WorldWideScience

Sample records for amorphous bodies dover

  1. Continuum limit of amorphous elastic bodies (III): Three dimensional systems

    OpenAIRE

    Léonforte, F.; Boissière, R.; Tanguy, Arnaud; Wittmer, J.P.; Barrat, J. -L.

    2005-01-01

    Extending recent numerical studies on two dimensional amorphous bodies, we characterize the approach of elastic continuum limit in three dimensional (weakly polydisperse) Lennard-Jones systems. While performing a systematic finite-size analysis (for two different quench protocols) we investigate the non-affine displacement field under external strain, the linear response to an external delta force and the low-frequency harmonic eigenmodes and their density distribution. Qualitatively similar ...

  2. Dover, Kenneth James: "Homosexualidad griega", Barcelona

    OpenAIRE

    Molas i Font, M. Dolors

    2009-01-01

    Publicado en inglés en el año 1978, el libro de K. J. Dover Homosexualidad griega se considera el primer ensayo serio dedicado a la homosexualidad masculina en la Grecia clásica. Éste y otros trabajos del mismo autor tuvieron influencia importante en los dos volúmenes centrados en la antigüedad de Histoire de la sexualité de Michel Foucault, de quién la edición española incluye como prólogo la reseña que el filósofo escribió a raíz de la edición francesa de la obra de K. J. Dover en 1982. La ...

  3. Continuum limit of amorphous elastic bodies (II): Response to a point source

    OpenAIRE

    Leonforte, F.; Tanguy, Arnaud; Wittmer, J.P.; Barrat, J. -L.

    2004-01-01

    The linear response of two-dimensional amorphous elastic bodies to an external delta force is determined in analogy with recent experiments on granular aggregates. For the generated forces, stress and displacement fields, we find strong relative fluctuations of order one close to the source, which, however, average out readily to the classical predictions of isotropic continuum elasticity. The stress fluctuations decay (essentially) exponentially with distance from the source. Only beyond a s...

  4. Bioremediation of a Large Chlorinated Solvent Plume, Dover AFB, DE

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Aleisa C [ORNL

    2015-01-01

    Bioremediation of a Large Chlorinated Solvent Plume, Dover AFB, DE Aleisa Bloom, (Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA) Robert Lyon (bob.lyon@aecom.com), Laurie Stenberg, and Holly Brown (AECOM, Germantown, Maryland, USA) ABSTRACT: Past disposal practices at Dover Air Force Base (AFB), Delaware, created a large solvent plume called Area 6 (about 1 mile long, 2,000 feet wide, and 345 acres). The main contaminants are PCE, TCE, and their degradation products. The remedy is in-situ accelerated anaerobic bioremediation (AAB). AAB started in 2006 and is focusing on source areas and downgradient plume cores. Direct-push injections occurred in source areas where contamination is typically between 5 and 20 feet below ground surface. Lower concentration dissolved-phased contamination is present downgradient at 35 and 50 feet below ground surface. Here, permanent injection/extraction wells installed in transects perpendicular to the flow of groundwater are used to apply AAB. The AAB substrate is a mix of sodium lactate, emulsified vegetable oil, and nutrients. After eight years, dissolved contaminant mass within the main 80-acre treatment area has been reduced by over 98 percent. This successful application of AAB has stopped the flux of contaminants to the more distal portions of the plume. While more time is needed for effects to be seen in the distal plume, AAB injections will soon cease, and the remedy will transition to natural attenuation. INTRODUCTION Oak Ridge National Laboratory Environmental Science Division (ORNL) and AECOM (formerly URS Corporation) have successfully implemented in situ accelerated anaerobic bioremediation (AAB) to remediate chlorinated solvent contamination in a large, multi-sourced groundwater plume at Dover Air Force Base (AFB). AAB has resulted in significant reductions of dissolved phase chlorinated solvent concentrations. This plume, called Area 6, was originally over 1 mile in length and over 2,000 feet wide (Figure 1

  5. 78 FR 14060 - Television Broadcasting Services; Seaford, Delaware and Dover, Delaware

    Science.gov (United States)

    2013-03-04

    ... COMMISSION 47 CFR Part 73 Television Broadcasting Services; Seaford, Delaware and Dover, Delaware AGENCY... CFR 1.415 and 1.420. List of Subjects in 47 CFR Part 73 Television, Television broadcasting. Federal... with its first local television service, and that Seaford will remain well-served after the...

  6. Superfund record of decision amendment (EPA Region 3): Gas Light Company, Dover, DE, December 16, 1997

    International Nuclear Information System (INIS)

    The decision document modifies the Record of Decision (ROD) signed on August 16, 1994 (PB94-963923), for the Dover Gas Light Site (Site), in Dover, Kent County, Delaware. This ROD Amendment specifically modifies the portion of the selected remedy which addresses the contaminated soil. Remedial actions selected in this ROD Amendment are: excavation and off-site thermal destruction of the contaminated soil inside the buried bottoms of the former gas holders; use of soil vapor extraction (SVE) to treat contaminated soil in several areas outside the former gas holders; paving the parking lot which is the location of the former coal gas plant; and including the upper several feet of the Columbia Aquifer at the location of a former coal gas plant in the ground water remedy for this Site

  7. Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: groundwater biogeochemistry.

    Science.gov (United States)

    Witt, Michael E; Klecka, Gary M; Lutz, Edward J; Ei, Tom A; Grosso, Nancy R; Chapelle, Francis H

    2002-07-01

    Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/ aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally atteuated by a combination of active anaerobic and aerobic biotransformation processes. PMID:12143993

  8. Vulnerability of the Dover Strait to coseismic tsunami hazards: insights from numerical modelling

    Science.gov (United States)

    Roger, J.; Gunnell, Y.

