel because the physical, chemical, and mechanical properties of these alloys are particularly favourable for high-temperature structural applications. It is aimed to investigate of microstructure and microhardness properties of Mo-Si-B based coatings. Optical microscopy (OM, X-ray diffraction (XRD and scanning electron microscopy (SEM were used to characterize the microstructures of Mo-Si-B based coatings. The XRD results showed that microstructure of Mo–Si–B coating consists of α-Mo, α-Fe, Mo2B, Mo3Si and Mo5SiB2 phases. It was reported that the grains in the microstructure were finer with increasing amounts of boron which caused to occur phase precipitations in the grain boundary. Besides, the average microhardness of coatings changed between 735 HV0.3 and 1140 HV0.3 depending on boron content.

  19. Effect of LiF Coating on the Thermal Oxidation Characteristics for Boron Powder%LiF包覆对硼粉热氧化特性的影响

    Institute of Scientific and Technical Information of China (English)

    陈涛; 张先瑞; 王园园; 黄凌; 肖金武

    2013-01-01

    In order to investigate the effect of LiF coating on the thermal oxidation characteristics for amorphous boron powder,the thermal analysis experiment of boron coated with LiF (BLiF) was conducted by DSC-TC. Propellant samples containing BLif were prepared. The heat of detonation and heat of combustion were determined by an oxygen bomb calorimeter. The effects of BLif on the energy release features in primary combustion and after-burning processes of the propellant were discussed. The results indicate that in comparison with amorphous boron, BLiF shows a fast oxidation reaction at 599 XL ,and a 39. 9% higher percentage of boron participated in B/O reaction. The propellant containing BLiF makes primary combustion and after-burning energy release efficiencies (ηc1 and ηc2) increased and combustion efficiencies of B enhanced significantly from 65.48% to 81 .57%. This is due to the consumption of B2O3 layer on the boron particle surface via endothermic reaction of LiF and B2O3 at high temperature and the acceleration of B/O reaction.%为考察LiF包覆对硼粉热氧化特性的影响,采用DSC-TG技术对LiF包覆硼(BLiF)进行热分析试验.制备了含BLiF的推进剂样品.采用氧弹量热计测试其爆热和热值.考察了BLiF对推进剂一次、二次燃烧过程中能量释放特性的影响.结果表明:与无定形硼相比,BLiF在599℃存在快速氧化反应,有39.9%(质量百分数)的B参与了B/O反应.含BLiF的推进剂使一次能量释放效率和二次能量释放效率明显提高,硼的燃烧效率从65.48%提高到81.57%.这是由高温下LiF通过吸热反应消耗硼粉表面B2O3氧化层,加速B/O反应所引起的.

  20. Metallic amorphous electrodeposited molybdenum coating from aqueous electrolyte: Structural, electrical and morphological properties under current density

    Energy Technology Data Exchange (ETDEWEB)

    Nemla, Fatima [LEPCM, Department of Physics, University of Batna (Algeria); Cherrad, Djellal, E-mail: cherradphisic@yahoo.fr [Laboratory for Developing New Materials and Their Characterizations, University of Setif (Algeria)

    2016-07-01

    Graphical abstract: - Highlights: • Although difficulties related to electrodeposition of Mo films, we have successfully coated onto a cooper substrate. • A good formation of bcc Mo phase and lattice parameter was very accurate. • It seems that electrical properties of our samples are good and suitable as back contact for thin film solar cells. • It seems that grain size, microstrain and dislocation density are all managed and correlated to retain the resistivity to a considerable minimum value. - Abstract: Molybdenum coatings are extensively utilized as back contact for CIGS-based solar cells. However, their electrodeposition from aqueous electrolyte still sophisticates, since long time, owing to the high reactivity with oxygen. In this study, we present a successful 30 min electrodeposition experiment of somewhat thick (∼0.98–2.9 μm) and of moderate surface roughness RMS (∼47–58 nm), metallic bright Mo coating from aqueous electrolyte containing molybdate ions. XRD analysis and Hall Effect measurements have been used to confirm the presence of Mo. The crystal structure of deposits was slightly amorphous in nature to body centred cubic structure (bcc) Mo (110), (211) and (220) face. Lattice parameters exhibit some weak fluctuated tensile stress when compared to the reference lattice parameter. Additionally, our calculated lattice parameters are in good agreement with some previous works from literature. Discussions on the grain growth prove that they are constrained by grain boundary energy not the thickness effect. Further discussions were made on the electrical resistivity and surface morphology. Resonance scattering of Fermi electrons are expected to contribute towards the variation in the film resistivity through the carrier mobility limitation. However, studied samples might be qualified as candidates for solar cell application.

  1. Nanometer-thick amorphous-SnO2 layer as an oxygen barrier coated on a transparent AZO electrode

    Science.gov (United States)

    Lee, Hee Sang; Woo, Seong Ihl

    2016-07-01

    It is necessary for transparent conducting electrodes used in dye-sensitized or perovskite solar cells to have high thermal stability which is required when TiO2 is coated on the electrode. AZO films with their low-cost and good TCO properties are unfortunately unstable above 300 °C in air because of adsorbed oxygen. In this paper, the thermal stability of AZO films is enhanced by depositing an oxygen barrier on AZO films to block the oxygen. As the barrier material, SnO2 is used due to its high heat stability, electrical conductivity, and transmittance. Moreover, when the SnO2 is grown as amorphous phase, the protective effect become greater than the crystalline phase. The thermal stability of the amorphous-SnO2/AZO films varies depending on the thickness of the amorphous SnO2 layer. Because of the outstanding oxygen blocking properties of amorphous SnO2, its optimal thickness is very thin and it results in only a slight decrease in transmittance. The sheet resistance of the amorphous-SnO2/AZO film is 5.4 Ω sq-1 after heat treatment at 500 °C for 30 min in air and the average transmittance in the visible region is 83.4%. The results show that the amorphous-SnO2/AZO films have thermal stability with excellent electrical and optical properties. [Figure not available: see fulltext.

  2. Tribocorrosion Behavior of Fe-Based Amorphous Composite Coating Reinforced by Al2O3 in 3.5% NaCl Solution

    Science.gov (United States)

    Yasir, Muhammad; Zhang, Cheng; Wang, Wei; Zhang, Zhi-Wei; Liu, Lin

    2016-09-01

    Although corrosion and friction/wear behavior of Fe-based amorphous coatings and their composites has been extensively studied during the past decade, there is very limited work related to tribocorrosion behavior. In this paper, the tribocorrosion behavior of a Fe-based amorphous composite coating reinforced with 20 wt.% Al2O3 particles was investigated in a 3.5% NaCl solution on a ball-on-disk tester and was compared to the monolithic amorphous coating and 316L stainless steel (SS). The results showed that the amorphous composite coating exhibited the highest tribocorrosion resistance among the three materials tested, as evidenced by the lowest coefficient of friction (~0.3) and tribocorrosion wear rate (~1.2 × 10-5 mm3/N·m). In addition, potentiodynamic polarization measurements before and during tribocorrosion testing demonstrated that corrosion resistance of the amorphous composite coating was not influenced so much by mechanical loading compared to the amorphous coating and the 316L SS. Observations on the worn surface revealed a corrosion-wear- and oxidational-wear-dominated tribocorrosion mechanism for the composite coatings. The excellent tribocorrosion resistance of the composite coating results from the effect of chemically stable Al2O3 phase which resists oxidation and delamination during sliding, along with poor wettability with corrosive NaCl droplets.

  3. Tribocorrosion Behavior of Fe-Based Amorphous Composite Coating Reinforced by Al2O3 in 3.5% NaCl Solution

    Science.gov (United States)

    Yasir, Muhammad; Zhang, Cheng; Wang, Wei; Zhang, Zhi-Wei; Liu, Lin

    2016-12-01

    Although corrosion and friction/wear behavior of Fe-based amorphous coatings and their composites has been extensively studied during the past decade, there is very limited work related to tribocorrosion behavior. In this paper, the tribocorrosion behavior of a Fe-based amorphous composite coating reinforced with 20 wt.% Al2O3 particles was investigated in a 3.5% NaCl solution on a ball-on-disk tester and was compared to the monolithic amorphous coating and 316L stainless steel (SS). The results showed that the amorphous composite coating exhibited the highest tribocorrosion resistance among the three materials tested, as evidenced by the lowest coefficient of friction ( 0.3) and tribocorrosion wear rate ( 1.2 × 10-5 mm3/N·m). In addition, potentiodynamic polarization measurements before and during tribocorrosion testing demonstrated that corrosion resistance of the amorphous composite coating was not influenced so much by mechanical loading compared to the amorphous coating and the 316L SS. Observations on the worn surface revealed a corrosion-wear- and oxidational-wear-dominated tribocorrosion mechanism for the composite coatings. The excellent tribocorrosion resistance of the composite coating results from the effect of chemically stable Al2O3 phase which resists oxidation and delamination during sliding, along with poor wettability with corrosive NaCl droplets.

  4. In Vivo Biodistribution and Toxicity of Highly Soluble PEG-Coated Boron Nitride in Mice

    Science.gov (United States)

    Liu, Bo; Qi, Wei; Tian, Longlong; Li, Zhan; Miao, Guoying; An, Wenzhen; Liu, Dan; Lin, Jing; Zhang, Xiaoyong; Wu, Wangsuo

    2015-12-01

    The boron nitride (BN) nanoparticles, as the structural analogues of graphene, are the potential biomedicine materials because of the excellent biocompatibility, but their solubility and biosafety are the biggest obstacle for the clinic application. Here, we first synthesized the highly soluble BN nanoparticles coated by PEG (BN-PEG) with smaller size (~10 nm), then studied their biodistribution in vivo through radioisotope (Tc99mO4 -) labeling, and the results showed that BN-PEG nanoparticles mainly accumulated in the liver, lung, and spleen with the less uptake by the brain. Moreover, the pathological changes induced by BN-PEG could be significantly observed in the sections of the liver, lung, spleen, and heart, which can be also supported by the test of biochemical indexes in serum. More importantly, we first observed the biodistribution of BN-PEG in the heart tissues with high toxicity, which would give a warning about the cardiovascular disease, and provide some opportunities for the drug delivery and treatment.

  5. Experimental Study of Boron-coated Straws with a Neutron Source

    CERN Document Server

    Xie, Zhaoyang; Sun, Liang; Song, Yushou; Sun, Zhijia; Hu, Bitao; Chen, Yuanbo

    2016-01-01

    Different types of high quality neutron detectors are proposed for China Spallation Neutron Source (CSNS), phase one of which is going to be commissioned in 2018. Considering the issue of 3He supply, a detector module composed of 49 boron-coated straws (BCS) was developed by Proportional technologies Inc. (PTI). Each straw has a length of 1000 mm and diameter of 7.5 mm. Seven straws are packed compactly in a tube, and the tubes are organized in one row to form a detector module. The charge division method is used for longitudinal positioning. A specific readout system was utilized to output the signal and synchronously to encode each straw. The performances of this detector module were studied using a moderated 252Cf source at Institute of High Energy Physics (IHEP). The spectrum result indicates good n-gamma discrimination. Benefitting from the tricky readout a longitudinal resolution of 6.1/pm 0.5 mm was obtained. The three dimensional positioning ability qualifies this BCS detector module to be a promising...

  6. Amorphous GeOx-Coated Reduced Graphene Oxide Balls with Sandwich Structure for Long-Life Lithium-Ion Batteries.

    Science.gov (United States)

    Choi, Seung Ho; Jung, Kyeong Youl; Kang, Yun Chan

    2015-07-01

    Amorphous GeOx-coated reduced graphene oxide (rGO) balls with sandwich structure are prepared via a spray-pyrolysis process using polystyrene (PS) nanobeads as sacrificial templates. This sandwich structure is formed by uniformly coating the exterior and interior of few-layer rGO with amorphous GeOx layers. X-ray photoelectron spectroscopy analysis reveals a Ge:O stoichiometry ratio of 1:1.7. The amorphous GeOx-coated rGO balls with sandwich structure have low charge-transfer resistance and fast Li(+)-ion diffusion rate. For example, at a current density of 2 A g(-1), the GeOx-coated rGO balls with sandwich and filled structures and the commercial GeO2 powders exhibit initial charge capacities of 795, 651, and 634 mA h g(-1), respectively; the corresponding 700th-cycle charge capacities are 758, 579, and 361 mA h g(-1). In addition, at a current density of 5 A g(-1), the rGO balls with sandwich structure have a 1600th-cycle reversible charge capacity of 629 mA h g(-1) and a corresponding capacity retention of 90.7%, as measured from the maximum reversible capacity at the 100th cycle.

  7. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses

    Science.gov (United States)

    Ma, Jane; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M.; Demokritou, Philip; Castranova, Vincent

    2015-01-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3 days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis. PMID:26210349

  8. The study of amorphous aggregation of tobacco mosaic virus coat protein by dynamic light scattering.

    Science.gov (United States)

    Panyukov, Yuliy; Yudin, Igor; Drachev, Vladimir; Dobrov, Evgeny; Kurganov, Boris

    2007-04-01

    The kinetics of heat-induced and cetyltrimethylammonium bromide induced amorphous aggregation of tobacco mosaic virus coat protein in Na(+)/Na(+) phosphate buffer, pH 8.0, have been studied using dynamic light scattering. In the case of thermal aggregation (52 degrees C) the character of the dependence of the hydrodynamic radius (R(h)) on time indicates that at certain instant the population of aggregates is split into two components. The size of the aggregates of one kind remains practically constant in time, whereas the size of aggregates of other kind increases monotonously in time reaching the values characteristic of aggregates prone to precipitation (R(h)=900-1500 nm). The construction of the light scattering intensity versus R(h) plots shows that the large aggregates (the start aggregates) exist in the system at the instant the initial increase in the light scattering intensity is observed. For thermal aggregation the R(h) value for the start aggregates is independent of the protein concentration and equal to 21.6 nm. In the case of the surfactant-induced aggregation (at 25 degrees C) no splitting of the aggregates into two components is observed and the size of the start aggregates turns out to be much larger (107 nm) than on the thermal aggregation. The dependence of R(h) on time for both heat-induced aggregation and surfactant-induced aggregation after a lapse of time follows the power law indicating that the aggregation process proceeds in the kinetic regime of diffusion-limited cluster-cluster aggregation. Fractal dimension is close to 1.8. The molecular chaperone alpha-crystallin does not affect the kinetics of tobacco mosaic virus coat protein thermal aggregation.

  9. Preparation of ZrC nano-particles reinforced amorphous carbon composite coating by atmospheric pressure chemical vapor deposition

    Science.gov (United States)

    Sun, W.; Xiong, X.; Huang, B. Y.; Li, G. D.; Zhang, H. B.; Xiao, P.; Chen, Z. K.; Zheng, X. L.

    2009-05-01

    To eliminate cracks caused by thermal expansion mismatch between ZrC coating and carbon-carbon composites, a kind of ZrC/C composite coating was designed as an interlayer. The atmospheric pressure chemical vapor deposition was used as a method to achieve co-deposition of ZrC and C from ZrCl 4-C 3H 6-H 2-Ar source. Zirconium tetrachloride (ZrCl 4) powder carrier was especially made to control accurately the flow rate. The microstructure of ZrC/C composite coating was studied using analytical techniques. ZrC/C coating shows same morphology as pyrolytic carbon. Transmission electron microscopy (TEM) shows ZrC grains with size of 10-50 nm embed in turbostratic carbon. The formation mechanism is that the growth of ZrC crystals was inhibited by surrounding pyrolytic carbon and kept as nano-particles. Fracture morphologies imply good combination between coating and substrate. The ZrC crystals have stoichiometric proportion near 1, with good crystalline but no clear preferred orientation while pyrolytic carbon is amorphous. The heating-up oxidation of ZrC/C coating shows 11.58 wt.% loss. It can be calculated that the coating consists of 74.04 wt.% ZrC and 25.96 wt.% pyrolytic carbon. The average density of the composite coating is 5.892 g/cm 3 by Archimedes' principle.

  10. Long-Term Corrosion Testing of Thermal Spray Coatings of Amorphous Metals: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 and Fe48Mo14Cr15Y2C15B6

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Day, D; Lian, T; Saw, C; Hailey, P; Payer, J; Aprigliano, L; Beardsley, B; Branagan, D

    2007-07-09

    Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of SAM2X5 also made it an effective neutron absorber, and suitable for criticality control applications.

  11. Experimental study on friction and wear behaviour of amorphous carbon coatings for mechanical seals in cryogenic environment

    Science.gov (United States)

    Wang, Jianlei; Jia, Qian; Yuan, Xiaoyang; Wang, Shaopeng

    2012-10-01

    The service life and the reliability of contact mechanical seal are directly affected by the wear of seal pairs (rotor vs. stator), especially under the cryogenic environment in liquid rocket engine turbopumps. Because of the lower friction and wear rate, amorphous carbon (a-C) coatings are the promising protective coatings of the seal pairs for contact mechanical seal. In this paper, a-C coatings were deposited on 9Cr18 by pulsed DC magnetron sputtering. The tribological performances of the specimen were tested under three sealed fluid conditions (air, water and liquid nitrogen). The results show that the coatings could endure the cryogenic temperature while the friction coefficients decrease with the increased contact load. Under the same contact condition, the friction coefficient of the a-C coatings in liquid nitrogen is higher than that in water and that they are in air. The friction coefficients of the a-C coatings in liquid nitrogen range from 0.10 to 0.15. In the cryogenic environment, the coatings remain their low specific wear rates (0.9 × 10-6 to 1.8 × 10-6 mm3 N-1 m-1). The results provide an important reference for designing a water lubricated bearing or a contact mechanical seal under the cryogenic environment that is both reliable and has longevity.

  12. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Science.gov (United States)

    Xu, J. L.; Xiao, Q. F.; Mei, D. D.; Zhong, Z. C.; Tong, Y. X.; Zheng, Y. F.; Li, L.

    2017-03-01

    Amorphous SiO2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the "coral reef" like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 μm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO2 and a few amorphous Fe2O3 and Nd2O3. The amorphous SiO2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees.

  13. High-Temperature Erosion Resistance of FeBSiNb Amorphous Coatings Deposited by Arc Spraying for Boiler Applications

    Science.gov (United States)

    Cheng, J. B.; Liang, X. B.; Chen, Y. X.; Wang, Z. H.; Xu, B. S.

    2013-06-01

    Erosive high-temperature wear in boilers is one of the main causes of downtime and one of the principal engineering problems in these installations. This article discusses the use of FeBSiNb amorphous coatings synthesized by arc spraying to improve elevated-temperature erosion resistance for boiler applications. The influence of test temperature, velocity, and impact angle on material wastage was revealed using air solid particle erosion rig. The experimental results showed that moderate degradation of the coating was predominant at lower impact velocity and impact angles, while severe damage arose for higher velocities and impact angles. The erosion behavior of the coating was sensitive to test temperature. The erosion rates of the coating decreased as a function of environment temperature. The relationship between microstructure and erosion resistance of the coating was also analyzed in details. The FeBSiNb coating had excellent elevated-temperature erosion resistance at temperatures at least up to 600 °C during service.

  14. Corrosion properties of amorphous Mo-Si-N and nanolayered Mo-Si-Nn/SiC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Torri, P.; Mahiout, A.; Koskinen, J.; Hirvonen, J.P.; Johansson, L.S.

    2000-02-01

    Corrosion properties of sputter deposited MoSi{sub 2}, SiC, Mo-Si-N (MoSi{sub 2.2}N{sub 2.5}) and nanolayered Mo-Si-N/SiC coatings on Fe37 low carbon steel have been studied using electrochemical polarization measurements in 1 N H{sub 2}SO{sub 4} solution. A decrease in both critical current density for passivation and minimum current in passive state was observed in annealed nanolayered Mo-Si-N/SiC coating compared to each of its constituents alone as single layer coating. On contrary to MoSi{sub 2} coating, only slight increase in critical current density was observed in Mo-Si-N coated sample after annealing. Molybdenum disilicide source material has good thermal and electrical conductivity, which allows effective dc-magnetron sputter deposition. Therefore this is a relatively simple method to produce amorphous coatings which have a high crystallization temperature and promising properties for corrosion applications.

  15. Microstructure and tribological properties of Zr-based amorphous-nanocrystalline coatings deposited on the surface of titanium alloys by Electrospark Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Xiang; Tan, Yefa, E-mail: tanyefa7651@163.com; Zhou, Chunhua; Xu, Ting; Zhang, Zhongwei

    2015-11-30

    Highlights: • Zr-based amorphous-nanocrystalline coatings were well prepared on TC11 titanium alloys. • High glass forming ability of alloy system and high cooling rate of Electrospark Deposition process are beneficial for the generation of amorphous phase. • A model has been applied to investigate the generation of nanocrystalline phases in amorphous coating. • Excellent wear properties obtained due to nanocrystalline phases distributed in amorphous organization. - Abstract: In order to improve the wear resistance of titanium alloys, the Zr-based amorphous-nanocrystalline coatings were prepared by Electrospark Deposition (ESD) on the surface of TC11. The microstructure of the coatings was analyzed and the tribological behavior and mechanism of the coatings were investigated. The results show that the coating is mainly composed of amorphous phase Zr{sub 55}Cu{sub 30}Al{sub 10}Ni{sub 5} and distributed a large number of nano particles with the diameter between 2 nm and 4 nm such as CuZr{sub 3}, Ni{sub 2}Zr{sub 3}, NiZr{sub 2}, etc. The new alloy system made up of molten electrode material of Zr-based alloy and TC11 substrate has a large glass forming ability, which transforms to amorphous phase in the rapid heating and cooling ESD process. The long-range diffusions of atoms such as Zr and Cu in amorphous microstructure play an important role in nano nucleation growth. The coating is dense, uniform, bonding with TC11 substrate metallurgically. The thickness of the coating is from 55 μm to 60 μm and the average microhardness is 801.3 HV{sub 0.025}. The coating has good friction-reducing and anti-wear properties. The friction coefficient of the coating changes between 0.13 and 0.21 with small fluctuation, decreasing about 60% compared to that of TC11 substrate. And the wear resistance of the coating is increased by 57% than that of TC11 substrate. The main wear mechanism of the coating is micro-cutting wear accompanied with oxidation wear.

  16. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, G., E-mail: Gregor.Nowak@hzg.de; Störmer, M.; Horstmann, C.; Kampmann, R.; Höche, D.; Lorenz, U.; Müller, M.; Schreyer, A. [Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht (Germany); Becker, H.-W. [RUBION-Zentrale Einrichtung für Ionenstrahlen und Radionuklide, Ruhr-Universität Bochum, 44780 Bochum (Germany); Haese-Seiller, M.; Moulin, J.-F.; Pomm, M. [Helmholtz-Zentrum Geesthacht, Außenstelle an der Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 85747 Garching (Germany); Randau, C. [Georg-August Universität Göttingen, Geowissenschaftliches Zentrum, 37077 Göttingen, Germany and Außenstelle an der Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 85747 Garching (Germany); Hall-Wilton, R. [European Spallation Source ESS AB, P.O. Box 176, 221 00 Lund (Sweden)

    2015-01-21

    Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.

  17. SaOS-2 cell response to macro-porous boron-incorporated TiO{sub 2} coating prepared by micro-arc oxidation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qianli [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Elkhooly, Tarek A. [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Ceramics, Inorganic Chemical Industries Division, National Research Centre, Dokki, 12622 Cairo (Egypt); Liu, Xujie [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhang, Ranran; Yang, Xing; Shen, Zhijian [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO{sub 2} coating (B-TiO{sub 2} coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO{sub 2} coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO{sub 2} coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO{sub 2} coating. The spreading of SaOS-2 cells on B-TiO{sub 2} coating was faster than that on TiO{sub 2} coating. The proliferation rate of SaOS-2 cells cultured on B-TiO{sub 2} decreased after 5 days of culture compared to that on TiO{sub 2} coating. SaOS-2 cells cultured on B-TiO{sub 2} coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO{sub 2} coating. The present findings suggest that B-TiO{sub 2} coating is a promising candidate surface for orthopedic implants. - Highlights: • SaOS-2 cell response to pure TiO{sub 2} and B-TiO{sub 2} coatings was investigated. • Initial cell spreading on B-TiO{sub 2} coating was accelerated compared to that on TiO{sub 2} coating. • Cell proliferation on B-TiO{sub 2} coating was inhibited compared to that on TiO{sub 2} coating. • Cell differentiation on B-TiO{sub 2} coating was enhanced compared to that on TiO{sub 2} coating.

  18. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  19. Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Duchamp, M.; Boothroyd, C.B.; Dunin-Borkowski, R.E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Gruenberg Institute (PGI), Forschungszentrum Juelich, D-52425 Juelich (Germany); Moreno, M.S. [Centro Atomico Bariloche, 8400 - S. C. de Bariloche (Argentina); Van Aken, B.B.; Soppe, W.J. [ECN Solar Energy, High Tech Campus, Building 5, 5656 AE Eindhoven (Netherlands)

    2013-03-07

    Electron energy-loss spectroscopy (EELS) is used to study p-doped layers in n-i-p amorphous thin film Si solar cells grown on steel foil substrates. For a solar cell in which an intrinsic amorphous hydrogenated Si (a-Si-H) layer is sandwiched between 10-nm-thick n-doped and p-doped a-Si:H layers, we assess whether core-loss EELS can be used to quantify the B concentration. We compare the shape of the measured B K edge with real space ab initio multiple scattering calculations and show that it is possible to separate the weak B K edge peak from the much stronger Si L edge fine structure by using log-normal fitting functions. The measured B concentration is compared with values obtained from secondary ion mass spectrometry, as well as with EELS results obtained from test samples that contain ?200-nm-thick a-Si:H layers co-doped with B and C. We also assess whether changes in volume plasmon energy can be related to the B concentration and/or to the density of the material and whether variations of the volume plasmon line-width can be correlated with differences in the scattering of valence electrons in differently doped a-Si:H layers.

  20. Microstructure and tribological properties of Zr-based amorphous-nanocrystalline coatings deposited on the surface of titanium alloys by Electrospark Deposition

    Science.gov (United States)

    Hong, Xiang; Tan, Yefa; Zhou, Chunhua; Xu, Ting; Zhang, Zhongwei

    2015-11-01

    In order to improve the wear resistance of titanium alloys, the Zr-based amorphous-nanocrystalline coatings were prepared by Electrospark Deposition (ESD) on the surface of TC11. The microstructure of the coatings was analyzed and the tribological behavior and mechanism of the coatings were investigated. The results show that the coating is mainly composed of amorphous phase Zr55Cu30Al10Ni5 and distributed a large number of nano particles with the diameter between 2 nm and 4 nm such as CuZr3, Ni2Zr3, NiZr2, etc. The new alloy system made up of molten electrode material of Zr-based alloy and TC11 substrate has a large glass forming ability, which transforms to amorphous phase in the rapid heating and cooling ESD process. The long-range diffusions of atoms such as Zr and Cu in amorphous microstructure play an important role in nano nucleation growth. The coating is dense, uniform, bonding with TC11 substrate metallurgically. The thickness of the coating is from 55 μm to 60 μm and the average microhardness is 801.3 HV0.025. The coating has good friction-reducing and anti-wear properties. The friction coefficient of the coating changes between 0.13 and 0.21 with small fluctuation, decreasing about 60% compared to that of TC11 substrate. And the wear resistance of the coating is increased by 57% than that of TC11 substrate. The main wear mechanism of the coating is micro-cutting wear accompanied with oxidation wear.

  1. Tribological and thermal stability study of nanoporous amorphous boron carbide films prepared by pulsed plasma chemical vapor deposition

    Science.gov (United States)

    Liza, Shahira; Ohtake, Naoto; Akasaka, Hiroki; Munoz-Guijosa, Juan M.

    2015-06-01

    In this work, the thermal stability and the oxidation and tribological behavior of nanoporous a-BC:H films are studied and compared with those in conventional diamond-like carbon (DLC) films. a-BC:H films were deposited by pulsed plasma chemical vapor deposition using B(CH3)3 gas as the boron source. A DLC interlayer was used to prevent the a-BC:H film delamination produced by oxidation. Thermal stability of a-BC:H films, with no delamination signs after annealing at 500 °C for 1 h, is better than that of the DLC films, which completely disappeared under the same conditions. Tribological test results indicate that the a-BC:H films, even with lower nanoindentation hardness than the DLC films, show an excellent boundary oil lubricated behavior, with lower friction coefficient and reduce the wear rate of counter materials than those on the DLC film. The good materials properties such as low modulus of elasticity and the formation of micropores from the original nanopores during boundary regimes explain this better performance. Results show that porous a-BC:H films may be an alternative for segmented DLC films in applications where severe tribological conditions and complex shapes exist, so surface patterning is unfeasible.

  2. Corrosion Resistance of Amorphous Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 coating - a new criticality-controlled material

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Saw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

    2007-03-28

    An iron-based amorphous metal with good corrosion resistance and a high absorption cross-section for thermal neutrons has been developed and is reported here. This amorphous alloy has the approximate formula Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} and is known as SAM2X5. Chromium (Cr), molybdenum (Mo) and tungsten (W) were added to provide corrosion resistance, while boron (B) was added to promote glass formation and the absorption of thermal neutrons. Since this amorphous metal has a higher boron content than conventional borated stainless steels, it provides the nuclear engineer with design advantages for criticality control structures with enhanced safety. While melt-spun ribbons with limited practical applications were initially produced, large quantities (several tons) of gas atomized powder have now been produced on an industrial scale, and applied as thermal-spray coatings on prototypical half-scale spent nuclear fuel containers and neutron-absorbing baskets. These prototypes and other SAM2X5 samples have undergone a variety of corrosion testing, including both salt-fog and long-term immersion testing. Modes and rates of corrosion have been determined in various relevant environments, and are reported here. While these coatings have less corrosion resistance than melt-spun ribbons and optimized coatings produced in the laboratory, substantial corrosion resistance has been achieved.

  3. In vitro metal ion release and biocompatibility of amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy with/without gelatin coating

    Energy Technology Data Exchange (ETDEWEB)

    Chan, W.Y., E-mail: chan.wing.yue@sgh.com.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore); Department of Plastic, Reconstructive and Aesthetic Surgery, Singapore General Hospital (Singapore); Chian, K.S.; Tan, M.J. [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore)

    2013-12-01

    Amorphous zinc-rich Mg–Zn–Ca alloys have exhibited good tissue compatibility and low hydrogen evolution in vivo. However, suboptimal cell–surface interaction on magnesium alloy surface observed in vitro could lead to reduced integration with host tissue for regenerative purpose. This study aims to improve cell–surface interaction of amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy by coating a gelatin layer by electrospinning. Coated/uncoated alloys were immersed and extracted for 3 days under different CO{sub 2}. The immersion results showed that pH and metal ion release in the alloy extracts were affected by gelatin coating and CO{sub 2}, suggesting their roles in alloy biocorrosion and a mechanism has been proposed for the alloy–CO{sub 2} system with/without coating. Cytotoxicity results are evident that gelatin-coated alloy with 2-day crosslinking not only exhibited no indirect cytotoxicity, but also supported attachment of L929 and MG63 cell lines around/on the alloy with high viability. Therefore, amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy coated with gelatin by electrospinning technique provides a useful method to improve alloy biocompatibility. - Highlights: • Electrospinning is a new method to coat amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy with gelatin. • Gelatin-coated alloy has differential effect on pH and ion release at various CO{sub 2}. • L929 cell proliferation correlates with Mg{sup 2+} level in alloy extracts. • Biomimetic gelatin coating significantly improves cell–surface interaction.

  4. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  5. STEM-EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering.

    Science.gov (United States)

    Schierholz, Roland; Lacroix, Bertrand; Godinho, Vanda; Caballero-Hernández, Jaime; Duchamp, Martial; Fernández, Asunción

    2015-02-20

    A broad interest has been showed recently on the study of nanostructuring of thin films and surfaces obtained by low-energy He plasma treatments and He incorporation via magnetron sputtering. In this paper spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope is used to locate and characterize the He state in nanoporous amorphous silicon coatings deposited by magnetron sputtering. A dedicated MATLAB program was developed to quantify the helium density inside individual pores based on the energy position shift or peak intensity of the He K-edge. A good agreement was observed between the high density (∼35-60 at nm(-3)) and pressure (0.3-1.0 GPa) values obtained in nanoscale analysis and the values derived from macroscopic measurements (the composition obtained by proton backscattering spectroscopy coupled to the macroscopic porosity estimated from ellipsometry). This work provides new insights into these novel porous coatings, providing evidence of high-density He located inside the pores and validating the methodology applied here to characterize the formation of pores filled with the helium process gas during deposition. A similar stabilization of condensed He bubbles has been previously demonstrated by high-energy He ion implantation in metals and is newly demonstrated here using a widely employed methodology, magnetron sputtering, for achieving coatings with a high density of homogeneously distributed pores and He storage capacities as high as 21 at%.

  6. Study of the effect of boron doping on the solid phase crystallisation of hydrogenated amorphous silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Westra, J.M.; Swaaij, R.A.C.M.M. van [Photovoltaic Materials and Devices, Department of Sustainable Electrical Energy, Delft University of Technology, Delft (Netherlands); Šutta, P. [New Technologies-Research Centre, University of West Bohemia, Plzen (Czech Republic); Sharma, K.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands); Zeman, M. [Photovoltaic Materials and Devices, Department of Sustainable Electrical Energy, Delft University of Technology, Delft (Netherlands)

    2014-10-01

    Thin-film polycrystalline silicon on glass obtained by crystallization of hydrogenated amorphous silicon (a-Si:H) films is an interesting alternative for thin-film silicon solar cells. Although the solar-cell efficiencies are still limited, this technique offers excellent opportunity to study the influence of B-doping on the crystallisation process of a-Si:H. Our approach is to slowly crystallize B-doped a-Si:H films by solid phase crystallization in the temperature range 580–600°C. We use plasma-enhanced chemical vapour deposition (PECVD) and expanding thermal plasma chemical vapour deposition (ETPCVD) for the B-doped a-Si:H deposition. In this work we show the first in-situ study of the crystallization process of B-doped a-Si:H films produced by ETPCVD and make a comparison to the crystallization of intrinsic ETPCVD deposited a-Si:H as well as intrinsic and B-doped a-Si:H films deposited by PECVD. The crystallization process is investigated by in-situ x-ray diffraction, using a high temperature chamber for the annealing procedure. The study shows a strong decrease in the time required for full crystallisation for B-doped a-Si:H films compared to the intrinsic films. The time before the onset of crystallisation is reduced by the incorporation of B as is the grain growth velocity. The time to full crystallisation can be manipulated by the B{sub 2}H{sub 6}-to-SiH{sub 4} ratio used during the deposition and by the microstructure of the as-deposited a-Si:H films. - Highlights: • Solid-phase crystallization of B-doped a-Si:H films is presented. • Crystallization study of B-doped and intrinsic a-Si:H by in-situ x-ray diffraction • The microstructure and B-doping of a-Si:H influences the crystallisation process. • B enhances the grain growth rate, but the effect on the nucleation rate is limited.

  7. Plasma-Arc Deposited Elemental Boron Film for use as a Durable Nonstick Coating

    Science.gov (United States)

    2007-09-01

    It will be noted that these two samples were ones for which no surface cleaning, acid pickling , or treatment of the “swaged in oxide layer” was done...stages of the project, it was decided to try an idea to use titanium as the interlayer between boron and aluminum. Titanium is a light material that is...been overcome by acid pickling of the substrate and pulse-dc bias techniques. The Contractor Name: HY-Tech Research Corporation 16 Contract No

  8. Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Vitry, Veronique, E-mail: veronique.vitry@umons.ac.be [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Sens, Adeline [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Kanta, Abdoul-Fatah [Service de Sciences des Materiaux, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Delaunois, Fabienne [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Initiation mechanism of electroless Ni-B on St-37 steel has been identified. Black-Right-Pointing-Pointer Different phases of the plating process were observed and identified. Black-Right-Pointing-Pointer Influence of chemical heterogeneity on coating morphology was revealed. Black-Right-Pointing-Pointer Batch replenishment of the plating bath induces new germination phase. - Abstract: Quality and homogeneity of electroless nickel-boron coatings are very important for applications in corrosion and electronics and are completely dependent on the formation of the deposit. The growth and formation process of electroless nickel-boron was investigated by immersing mild steel (St-37) samples in an un-replenished bath for various periods of time (from 5 s to 1 h). The coatings obtained at the different stages of the process were then characterized: thickness was measured by SEM, morphology was observed, weight gain was recorded and top composition of the coatings was obtained from XPS. Three main phases were identified during the coating formation and links between plating time, instantaneous deposition rate, chemistry of last formed deposit and morphology were established. The mechanism for initial deposition on steel substrate for borohydride-reduced electroless nickel bath was also observed. Those results were confronted with chemistry evolution in the unreplenished plating bath during the process. This allowed getting insight about phenomena occurring in the plating bath and their influence on coating formation.

  9. Amorphous TiO2-coated reduced graphene oxide hybrid nanostructures for polymer composites with low dielectric loss

    Science.gov (United States)

    Tong, Wangshu; Zhang, Yihe; Yu, Li; Lv, Fengzhu; Liu, Leipeng; Zhang, Qian; An, Qi

    2015-10-01

    Nanocomposite of poly(vinylidene fluoride-co-hexafluoropropylene) incorporated with titanium dioxide-modified reduced graphene oxide sheets (rGO-TiO2/PVDF-HFP) was prepared by in situ assembling TiO2 on graphene oxide (GO), and its dielectric properties were carefully characterized. The GO layers were completely coated with amorphous TiO2. The dielectric permittivity increased stably as rGO-TiO2 content increased, and the loss was low at low frequencies. TiO2 inter-layer acted as an inter-particle barrier to prevent direct contact of rGO, which provided a new simple way for tuning the dielectric properties of polymer composites with low dielectric loss by controlling the structure of fillers.