    2012-02-01

    On 1580 April 6, a large earthquake shook the eastern English Channel and its shores, with numerous casualties and significant destruction documented. Some reports suggest that it was followed by a tsunami. Meanwhile, earthquake magnitudes of MW= 7 have been deemed possible on intraplate fault systems in neighbouring Benelux. This study aims to determine the possibility of a MW > 5.5 magnitude earthquake generating a tsunami in the Dover Strait, one of the world's busiest seaways. In a series of numerical models focusing on sensitivity analysis, earthquake source parameters for the Dover Strait are constrained by palaeoseismological evidence and historical accounts, producing maps of wave heights and analysis of frequencies based on six strategically located virtual tide gauges. Of potential concern to engineering geologists, a maximum credible scenario is also tested for MW= 6.9. For earthquakes with MW of 5.5, none of the fault models we tested produced a tsunami on neighbouring shores. However, for earthquakes with MW 6.9, both extensional and thrusting events produced tsunami waves with open-water amplitudes of up to 1.5 m, and higher amplitudes might be expected in regions where waves are amplified by regional nearshore bathymetry. Sensitivity to parameter choice is emphasized but a pattern of densely inhabited coastal hotspots liable to tsunami-related damage because of bathymetric forcing factors is consistently obtained.

  9. Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: Groundwater biogeochemistry

    Science.gov (United States)

    Witt, M.E.; Klecka, G.M.; Lutz, E.J.; Ei, T.A.; Grosso, N.R.; Chapelle, F.H.

    2002-01-01

    Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally attenuated by a combination of active anaerobic and aerobic biotransformation processes. ?? 2002 Elsevier Science B.V. All rights reserved.

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, C. LEE COOK DIVISION, DOVER CORPORATION, STATIC PAC (TM) SYSTEM, PHASE II REPORT

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Static Pac System, Phase II, natural gas reciprocating compressor rod packing manufactured by the C. Lee Cook Division, Dover Corporation. The Static Pac System is designed to seal th...

  11. 76 FR 34971 - City of Dover, NH; Notice of Declaration of Intention and Soliciting Comments, Protests, and/or...

    Science.gov (United States)

    2011-06-15

    ... discharging effluence from a wastewater treatment plant located in the City of Dover, Strafford County, New... wastewater treatment plant. The source of water for power generation comes from the city's sewer system... generated power will be used on-site to operate ventilation and lighting equipment at the treatment...

  12. Year-long measurements of flow-through the dover strait by HF radar and acoustic doppler current profilers (ADCP)

    OpenAIRE

    Prandle, D.

    1993-01-01

    Contaminants from the Channel flow through the Dover Strait into the North Sea where they represent a significant fraction of the enhanced concentrations observed along the continental coast. Despite numerous previous investigations, the magnitude of this net flow and its dependency on various forcing factors remain uncertain. The new UK H.F. Radar system, OSCR (Ocean Surface Current Radar) developed for measuring nearshore surface currents offers a clear opportunity of establishing the magni...

  13. Inventory of orphan oil and natural gas wells in the Dover and Gautreau Village areas of Westmorland County, New Brunswick

    International Nuclear Information System (INIS)

    In 1997, the Government of New Brunswick conducted an inventory of orphan wells in the vicinity of Dover and Gautreau Village in Westmorland County. The term orphan wells refers to those oil and natural gas wells which have been abandoned and have no owner. An abandoned well refers to those wells that are no longer active and have been properly plugged. A total of 19 orphan wells were discovered with the help of landowners and historical maps. These wells are believed to have dated from 1860 to 1906. The locations of the wells were determined digitally using the Global Positioning System. The environmental conditions around the orphan wells were evaluated and classified according to a proposed system used by the State of Michigan. The wells were separated into three categories based on the amount of petroleum contamination of soil and water. Water contamination was further divided into contamination of groundwater and surface water. 7 refs., 34 figs

  14. Amorphous Computing

    Science.gov (United States)

    Sussman, Gerald

    2002-03-01

    agents constructed by engineered cells, but we have few ideas for programming them effectively: How can one engineer prespecified, coherent behavior from the cooperation of immense numbers of unreliable parts that are interconnected in unknown, irregular, and time-varying ways? This is the challenge of Amorphous Computing.

  15. Influence of deformation and fluids on Ar retention in white mica: Dating the Dover Fault, Newfoundland Appalachians

    Science.gov (United States)

    Kellett, Dawn A.; Warren, Clare; Larson, Kyle P.; Zwingmann, Horst; van Staal, Cees R.; Rogers, Neil

    2016-06-01

    White mica 40Ar/39Ar analyses may provide useful constraints on the timing of tectonic processes, but complex geological and thermal histories can perturb Ar systematics in a variety of ways. Ductile shear zones represent excellent case studies for exploring the link(s) between dynamic re-/neo-crystallization of white mica and coeval enhanced fluid flow, and their effect on 40Ar/39Ar dates. White mica 40Ar/39Ar dates were collected from compositionally similar granites that record different episodes of deformation with proximity to the Dover Fault, a terrane-bounding strike-slip shear zone in the Appalachian orogen, Newfoundland, Canada. 40Ar/39Ar data were collected in situ by laser ablation and by step heating single crystals. Results were compared to each other and against complementary U-Pb zircon and monazite, and K-Ar fault gouge analysis. Although step-heat 40Ar/39Ar is a widely applied method in orogenic settings, this dataset shows that relatively flat step-heat 40Ar/39Ar spectra are in contradiction with wide spreads in in-situ40Ar/39Ar dates from the same samples, and that plateau dates in some cases yielded mixed dates of equivocal geological significance. This result indicates that the step-wise release of Ar from white mica likely homogenizes and obscures spatially-controlled Ar isotope reservoirs in white mica from sheared rocks. In contrast, in situ laser ablation 40Ar/39Ar analysis preserves the spatial resolution of 40Ar reservoirs that have been variably reset by deformation and fluid interaction. This study therefore suggests that laser ablation is the best method for dating the timing of deformation recorded by white mica. Final interpretation of results should be guided by microstructural analysis, estimation of deformation temperature, chemical characterization of white mica, and complementary chronometers. Overall the dataset shows that granitic protoliths were emplaced between 430 and 422 Ma (U-Pb zircon). High strain deformation along the

  16. Hot methanol extraction for the analysis of volatile organic chemicals in subsurface core samples from Dover Air Force Base, Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Ball, W.P.; Xia, G.; Durfee, D.P.; Wilson, R.D.; Brown, M.J.; Mackay, D.M.