  10. Silicon Carbide/Boron Nitride Dual In-Line Coating of Silicon Carbide Fiber Tows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will demonstrate monolayer and dual layer coating of SiC fiber by leveraging Laser Chemical Vapor Deposition techniques developed by Free...

  11. Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Backfish, Michael

    2013-04-01

    This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A second data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.

  12. 化学镀Ni-B合金镀层组织形态的研究%A Study of Microstructure of Electroless Nickel-Boron Alloy Coatings

    Institute of Scientific and Technical Information of China (English)

    程鑫; 饶群力

    2012-01-01

    The effects of bath composition on the microstructure of electroless Ni-B alloy coatings were investigated. By using contrast experiment design, both crystalline and amorphous coatings were obtained, and technological methods for controlling coating microstructure were acquired.%研究了镀液成分对化学镀Ni-B合金镀层组织形态的影响.通过对比实验设计,获得晶态与非晶态镀层,得到了可调控镀层组织形态的工艺方法.

  13. Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating

    Science.gov (United States)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  14. Chitosan-coated boron nitride nanospheres enhance delivery of CpG oligodeoxynucleotides and induction of cytokines

    Directory of Open Access Journals (Sweden)

    Zhang H

    2013-05-01

    Full Text Available Huijie Zhang,1,2 Song Chen,3 Chunyi Zhi,4 Tomohiko Yamazaki,1,2 Nobutaka Hanagata1,2,5 1Graduate School of Life Science, Hokkaido University, Sapporo, Japan; 2Biomaterials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki, Japan; 3Japanese Society for the Promotion of Science, Tokyo, Japan; 4Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, People’s Republic of China; 5Nanotechnology Innovation Station, Ibaraki, Japan Background: Cytosine-phosphate-guanine (CpG oligodeoxynucleotides activate Toll-like receptor 9, leading to induction of proinflammatory cytokines, which play an important role in induction and maintenance of innate and adaptive immune responses. Previously, we have used boron nitride nanospheres (BNNS as a carrier for delivery of unmodified CpG oligodeoxynucleotides to activate Toll-like receptor 9. However, because CpG oligodeoxynucleotides and BNNS are both negatively charged, electrostatic repulsion between them is likely to reduce the loading of CpG oligodeoxynucleotides onto BNNS. Therefore, the efficiency of uptake of CpG oligodeoxynucleotides is also limited and does not result in induction of a robust cytokine response. To ameliorate these problems, we developed a CpG oligodeoxynucleotide delivery system using chitosan-coated BNNS as a carrier. Methods: To facilitate attachment of CpG oligodeoxynucleotides onto the BNNS and improve their loading capacity, we prepared positively charged BNNS by coating them with chitosan preparations of three different molecular weights and used them as carriers for delivery of CpG oligodeoxynucleotides. Results: The zeta potentials of the BNNS-CS complexes were positive, and chitosan coating improved their dispersity and stability in aqueous solution compared with BNNS. The positive charge of the BNNS-CS complexes greatly improved the loading capacity and cellular uptake efficiency of Cp

  15. Mechanical loss in state-of-the-art amorphous optical coatings

    CERN Document Server

    Granata, Massimo; Morgado, Nazario; Cajgfinger, Alix; Cagnoli, Gianpietro; Degallaix, Jérôme; Dolique, Vincent; Forest, Danièle; Franc, Janyce; Michel, Christophe; Pinard, Laurent; Flaminio, Raffaele

    2015-01-01

    We present the results of mechanical characterizations of many different high-quality optical coatings made of ion-beam-sputtered titania-doped tantala and silica, developed originally for interferometric gravitational-wave detectors. Our data show that in multi-layer stacks (like high-reflection Bragg mirrors, for example) the measured coating dissipation is systematically higher than the expectation and is correlated with the stress condition in the sample. This has a particular relevance for the noise budget of current advanced gravitational-wave interferometers, and, more generally, for any experiment involving thermal-noise limited optical cavities.

  16. Possibilities of Increase of Adhesion of the Cubic Boron Nitride Coatings by Applying an Interfacial Layers

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk

    2004-01-01

    In the work the chosen investigations of the adhesion force of thin, superhard coatings to the cutting edges made of cemented carbides are presented. For identification of the adhesion force of coatings to substrate an automatic scratch tester constructed at Poznan University of Technology was applied. The estimation of the adhesion force (value of critical load measured during scratch test) was carried out on the base of the vibration signal. Results of investigations are pointed at the influence of a surface preparation (degreasing, etching, low and high-temperature sputtering) on a critical load values. It was round that the most effective method for surface preparation is low temperature sputtering. The influence of the TiC+Al2O3+TiN interracial layer on increase of the adhesion force of BN coating to cemented carbides substrate was observed.

  17. Possibilities of Increase of Adhesion of the Cubic Boron Nitride Coatings by Applying an Interfacial Layers

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk

    2004-01-01

    In the work the chosen investigations of the adhesion force of thin, superhard coatings to the cutting edges made of cemented carbides are presented. For identification of the adhesion force of coatings to substrate an automatic scratch tester constructed at Poznan University of Technology was applied. The estimation of the adhesion force (value of critical load measured during scratch test) was carried out on the base of the vibration signal. Results of investigations are pointed at the influence of a surface preparation (degreasing, etching, low and high-temperature sputtering) on a critical load values.It was found that the most effective method for surface preparation is low temperature sputtering. The influence of the TiC+Al2O3+TiN interfacial layer on increase of the adhesion force of BN coating to cemented carbides substrate was observed.

  18. High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Science.gov (United States)

    Feng, Jinpeng; Wang, Youlan

    2016-12-01

    An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO4@B0.4-C can reach 164.1 mAh g-1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g-1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g-1 and can be maintained at 124.5 mAh g-1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO4@B-C composite for high-performance lithium-ion batteries.

  19. Quantifying Friction Effects of Molybdenum Disulfide, Tungsten Disulfide, Hexagonal Boron Nitride, and Lubalox as Bullet Coating

    Science.gov (United States)

    2012-07-30

    also claims that these coatings eliminate copper fouling of the barrel. The Swedish ammunition company Norma Precision advertises friction reduction...Lubricant,” US Patent 6036996. [7] Norma , 2011. “ Norma Diamond Line.” http://www.norma.cc/en/Products/Our-Brands/ Norma - Diamond-Line/ Accessed

  20. Interstitial Boron-Doped TiO2 Thin Films: The Significant Effect of Boron on TiO2 Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition.

    Science.gov (United States)

    Quesada-González, Miguel; Boscher, Nicolas D; Carmalt, Claire J; Parkin, Ivan P

    2016-09-28

    The work presented here describes the preparation of transparent interstitial boron-doped TiO2 thin-films by atmospheric pressure chemical vapor deposition (APCVD). The interstitial boron-doping, on TiO2, proved by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), is shown to enhance the crystallinity and significantly improve the photocatalytic activity of the TiO2 films. The synthesis, highly suitable for a reel-to-reel process, has been carried out in one step.

  1. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil); Gouvêa dos Santos, Raquel [Laboratório de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear CNEN/CDTN, Av. Presidente Antônio Carlos 6.627, Campus da UFMG, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Barros de Sousa, Edésia Martins, E-mail: sousaem@cdtn.br [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2013-12-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG){sub 1000}, and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed.

  2. Effect of boron incorporation on the structure and electrical properties of diamond-like carbon films deposited by femtosecond and nanosecond pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, A. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Bourgeois, O. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Rouzaud, J.-N. [Laboratoire de Geologie, UMR 8538 CNRS, Ecole Normale Superieure, 45 Rue d' Ulm, 75230 Paris Cedex 05 (France); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Loir, A.-S. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Garden, J.-L. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Garrelie, F. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Donnet, C., E-mail: christophe.donnet@univ-st-etienne.f [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France)

    2009-12-31

    The influence of the incorporation of boron in diamond-like carbon (DLC) films on the microstructure of the coatings has been investigated. The boron-containing DLC films (a-C:B) have been deposited by pulsed laser deposition (PLD) at room temperature in high vacuum conditions, by ablating graphite and boron targets either with a femtosecond pulsed laser (800 nm, 150 fs, fs-DLC) or with a nanosecond pulsed laser (248 nm, 20 ns, ns-DLC). Alternative ablation of the graphite and boron targets has been carried out to deposit the a-C:B films. The film structure and composition have been highlighted by coupling Field Emission Scanning Electron Microscopy, Electron Energy Loss Spectroscopy and High Resolution Transmission Electron Microscopy. Using the B K-edge, EELS characterization reveals the boron effect on the carbon bonding. Moreover, the plasmon energy reveals a tendency of graphitization associated to the boron doping. Pure boron particles have been characterized by HRTEM and reveal that those particles are amorphous or crystallized. The nanostructures of the boron-doped ns-DLC and the boron-doped fs-DLC are thus compared. In particular, the incorporation of boron in the DLC matrix is highlighted, depending on the laser used for deposition. Electrical measurements show that some of these films have potentialities to be used in low temperature thermometry, considering their conductivity and temperature coefficient of resistance (TCR) estimated within the temperature range 160-300 K.

  3. Amorphous MoSx thin-film-coated carbon fiber paper as a 3D electrode for long cycle life symmetric supercapacitors

    Science.gov (United States)

    Balasingam, Suresh Kannan; Thirumurugan, Arun; Lee, Jae Sung; Jun, Yongseok

    2016-06-01

    Amorphous MoSx thin-film-coated carbon fiber paper as a binder-free 3D electrode was synthesized by a facile hydrothermal method. The maximum specific capacitance of a single electrode was 83.9 mF cm-2, while it was 41.9 mF cm-2 for the symmetric device. Up to 600% capacitance retention was observed for 4750 cycles.Amorphous MoSx thin-film-coated carbon fiber paper as a binder-free 3D electrode was synthesized by a facile hydrothermal method. The maximum specific capacitance of a single electrode was 83.9 mF cm-2, while it was 41.9 mF cm-2 for the symmetric device. Up to 600% capacitance retention was observed for 4750 cycles. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR01200K

  4. Properties of amorphous SiC coatings deposited on WC-Co substrates

    Directory of Open Access Journals (Sweden)

    A.K. Costa

    2003-01-01

    Full Text Available In this work, silicon carbide films were deposited onto tungsten carbide from a sintered SiC target on a r.f. magnetron sputtering system. Based on previous results about the influence of r.f. power and argon pressure upon the properties of films deposited on silicon substrates, suitable conditions were chosen to produce high quality films on WC-Co pieces. Deposition parameters were chosen in order to obtain high deposition rates (about 30 nm/min at 400 W rf power and acceptable residual stresses (1.5 GPa. Argon pressure affects the energy of particles so that films with higher hardness (30 GPa were obtained at low pressures (0.05 Pa. Wear rates of the coated pieces against a chromium steel ball in a diamond suspension medium were found to be about half of the uncoated ones. Hardness and wear resistance measurements were done also in thermally annealed (200-800 °C samples revealing the effectiveness of SiC coatings to protect tool material against severe mechanical degradation resulting of high temperature (above 500 °C oxidation.

  5. Molecular dynamics simulations of the tribological behaviour of a water-lubricated amorphous carbon-fluorine PECVD coating

    Science.gov (United States)

    Rullich, Markus; Weiss, Volker C.; Frauenheim, Thomas

    2013-07-01

    Hybrid bearings comprising ceramic balls and steel rings exhibit increased wear-resistance and a reduced coefficient of friction (COF) compared with standard steel bearings. Using plasma-enhanced chemical vapour deposition (PECVD) coatings to modify the surface properties, the performance of these bearings can be further improved. Fluorine-containing amorphous hydrogenated carbon (a-C : F : H) films are well suited to this purpose. To study the influence of such coatings on the friction characteristics of key parts of hybrid bearings, a model of an a-C : F : H film was constructed and employed in molecular dynamics simulations of two slabs sliding past each other, lubricated by water. With one slab being pulled by a virtual spring, the perpendicular force (load) was kept constant using a barostat. For comparison, a system of two silicon dioxide (cristobalite) slabs and a mixed system consisting of a cristobalite slab and an a-C : F : H slab were investigated. Our results indicate a linear dependence of the friction force on the perpendicular force. With an increasing amount of water between the slabs, the COFs decrease. A decrease in temperature leads to an increased COF, while a decrease in the relative velocity of the slabs does not influence the COF between two a-C : F : H slabs, but reduces the COF for the other two systems. Our results for the COF and its dependence on temperature and relative sliding velocity generally agree well both with experiments and with simulations for similar systems reported in the literature.

  6. Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions.

    Science.gov (United States)

    Gao, G T; Mikulski, Paul T; Harrison, Judith A

    2002-06-19

    Classical molecular dynamics simulations have been conducted to investigate the atomic-scale friction and wear when hydrogen-terminated diamond (111) counterfaces are in sliding contact with diamond (111) surfaces coated with amorphous, hydrogen-free carbon films. Two films, with approximately the same ratio of sp(3)-to-sp(2) carbon, but different thicknesses, have been examined. Both systems give a similar average friction in the load range examined. Above a critical load, a series of tribochemical reactions occur resulting in a significant restructuring of the film. This restructuring is analogous to the "run-in" observed in macroscopic friction experiments and reduces the friction. The contribution of adhesion between the probe (counterface) and the sample to friction was examined by varying the saturation of the counterface. Decreasing the degree of counterface saturation, by reducing the hydrogen termination, increases the friction. Finally, the contribution of long-range interactions to friction was examined by using two potential energy functions that differ only in their long-range forces to examine friction in the same system.

  7. XPS, SIMS and FTIR-ATR characterization of boronized graphite from the thermonuclear plasma device RFX-mod

    Science.gov (United States)

    Ghezzi, F.; Laguardia, L.; Caniello, R.; Canton, A.; Dal Bello, S.; Rais, B.; Anderle, M.

    2015-11-01

    In this paper the characterization of a thin (tens of nanometers) boron layer on fine grain polycrystalline graphite substrate is presented. The boron film is used as conditioning technique for the full graphite wall of the Reversed Field eXperiment-modified (RFX-mod) experiment, a device for the magnetic confinement of plasmas of thermonuclear interest. Aim of the present analysis is to enlighten the chemical structure of the film, the trapping mechanism that makes it a getter for oxygen and hydrogen and the reason of its loss of effectiveness after exposure to about 100 s of hydrogen plasma. X-ray Photoelectron Spectroscopy (XPS), Secondary Ions Mass Spectrometry (SIMS) and Fourier Transform Infra Red spectroscopy in combination with the Attenuated Total Reflectance (FTIR-ATR) were used to obtain the structure and the chemical composition of graphitic samples as coated or coated and subsequently exposed to hydrogen plasma after boron deposition. The boron layers on the only coated samples were found to be amorphous hydrogenated boron carbide plus a variety of bonds like B-B, B-H, B-O, B-OH, C-C, C-H, C-O, C-OH. Both the thickness and the homogeneity of the layers were found to depend on the distance of the sample from the anode during the deposition. The samples contained oxygen along the layer thickness, at level of 5%, bound to boron. The gettering action of the boron is therefore already active during the deposition itself. The exposure to plasma caused erosion of the boron film and higher content of H and O bound to boron throughout the whole thickness. The interaction of the B layer with plasma is therefore a bulk phenomenon.

  8. 非晶态Cr-C合金镀层制备及其耐腐蚀性%Preparation and Corrosion Resistance of Amorphous Cr-C Alloy Coating

    Institute of Scientific and Technical Information of China (English)

    杨毕学; 揭晓华; 李国亮

    2012-01-01

    以酒石酸为添加剂,采用电沉积法制备了非晶态Cr-C合金镀层。用X射线衍射、扫描电子显微镜及能谱仪对镀层结构、形貌及成分进行表征,并对镀层进行电化学耐腐蚀性测试。结果表明,当酒石酸加入量为40g/L时,镀层的x射线衍射图出现非晶态的特征峰,镀层表面平整、致密,无裂纹和针孔,与普通晶态Cr镀层相比,非晶态Cr-C合金镀层具有更优良的耐腐蚀性能。%Amorphous Cr-C alloy coating was prepared by electrodepositing in tartaric acid additive bath. The microstructure, composition and surface morphology of the coating were detected by ?(ray diffraction, SEM and EDS, also the microhardness, electrochemical corrosion resistance of the coating were tested. The results showed that a broad diffraction peak appeared on the Xray diffraction pattern, the coating had a smooth and dense surface without pinhole and crack when the dosage of tartaric acid was 40 g/L. Compared with conventional crystalline Cr coating, amorphous Cr-C alloy coating had better corrosion resistance.

  9. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Reistance FY05 HPCRM Annual Report # Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Haslam, J J; Day, S D

    2007-09-19

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  10. Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries

    Science.gov (United States)

    Wang, Liping; Wang, Qingji; Jia, Weishang; Chen, Shulin; Gao, Peng; Li, Jingze

    2017-02-01

    Lithium metal with high theoretical capacity (3860 mAh/g) and low operational voltage (-3.04 V vs. standard hydrogen electrode) reflects to be one of the most high energy density anodes for energy storage devices. While, its high chemical activity to continuously react with electrolytes causing low coulombic efficiency and formation of lithium dendrites leading safety concern limits practical applications. To conquer these challenges, amorphous Li3PO4 thin films with thickness of 0-200 nm are directly coated on the surface of Li metal foil via magnetron sputtering. The as-prepared Li3PO4 has almost insulated property with electronic conductivity of 1.4 × 10-10 S/cm and ionic conductivity of 2.8 × 10-8 S/cm. The conformal coating layer Li3PO4 can successfully suppress the lithium dendrites growth and improve its life span. The remarkable improvements of the Li3PO4-coated Li electrodes are mainly attributed to high chemical stability as well as amorphous nature of Li3PO4, which leads layer-by-layer growth Li film rather than islands form dendrites.

  11. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Ashish Jain; C Ghosh; T R Ravindran; S Anthonysamy; R Divakar; E Mohandas; G S Gupta

    2013-12-01

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.

  12. 等离子喷涂B4C涂层的抗辐射性能研究%Anti-radiation behavior of plasma sprayed boron carbide coatings

    Institute of Scientific and Technical Information of China (English)

    李龙根; 徐志勇; 钱浩

    2009-01-01

    目的 研究用等离子技术喷涂的碳化硼(B4C)涂层的抗辐射能力.方法 将0.1 mm厚度B4C涂在16号锰钢上,研究它对加速器产生的6、10、15 MV高能射线,6、9、12、15 MeV高能电子线,60Co γ线和快中子辐射的防护作用.同时将0.1 mm B4C涂在纸板上,研究它对深部X线机的X线辐射的防护作用.结果 等离子喷涂制备B4C涂层对高能X线和60Co γ线没有防护作用.对电子线有一定防护作用,且随深度的增加有增大趋势,但作用不大.对快中子有较大防护作用.对深部X线机X线有防护作用,防护能力较强.0.1 mm厚的涂层就可带来15%的衰减.结论 用等离子技术喷涂的B4C涂层可在医学领域用来防护千伏级射线.%Objective To study anti-radiation behavior of plasma sprayed boron carbide coatings. Methods The anti-radiation capacity of 16Mn steel which was coated with 0.1 mm plasma sprayed boron carbide were studied. The irradiation beams were 6,10,15 MY X-ray and 6,9,12,15 MeV electron emitted by accelerator, X-ray emitted by 60Co machine,fast neutron, and X-ray emitted by kilovoltage X-ray ma-chine. Results Anti-radiation capacity of plasma sprayed boron carbide coatings was not found for X-ray beams emitted by accelerator and 60Co machine. For electron beams,the anti-radiation capacity were found. The deeper of location, the stronger was anti-radiation. However, the anti-radiation capacity was not good. For fast neutron,the anti-radiation capacity was good. For X-ray emitted by kilovoltage X-ray machine,the anti-radiation was good,and only 0.1 nun plasma sprayed boron carbide had 15% attenuation. Conclusions The plasma sprayed boron carbide coatings have the anti-radiation capacity for X-ray emitted by kilovoltage X-ray machine in medical field.

  13. Physico-chemical studies of cuprous oxide (Cu{sub 2}O) nanoparticles coated on amorphous carbon nanotubes (α-CNTs)

    Energy Technology Data Exchange (ETDEWEB)

    Johan, Mohd Rafie, E-mail: mrafiej@um.edu.my; Meriam Suhaimy, Syazwan Hanani; Yusof, Yusliza, E-mail: yus_liza@siswa.um.edu.my

    2014-01-15

    Amorphous carbon nanotubes (α-CNTs) were synthesized by a chemical reaction between ferrocene and ammonium chloride at a temperature (∼250 °C) in an air furnace. As- synthesized α-CNTs were purified with deionized water and hydrochloric acid. A purified α-CNTs were hybridized with cuprous oxide nanoparticles (Cu{sub 2}O) through a simple chemical process. Morphology of the samples was analyzed with field emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectra showed the attachment of acidic functional groups onto the surface of α-CNTs and the formation of hybridized α-CNTs-Cu{sub 2}O. Raman spectra reveal the amorphous nature of the carbon. X-ray diffraction (XRD) pattern confirmed the amorphous phase of the carbon and the formation of Cu{sub 2}O crystalline phase. The coating of Cu{sub 2}O was confirmed by FESEM, TEM, and XRD. Optical absorption of the samples has also been investigated and the quantum confinement effect was illustrated in the absorption spectra.

  14. Recrystallization and formation of spheroidal gold particles in amorphous-like AlN-TiB2-TiSi2 coatings after annealing and subsequent implantation

    Science.gov (United States)

    Pogrebnjak, A. D.; Dem'yanenko, A. A.; Beresnev, V. M.; Sobol', O. V.; Ivasishin, O. M.; Oyoshi, K.; Takeda, Y.; Amekura, H.; Kupchishin, A. I.

    2016-07-01

    The recrystallization of the structure of an X-ray amorphous AlN-TiB2-TiSi2 coating containing short-range order regions with characteristic sizes of 0.8-1.0 nm has been performed using a negative gold ion (Au-) beam and high-temperature annealing. Direct measurements using methods of high-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectral (EDXS) microanalysis have demonstrated that thermal annealing at a temperature of 1300°C in air results in the formation of nanoscale (10-15 nm) phases AlN, AlB2, Al3O3, and TiO2, whereas the ion implantation of negative ions Au- leads to a fragmentation (decrease in the size) of nanograins to 2-5 nm with the formation of spheroidal gold nanocrystallites a few nanometers in size, as well as to the formation of an amorphous oxide film in the depth (near-surface layer) of the coating due to ballistic ion mixing and collision cascades.

  15. Study of barrier properties and chemical resistance of recycled PET coated with amorphous carbon through a plasma enhanced chemical vapour deposition (PECVD) process.

    Science.gov (United States)

    Cruz, S A; Zanin, M; Nerin, C; De Moraes, M A B

    2006-01-01

    Many studies have been carried out in order to make bottle-to-bottle recycling feasible. The problem is that residual contaminants in recycled plastic intended for food packaging could be a risk to public health. One option is to use a layer of virgin material, named functional barrier, which prevents the contaminants migration process. This paper shows the feasibility of using polyethylene terephthalate (PET) recycled for food packaging employing a functional barrier made from hydrogen amorphous carbon film deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD) process. PET samples were deliberately contaminated with a series of surrogates using a FDA protocol. After that, PET samples were coated with approximately 600 and 1200 Angstrons thickness of amorphous carbon film. Then, the migration tests using as food simulants: water, 10% ethanol, 3% acetic acid, and isooctane were applied to the sample in order to check the chemical resistance of the new coated material. After the tests, the liquid extracts were analysed using a solid-phase microextraction device (SPME) coupled to GC-MS.

  16. Influence of varying metal-to-glass ratio on GMI effect in CoFeBSiCr amorphous glass-coated microwires

    Science.gov (United States)

    Qin, F. X.; Peng, H. X.; Phan, M. H.

    2010-01-01

    The influence of a varying metal-to-glass ratio on the GMI effect in amorphous glass-coated Co 70.3Fe 3.7B 10Si 13Cr 3 microwires has been investigated. In the range of frequencies investigated (1-10 MHz), the magnitude of the GMI effect increases as the metal-to-glass ratio (h) increases from 4.11 to 9.29. The GMI curves for the h=4.11 microwire exhibit a single-peak feature for f≤1 MHz and a double-peak feature for f>1 MHz, whereas a consistent double-peak feature is observed for microwires with h=8.07,8.72, and 9.29. The largest GMI effect is achieved for microwires with h=9.29. The anisotropy field (H), determined from GMI curves, increases with h=4.11 to h=8.07 and decreases when h>8.07. The calculated radial stress decreases as h increases from 4.11 to 9.29. These results provide further insights into the correlation between the GMI effect and microwire dimensions towards the GMI optimization of amorphous glass-coated magnetic microwires for sensor applications.

  17. STUDY ON Al-BASED AMORPHOUS AND NANOCRYSTALLINE COMPOSITE COATING%铝基非晶纳米晶复合涂层研究

    Institute of Scientific and Technical Information of China (English)

    梁秀兵; 张志彬; 陈永雄; 徐滨士

    2012-01-01

    An Al-Ni-Y-Co amorphous and nanocrystalline composite coating was prepared on the surface of the AZ91 Mg alloy by using an automatic high velocity arc spraying system. Its microstructures were analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM). The results show that the coatings compose of amorphous, nanocrystalline and microcrystalline phases, which has a compact structure with low porosity about 1.8%. The average Vickers microhardness and bond strength of this coating are 311.7 HVo 1 and 26.8 MPa. Its relative wear resistance is about 10 times than that of Al coating and 6 times than that of AZ91 magnesium alloy. The corrosion potential of this coating is more positive than that of Al coating and AZ91 magnesium alloy, and the corresponding corrosion current density value is about 1/2 the same as that of Al coating and 1/5 as that of AZ91 Mg alloy. Especially, compared with the surface on corroded Al coating and AZ91 Mg alloy, the corroded Al-Ni-Y-Co coating has a more flattered surface with less corrosive piting than Al coating. It is confirmed that the Al-Ni-Y-Co coating is an excellent coatinig with higher wear-resistance and corrosion resistance.%采用自动化高速电弧喷涂系统,用自行研制的粉芯丝材,在AZ91镁合金基体表面上制备出Al-Ni-Y-Co非晶纳米晶复合涂层.采用扫描电子显微镜(SEM).X射线衍射仪(XRD)、透射电子显微镜(TEM)分析了A1-Ni-Y-Co非晶纳米晶复合涂层的微观形貌和组织结构,结果表明Al-Ni-Y-Co非晶纳米晶复合涂层是由非晶相和纳米晶化相共同组成的,涂层结构致密,孔隙率约为1.8%.Al-Ni-Y-Co非晶纳米晶复合涂层的平均显微Vickers硬度值为311.7 HV0.1,结合强度为26.8 MPa.涂层的抗磨损耐腐蚀性能优于Al涂层和AZ91镁合金基体;其相对耐磨性约为Al涂层的10倍,为AZ91镁合金的6倍;其自腐蚀电位值正于Al涂层及AZ91镁合金,自腐蚀电

  18. Bright prospects for boron

    NARCIS (Netherlands)

    Wassink, J.

    2012-01-01

    Professor Lis Nanver at Dimes has laid the foundation for a range of new photodetectors by creating a thin coating of boron on a silicon substrate. The sensors are used in ASML’s latest lithography machines and FEI’s most sensitive electron microscopes.

  19. High temperature corrosion of thermally sprayed NiCr- and amorphous Fe-based coatings covered with a KCl-K{sub 2}SO{sub 4} salt

    Energy Technology Data Exchange (ETDEWEB)

    Varis, T.; Suhonen, T.; Tuurna, S.; Ruusuvuori, K.; Holmstroem, S.; Salonen, J. [VTT, Espoo (Finland); Bankiewicz, D.; Yrjas, P. [Aabo Akademi Univ., Turku (Finland)

    2010-07-01

    New process conditions due to the requirement of higher efficiency together with the use of high-chlorine and alkali containing fuels such as biomass and waste fuels for heat and electricity production will challenge the resistance and life of tube materials. In conventional materials the addition of alloying elements to increase the corrosion resistance in aggressive combustion conditions increases costs relatively rapidly. Thermally sprayed coating offer promising, effective, flexible and cost efficient solutions to fulfill the material needs for the future. Some heat exchanger design alteractions before global commercialization have to be overcome, though. High temperature corrosion in combustion plants can occur by a variety of mechanisms including passive scale degradation with subsequent rapid scaling, loss of adhesion and scale detachment, attack by melted or partly melted deposits via fluxing reactions and intergranular-/interlamellar corrosion. A generally accepted model of the ''active oxidation'' attributes the responsibility for inducing corrosion to chlorine. The active oxidation mechanism plays a key role in the thermally sprayed coatings due to their unique lamellar structure. In this study, the corrosion behaviour of NiCr (HVOF and Wire Arc), amorphous Fe-based, and Fe13Cr (Wire Arc) thermally sprayed coatings, were tested in the laboratory under simplified biomass combustion conditions. The tests were carried out by using a KCl-K{sub 2}SO{sub 4} salt mixture as a synthetic biomass ash, which was placed on the materials and then heat treated for one week (168h) at two different temperatures (550{sup 0}C and 600 C) and in two different gas atmospheres (air and air+30%H{sub 2}O). After the exposures, the metallographic cross sections of the coatings were studied with SEM/EDX analyzer. The results showed that the coatings behaved relatively well at the lower test temperature while critical corrosion through the lamella boundaries

  20. Laser alloying of bearing steel with boron and self-lubricating addition

    Directory of Open Access Journals (Sweden)

    Kotkowiak Mateusz

    2016-12-01

    Full Text Available 100CrMnSi6-4 bearing steel has been widely used for many applications, e.g. rolling bearings which work in difficult operating conditions. Therefore, this steel has to be characterized by special properties such as high wear resistance and high hardness. In this study laser-boriding was applied to improve these properties. Laser alloying was conducted as the two step process with two different types of alloying material: amorphous boron only and amorphous boron with addition of calcium fluoride CaF2. At first, the surface was coated with paste including alloying material. Second step of the process consisted in laser re-melting. The surface of sample, coated with the paste, was irradiated by the laser beam. In this study, TRUMPF TLF 2600 Turbo CO2 laser was used. The microstructure, microhardness and wear resistance of both laser-borided layer and laser-borided layer with the addition of calcium fluoride were investigated. The layer, alloyed with boron and CaF2, was characterized by higher wear resistance than the layer after laser boriding only.

  1. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  2. Tribological Performance of Hydrogenated Amorphous Carbon (a-C: H DLC Coating when Lubricated with Biodegradable Vegetal Canola Oil

    Directory of Open Access Journals (Sweden)

    H.M. Mobarak

    2014-06-01

    Full Text Available Increasing environmental awareness and demands for lowering energy consumptions are strong driving forces behind the development of the vehicles of tomorrow. Without the advances of lubricant chemistry and adequate lubricant formulation, expansion of modern engines would not have been possible. Considering environmental awareness factors as compared to mineral oils, vegetal oil based biolubricants are renewable, biodegradable, non-toxic and have a least amount of greenhouse gases. Furthermore, improvement in engine performance and transmission components, which were impossible to achieve by applying only lubricants design, is now possible through diamond like carbon (DLC coatings. DLC coatings exhibit brilliant tribological properties, such as good wear resistance and low friction. In this regard, tribological performance of a-C: H DLC coating when lubricated with Canola vegetal oil has been investigated by the help of a ball-on-flat geometry. Experimental results demonstrated that the a-C: H DLC coating exhibited better performance with Canola oil in terms of friction and wear as compared to the uncoated materials. Large amount of polar components in the Canola oil significantly improved the tribological properties of the a-C:H coating. Thus, usage of a-C: H DLC coating with Canola oil in the long run may have a positive impact on engine life.

  3. Investigation of wear and tool life of coated carbide and cubic boron nitride cutting tools in high speed milling

    Directory of Open Access Journals (Sweden)

    Pawel Twardowski

    2015-06-01

    Full Text Available The objective of the investigation was analysis of the wear of milling cutters made of sintered carbide and of boron nitride. The article presents the life period of the cutting edges and describes industrial conditions of the applicability of tools made of the materials under investigation. Tests have been performed on modern toroidal and ball-end mill cutters. The study has been performed within a production facility in the technology of high speed machining of 55NiCrMoV6 and X153CrMoV12 hardened steel. The analysed cutting speed is a parameter which significantly influences the intensity of heat generated in the cutting zone. Due to the wear characteristics, two areas of applicability of the analysed tools have been distinguished. For vc  ≤ 300 m/min, sintered carbide edges are recommended; for vc  > 500 m/min, boron nitride edges. For 300 ≤ vc  ≤ 500 m/min, a transition area has been observed. It has been proved that the application of sintered carbide edges is not economically justified above certain cutting speed.

  4. Investigation of interactions between poly-L-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation

    Directory of Open Access Journals (Sweden)

    G Ciofani

    2010-04-01

    Full Text Available G Ciofani1, L Ricotti1, S Danti2,3, S Moscato4, C Nesti2, D D’Alessandro2,4, D Dinucci5, F Chiellini5, A Pietrabissa3, M Petrini2,3, A Menciassi1,61Scuola Superiore Sant’Anna, Pisa, Italy; 2CUCCS-RRMR, Center for the Clinical Use of Stem Cells – Regional Network of Regenerative Medicine, 3Department of Oncology, Transplants and Advanced Technologies, 4Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy; 5Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab, UdR INSTM, Department of Chemistry and Industrial Chemistry, University of Pisa, San Piero a Grado, Italy; 6Italian Institute of Technology, Genova, ItalyAbstract: Boron nitride nanotubes (BNNTs have generated considerable interest within the scientific community by virtue of their unique physical properties, which can be exploited in the biomedical field. In the present in vitro study, we investigated the interactions of poly-L-lysine-coated BNNTs with C2C12 cells, as a model of muscle cells, in terms of cytocompatibility and BNNT internalization. The latter was performed using both confocal and transmission electron microscopy. Finally, we investigated myoblast differentiation in the presence of BNNTs, evaluating the protein synthesis of differentiating cells, myotube formation, and expression of some constitutive myoblastic markers, such as MyoD and Cx43, by reverse transcription – polymerase chain reaction and Western blot analysis. We demonstrated that BNNTs are highly internalized by C2C12 cells, with neither adversely affecting C2C12 myoblast viability nor significantly interfering with myotube formation.Keywords: boron nitride nanotubes, C2C12 cells, cytocompatibility, up-take, differentiation, MyoD, connexin 43

  5. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyoun-Sub, E-mail: hyounlim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Jiryun, E-mail: jilyoon@naver.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Seo, Eun-Young, E-mail: sey22@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Moon, E-mail: moonlit51@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Vaira, Anna Maria, E-mail: a.vaira@ivv.cnr.it [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, Torino 10135 (Italy); Bae, Hanhong, E-mail: hanhongbae@ynu.ac.kr [School of Biotechnology, Yeungnam University, Geongsan 712-749 (Korea, Republic of); Jang, Chan-Yong, E-mail: sunbispirit@gmail.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Cheol Ho, E-mail: chlee1219@hanmail.net [Department of Chemical and Biological Engineering, Seokyoung University, Seoul 136-704 (Korea, Republic of); Kim, Hong Gi, E-mail: hgkim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Roh, Mark, E-mail: marksroh@gmail.com [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Laboratory of Floriculture and Plant Physiology, School of Bio-Resource Science, Dankook University, Cheonan, Chungnam 330-714 (Korea, Republic of); Hammond, John, E-mail: john.hammond@ars.usda.gov [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States)

    2014-03-15

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CP{sub SP}) with that from AltMV-Po (CP{sub Po}) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP{sub Po} [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CP{sub SP} but not CP{sub Po} interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CP{sub SP} than CP{sub Po} in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. - Highlights: • Alternanthera mosaic virus CP is an elicitor of systemic necrosis in N. benthamiana. • Virus-induced systemic necrosis is enhanced at 15 °C compared to 25 °C. • Induction of systemic necrosis is dependent on as few as two CP amino acid residues. • These residues are at subunit interfaces within the same turn of the virion helix. • Inducer/non-inducer CPs interact differentially with a boron transporter protein.

  6. Development of a novel neutron detection technique by using a boron layer coating a Charge Coupled Device

    CERN Document Server

    Blostein, Juan Jerónimo; Tartaglione, Aureliano; Haro, Miguel Sofo; Moroni, Guillermo Fernández; Cancelo, Gustavo

    2014-01-01

    This article describes the design features and the first test measurements obtained during the installation of a novel high resolution 2D neutron detection technique. The technique proposed in this work consists of a boron layer (enriched in ${^{10}}$B) placed on a scientific Charge Coupled Device (CCD). After the nuclear reaction ${^{10}}$B(n,$\\alpha$)${^{7}}$Li, the CCD detects the emitted charge particles thus obtaining information on the neutron absorption position. The above mentioned ionizing particles, with energies in the range 0.5-5.5 MeV, produce a plasma effect in the CCD which is recorded as a circular spot. This characteristic circular shape, as well as the relationship observed between the spot diameter and the charge collected, is used for the event recognition, allowing the discrimination of undesirable gamma events. We present the first results recently obtained with this technique, which has the potential to perform neutron tomography investigations with a spatial resolution better than that...