    1997-06-01

    The evaluation of contaminant concentrations in ground water and soil is an essential aspect of most hazardous waste remedial investigations. This paper describes methods applied toward obtaining, preserving, and analyzing subsurface samples for the determination of VOC concentration in the saturated region of an unconfined coastal plain aquifer at Dover Air Force Base (DAFB), Delaware. The described protocol involved headspace-free subsampling of cores, field preservation of subsamples in methanol, and overnight extraction of the VOCs at elevated temperature (70 C). Methanol-extracted compounds were subsequently transferred to hexane and analyzed by gas chromatography. The method was found to achieve quantitative extraction from the aquifer sands in a single step, although extraction from fine-grained and more strongly sorbing aquitard samples required multiple methanol extractions to achieve comparable recovery. An extensive set of DAFB results is presented as an indication of how these methods can be applied toward characterizing field-scale contamination with a high degree of resolution and accuracy.

  17. Diet and weaning age affect the growth and condition of Dover sole (Solea solea L.

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available The effect of diet type (frozen Artemia biomass and two inert diets: micro-bound [MB] and micro-extruded [ME] and two weaning ages (early weaning and late weaning, 50 and 64 days after hatching, respectively were studied in Solea solea larvae. The experiment lasted 56 and 42 days for early and late weaning, respectively. The mortality results showed the highest values for late weaning (39% in the Artemia treatment. No significant differences in mortality were observed between the inert diets. The final dry weight values were higher for late weaning than for early weaning. At both weaning ages, fish receiving the same treatments had similar tendencies for dry weight and standard length. Fish fed with MB presented significantly higher dry weight and standard length, followed by ME, while the lowest values at both weaning ages were recorded for the Artemia treatment. Similar amounts of highly unsaturated fatty acid fractions among the inert diets were reflected by the absence of significant differences in the susceptibility to oxidation (thiobarbituric acid reactive substances testing; however, significant differences were found in carbohydrate, protein and lipid contents of whole-body homogenates for both early and late weaning. At the end of the experiment no significant differences in biochemical contents were observed between the two inert diets. The results of this study suggest that weaning starting on day 50 (early weaning, using a good quality inert diet, leads to higher survival, growth and fish condition.

  18. Corrosion resistant amorphous alloys

    International Nuclear Information System (INIS)

    A review of publication data on corrosion resistance of amorphous alloys and the methods of amorphization of surface layers of massive materials (laser treatment, iron implantation, detonation-gas spraying, cathode and ion sputtering, electrodeposition) was made. A study was made on corrosion properties of Fe66Cr11B10Si4 alloy in cast state and after laser irradiation, rendering the surface amorphous as well as the samples of Arenco iron and steel 20 with ion-plasma coatings of Fe-Cr-Ni-Ti alloy. It was established that amorphous coatings posses much higher corrosion resistance as compared to crystalline alloys on the same base

  19. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud;

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  20. Amorphous silicon thermometer

    International Nuclear Information System (INIS)

    The carbon glass resistance thermometers (CGRT) shows an unstable drift by heat cycles. Since we were looking for a more stable element of thermometer for cryogenic and high magnetic field environments, we selected amorphous silicon as a substitute for CGRT. The resistance of many amorphous samples were measured at 4K, at 77K, and 300K. We eventually found an amorphous silicon (Si-H) alloy whose the sensitivity below 77K was comparable to that of the germanium resistance thermometer with little magnetic field influence. (author)

  1. Alternative invitro propagation: use of sugarcane bagasse as a low cost support material during rooting stage of strawberry cv. Dover

    Directory of Open Access Journals (Sweden)

    Radjiskumar Mohan

    2005-06-01

    Full Text Available The purpose of this work was to reduce the cost and improve the quality of the plant material during the micropropagation process in tissue culture. Partially improvement in the rooting process, coupled with cost reduction was obtained during the invitro rooting by the use of a natural support based on sugarcane bagasse as a substitute for the traditionally used agar gelled medium. The tests were conducted with micro-cuttings of strawberry cv. Dover using a medium composed of half strength MS medium (1962, 3% sucrose and 0.05 BAP mg.l-1. The roots number, shoots number, length, and the height of aerial part of 8 independent plants were recorded after 10, 20, 30, and 40 days of culture. Also, an acclimatization tests were realized of the rooted shoots from both the media. A comparison with agar-grown micro-cuttings showed that the sugarcane bagasse yielded better results (14, 40, 15 and 12 respectively. Acclimatization tests were 83% from the agar gelled medium against 100% from the bagasse medium. As the Paraná State, Brazil, possess in great number of the sugarcane bagasse; this can feed the alternative technology invented on the area of micropropagation techniques.Para a obtenção de mudas (material vegetal sadias de espécies de café em maior quantidade e em tempo reduzido, utiliza-se a técnica de micropropagação vegetal. Essa técnica é realizada em diferentes etapas, desde o isolamento até o transporte para extra vitro. Cada etapa demanda tempo e gera custos onerosos, sendo ainda necessário otimizar o rendimento. Para melhorar o processo total é essencial que cada etapa colabore com o máximo de rendimento, no menor tempo e com o menor custo possível. Este trabalho teve como focos as etapas de enraizamento e de aclimatização com as seguintes mudanças previstas: o enraizamento destes micro-tecidos propagados em meio de cultura modificado (substituição do meio semi-sólido por bagaço de mandioca e/ou bagaço de cana

  2. Strain Rate Induced Amorphization in Metallic Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Y.; Cagin, T.; Goddard, W.A. III [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Ikeda, H.; Samwer, K.; Johnson, W.L. [Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, California 91125 (United States)

    1999-04-01

    Using molecular dynamics simulations with a many-body force field, we studied the deformation of single crystal Ni and NiCu random alloy nanowires subjected to uniform strain rates but kept at 300thinspthinspK. For all strain rates, the Ni nanowire is elastic up to 7.5{percent} strain with a yield stress of 5.5thinspthinspGPa, far above that of bulk Ni. At high strain rates, we find that for both systems the crystalline phase transforms continuously to an amorphous phase, exhibiting a dramatic change in atomic short-range order and a near vanishing of the tetragonal shear elastic constant perpendicular to the tensile direction. This amorphization which occurs directly from the homogeneous, elastically deformed system with no chemical or structural inhomogeneities exhibits a new mode of amorphization. {copyright} {ital 1999} {ital The American Physical Society}

  3. First Observation of D^{0}-D[over ¯]^{0} Oscillations in D^{0}→K^{+}π^{-}π^{+}π^{-} Decays and Measurement of the Associated Coherence Parameters.