  7. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    Science.gov (United States)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  8. Microwear experiments on metal-containing amorphous hydrocarbon hard coatings by AFM: wear mechanisms and models for the load and time dependence

    Energy Technology Data Exchange (ETDEWEB)

    Schiffmann, K. [Fraunhofer-Institut fuer Schicht- und Oberflaechentechnik, Braunschweig (Germany)

    1998-03-15

    Metal-containing amorphous hydrocarbon films (Me-C:H) consist of nanometer-sized metallic particles embedded in a highly cross-linked hydrocarbon matrix. The coatings have excellent tribological properties and an adjustable electrical conductivity. This is why they are of high interest for industrial applications. Microscopic wear tests have been performed on W-C:H and Au-C:H surfaces using an atomic force microscopy (AFM) with a diamond tip. Periodical breaking-off of material inside the wear trace could directly be observed by AFM imaging during the wear process, indicating material fatigue as one wear mechanism. Furthermore, it was found that columnar growth structure and percolation of the metallic nanoparticles strongly influence the fatigue and wear resistance of the coatings. The load dependence and time dependence of the wear process and especially of the fatigue phenomenon are described by semiempirical microscopic wear models. A comparison with macroscopic tribological tests demonstrates the significance of microwear tests for practical applications. (orig.)

  9. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Da; Kunz, Thomas [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Wolf, Nadine [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Energy Efficiency, Am Galgenberg 87, 97074 Wuerzburg (Germany); Liebig, Jan Philipp [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Göken, Mathias [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Brabec, Christoph J. [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Institute of Materials for Electronics and Energy Technology, University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen (Germany)

    2015-05-29

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm{sup 2} aperture area on the graphite substrate. The optical properties of the SiN{sub x}/a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN{sub x}/a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN{sub x}/a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance.

  10. Solar Hydrogen Production by Amorphous Silicon Photocathodes Coated with a Magnetron Sputter Deposited Mo2C Catalyst.

    Science.gov (United States)

    Morales-Guio, Carlos G; Thorwarth, Kerstin; Niesen, Bjoern; Liardet, Laurent; Patscheider, Jörg; Ballif, Christophe; Hu, Xile

    2015-06-10

    Coupling of Earth-abundant hydrogen evolution catalysts to photoabsorbers is crucial for the production of hydrogen fuel using sunlight. In this work, we demonstrate the use of magnetron sputtering to deposit Mo2C as an efficient hydrogen evolution reaction catalyst onto surface-protected amorphous silicon (a-Si) photoabsorbers. The a-Si/Mo2C photocathode evolves hydrogen under simulated solar illumination in strongly acidic and alkaline electrolytes. Onsets of photocurrents are observed at potentials as positive as 0.85 V vs RHE. Under AM 1.5G (1 sun) illumination, the photocathodes reach current densities of -11.2 mA cm(-2) at the reversible hydrogen potential in 0.1 M H2SO4 and 1.0 M KOH. The high photovoltage and low-cost of the Mo2C/a-Si assembly make it a promising photocathode for solar hydrogen production.

  11. MgO-Al2O3-ZrO2 Amorphous Ternary Composite: A Dense and Stable Optical Coating

    Science.gov (United States)

    Shaoo, Naba K.; Shapiro, Alan P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of MgO-Al2O3-ZrO2 ternary mixed-composite material were investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases, and process- dependent material composition of films were investigated through the use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. Energy-dispersive x-ray analysis made evident the correlation between the optical constants and the process-dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  12. Antibacterial efficacy of advanced silver-amorphous carbon coatings deposited using the pulsed dual cathodic arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Endrino, J L; Anders, A; Albella, J M; Horton, J A; Horton, T H; Ayyalasomayajula, P R; Allen, M, E-mail: jlendrino@icmm.csic.es

    2010-11-01

    Amorphous carbon (a-C) also referred as diamond-like carbon (DLC) films are well known to be a biocompatible material with good chemical in ertness; this makes it a strong candidate to be used as a matrix that embeds metallic elements with an antimicrobial effect. We have deposited as et of a-C:Ag films using a dual-cathode pulsed filtered cathodic arc source, the arc pulse frequency of the silver and graphite cathodes was controlled in order to obtain samples with various silver contents. In this study, we show the deposition of silver and carbon ions using this technique and analyze the advantages of incorporating silver into a-C by studying the antimicrobial properties against staphylococcus of samples deposited on Ti{sub 6}Al{sub 4}V coupons and evaluated using 24-well tissue culture plates.

  13. Development of a novel neutron detection technique by using a boron layer coating a Charge Coupled Device

    Energy Technology Data Exchange (ETDEWEB)

    Blostein, Juan Jerónimo; Estrada, Juan; Tartaglione, Aureliano; Sofo haro, Miguel; Fernández Moroni, Guillermo; Cancelo, Gustavo

    2015-01-19

    This article describes the design features and the first test measurements obtained during the installation of a novel high resolution 2D neutron detection technique. The technique proposed in this work consists of a boron layer (enriched in ${^{10}}$B) placed on a scientific Charge Coupled Device (CCD). After the nuclear reaction ${^{10}}$B(n,$\\alpha$)${^{7}}$Li, the CCD detects the emitted charge particles thus obtaining information on the neutron absorption position. The above mentioned ionizing particles, with energies in the range 0.5-5.5 MeV, produce a plasma effect in the CCD which is recorded as a circular spot. This characteristic circular shape, as well as the relationship observed between the spot diameter and the charge collected, is used for the event recognition, allowing the discrimination of undesirable gamma events. We present the first results recently obtained with this technique, which has the potential to perform neutron tomography investigations with a spatial resolution better than that previously achieved. Numerical simulations indicate that the spatial resolution of this technique will be about 15 $\\mu$m, and the intrinsic detection efficiency for thermal neutrons will be about 3 %. We compare the proposed technique with other neutron detection techniques and analyze its advantages and disadvantages.

  14. A Soluble Dynamic Complex Strategy for the Solution-Processed Fabrication of Organic Thin-Film Transistors of a Boron-Containing Polycyclic Aromatic Hydrocarbon.

    Science.gov (United States)

    Matsuo, Kyohei; Saito, Shohei; Yamaguchi, Shigehiro

    2016-09-19

    The solution-processed fabrication of thin films of organic semiconductors enables the production of cost-effective, large-area organic electronic devices under mild conditions. The formation/dissociation of a dynamic B-N coordination bond can be used for the solution-processed fabrication of semiconducting films of polycyclic aromatic hydrocarbon (PAH) materials. The poor solubility of a boron-containing PAH in chloroform, toluene, and chlorobenzene was significantly improved by addition of minor amounts (1 wt % of solvent) of pyridine derivatives, as their coordination to the boron atom suppresses the inherent propensity of the PAHs to form π-stacks. Spin-coating solutions of the thus formed Lewis acid-base complexes resulted in the formation of amorphous thin films, which could be converted into polycrystalline films of the boron-containing PAH upon thermal annealing. Organic thin-film transistors prepared by this solution process displayed typical p-type characteristics.

  15. A Template Roure to Prepare Nanowire Arrays of Amorphous Cabon Nanotube-coated Single Crystal Tin Dioxide

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Tin oxide is an important n-type semiconductor of wide band due to its numerous potential applications in resistors, gas sensors, dye-based solar cells, and transparent conducting coatings for glasses and electrodes. It is also prospective anode material for high-energy density lithium ion batteries[1]. So far much work has been conducted on one-dimensional (1-D) metal oxides because their large ratio of surface/volume and their congruence of the carrier screening length with their lateral dim...

  16. Comparison of electrorheological performance between urea-coated and graphene oxide-wrapped core-shell structured amorphous TiO2 nanoparticles

    Science.gov (United States)

    Dong, Xufeng; Huo, Shuang; Qi, Min

    2016-01-01

    Polar molecules and graphene oxide (GO) have been used as the shell materials to prepare core-shell structured particles with enhanced electrorheological (ER) properties. Nevertheless, few studies compared the ER performance and stability of the suspensions with the two kinds of shell. In this study, urea and GO are used as the shell materials to prepare TiO2/urea and TiO2/GO core-shell particles-based ER fluids, respectively. Particle characterization results indicate the two kinds of core-shell structured particles present little change in size, morphology and crystal structure compared with the bare amorphous TiO2. Some polar groups are distributed on the surface of the two kinds of core-shell structured particles, which is responsible for their improved ER performance with respect to the bare TiO2 particles. The TiO2/GO particles-based ER fluid presents higher yield stress, lower leakage current density, better sedimentation stability but lower ER efficiency than the TiO2/urea particles-based sample. The larger surface area, stronger connection with the bare TiO2 particles, and larger number of polar groups of the GO-coating is the possible reason for the different properties of TiO2/GO particles-based ER fluid compared with the TiO2/urea particles-based sample.

  17. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    Science.gov (United States)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  18. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate.

    Science.gov (United States)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-01-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  19. X-ray diffraction study of boron produced by pyrolysis of boron tribromide

    Science.gov (United States)

    Rosenberg, David

    formation are not fully understood or agreed upon in the literature. In this research, the method of pyrolysis of boron tribromide (hydrogen reduction of boron tribromide) was used to deposit boron on a tantalum filament. The goal was to refine this method, or potentially use it in combination with a second method (amorphous boron crystallization), to the point where it is possible to grow large, high purity alpha-rhombohedral boron crystals with consistency. A pyrolysis apparatus was designed and built, and a number of trials were run to determine the conditions (reaction temperature, etc.) necessary for alpha-rhombohedral boron production. This work was focused on the x-ray diffraction analysis of the boron deposits; x-ray diffraction was performed on a number of samples to determine the types of boron (and other compounds) formed in each trial and to guide the choices of test conditions for subsequent trials. It was found that at low reaction temperatures (in the range of around 830-950 °C), amorphous boron was the primary form of boron produced. Reaction temperatures in the range of around 950-1000 °C yielded various combinations of crystalline boron and amorphous boron. In the first trial performed at a temperature of 950 °C, a mix of amorphous boron and alpha-rhombohedral boron was formed. Using a scanning electron microscope, it was possible to see small alpha-rhombohedral boron crystals (on the order of ~1 micron in size) embedded in the surface of the deposit. In subsequent trials carried out at reaction temperatures in the range of 950 °C -- 1000 °C, it was found that various combinations of alpha-rhombohedral boron, beta-rhombohedral boron, and amorphous boron were produced; the results tended to be unpredictable (alpha-rhombohedral boron was not produced in every trial), and the factors leading to success/failure were difficult to pinpoint. These results illustrate how sensitive of a process producing alpha-rhombohedral boron can be, and indicate that

  20. Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J

    2007-07-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  1. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2008-01-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  2. Properties of amorphous carbon

    CERN Document Server

    2003-01-01

    Amorphous carbon has a wide range of properties that are primarily controlled by the different bond hydridisations possible in such materials. This allows for the growth of an extensive range of thin films that can be tailored for specific applications. Films can range from those with high transparency and are hard diamond-like, through to those which are opaque, soft and graphitic-like. Films with a high degree of sp3 bonding giving the diamond-like properties are used widely by industry for hard coatings. Application areas including field emission cathodes, MEMS, electronic devices, medical and optical coatings are now close to market. Experts in amorphous carbon have been drawn together to produce this comprehensive commentary on the current state and future prospects of this highly functional material.

  3. Comparison of the surface morphologies of boron carbide coatings prepared by bouncing agitation and rolling agitation%跳动及滚动激励制备的碳化硼涂层表面形貌的对比

    Institute of Scientific and Technical Information of China (English)

    王自磊; 廖志君; 陶勇; 于小河; 林涛; 伍登学; 卢铁城

    2011-01-01

    Boron carbide(B4C) coatings are deposited on the glass and steel mandrels using two agitation methods, rolling agitation and bouncing agitation, by electron beam evaporation.Various surface morphologies of the coatings are investigated through the scanning electron microscope.It is found that the surface deposited by rolling agitation has fewer cracks and better compactness, and the particles grow better than that deposited by bouncing agitation.From a comparison of two kinds of B4C coatings, one can find that rolling agitation has more advantages than bouncing agitation in fabricating boron carbide coatings.%利用电子束蒸发技术蒸发碳化硼,通过弹跳激励和滚动激励两种方案来随机滚动小球,从而分别在玻璃和钢球心轴上制备了碳化硼涂层.采用扫描电子显微镜对涂层表面形貌进行了分析.同采用弹跳激励制备的涂层相比,在用滚动激励制备的涂层表面不存在裂纹和微粒脱落现象,其微粒生长的更大,相互接合的更致密.经对比证明,在制备碳化硼涂层上,滚动激励装置优于跳动激励装置.

  4. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mobarak, H.M., E-mail: mobarak.ho31@yahoo.com; Masjuki, H.H.; Mohamad, E. Niza, E-mail: edzrol@um.edu.my; Kalam, M.A.; Rashedul, H.K.; Rashed, M.M.; Habibullah, M.

    2014-10-30

    Highlights: • We tested a-C:H and ta-C DLC coatings as a function of temperature. • Jatropha oil contains large amounts of polar components that enhanced the lubricity of coatings. • CoF decreases with increasing temperature for both contacts. • Wear rate increases with increasing temperature in a-C:H and decreases in ta-C DLC. • At high temperature, ta-C coatings confer more protection than a-C:H coatings. - Abstract: The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  5. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  6. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  7. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2009-03-16

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  8. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.;

    2013-01-01

    formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro......The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New......-containers has shown potential to prevent or delay recrystallization. Another recent approach is the formation of co-amorphous mixtures between either two drugs or one drug and one low molecular weight excipient. Molecular interactions between the two molecules provide an energy barrier that has to be overcome...

  9. Laser surface treatment of amorphous metals

    Science.gov (United States)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  10. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  11. Preparation of Cubic Boron Nitride Coating on WC-Co Substrate by Micro/Nanocrystalline Diamond Film Interlayer%基于微纳米金刚石过渡层的cBN刀具涂层制备

    Institute of Scientific and Technical Information of China (English)

    徐锋; 左敦稳; 张旭辉; 户海峰; 张骋; 王珉

    2013-01-01

    Cubic Boron Nitride(cBN) is a super-hard material, of which hardness is only less than diamond. But it has excellent chemical stability, especially no chemical reaction with ferrous materials. The cBN coating has irreplaceable function in the application of modern cutting tools. Research is carried out on the preparation of cBN coating on YG6 by micro/nanocrystalline diamond (M/NCD) film inter-layer. The micro/nanocrystalline diamond film is deposited in hot filament chemical vapor deposition system and cBN is deposited in radio frequency magnetron sputtering system. The scanning electron microscopy (SEM), Raman, atomic force microscopy(AFM), Fourier transferred infrared(FTIR) and in-denter are used to investigate the content, morphology and adhesion of the coating. The results show that the adhesion of cBN coating on WC-Co by micro/nanocrystalline diamond interlayer is much higher than that by nano diamond interlayer. The moderate bias voltage is important for the cBN film deposition in the magnetron sputtering process.%立方氮化硼(Cubic Boron Nitride,cBN)是仅次于金刚石的超硬材料,比金刚石具有更高的化学稳定性,可以胜任铁系金属的加工.本文在YG6硬质合金上基于微纳米金刚石过渡层开展cBN涂层的制备研究.本文在热丝化学气相沉积系统中制备微纳米金刚石过渡层(Micro/nanocrystalline diamond,M/NCD),在射频磁控溅射系统中制备cBN涂层,并对M/NCD与cBN涂层进行了成分、微观形貌与结合性能的研究.研究结果发现,在硬质合金基体上,M/NCD过渡层的结合性能明显优于NCD过渡层.磁控溅射制备cBN涂层过程中,存在适合cBN沉积的衬底偏压阈值,过高或过低的衬底偏压均不利于cBN含量的提高.

  12. 涂硼GEM中子束流监测器物理过程的蒙特卡罗模拟%Monte Carlo Simulation Study on the Physical Process of the Boron-coated GEM Neutron Beam Monitor

    Institute of Scientific and Technical Information of China (English)

    王拓; 周健荣; 孙志嘉; 吴冲; 王艳凤; 杨桂安; 陈元柏

    2014-01-01

    基于硼转换的GEM (Gas Electron Multiplier)探测器性能突出,计数率高达10 MHz以上,耐辐射,信号读出方式简单、灵活,位置与时间分辨率高,是下一代中子束流监测器极具优势的候选者。这种新型中子束流监测器主要由硼中子转换层、气体电离粒子放大的GEM以及二维读出电极组成。通过Geant4程序包对探测器物理过程进行蒙特卡罗(Monte Carlo)模拟,主要研究了硼中子转换层转换效率与厚度及中子波长的关系、出射粒子的能谱、不同气体比分不同气体厚度中的能量沉积、以及γ的能量沉积,计算比较了不同厚度GEM膜对快中子产生的影响。模拟结果表明,出射粒子在漂移区的能量沉积几乎与气体比分无关,硼层厚度取0.1µm以下,漂移区厚度6 mm时,可以确保出射粒子在漂移区能量完全沉积,同时具有最佳n/γ区分能力。%The performance of a boron-coated GEM (Gas Electron Multiplier) neutron beam monitor is outstanding, with the counting rate up to 10 MHz, radiation resistance, flexible readout patterns, high resolution in position and time, which is considered as a good candidate for the next generation of neutron beam monitor. This new kind of neutron beam monitor mainly consists of boron convertor, GEM and two-dimensional readout electrode. In this paper, the Monte Carlo simulation on the physical process of the detector has been carried out by using Geant4 package, including the conversion efficiency of the boron layer influenced by the thickness and the neutron wavelength, the spectrum of emitted ions, and the energy deposition of the ions and the gamma in the different gas thickness of several gas volume ratio. Besides, the effect by the fast neutrons with GEM foils has also been calculated. The results show that the ions energy deposited in the drift region is almost independent of the gas volume ratio, the thickness 6 mm of the drift region is

  13. Antibacterial activity and cell compatibility of TiZrN, TiZrCN, and TiZr-amorphous carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Heng-Li [School of Dentistry, China Medical University, Taichung 404, Taiwan (China); Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@nfu.edu.tw [Department of Mechanical and Computer-aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Liu, Jia-Xu [Department of Mechanical and Computer-aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Tsai, Ming-Tzu [Department of Biomedical Engineering, Hungkuang University, Taichung 433, Taiwan (China); Lai, Chih-Ho [Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan (China)

    2015-12-01

    A cathodic-arc evaporation system with plasma-enhanced duct equipment was used to deposit TiZrN, TiZrCN, and TiZr/a-C coatings. Reactive gases (N{sub 2} and C{sub 2}H{sub 2}) activated by the Ti and Zr plasma in the evaporation process was used to deposit the TiZrCN and TiZr/a-C coatings with different C and nitrogen contents. The crystalline structures and bonding states of coatings were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. The microbial activity of the coatings was evaluated against Staphylococcus aureus (Gram-positive bacteria) and Actinobacillus actinomycetemcomitans (Gram-negative bacteria) by in vitro antibacterial analysis using a fluorescence staining method employing SYTO9 and a bacterial-viability test on an agar plate. The cell compatibility and morphology related to CCD-966SK cell-line human skin fibroblast cells on the coated samples were also determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, reverse-transcriptase-polymerase chain reaction, and scanning electron microscopy. The results suggest that the TiZrCN coatings not only possess better antibacterial performance than TiZrN and TiZr/a-C coatings but also maintain good compatibility with human skin fibroblast cells. - Highlights: • TiZrN, TiZrCN, and TiZr/a-C coatings were deposited using cathodic arc evaporation. • The TiZrCN showed a composite structure containing TiN, ZrN, and a-C. • The TiZrCN-coated Ti showed the least hydrophobicity among the samples. • The TiZrCN-coated Ti showed good human skin fibroblast cell viability. • The TiZrCN-coated Ti exhibited good antibacterial performance.

  14. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  15. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  16. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt;

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  17. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  18. Wire-length effect on GMI in Co{sub 70.3}Fe{sub 3.7}B{sub 10}Si{sub 13}Cr{sub 3} amorphous glass-coated microwires

    Energy Technology Data Exchange (ETDEWEB)

    Qin, F.X., E-mail: faxiang.qin@bristol.ac.u [Advanced Composite Center for Innovation and Science, Department of Aerospace Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); Peng, H.X. [Advanced Composite Center for Innovation and Science, Department of Aerospace Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); Phan, M.H. [Department of Physics, University of South Florida, Tampa, FL 33620 (United States)

    2010-03-15

    The sample length dependence of giant magnetoimpedance (GMI) in Co{sub 70.3}Fe{sub 3.7}B{sub 10}Si{sub 13}Cr{sub 3} amorphous glass-coated microwires has been studied experimentally and theoretically in the frequency range of 1-10 MHz. It has been shown that there exists a critical microwire length, below which the GMI effect is favored in shorter microwires and above which longer microwires possess a more sensitive dependence of the real component of the impedance to the frequency variation. It is demonstrated that once the resistance of the microwires of varied length is determined, it is possible to evaluate the change in GMI profiles with respect to the change of wire length. The simplified skin-effect model has been found to well explain the observed behaviors.

  19. Improvement of processing property of high energy fuel-rich HTPB propellant containing boron%高能含硼贫氧推进剂工艺性能改善研究

    Institute of Scientific and Technical Information of China (English)

    焦继革; 张为华; 夏智勋; 段军鸿; 陈曦; 胡建军

    2009-01-01

    通过对无定形硼粉进行表面包覆、团聚造粒及添加工艺助剂,改善了含硼贫氧推进剂工艺性能,采用落球粘度计对药浆粘度进行对比测试,从中选择最优方法,以改善含硼贫氧推进剂药浆工艺性能.%The processing property of high energy fuel-rich HTPB propellant containing boron was improved by coating the surface with amorphous boron powder, agglomerating and granulating, and adding processing aid. Based on these processes, an optimum method to improve the processing property of this kind of propellant can be chosen with slurry viscosity measurement using falling sphere viscometer for comparison.

  20. Effect of Rare Earth Metals on Structure and Properties of Electroless Co-B Alloy Coating

    Institute of Scientific and Technical Information of China (English)

    宣天鹏; 张雷; 黄秋华

    2002-01-01

    The effect of rare earth metals cerium, lanthanum and yttrium on chemical composition, structure and properties of electroless Co-B alloy coating was studied. By plasma transmitting spectrograph, electron energy spectrometer, X-ray diffractometter, micro-hardometer and vibratory sample magnetometer the chemical constitution, structure and properties of the alloy coatings were analyzed and inspected. The results show that with a tiny quantity of rare earth metal added into Co-B alloy coating, the content of boron is decreased in the alloy coatings, and the kinds of rare earth metal have enormous effect on the structure and properties of electroless Co-B alloy coating. At the same time electroless Co-B alloy with amorphous structure is transformed to electroless Co-B-RE alloy with microcrystalline or crystalline structure. In this way microhardness of the coatings is increased remarkably. Cerium and lanthanum would also increase the saturated magnetic intensity and decrease coercitive force of the coating. So soft magnetization of the coatings would be improved.

  1. First gaseous boronization during pulsed discharge cleaning

    Science.gov (United States)

    Ko, J.; Den Hartog, D. J.; Goetz, J. A.; Weix, P. J.; Limbach, S. T.

    2013-01-01

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C2B10H12) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  2. First gaseous boronization during pulsed discharge cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [Department of Physics, University of Wisconsin, Madison, WI (United States); Den Hartog, D.J.; Goetz, J.A.; Weix, P.J.; Limbach, S.T. [Department of Physics, University of Wisconsin, Madison, WI (United States)

    2013-01-15

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C{sub 2}B{sub 10}H{sub 12}) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  3. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au

    Directory of Open Access Journals (Sweden)

    Wen-Hsien Li

    2016-05-01

    Full Text Available We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  4. Structural evolution, thermomechanical recrystallization and electrochemical corrosion properties of Ni-Cu-Mg amorphous coating on mild steel fabricated by dual-anode electrolytic processing

    Science.gov (United States)

    Abdulwahab, M.; Fayomi, O. S. I.; Popoola, A. P. I.

    2016-07-01

    The electrolytic Ni-Cu based alloy coating with admixed interfacial blend of Mg have been successfully prepared on mild steel substrate by dual anode electroplating processes over a range of applied current density and dwell time. The electrocodeposition of Ni-Cu-Mg coating was investigated in the presence of other bath additives. The influence of deposition current on surface morphology, adhesion behavior, preferred crystal orientation, surface topography and electrochemical activity of Ni-Cu-Mg alloy coating on mild steel were systematically examined. The thermal stability of the developed composite materials was examined via isothermal treatment. Scanning electron microscope equipped with EDS, X-ray diffraction, Atomic force microscope, micro-hardness tester and 3 μmetrohm Potentiostat/galvanostat were used to compare untreated and isothermally treated electrocodeposited composite. The induced activity of the Ni-Cu-Mg alloy changed the surface modification and results to crystal precipitation within the structural interface by the formation of Cu, Ni2Mg3 phase. The obtained results showed that the introduction of Mg particles in the plating bath generally modified the surface and brings an increase in the hardness and corrosion resistance of Ni-Cu-Mg layers fabricated. Equally, isothermally treated composites demonstrated an improved properties indicating 45% increase in the micro-hardness and 79.6% corrosion resistance which further showed that the developed composite is thermally stable.

  5. Boron nitride converted carbon fiber

    Science.gov (United States)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  6. Amorphous semiconductor solar cell having a grained transparent electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y.; Iida, H.; Itou, A.; Karasawa, H.; Mishuku, T.; Shiba, N.; Yamanaka, M.

    1985-02-19

    An amorphous semiconductor solar cell is disclosed which comprises a glass substrate and a transparent electrode coated on the substrate. The device also comprises an amorphous semiconductor layer on the transparent electrode, and a rear electrode on the amorphous layer, wherein the average grain diameter of the surface of the transparent electrode ranges from 0.1 ..mu..m to 2.5 ..mu..m.

  7. Edge effect enhanced electron field emission in top assembled reduced graphene oxide assisted by amorphous CNT-coated carbon cloth substrate

    Directory of Open Access Journals (Sweden)

    Rajarshi Roy

    2013-01-01

    Full Text Available In this work a hybrid structure assembly of amorphous carbon nanotubes (a-CNTs -reduced graphene oxide (RGO has been fabricated on carbon cloth/PET substrates for enhanced edge effect assisted flexible field emission device application. The carbon nanostructures prepared by chemical processes were finally deposited one over the other by a simple electrophoretic deposition (EPD method on carbon cloth (CC fabric. The thin films were then characterized by X-ray diffraction (XRD, Fourier transformed infrared spectroscopy (FTIR, field emission scanning electron microscopy (FESEM and high resolution transmission electron microscope (HRTEM. Field assisted electron emission measurement was performed on this hybrid structure. It was observed that the hybrid carbon nanostructure showed exceptional field emission properties with outstanding low turn-on and threshold field (Eto∼ 0.26 Vμm−1, Eth ∼ 0.55 Vμm1. These observed results are far better compared to standalone and plasma etched edge enhanced RGO systems due to the bottom layer a-CNTs bed which assisted in significant enhancement of edge effect in RGO sheets.

  8. 非晶态Ni-W-P镀层退火晶化和激光晶化组织结构的演变%Microstructures evolution of electroless amorphous Ni-W-P coating during laser and annealing crystallization

    Institute of Scientific and Technical Information of China (English)

    刘宏; 郭荣新; 李莎; 宗云; 何冰清

    2011-01-01

    用XRD定量分析法并结合扫描电镜形貌观察,研究化学沉积高磷(13.3%)含量的Ni-W-P镀层在不同热处理条件下的晶化程度、晶粒尺寸及晶格应变等组织结构的演变规律.结果表明:高磷非晶态镀层在退火晶化过程中,Ni3P相的体积分数始终高于Ni相的,700℃时,两相的体积分数之差显著增大,镀层仍有残存的非晶相;在400~500℃之间形成的Ni3P的晶粒尺寸大于Ni的;温度为500~700℃时,Ni相的尺寸大于Ni3P的,但均未超过纳米级.镀层晶格应变表现为随退火温度的升高而降低,镀态时晶格应变最大.激光晶化处理的非晶态Ni-W-P镀层的显微结构特征介于400~500℃之间退火的镀层晶化特征.随扫描速度增加,不仅Ni3P晶粒尺寸增大,而且两相的尺寸差变大.%The evolution of microstructures, in terms of degree of crystallisation, grain size and lattice strain of electroless Ni-W-P coating with high phosphorous (13.3%) content during laser and furnace annealing was investigated by quantitative XRD method and morphological observation of SEM. The results show that, during the annealing crystallization of the amorphous coating, the volume fraction of Ni3P exceeds that of Ni, and the volume fraction difference between the two phases increases remarkably at 700 ℃, but the remaining amorphous phase still exists in the coating. The grain size of Ni3P is larger than that of Ni between 400 ℃ and 500 ℃, the grain size of both phases is reversed above 500-700 °C and are in the range of nanoscale. The lattice strain of as-plated deposit is the maximum and decreases with the increase of temperature. The characteristics of microstructures of the coating treated by laser is consistent with the deposit annealed by furnace between 400 ℃ and 500 ℃. The grain size of Ni3P and phases difference increase with the increase of the scanning velocity.

  9. Computational Studies of Physical Properties of Boron Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  10. XPS ANALYSIS OF AMORPHOUS SI-C-O-N COATING%无定型Si-C-O-N涂层的XPS分析

    Institute of Scientific and Technical Information of China (English)

    唐惠东; 李龙珠; 孙媛媛; 谭寿洪

    2011-01-01

    采用射频磁控溅射法在RB SiC陶瓷基片上制备了无定型Si-C-O-N涂层,利用XPS分析了涂层的组成元素以及相应的结合状态.结果表明:离子轰击对Si、C和N的化学位移影响较大:经过离子轰击后Si-C和Si-N键所占比例上升,而Si-O键则稍有减少; C Sp有所上升,而C-Si键和C-N键则有所下降;N-Si键上升,而N-C键略有下降.溅射功率对涂层组成的影响很大:随着溅射功率的增加,Si元素结合能增加,这主要是溅射产额增加的缘故,而N元素的含量则迅速上升,这主要归因于高溅射功率下N-Si键的增加和更多N-C键的结合.%Si-C-O-N coatings were deposited by RF magnetron sputtering on RB SiC ceramics substrate.The elements of coating and the corresponding bonding status were analyzed by XPS. The results show that:The influence of ion bombardment on Si, C and N chemical displacement is great: The proportions of Si-C and Si-N bondings increase while the proportion of Si-O bonding decreases a little after ion bombardment.The proportion of C sp2 rises and the proportion of C-Si and C-N bondings fall. The proportion of N-Si bonding increase and the proportion of N-C bonding decreases slightly. The influence of sputtering power to the element of coating is rather great: The content of Si increases with the increase of sputtering power.This is attributed to the case that the sputtering productivity raises. The content of N increases rapidly. This ascribes to the increase of N-Si bondings and tie binding of more N-C bondings at higher sputtering power.

  11. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A R M Yusoff; M N Syahrul; K Henkel

    2007-08-01

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the effect of tie coats on film adhesion.

  12. Microstructural, Chemical and Mechanical Characterization of Polymer-Derived Hi-Nicalon Fibers with Surface Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Chen, Yuan L.

    1998-01-01

    Room temperature tensile strengths of as-received Hi-Nicalon fibers and those having BN/SiC, p-BN/SiC, and p-B(Si)N/SiC surface coatings, deposited by chemical vapor deposition, were measured using an average fiber diameter of 13.5 microns. The Weibull statistical parameters were determined for each fiber. The average tensile strength of uncoated Hi-Nicalon on was 3.19 +/- 0.73 GPa with a Weibull modulus of 5.41. Strength of fibers coated with BN/SiC did not change. However, coat with p-BN/SiC and p-B(Si)N/SiC surface layers showed strength loss of approx. 10 and 35 percent, respectively, compared with as-received fibers. The elemental compositions of the fibers and the coatings were analyzed using scanning Auger microprobe and energy dispersive x-ray spectroscopy. The BN coating was contaminated with a large concentration of carbon and some oxygen. In contrast, p-BN, p-B(Si)N, and SiC coatings did not show any contamination. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction. Hi-Nicalon fiber consists of the P-SIC nanocrystals ranging in size from 1 to 30 nm embedded in an amorphous matrix. TEM analysis of the BN coating revealed four distinct layers with turbostatic structure. The p-BN layer was turbostratic and showed considerable preferred orientation. The p-B(Si)N was glassy and the silicon and boron were uniformly distributed. The silicon carbide coating was polycrystalline with a columnar structure along the growth direction. The p-B(Si)N/SiC coatings were more uniform, less defective and of better quality than the BN/SiC or the p-BN/SiC coatings.

  13. Magnetron sputtering synthesis of large area well-ordered boron nanowire arrays

    Institute of Scientific and Technical Information of China (English)

    CAO; Limin; ZHANG; Ze; WANG; Wenkui

    2004-01-01

    One-dimensionally nanostructured materials, such as nanowires and nanotubes, are the smallest dimensional structures for efficient transport of electrons and excitons, and are therefore critical building blocks for nanoscale electronic and mechanical devices. In this paper, boron nanowires with uniform diameters from 20 to 80nm were synthesized by radio-frequency magnetron sputtering of pure boron powder and B2O3 powder mixtures in argon atmosphere. The boron nanowires produced stand vertically on the substrate surface to form well-ordered arrays over large areas with selforganized arrangements without involvement of any template and patterned catalyst. The high-density boron nanowires are parallel to each other and well distributed, forming highly ordered and uniform arrays. A more interesting and unique feature of the boron nanowires is that most of their tips are flat rather than hemispherical in morphologies.Detailed studies on its structure and composition indicate that boron nanowires are amorphous. Boron nanowire appears as a new member in the family of one-dimensional nanostructures. Considering the unique properties of boron-rich solids and other nanostructures, it is reasonable to expect that the boron nanowires will display some exceptional and interesting properties. A vapor-cluster-solid (VCS) mechanism was proposed to explain the growth of boron nanowires based on our experimental observations.

  14. Boron in sillimanite.

    Science.gov (United States)

    Grew, E S; Hinthorne, J R

    1983-08-05

    Sillimanite in six granulite-facies, kornerupine-bearing rocks contains 0.035 to 0.43 percent B(2)O(3) and 0.02 to 0.23 percent MgO (by weight). Substitution of boron for silicon and magnesium for aluminum is coupled such that the ratio of magnesium to boron is about 0.5. Sillimanite incorporates more than 0.1 percent B(2)O(3) only at high temperatures in a boron-rich environment at very low partial pressures of water. In the amphibolite facies, the sillimanite boron contents are too low to appreciably affect the stability relations of sillimanite with kyanite and andalusite.

  15. Characterization of phase transformation behaviour and microstructural development of electroless Ni-B coating

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Soupitak, E-mail: soupitak.pal@gmail.com [Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012 (India); Verma, Nisha; Jayaram, Vikram [Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012 (India); Biswas, Sanjay Kumar [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 (India); Riddle, Yancy [UCT Coatings Inc, FL (United States)

    2011-10-25

    Highlights: {yields} Phase transformation behaviour of electroless Ni-B coating in conjunction with microstructural development was studied. {yields} As deposited coating exhibits a novel phase separated microstructure of various length scales. {yields} Crystallization behaviour of the coating is strongly composition dependent. {yields} Deposition process itself induces compositional heterogeneity in the coating. - Abstract: Phase transformation behaviour of amorphous electroless Ni-B coating with a targeted composition of Ni-6 wt% B is characterized in conjunction with microstructural development and hardness. Microscopic observations of the as-deposited coating display a novel microstructure which is already phase separated at multiple length scales. Spherical colonies of {approx}5 {mu}m consist of 2-3 {mu}m nodular regions which are surrounded by {approx}2-3 {mu}m region that contains fine bands ranging from 10 to 70 nm in width. The appearance of three crystalline phases in this binary system at different stages of heat treatment and the concomitant variation in hardness are shown to arise from nanoscale fluctuations in the as-deposited boron content from 4 to 8 wt%. High temperature annealing reveals continuous crystallization up to 430 deg. C, overlapping with the domain of B loss due to diffusion into the substrate. The implications of such a microstructure for optimal heat treatment procedures are discussed.

  16. Electrochemical Studies of Passive Film Stability on Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 Amorphous Metal in Seawater at 90oCElectrochemical Studies of Passive Film Stability on Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 Amorphous Metal in Seawater at 9

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Haslam, J; Day, S D; Lian, T; Saw, C K; Hailey, P D; Choi, J S; Rebak, R B; Yang, N; Payer, J H; Perepezko, J H; Hildal, K; Lavernia, E J; Ajdelsztajn, L; Branagan, D J; Buffa, E J; Aprigliano, L F

    2007-04-25

    An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was prepared as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. During electrochemical testing in several environments, including seawater at 90 C, the passive film stability was found to be comparable to that of high-performance nickel-based alloys, and superior to that of stainless steels, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. This material also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. This material and its parent alloy maintained corrosion resistance up to the glass transition temperature, and remained in the amorphous state during exposure to relatively high neutron doses.

  17. Hugoniot equation of state and dynamic strength of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Grady, Dennis E. [Applied Research Associates, Southwest Division, 4300 San Mateo Blvd NE, A-220, Albuquerque, New Mexico 87110-129 (United States)

    2015-04-28

    mechanistic difference in the processes of shock compression between the LANL data and that of the other studies is the markedly larger inelastic deformation and dissipation experienced in the shock event brought about by compaction of the substantially larger porosity LANL test ceramics. High-pressure diamond anvil cell experiments reveal extensive amorphization, reasoned to be a reversion product of a higher-pressure crystallographic phase, which is a consequence of application of both high pressure and shear deformation to the boron carbide crystal structure. A dependence of shock-induced high-pressure phase transformation in boron carbide on the extent of shear deformation experienced in the shock process offers a plausible explanation for the differences observed in the LANL Hugoniot data on porous ceramic and that of other shock data on near-full-density boron carbide.

  18. Hugoniot equation of state and dynamic strength of boron carbide

    Science.gov (United States)

    Grady, Dennis E.

    2015-04-01

    difference in the processes of shock compression between the LANL data and that of the other studies is the markedly larger inelastic deformation and dissipation experienced in the shock event brought about by compaction of the substantially larger porosity LANL test ceramics. High-pressure diamond anvil cell experiments reveal extensive amorphization, reasoned to be a reversion product of a higher-pressure crystallographic phase, which is a consequence of application of both high pressure and shear deformation to the boron carbide crystal structure. A dependence of shock-induced high-pressure phase transformation in boron carbide on the extent of shear deformation experienced in the shock process offers a plausible explanation for the differences observed in the LANL Hugoniot data on porous ceramic and that of other shock data on near-full-density boron carbide.

  19. Compaction of Chemically Prepared Amorphous Fe-B nanoparticles

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Bødker, Franz; Mørup, Steen

    1997-01-01

    We report on attempts to compact chemically prepared amorphous iron-boron particles. The praticles have a size of about 100 nm and are pyrophoric. We have made a special die for uniaxial pressing in which the compaction can be performed at elevated temperature without exposing the powder to air. ....... Densities of up to 75% of that of bulk Fe-B have been obtained. Coercivity measurements show that the material is not magnetically soft....

  20. Measurement of internal tensile stress in Co{sub 68.2}Fe{sub 4.3}Cr{sub 3.5}Si{sub 13}B{sub 11} glass-coated amorphous microwires using the stress sensitivity of saturation magnetostriction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kaihuang, E-mail: lkh2020@163.com; Lu, Zhichao; Liu, Tiancheng; Li, Deren

    2013-08-15

    The internal tensile stresses in Co{sub 68.2}Fe{sub 4.3}Cr{sub 3.5}Si{sub 13}B{sub 11} glass-coated amorphous microwires are measured experimentally by using the stress sensitivity of saturation magnetostriction. The obtained results show that the internal tensile stress is 1420 MPa for microwire with metallic core diameter of 20.7 µm and glass cover thickness of 14.5 µm, while it decreases to 640 MPa after glass removal. The measured results agree well with the theoretical results calculated by Chiriac et al. - Highlights: • Internal stresses in amorphous microwires have been measured experimentally. • The stress sensitivity of saturation magnetostriction was adopted. • The results agree with the theoretical results calculated by Chiriac et al.

  1. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    DEFF Research Database (Denmark)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger;

    2015-01-01

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co......-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed...... the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from...

  2. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.;

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...... melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded...... with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy....

  3. Synthesis of one-dimensional boron-related nanostructures by chemical vapor deposition

    Science.gov (United States)

    Guo, Li

    in the submicron range were used to synthesize aligned BNNTs. Fine BN nanostructures with a diameter around 10-20 nm and length up to 10 microns were grown and dispersed in the Ni dots. Nanosized Ni dots were suggested for the growth of the vertically aligned BNNTs. Boron nanowires (BNWs) were also grown by the decomposition of diborane using a thermal CVD process at a temperature of 900°C, a pressure of 20 torr, diborane flow rate (5 vol.% in hydrogen) of 5 sccm, and nitrogen flow rate of 55 sccm. These BNWs had diameters in a range of 20-200 nanometers and lengths up to several tens of micrometers. Repeatable Raman spectra indicated icosahedra B12 to be the basic building units forming the B nanowires. Amorphous BNWs with rough surface were obtained without any catalysts on different substrates, such as Si wafer or ZrB2 powders. A vapor-solid (VS) growth was proposed for the amorphous BNWs, in which the solid phase precipitated directly from the vapor phase reactions. The amorphous BNWs were modified for size and composition using a plasma CVD process containing argon, ammonia and hydrogen. The diameters of these BNWs were reduced from 200 nm to several tens of nanometers, and a small amount of N was incorporated into BNWs after the plasma treatment. On the other hand, the metal catalyst proved to be effective for the growth of crystalline BNWs. Tetragonal BNWs with smooth surface were grown on thin Ni film (1 nm) coated Si substrates. Ni attachment was observed at the tip of the BNW for the first time, which indicated that the vapor-liquid-solid (VLS) growth mechanism can be used for synthesis of the BNW. The diameters of these BNWs were strongly dependent on the size of the metal particles encapsulated in the BNWs. In summary, two boron-related nanostructures were synthesized by chemical vapor deposition (CVD) in this work. A new method was successfully developed to decrease the substrate temperature more than 400°C to fabricate boron nitride nanotubes in a

  4. Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Björkdahl, O; Sørensen, P G; Hansen, T; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy.

  5. Boron and the kidney.

    Science.gov (United States)

    Pahl, Madeleine V; Culver, B Dwight; Vaziri, Nosratola D

    2005-10-01

    Boron, the fifth element in the periodic table, is ubiquitous in nature. It is present in food and in surface and ocean waters, and is frequently used in industrial, cosmetic, and medical settings. Exposure to boron and related compounds has been recently implicated as a potential cause of chronic kidney disease in Southeast Asia. This observation prompted the present review of the published data on the effects of acute and chronic exposure to boron on renal function and structure in human beings and in experimental animals.

  6. Innovative method for boron extraction from iron ore containing boron

    Science.gov (United States)

    Wang, Guang; Wang, Jing-song; Yu, Xin-yun; Shen, Ying-feng; Zuo, Hai-bin; Xue, Qing-guo

    2016-03-01

    A novel process for boron enrichment and extraction from ludwigite based on iron nugget technology was proposed. The key steps of this novel process, which include boron and iron separation, crystallization of boron-rich slag, and elucidation of the boron extraction behavior of boron-rich slag by acid leaching, were performed at the laboratory. The results indicated that 95.7% of the total boron could be enriched into the slag phase, thereby forming a boron-rich slag during the iron and slag melting separation process. Suanite and kotoite were observed to be the boron-containing crystalline phases, and the boron extraction properties of the boron-rich slag depended on the amounts and grain sizes of these minerals. When the boron-rich slag was slowly cooled to 1100°C, the slag crystallized well and the efficiency of extraction of boron (EEB) of the slag was the highest observed in the present study. The boron extraction property of the slow-cooled boron-rich slag obtained in this study was much better than that of szaibelyite ore under the conditions of 80% of theoretical sulfuric acid amount, leaching time of 30 min, leaching temperature of 40°C, and liquid-to-solid ratio of 8 mL/g.

  7. Preparation and characterization of boron nitride/carbon fiber composite with high specific surface area

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan; Fan, Mingwen [Wuhan Univ. (China). Key Laboratory for Oral Biomedical Engineering; Yuan, Songdong; Xiong, Kun; Hu, Kunpeng; Luo, Yi [Hubei Univ. of Technology, Wuhan (China). School of Chemistry and Chemical Engineering; Li, Dong [Hubei Univ. of Technology, Wuhan (China). School of Chemistry and Chemical Engineering; Oxford Univ. (United Kingdom). Chemistry Research Lab.

    2014-06-15

    Boron nitride can be used as a good catalyst carrier because of its high thermal conductivity and chemical stability. However, a high specific surface area of boron nitride is still desirable. In this work, a carbon fiber composite coated with boron nitride villous nano-film was prepared, and was also characterized by means of scanning electron microscopy, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis. The results indicated that the carbon fibers were covered by uniform villous boron nitride films whose thickness was about 150 - 200 nm. The specific surface area of the boron nitride/carbon fiber composite material was 96 m{sup 2} g{sup -1}, which was markedly improved compared with conventional boron nitride materials. (orig.)

  8. [Amorphization in pharmaceutical technology].

    Science.gov (United States)

    Révész, Piroska; Laczkovich, Orsolya; Eros, István

    2004-01-01

    The amorphization of crystalline active ingredients may be necessary because of the polymorphism of the active substance, the poor water-solubility of the drug material, difficult processing in the crystalline form and the taking out of a patent for a new (amorphous) form. This article introduces protocols for amorphization, which use methods traditionally applied in pharmaceutical technology. The protocols involve three possible routes: solvent methods, hot-melt technologies and milling procedures. With this presentation, the authors suggest help for practising experts to find the correct amorphization method.

  9. Influence of the Discharge Voltage during Pulse-Plasma Process on the Durability of Edges coated with Superhard Coatings

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk

    2004-01-01

    In the paper the experimental results concerning the functional quality of thin, superhard coatings produced on cutting edges is described. Boron nitride coatings were deposited on insert cutting edges made cemented carbides by the pulse-plasma method. The comparative investigations of mentioned coatings have been concerned of tool life of edges during steel machining. In these investigations for the purpose of additional increase of coated edge durability an interfacial layers were applied. Presented investigations particularly pointed out to essential influence of the values of discharge voltage on the coating structure and durability of edges coated with boron nitride.

  10. Influence of the Discharge Voltage during Pulse-Plasma Process on the Durability of Edges coated with Superhard Coatings

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk

    2004-01-01

    In the paper the experimental results concerning the functional quality of thin, superhard coatings produced on cutting edges is described. Boron nitride coatings were deposited on insert cutting edges made cemented carbides by the pulse-plasma method. The comparative investigations of mentioned coatings have been concerned of tool life of edges during steel machining. In these investigations for the purpose of additional increase of coated edge durability an interfacial layers were applied. Presented investigations particularly pointed out to essential influence of the values of discharge voltage on the coating structure and durability of edges coated with boron nitfide.

  11. Boron-Based Drug Design.

    Science.gov (United States)

    Ban, Hyun Seung; Nakamura, Hiroyuki

    2015-06-01

    The use of the element boron, which is not generally observed in a living body, possesses a high potential for the discovery of new biological activity in pharmaceutical drug design. In this account, we describe our recent developments in boron-based drug design, including boronic acid containing protein tyrosine kinase inhibitors, proteasome inhibitors, and tubulin polymerization inhibitors, and ortho-carborane-containing proteasome activators, hypoxia-inducible factor 1 inhibitors, and topoisomerase inhibitors. Furthermore, we applied a closo-dodecaborate as a water-soluble moiety as well as a boron-10 source for the design of boron carriers in boron neutron capture therapy, such as boronated porphyrins and boron lipids for a liposomal boron delivery system.

  12. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  13. Raman effect in icosahedral boron-rich solids

    Directory of Open Access Journals (Sweden)

    Helmut Werheit, Volodymyr Filipov, Udo Kuhlmann, Ulrich Schwarz, Marc Armbrüster, Andreas Leithe-Jasper, Takaho Tanaka, Iwami Higashi, Torsten Lundström, Vladimir N Gurin and Maria M Korsukova

    2010-01-01

    Full Text Available We present Raman spectra of numerous icosahedral boron-rich solids having the structure of α-rhombohedral, β-rhombohedral, α-tetragonal, β-tetragonal, YB66, orthorhombic or amorphous boron. The spectra were newly measured and, in some cases, compared with reported data and discussed. We emphasize the importance of a high signal-to-noise ratio in the Raman spectra for detecting weak effects evoked by the modification of compounds, accommodation of interstitial atoms and other structural defects. Vibrations of the icosahedra, occurring in all the spectra, are interpreted using the description of modes in α-rhombohedral boron by Beckel et al. The Raman spectrum of boron carbide is largely clarified. Relative intra- and inter-icosahedral bonding forces are estimated for the different structural groups and for vanadium-doped β-rhombohedral boron. The validity of Badger's rule is demonstrated for the force constants of inter-icosahedral B–B bonds, whereas the agreement is less satisfactory for the intra-icosahedral B–B bonds.

  14. Wear mechanism of electrodeposited amorphous Ni-Fe-P alloys

    Institute of Scientific and Technical Information of China (English)

    高诚辉; 赵源

    2004-01-01

    The wear mechanism of amorphous Ni-Fe-P coating was discussed. The wear resistance of the amor phous Ni-Fe-P coatings was tested on a Timken wear apparatus, and the wear track of the amorphous Ni-Fe-P coat ings as-deposited and heated at various temperatures was observed by SEM. The results show that the wear resistthe coating will change with the heating temperature increasing from pitting+plowing at 200 ℃ to pitting at 400 ℃,and to plowing at 600 ℃. The pits on the worn surface of the amorphous Ni-Fe-P coating result from the tribo-fatigue fracture. The cracks of spalling initiate at pits and propagate at certain angle with the sliding direction on sur face, and then extend into sub-surface along the poor P layers or the interface between layers. Finally under repeated action of the stress in the rubbing process the cracks meet and the debris forms. The generation of the pits and spal-ling is related with the internal stress, brittleness and layer structure of the amorphous Ni-Fe-P coating.

  15. New nano-sized Al2O3-BN coating 3Y-TZP ceramic composites for CAD/CAM-produced all-ceramic dental restorations. Part I. Fabrication of powders.

    Science.gov (United States)

    Yang, Se Fei; Yang, Li Qiang; Jin, Zhi Hao; Guo, Tian Wen; Wang, Lei; Liu, Hong Chen

    2009-06-01

    Partially sintered 3 mol % yttria-stabilized tetragonal zirconium dioxide (ZrO(2), zirconia) polycrystal (3Y-TZP) ceramics are used in dental posterior restorations with computer-aided design-computer-aided manufacturing (CAD/CAM) techniques. High strength is acquired after sintering, but shape distortion of preshaped compacts during their sintering is inevitable. The aim of this study is to fabricate new machinable ceramic composites with strong mechanical properties that are fit for all-ceramic dental restorations. Aluminum oxide (Al(2)O(3))-coated 3Y-TZP powders were first prepared by the heterogeneous precipitation method starting with 3Y-TZP, Al(NO(3))(3) . 9H(2)O, and ammonia, then amorphous boron nitride (BN) was produced and the as-received composite powders were coated via in situ reaction with boric acid and urea. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to analyze the status of Al(2)O(3)-BN on the surface of the 3Y-TZP particles. TEM micrographs show an abundance of Al(2)O(3) particles and amorphous BN appearing uniformly on the surface of the 3Y-TZP particles after the coating process. The size of the Al(2)O(3) particles is about 20 nm. The XRD pattern shows clearly the peak of amorphous BN among the peaks of ZrO(2).

  16. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications.

    NARCIS (Netherlands)

    Mandal, S.; Bakeine, G.J.; Krol, S.; Ferrari, C.; Clerici, A.M.; Zonta, C.; Cansolino, L.; Ballarini, F.; Bortolussi, S.; Stella, S.; Protti, N.; Bruschi, P.; Altieri, S.

    2011-01-01

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coate

  17. 等离子喷涂工艺对锅炉管束用Fe基非晶涂层组织结构和耐蚀性能的影响%Effect of Spray Process on the Microstructure and Corrosion-resistance of Fe-based Amorphous Coatings Obtained by Plasma Spray on the Boiler Tubes

    Institute of Scientific and Technical Information of China (English)

    高振; 郝建民; 韩建军; 鲁元; 陈永楠; 李世波

    2015-01-01

    ABSTRACT:Objective To investigate the effects of plasma spray power and time on the phase, microstructure and corrosion-re-sistance of the amorphous coating on the boiler tubes. Methods XRD, SEM and electrochemical polarization research were adopt-ed. Results The coating with high fraction of amorphous phase was obtained, which had a flat and compact surface. The amorphous fraction and porosity decreased and the density increased with the increasing spray power and time. The coatings exhibited an excel-lent ability to resist corrosion with wide passive region in 0. 5 mol/L H2 SO4 and 3. 5% NaCl solutions. And the coatings exhibited wider passive region and lower corrosion current density in 0. 5 mol/L H2 SO4 and 3. 5% NaCl solutions, respectively. With in-crease of the spray power and time, the anodic polarization curves of the amorphous coatings were passivated with wider passive re-gion and lower passive current density. Conclusion The path and flow resistance that corrosive liquid permeated the substrate were increased, and the corrosion resistance of the coating was improved, owing to the decreased porosity and increased coating thick-ness with the increasing spray power and time.%目的:研究等离子喷涂功率和喷涂时间对锅炉管束用Fe基非晶涂层的相组成、微观组织结构及涂层耐蚀性能的影响。方法通过X射线衍射、扫描电子显微镜和三电极电化学研究进行分析。结果涂层主要由非晶相组成,表面较为平整致密;随着喷涂功率和喷涂时间的增加,涂层非晶相含量降低,孔隙率降低,致密性升高。非晶涂层在0.5 mol/L H2SO4溶液和在3.5%(质量分数)NaCl溶液中均表现出良好的钝化作用,在0.5 mol/L H2 SO4溶液中钝化区较宽,在3.5%NaCl溶液中自腐蚀电流密度较低。随喷涂功率和时间的增加,阳极极化曲线钝化区加宽,电流密度降低。结论喷涂功率升高会导致涂层孔隙率下降

  18. Boronated liposome development and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M.F. [Univ. of California, Los Angeles, CA (United States)

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  19. Trehalose amorphization and recrystallization.

    Science.gov (United States)

    Sussich, Fabiana; Cesàro, Attilio

    2008-10-13

    The stability of the amorphous trehalose prepared by using several procedures is presented and discussed. Amorphization is shown to occur by melting (T(m)=215 degrees C) or milling (room temperature) the crystalline anhydrous form TRE-beta. Fast dehydration of the di-hydrate crystalline polymorph, TRE-h, also produces an amorphous phase. Other dehydration procedures of TRE-h, such as microwave treatment, supercritical extraction or gentle heating at low scan rates, give variable fractions of the polymorph TRE-alpha, that undergo amorphization upon melting (at lower temperature, T(m)=130 degrees C). Additional procedures for amorphization, such as freeze-drying, spray-drying or evaporation of trehalose solutions, are discussed. All these procedures are classified depending on the capability of the undercooled liquid phase to undergo cold crystallization upon heating the glassy state at temperatures above the glass transition temperature (T(g)=120 degrees C). The recrystallizable amorphous phase is invariably obtained by the melt of the polymorph TRE-alpha, while other procedures always give an amorphous phase that is unable to crystallize above T(g). The existence of two different categories is analyzed in terms of the transformation paths and the hypothesis that the systems may exhibit different molecular mobilities.

  20. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tay, Roland Yingjie [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Tsang, Siu Hon [Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Loeblein, Manuela; Chow, Wai Leong [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); CNRS-International NTU Thales Research Alliance CINTRA UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Singapore, Singapore 637553 (Singapore); Loh, Guan Chee [Institue of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Toh, Joo Wah; Ang, Soon Loong [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Teo, Edwin Hang Tong, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore)

    2015-03-09

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random and uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.

  1. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud;

    2012-01-01

    exothermic than that of amorphous calcium carbonate (ACC). This suggests that enthalpy of crystallization in carbonate systems is ionic-size controlled, which may have significant implications in a wide variety of conditions, including geological sequestration of anthropogenic carbon dioxide.......Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  2. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We present results from an investigation of boron uptake in vivo by the synovium.

  3. Amorphous Solid Water:

    DEFF Research Database (Denmark)

    Wenzel, Jack; Linderstrøm-Lang, C. U.; Rice, Stuart A.

    1975-01-01

    The structure factor of amorphous solid D2O deposited from the vapor at 10°K has been obtained by measuring the neutron diffraction spectrum in the wave vector transfer from 0.8 to 12.3 reciprocal angstroms. The results indicate that the phase investigated is amorphous and has a liquiid-like stru......The structure factor of amorphous solid D2O deposited from the vapor at 10°K has been obtained by measuring the neutron diffraction spectrum in the wave vector transfer from 0.8 to 12.3 reciprocal angstroms. The results indicate that the phase investigated is amorphous and has a liquiid...

  4. Amorphous pharmaceutical solids.

    Science.gov (United States)

    Vranić, Edina

    2004-07-01

    Amorphous forms are, by definition, non-crystalline materials which possess no long-range order. Their structure can be thought of as being similar to that of a frozen liquid with the thermal fluctuations present in a liquid frozen out, leaving only "static" structural disorder. The amorphous solids have always been an essential part of pharmaceutical research, but the current interest has been raised by two developments: a growing attention to pharmaceutical solids in general, especially polymorphs and solvates and a revived interest in the science of glasses and the glass transition. Amorphous substances may be formed both intentionally and unintentionally during normal pharmaceutical manufacturing operations. The properties of amorphous materials can be exploited to improve the performance of pharmaceutical dosage forms, but these properties can also give rise to unwanted effects that need to be understood and managed in order for the systems to perform as required.

  5. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    Science.gov (United States)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  6. Small grain size zirconium-based coatings deposited by magnetron sputtering at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, O., E-mail: omar.jimenez.udg@gmail.com [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Audronis, M.; Leyland, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Flores, M.; Rodriguez, E. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Kanakis, K.; Matthews, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-09-30

    Hard, partly amorphous, ZrTiB(N) coatings were deposited by Physical Vapour Deposition (PVD) onto (111) silicon wafers at low substrate temperatures of 85 and 110 °C using Closed Field Unbalanced Magnetron Sputtering. A segmented rectangular sputter target composed of three pieces (Zr/TiB{sub 2}/Zr) was used as the source of evaporation of coating components. Two different substrate biases (i.e. floating potential and − 50 V) and N{sub 2} reactive-gas flow rates of 2, 4 and 6 sccm were employed as the main deposition parameter variables. The chemical composition, structure, morphology and mechanical properties were investigated using a variety of analytical techniques such as Glow-Discharge Optical Emission Spectroscopy, cross-sectional Scanning Electron Microscopy (SEM), Glancing Angle X-ray Diffraction (GAXRD) and nanoindentation. With other parameters fixed, coating properties were found to be dependent on the substrate negative bias and nitrogen flow rate. Linear scan profiles and SEM imaging revealed that all coatings were smooth, dense and featureless (in fracture cross section) with no apparent columnar morphology or macro-defects. GAXRD structural analysis revealed that mostly metallic phases were formed for coatings containing no nitrogen, whereas a solid solution (Zr,Ti)N single phase nitride was found in most of the reactively deposited coatings — exhibiting a very small grain size due to nitrogen and boron grain refinement effects. Hardness values from as low as 8.6 GPa up to a maximum of 25.9 GPa are related mainly to solid solution strengthening effects. The measured elastic moduli correlated with the trends in hardness behaviour; values in the range of 120–200 GPa were observed depending on the selected deposition parameters. Also, high H/E values (> 0.1) were achieved with several of the coatings.

  7. Residual stresses in boron/tungsten and boron/carbon fibers

    Science.gov (United States)

    Behrendt, D. R.

    1977-01-01

    Longitudinal residual stress distribution is determined for 102-micron diam B/W and B/C fibers. The 102-micron diam B/W fibers are deposited on a 12.7-micron diam tungsten wire resistively heated in a BCl3-H2 reactor. The 102-micron diam B/C fibers are made by deposition of boron on a pyrolytic graphite-coated carbon fiber. The longitudinal residual stress distribution is calculated from measurements of the change in length of the fiber produced by removal of the surface through electropolishing. It is found that for both types of fibers, the residual stress vary from a compressive stress at the surface to a tensile stress in the boron near the core. Closer to the core and in the core, significant differences in the residual stresses are observed for the B/W and B/C fibers.

  8. Boron effects on the ductility of a nano-cluster-strengthened ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.W. [Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 (China); Materials Research and Education Center, Auburn University, 275 Wilmore Labs, Auburn, AL 36849 (United States); Liu, C.T., E-mail: mmct8tc@inet.polyu.edu.hk [Materials Research and Education Center, Auburn University, 275 Wilmore Labs, Auburn, AL 36849 (United States); Department of Mechanical Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Guo, S. [Department of Mechanical Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Cheng, J.L.; Chen, G. [Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 (China); Fujita, Takeshi; Chen, M.W. [Institute for Materials Research, and World Premier International Research Center for Atoms, Molecules and Materials, Tohoku University, Sendai 980-8577 (Japan); Chung, Yip-Wah; Vaynman, Semyon; Fine, Morris E. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States); Chin, Bryan A. [Materials Research and Education Center, Auburn University, 275 Wilmore Labs, Auburn, AL 36849 (United States)

    2011-01-25

    Research highlights: {yields} Cu-rich nano-particle precipitation strengthens the ferritic steels. {yields} Boron doping suppresses brittle intergranular fracture. {yields} Moisture-induced environmental embrittlement can be alleviated by surface coating. - Abstract: The mechanical properties of Cu-rich nano-cluster-strengthened ferritic steels with and without boron doping were investigated. Tensile tests at room temperature in air showed that the B-doped ferritic steel has similar yield strength but a larger elongation than that without boron doping after extended aging at 500 deg. C. There are three mechanisms affecting the ductility and fracture of these steels: brittle cleavage fracture, week grain boundaries, and moisture-induced hydrogen embrittlement. Our study reveals that boron strengthens the grain boundary and suppresses the intergranular fracture. Furthermore, the moisture-induced embrittlement can be alleviated by surface coating with vacuum oil.

  9. Boron contamination in drinking - irrigation water and boron removal methods

    Directory of Open Access Journals (Sweden)

    Meltem Bilici Başkan

    2014-03-01

    Full Text Available Boron presents in IIIA group of periodic table and has high ionization capacity. Therefore it is classified as a metalloid. Average boron concentration in earth's crust is 10 mg/kg. It presents in the environment as a salts of Ca, Na, and Mg. Boron reserves having high concentration and economical extent are found mostly in Turkey and in arid, volcanic and high hydrothermal activity regions of U.S. as compounds of boron attached to oxygen. Boron is an essential micronutrient for plants, although it may be toxic at higher levels. The range in which it is converted from a nutrient to a contaminant is quite narrow. Boron presents in water environment as a boric acid and rarely borate salts. The main boron sources, whose presence is detected in surface waters, are urban wastes and industrial wastes, which can come from a wide range of different activities as well as several chemical products used in agriculture. In Turkey, the most pollutant toxic element in drinking and irrigation water is boron. Therefore boron removal is very important in terms of human health and agricultural products in high quality. Mainly boron removal methods from drinking water and irrigation water are ion exchange, ultrafiltration, reverse osmosis, and adsorption.

  10. Plasma boron and the effects of boron supplementation in males.

    Science.gov (United States)

    Green, N R; Ferrando, A A

    1994-11-01

    Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all.

  11. 含B量对激光熔覆FeCoCrNiBx(x=0.5,0.75,1.0,1.25)高熵合金涂层组织结构与耐磨性的影响%Effect of Boron Addition on the Microstructure and Wear Resistance of FeCoCrNiBx (x=0.5, 0.75, 1.0, 1.25) High-Entropy alloy Coating Prepared by Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    陈国进; 张冲; 唐群华; 戴品强

    2015-01-01

    采用激光熔覆技术制备FeCoCrNiBx高熵合金涂层,用X射线衍射(XRD)、扫描电镜(SEM)、硬度和耐磨测试等方法,研究了B含量对激光熔覆FeCoCrNiBx高熵合金涂层的组织结构、硬度和耐磨性能的影响.结果表明,随B含量的增加,合金相结构逐渐由fcc固溶体结构转变为fcc固溶体和M3B相共存,M3B相主要为Cr、Fe硼化物.随B含量的增加,枝晶组织中析出颗粒状和短棒状的M3B相,且M3B相逐渐长大成长条状.B的增加显著提高合金涂层的硬度,由4470 MPa增加到8480 MPa,且磨损量随着B的增加而减少.%The FeCoCrNiBx high-entropy alloy coatings were prepared by laser cladding.The effect of boron addition on microstructure,hardness and wear resistance of FeCoCrNiBx high-entropy alloy coating were investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),hardness and wear testers.The results show that with the boron addition increasing,the structure of alloys change from fcc structure to fcc structure with M3B phase precipitation,and M3B phase are mainly borides of Cr and Fe.Meanwhile,the granular and short rod-like M3B phase is precipitated in the coatings.And a blocky M3B phase forms with boron addition.Microhardness and wear resistance are significantly enhanced by the formation M3B phase.The microhardness increases from 4470 to 8480 MPa,and the wear-loss of FeCoCrNiBx high-entropy alloy coating decrease with boron addition.

  12. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

    Science.gov (United States)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka

    2015-12-03

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  13. Effect of factors on the extraction of boron from slags

    Science.gov (United States)

    Zhang, Peixin; Sui, Zhitong

    1995-04-01

    The effects of slag composition, additive agent, and heat treatment on the crystal morphologies, the crystallization behavior, and the efficiency of extraction of boron (EEB) from slags were investigated by chemical analysis, polarization microscope, and X-ray diffraction (XRD) as well as differential thermal analysis (DTA). The EEB varied with the slag composition. The farther the slag composition deviated from the line between 2MgO · B2O3 and 2MgO · SiO2 in the MgO-B2O3-SiO2 system, the lower the EEB. The EEB was directly related to the precipitating characteristics of the boron component in the slags. The EEB was high if the boron component existed in the form of a crystalline phase, otherwise the EEB was low when boron was in the form of an amorphous phase. The EEB from MgO-Al2O3-CaO-B2O3-SiO2 slag varied with the temperature of heat treatment; the highest EEB appeared at 1100 °C. The EEB and the crystallinities were increased by addition of TiO2 and MOx (M = Mg, Ca, Fe, Si). The effect of MOx was more notable than that of TiO2.

  14. Oxidation of Silicon and Boron in Boron Containing Molten Iron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new process of directly smelting boron steel from boron-containing pig iron has been established. The starting material boron-containing pig iron was obtained from ludwigite ore, which is very abundant in the eastern area of Liaoning Province of China. The experiment was performed in a medium-frequency induction furnace, and Fe2O3 powder was used as the oxidizing agent. The effects of temperature, addition of Fe2O3, basicity, stirring, and composition of melt on the oxidation of silicon and boron were investigated respectively. The results showed that silicon and boron were oxidized simultaneously and their oxidation ratio exceeded 90% at 1 400 ℃. The favorable oxidation temperature of silicon was about 1 300-1 350 C. High oxygen potential of slag and strong stirring enhanced the oxidation of silicon and boron.

  15. Low-Cost Preparation of Boron Nitride Ceramic Powders

    Institute of Scientific and Technical Information of China (English)

    LI Duan; ZHANG Changrui; LI Bin; CAO Feng; WANG Siqing; LIU Kun; FANG Zhenyu

    2012-01-01

    The amorphous boron nitride ceramic powders were prepared at 750-950 ℃ by the lowcost urea route,and the effects of preparation temperatures,molar ratios of the raw materials and oxidation treatment on the composition,structure and surface morphology of the products were investigated through FTIR,XRD and SEM.The results show that the products ceramize and crystallize gradually with the increase of the temperature.When the molar ratio and reaction temperature are 3:2 and 850 ℃,respectively,the products have high purity,compact structure and nice shape.The oxidation treatment at 450 ℃ will not impair the composition and structure of boron nitfide but effectively remove the impurities.

  16. Electrodeposition of nickel-BN composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pompei, E. [Dip. Chimica, Materiali e Ing. Chimica G. Natta, Politecnico di Milano, Via Mancinelli 7, 20151 Milano (Italy); Magagnin, L. [Dip. Chimica, Materiali e Ing. Chimica G. Natta, Politecnico di Milano, Via Mancinelli 7, 20151 Milano (Italy)], E-mail: luca.magagnin@polimi.it; Lecis, N. [Dip. di Meccanica, Politecnico di Milano, Milano (Italy); Cavallotti, P.L. [Dip. Chimica, Materiali e Ing. Chimica G. Natta, Politecnico di Milano, Via Mancinelli 7, 20151 Milano (Italy)

    2009-03-30

    Electrodeposition of nickel-boron nitride (Ni-BN) composites is carried out from a sulfamate bath containing up to 10 g/l of dispersed boron nitride particles with size 0.5 {mu}m. Microhardness and wear resistance of the composites are investigated. Both the properties are influenced by the amount of incorporated boron nitride particles. Commercial surfactant containing alkyl-dimethyl-benzyl-ammonium saccharinate is used to stabilize the electrolyte: the effects on mechanical properties and structure of the electrodeposits are investigated. Morphology of the coatings and the effects of codeposited particles on metal matrix structure are reported.

  17. Structures, stability, mechanical and electronic properties of α-boron and α*-boron

    OpenAIRE

    Chaoyu He; J. X. Zhong

    2013-01-01

    The structures, stability, mechanical and electronic properties of α-boron and a promising metastable boron phase (α*-boron) have been studied by first-principles calculations. α-boron and α*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of “3S-6D-3S” and “2S-6D-4S”, respectively. The total energy calculations show that α*-boron is less stable than α-boron but more favorable than the well-known β-boron and γ-boron at zero pressure. Both α-boron and...

  18. Study on the Structures and Properties of Ni-W-B-CeO2 Composite Coatings Prepared by Pulse Electrodeposition

    Institute of Scientific and Technical Information of China (English)

    Xu Ruidong; Wang Junli; Guo Zhongcheng; Wang Hua

    2007-01-01

    The aim of this research is to pulse co-deposit nano-CeO2 particles into Ni-W-B alloy coatings in order to improve the surface properties. The influence of pulse frequency and duty circle on deposition rate, microhardness and microstructures, and the influence of heat treatment temperature on phase structures, microhardness and abrasivity of Ni-W-B-CeO2 composite coatings were investigated. The results indicated that the pulse co-deposition of nickel, tungsten, boron and nano-CeO2 particle from the bath which nano-CeO2 particle was suspended by high speed mechanical stirring led to the Ni-W-B-CeO2 composite coatings, possessing better microhardness and abrasion resistance when heat-treated at 400℃ for 1h. The microhardness as-deposited with 636Hz and the deposition rate with 0.0281mm·h-1 was the highest at pulse frequency with 1000Hz and pulse duty circle with 10%. Microstructures analysis displays that decreasing pulse duty cycle leads to refinement in grain structures and the improvement of microstructures. X-ray diffraction shows that the composite coating as-deposited was mainly in the amorphous state and partially crystallized, but when heat treated at 400℃, the crystallization trend was strenthened further.

  19. Investigation of the hot ductility of a high-strength boron steel

    Energy Technology Data Exchange (ETDEWEB)

    Güler, Hande, E-mail: handeguler@uludag.edu.tr; Ertan, Rukiye; Özcan, Reşat

    2014-07-01

    In this study, the high-temperature ductility behaviour of an Al–Si-coated 22MnB5 sheet was investigated. The mechanical properties of Al–Si-coated 22MnB5 boron steel were examined via hot tensile tests performed at temperatures ranging from 400 to 900 °C at a strain rate of 0.083 s{sup −1}. The deformation and fracture mechanisms under hot tensile testing were considered in relation to the testing data and to the fracture-surface observations performed via SEM. The hot ductility of the tested boron steel was observed as a function of increasing temperature and the Al–Si-coated 22MnB5 boron steel exhibited a ductility loss at 700 °C.

  20. Nickel-boron electrochemical properties investigations

    Energy Technology Data Exchange (ETDEWEB)

    Kanta, A.-F., E-mail: abdoul.kanta@umons.ac.b [Service de Science des Materiaux, Universite de Mons, 56 rue de l' Epargne, 7000 Mons (Belgium); Poelman, M. [Materia Nova a.s.b.l, 56 rue de l' Epargne, 7000 Mons (Belgium); Vitry, V.; Delaunois, F. [Service de Metallurgie, Universite de Mons, 56 rue de l' Epargne, 7000 Mons (Belgium)

    2010-08-27

    Electroless nickel-boron (Ni-B) was synthesized on mild steel. Coating thickness was approximately 30 {mu}m. Some of the coatings were submitted to a hardening heat treatment at 400 {sup o}C for 1 h in an atmosphere containing 95% Ar and 5% H{sub 2} to improve their mechanical performance. Heat treated and untreated samples were submitted to the Taber abrasion test to assess their wear resistance. The wear track was then examined by SEM and roughness measurement. The Taber Wear Index of untreated samples was slightly better than that of steel but heat treated samples attained TWI as small as 13. The corrosion resistance of the Ni-B coatings was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy. The EIS results showed diffusion phenomena in 0.1 M NaCl solution. Electroless Ni-B coating increases the corrosion resistance of steel and heat treatments allow a further enhancement. Wear decreases that resistance but the worn product keeps a better behaviour than uncoated parts.

  1. Synthesis and oxidation behavior of boron-substituted carbon powders by hot filament chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Boron-substituted carbon powder, BxC1-x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared BxC1-x samples can be controlled by varying the relative proportions of methane and diborane. X-ray diffraction, transmission electron microscopy, and electron energy loss spectrum confirm the successful synthesis of an amorphous BC5 compound, which consists of 10―20 nm particles with disk-like morphology. Thermogravimetry measurement shows that BC5 compound starts to oxidize ap-proximately at 620℃ and has a higher oxidation resistance than carbon.

  2. Long-Term Corrosion Tests of Prototypical SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Saw, C K; Rebak, R H; Day, S D; Lian, T; Hailey, P D; Payer, J H; Branagan, D J; Aprigliano, L F

    2007-05-10

    An iron-based amorphous metal with good corrosion resistance and a high absorption cross-section for thermal neutrons has been developed and is reported here. This amorphous alloy has the approximate formula Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} and is known as SAM2X5. Chromium (Cr), molybdenum (Mo) and tungsten (W) were added to provide corrosion resistance, while boron (B) was added to promote glass formation and the absorption of thermal neutrons. Since this amorphous metal has a higher boron content than conventional borated stainless steels, it provides the nuclear engineer with design advantages for criticality control structures with enhanced safety. While melt-spun ribbons with limited practical applications were initially produced, large quantities (several tons) of gas atomized powder have now been produced on an industrial scale, and applied as thermal-spray coatings on prototypical half-scale spent nuclear fuel containers and neutron-absorbing baskets. These prototypes and other SAM2X5 samples have undergone a variety of corrosion testing, including both salt-fog and long-term immersion testing. The modes and rates of corrosion have been determined in the various environments, and are reported here. While these coatings have less corrosion resistance than melt-spun ribbons and optimized coatings produced in the laboratory, substantial corrosion resistance has been achieved.