    Science.gov (United States)

    Aaij, R; Abellán Beteta, C; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hongming, L; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Machefert, F; Maciuc, F

    2016-06-17

    Charm meson oscillations are observed in a time-dependent analysis of the ratio of D^{0}→K^{+}π^{-}π^{+}π^{-} to D^{0}→K^{-}π^{+}π^{-}π^{+} decay rates, using data corresponding to an integrated luminosity of 3.0  fb^{-1} recorded by the LHCb experiment. The measurements presented are sensitive to the phase-space averaged ratio of doubly Cabibbo-suppressed to Cabibbo-favored amplitudes r_{D}^{K3π} and the product of the coherence factor R_{D}^{K3π} and a charm mixing parameter y_{K3π}^{'}. The constraints measured are r_{D}^{K3π}=(5.67±0.12)×10^{-2}, which is the most precise determination to date, and R_{D}^{K3π}y_{K3π}^{'}=(0.3±1.8)×10^{-3}, which provides useful input for determinations of the CP-violating phase γ in B^{±}→DK^{±}, D→K^{∓}π^{±}π^{∓}π^{±} decays. The analysis also gives the most precise measurement of the D^{0}→K^{+}π^{-}π^{+}π^{-} branching fraction, and the first observation of D^{0}-D[over ¯]^{0} oscillations in this decay mode, with a significance of 8.2 standard deviations. PMID:27367383

  4. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N; Franco, A; Riesen, Y.; Despeisse, M; S. Dunand; Powolny, F; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  5. Shear amorphization of boron suboxide

    International Nuclear Information System (INIS)

    We report for the first time the shear-induced local amorphization of boron suboxide subjected to nanoindentation. The amorphous bands have a width of ∼1–3 nm and a length of 200–300 nm along the (01¯11) crystal plane. We show direct experimental evidence that the amorphous shear bands of boron suboxide are driven from the coalescence of dislocation loops under high shear stresses. These observations provide insights into the microscopic deformation and failure of high-strength and lightweight ceramics

  6. Simulation in Amorphous Silicon and Amorphous Silicon Carbide Pin Diodes

    OpenAIRE

    Gonçalves, Dora; Fernandes, Miguel; Louro, Paula; Fantoni, Alessandro; Vieira, Manuela

    2014-01-01

    Part 21: Electronics: Devices International audience Photodiodes are devices used as image sensors, reactive to polychromatic light and subsequently color detecting, and they are also used in optical communication applications. To improve these devices performance it is essential to study and control their characteristics, in fact their capacitance and spectral and transient responses. This study considers two types of diodes, an amorphous silicon pin and an amorphous silicon carbide pi...

  7. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.;

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro......-containers has shown potential to prevent or delay recrystallization. Another recent approach is the formation of co-amorphous mixtures between either two drugs or one drug and one low molecular weight excipient. Molecular interactions between the two molecules provide an energy barrier that has to be overcome...

  8. Amorphous carbon for photovoltaics

    Science.gov (United States)

    Risplendi, Francesca; Grossman, Jeffrey C.

    2015-03-01

    All-carbon solar cells have attracted attention as candidates for innovative photovoltaic devices. Carbon-based materials such as graphene, carbon nanotubes (CNT) and amorphous carbon (aC) have the potential to present physical properties comparable to those of silicon-based materials with advantages such as low cost and higher thermal stability.In particular a-C structures are promising systems in which both sp2 and sp3 hybridization coordination are present in different proportions depending on the specific density, providing the possibility of tuning their optoelectronic properties and achieving comparable sunlight absorption to aSi. In this work we employ density functional theory to design suitable device architectures, such as bulk heterojunctions (BHJ) or pn junctions, consisting of a-C as the active layer material.Regarding BHJ, we study interfaces between aC and C nanostructures (such as CNT and fullerene) to relate their optoelectronic properties to the stoichiometry of aC. We demonstrate that the energy alignment between the a-C mobility edges and the occupied and unoccupied states of the CNT or C60 can be widely tuned by varying the aC density to obtain a type II interface.To employ aC in pn junctions we analyze the p- and n-type doping of a-C focusingon an evaluation of the Fermi level and work function dependence on doping.Our results highlight promising features of aC as the active layer material of thin-film solar cells.

  9. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  10. Amorphous yttrium-iron alloys

    International Nuclear Information System (INIS)

    The magnetic properties of amorphous yttrium-iron alloys Ysub(1-x)Fesub(x) have been studied over a wide concentration range 0.32 2Fe17 alloys, lead in the amorphous state to spin-glass behaviour and asperomagnetic order. The dominant positive interactions produce short-range ferromagnetic correlations which persist up to room temperature. However magnetic saturation cannot be achieved for any of the alloys in applied fields of up to 180 kOe, indicating that strong negative interactions are also present. Exchange interactions become increasingly positive with increasing x, and the magnetic properties of iron-rich alloys approach those of a normal ferromagnet. (author)

  11. Iron - based bulk amorphous alloys

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2010-07-01

    Full Text Available Purpose: The paper presents a structure characterization, thermal and soft magnetic properties analysis of Fe-based bulk amorphous materials in as-cast state and after crystallization process. In addition, the paper gives some brief review about achieving, formation and structure of bulk metallic glasses as a special group of amorphous materials.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 metallic glass in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties contained initial and maximum magnetic permeability, coercive force and magnetic after-effects measurements were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations revealed that the studied as-cast bulk metallic glasses in form of ribbons and rods were amorphous. Two stage crystallization process was observed for studied bulk amorphous alloy. The differences of crystallization temperature between ribbons and rods with chosen thickness are probably caused by different amorphous structures as a result of the different cooling rates in casting process. The SEM images showed that studied fractures could be classified as mixed fractures with indicated two zones contained “river” and “smooth” areas. The changing of chosen soft magnetic properties (μr, Bs, Hc obtained for samples with different thickness is a result of the non-homogenous amorphous structure of tested metallic glasses. The annealing process in temperature range from 373 to 773 K causes structural relaxation of tested amorphous materials, which leads to changes in their physical properties. The qualitative

  12. Hidden structure in amorphous solids

    Energy Technology Data Exchange (ETDEWEB)

    Inam, F. [Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701 (United States); Lewis, James P. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Drabold, D.A. [Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701 (United States); Trinity College, Cambridge CB2 1TQ (United Kingdom)

    2010-03-15

    Recent theoretical studies of amorphous silicon (a-Si) [Pan et al., Phys. Rev. Lett. 100, 206403 (2008)] have revealed subtle but significant structural correlations in network topology: the tendency for short (long) bonds to be spatially correlated with other short (long) bonds. These structures were linked to the electronic band tails in the optical gap. In this paper, we further examine these issues for a-Si, and demonstrate that analogous correlations exist in amorphous SiO{sub 2}, and in the organic molecule, {beta}-carotene. We conclude with a discussion of the origin of the effects and its possible generality. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  14. Amorphous-silicon cell reliability testing

    Science.gov (United States)

    Lathrop, J. W.

    1985-01-01

    The work on reliability testing of solar cells is discussed. Results are given on initial temperature and humidity tests of amorphous silicon devices. Calibration and measurement procedures for amorphous and crystalline cells are given. Temperature stress levels are diagrammed.

  15. Investigation of Sb diffusion in amorphous silicon

    OpenAIRE

    Csik, A.; Langer, G A; Erdelyi, G.; Beke, D. L.; Erdelyi, Z.; Vad, K.

    2009-01-01

    Amorphous silicon materials and its alloys become extensively used in some technical applications involving large area of the microelectronic and optoelectronic devices. However, the amorphous-crystalline transition, segregation and diffusion processes still have numerous unanswered questions. In this work we study the Sb diffusion into an amorphous Si film by means of Secondary Neutral Mass Spectrometry (SNMS). Amorphous Si/Si1-xSbx/Si tri-layer samples with 5 at% antimony concentration were...

  16. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  17. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  18. Atomistic Models of Amorphous Semiconductors

    NARCIS (Netherlands)

    Jarolimek, K.

    2011-01-01

    Crystalline silicon is probably the best studied material, widely used by the semiconductor industry. The subject of this thesis is an intriguing form of this element namely amorphous silicon. It can contain a varying amount of hydrogen and is denoted as a-Si:H. It completely lacks the neat long ran

  19. Exoelectron analysis of amorphous silicon

    Science.gov (United States)

    Dekhtyar, Yu. D.; Vinyarskaya, Yu. A.

    1994-04-01

    The method based on registration of photothermostimulated exoelectron emission (PTSE) is used in the proposed new field of investigating the structural defects in amorphous silicon (a-Si). This method can be achieved if the sample under investigation is simultaneously heated and illuminated by ultraviolet light. The mechanism of PTSE from a-Si has been studied in the case of a hydrogenized amorphous silicon (a-Si:H) film grown by glow discharge method. The electronic properties and annealing of defects were analyzed in the study. It has been shown from the results that the PTSE from a-Si:H takes place as a prethreshold single-photon external photoeffect. The exoemission spectroscopy of a-Si:H was shown to be capable in the study of thermally and optically stimulated changes in the electronic structure of defects, their annealing, as well as diffusion of atomic particles, such as hydrogen.

  20. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  1. A Universal Flying Amorphous Computer

    Czech Academy of Sciences Publication Activity Database

    Petrů, Lukáš; Wiedermann, Jiří

    Berlin: Springer, 2011 - (Calude, C.; Kari, J.; Petre, I.; Rozenberg, G.), s. 189-200. (Lecture Notes in Computer Science. 6714). ISBN 978-3-642-21340-3. ISSN 0302-9743. [UC 2011. Unconventional Computation /10/. Turku (FI), 06.06.2011-10.06.2011] R&D Projects: GA ČR GAP202/10/1333 Institutional research plan: CEZ:AV0Z10300504 Keywords : amorphous computing * model of computation * universality Subject RIV: IN - Informatics, Computer Science

  2. Amorphous silicon based betavoltaic devices

    OpenAIRE

    Wyrsch, N; Riesen, Y.; Franco, A; S. Dunand; Kind, H.; Schneider, S.; Ballif, C.

    2013-01-01

    Hydrogenated amorphous silicon betavoltaic devices are studied both by simulation and experimentally. Devices exhibiting a power density of 0.1 μW/cm2 upon Tritium exposure were fabricated. However, a significant degradation of the performance is taking place, especially during the first hours of the exposure. The degradation behavior differs from sample to sample as well as from published results in the literature. Comparisons with degradation from beta particles suggest an effect of tritium...

  3. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  4. The physics and applications of amorphous semiconductors

    CERN Document Server

    Madan, Arun

    1988-01-01

    This comprehensive, detailed treatise on the physics and applications of the new emerging technology of amorphous semiconductors focuses on specific device research problems such as the optimization of device performance. The first part of the book presents hydrogenated amorphous silicon type alloys, whose applications include inexpensive solar cells, thin film transistors, image scanners, electrophotography, optical recording and gas sensors. The second part of the book discusses amorphous chalcogenides, whose applications include electrophotography, switching, and memory elements. This boo

  5. Amorphous powders for inhalation drug delivery.

    Science.gov (United States)

    Chen, Lan; Okuda, Tomoyuki; Lu, Xiang-Yun; Chan, Hak-Kim

    2016-05-01

    For inhalation drug delivery, amorphous powder formulations offer the benefits of increased bioavailability for poorly soluble drugs, improved biochemical stability for biologics, and expanded options of using various drugs and their combinations. However, amorphous formulations usually have poor physicochemical stability. This review focuses on inhalable amorphous powders, including the production methods, the active pharmaceutical ingredients and the excipients with a highlight on stabilization of the particles. PMID:26780404

  6. Amorphous Phase Properties Of Oriented Polyethylene Solids

    OpenAIRE

    Zahran, R. R; Kardos, J. L.

    1993-01-01

    Solid-state deformation of polyethylene results in a preferential orientation of both crystalline and amorphous regions. Usually, one major problem in the prediction of the mechanical and thermal expansion properties of anisotropic polyethylene lies in determining values for the amorphous phase properties and, particularly, at a given level of solid-state deformation. This paper outlines simple procedures for determining the two-dimensional amorphous orientation function and values for the...