  3. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  4. Corrosion resistance of monolayer hexagonal boron nitride on copper

    Science.gov (United States)

    Mahvash, F.; Eissa, S.; Bordjiba, T.; Tavares, A. C.; Szkopek, T.; Siaj, M.

    2017-02-01

    Hexagonal boron nitride (hBN) is a layered material with high thermal and chemical stability ideal for ultrathin corrosion resistant coatings. Here, we report the corrosion resistance of Cu with hBN grown by chemical vapor deposition (CVD). Cyclic voltammetry measurements reveal that hBN layers inhibit Cu corrosion and oxygen reduction. We find that CVD grown hBN reduces the Cu corrosion rate by one order of magnitude compared to bare Cu, suggesting that this ultrathin layer can be employed as an atomically thin corrosion-inhibition coating.

  5. Health hazards due to the inhalation of amorphous silica.

    Science.gov (United States)

    Merget, R; Bauer, T; Küpper, H U; Philippou, S; Bauer, H D; Breitstadt, R; Bruening, T

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic ("thermal" or "fumed") silica, and (3) chemically or physically modified silica. According to the different physicochemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no study

  6. Feasibility studies of the growth of 3-5 compounds of boron by MOCVD

    Science.gov (United States)

    Manasevit, H. M.

    1988-01-01

    Boron-arsenic and boron-phosphorus films have been grown on Si sapphire and silicon-on-sapphire (SOS) by pyrolyzing Group 3 alkyls of boron, i.e., trimethylborane (TMB) and triethylborane (TEB), in the presence of AsH3 and PH3, respectively, in an H2 atmosphere. No evidence for reaction between the alkyls and the hydrides on mixing at room temperature was found. However, the films were predominantly amorphous. The film growth rate was found to depend on the concentration of alkyl boron compound and was essentially constant when TEB and AsH3 were pyrolyzed over the temperature range 550 C to 900 C. The films were found to contain mainly carbon impurities (the amount varying with growth temperature), some oxygen, and were highly stressed and bowed on Si substrates, with some crazing evident in thin (2 micron) B-P and thick (5 micron) B-As films. The carbon level was generally higher in films grown using TEB as the boron source. Films grown from PH3 and TMB showed a higher carbon content than those grown from AsH3 and TMB. Based on their B/As and B/P ratios, films with nominal compositions B sub12-16 As2 and B sub1.1-1.3 P were grown using TMB as the boron source.

  7. Amorphous TM1−xBx alloy particles prepared by chemical reduction (invited)

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1991-01-01

    Amorphous transition-metal boron (TM-B) alloy particles can be prepared by chemical reduction of TM ions by borohydride in aqueous solutions. ln the last few years systematic studies of the parameters which control the composition, and, in turn, many of the properties of the alloy particles, have...... been performed and are reviewed in the present paper. The most important preparation parameters which influence the composition are the concentration of the borohydride solution and the pH of the TM salt solution. By controlling these parameters it is possible to prepare amorphous alloy samples...

  8. Corrosion-resistant metallic coatings

    OpenAIRE

    F. Presuel-Moreno; M.A. Jakab; N. Tailleart; Goldman, M.; J. R. Scully

    2008-01-01

    We describe recent computational and experimental studies on the corrosion properties of metallic coatings that can be tailored (tuned) to deliver up to three corrosion-inhibiting functions to an underlying substrate. Attributes are tuned by a selection of alloy compositions and nanostructures, ideally in alloy systems that offer flexibility of choice to optimize the corrosion-resisting properties. An amorphous Al-based coating is tuned for corrosion protection by on-demand release of ionic i...

  9. The Kinetics and Dry-Sliding Wear Properties of Boronized Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    Dong Mu

    2013-01-01

    Full Text Available Some properties of boride formed on gray cast iron (GCI have been investigated. GCI was boronized by powder-pack method using Commercial LSB-II powders at 1123, 1173, and 1223 K for 2, 4, 6, and 8 h, respectively. Scanning electron microscopy showed that boride formed on the surface of boronized GCI had tooth-shaped morphology. The hardness of boride formed on surfaces of GCI ranged from 1619 to 1343 HV0.025, and quenched and tempered GCI ranged from 400 to 610 HV0.025. The boride formed in the coating layer confirmed by X-ray diffraction analysis was Fe2B single phase. Depending on boronizing time and temperature, the thickness of coating layers on boronized GCI ranged from 26 to 105 μm. The activation energy was 209 kJ/mol for boronized GCI. Moreover, the possibility of predicting the iso-thickness of boride layers variation was studied. Dry-sliding wear tests showed that the wear resistance of boronized sample was greater than that of quenched and tempered sample.

  10. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma; Deposition assistee par un plasma a arc a haut courant continu de couches minces de Nitrure de Bore et de Silicium microcristallin hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Franz, D. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    1999-09-01

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 {sup o}C according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 10{sup 12}-10{sup 1'}3 cm{sup -3}. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind

  11. Characterization of boron carbide nanoparticles prepared by a solid state thermal reaction

    Science.gov (United States)

    Chang, B.; Gersten, B. L.; Szewczyk, S. T.; Adams, J. W.

    2007-01-01

    The production of boron carbide (B4C) nanoparticles was investigated in a conventional high temperature furnace reactor. The reaction was carried out by heating a mixture of amorphous carbon and amorphous boron at 1550 °C to efficiently obtain a quantity of B4C. Scanning electron microscopy studies showed the average size of B4C particles was 200 nm, ranging from 50 nm to 350 nm. X-ray diffraction transmission electron microscopy and electron diffraction studies indicated that the prepared nanoparticles were crystalline B4C with a high density twin structure. High resolution transmission electron microscopy and selected area diffraction were also used to further characterize the structure of the prepared B4C particles, while energy dispersive spectroscopy and electron energy loss spectroscopy were used to determine the stoichiometry of the product. A solid state diffusion reaction mechanism is proposed.

  12. Evidence for the neutralization of boron in silicon using surface analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L.; Nelson, A.J.; Dhere, R.G.

    1987-07-01

    Interactions between the shallow acceptor boron and hydrogen in single crystal, polycrystalline, and amorphous Si are investigated. Low-temperature secondary ion mass spectrometry depth-compositional profiles indicate a definite interaction between the boron concentration and the hydrogen penetration in single crystals and at grain boundaries. The bonding of the H is identified to be directly to the Si rather than to the B, and is confirmed by infrared measurements. Electrical neutralization of the B by hydroxyl-group bonding is also reported at oxygen-rich Si grain boundaries. No similar relationships between P concentration and H penetration are observed. In amorphous Si material, the B-doping level has only a limited effect on the hydrogen penetration which seems to be controlled instead by structural diffusion mechanisms.

  13. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  14. Magnetostrictive amorphous bimetal sensors

    CERN Document Server

    Mehnen, L; Kaniusas, E

    2000-01-01

    The paper describes the application of a magnetostrictive amorphous ribbon (AR) for the detection of bending. In order to increase sensitivity, a bimetal structure is used which consists of AR and a nonmagnetic carrier ribbon. Several methods for the preparation of the bimetal are discussed. Results of the bending sensitivities are given for various combinations of the material types indicating crucial problems of bimetal preparation.

  15. An Exploration of Neutron Detection in Semiconducting Boron Carbide

    Science.gov (United States)

    Hong, Nina

    . Because neutron detection measurements indicate that charge capture in boron carbide is affected by the nanocrystalline/amorphous nature of the semiconductor, the effects of incomplete charge collection efficiencies on the neutron detection efficiencies and pulse height spectra in heterostructured p-n diode neutron detectors have been modeled using a Monte Carlo GEANT4 simulation. The dissertation ends with suggestions for devices with improved neutron detection efficiencies.

  16. FTIR and electrical characterization of a-Si:H layers deposited by PECVD at different boron ratios

    Energy Technology Data Exchange (ETDEWEB)

    Orduna-Diaz, A., E-mail: abdu@susu.inaoep.mx [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico); Trevino-Palacios, C.G. [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico); Rojas-Lopez, M.; Delgado-Macuil, R.; Gayou, V.L. [Centro de Investigacion en Biotecnologia Aplicada (CIBA), IPN, Tlaxcala, Tlax. 72197 (Mexico); Torres-Jacome, A. [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico)

    2010-10-25

    Hydrogenated amorphous silicon (a-Si:H) has found applications in flat panel displays, photovoltaic solar cell and recently has been employed in boron doped microbolometer array. We have performed electrical and structural characterizations of a-Si:H layers prepared by plasma enhanced chemical vapor deposition (PECVD) method at 540 K on glass substrates at different diborane (B{sub 2}H{sub 6}) flow ratios (500, 250, 150 and 50 sccm). Fourier transform infrared spectroscopy (FTIR) measurements obtained by specular reflectance sampling mode, show Si-Si, B-O, Si-H, and Si-O vibrational modes (611, 1300, 2100 and 1100 cm{sup -1} respectively) with different strengths which are associated to hydrogen and boron content. The current-voltage curves show that at 250 sccm flow of boron the material shows the lowest resistivity, but for the 150 sccm boron flow it is obtained the highest temperature coefficient of resistance (TCR).

  17. Chronic boron exposure and human semen parameters.

    Science.gov (United States)

    Robbins, Wendie A; Xun, Lin; Jia, Juan; Kennedy, Nola; Elashoff, David A; Ping, Liu

    2010-04-01

    Boron found as borates in soil, food, and water has important industrial and medical applications. A panel reviewing NTP reproductive toxicants identified boric acid as high priority for occupational studies to determine safe versus adverse reproductive effects. To address this, we collected boron exposure/dose measures in workplace inhalable dust, dietary food/fluids, blood, semen, and urine from boron workers and two comparison worker groups (n=192) over three months and determined correlations between boron and semen parameters (total sperm count, sperm concentration, motility, morphology, DNA breakage, apoptosis and aneuploidy). Blood boron averaged 499.2 ppb for boron workers, 96.1 and 47.9 ppb for workers from high and low environmental boron areas (pBoron concentrated in seminal fluid. No significant correlations were found between blood or urine boron and adverse semen parameters. Exposures did not reach those causing adverse effects published in animal toxicology work but exceeded those previously published for boron occupational groups.

  18. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro.

    NARCIS (Netherlands)

    Leeuwenburgh, S.C.G.; Layrolle, P.; Barrere, F.; Bruijn, J.G.M. de; Schoonman, J.; Blitterswijk, C.A. van; Groot, K. de

    2001-01-01

    A new biomimetic method for coating metal implants enables the fast formation of dense and homogeneous calcium phosphate coatings. Titanium alloy (Ti6Al4V) disks were coated with a thin, carbonated, amorphous calcium phosphate (ACP) by immersion in a saturated solution of calcium, phosphate, magnesi

  19. A general method to coat colloidal particles with titiana

    NARCIS (Netherlands)

    Demirors, A.F.; van Blaaderen, A.; Imhof, A.

    2010-01-01

    We describe a general one-pot method for coating colloidal particles with amorphous titania. Various colloidal particles such as silica particles, large silver colloids, gibbsite platelets, and polystyrene spheres were successfully coated with a titania shell. Although there are several ways of coat

  20. Preparation of Boron Suboxide Nanoparticles and Their Processing

    Directory of Open Access Journals (Sweden)

    Jānis GRABIS

    2012-03-01

    Full Text Available Crystalline boron suboxide B6O particles with size in the range of 1.5 µm – 2 µm and crystallite size in the range of 32 nm – 40 nm were prepared by calcination at 1400 °C for one or two hours of precursors obtained by mixing X-ray amorphous boron with water solution of B2O3 followed by evaporation and drying. Decrease of molar ratio B/B2O3 from 16 to 14 in the precursor mixture reduced nonstoichiometry of prepared B6O although simultaneously it increased admixture of B2O3. Particulate composites of B6O with TiN or Ni nanoparticles were prepared by mechanical mixing. The spark plasma sintering process intensified the densification of prepared boron suboxide nanoparticles at 1900 °C and allowed manufacturing of fully dense bodies (98 % during five minutes. Additives of TiN or Ni nanoparticles reduced sintering temperature to 1700 °C and their promoted formation of Ti or Ni borides.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1345

  1. Evidence of amorphisation of B4C boron carbide under slow, heavy ion irradiation

    Science.gov (United States)

    Gosset, D.; Miro, S.; Doriot, S.; Victor, G.; Motte, V.

    2015-12-01

    Boron carbide is widely used either as armor-plate or neutron absorber. In both cases, a good structural stability is required. However, a few studies have shown amorphisation may occur in severe conditions. Hard impacts lead to the formation of amorphous bands. Some irradiations in electronic regime with H or He ions have also shown amorphisation of the material. Most authors however consider the structure is not drastically affected by irradiations in the ballistic regime. Here, we have irradiated at room temperature dense boron carbide pellets with Au 4 MeV ions, for which most of the damage is in the ballistic regime. This study is part of a program devoted to the behavior of boron carbide under irradiation. Raman observations have been performed after the irradiations together with transmission electron microscopy (TEM). Raman observations show a strong structural damage at moderate fluences (1014/cm2, about 0.1 dpa), in agreement with previous studies. On the other hand, TEM shows the structure remains crystalline up to 1015/cm2 then partially amorphises. The amorphisation is heterogeneous, with the formation of nanometric amorphous zones with increasing density. It then appears short range and long range disorder occurs at quite different damage levels. Further experiments are in progress aiming at studying the structural stability of boron carbide and isostructural materials (α-B, B6Si,…).

  2. Determination of the Influence of c-BN+h-BN Coating Structure on Brittleness

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk; Adam Lejwoda; Przemyslaw Cieszkowski; Przemyslaw Libuda

    2004-01-01

    In the article is presented the brittleness study of boron nitride coatings deposited on cutting edges made of cemented carbides by the pulse-plasma method (PPD). Influences of the structure (density, pores, microcracks) of coating material on the brittleness and on selected technological parameters of boron nitride formation by PPD method particularly taking into account discharge voltage on brittleness are shown. Differences between values of both a1(300) and a1(500)coefficients characterized susceptibility to coatings cracking of investigated coating manufactured using different values of discharge voltage were defined. Results of an investigations have been confirmed usefulness of Palmqvist's method for measurement of coating susceptibility to brittle cracking.

  3. Determination of the Influence of c-BN+h-BN Coating Structure on Brittleness

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk; AdamLejwoda; PrzemyslawCieszkowski; PrzemyslawLibuda

    2004-01-01

    In the article is presented the brittleness study of boron nitride coatings deposited on cutting edges made of cemented carbides by the pulse-plasma method (PPD). Influences of the structure (density, pores, microcracks) of coating material on the brittleness and on selected technological parameters of boron nitride formation by PPD method particularly taking into account discharge voltage on brittleness are shown. Differences between values of both a1(300) and a1(500)coefficients characterized susceptibility to coatings cracking of investigated coating manufactured using different values of discharge voltage were defined. Results of an investigations have been confirmed usefulness of Palmqyist's method for measurement of coating susceptibility to brittle cracking.

  4. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    Science.gov (United States)

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  5. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.

  6. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yimao, E-mail: yimao.wan@anu.edu.au; Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres [Research School of Engineering, The Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

    2015-12-07

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} for 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  7. Design of Polymer Coatings in Automotive Engines

    Institute of Scientific and Technical Information of China (English)

    LIAO Han-lin; ZHANG Ga; BORDES Jean-Michel; CHRISTIAN Coddet

    2004-01-01

    Driven by economical and ecological reasons, thermoplastics based coatings were more and more used in automotive engines. Two design concepts, flame spraying and serigraphy PEEK coatings on light metal substrate, were introduced in this paper. The friction and wear behavior of PEEK based coatings were investigated systematically. Coatings with different crystallinities can be obtained when cooling speed is controlled. Among three sprayed coatings considered with different crystallinities, the one with highest crystallinity exhibits best friction and wear behavior under dry sliding condition. Under lubricated sliding condition, however, the amorphous coating gives lower friction coefficient. The micron particles such as SiC,MoS2 and graphite in composite coatings can improve significantly the coating wear resistance and have a impact on coating friction behavior.

  8. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, K

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  9. Preparation and properties of HA coating hydrothermally synthesized from plasma sprayed CaHPO4 coating

    Institute of Scientific and Technical Information of China (English)

    FU Tao; HAN Yong; ZHANG Yu-mei; XU Ke-wei

    2001-01-01

    @@ INTRODUCTION Hydroxyapatite (HA) biocoatings can form osseointegration at a shorter time than metallic implants, and plasma sprayed (PS) HA coating has received the widest studies and is now used clinically. However, due to the high temperature of plasma flame, soluble impurity phases and amorphous calcium phosphate were contained which declined the bonding strength of the coating, and spoiled the excellent biological properties of HA.

  10. Amorphous Diamond MEMS and Sensors

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, JOHN P.; FRIEDMANN, THOMAS A.; ASHBY, CAROL I.; DE BOER, MAARTEN P.; SCHUBERT, W. KENT; SHUL, RANDY J.; HOHLFELDER, ROBERT J.; LAVAN, D.A.

    2002-06-01

    This report describes a new microsystems technology for the creation of microsensors and microelectromechanical systems (MEMS) using stress-free amorphous diamond (aD) films. Stress-free aD is a new material that has mechanical properties close to that of crystalline diamond, and the material is particularly promising for the development of high sensitivity microsensors and rugged and reliable MEMS. Some of the unique properties of aD include the ability to easily tailor film stress from compressive to slightly tensile, hardness and stiffness 80-90% that of crystalline diamond, very high wear resistance, a hydrophobic surface, extreme chemical inertness, chemical compatibility with silicon, controllable electrical conductivity from insulating to conducting, and biocompatibility. A variety of MEMS structures were fabricated from this material and evaluated. These structures included electrostatically-actuated comb drives, micro-tensile test structures, singly- and doubly-clamped beams, and friction and wear test structures. It was found that surface micromachined MEMS could be fabricated in this material easily and that the hydrophobic surface of the film enabled the release of structures without the need for special drying procedures or the use of applied hydrophobic coatings. Measurements using these structures revealed that aD has a Young's modulus of {approx}650 GPa, a tensile fracture strength of 8 GPa, and a fracture toughness of 8 MPa{center_dot}m {sup 1/2}. These results suggest that this material may be suitable in applications where stiction or wear is an issue. Flexural plate wave (FPW) microsensors were also fabricated from aD. These devices use membranes of aD as thin as {approx}100 nm. The performance of the aD FPW sensors was evaluated for the detection of volatile organic compounds using ethyl cellulose as the sensor coating. For comparable membrane thicknesses, the aD sensors showed better performance than silicon nitride based sensors. Greater

  11. Combustion of boron containing compositions

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Y.; Pivkina, A. [Institute of Chemical Physics, Russian Academy of Science, Moscow (Russian Federation)

    1996-12-31

    Boron is one of the most energetic components for explosives, propellants and for heterogeneous condensed systems in common. The combustion process of mixtures of boron with different oxidizers was studied. The burning rate, concentration combustion limits, the agglomeration and dispersion processes during reaction wave propagation were analysed in the respect of the percolation theory. The linear dependence of the burning rate on the contact surface value was demonstrated. The percolative model for the experimental results explanation is proposed. (authors) 5 refs.

  12. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  13. Thermal Studies on Boron-Based Initiator Formulation.

    Directory of Open Access Journals (Sweden)

    A. G. Rajendran

    1996-12-01

    Full Text Available Boron-potassium nitrate pyrotechnic composition can be converted into a hot wire-sensitive initiator formulation by the addition of an extra fuel. viz. lead thiocyanate. The ignition temperature of this composition depends on the percentage of thiocyanate in the mix and follows a binomial fit. The kinetic parameters. viz. activation energy E and pre-exponential factor A of the charge have been calculated from TG and DSC curves using different approaches developed by Coats-Redfern and Kissinger. Ignition delays measured from isothermal TG runs were found to yield equally good values of E and A. A comparison of these values for the tricomponent system' with those of the bicomponent systems as well as of the ingredients suggests that the starting reaction in this formulation is the reaction between lead thiocyanate and potassium nitrate which energises the main reaction between boron and potassium nitrate. leading to ignition.

  14. Facile synthesis of boron nitride nanotubes and improved electrical conductivity.

    Science.gov (United States)

    Chen, Yongjun; Luo, Lijie; Zhou, Longchang; Mo, Libin; Tong, Zhangfa

    2010-02-01

    A layer of catalyst film on substrate is usually required during the vapor-liquid-solid (VLS) growth of one-dimensional (1D) nanomaterials. In this work, however, a novel approach for synthesizing high-purity bamboo-like boron nitride (BN) nanotubes directly on commercial stainless steel foils was demonstrated. Synthesis was realized by heating boron and zinc oxide (ZnO) powders at 1200 degrees C under a mixture gas flow of nitrogen and hydrogen. The stainless steel foils played an additional role of catalyst besides the substrate during the VLS growth of the nanotubes. In addition, the electrical conductivity of the BN nanotubes was efficiently improved in a simple way by coating with Au and Pd nanoparticles. The decorated BN nanotubes may find potential applications in catalysts, sensors and nanoelectronics.

  15. Fabrication of silicon nitride/boron nitride nanocomposite powder

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Si3N4/BN nanocomposite powders with the microstructure of the micro-sized α-Si3N4 particles coated with nano-sized BN particles were synthesized via the chemical reaction of boric acid, urea, and α-Si3N4 powder in a hydrogen gas. The results of XRD, TEM, and selected area electron diffraction showed that amorphous BN and a little amount of turbostratic BN(t-BN) were coated on Si3N4 particles as the second phase after reaction at 1100℃. After reheating the composite powders at 1450℃ in a nitrogen gas, the amorphous and turbostratic BN is transformed into h-BN. These nanocomposite powders can be used to prepare Si3N4/BN ceramic composites by hot-pressing at 1800℃, which have perfect machinability and can be drilled with normal metal tools.

  16. Studies of lithiumization and boronization of ATJ graphite PFCs for NSTX-U

    Science.gov (United States)

    Dominguez, Javier; Bedoya, Felipe; Krstic, Predrag; Allain, Jean Paul; Neff, Anton; Luitjohan, Kara

    2016-10-01

    We examine and compare the effects of boron and lithium conditioning on ATJ graphite surfaces bombarded by low-energy deuterium atoms on deuterium retention and chemical sputtering. We use atomistic simulations and compare them with experimental in-situ ex-tempore studies with X-ray photoelectron spectroscopy (XPS), to understand the effects of deuterium exposure on the chemistry in lithiated, boronized and oxidized amorphous carbon surfaces. Our results are validated qualitatively by comparison with experiments and with classical-quantum molecular dynamic simulations. We explain the important role of oxygen in D retention for lithiated surfaces and the suppression of the oxygen role by boron in boronized surfaces. The calculated increase of the oxygen role in deuterium uptake after D accumulation in a B-C-O surface configuration is discussed. The sputtering yield per low-energy D impact is significantly smaller in boronized surfaces than in lithiated surfaces. This work was supported by the USDOE Grants DE-SC0013752 (PSK), DE-SC0010717 (JPA and FB) and DE-SC0010719 (AN) and by National council for Science and Technology of Mexico (CONACyT) through postdoctoral fellowship # 267898 (JD).

  17. Magnetocaloric effect in amorphous and partially crystallized Fe40Ni38Mo4B18 alloys

    Directory of Open Access Journals (Sweden)

    T. Thanveer

    2016-05-01

    Full Text Available A study of magnetocaloric effect in amorphous and partially crystallized Fe40Ni38Mo4B18 alloys is reported. Amorphous Fe40Ni38Mo4B18, near its magnetic ordering temperature (600K showed a magnetic entropy change ΔSM of 1.1 J/KgK and a relative cooling power of 36J/Kg in a field change of 10 kOe. Amorphous samples were partially crystallized by annealing at 700 K at different time intervals. Partially crystallized samples showed two distinct magnetic ordering temperature, one corresponding to the precipitated FeNi nanocrystals and the other one corresponding to the boron rich amorphous matrix. Magnetic ordering temperature of the residual amorphous matrix got shifted to the lower temperatures on increasing the annealing duration. Partially crystallised samples showed a magnetic entropy change of about 0.27J/kgK near the magnetic ordering temperature of the amorphous matrix (540K in a field change of 10 kOe. The decrease in ΔSM on partial crystallisation is attributed to the biphasic magnetic nature of the sample.

  18. Study of the recrystallization in coated pellets - effect of coating on API crystallinity.

    Science.gov (United States)

    Nikowitz, Krisztina; Pintye-Hódi, Klára; Regdon, Géza

    2013-02-14

    Coated diltiazem hydrochloride-containing pellets were prepared using the solution layering technique. Unusual thermal behavior was detected with differential scanning calorimetry (DSC) and its source was determined using thermogravimetry (TG), X-ray powder diffraction (XRPD) and hot-stage microscopy. The coated pellets contained diltiazem hydrochloride both in crystalline and amorphous form. Crystallization occurs on heat treatment causing an exothermic peak on the DSC curves that only appears in pellets containing both diltiazem hydrochloride and the coating. Results indicate that the amorphous fraction is situated in the coating layer. The migration of drugs into the coating layer can cause changes in its degree of crystallinity. Polymeric coating materials should therefore be investigated as possible crystallization inhibitors.

  19. Non-boronized compared with boronized operation of ASDEX Upgrade with full-tungsten plasma facing components

    Science.gov (United States)

    Kallenbach, A.; Dux, R.; Mayer, M.; Neu, R.; Pütterich, T.; Bobkov, V.; Fuchs, J. C.; Eich, T.; Giannone, L.; Gruber, O.; Herrmann, A.; Horton, L. D.; Maggi, C. F.; Meister, H.; Müller, H. W.; Rohde, V.; Sips, A.; Stäbler, A.; Stober, J.; ASDEX Upgrade Team

    2009-04-01

    After completion of the tungsten coating of all plasma facing components, ASDEX Upgrade has been operated without boronization for 1 1/2 experimental campaigns. This has allowed the study of fuel retention under conditions of relatively low D co-deposition with low-Z impurities as well as the operational space of a full-tungsten device for the unfavourable condition of a relatively high intrinsic impurity level. Restrictions in operation were caused by the central accumulation of tungsten in combination with density peaking, resulting in H-L backtransitions induced by too low separatrix power flux. Most important control parameters have been found to be the central heating power, as delivered predominantly by ECRH, and the ELM frequency, most easily controlled by gas puffing. Generally, ELMs exhibit a positive impact, with the effect of impurity flushing out of the pedestal region overbalancing the ELM-induced W source. The restrictions of plasma operation in the unboronized W machine occurred predominantly under low or medium power conditions. Under medium-high power conditions, stable operation with virtually no difference between boronized and unboronized discharges was achieved. Due to the reduced intrinsic radiation with boronization and the limited power handling capability of VPS coated divertor tiles (≈10 MW m-2), boronized operation at high heating powers was possible only with radiative cooling. To enable this, a previously developed feedback system using (thermo-)electric current measurements as approximate sensor for the divertor power flux was introduced into the standard AUG operation. To avoid the problems with reduced ELM frequency due to core plasma radiation, nitrogen was selected as radiating species since its radiative characteristic peaks at lower electron temperatures in comparison with Ne and Ar, favouring SOL and divertor radiative losses. Nitrogen seeding resulted not only in the desired divertor power load reduction but also in improved

  20. Microstructure and superconducting properties of nanocarbon-doped internal Mg diffusion-processed MgB2 wires fabricated using different boron powders

    Science.gov (United States)

    Xu, Da; Wang, Dongliang; Li, Chen; Yuan, Pusheng; Zhang, Xianping; Yao, Chao; Dong, Chiheng; Huang, He; Ma, Yanwei; Oguro, Hidetoshi; Awaji, Satoshi; Watanabe, Kazuo

    2016-04-01

    MgB2/Nb/Monel monofilament wires were fabricated using four different boron powders by an internal Mg diffusion (IMD) process. The microstructure, morphology and the critical current density (J c) of the used boron powders and the formative MgB2 layers were analyzed and compared. It was found that the purity and particle size of the boron powder influence the superconducting properties of MgB2 wires; further that the optimized heat-treatment condition also depends on the quality of the boron powder. The highest J c was obtained in the MgB2 layer made using amorphous boron (AB) powder, although a certain amount of voids existed in the superconducting layer. The IMD-processed MgB2 layer fabricated using high-purity boron (HB) powder had also a high J c compared with the powder-in-tube (PIT) process and a few unreacted boron particles remained in it. MgB2 wire fabricated using low-purity boron (LB) powder had a high cost-performance ratio compared with the others, which is expected to allow the fabrication of large-scale and low-cost superconducting wires for practical application. However, the enhancement of the J c was not found in the MgB2 layer manufactured using the ball-milled LB (MLB) powder as expected due to the increased percentage of impurity.

  1. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    Science.gov (United States)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  2. Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing

    Science.gov (United States)

    Lee, Jay; Novikov, Nikolay

    The book contains the results of the latest achievements of leading researchers from 9 countries in the field of diamond and diamond-like carbon, cubic boron nitride and other superhard materials; high-density engineering ceramics; high pressure-high temperature technique; computer-aided modeling; diamond, cubic boron nitride, ceramic and cemented carbide tools; development, production and applications of nanostructured materials; films and wear-resistant coating; methods for quality control of tool materials and tools.

  3. Beyond amorphous organic semiconductors

    Science.gov (United States)

    Hanna, Jun-ichi

    2003-07-01

    Recently it has been discovered that some types of liquid crystals, which believed to be governed by ionic conduction, exhibit a very fast electronic conduction. Their charge carrier transport is characterized by high mobility over 10-2 cm2/Vs independent of electric field and temperature. Now, the liquid crystals are being recognized as a new class of organic semiconductors. In this article, a new aspect of liquid crystals as a self-organizing molecular semiconductor are reviewed, focused on their basic charge carrier transport properties and discussed in comparison with those of molecular crystals and amorphous materials. And it is concluded that the liquid crystal is promising as a quality organic semiconductor for the devices that require a high mobility.

  4. Amorphous Structures in Laser Cladding of ZL111 Aluminum Alloy:Semi-quantitative Study by Differential Thermal Analysis (DTA)

    Institute of Scientific and Technical Information of China (English)

    LI Xianqin; CHENG Zhaogu; XIA Jin'an; XU Guoliang; LIANG Gongying

    2000-01-01

    This paper deals with amorphous structures in the laser cladding. ZL111 alloy is the substrate and Ni-Cr-Al alloy is sprayed on the substrate as the coating material. The coating is clad by a 5 kW transverse flow CO2 laser. The observation of SEM and TEM reveal that in the laser cladding there are amorphous structures of two different morphologies: one is space curved flake-like, and exists in the white web-like structures; the other is fir leaf-like, and exists in the grain-like structures. Differential thermal analysis (DTA) is used to semi-quantitatively determine the content of the amorphous structures. A relation is obtained between the content of amorphous structures and the dimensionless laser cladding parameter C. We also show the changes of the amorphous structures after annealing.

  5. The studies of high-frequency magnetic properties and absorption characteristics for amorphous-filler composites

    Science.gov (United States)

    Li, Z. W.; Yang, Z. H.

    2015-10-01

    Pure amorphous flake fillers and amorphous flakes coated by ferrite nanoparticles with core-shell-like structure were fabricated using mechanical ball-milling. The later with core-shell-like structure can greatly decrease permittivity and improve the absorption properties, as compared to the former. The absorption of all amorphous-filler composites has its origin in a quarter-wavelength resonator. Based on the resonator model, absorption frequency fA and the corresponding return loss RL are calculated, which are well consistent with observed values. It is also found that the resonance frequency is proportional to effective resistivity, based on William-Shockley-Kittel's eddy model.

  6. Clean diffusion coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Warnes, B.M.; Punola, D.C. [Howmet Thermatech Coatings, Whitehall, MI (United States)

    1997-10-01

    An experimental program was undertaken to identify diffusion coating impurities introduced by standard aluminizing processes and to evaluate the impact of those impurities on oxidation resistance of the resultant Pt aluminide coating. IN-738 tabs and foils were platinum-electroplated, and then aluminized using three different processes: high-activity pack cementation, high-activity CVD and low-activity CVD. The results suggest that aluminizing processes which involve aluminum bearing alloys in the coating retort with H{sub 2} or H{sub 2}/HCl gas at high temperature can contaminate the diffusion coating during deposition. CVD low-activity aluminizing (coating gas generated at low temperature outside the coating chamber from 99.999% Al) did not introduce any coating impurities. In addition, the data indicates that harmful impurities from the IN-738 substrate (sulfur, boron and tungsten) and the electroplating process (phosphorus) were removed from the coating during deposition. The CVD low-activity Pt aluminide coating was the `cleanest` in the study, and it exhibited the best high-temperature oxidation resistance of the coatings considered. It can be concluded that trace elements in diffusion coatings from the superalloy substrate and/or the aluminizing process can adversely effect the oxidation resistance of those coatings, and that CVD low-activity aluminizing yields cleaner coatings than other commercially available aluminizing techniques. (orig.) 10 refs.

  7. The effect of processing on the surface physical stability of amorphous solid dispersions.

    Science.gov (United States)

    Yang, Ziyi; Nollenberger, Kathrin; Albers, Jessica; Moffat, Jonathan; Craig, Duncan; Qi, Sheng

    2014-11-01

    The focus of this study was to investigate the effect of processing on the surface crystallization of amorphous molecular dispersions and gain insight into the mechanisms underpinning this effect. The model systems, amorphous molecular dispersions of felodipine-EUDRAGIT® E PO, were processed both using spin coating (an ultra-fast solvent evaporation based method) and hot melt extrusion (HME) (a melting based method). Amorphous solid dispersions with drug loadings of 10-90% (w/w) were obtained by both processing methods. Samples were stored under 75% RH/room temperatures for up to 10months. Surface crystallization was observed shortly after preparation for the HME samples with high drug loadings (50-90%). Surface crystallization was characterized by powder X-ray diffraction (PXRD), ATR-FTIR spectroscopy and imaging techniques (SEM, AFM and localized thermal analysis). Spin coated molecular dispersions showed significantly higher surface physical stability than hot melt extruded samples. For both systems, the progress of the surface crystal growth followed zero order kinetics on aging. Drug enrichment at the surfaces of HME samples on aging was observed, which may contribute to surface crystallization of amorphous molecular dispersions. In conclusion it was found the amorphous molecular dispersions prepared by spin coating had a significantly higher surface physical stability than the corresponding HME samples, which may be attributed to the increased process-related apparent drug-polymer solubility and reduced molecular mobility due to the quenching effect caused by the rapid solvent evaporation in spin coating.

  8. Anisotropic mechanical amorphization drives wear in diamond.

    Science.gov (United States)

    Pastewka, Lars; Moser, Stefan; Gumbsch, Peter; Moseler, Michael

    2011-01-01

    Diamond is the hardest material on Earth. Nevertheless, polishing diamond is possible with a process that has remained unaltered for centuries and is still used for jewellery and coatings: the diamond is pressed against a rotating disc with embedded diamond grit. When polishing polycrystalline diamond, surface topographies become non-uniform because wear rates depend on crystal orientations. This anisotropy is not fully understood and impedes diamond's widespread use in applications that require planar polycrystalline films, ranging from cutting tools to confinement fusion. Here, we use molecular dynamics to show that polished diamond undergoes an sp(3)-sp(2) order-disorder transition resulting in an amorphous adlayer with a growth rate that strongly depends on surface orientation and sliding direction, in excellent correlation with experimental wear rates. This anisotropy originates in mechanically steered dissociation of individual crystal bonds. Similarly to other planarization processes, the diamond surface is chemically activated by mechanical means. Final removal of the amorphous interlayer proceeds either mechanically or through etching by ambient oxygen.

  9. 自蔓延法在金刚石表面形成碳硼化铝涂层的研究%Formation of aluminum boron carbide coating on the surface of diamond by self-propagation

    Institute of Scientific and Technical Information of China (English)

    王艳芝; 梁宝岩; 张旺玺; 刘嘉霖

    2014-01-01

    采用Ti/Al/B/金刚石粉体为原料,通过自蔓延高温反应技术,制备了 Al-TiB2结合剂金刚石复合材料,在金刚石表面合成了碳硼化铝涂层。采用X射线衍射(XRD)、扫描电镜(SEM)结合能谱仪(EDS)分析试样。研究结果表明:各种原料经自蔓延高温烧结后,产物的主相为 Al、TiB2和金刚石。同时当 Al质量分数较高时(60%~80%),在金刚石表面形成了致密的碳硼化铝涂层,呈薄片状,金刚石附近也生长出许多碳硼化铝晶粒,尺寸可达到几十微米。但是当 Al 质量分数较低(40%和50%)时,金刚石会发生严重的碎裂。%Al-TiB2 boned diamond composites were fabricated by self-propagation high temperature sintering SHS from Ti Al B Diamond powders The samples were analyzed by XRD SEM and EDS It was shown that Al-TiB2 boned diamond composites were obtained by SHS The main phases of the products were Al TiB2 and diamond by SHS from every raw material Meanwhile the Al4 BC coating was formed on the face of diamond When mass fraction of Al was higher 60%~80% dense Al4 BC coating with thin flake was formed Meanwhile many Al4 BC grains also grown neighbor the diamond These grains had dozes of micron With mass fraction of Al decreasing to 40% and 50%diamond broke because of its graphitization.