  7. Hydrophobic transition in porous amorphous silica

    International Nuclear Information System (INIS)

    Realistic models of amorphous silica surfaces with different silanol densities are built using Monte Carlo annealing. Water-silica interfaces are characterized by their energy interaction maps, adsorption isotherms, self-diffusion coefficients, and Poiseuille flows. A hydrophilic to hydrophobic transition appears as the surface becomes purely siliceous. These results imply significant consequences for the description of surfaces. First, realistic models are required for amorphous silica interfaces. Second, experimental amorphous silica hydrophilicity is attributed to charged or uncharged defects, and not to amorphousness. In addition, auto irradiation in nuclear waste glass releases hydrogen atoms from silanol groups and can induce such a transition. (authors)

  8. Inelastic scattering from amorphous solids

    International Nuclear Information System (INIS)

    The potential of inelastic neutron scattering techniques for surveying various aspects of the dynamics of amorphous solids is briefly reviewed. The recent use of the Intense Pulsed Neutron Source to provide detailed information on the optical vibrations of glasses is discussed in more detail. The density of states represents an averaged quantity which gives information about the general characteristics of the structure and bonding. More extensive information can be obtained by studying the detailed wavevector dependence of the dynamic structure factor. 15 refs., 7 figs

  9. Plasma Deposition of Amorphous Silicon

    Science.gov (United States)

    Calcote, H. F.

    1982-01-01

    Strongly adhering films of silicon are deposited directly on such materials as Pyrex and Vycor (or equivalent materials) and aluminum by a non-equilibrium plasma jet. Amorphous silicon films are formed by decomposition of silicon tetrachloride or trichlorosilane in the plasma. Plasma-jet technique can also be used to deposit an adherent silicon film on aluminum from silane and to dope such films with phosphorus. Ability to deposit silicon films on such readily available, inexpensive substrates could eventually lead to lower cost photovoltaic cells.

  10. Amorphous silicon based solar cells

    OpenAIRE

    Al Tarabsheh, Anas

    2007-01-01

    This thesis focuses on the deposition of hydrogenated amorphous silicon (a-Si:H) films bymeans of plasma enhanced chemical vapour deposition (PECVD). This technique allows the growth of device quality a-Si:H at relatively low deposition temperatures, below 140 °C and, therefore, enables the use of low-cost substrates, e.g. plastic foils. The maximum efficiencies of a-Si:H solar cells in this work are η= 6.8 % at a deposition temperature Tdep = 180 °C and η = 4.9 % at a deposition ...

  11. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  12. Polymeric amorphous carbon as p-type window within amorphous silicon solar cells

    NARCIS (Netherlands)

    Khan, R.U.A.; Silva, S.R.P.; Van Swaaij, R.A.C.M.M.

    2003-01-01

    Amorphous carbon (a-C) has been shown to be intrinsically p-type, and polymeric a-C (PAC) possesses a wide Tauc band gap of 2.6 eV. We have replaced the p-type amorphous silicon carbide layer of a standard amorphous silicon solar cell with an intrinsic ultrathin layer of PAC. The thickness of the p

  13. Laser surface treatment of amorphous metals

    Science.gov (United States)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  14. Simulation study for atomic size and alloying effects during forming processes of amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    ZHENG Caixing; LIU Rangsu; PENG Ping; ZHOU Qunyi

    2004-01-01

    A molecular dynamics (MD) simulation study has been performed for the solidification processes of two binary liquid alloys Ag6Cu4 and CuNi by adopting the quantum Sutton-Chen many-body potentials. By analyzing bond-types, it is demonstrated that at the cooling rate of 2×1012K/s, the CuNi forms fcc crystal structures, while the Ag6Cu4 forms amorphous structures. The original reason is that the atomic radius ratio (1.13) of the CuAg is bigger than that (1.025) of the CuNi. This shows that the atomic size difference is indeed the main factor for forming amorphous alloys. Moreover, for Ag60Cu40,corresponding to the deep eutectic point in the phase diagram, it forms amorphous structure easily. This confirms that as to the forming tendency and stability of amorphous alloys, the alloying effect plays a key role. In addition, having analyzed the transformation of microstructures by using the bond-type index and cluster-type index methods, not only the key role of the icosahedral configuration to the formation and stability of amorphous alloys can be explained, but also the solidification processes of liquid metals and the characteristics of amorphous structures can be further understood.

  15. Photoexcitation-induced processes in amorphous semiconductors

    International Nuclear Information System (INIS)

    Theories for the mechanism of photo-induced processes of photodarkening (PD), volume expansion (VE) in amorphous chalcogenides are presented. Rates of spontaneous emission of photons by radiative recombination of excitons in amorphous semiconductors are also calculated and applied to study the excitonic photoluminescence in a-Si:H. Results are compared with previous theories

  16. Applied research on amorphous magnetic materials

    International Nuclear Information System (INIS)

    Amorphous magnetic materials are increasingly becoming an industrial reality, which a variety of applications to electronics and electrical engineering. Many research lines are in progress for what concerns the production techniques, the understanding of the structure and properties of amorphous ribbons, the optimization and extension of their applications. The fast quenching methods used to obtain amorphous materials will first be reviewed, also describing an experimental apparatus set up by the authors for laboratory investigations of rapid solidification processes. Because of the non equilibrium structure of amorphous metallic alloys, various relaxation effects are expected to occur, which may partially limit the use of these materials. Studies of these relaxation phenomena, performed by different methods, including Moessbauer spectroscopy will also be reviewed, showing their importance in better understanding the amorphous structure. Finally much attention will be devoted to actual applications of amorphous magnetic materials. Emphasis will be placed on the prospective applications of amorphous ribbons characterized by very low power losses to magnetic cores of distribution transformers, pointing to the possible advantages, but also to the technical problems involved with the substitution of crystalline laminations with the new amorphous materials. (orig.)

  17. Electron tunnelling into amorphous germanium and silicon.

    Science.gov (United States)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  18. Band Gaps of an Amorphous Photonic Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Yi-Quan; FENG Zhi-Fang; HU Xiao-Yong; CHENG Bing-Ying; ZHANG Dao-Zhong

    2004-01-01

    @@ A new kind of amorphous photonic materials is presented. Both the simulated and experimental results show that although the disorder of the whole dielectric structure is strong, the amorphous photonic materials have two photonic gaps. This confirms that the short-range order is an essential factor for the formation of the photonic gaps.

  19. Theoretical Considerations in Developing Amorphous Solid Dispersions

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Priemel, Petra Alexandra; Surwase, Sachin; Graeser, Kirsten; Strachan, Clare J.; Grohganz, Holger; Rades, Thomas

    Before pursuing the laborious route of amorphous solid dispersion formulation and development, which is the topic of many of the subsequent chapters in this book, the formulation scientist would benefit from a priori knowledge whether the amorphous route is a viable one for a given drug and how m...

  20. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  1. Solid-state diffusion in amorphous zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Dove, M. T.; Trachenko, K. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zarkadoula, E. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6138 (United States); Todorov, I. T. [STFC Daresbury Laboratory, Warrington WA4 1EP (United Kingdom); Geisler, T. [Steinmann-Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, D-53115 Bonn (Germany); Brazhkin, V. V. [Institute for High Pressure Physics, RAS, 142190 Moscow (Russian Federation)

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  2. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 1025 n/m2. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  3. Structure, thermodynamics, and crystallization of amorphous hafnia

    International Nuclear Information System (INIS)

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO2. The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia

  4. Locomotion of Amorphous Surface Robots

    Science.gov (United States)

    Bradley, Arthur T. (Inventor)

    2016-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  5. Quantification of surface amorphous content using dispersive surface energy: the concept of effective amorphous surface area.

    Science.gov (United States)

    Brum, Jeffrey; Burnett, Daniel

    2011-09-01

    We investigate the use of dispersive surface energy in quantifying surface amorphous content, and the concept of effective amorphous surface area is introduced. An equation is introduced employing the linear combination of surface area normalized square root dispersive surface energy terms. This equation is effective in generating calibration curves when crystalline and amorphous references are used. Inverse gas chromatography is used to generate dispersive surface energy values. Two systems are investigated, and in both cases surface energy data collected for physical mixture samples comprised of amorphous and crystalline references fits the predicted response with good accuracy. Surface amorphous content of processed lactose samples is quantified using the calibration curve, and interpreted within the context of effective amorphous surface area. Data for bulk amorphous content is also utilized to generate a thorough picture of how disorder is distributed throughout the particle. An approach to quantifying surface amorphous content using dispersive surface energy is presented. Quantification is achieved by equating results to an effective amorphous surface area based on reference crystalline, and amorphous materials. PMID:21725707

  6. Structural relaxation in amorphous silicon carbide

    International Nuclear Information System (INIS)

    High purity single crystal and chemically vapor deposited (CVD) silicon carbide have been amorphized under fast neutron irradiation. The gradual transition in physical properties from the as-amorphized state to a more relaxed amorphous state prior to crystallization is studied. For the three bulk properties studied: density, electrical resistivity, and thermal conductivity, large property changes occur upon annealing between the amorphization temperature and the point of crystallization. These physical property changes occur in the absence of crystallization and are attributed to short and perhaps medium range ordering during annealing. It is demonstrated that the physical properties of amorphous SiC (a-SiC) can vary greatly and are likely a function of the irradiation state producing the amorphization. The initiation of crystallization as measured using bulk density and in situ TEM is found to be ∼875 deg. C, though the kinetics of crystallization above this point are seen to depend on the technique used. It is speculated that in situ TEM and other thin-film approaches to study crystallization of amorphous SiC are flawed due to thin-film effects

  7. CVD of refractory amorphous metal alloys

    International Nuclear Information System (INIS)

    In this work, a novel process is described for the fabrication of multi-metallic amorphous metal alloy coatings using a chemical vapor deposition (CVD) technique. Of special interest in this work are amorphous metal alloys containing Mo and/or Cr which have high crystallization temperatures and readily available low decomposition temperature metal-bearing precursors. The conditions for amorphous alloy formation via CVD are described as well as the chemical properties of these materials. High temperature, aqueous corrosion tests have shown these materials (especially those containing Cr) are among the most corrosion resistant metal alloys known

  8. Photonic crystals, amorphous materials, and quasicrystals

    International Nuclear Information System (INIS)

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states. (focus issue)

  9. Structural relaxation of amorphous silicon carbide

    International Nuclear Information System (INIS)

    We have examined amorphous structures of silicon carbide (SiC) using both transmission electron microscopy and a molecular-dynamics approach. Radial distribution functions revealed that amorphous SiC contains not only heteronuclear (Si-C) bonds but also homonuclear (Si-Si and C-C) bonds. The ratio of heteronuclear to homonuclear bonds was found to change upon annealing, suggesting that structural relaxation of the amorphous SiC occurred. Good agreement was obtained between the simulated and experimentally measured radial distribution functions

  10. Structural relaxation of amorphous silicon carbide.

    Science.gov (United States)

    Ishimaru, Manabu; Bae, In-Tae; Hirotsu, Yoshihiko; Matsumura, Syo; Sickafus, Kurt E

    2002-07-29

    We have examined amorphous structures of silicon carbide (SiC) using both transmission electron microscopy and a molecular-dynamics approach. Radial distribution functions revealed that amorphous SiC contains not only heteronuclear (Si-C) bonds but also homonuclear (Si-Si and C-C) bonds. The ratio of heteronuclear to homonuclear bonds was found to change upon annealing, suggesting that structural relaxation of the amorphous SiC occurred. Good agreement was obtained between the simulated and experimentally measured radial distribution functions. PMID:12144449

  11. Surface Acidity of Amorphous Aluminum Hydroxide

    Institute of Scientific and Technical Information of China (English)

    K. FUKUSHI; K. TSUKIMURA; H. YAMADA

    2006-01-01

    The surface acidity of synthetic amorphous Al hydroxide was determined by acid/base titration with several complementary methods including solution analyses of the reacted solutions and XRD characterization of the reacted solids. The synthetic specimen was characterized to be the amorphous material showing four broad peaks in XRD pattern. XRD analyses of reacted solids after the titration experiments showed that amorphous Al hydroxide rapidly transformed to crystalline bayerite at the alkaline condition (pH>10). The solution analyses after and during the titration experiments showed that the solubility of amorphous aluminum hydroxide, Ksp =aAl3+/a3H+,was 1010.3,The amount of consumption of added acid or base during the titration experiment was attributed to both the protonation/deprotonation of dissolved Al species and surface hydroxyl group. The surface acidity constants, surface hydroxyl density and specific surface area were estimated by FITEQL 4.0.