  10. Thermal Cycling Assessment of Steel-Based Thermal Barrier Coatings for Al Protection

    Science.gov (United States)

    Poirier, Dominique; Lamarre, Jean-Michel; Legoux, Jean-Gabriel

    2015-01-01

    There is a strong interest from the transportation industry to achieve vehicle weight reduction through the replacement of steel components by aluminum parts. For some applications, aluminum requires protective coatings due to its limited wear and lower temperature resistance compared to steel. The objective of this study was to assess the potential of amorphous-type plasma-sprayed steel coatings and conventional arc-sprayed steel coatings as thermal barrier coatings, mainly through the evaluation of their spalling resistance under thermal cycling. The microstructures of the different coatings were first compared via SEM. The amorphicity of the coatings produced via plasma spraying of specialized alloyed steel and the crystalline phases of the conventional arc-sprayed steel coatings were confirmed through x-ray diffraction. The thermal diffusivity of all coatings produced was measured to be about a third of that of bulk stainless steel. Conventional arc-sprayed steel coatings typically offered better spalling resistance under thermal cycling than steel-based amorphous coatings due probably to their higher initial bond strength. However, the presence of vertical cracks in the steel-based amorphous coatings was found to have a beneficial effect on their thermal cycling resistance. The amorphous plasma-sprayed steel coatings presented indications of recrystallization after their exposure to high temperature.

  11. Characterization and photocatalytic activity of boron-doped TiO2 thin films prepared by liquid phase deposition technique

    Indian Academy of Sciences (India)

    Noor Shahina Begum; H M Farveez Ahmed; O M Hussain

    2008-10-01

    Boron doped TiO2 thin films have been successfully deposited on glass substrate and silicon wafer at 30°C from an aqueous solution of ammonium hexa-fluoro titanate and boron trifluoride by liquid phase deposition technique. The boric acid was used as an – scavenger. The resultant films were characterized by XRD, EDAX, UV and microstructures by SEM. The result shows the deposited film to be amorphous which becomes crystalline between 400 and 500°C. The EDAX and XRD data confirm the existence of boron atom in TiO2 matrix and a small peak corresponding to rutile phase was also found. Boron doped TiO2 thin films can be used as photocatalyst for the photodegradation of chlorobenzene which is a great environmental hazard. It was found that chlorobenzene undergoes degradation efficiently in presence of boron doped TiO2 thin films by exposing its aqueous solution to visible light. The photocatalytic activity increases with increase in the concentration of boron.

  12. Research on the Cutting Performance of Cubic Boron Nitride Tools

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There were only two kinds of superhard tool material at the past, i.e. diamond and cubic boron nitride (CBN). Manmade diamond and CBN are manufactured by the middle of 20th century. Various manufacturing methods and manmade superhard materials were developed later. They were widely used in different industry and science areas. Recently, a new kind of superhard tool material, C 3N 4 coating film, had been developed. American physical scientists, A. M. Liu and M. L. Cohen, designed a new kind of inorganic c...

  13. Containerless processing of amorphous ceramics

    Science.gov (United States)

    Weber, J. K. Richard; Krishnan, Shankar; Schiffman, Robert A.; Nordine, Paul C.

    1990-01-01

    The absence of gravity allows containerless processing of materials which could not otherwise be processed. High melting point, hard materials such as borides, nitrides, and refractory metals are usually brittle in their crystalline form. The absence of dislocations in amorphous materials frequently endows them with flexibility and toughness. Systematic studies of the properties of many amorphous materials have not been carried out. The requirements for their production is that they can be processed in a controlled way without container interaction. Containerless processing in microgravity could permit the control necessary to produce amorphous forms of hard materials.

  14. Neutron studies of amorphous solids

    CERN Document Server

    Stone, C E

    2001-01-01

    of both three and four coordinated boron. Superstructural units were found to be present even at high Cs sub 2 O contents. The above results have shown that superstructural units are found in many borate glasses. The thesis begins with an introduction to glass and glass science, followed by a brief overview of the theory of neutron scattering. A background to neutron experiments is given and a more detailed description of the sources and instruments used. Subsequent chapters are then devoted to lead and zinc phosphate glasses, iron phosphate glasses, ultra low expansion glass, boron sulphide glass, bismuth containing glasses, pressure compacted glasses and cesium borate glasses. Lead and zinc phosphate glasses were found to have a coordination number of four for Pb or Zn and the lead and zinc were both incorporated into the network structure. In ultra low expansion glass the titania was found to be four fold coordinated. Vitreous boron sulphide gives results consistent with borsulphol superstructural units. D...

  15. Structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron

    OpenAIRE

    He, Chaoyu; Zhong, Jianxin

    2013-01-01

    The structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron have been studied by first-principles calculations. Both a-boron and a*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of "3S-6D-3S" and "2S-6D-4S", respectively. The total energy calculations show that a*-boron is less stable than a-boron but more favorable than beta-boron and Gamma-boron at zero pressure. Both a-boron and a*-boron are confirm...

  16. Functionalization of boron diiminates with unique optical properties: multicolor tuning of crystallization-induced emission and introduction into the main chain of conjugated polymers.

    Science.gov (United States)

    Yoshii, Ryousuke; Hirose, Amane; Tanaka, Kazuo; Chujo, Yoshiki

    2014-12-31

    In this article, we report the unique optical characteristics of boron diiminates in the solid states. We synthesized the boron diiminates exhibiting aggregation-induced emission (AIE). From the series of optical measurements, it was revealed that the optical properties in the solid state should be originated from the suppression of the molecular motions of the boron diiminate units. The emission colors were modulated by the substitution effects (λ(PL,crystal) = 448-602 nm, λ(PL,amorphous) = 478-645 nm). Strong phosphorescence was observed from some boron diiminates deriving from the effects of two imine groups. Notably, we found some of boron diiminates showed crystallization-induced emission (CIE) properties derived from the packing differences from crystalline to amorphous states. The 15-fold emission enhancement was observed by the crystallization (Φ(PL,crystal) = 0.59, Φ(PL,amorphous) = 0.04). Next, we conjugated boron diiminates with fluorene. The synthesized polymers showed good solubility in the common solvents, film formability, and thermal stability. In addition, because of the expansion of main-chain conjugation, the peak shifts to longer wavelength regions were observed in the absorption/emission spectra of the polymers comparing to those of the corresponding boron diiminate monomers (λ(abs) = 374-407 nm, λ(PL) = 509-628 nm). Furthermore, the absorption and the emission intensities were enhanced via the light-harvesting effect by the conjugation with fluorene. Finally, we also demonstrated the dynamic reversible alterations of the optical properties of the polymer thin films by exposing to acidic or basic vapors.

  17. Boron doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  18. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    Science.gov (United States)

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik

    2016-08-22

    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization.

  19. Health hazards due to the inhalation of amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Merget, R.; Bruening, T. [Research Institute for Occupational Medicine (BGFA), Bochum (Germany); Bauer, T. [Bergmannsheil, University Hospital, Department of Internal Medicine, Division of Pneumonology, Allergology and Sleep Medicine, Bochum (Germany); Kuepper, H.U.; Breitstadt, R. [Degussa-Huels Corp., Wesseling (Germany); Philippou, S. [Department of Pathology, Augusta Krankenanstalten, Bochum (Germany); Bauer, H.D. [Research Institute for Hazardous Substances (IGF), Bochum (Germany)

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or

  20. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  1. Tribological properties of boron nitride synthesized by ion beam deposition

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.; Spalvins, T.

    1985-01-01

    The adhesion and friction behavior of boron nitride films on 440 C bearing stainless steel substrates was examined. The thin films containing the boron nitride were synthesized using an ion beam extracted from a borazine plasma. Sliding friction experiments were conducted with BN in sliding contact with itself and various transition metals. It is indicated that the surfaces of atomically cleaned BN coating film contain a small amount of oxides and carbides, in addition to boron nitride. The coefficients of friction for the BN in contact with metals are related to the relative chemical activity of the metals. The more active the metal, the higher is the coefficient of friction. The adsorption of oxygen on clean metal and BN increases the shear strength of the metal - BN contact and increases the friction. The friction for BN-BN contact is a function of the shear strength of the elastic contacts. Clean BN surfaces exhibit relatively strong interfacial adhesion and high friction. The presence of adsorbates such as adventitious carbon contaminants on the BN surfaces reduces the shear strength of the contact area. In contrast, chemically adsorbed oxygen enhances the shear strength of the BN-BN contact and increases the friction.

  2. Methods of Boron-carbon Deposited Film Removal

    Science.gov (United States)

    Airapetov, A.; Terentiev, V.; Voituk, A.; Zakharov, A.

    Boron carbide was proposed as a material for in-situ renewable protecting coating for tungsten tiles of the ITER divertor. It is necessary to develop a method of gasification of boron-carbon film which deposits during B4C sputtering. In this paper the results of the first stage investigation of gasification methods of boron-carbon films are presented. Two gasification methods of films are investigated: interaction with the ozone-oxygen mixture and irradiation in plasma with the working gas composed of oxygen, ethanol, and, in some cases, helium. The gasification rate in the ozone-oxygen mixture at 250 °C for B/C films with different B/C ratio and carbon fiber composite (CFC), was measured. For B/C films the gasification rate decreased with increasing B/C ratio (from 45 nm/h at B/C=0.7 to 4 nm/h at B/C=2.1; for CFC - 15 μm/h). Films gasification rates were measured under ion irradiation from ethanol-oxygen-helium plasma at different temperatures, with different ion energies and different gas mixtures. The maximum obtained removal rate was near 230 nm/h in case of ethanol-oxygen plasma and at 150°C of the sample temperature.

  3. Structure of Boron Nitride Nanotubes: Tube Closing Vs. Chirality

    Science.gov (United States)

    Srivastava, Deepak; Menon, Madhu

    1998-01-01

    The structure of boron nitride nanotubes is investigated using a generalized tight-binding molecular dynamics method. It is shown that dynamic relaxation results in a wavelike or "rippled" surface in which the B atoms rotate inward and the N atoms move outward, reminiscent of the surface relaxation of the III-V semiconductors. More importantly, the three different morphologies of the tube closing with flat, conical and amorphous ends, as observed in experiments, are shown to be directly related to the tube chiralities. The abundance of flat end tubes observed in experiments is, thus, shown to be an indication of the greater stability of "zig-zag" BN tubes over the "arm-chair" tubes under experimental conditions.

  4. Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility

    Science.gov (United States)

    Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao

    2017-01-01

    Abstract Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices. PMID:28179961

  5. B4C protective coating under irradiation by QSPA-T intensive plasma fluxes

    Science.gov (United States)

    Buzhinskij, O. I.; Barsuk, V. A.; Begrambekov, L. B.; Klimov, N. S.; Otroshchenko, V. G.; Putric, A. B.

    2016-12-01

    The effect of the QSPA-T pulsed plasma irradiation on the crystalline boron carbide B4C coating was examined. The duration of the rectangular plasma pulses was 0.5 ms with an interval of 5-10 min between pulses. The maximum power density in the central part of plasma stream was 1 GW/m2. The coating thickness varied from 20 to 40 μm on different surface areas. Modification of the surface layers and transformation of the coating at elevated temperature under plasma pulse irradiation during four successive series of impulses are described. It is shown that the boron carbide coating withstood the full cycle of tests under irradiation with 100 plasma pulses with peak power density of 1GW/m2. Constitutive surface deterioration was not detected and the boron carbide coating kept crystal structure B4C throughout the irradiation zone at the surface depth no less 2 μm.

  6. Automatic and robust deposition process control to grow hard ncTiC/a-C:H coatings using industrial magnetron sputtering devices and tribological analysis of the titanium-carbon coatings

    NARCIS (Netherlands)

    Žemlička, Radek; Jílek, Mojmír; Vogl, Petr; Pei, Yutao; Souček, Pavel; Buršíková, Vilma; Vašina, Petr

    2015-01-01

    nc-TiC/a-C:H coatings consist of TiC crystallites embedded in an amorphous hydrogenated carbon matrix. Depending mainly on the chemical composition, the properties of these coatings can be tailored from hard coatings, with hardness of greater than 35 GPa to tribological coatings, with coefficients o

  7. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  8. Progress in amorphous silicon solar cells produced by reactive sputtering

    Science.gov (United States)

    Moustakas, T. D.

    The photovoltaic properties of reactively sputtered amorphous silicon are reviewed and it is shown that efficient PIN solar cells can be fabricated by the method of sputtering. The photovoltaic properties of the intrinsic films correlate with their structural and compositional inhomogeneities. Hydrogen incorporation and small levels of phosphorus and boron impurities also affect the photovoltaic properties through reduction of residual dangling bond related defects and modification of their occupation. The optical and transport properties of the doped P and N-films were found to depend sensitively on the amount of hydrogen and boron or phosphorus incorporation into the films as well as on their degree of crystallinity. Combination of the best intrinsic and doped films leads to PIN solar cell structures generating J(sc) of 13 mA/sq cm and V(oc) of between 0.85 to 0.95 volts. The efficiency of these devices, 5 to 6 percent, is limited by the low FF, typically about 50 percent. As a further test to the potential of this technology efficient tandem solar cell structures were fabricated, and device design concepts, such as the incorporation of optically reflective back contacts were tested.

  9. Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes

    Science.gov (United States)

    Liao, Yunlong; Chen, Zhongfang; Connell, John W.; Fay, Catharine C.; Park, Cheol; Kim, Jae-Woo; Lin, Yi

    2014-01-01

    Boron nitride nanotubes (BNNTs), the one-dimensional member of the boron nitride nanostructure family, are generally accepted to be highly inert to oxidative treatments and can only be covalently modifi ed by highly reactive species. Conversely, it is discovered that the BNNTs can be chemically dispersed and their morphology modifi ed by a relatively mild method: simply sonicating the nanotubes in aqueous ammonia solution. The dispersed nanotubes are significantly corroded, with end-caps removed, tips sharpened, and walls thinned. The sonication treatment in aqueous ammonia solution also removes amorphous BN impurities and shortened BNNTs, resembling various oxidative treatments of carbon nanotubes. Importantly, the majority of BNNTs are at least partially longitudinally cut, or "unzipped". Entangled and freestanding BN nanoribbons (BNNRs), resulting from the unzipping, are found to be approximately 5-20 nm in width and up to a few hundred nanometers in length. This is the fi rst chemical method to obtain BNNRs from BNNT unzipping. This method is not derived from known carbon nanotube unzipping strategies, but is unique to BNNTs because the use of aqueous ammonia solutions specifi cally targets the B-N bond network. This study may pave the way for convenient processing of BNNTs, previously thought to be highly inert, toward controlling their dispersion, purity, lengths, and electronic properties.

  10. High-performance nickel-cobalt-boron material for an asymmetric supercapacitor with an ultrahigh energy density

    Science.gov (United States)

    Chen, Rongna; Liu, Lei; Zhou, Junshuang; Hou, Li; Gao, Faming

    2017-02-01

    Nickel-cobalt-borons are synthesized using a facile and cost-effective reduction method. The effects of Ni/Co molar ratios and crystallinity on its supercapacitive performance are systematically investigated. It was found that nickel-cobalt-borons with the Ni/Co ratio being 2:1 and amorphous structure manifest the optimum specific capacitance of 2226.96 F/g at a current density of 1 A/g and still remain 1879.2 F/g with a high discharge current density of 20 A/g. An asymmetric supercapacitor device (ASC) has been fabricated with nickel-cobalt-borons (Ni-Co-B) as the positive electrode and commercial activated carbon (CAC) as the negative electrode material. The Ni-Co-B//CAC delivers an ultrahigh energy density of 66.40 Wh/kg at a power density of 788.91 W/kg. This ASC remains 85.76% of its initial capacitance even after 5000 charge-discharge cycles. The results demonstrate that amorphous nickel-cobalt-boron material is a promising candidate for energy storage application.

  11. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  12. High-Performance Corrosion-Resistant Iron-Based Amorphous Metals - The Effects of Composition, Structure and Environment: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Haslam, J; Day, S; Lian, T; Saw, C; Hailey, P; Choi, J; Yang, N; Bayles, R; Aprigliano, L; Payer, J; Perepezko, J; Hildal, K; Lavernia, E; Ajdelsztajn, L; Branagan, D J; Beardsely, M B

    2006-10-20

    Several Fe-based amorphous metal formulations have been identified that appear to have corrosion resistance comparable to (or better than) that of Ni-based Alloy C-22 (UNS No. N06022), based on measurements of breakdown potential and corrosion rate in seawater. Both chromium (Cr) and molybdenum (Mo) provide corrosion resistance, boron (B) enables glass formation, and rare earths such as yttrium (Y) lower critical cooling rate (CCR). SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) has no yttrium, and is characterized by relatively high critical cooling rates of approximately 600 Kelvin per second. Data for the SAM2X5 formulation is reported here. In contrast to yttrium-containing iron-based amorphous metals, SAM2X5 can be readily gas atomized to produce spherical powders which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. SAM2X5 also experiences crevice corrosion under sufficiently harsh conditions. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying, due to the formation of deleterious intermetallic phases which depletes the matrix of key alloy elements, whereas SAM2X5 can be applied as coatings with the same corrosion resistance as a fully-dense completely amorphous melt-spun ribbon, provided that its amorphous nature is preserved during thermal spraying. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN [MRS12-13]. Such hardness makes these materials particularly attractive for applications where corrosion-erosion and wear are also issues. Since SAM2X5 has high boron content, it can absorb neutrons efficiently, and may therefore find

  13. Corrosion-resistant metallic coatings

    Directory of Open Access Journals (Sweden)

    F. Presuel-Moreno

    2008-10-01

    Full Text Available We describe recent computational and experimental studies on the corrosion properties of metallic coatings that can be tailored (tuned to deliver up to three corrosion-inhibiting functions to an underlying substrate. Attributes are tuned by a selection of alloy compositions and nanostructures, ideally in alloy systems that offer flexibility of choice to optimize the corrosion-resisting properties. An amorphous Al-based coating is tuned for corrosion protection by on-demand release of ionic inhibitors to protect defects in the coating, by formation of an optimized barrier to local corrosion in Cl− containing environments, as well as by sacrificial cathodic prevention. Further progress in this field could lead to the design of the next generation of adaptive or tunable coatings that inhibit corrosion of underlying substrates.

  14. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  15. Self-lubricant nanocomposite hard coatings in Ti-Al-N-C system

    Institute of Scientific and Technical Information of China (English)

    Y. Z. Huang; M. Stueber; P. Barna; J.M. Rodenburg

    2004-01-01

    An ambitious objective in the development of self-lubricating wear-resistant coatings is to make use of lubricious phases such as graphite, amorphous carbon or MoS2 incorporated into coatings. A series of (Ti,Al)(N,C)coatings with different carbon contents (0 -28 %, mole fraction) were deposited by reactive magnetron sputtering of TiAl in a mixture of Ar, N2 and CH4 gases. The microstructure and constitution of these coatings were investigated using EPMA, AFM, XPS, (HR)TEM, Raman spectroscopy and X-ray diffraction. Starting from a pure TiAlN coating significant changes in the microstructure of the coatings were observed dependent on the carbon concentration. Under optimum conditions nanocomposite coatings with a structure of a coexisting metastable hard, nanocrystalline fcc (Ti,Al)(N,C) phase and an amorphous carbon phase were deposited. The localization of an amorphous carbon phase was shown by HRTEM.

  16. Microcrystalline B-doped window layers prepared near amorphous to microcrystalline transition by HWCVD and its application in amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany)]. E-mail: kumarp@rhrk.uni-kl.de; Kupich, M. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany); Grunsky, D. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany); Schroeder, B. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany)

    2006-04-20

    The electronic and structural properties of p-type microcrystalline silicon films prepared near the microcrystalline to amorphous ({mu}c-amorphous) transition by hot-wire chemical vapor deposition are studied. Silane is used as a source gas while H{sub 2} as diluent and trimethylboron (TMB) and boron trifluoride (BF{sub 3}) as doping gases. Increasing TMB concentration from 0.01% to 5% favors the amorphous growth whereas for BF{sub 3} the crystalline fraction remains constant. The dark conductivity ({sigma} {sub d}) of {mu}c-Si:H p-layers remains approximately constant for TMB 1-5% at constant crystalline fraction X {sub c}. This dark conductivity behavior is attributed to the decrease in doping efficiency with increasing TMB concentration. The best initial efficiency obtained for a 400 nm amorphous pin solar cell with optimized {mu}c-Si:H p-layer is 7.7% (V {sub oc} = 874 mV, J {sub sc} = 12.91 mA/cm{sup 2}, FF = 68%)

  17. Comparison of boron diffusion in silicon during shallow p{sup +}/n junction formation by non-melt excimer and green laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Aid, Siti Rahmah; Matsumoto, Satoru [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Fuse, Genshu [SEN Corporation, SBS Tower 9F, 4-10-1 Yoga, Setagaya-ku, Tokyo 158-0097 (Japan); Sakuragi, Susumu [Sumitomo Heavy Industries Ltd., 19 Natsushima-cho, Yokosuka, Kanagawa 237-8555 (Japan)

    2011-12-15

    The combination of Ge pre-amorphization implantation, low-energy boron implantation, and non-melt laser annealing is a promising method for forming ultrashallow p{sup +}/n junctions in silicon. In this study, shallow p{sup +}/n junctions were formed by non-melt annealing implanted samples using a green laser (visible laser). The dopant diffusion, activation, and recrystallization of an amorphous silicon layer were compared with those obtained in our previous study in which non-melt annealing was performed using a KrF excimer laser (UV laser). The experimental results reveal that only slight diffusion of boron in the tail region occurred in green-laser-annealed samples. In contrast, remarkable boron diffusion occurred in KrF-laser-annealed samples for very short annealing times. Recrystallization of the amorphous silicon layer was slower in green-laser-annealed samples than in KrF-laser-annealed samples. We consider the penetration depth and the pulse duration are important factors that may affect boron diffusion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren;

    2015-01-01

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film...

  19. Ion implantation into amorphous Si layers to form carrier-selective contacts for Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, Frank; Mueller, Ralph; Reichel, Christian; Hermle, Martin [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, 79110, Freiburg (Germany)

    2014-09-15

    This paper reports our findings on the boron and phosphorus doping of very thin amorphous silicon layers by low energy ion implantation. These doped layers are implemented into a so-called tunnel oxide passivated contact structure for Si solar cells. They act as carrier-selective contacts and, thereby, lead to a significant reduction of the cell's recombination current. In this paper we address the influence of ion energy and ion dose in conjunction with the obligatory high-temperature anneal needed for the realization of the passivation quality of the carrier-selective contacts. The good results on the phosphorus-doped (implied V{sub oc} = 725 mV) and boron-doped passivated contacts (iV{sub oc} = 694 mV) open a promising route to a simplified interdigitated back contact (IBC) solar cell featuring passivated contacts. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Control and optimization of baths for electrodeposition of Co-Mo-B amorphous alloys

    Directory of Open Access Journals (Sweden)

    S. Prasad

    2000-12-01

    Full Text Available Optimization and control of an electrodeposition process for depositing boron-containing amorphous metallic layer of cobalt-molybdenum alloy onto a cathode from an electrolytic bath having cobalt sulfate, sodium molybdate, boron phosphate, sodium citrate, 1-dodecylsulfate-Na, ammonium sulfate and ammonia or sulfuric acid for pH adjustments has been studied. Detailed studies on bath composition, pH, temperature, mechanical agitation and cathode current density have led to optimum conditions for obtaining satisfactory alloy deposits. These alloys were found to have interesting properties such as high hardness, corrosion resistance, wear resistance and also sufficient ductility. A voltammetric method for automatic monitoring and control of the process has been proposed.

  1. Mobility-lifetime product and interface property in amorphous silicon solar cells

    Science.gov (United States)

    Okamoto, H.; Kida, H.; Nonomura, S.; Fukumoto, K.; Hamakawa, Y.

    1983-06-01

    A technique for evaluating the mobility-lifetime product of electrons and holes for amorphous Si solar cells is reported and used to assay the variation of the products with impurity doping, temperature, and prolonged light exposure. The product was examined as a significant indicator of solar cell performance and durability. The a-Si:H cells examined were prepared by an rf technique, and the spectral response of the photocurrent was examined in monochromatic light. The maximum products were observed when small amounts of boron atoms were used as the dopant. The hole lifetime dominated the photoconductivity in undoped and phosphorus doped cells, while the electron lifetime was dominant in boron doped cells. The mobility-lifetime product controlled the effective surface recombination factor. The method was concluded useful for optimizing the material, structure, and manufacturing processes for producing higher performance, reproducible, and stable a-Si:H pin solar cells.

  2. Modeling and simulation of boron-doped nanocrystalline silicon carbide thin film by a field theory.

    Science.gov (United States)

    Xiong, Liming; Chen, Youping; Lee, James D

    2009-02-01

    This paper presents the application of a multiscale field theory in modeling and simulation of boron-doped nanocrystalline silicon carbide (B-SiC). The multiscale field theory was briefly introduced. Based on the field theory, numerical simulations show that intergranular glassy amorphous films (IGFs) and nano-sized pores exist in triple junctions of the grains for nanocrystalline B-SiC. Residual tensile stress in the SiC grains and compressive stress on the grain boundaries (GBs) were observed. Under tensile loading, it has been found that mechanical response of 5 wt% boron-SiC exhibits five characteristic regimes. Deformation mechanism at atomic scale has been revealed. Tensile strength and Young's modulus of nanocrystalline SiC were accurately reproduced.

  3. Amorphisation of boron carbide under slow heavy ion irradiation

    Science.gov (United States)

    Gosset, D.; Miro, S.; Doriot, S.; Moncoffre, N.

    2016-08-01

    Boron carbide B4C is widely used as a neutron absorber in nuclear plants. Most of the post-irradiation examinations have shown that the structure of the material remains crystalline, in spite of very high atomic displacement rates. Here, we have irradiated B4C samples with 4 MeV Au ions with different fluences at room temperature. Transmission electron microscopy (TEM) and Raman spectroscopy have been performed. The Raman analyses show a high structural disorder at low fluence, around 10-2 displacements per atoms (dpa). However, the TEM observations show that the material remains crystalline up to a few dpa. At high fluence, small amorphous areas a few nanometers large appear in the damaged zone but the long range order is preserved. Moreover, the size and density of the amorphous zones do not significantly grow when the damage increases. On the other hand, full amorphisation is observed in the implanted zone at a Au concentration of about 0.0005. It can be inferred from those results that short range and long range damages arise at highly different fluences, that heavy ions implantation has drastic effects on the structure stability and that in this material self-healing mechanisms are active in the damaged zone.

  4. Chemical vapor deposition coatings for oxidation protection of titanium alloys

    Science.gov (United States)

    Cunnington, G. R.; Robinson, J. C.; Clark, R. K.

    1991-01-01

    Results of an experimental investigation of the oxidation protection afforded to Ti-14Al-21Nb and Ti-14Al-23Nb-2V titanium aluminides and Ti-17Mo-3Al-3Nb titanium alloy by aluminum-boron-silicon and boron-silicon coatings are presented. These coatings are applied by a combination of physical vapor deposition (PVD) and chemical vapor deposition (CVD) processes. The former is for the application of aluminum, and the latter is for codeposition of boron and silicon. Coating thickness is in the range of 2 to 7 microns, and coating weights are 0.6 to 2.0 mg/sq cm. Oxidation testing was performed in air at temperatures to 1255 K in both static and hypersonic flow environments. The degree of oxidation protection provided by the coatings is determined from weight change measurements made during the testing and post test compositional analyses. Temperature-dependent total normal emittance data are also presented for four coating/substrate combinations. Both types of coatings provided excellent oxidation protection for the exposure conditions of this investigation. Total normal emittances were greater than 0.80 in all cases.

  5. Functionalized Amorphous Aluminosilicates

    Science.gov (United States)

    Mesgar, Milad

    Alkali treated aluminosilicate (geopolymer) was functionalized by surfactant to increase the hydrophobicity for making Pickering emulsion for the first part of this work. In the first part of this study, alkali treated metakaolin was functionalized with cetyltrimethylammonium bromide ((C16H33)N(CH 3)3Br, CTAB). The electrostatic interaction between this quaternary ammonium and the surface of the aluminosilicate which has negative charge has taken place. The particles then were used to prepare Pickering emulsion. The resulting stable dispersions, obtained very fast at very simple conditions with low ratio of aluminosilicate to liquid phase. In the second part, the interaction between geopolymer and glycerol was studied to see the covalent grafting of the geopolymer for making geopolymer composite. The composite material would be the basis material to be used as support catalyst, thin coating reagent and flame retardant material and so on, Variety of techniques, Thermogravimetric (TGA), Particle-induced X-ray emission (PIXE), FTIR, Solid state NMR, Powder X-ray diffraction (PXRD), BET surface area, Elemental analysis (CHN), TEM, SEM and Optical microscopy were used to characterize the functionalized geopolymer.

  6. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  7. Nanostructures having crystalline and amorphous phases

    Science.gov (United States)

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  8. Preparation and characterization of B4C coatings for advanced research light sources.

    Science.gov (United States)

    Störmer, Michael; Siewert, Frank; Sinn, Harald

    2016-01-01

    X-ray optical elements are required for beam transport at the current and upcoming free-electron lasers and synchrotron sources. An X-ray mirror is a combination of a substrate and a coating. The demand for large mirrors with single layers consisting of light or heavy elements has increased during the last few decades; surface finishing technology is currently able to process mirror lengths up to 1 m with microroughness at the sub-nanometre level. Additionally, thin-film fabrication is able to deposit a suitable single-layer material, such as boron carbide (B4C), some tens of nanometres thick. After deposition, the mirror should provide excellent X-ray optical properties with respect to coating thickness errors, microroughness values and slope errors; thereby enabling the mirror to transport the X-ray beam with high reflectivity, high beam flux and an undistorted wavefront to an experimental station. At the European XFEL, the technical specifications of the future mirrors are extraordinarily challenging. The acceptable shape error of the mirrors is below 2 nm along the whole length of 1 m. At the Helmholtz-Zentrum Geesthacht (HZG), amorphous layers of boron carbide with thicknesses in the range 30-60 nm were fabricated using the HZG sputtering facility, which is able to cover areas up to 1500 mm long by 120 mm wide in one step using rectangular B4C sputtering targets. The available deposition area is suitable for the specified X-ray mirror dimensions of upcoming advanced research light sources such as the European XFEL. The coatings produced were investigated by means of X-ray reflectometry and interference microscopy. The experimental results for the B4C layers are discussed according to thickness uniformity, density, microroughness and thermal stability. The variation of layer thickness in the tangential and sagittal directions was investigated in order to estimate the achieved level of uniformity over the whole deposition area, which is considerably

  9. Preparation and characterization of B4C coatings for advanced research light sources

    Science.gov (United States)

    Störmer, Michael; Siewert, Frank; Sinn, Harald

    2016-01-01

    X-ray optical elements are required for beam transport at the current and upcoming free-electron lasers and synchrotron sources. An X-ray mirror is a combination of a substrate and a coating. The demand for large mirrors with single layers consisting of light or heavy elements has increased during the last few decades; surface finishing technology is currently able to process mirror lengths up to 1 m with microroughness at the sub-nanometre level. Additionally, thin-film fabrication is able to deposit a suitable single-layer material, such as boron carbide (B4C), some tens of nanometres thick. After deposition, the mirror should provide excellent X-ray optical properties with respect to coating thickness errors, microroughness values and slope errors; thereby enabling the mirror to transport the X-ray beam with high reflectivity, high beam flux and an undistorted wavefront to an experimental station. At the European XFEL, the technical specifications of the future mirrors are extraordinarily challenging. The acceptable shape error of the mirrors is below 2 nm along the whole length of 1 m. At the Helmholtz-Zentrum Geesthacht (HZG), amorphous layers of boron carbide with thicknesses in the range 30–60 nm were fabricated using the HZG sputtering facility, which is able to cover areas up to 1500 mm long by 120 mm wide in one step using rectangular B4C sputtering targets. The available deposition area is suitable for the specified X-ray mirror dimensions of upcoming advanced research light sources such as the European XFEL. The coatings produced were investigated by means of X-ray reflectometry and interference microscopy. The experimental results for the B4C layers are discussed according to thickness uniformity, density, microroughness and thermal stability. The variation of layer thickness in the tangential and sagittal directions was investigated in order to estimate the achieved level of uniformity over the whole deposition area, which is

  10. Jaguar Procedures for Detonation Behavior of Explosives Containing Boron

    Science.gov (United States)

    Stiel, L. I.; Baker, E. L.; Capellos, C.

    2009-12-01

    The Jaguar product library was expanded to include boron and boron containing products by analysis of Available Hugoniot and static volumetric data to obtain constants of the Murnaghan relationships for the components. Experimental melting points were also utilized to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX—boron mixtures calculated with these relationships using Jaguar are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that the boron does not react near the detonation front or that boron mixtures exhibit eigenvalue detonation behavior (as shown by some aluminized explosives), with higher detonation velocities at the initial points. Analyses of calorimetric measurements for RDX—boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the detonation properties of the formulation.

  11. Amorphization of Crystalline Water Ice

    CERN Document Server

    Zheng, Weijun; Kaiser, Ralf I

    2008-01-01

    We conducted a systematic experimental study to investigate the amorphization of crystalline ice by irradiation in the 10-50 K temperature range with 5 keV electrons at a dose of ~140 eV per molecule. We found that crystalline water ice can be converted partially to amorphous ice by electron irradiation. Our experiments showed that some of the 1.65-micrometer band survived the irradiation, to a degree that depends on the temperature, demonstrating that there is a balance between thermal recrystallization and irradiation-induced amorphization, with thermal recrystallizaton dominant at higher temperatures. At 50 K, recrystallization due to thermal effects is strong, and most of the crystalline ice survived. Temperatures of most known objects in the solar system, including Jovian satellites, Saturnian satellites, and Kuiper belt objects, are equal to or above 50 K, this might explain why water ice detected on those objects is mostly crystalline.

  12. Alternative Process for Manufacturing of Thin Layers of Boron for Neutron Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Auge, Gregoire; Partyka, Stanislas [Onet Technologies (France); Guerard, Bruno; Buffet, Jean-Claude [Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Due to the worldwide shortage of helium 3, Boron-lined proportional counters are developed intensively by several groups. Up to now, thin boron containing layers for neutron detectors are essentially produced by sputtering of boron carbide (B{sub 4}C). This technology provides high quality films but it is slow and expensive. Our paper describes a novel and inexpensive technology for producing boron layers. This technology is based on chemical synthesis of boron 10 nanoparticles, and on electrophoretic deposition of these particles on metallic plates, or on metallic pieces with more complex shapes. The chemical synthesis consists in: - Heating boron 10 with lithium up to 700 deg. C under inert atmosphere: an intermetallic compound, LiB, is produced; - Hydrolysing this intermetallic compound: LiB + H{sub 2}O → B + Li{sup +} + OH{sup -} + 1/2H{sub 2}, where B is under the form of nanoparticles; - Purifying the suspension of boron nanoparticles in water, from lithium hydroxide, by successive membrane filtrations; - Evaporating the purified suspension, in order to get a powder of nanoparticles. The obtained nanoparticles have size around 300 nm, with a high porosity, of about 50%. This particle size is equivalent to about 150 nm massive particles. The nanoparticles are then put into suspension in a specific solvent, in order to perform deposition on metallic surfaces, by electrophoretic method. The solvent is chosen so that it is not electrolysed even under voltages of several tens of volts. An acid is dissolved into the solvent, so that the nanoparticles are positively charged. Deposition is performed on the cathode within about 10 min. The cathode could be an aluminium plate, or a nickel coated aluminium plate. Homogeneous deposition may also be performed on complex shapes, like grids in a Multigrid detector. A large volume of pieces, can be coated with a Boron-10 film in a few hours. The thickness of the layer can be adjusted according to the required neutron

  13. Synthesis of Boron Nanowires, Nanotubes, and Nanosheets

    Directory of Open Access Journals (Sweden)

    Rajen B. Patel

    2015-01-01

    Full Text Available The synthesis of boron nanowires, nanotubes, and nanosheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nanomaterials. The materials were made by using various combinations of MgB2, Mg(BH42, MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nanowires, boron nanotubes, and boron nanosheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  14. Prediction of boron carbon nitrogen phase diagram

    Science.gov (United States)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  15. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization.

    Science.gov (United States)

    Yamamoto, Yuhei; Shirasaki, Toshihiro; Yonetani, Akira; Imai, Shoji

    2015-01-01

    The measurement conditions for determining boron using graphite furnace-atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L(-1) when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS.

  16. Brush seal shaft wear resistant coatings

    Science.gov (United States)

    Howe, Harold

    1995-03-01

    Brush seals suffer from high wear, which reduces their effectiveness. This work sought to reduce brush seal wear by identifying and testing several industry standard coatings. One of the coatings was developed for this work. It was a co-sprayed PSZ with boron-nitride added for a high temperature dry lubricant. Other coatings tested were a PSZ, chrome carbide and a bare rotor. Testing of these coatings included thermal shocking, tensile testing and wear/coefficient of friction testing. Wear testing consisted of applying a coating to a rotor and then running a sample tuft of SiC ceramic fiber against the coating. Surface speeds at point of contact were slightly over 1000 ft/sec. Rotor wear was noted, as well as coefficient of friction data. Results from the testing indicates that the oxide ceramic coatings cannot withstand the given set of conditions. Carbide coatings will not work because of the need for a metallic binder, which oxidizes in the high heat produced by friction. All work indicated a need for a coating that has a lubricant contained within itself and the coating must be resistant to an oxidizing environment.

  17. Composite Reinforcement using Boron Nitride Nanotubes

    Science.gov (United States)

    2014-05-09

    Final 3. DATES COVERED (From - To) 11-Mar-2013 to 10-Mar-2014 4. TITLE AND SUBTITLE Composite Reinforcement using Boron Nitride Nanotubes...AVAILABILITY STATEMENT Approved for public release. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Boron nitride nanotubes have been proposed as a...and titanium (Ti) metal clusters with boron nitride nanotubes (BNNT). First-principles density-functional theory plus dispersion (DFT-D) calculations

  18. Oxygen radical functionalization of boron nitride nanosheets

    OpenAIRE

    MAY, PETER; Coleman, Jonathan; MCGOVERN, IGNATIUS; GOUNKO, IOURI; Satti, Amro

    2012-01-01

    PUBLISHED The covalent chemical functionalization of exfoliated hexagonal boron-nitride nanosheets (BNNSs) is achieved by the solution phase oxygen radical functionalization of boron atoms in the h-BN lattice. This involves a two-step procedure to initially covalently graft alkoxy groups to boron atoms and the subsequent hydrolytic defunctionalisation of the groups to yield hydroxyl-functionalized BNNSs (OH-BNNSs). Characterization of the functionalized-BNNSs using HR-TEM, Raman, UV-Vis, F...

  19. Design of Inorganic Water Repellent Coatings for Thermal Protection Insulation on an Aerospace Vehicle

    Science.gov (United States)

    Fuerstenau, D. W.; Ravikumar, R.

    1997-01-01

    In this report, thin film deposition of one of the model candidate materials for use as water repellent coating on the thermal protection systems (TPS) of an aerospace vehicle was investigated. The material tested was boron nitride (BN), the water-repellent properties of which was detailed in our other investigation. Two different methods, chemical vapor deposition (CVD) and pulsed laser deposition (PLD), were used to prepare the BN films on a fused quartz substrate (one of the components of thermal protection systems on aerospace vehicles). The deposited films were characterized by a variety of techniques including X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The BN films were observed to be amorphous in nature, and a CVD-deposited film yielded a contact angle of 60 degrees with water, similar to the pellet BN samples investigated previously. This demonstrates that it is possible to use the bulk sample wetting properties as a guideline to determine the candidate waterproofing material for the TPS.

  20. Boron-10 ABUNCL Active Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-07-09

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from testing of the active mode of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) at Los Alamos National Laboratory using sources and fuel pins.

  1. Mineral resource of the month: boron

    Science.gov (United States)

    Crangle, Robert D.

    2012-01-01

    The article offers information on the mineral, boron. Boron compounds, particularly borates, have more commercial applications than its elemental relative which is a metalloid. Making up the 90% of the borates that are used worldwide are colemanite, kernite, tincal, and ulexite. The main borate deposits are located in the Mojave Desert of the U.S., the Tethyan belt in southern Asia, and the Andean belt of South America. Underground and surface mining are being used in gathering boron compounds. INSETS: Fun facts;Boron production and consumption.

  2. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  3. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  4. Chemical preparation and investigation of Fe-P-B ultrafine amorphous alloy particles

    Institute of Scientific and Technical Information of China (English)

    胡征; 吴勇; 范以宁; 颜其洁; 陈懿

    1997-01-01

    A series of Fe-P-B ultrafine amorphous alloy particles has been prepared by the chemical reduction method The composition and size of the particles have been effectively adjusted.Mossbauer spectroscopy in addition to sonic other techniques has been used to investigate the reaction process,the factors that influence the preparation,the crystallization of the particles,and the interactions between the components within them.The results indicate that the co-deposition of iron,phosphorus and boron atoms in the solution at room temperature forms Fe-P-B amorphous alloy particles,and a preferential bonding of Fe-P bond to Fe-B one exists in the particles.

  5. Coating of LaCoO3 thin film with sol-gel dip coating method.

    Science.gov (United States)

    Okuyucu, Hasan; Dahl, Paul Inge; Einarsrud, Mari Ann

    2008-02-01

    LaCoO3 thin film was coated on Al2O3 single crystal by sol-gel route. Appropriate composition of precursors, chelating agents and the solvent put together into a flask and magnetically stirred on a magnetic stirrer. After having the red transparent solution, it was stirred for 12 hours before coating. Ultrasonically cleaned substrate is dipped into the solution and taken immediately into vertical furnace which is preheated at 550 degrees C. A dense amorphous film is coated on the substrate. Fired amorphous films are annealed at temperature between 900 degrees C and 1000 degrees C for 20 minutes in the air. Then coated film was characterized by means of XRD, AFM, and SEM. Conductivity of the film was measured to be -0.1819 for 881 degrees C for the log sigma value by assuming the thickness as

  6. Amorphous titanium-oxide supercapacitors

    Science.gov (United States)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  7. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Drera, G. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Mozzati, M.C. [CNISM, Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia (Italy); Colombi, P. [CSMT Gestione s.c.a.r.l, Via Branze 45, 25123 Brescia (Italy); Salvinelli, G.; Pagliara, S.; Visentin, D. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Sangaletti, L., E-mail: sangalet@dmf.unicatt.it [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy)

    2015-09-01

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al{sub 2}O{sub 3} substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al{sub 2}O{sub 3} substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions.

  8. Ferromagnetic resonance and antiresonance in glass-coated amorphous microwires

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, S.M.; Garcia-Miquel, H.; Lofland, S.E. E-mail: lofland@rowan.edu

    2002-08-01

    We report magnetoabsorption measurements on micron-size wires of (Co{sub 100-x}Fe{sub x}){sub 72.5}Si{sub 12.5}B{sub 15} at frequencies of 9.7, 26.7, 32.7, and 56 GHz, that is where the electromagnetic skin depth is comparable to the radius. The observed spectra are quite unconventional. In order to understand them, it is necessary to take explicit account of the variation of the RF fields inside the cylindrical sample and then express the absorption in terms of the concomitant permeability tensor.

  9. Electrodeposition and characterization of Co–BN (h) nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shahri, Z.; Allahkaram, S.R., E-mail: akaram@ut.ac.ir; Zarebidaki, A.

    2013-07-01

    Co–BN (h) nanocomposite coatings were prepared by means of the conventional electrodeposition in a chloride solution containing different concentrations of hexagonal boron nitride particles, and pure Co coating was also prepared as a comparison. Morphology of the coatings and the effect of incorporated particles on metal matrix structure and composition were investigated via scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. Microhardness, roughness, friction coefficient and wear resistance of the coatings were also evaluated using Vickers microhardness, stylus profilometer and pin-on disk machine. The results showed that Co–BN (h) nanocomposite coatings exhibit higher hardness and lower friction coefficient. Roughness and wear resistance compared with that of the pure Co coating obtained under the same electrodeposition condition and the wear mechanism of the coatings were also discussed.

  10. Boron Separation by the Two-step Ion-Exchange for the Isotopic Measurement of Boron

    Institute of Scientific and Technical Information of China (English)

    WANG,Qing-Zhong(王庆忠); XIAO,Ying-Kai(肖应凯); WANG,Yun-Hui(王蕴惠); ZHANG,Chong-Geng(张崇耿); WEI,Hai-Zhen(魏海珍)

    2002-01-01

    An improved procedure for extraction and purification of boron from natural samples is presented. The separation and purification of boron was carried out using a boron-specific resin, Amberlite IRA743, and a mixed ion exchange resin,Dowex 50W × 8 and Ion Exchanger Ⅱ resin. Using the mixed ion exchange resin which adsorbs all cations and anions except boron, the HCl and other cations and anions left in eluant from the Amberlite IRA 743 were removed effectively. In this case, boron loss can be avoided because the boron-bearing solution does not have to be evaporated to reach dryness to dislodge HCl. The boron recovery ranged from 97.6% to 102% in this study. The isotopic fractionation of boron can be negligible within the precision of the isotopic measurement. The results show that boron separation for the isotopic measurement by using both Amberlite IRA 743 resin and the mixed rein is more effective than that using Amberlite IRA 743 resin alone. The boron in samples of brine, seawater, rock, coral and foraminifer were separated by this procedure. Boron isotopic compositions of these samples were measured by thermal ionization mass spectrometry in this study.

  11. Science Letters:Development of supported boron-doping TiO2 catalysts by chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. Boron atoms were successfully doped into the lattice of TiO2 through CVD, as evidenced from XPS analysis. B-doped TiO2 coating catalysts showed drastic and strong absorption in the visible light range with a red shift in the band gap transition. This novel B-TiO2 coating photocatalyst showed higher photocatalytic activity in methyl orange degradation under visible light irradiation than that of the pure TiO2 photocatalyst.

  12. In situ formation of low friction ceramic coatings on carbon steel by plasma electrolytic oxidation in two types of electrolytes

    Science.gov (United States)

    Wang, Yunlong; Jiang, Zhaohua

    2009-04-01

    In situ formation of ceramic coatings on Q235 carbon steel was achieved by plasma electrolytic oxidation (PEO) in carbonate electrolyte and silicate electrolyte, respectively. The surface and cross-section morphology, phase and elemental composition of PEO coatings were examined by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The bond strength of the coating was determined using a direct pull-off test. The hardness as well as tribological properties of the ceramic coating was primarily studied. The results indicated that the coating obtained in carbonate electrolyte was Fe 3O 4, while the coating achieved from silicate electrolyte was proved to be amorphous. Both kinds of coatings showed coarse and porous surface. The Fe 3O 4 coatings obtained in carbonate electrolyte showed a high bonding strength to the substrate up to 20 ± 2 MPa and the value was 15 ± 2 MPa for the amorphous coatings obtained in carbonate electrolyte. The micro hardness of the amorphous coating and the Fe 3O 4 coating was 1001 Hv and 1413 Hv, respectively, which was more than two and three times as that of the Q235 alloy substrate (415 Hv). The friction coefficient exhibited by amorphous coating and Fe 3O 4 coating was 0.13 and 0.11, respectively, both lower than the uncoated Q235 substrate which ranged from 0.17 to 0.35.

  13. Possible toxicity of boron on sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Bravo C., M.

    Analyses of necrotic and green leaf tissues from sugar cane grown in the Tambo Valley (Arequipa, Peru) have shown that the boron concentration in necrotic tissue (average 657.7 ppm) is several times higher than that in the green tissue (average 55.7 ppm). This suggests that the necrosis may be due to boron toxicity.

  14. Computational Evidence for the Smallest Boron Nanotube

    Institute of Scientific and Technical Information of China (English)

    Xian Jie LIN; Dong Ju ZHANG; Cheng Bu LIU

    2006-01-01

    The structure of boron nanotubes (BNTs) was found not to be limited to hexagonal pyramidal structures. Based on density functional theory calculations we provided evidence for the smallest boron nanotube, a geometrical analog of the corresponding carbon nanotube. As shown by our calculations, the smallest BNT possesses highly structural, dynamical, and thermal stability, which should be interest for attempts at its synthesis.

  15. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  16. Boron rates for triticale and wheat crops

    Directory of Open Access Journals (Sweden)

    Corrêa Juliano Corulli

    2005-01-01

    Full Text Available No reports are registered on responses to boron fertilization nutrient deficiency and toxicity in triticale crops. The aim of this study was to evaluate triticale response to different rates of boron in comparison to wheat in an hapludox with initial boron level at 0.08 mg dm-3 4 4 factorial design trial completely randomized blocks design (n = 4. Boron rates were 0; 0.62; 1.24 and 1.86 mg dm-3; triticale cultivars were IAC 3, BR 4 and BR 53 and IAPAR 38 wheat crop was used for comparison. The wheat (IAPAR 38 crop presented the highest boron absorption level of all. Among triticale cultivars, the most responsive was IAC 53, presenting similar characteristics to wheat, followed by BR 4; these two crops are considered tolerant to higher boron rates in soil. Regarding to BR 53, no absorption effect was observed, and the cultivars was sensitive to boron toxicity. Absorption responses differed for each genotype. That makes it possible to choose and use the best-adapted plants to soils with different boron rates.

  17. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  18. Flexible amorphous metal films with high stability

    Science.gov (United States)

    Liu, M.; Cao, C. R.; Lu, Y. M.; Wang, W. H.; Bai, H. Y.

    2017-01-01

    We report the formation of amorphous Cu50Zr50 films with a large-area of more than 100 cm2. The films were fabricated by ion beam assisted deposition with a slow deposition rate at moderate temperature. The amorphous films have markedly enhanced thermal stability, excellent flexibility, and high reflectivity with atomic level smoothness. The multifunctional properties of the amorphous films are favorites in the promising applications of smart skin or wearable devices. The method of preparing highly stable amorphous metal films by tuning the deposition rate instead of deposition temperature could pave a way for exploring amorphous metal films with unique properties.

  19. Composite layers for barrier coatings on polymers

    Science.gov (United States)

    Brochhagen, Markus; Vorkoetter, Christoph; Boeke, Marc; Benedikt, Jan

    2016-09-01

    Amorphous hydrogenated carbon (a-C:H), amorphous hydrogenated silicon (a-Si:H), and SiO2 thin films are of high interest because they can serve as a gas barrier on polymers. To understand how the coating changes the overall barrier properties of the thin film-polymer system, optical, mechanical, and barrier properties have to be studied. One of the important characteristic of such coatings is their compressive stress, which has beneficial as well as unwanted effects. The stress can cause deformation of the bulk material or de-lamination of the film. The mechanical stability can be improved and it is possible to reduce cracking due to elongation, as the compressive stress can compensate externally applied tensile strain. Stress and mechanical properties of composite layers can be manipulated directly by embedding nanoparticles in an amorphous matrix film. Therefore nanoparticles and amorphous layers are investigated before they can be assembled in a composite layer. Growth rates as well as optical and mechanical properties are explored in this work. An inductively coupled plasma source was used for all amorphous layers and the silicon nanoparticles with diameter around 5 nm were produced in a capacitively coupled plasma reactor. This work is supported by DFG within SFB-TR87.

  20. Novel Scheme of Amorphous/Crystalline Silicon Heterojunction Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    De Iuliis, S.; Geerligs, L.J. [ECN Solar Energy, Petten (Netherlands); Tucci, M.; Serenelli, L.; Salza, E. [ENEA Research Center Casaccia, Roma (Italy); De Cesare, G.; Caputo, D.; Ceccarelli, M. [University ' Sapienza' , Department of Electronic Engineering, Roma (Italy)

    2007-01-15

    In this paper we investigate in detail how the heterostructure concept can be implemented in an interdigitated back contact solar cell, in which both the emitters are formed on the back side of the c-Si wafer by amorphous/crystalline silicon heterostructure, and at the same time the grid-less front surface is passivated by a double layer of amorphous silicon and silicon nitride, which also provides an anti-reflection coating. The entire process, held at temperature below 300C, is photolithography-free, using a metallic self-aligned mask to create the interdigitated pattern, and we show that the alignment is feasible. An open-circuit voltage of 687 mV has been measured on a p-type monocrystalline silicon wafer. The mask-assisted deposition process does not influence the uniformity of the deposited amorphous silicon layers. Photocurrent limits factor has been investigated with the aid of one-dimensional modeling and quantum efficiency measurements. On the other hand several technological aspects that limit the fill factor and the short circuit current density still need improvements.

  1. Boronated mesophase pitch coke for lithium insertion

    Science.gov (United States)

    Frackowiak, E.; Machnikowski, J.; Kaczmarska, H.; Béguin, F.

    Boronated carbons from mesophase pitch have been used as materials for lithium storage in Li/carbon cells. Doping by boron has been realized by co-pyrolysis of coal tar pitch with the pyridine-borane complex. Amount of boron in mesocarbon microbeads (MCMB) varied from 1.4 to 1.8 wt.% affecting the texture of carbon. Optical microscopy and X-ray diffractograms have shown tendency to more disordered structure for boron-doped carbon. The values of specific reversible capacity ( x) varied from 0.7 to 1.1 depending significantly on the final temperature of pyrolysis (700-1150°C). The optimal charge/discharge performance was observed for boronated carbon heated at 1000°C.

  2. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  3. Development of a new wear resistant coating by arc spraying of a steel-based cored wire

    Institute of Scientific and Technical Information of China (English)

    Lidong ZHAO; Binyou FU; Dingyong HE; Pia KUTSCHMANN

    2009-01-01

    In the present study, a cored wire of 304 L stainless steel as sheath material and NiB and WC-12Co as filler materials was designed and deposited to produce a new wear resistant coating containing amorphous phase by arc spraying. The microstructure of the coating was investigated. The porosity and hardness of the coating were determined. The wear performance of the coating was evaluated. The XRD and TEM analyses showed that there are high volume of amorphous phase and very fine crystalline grains in the coating. DTA measurements revealed that the crystallization of the amorphous phase occurred at 579.2℃. Because metallurgical processes for single droplets were non-homogenous during spraying, the lamellae in the coating have different hardness values, which lie between about 700 and 1250HV10og. The abrasive wear test showed that the new Fe-based coating was very wear resistant.

  4. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  5. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  6. Excimer laser crystallization of amorphous silicon on metallic substrate

    Science.gov (United States)

    Delachat, F.; Antoni, F.; Slaoui, A.; Cayron, C.; Ducros, C.; Lerat, J.-F.; Emeraud, T.; Negru, R.; Huet, K.; Reydet, P.-L.

    2013-06-01

    An attempt has been made to achieve the crystallization of silicon thin film on metallic foils by long pulse duration excimer laser processing. Amorphous silicon thin films (100 nm) were deposited by radiofrequency magnetron sputtering on a commercial metallic alloy (N42-FeNi made of 41 % of Ni) coated by a tantalum nitride (TaN) layer. The TaN coating acts as a barrier layer, preventing the diffusion of metallic impurities in the silicon thin film during the laser annealing. An energy density threshold of 0.3 J cm-2, necessary for surface melting and crystallization of the amorphous silicon, was predicted by a numerical simulation of laser-induced phase transitions and witnessed by Raman analysis. Beyond this fluence, the melt depth increases with the intensification of energy density. A complete crystallization of the layer is achieved for an energy density of 0.9 J cm-2. Scanning electron microscopy unveils the nanostructuring of the silicon after laser irradiation, while cross-sectional transmission electron microscopy reveals the crystallites' columnar growth.

  7. Tough ceramic coatings: Carbon nanotube reinforced silica sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A.J., E-mail: antoniojulio.lopez@urjc.es [Dept. de Ciencia e Ingenieria de Materiales, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, Mostoles 28933, Madrid (Spain); Rico, A.; Rodriguez, J.; Rams, J. [Dept. de Ciencia e Ingenieria de Materiales, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, Mostoles 28933, Madrid (Spain)

    2010-08-15

    Silica coatings reinforced with carbon nanotubes were produced via sol-gel route using two mixing techniques of the sol-gel precursors, mechanical and ultrasonic mixing, and dip-coating as deposition process on magnesium alloy substrates. Effective incorporation and distribution of 0.1 wt.% of carbon nanotubes in the amorphous silica matrix of the coatings were achieved using both techniques. Fabrication procedure determines the morphological aspects of the coating. Only mechanical mixing process produced coatings dense and free of defects. Nanoindentation technique was used to examine the influence of the fabrication process in the mechanical features of the final coatings, i.e. indentation fracture toughness, Young's modulus and hardness. A maximum toughening effect of about 24% was achieved in silica coatings reinforced with carbon nanotubes produced by the mechanical mixing route. Scanning electron microscopy investigation revealed that the toughening of these reinforced coatings was mainly due to bridging effect of the reinforcement.

  8. Molecular precursor derived silicon boron carbonitride/carbon nanotube and silicon oxycarbide/carbon nanotube composite nanowires for energy based applications

    Science.gov (United States)

    Bhandavat, Romil

    Molecular precursor derived ceramics (also known as polymer-derived ceramics or PDCs) are high temperature glasses that have been studied for applications involving operation at elevated temperatures. Prepared from controlled thermal degradation of liquid-phase organosilicon precursors, these ceramics offer remarkable engineering properties such as resistance to crystallization up to 1400 °C, semiconductor behavior at high temperatures and intense photoluminescence. These properties are a direct result of their covalent bonded amorphous network and free (-sp2) carbon along with mixed Si/B/C/N/O bonds, which otherwise can not be obtained through conventional ceramic processing techniques. This thesis demonstrates synthesis of a unique core/shell type nanowire structure involving either siliconboroncarbonitride (SiBCN) or siliconoxycarbide (SiOC) as the shell with carbon nanotube (CNT) acting as the core. This was made possible by liquid phase functionalization of CNT surfaces with respective polymeric precursor (e.g., home-made boron-modified polyureamethylvinylsilazane for SiBCN/CNT and commercially obtained polysiloxane for SiOC/CNT), followed by controlled pyrolysis in inert conditions. This unique architecture has several benefits such as high temperature oxidation resistance (provided by the ceramic shell), improved electrical conductivity and mechanical toughness (attributed to the CNT core) that allowed us to explore its use in energy conversion and storage devices. The first application involved use of SiBCN/CNT composite as a high temperature radiation absorbant material for laser thermal calorimeter. SiBCN/CNT spray coatings on copper substrate were exposed to high energy laser beams (continuous wave at 10.6 mum 2.5 kW CO2 laser, 10 seconds) and resulting change in its microstructure was studied ex-situ. With the aid of multiple techniques we ascertained the thermal damage resistance to be 15 kW/cm -2 with optical absorbance exceeding 97%. This represents

  9. Double helix boron-10 powder thermal neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui; Morris, Christopher L.; Bacon, Jeffrey D.

    2015-06-02

    A double-helix Boron-10 powder detector having intrinsic thermal neutron detection efficiency comparable to 36'' long, 2-in diameter, 2-bar Helium-3 detectors, and which can be used to replace such detectors for use in portal monitoring, is described. An embodiment of the detector includes a metallic plate coated with Boron-10 powder for generating alpha and Lithium-7 particles responsive to neutrons impinging thereon supported by insulators affixed to at least two opposing edges; a grounded first wire wound in a helical manner around two opposing insulators; and a second wire having a smaller diameter than that of the first wire, wound in a helical manner around the same insulators and spaced apart from the first wire, the second wire being positively biased. A gas, disposed within a gas-tight container enclosing the plate, insulators and wires, and capable of stopping alpha and Lithium-7 particles and generating electrons produces a signal on the second wire which is detected and subsequently related to the number of neutrons impinging on the plate.

  10. Characterization of boron doped diamond-like carbon film by HRTEM

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.J., E-mail: lixj@alum.imr.ac.cn [College of Material Science and Engineering, Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012 (China); He, L.L., E-mail: llhe@imr.ac.cn [Shenyang National Lab of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Y.S. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada); Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada)

    2015-12-01

    Graphical abstract: - Highlights: • The microstructure of B-DLC film is studied by HRTEM in cross-sectional observation. • Many crystalline nanoparticles dispersed in the amorphous matrix film are observed. • Through composition and structure analysis, the nanoparticles are identified as B{sub 2}O. • The work implies the doped B element exists as oxide state in the B-DLC film. - Abstract: Boron doped diamond-like carbon (B-DLC) film was synthesized on silicon (1 0 0) wafer by biased target ion beam deposition. High-resolution transmission electron microscopy (HRTEM) is employed to investigate the microstructure of the B-DLC thin film in cross-sectional observation. Many crystalline nanoparticles randomly dispersed and embedded in the amorphous matrix film are observed. Through chemical compositional analysis of the B-DLC film, some amount of O element is confirmed to be contained. And also, some nanoparticles with near zone axes are indexed, which are accordance with B{sub 2}O phase. Therefore, the contained O element causing the B element oxidized is proposed, resulting in the formation of the nanoparticles. Our work indicates that in the B-DLC film a significant amount of the doped B element exists as boron suboxide nanoparticles.

  11. Transparent amorphous zinc oxide thin films for NLO applications

    Science.gov (United States)

    Zawadzka, A.; Płóciennik, P.; Strzelecki, J.; Sahraoui, B.

    2014-11-01

    This review focuses on the growth and optical properties of amorphous zinc oxide (ZnO) thin films. A high quality ZnO films fabricated by dip-coating (sol-gel) method were grown on quartz and glass substrates at temperature equal to 350 K. The amorphous nature of the films was verified by X-ray diffraction. Atomic Force Microscopy was used to evaluate the surface morphology of the films. The optical characteristics of amorphous thin films have been investigated in the spectral range 190-1100 nm. Measurement of the polarized optical properties was shows a high transmissivity (80-99%) and low absorptivity (<5%) in the visible and near infrared regions at different angles of incidence. Linear optical properties were investigated by classic and Time-Resolved Photoluminescence (TRPL) measurements. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. An innovative TRPL technique has enabled the measurement of the photoluminescence decay time as a function of temperature. TRPL measurements reveal a multiexponential decay behavior typical for amorphous thin films. Second and third harmonic generation measurements were performed by means of the rotational Maker fringe technique using Nd:YAG laser at 1064 nm in picosecond regime for investigations of the nonlinear optical properties. The obtained values of second and third order nonlinear susceptibilities were found to be high enough for the potential applications in the optical switching devices based on refractive index changes. Presented spectra confirm high structural and optical quality of the investigated zinc oxide thin films.

  12. Pyrolytic transformation from polydihydrosilane to hydrogenated amorphous silicon film

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); Matsuki, Yasuo [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); Yokkaichi Research Center, JSR Corporation, 100 Kawajiri-cho, Yokkaichi, Mie, 510-8552 (Japan); Shimoda, Tatsuya [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292 (Japan)

    2012-08-31

    The fabrication of thin film silicon devices based on solution processes rather than on conventional vacuum processes is of substantial interest since cost reductions may result. Using a solution process, we coated substrates with polydihydrosilane solution and studied the pyrolytic transformation of the material into hydrogenated amorphous silicon (a-Si:H). From thermal gravimetry and differential thermal analysis data a significant reduction in weight of the material and a construction of Si-Si bonds are concluded for the pyrolysis temperature T{sub p} = 270 to 360 Degree-Sign C. The appearance of amorphous silicon phonon bands in Raman spectra for films prepared at T{sub p} {>=} 330 Degree-Sign C suggests the construction of a three-dimensional amorphous silicon network. Films prepared at T{sub p} {>=} 360 Degree-Sign C exhibit a hydrogen content near 10 at.% and an optical gap near 1.6 eV similar to device-grade vacuum processed a-Si:H. However, the infrared microstructure factor, the spin density, and the photosensitivity require significant improvements. - Highlights: Black-Right-Pointing-Pointer We fabricate hydrogenated amorphous silicon (a-Si:H) films by a solution process. Black-Right-Pointing-Pointer The a-Si:H films are prepared by pyrolytic transformation in polysilane solution. Black-Right-Pointing-Pointer We investigate basic properties in relation to the pyrolysis temperature. Black-Right-Pointing-Pointer Raman spectra, hydrogen content, and optical gap are similar to device-grade a-Si:H. Black-Right-Pointing-Pointer Microstructure factor, spin density, and photoconductivity show poor quality.

  13. Microstructure and Properties of FeCrB Alloy Coatings Prepared by Wire-Arc Spraying

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, Y. M.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-02-01

    To improve the heat transfer ability and wear resistance of drying cylinders in paper production machines, a series of Fe87- x Cr13B x ( x = 1 wt.%, 1.5 wt.%, 2 wt.%, 2.5 wt.%, 3 wt.%, and 4 wt.%) cored wires have been produced and used to prepare coatings by wire-arc spraying, in comparison with conventional X30Cr13 solid wire. All coatings presented dense layered structure with porosity of around 4%. The boron content in the cored wires significantly affected the thermal conductivity of the coating, which is attributed to the combined effects of the crystal structure, grain size, and oxide content of the coating. In the investigated range, the coating with 2 wt.% boron content exhibited the highest thermal conductivity, reaching 8.83 W/m-K, greater than that of X30Cr13 coating (5.45 W/m-K). Furthermore, the microhardness and relative wear resistance of the FeCrB coatings obtained from cored wires with boron addition were greatly increased compared with commercial X30Cr13 coating. Therefore, wire-arc-sprayed FeCrB coating has promise as an effective and economic approach to improve the heat transfer behavior and wear resistance of drying cylinders in the paper industry.

  14. Microstructure and Properties of FeCrB Alloy Coatings Prepared by Wire-Arc Spraying

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, Y. M.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2016-12-01

    To improve the heat transfer ability and wear resistance of drying cylinders in paper production machines, a series of Fe87-x Cr13B x (x = 1 wt.%, 1.5 wt.%, 2 wt.%, 2.5 wt.%, 3 wt.%, and 4 wt.%) cored wires have been produced and used to prepare coatings by wire-arc spraying, in comparison with conventional X30Cr13 solid wire. All coatings presented dense layered structure with porosity of around 4%. The boron content in the cored wires significantly affected the thermal conductivity of the coating, which is attributed to the combined effects of the crystal structure, grain size, and oxide content of the coating. In the investigated range, the coating with 2 wt.% boron content exhibited the highest thermal conductivity, reaching 8.83 W/m-K, greater than that of X30Cr13 coating (5.45 W/m-K). Furthermore, the microhardness and relative wear resistance of the FeCrB coatings obtained from cored wires with boron addition were greatly increased compared with commercial X30Cr13 coating. Therefore, wire-arc-sprayed FeCrB coating has promise as an effective and economic approach to improve the heat transfer behavior and wear resistance of drying cylinders in the paper industry.

  15. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    Science.gov (United States)

    Serra, R.; Oliveira, V.; Oliveira, J. C.; Kubart, T.; Vilar, R.; Cavaleiro, A.

    2015-03-01

    Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm2. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different circumstances. Processing of the amorphous films at low fluence (72 μJ) results in LIPSS formation only on localized spots on the film surface. LIPSS formation was also observed on the top of the undulations formed after laser processing with 78 μJ of the amorphous film deposited at 800 °C. Finally, large-area homogeneous LIPSS coverage of the boron carbide crystalline films surface was achieved within a large range

  16. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Serra, R., E-mail: ricardo.serra@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Oliveira, V. [ICEMS-Instituto de Ciência e Engenharia de Materiais e Superfícies, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Oliveira, J.C. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Kubart, T. [The Ångström Laboratory, Solid State Electronics, P.O. Box 534, SE-751 21 Uppsala (Sweden); Vilar, R. [Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Instituto Superior Técnico, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal)

    2015-03-15

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm{sup 2}. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under

  17. Autoionizing states of atomic boron

    Science.gov (United States)

    Argenti, Luca; Moccia, Roberto

    2016-04-01

    We present a B -spline K -matrix method for three-active-electron atoms in the presence of a polarizable core, with which it is possible to compute multichannel single-ionization scattering states with good accuracy. We illustrate the capabilities of the method by computing the parameters of several autoionizing states of the boron atom, with S2e, 2,o2P and D2e symmetry, up to at least the 2 p2(1S) excitation threshold of the B ii parent ion, as well as selected portions of the photoionization cross section from the ground state. Our results exhibit remarkable gauge consistency, they significantly extend the existing sparse record of data for the boron atom, and they are in good agreement with the few experimental and theoretical data available in the literature. These results open the way to extend to three-active-electron systems the spectral analysis of correlated wave packets in terms of accurate scattering states that has already been demonstrated for two-electron atoms in Argenti and Lindroth [Phys. Rev. Lett. 105, 053002 (2010), 10.1103/PhysRevLett.105.053002].

  18. Combustion synthesis of novel boron carbide

    Science.gov (United States)

    Harini, R. Saai; Manikandan, E.; Anthonysamy, S.; Chandramouli, V.; Eswaramoorthy, D.

    2013-02-01

    The solid-state boron carbide is one of the hardest materials known, ranking third behind diamond and cubic boron nitride. Boron carbide (BxCx) enriched in the 10B isotope is used as a control rod material in the nuclear industry due to its high neutron absorption cross section and other favorable physico-chemical properties. Conventional methods of preparation of boron carbide are energy intensive processes accompanied by huge loss of boron. Attempts were made at IGCAR Kalpakkam to develop energy efficient and cost effective methods to prepare boron carbide. The products of the gel combustion and microwave synthesis experiments were characterized for phase purity by XRD. The carbide formation was ascertained using finger-print spectroscopy of FTIR. Samples of pyrolized/microwave heated powder were characterized for surface morphology using SEM. The present work shows the recent advances in understanding of structural and chemical variations in boron carbide and their influence on morphology, optical and vibrational property results discussed in details.

  19. Method of synthesizing cubic system boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Yuzu, S.; Sumiya, H.; Degawa, J.

    1987-10-13

    A method is described for synthetically growing cubic system boron nitride crystals by using boron nitride sources, solvents for dissolving the boron nitride sources, and seed crystals under conditions of ultra-high pressure and high temperature for maintaining the cubic system boron nitride stable. The method comprises the following steps: preparing a synthesizing vessel having at least two chambers, arrayed in order in the synthesizing vessel so as to be heated according to a temperature gradient; placing the solvents having different eutectic temperatures in each chamber with respect to the boron nitride sources according to the temperature gradient; placing the boron nitride source in contact with a portion of each of the solvents heated at a relatively higher temperature and placing at least a seed crystal in a portion of each of the solvents heated at a relatively lower temperature; and growing at least one cubic system boron nitride crystal in each of the solvents in the chambers by heating the synthesizing vessel for establishing the temperature gradient while maintaining conditions of ultra-high pressure and high temperature.

  20. The role of various boron precursor on superconducting properties of MgB2/Fe

    Science.gov (United States)

    Safran, S.; Kılıçarslan, E.; Kılıç, A.; Gencer, A.

    2014-09-01

    The superconducting properties of Fe sheathed MgB2 wire has been studied as a function of precursor B powder particle size. The in situ processed MgB2 samples were prepared by means of conventional solid state reaction method with magnesium powder (99.8%, 325 mesh) and three different types of amorphous boron powders (purity; 98.8%, >95% and 91.9%) from two sources, Pavezyum (Turkish supplier) and Sigma Aldrich. The particle sizes of Turkish boron precursor powder were selected between 300 and 800 nm. The structural and magnetic properties of the prepared samples were investigated by means of the X-ray powder diffraction (XRD) and ac susceptibility measurements. The XRD patterns showed that the diffraction peaks for our samples belong to the main phase of the MgB2 diffraction patterns. The highest critical temperature, Tc = 38.4 K was measured for the MgB2 sample which was fabricated by using the 98.8% B. The critical current density of this sample was extracted from the magnetization measurements and Jc = 5.4 × 105 A cm-2 at 5 K and B = 2 T. We found that the sample made by using the 98.8% boron showed almost 2 times higher Jc than that of obtained from 91.9% B powder.

  1. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  2. Mechanical properties of Fe-Si-B amorphous wires produced by in-rotating-water spinning method

    Science.gov (United States)

    Hagiwara, M.; Inoue, A.; Masumoto, T.

    1982-03-01

    Amorphous wires with high strength and good ductility have been produced in Fe-Si-B alloy system by the modified melt-spinning technique in which a melt stream is ejected into a rotating water layer. These wires have a circular cross section and smooth peripheral surface. The diameter is in the range of about 0.07 to 0.27 mm. Their Vickers hardness (Hv) and tensile strength (σf) increase with silicon and boron content and reach 1100 DPN and 3920 MPa, respectively, for Fe70Si10B20, exceeding the values of heavily cold-drawn steel wires. Fracture elongation (ɛ f ), including elastic elongation, is about 2.1 to 2.8 pct. An appropriate cold drawing results in the increase of σf and ɛf by about eight and 65 pct, respectively. This increase is interpreted to result from an interaction among crossing deformation bands introduced by cold drawing. The undrawn and drawn amorphous wires are so ductile that no cracks are observed, even after closely contacted bending. Further, it is demonstrated that the σf of the Fe75Si10Bl5 amorphous wire increases by the replacement of iron with a small amount of tantalum, niobium, tungsten, molybdenum, or chromium without detriment to the formation tendency of an amorphous wire. Such iron-based amorphous wires are attractive as fine gauge, high strength materials because of their uniform shape and superior mechanical qualities.

  3. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Subhra [Department of Tumor Immunology, Radboud University Nijmegen Medical Centre (Netherlands); Bakeine, Gerald J., E-mail: Jamesbakeine1@yahoo.com [Department of Internal Medicine and Therapeutics-Section of Clinical Toxicology, University of Pavia, Piazza Botta 10, 27100 Pavia (Italy); Krol, Silke [Institute of Neurology, Fondazione IRCCS Carlo Besta, Milan (Italy); Ferrari, Cinzia; Clerici, Anna M.; Zonta, Cecilia; Cansolino, Laura [Department of Surgery, Laboratory of Experimental Surgery, University of Pavia (Italy); Ballarini, Francesca [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bortolussi, Silva [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Stella, Subrina; Protti, Nicoletta [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bruschi, Piero [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Altieri, Saverio [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy)

    2011-12-15

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coated with multilayers of polyelectrolytes functionalized with the fluorescent dye (FITC), boronophenylalanine and folic acid. In vitro confocal fluorescence microscopy demonstrated significant uptake of the nanoparticles in cancer cells that are known to overexpress folate receptors. - Highlights: Black-Right-Pointing-Pointer Synthesis of multi-labeled gold nanoparticles for selective boron delivery to tumor cells. Black-Right-Pointing-Pointer Tumor selectivity is achieved through folic acid receptor targeting. Black-Right-Pointing-Pointer Optical fluorescent microscopy allows tracking of cellular uptake of the gold nanoparticle. Black-Right-Pointing-Pointer In vitro tests demonstrate selective nanoparticle up in folate receptor positive tumor cells.

  4. Amorphous-to-microcrystalline transition in a-Si:H under hydrogen plasma: Optical and electrical detection

    Energy Technology Data Exchange (ETDEWEB)

    Hadjadj, Aomar; Larbi, Fadila [Groupe de Recherche en Sciences pour l' Ingenieur (GRESPI), Universite de Reims, 51687 Reims cedex 2 (France); Pham, Nans [Groupe de Recherche en Sciences pour l' Ingenieur (GRESPI), Universite de Reims, 51687 Reims cedex 2 (France); Laboratoire de Physique des Interfaces et Couches Minces (LPICM), Ecole Polytechnique, 91128 Palaiseau (France); Roca i Cabarrocas, Pere [Laboratoire de Physique des Interfaces et Couches Minces (LPICM), Ecole Polytechnique, 91128 Palaiseau (France)

    2012-06-15

    The exact role of hydrogen in the crystallization process is still a subject of broad controversies due to the complexity of the overall plasma enhanced chemical vapor deposition (PECVD) process. We have investigated by ellipsometry the amorphous-to-microcrystalline the phase transition in intrinsic and doped hydrogenated amorphous silicon (a-Si:H) thin films during their exposure to a hydrogen plasma in conditions of chemical transport. The whole ellipsometry diagnostics reveal that, while intrinsic and phosphorus-doped a-Si:H present a similar trend during the plasma treatment, boron-doped a-Si:H differs by special features such as a rapid formation of the hydrogen-rich subsurface layer and an early amorphous-to-microcrystalline phase transition. The particular behavior of boron-doped material is also pointed out through the time-evolution of the self-bias voltage on the radio-frequency electrode during the hydrogen plasma treatment (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Growth of Structured Non-crystalline Boron-Oxygen-Nitrogen Films and Measurement of Their Electrical Properties

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-Chao(陈广超); LU Fan-Xiu(吕反修); J.-H.Boo

    2003-01-01

    The boron-oxygen-nitrogen (BON) films have been grown on Si wafer by the low-frequency rf-plasma-enhanced metal-organic chemical vapour deposition method. The homogeneous film structure of completely amorphous BON is first fabricated on a low-temperature-made buffer at 500° C with N2 plasma and is observed with a high resolution-electron microscope by the transmission-electron diffraction. The results show that the interfaces among substrate/buffer/film are clear and straight in the structured film. A heterogeneous film containing nano-sized crystalline particles is also grown by a routine growth procedure as a referential structure. The C - V characteristic is measured on both the amorphous and crystal-containing films by using the metal-oxidesemiconductor structure. The dielectric constants of the films are, therefore, deduced to be 5.9 and 10.5 for the amorphous and crystal-containing films, respectively. The C - V results also indicate that more trapped charges exist in the amorphous film. The binding energy of the B, O, and N atoms in the amorphous film is higher than that in the crystal-containing one, and the N-content in the latter is found to be higher than that in the former by x-ray photo-electron spectroscopy. The different electrical property of the films is thought to originate from the energy state of the covalent electrons.

  6. Optically transparent, scratch-resistant, diamond-like carbon coatings

    Science.gov (United States)

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  7. From Boron Cluster to Two-Dimensional Boron Sheet on Cu(111) Surface: Growth Mechanism and Hole Formation

    OpenAIRE

    Hongsheng Liu; Junfeng Gao; Jijun Zhao

    2013-01-01

    As attractive analogue of graphene, boron monolayers have been theoretically predicted. However, due to electron deficiency of boron atom, synthesizing boron monolayer is very challenging in experiments. Using first-principles calculations, we explore stability and growth mechanism of various boron sheets on Cu(111) substrate. The monotonic decrease of formation energy of boron cluster BN with increasing cluster size and low diffusion barrier for a single B atom on Cu(111) surface ensure cont...

  8. Developments in boron magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  9. Thermodynamics of electrodeposited Ni-B-SiC composite coatings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The φ-pH diagram of Ni-B-H2O system was drawn, and the mechanism of electrodepositing Ni-B-SiC composite coatings was discussed. The results show that the deposition of Ni and B occurs prior to that of H2 because of the over-potential of H2 evolution on the Fe substrate. Boron can not singly deposit in aqueous solution. Nickel and boron can co-deposit in the form of Ni4B3 without evolution of hydrogen when the cathodical potential is kept to be -1.415~-1.700?V.

  10. On Structure and Properties of Amorphous Materials

    Directory of Open Access Journals (Sweden)

    Zbigniew H. Stachurski

    2011-09-01

    Full Text Available Mechanical, optical, magnetic and electronic properties of amorphous materials hold great promise towards current and emergent technologies. We distinguish at least four categories of amorphous (glassy materials: (i metallic; (ii thin films; (iii organic and inorganic thermoplastics; and (iv amorphous permanent networks. Some fundamental questions about the atomic arrangements remain unresolved. This paper focuses on the models of atomic arrangements in amorphous materials. The earliest ideas of Bernal on the structure of liquids were followed by experiments and computer models for the packing of spheres. Modern approach is to carry out computer simulations with prediction that can be tested by experiments. A geometrical concept of an ideal amorphous solid is presented as a novel contribution to the understanding of atomic arrangements in amorphous solids.

  11. Bonding in boron: building high-pressure phases from boron sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kunstmann, Jens [Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology (Germany); Boeri, Lilia [Max Planck Institute for Solid State Research, Stuttgart (Germany); Kortus, Jens [Institute for Theoretical Physics, TU Bergakademie Freiberg (Germany)

    2010-07-01

    We present the results of a study of the high pressure phase diagram of elemental boron, using full-potential density functional calculations. We show that at high pressures (P > 100 GPa) boron crystallizes in quasi-layered bulk phases, characterized by in-plane multicenter bonds and out-of-plane unidimensional sigma bonds. These structures are all metallic, in contrast to the low-pressure icosahedral ones, which are semiconducting. We show that the structure and bonding of layered bulk phases can be easily described in terms of single puckered boron sheets. Our results bridge the gap between boron nanostructures and bulk phases.

  12. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  13. A new carbon structure in annealed film coatings of the carbon-lead system

    Science.gov (United States)

    Volodin, V. N.; Tuleushev, Yu. Zh.; Zhakanbaev, E. A.; Tsai, K. V.; Rofman, O. V.

    2017-01-01

    Carbon-lead solid solutions coexisting with amorphous carbon have been obtained for the first time in a film coating deposited by ion-plasma sputtering. During subsequent vacuum annealing of carbon-lead films containing more than 68.5 at % Pb, this element almost completely evaporates to leave an amorphous carbon coating on a substrate. During annealing at 1100°C, this amorphous carbon crystallizes into a new hexagonal lattice with unit cell parameters a = 0.7603 nm and c = 0.8168 nm. Characteristic X-ray diffraction data for the identification of this phase are determined.

  14. Influence of boron diffusion on the perpendicular magnetic anisotropy in Ta|CoFeB|MgO ultrathin films

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Jaivardhan; Gruber, Maria; Kodzuka, Masaya; Ohkubo, Tadakatsu; Mitani, Seiji; Hono, Kazuhiro; Hayashi, Masamitsu, E-mail: hayashi.masamitsu@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2015-01-28

    We have studied structural and magnetic properties of Ta|CoFeB|MgO heterostructures using cross-section transmission electron microscopy (TEM), electron energy loss spectrum (EELS) imaging, and vibrating sample magnetometry. From the TEM studies, the CoFeB layer is found to be predominantly amorphous for as deposited films, whereas small crystallites, diameter of ∼5 nm, are observed in films annealed at 300 °C. We find that the presence of such nanocrystallites is not sufficient for the occurrence of perpendicular magnetic anisotropy. Using EELS, we find that boron diffuses into the Ta underlayer upon annealing. The Ta underlayer thickness dependence of the magnetic anisotropy indicates that ∼0.2 nm of Ta underlayer is enough to absorb the boron from the CoFeB layer and induce perpendicular magnetic anisotropy. Boron diffusion upon annealing becomes limited when the CoFeB layer thickness is larger than ∼2 nm, which coincides with the thickness at which the saturation magnetization M{sub S} and the interface magnetic anisotropy K{sub I} drop by ∼20%. These results show the direct role which boron plays in determining the perpendicular magnetic anisotropy in CoFeB|MgO heterostructures.

  15. The physics and applications of amorphous semiconductors

    CERN Document Server

    Madan, Arun

    1988-01-01

    This comprehensive, detailed treatise on the physics and applications of the new emerging technology of amorphous semiconductors focuses on specific device research problems such as the optimization of device performance. The first part of the book presents hydrogenated amorphous silicon type alloys, whose applications include inexpensive solar cells, thin film transistors, image scanners, electrophotography, optical recording and gas sensors. The second part of the book discusses amorphous chalcogenides, whose applications include electrophotography, switching, and memory elements. This boo

  16. Structural study of amorphous polyaniline

    Science.gov (United States)

    Laridjani, M.; Pouget, J. P.; MacDiarmid, A. G.; Epstein, A. J.

    1992-06-01

    Many materials, especially polymers, have a substantial volume fraction with no long range crystalline order. Through these regions are often termed amorphous, they frequently have a specific local order. We describe and use here a method, base on a non-energy dispersive X-ray diffraction technique, to obtain good quality interference functions and, by Fourier transform, radial distribution functions of the amorphous structure of polymers. We apply this approach to members of a family of electronic polymers of current interest : polyaniline emeraldine bases. We show that the local order exhibits significant differences in type I and type II materials, precipitated as salt and base respectively. These studies demonstrate the importance of sample preparation in evaluating the physical properties of polyaniline, and provide a structural origin for memory effects observed in the doping-dedoping processes. Beaucoup de matériaux, spécialement les polymères, ont une importante fraction de leur volume sans ordre cristallin à longue portée. Bien que ces régions soient souvent appelées amorphes, elles présentent fréquemment un ordre local caractéristique. Nous décrivons et utilisons dans ce papier une méthode, basée sur une technique de diffraction de rayons X non dispersive en énergie, pour obtenir des fonctions d'interférence de bonne qualité et, par transformée de Fourier, la fonction de distribution radiale des polymères amorphes. Nous appliquons cette technique à plusieurs éléments d'une même famille de polymères électroniques d'intérêt actuel : les polyanilines éméraldine bases. Nous montrons que l'ordre local présente d'appréciables différences dans les matériaux de type I et II, préparés respectivement sous forme de sel et de base. Cette étude démontre l'importance des conditions de préparation sur les propriétés physiques du polyaniline et donne une base structurale aux effets observés dans les processus de dopage-dédopage de

  17. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    the velocities of ultrasonic longitudinal and shear waves were measured to 1820 m/sec and 930 m/sec, respectively. Based on these results the two line systems in the transition zone can be interpreted as ``Wallner lines'' with sources within the zone. ©1966 The American Institute of Physics......Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  18. Neutron Detection using Amorphous Boron-Carbide Hetero-Junction Diodes

    Science.gov (United States)

    2012-03-22

    weapons grade plutonium (WGPu). Cosmic-ray induced spallation neutrons further complicate matters since, when generated at high Z/air interfaces, can...by creating a small central cavity inside to secure and protect the device during experiments. A small hole was drilled and tapped in the side in...the aluminum case. Four holes were drilled and tapped in the bottom of the case’s internal cavity to match the spacings of the holes drilled through the

  19. The Effect of Boron Addition on the Atomic Structure and Microwave Magnetic Properties of FeGaB Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J.; Yang, A; Chen, Y; Kirkland, J; Lou, J; Sun, N; Vittoria, C; Harris, V

    2009-01-01

    Varying amounts of boron were added to the host FeGa alloy to investigate its impact upon local atomic structure and magnetic and microwave properties. The impact of B upon the local atomic structure in FeGaB films was investigated by extended x-ray absorption fine structure (EXAFS) analysis. The EXAFS fitting results revealed a contraction of lattice parameters with the introduction of B. The Debye-Waller factor determined from EXAFS fitting increases as a function of boron addition and abruptly changes during the structural evolution from crystalline to amorphous that occurs near 9% B. Upon the onset of this transition the static and microwave magnetic properties became exceptionally soft, with values of coercivity and ferromagnetic linewidth reducing to less than 1 Oe and 25 Oe, respectively.

  20. Boron-Based (Nano-Materials: Fundamentals and Applications

    Directory of Open Access Journals (Sweden)

    Umit B. Demirci

    2016-09-01

    Full Text Available The boron (Z = 5 element is unique. Boron-based (nano-materials are equally unique. Accordingly, the present special issue is dedicated to crystalline boron-based (nano-materials and gathers a series of nine review and research articles dealing with different boron-based compounds. Boranes, borohydrides, polyhedral boranes and carboranes, boronate anions/ligands, boron nitride (hexagonal structure, and elemental boron are considered. Importantly, large sections are dedicated to fundamentals, with a special focus on crystal structures. The application potentials are widely discussed on the basis of the materials’ physical and chemical properties. It stands out that crystalline boron-based (nano-materials have many technological opportunities in fields such as energy storage, gas sorption (depollution, medicine, and optical and electronic devices. The present special issue is further evidence of the wealth of boron science, especially in terms of crystalline (nano-materials.

  1. Catalytic Asymmetric Synthesis of Phosphine Boronates

    NARCIS (Netherlands)

    Hornillos, Valentin; Vila, Carlos; Otten, Edwin; Feringa, Ben L.

    2015-01-01

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of ,-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good y

  2. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  3. Boron-10 loaded inorganic shielding material

    Science.gov (United States)

    Baker, S. I.; Ryskiewicz, R. S.

    1972-01-01

    Shielding material containing Boron 10 and gadoliunium for neutron absorption has been developed to reduce interference from low energy neutrons in measurement of fission neutron spectrum using Li-6 fast neutron spectrometer.

  4. Spectromicroscopy in Boron Neutron Capture Therapy Research

    Science.gov (United States)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  5. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  6. Nanopipe formation as a result of boron impurity segregation in gallium nitride grown by halogen-free vapor phase epitaxy

    Science.gov (United States)

    Kimura, Taishi; Aoki, Yuko; Horibuchi, Kayo; Nakamura, Daisuke

    2016-12-01

    The work reported herein demonstrated that nanopipes can be formed via a surfactant effect, in which boron impurities preferentially migrate to semipolar and nonpolar facets. Approximately 3 μm-thick GaN layers were grown using halogen-free vapor phase epitaxy. All layers grown in pyrolytic boron nitride (pBN) crucibles were found to contain a high density of nanopipes in the range of 1010 to 1011 cm-2. The structural properties of these nanopipes were analyzed by X-ray rocking curve measurements, transmission electron microscopy, and three-dimensional atom probe (3DAP) tomography. The resulting 3DAP maps showed nanopipe-sized regions of boron segregation, and these nanopipes were not associated with the presence of dislocations. A mechanism for nanopipe formation was developed based on the role of boron as a surfactant and considering energy minima. A drastic reduction in the nanopipe density was achieved upon replacing the pBN crucibles with tantalum carbide-coated carbon crucibles. Consequently, we have confirmed that nanopipes can be formed solely due to surface energy changes induced by boron impurity surface segregation. For this reason, these results also indicate that nanopipes should be formed by other surfactant impurities such as Mg and Si.

  7. Investigation of optical, structural and morphological properties of nanostructured boron doped TiO2 thin films

    Indian Academy of Sciences (India)

    Savaş Sönmezoǧlu; Banu Erdoǧan; İskender Askeroǧlu

    2013-12-01

    Pure and different ratios (1, 3, 5, 7 and 10%) of boron doped TiO2 thin films were grown on the glass substrate by using sol–gel dip coating method having some benefits such as basic and easy applicability compared to other thin film production methods. To investigate the effect of boron doped on the physical properties of TiO2, structural, morphological and optical properties of growth thin films were examined. 1% boron-doping has no effect on optical properties of TiO2 thin film; however, optical properties vary with > 1%. From X-ray diffraction spectra, it is seen that TiO2 thin films together with doping of boron were formed along with TiB2 hexagonal structure having (111) orientation, B2O3 cubic structure having (310) orientation, TiB0.024O2 tetragonal structure having rutile phase (110) orientation and polycrystalline structures. From SEM images, it is seen that particles together with doping of boron have homogeneously distributed and held onto surface.

  8. Multispectral Coatings

    Science.gov (United States)

    2010-01-01

    nanowires. 2.2 Project Objectives  This project used spin coating technology, new and commercial nanoparticle composites, and ODC’s patented...of this project. The spin coating method to deposit polymers has been widely studied and allows for simple, low cost depositions of thin films...Figure 5). Spin coating controls the layer thickness by balancing the centrifugal forces of a developing thin film to the viscous forces that increase

  9. Compilation of diamond-like carbon properties for barriers and hard coatings

    Energy Technology Data Exchange (ETDEWEB)

    Outka, D.A.; Hsu, Wen L.; Phillips, K.; Boehme, D.R.; Yang, N.Y.C.; Ottesen, D.K.; Johnsen, H.A.; Clift, W.M. [Sandia National Labs., Livermore, CA (United States); Headley, T.J. [Sandia National Labs., Albuquerque, NM (United States)

    1994-05-01

    Diamond-like carbon (DLC) is an amorphous form of carbon which resembles diamond in its hardness, lubricity, and resistance to chemical attack. Such properties make DLC of interest for use in barrier and hard coating technology. This report examines a variety of properties of DLC coatings. This includes examining substrates on which DLC coatings can be deposited; the resistance of DLC coatings to various chemical agents; adhension of DLC coatings; and characterization of DLC coatings by electron microscopy, FTIR, sputter depth profiling, stress measurements and nanoindentation.

  10. Combustion Behavior of Free Boron Slurry Droplets,

    Science.gov (United States)

    2014-09-26

    weak disruptive behavior while pure JP-1t burn quiescently, except for a flash extinction which occurs at the termination of combustion. The...I AD-R158 628 COMBUSTION BEHAVIOR OF FREE BORON SLURRY DROPLETS(U) i/i I PRINCETON UNIV NJ DEPT OF MECHANICAL AND AEROSPACE ENINEERIN., F TAKAHASHI...COMBUSTION BEHAVIOR OF FREE BORON SLURRY DROPLETS TAM by F. Takahashi, F.L. Dryer, and F.A. Williams Department of M~echanical and keyosase Engineering

  11. Morbus Coats

    Science.gov (United States)

    Förl, B.; Schmack, I.; Grossniklaus, H.E.; Rohrschneider, K.

    2010-01-01

    Der fortgeschrittene Morbus Coats stellt im Kleinkindalter eine der schwierigsten Differenzialdiagnosen zum Retinoblastom dar. Wir beschreiben die klinischen und histologischen Befunde zweier Jungen im Alter von 9 und 21 Monaten mit einseitiger Leukokorie. Trotz umfassender Diagnostik mittels Narkoseuntersuchung, MRT und Ultraschall konnte ein Retinoblastom nicht sicher ausgeschlossen werden, und es erfolgte eine Enukleation. Histologisch wurde die Diagnose eines Morbus Coats gesichert. Da eine differenzialdiagnostische Abgrenzung zwischen Morbus Coats und Retinoblastom schwierig sein kann, halten wir in zweifelhaften Fällen auch angesichts der eingeschränkten Visusprognose und potenzieller Sekundärkomplikationen beim fortgeschrittenen Morbus Coats eine Enukleation für indiziert. PMID:18299842

  12. Origin of the second peak in the mechanical loss function of amorphous silica

    Science.gov (United States)

    Billman, Chris R.; Trinastic, Jonathan P.; Davis, Dustin J.; Hamdan, Rashid; Cheng, Hai-Ping

    2017-01-01

    The thermal noise in amorphous oxides is the limiting factor for gravitational wave detectors and other high-precision optical devices. Through the fluctuation-dissipation theorem, the thermal noise is directly connected to the internal friction (Q-1). Computational calculations of Q-1 that use a two-level system (TLS) model have previously been performed for several coating materials, facilitating the search for coatings with lower thermal noise. However, they are based on a historical approximation made within the TLS model that treats the TLS distribution as uncorrelated, which has limited the predictive power of the model. In this paper, we demonstrate that this approximation limits the physical description of amorphous oxides using the TLS model and a fully correlated distribution must be used to calculate high-temperature behavior. Not only does using a correlated distribution improve the theoretical standing of the TLS model, calculations of Q-1 using a fully correlated distribution reproduce and uncover the physical mechanisms of a second peak observed in measurements of ion-beam sputtered amorphous silica. We also explore the details of the thermal activation of TLSs and analyze the atomic transitions that contribute to Q-1 in amorphous silica.

  13. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  14. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  15. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure.

    Science.gov (United States)

    Ji, Cheng; Levitas, Valery I; Zhu, Hongyang; Chaudhuri, Jharna; Marathe, Archis; Ma, Yanzhang

    2012-11-20

    Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure-temperature conditions, which is irrelevant to industrial applications. Here, the phase transition from disordered nanocrystalline hexagonal (h)BN to superhard wurtzitic (w)BN was found at room temperature under a pressure of 6.7 GPa after applying large plastic shear in a rotational diamond anvil cell (RDAC) monitored by in situ synchrotron X-ray diffraction (XRD) measurements. However, under hydrostatic compression to 52.8 GPa, the same hBN sample did not transform to wBN but probably underwent a reversible transformation to a high-pressure disordered phase with closed-packed buckled layers. The current phase-transition pressure is the lowest among all reported direct-phase transitions from hBN to wBN at room temperature. Usually, large plastic straining leads to disordering and amorphization; here, in contrast, highly disordered hBN transformed to crystalline wBN. The mechanisms of strain-induced phase transformation and the reasons for such a low transformation pressure are discussed. Our results demonstrate a potential of low pressure-room temperature synthesis of superhard materials under plastic shear from disordered or amorphous precursors. They also open a pathway of phase transformation of nanocrystalline materials and materials with disordered and amorphous structures under extensive shear.

  16. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure

    Science.gov (United States)

    Ji, Cheng; Levitas, Valery I.; Zhu, Hongyang; Chaudhuri, Jharna; Marathe, Archis; Ma, Yanzhang

    2012-01-01

    Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure–temperature conditions, which is irrelevant to industrial applications. Here, the phase transition from disordered nanocrystalline hexagonal (h)BN to superhard wurtzitic (w)BN was found at room temperature under a pressure of 6.7 GPa after applying large plastic shear in a rotational diamond anvil cell (RDAC) monitored by in situ synchrotron X-ray diffraction (XRD) measurements. However, under hydrostatic compression to 52.8 GPa, the same hBN sample did not transform to wBN but probably underwent a reversible transformation to a high-pressure disordered phase with closed-packed buckled layers. The current phase-transition pressure is the lowest among all reported direct-phase transitions from hBN to wBN at room temperature. Usually, large plastic straining leads to disordering and amorphization; here, in contrast, highly disordered hBN transformed to crystalline wBN. The mechanisms of strain-induced phase transformation and the reasons for such a low transformation pressure are discussed. Our results demonstrate a potential of low pressure–room temperature synthesis of superhard materials under plastic shear from disordered or amorphous precursors. They also open a pathway of phase transformation of nanocrystalline materials and materials with disordered and amorphous structures under extensive shear. PMID:23129624

  17. Irradiation studies on carbon nanotube-reinforced boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Aitkaliyeva, Assel [Department of Materials Science and Engineering, Texas A and M University, College Station, TX 77843 (United States); McCarthy, Michael C.; Jeong, Hae-Kwon [Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Shao, Lin, E-mail: lshao@ne.tamu.edu [Department of Materials Science and Engineering, Texas A and M University, College Station, TX 77843 (United States); Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States)

    2012-02-01

    Radiation response of carbon nanotube (CNT) reinforced boron carbide composite has been studied for its application as a structural component in nuclear engineering. The composite was bombarded by 140 keV He ions at room temperature to a fluence ranging from 1 Multiplication-Sign 10{sup 14} to 1 Multiplication-Sign 10{sup 17} cm{sup -2}. Two-dimensional Raman mapping shows inhomogeneous distribution of CNTs, and was used to select regions of interest for damage characterization. For CNTs, the intensities ratio of D-G bands (I{sub D}/I{sub G}) increased with fluence up to a certain value, and decreased at the fluence of 5 Multiplication-Sign 10{sup 16} cm{sup -2}. This fluence also corresponds to a trend break in the plot of FWHM (full width at half maximum) of G band vs. I{sub D}/I{sub G} ratio, which indicates amorphization of CNTs. The study shows that Raman spectroscopy is a powerful tool to quantitatively characterize radiation damage in CNT-reinforced composites.

  18. Silica nanoparticles on front glass for efficiency enhancement in superstrate-type amorphous silicon solar cells

    Science.gov (United States)

    Das, Sonali; Banerjee, Chandan; Kundu, Avra; Dey, Prasenjit; Saha, Hiranmay; Datta, Swapan K.

    2013-10-01

    Antireflective coating on front glass of superstrate-type single junction amorphous silicon solar cells (SCs) has been applied using highly monodispersed and stable silica nanoparticles (NPs). The silica NPs having 300 nm diameter were synthesized by Stober technique where the size of the NPs was controlled by varying the alcohol medium. The synthesized silica NPs were analysed by dynamic light scattering technique and Fourier transform infrared spectroscopy. The NPs were spin coated on glass side of fluorinated tin oxide (SnO2: F) coated glass superstrate and optimization of the concentration of the colloidal solution, spin speed and number of coated layers was done to achieve minimum reflection characteristics. An estimation of the distribution of the NPs for different optimization parameters has been done using field-emission scanning electron microscopy. Subsequently, the transparent conducting oxide coated glass with the layer having the minimum reflectance is used for fabrication of amorphous silicon SC. Electrical analysis of the fabricated cell indicates an improvement of 6.5% in short-circuit current density from a reference of 12.40 mA cm-2 while the open circuit voltage and the fill factor remains unaltered. A realistic optical model has also been proposed to gain an insight into the system.

  19. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands

    Science.gov (United States)

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  20. High temperature heat treatment on boron precursor and PIT process optimization to improve the Jc performance of MgB2-based conductors

    Science.gov (United States)

    Vignolo, M.; Bovone, G.; Bernini, C.; Palenzona, A.; Kawale, S.; Romano, G.; Siri, A. S.

    2013-10-01

    The promising results reported in our previous works led us to think that the production process of boron plays a crucial role in MgB2 synthesis. A new method for boron preparation has been developed in our laboratory. This particular process is based on magnesiothermic reaction (Moissan’s process) with the addition of an initial step that gives boron powder with nano-metric grain size. In this paper we report our efforts regarding optimization of the powder-in-tube (PIT) method for these nano-metric powders, and the resolution of problems previously highlighted such as the difficulty in powder packaging and the high friction phenomena occurring during cold working. This increases cracking during the tape and wire manufacture, leading to failure. Packaging problems are related to the amorphous nature of boron synthesized in our laboratory, so a crystallization treatment was applied to improve the crystallinity of the boron. To prevent excessive friction phenomena we synthesized non-stoichiometric MgB2 and used magnesium as lubricant. Our goal is the Jc improvement, but a global physical-chemical characterization was also made to analyse the improvement given by our treatments: this characterization includes x-ray diffraction, ρ(T) measurement, and SEM imaging, besides magnetic and transport Jc measurements.

  1. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  2. The effect of boron deficiency on gene expression and boron compartmentalization in sugarbeet

    Science.gov (United States)

    NIP5, BOR1, NIP6, and WRKY6 genes were investigated for their role in boron deficiency in sugar beet, each with a proposed role in boron use in model plant species. All genes showed evidence of polymorphism in fragment size and gene expression in the target genomic DNA and cDNA libraries, with no co...

  3. Junctions between a boron nitride nanotube and a boron nitride sheet.

    Science.gov (United States)

    Baowan, Duangkamon; Cox, Barry J; Hill, James M

    2008-02-20

    For future nanoelectromechanical signalling devices, it is vital to understand how to connect various nanostructures. Since boron nitride nanostructures are believed to be good electronic materials, in this paper we elucidate the classification of defect geometries for combining boron nitride structures. Specifically, we determine possible joining structures between a boron nitride nanotube and a flat sheet of hexagonal boron nitride. Firstly, we determine the appropriate defect configurations on which the tube can be connected, given that the energetically favourable rings for boron nitride structures are rings with an even number of sides. A new formula E = 6+2J relating the number of edges E and the number of joining positions J is established for each defect, and the number of possible distinct defects is related to the so-called necklace and bracelet problems of combinatorial theory. Two least squares approaches, which involve variation in bond length and variation in bond angle, are employed to determine the perpendicular connection of both zigzag and armchair boron nitride nanotubes with a boron nitride sheet. Here, three boron nitride tubes, which are (3, 3), (6, 0) and (9, 0) tubes, are joined with the sheet, and Euler's theorem is used to verify geometrically that the connected structures are sound, and their relationship with the bonded potential energy function approach is discussed. For zigzag tubes (n,0), it is proved that such connections investigated here are possible only for n divisible by 3.

  4. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Science.gov (United States)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  5. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, B.; Redondo, J.; Baudat, P-A. [Institut de Physique Appliquee, Ecole Polytechnique Federale, Lausanne (Switzerland)] [and others

    1998-10-07

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of {sup 10}B in tumour cells after injection of a boron compound (in our case B{sub 12}H{sub 11}SH, or BSH). With the Mephisto (microscope a emission de photoelectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy. (author)

  6. Microstructural analyses of amorphic diamond, i-C, and amorphous carbon

    DEFF Research Database (Denmark)

    Collins, C. B.; Davanloo, F.; Jander, D.R.;

    1992-01-01

    Recent experiments have identified the microstructure of amorphic diamond with a model of packed nodules of amorphous diamond expected theoretically. However, this success has left in doubt the relationship of amorphic diamond to other noncrystalline forms of carbon. This work reports...... the comparative examinations of the microstructures of samples of amorphic diamond, i-C, and amorphous carbon. Four distinct morphologies were found that correlated closely with the energy densities used in preparing the different materials. Journal of Applied Physics is copyrighted by The American Institute...

  7. Structural and phase transformations in the low-temperature annealed amorphous “finemet”-type microwires

    Energy Technology Data Exchange (ETDEWEB)

    Tcherdyntsev, V.V., E-mail: vvch08@yandex.ru [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Aleev, A.A. [SSC RF Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Churyukanova, M.N.; Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Medvedeva, E.V. [Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg 620016 (Russian Federation); Korchuganova, O.A. [SSC RF Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Zhukova, V. [Dpto. de Fns. Mater., UPV/EHU, San Sebastian 20018 (Spain); Zhukov, A.P. [Dpto. de Fns. Mater., UPV/EHU, San Sebastian 20018 (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2014-02-15

    Highlights: • Structure and magnetic properties evolution at heating of amorphous microwires was studied. • Relaxation processes in the amorphous phase correlate with an increase in Curie temperature. • Curie temperature change can not be stabilized by a prolonged exposure at pre-crystallization temperatures. • Tomographic atom probe microscopy supports the formation of α-Fe phase precipitations enriched in Si. -- Abstract: Finemet-type glass-coated microwires with amorphous and nanocrystalline structure have been investigated. The relaxation and crystallization processes at heating of amorphous alloy have been studied by DSC method. We observed that the relaxation processes in the amorphous phase correlate with an increasing of the Curie temperature. Additionally a prolonged exposure of the samples below the crystallization temperatures does not stabilize the Curie temperature change. An investigation by the tomographic atom probe microscopy supports the formation of precipitations, probably α-Fe phase, as a result of low-temperature annealing (400 °C, 5 min). We found that the observed nano-sized areas were enriched in silicon.

  8. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio and...

  9. Photoexcitation-induced processes in amorphous semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [School of Engineering and Logistics, Charles Darwin University, Darwin, NT 0909 (Australia)]. E-mail: jai.singh@cdu.edu.au

    2005-07-30

    Theories for the mechanism of photo-induced processes of photodarkening (PD), volume expansion (VE) in amorphous chalcogenides are presented. Rates of spontaneous emission of photons by radiative recombination of excitons in amorphous semiconductors are also calculated and applied to study the excitonic photoluminescence in a-Si:H. Results are compared with previous theories.

  10. Band Gaps of an Amorphous Photonic Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Yi-Quan; FENG Zhi-Fang; HU Xiao-Yong; CHENG Bing-Ying; ZHANG Dao-Zhong

    2004-01-01

    @@ A new kind of amorphous photonic materials is presented. Both the simulated and experimental results show that although the disorder of the whole dielectric structure is strong, the amorphous photonic materials have two photonic gaps. This confirms that the short-range order is an essential factor for the formation of the photonic gaps.

  11. Co amorphous systems: A product development perspective.

    Science.gov (United States)

    Chavan, Rahul B; Thipparaboina, Rajesh; Kumar, Dinesh; Shastri, Nalini R

    2016-12-30

    Solubility is one of the major problems associated with most of the new chemical entities that can be reasonably addressed by drug amorphization. However, being a high-energy form, it usually tends to re-crystallize, necessitating new formulation strategies to stabilize amorphous drugs. Polymeric amorphous solid dispersion (PASD) is one of the widely investigated strategies to stabilize amorphous drug, with major limitations like limited polymer solubility and hygroscopicity. Co amorphous system (CAM), a new entrant in amorphous arena is a promising alternative to PASD. CAMs are multi component single phase amorphous solid systems made up of two or more small molecules that may be a combination of drugs or drug and excipients. Excipients explored for CAM preparation include amino acids, carboxylic acids, nicotinamide and saccharine. Advantages offered by CAM include improved aqueous solubility and physical stability of amorphous drug, with a potential to improve therapeutic efficacy. This review attempts to address different aspects in the development of CAM as drug products. Criterion for co-former selection, various methods involved in CAM preparation, characterization tools, stability, scale up and regulatory requirements for the CAM product development are discussed.

  12. Electron beam recrystallization of amorphous semiconductor materials

    Science.gov (United States)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  13. Development of Amorphous Filler Alloys for the Joining of Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Young; Kim, Dong Myong; Kang, Yoon Sun; Jung, Jae Han; Yu, Ji Sang; Kim, Hae Yeol; Lee, Ho [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-08-01

    In the case of advanced CANDU fuel being useful in future, the fabrication processes for soundness insurance of a improved nuclear fuel bundle must be developed at the same time because it have three times combustibility as existing fuel. In particular, as the improved nuclear fuel bundle in which a coated layer thickness is thinner than existing that, firmity of a joint part is very important. Therefore, we need to develop a joint technique using new solder which can settle a potential problem in current joining method. As the Zr-Be alloy system is composed with the elements having high neutron permeability, they are suitable for joint of nuclear fuel pack. The various compositions Zr-Be binary metallic glass alloys were applicable to the joining the nuclear fuel bundles. The thickness of joint layer using the Zr{sub 1}-{sub x}Be{sub x} amorphous ribbon as a solder is thinner than that using physical vapor deposited Be. Among the Zr{sub 1}-{sub x}Be{sub x} amorphous binary alloys, Zr{sub 0}.7Be-0.3 binary alloy is the most appropriate for joint of nuclear fuel bundle because its joint layer is smooth and thin due to low degree of Be diffusion. In the case of the Zr{sub (}0.7-y)Ti{sub y}Be{sub 0}.3 and Zr{sub (}0.7-y)Nb{sub y}Be{sub 0}3 ternary amorphous alloys, the crystallization temperature(T{sub x}) and activation energy(E{sub x}) increase as the contents of Nb and Ti increase respectively. In the aspect of thermal stability, the ternary amorphous alloys are superior than Zr-Be binary amorphous alloys and Zr-Ti-Be amorphous alloy is superior than Zr-Nb-Be amorphous alloy. 12 refs., 5 tabs., 25 figs. (author)

  14. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  15. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  16. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution.

    Science.gov (United States)

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  17. DABO Boronates: Stable Heterocyclic Boronic Acid Complexes for Use in Suzuki-Miyaura Cross-Coupling Reactions.

    Science.gov (United States)

    Reilly, Maureen K; Rychnovsky, Scott D

    2011-10-01

    Diethanolamine complexed heterocyclic boronic acids (DABO boronates) are air-stable reagents that can be used directly in Suzuki-Miyaura reactions in the presence of water or a protic co-solvent. Interestingly, heterocyclic DABO boronates can be stored for extended periods of time at room temperature with no noticeable degradation, unlike their boronic acid counterparts. Heterocyclic DABO boronates constitute an operationally simple and efficient alternative to other boronic acid derivatives as coupling partners in palladium catalyzed cross-coupling reactions under standard Suzuki-Miyaura conditions.

  18. On the composition analysis of nc-TiC/a-C : H nanocomposite coatings

    NARCIS (Netherlands)

    Chechenin, N.G.; Chernykh, P.N.; Kulikauskas, V.S.; Pei, Y.T.; Vainshtein, D.; Hosson, J.Th.M. De

    2008-01-01

    Using a set of ion beam analysis (IBA) techniques the compositions of hydrogenated diamond-like carbon (DLC) nanocomposite coatings are scrutinized, including the hydrogen content. The coatings are composed of two constituents: amorphous hydrocarbon matrix (a-C : H) and nanocrystalline titanium carb

  19. Characterization of nano-composite PVD coatings for wear-resistant applications

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    Various methodologies for the characterization of nano-composite coatings are discussed, which consist TiC nano-particles distributed in an amorphous hydrocarbon (a-C:H) matrix. Complications that arise from the influence of coating roughness and underlying substrate on the properties are evaluated

  20. Thermal Stability and Oxidation Resistance of Nanocomposite TiC/a-C Protective Coatings

    NARCIS (Netherlands)

    Martinez-Martinez, Diego; Lopez-Cartes, Carlos; Gago, Raul; Fernandez, Asuncion; Carlos Sanchez-Lopez, Juan

    2009-01-01

    Nanocomposite films composed by small crystallites of hard phases embedded in an amorphous lubricant matrix have been extensively studied as protective coatings. These kinds of coatings have often to work in extreme environments, exposed to high temperatures (above 800-900 degrees C), and/or oxidizi