  12. LOCAL ATOMIC STRUCTURE OF AMORPHOUS METALS

    OpenAIRE

    Egami, T.; Maed, K.; Srolovitz, D.; Vitek, V.

    1980-01-01

    The local parameters are introduced to describe the local atomic structure of amorphous metals. They define the structural defects which facilitate the explanation of various properties, including the volume change by annealing.

  13. Diode Based on Amorphous SiC

    Directory of Open Access Journals (Sweden)

    V.S. Zakhvalinskii

    2013-12-01

    Full Text Available Diode structure on the basis of amorphous silicon carbide and p-type polycrystalline silicon (Eurosolar were obtained with magnetron RF-nonreactive sputtering method from solid-phase target in argon atmosphere.

  14. Diode Based on Amorphous SiC

    OpenAIRE

    V.S. Zakhvalinskii; L.V. Borisenko; A.J. Aleynikov; E.A. Piljuk; I. Goncharov; S.V. Taran

    2013-01-01

    Diode structure on the basis of amorphous silicon carbide and p-type polycrystalline silicon (Eurosolar) were obtained with magnetron RF-nonreactive sputtering method from solid-phase target in argon atmosphere.

  15. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio and a...... low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state are...... discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  16. Formation and structure of V-Zr amorphous alloy thin films

    KAUST Repository

    King, Daniel J M

    2015-01-01

    Although the equilibrium phase diagram predicts that alloys in the central part of the V-Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V-Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to the first and second nearest neighbours in the system.

  17. Formation and structure of V–Zr amorphous alloy thin films

    International Nuclear Information System (INIS)

    Although the equilibrium phase diagram predicts that alloys in the central part of the V–Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V–Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to the first and second nearest neighbours in the system

  18. Amorphous carbon and its surfaces

    International Nuclear Information System (INIS)

    Graphical abstract: Some examples of 2.0 g/cm3 surfaces. The cell contained 64 atoms. The top figure shows some tube-like formation, the central figure is an example of a wave-like surface, and the bottom figure is an example of the bending over of the carbons at the surface to form a surface sheet when the sheets in the bulk are not parallel to the surface. - Abstract: We have investigated bulk amorphous carbon at three densities (3.2, 2.6, and 2.0 g/cm3) using density functional theory (DFT). The variation in the structure with density is discussed. The bulk structures are used to create surface structures. If the surfaces are relaxed at 700 K, the surface structures, as a function of density, are more similar than the analogous bulk structures. The relaxed surfaces appear to be graphene sheets with defects, sizable distortions, and have covalently bonded carbon chains holding the sheets together.

  19. Structure of Amorphous Titania Nanoparticles

    Science.gov (United States)

    Zhang, H.; Chen, B.; Banfield, J. F.; Waychunas, G. A.

    2008-12-01

    Ultrafine (2 - 3 nm) titania (TiO2) nanoparticles show only diffuse scattering by both conventional powder x-ray diffraction and electron diffraction. We used synchrotron wide-angle x-ray scattering (WAXS) to probe the atomic correlations in this amorphous material. The atomic pair-distribution function (PDF) derived from Fourier transform of the WAXS data was used for reverse Monte Carlo (RMC) simulations of the atomic structure of the small nanoparticles. Molecular dynamics simulations were used to generate input structures for the RMC. X-ray absorption spectroscopy (XAS) simulations were used to screen candidate structures obtained from the RMC. The structure model that best describes both the WAXS and XAS data consists of particles with a highly distorted shell and a small strained anatase-like crystalline core. The average coordination number of Ti is 5.3 and the Ti-O bond length peaks at 1.940 Å. Relative to bulk titania, the reduction of the coordination number is primarily due to the truncation of the Ti-O octahedra at the titania nanoparticle surface, and the shortening of the Ti-O bond length is due to bond contraction in the distorted shell. Core-shell structures in ultrafine nanoparticles may be common in many materials (e.g. ZnS).

  20. Laser annealing of hydrogen implanted amorphous silicon

    International Nuclear Information System (INIS)

    Amorphous silicon, prepared by silicon bombardment at energies of 200 to 250 keV, was implanted with 40 keV H2+ to peak concentrations up to 15 at .% and recrystallized in air by single 20 nsec pulses at 1.06 μm from a Nd:glass laser. Amorphous layer formation and recrystallization were verified using Raman spectroscopy and ion backscattering/channeling analysis

  1. A Magnetic Sensor with Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Dongfeng He

    2014-06-01

    Full Text Available Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/ÖHz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor.

  2. Tests Of Amorphous-Silicon Photovoltaic Modules

    Science.gov (United States)

    Ross, Ronald G., Jr.

    1988-01-01

    Progress in identification of strengths and weaknesses of amorphous-silicon technology detailed. Report describes achievements in testing reliability of solar-power modules made of amorphous-silicon photovoltaic cells. Based on investigation of modules made by U.S. manufacturers. Modules subjected to field tests, to accelerated-aging tests in laboratory, and to standard sequence of qualification tests developed for modules of crystalline-silicon cells.

  3. DEFECTS IN AMORPHOUS CHALCOGENIDES AND SILICON

    OpenAIRE

    Adler, D.

    1981-01-01

    Our comprehension of the physical properties of amorphous semiconductors has improved considerably over the past few years, but many puzzles remain. From our present perspective, the major features of chalcogenide glasses appear to be well understood, and some of the fine points which have arisen recently have been explained within the same general model. On the other hand, there are a grear number of unresolved mysteries with regard to amorphous silicon-based alloys. In this paper, the valen...

  4. Amorphous Silicon Carbide for Photovoltaic Applications

    OpenAIRE

    JANZ, Stefan

    2006-01-01

    Within this work amorphous SiC is investigated for its applicability in photovoltaic devices. The temperature stability and dopability of SiC makes this material very attractive for applications in this area. Physical basics of amorphous SiC networks and plasma processes are discussed and first measurements with FTIR of the different layer types show the complexity of the network. The special features of the plasma reactor such as high temperature deposition and two-source excitation are also...

  5. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  6. Amorphous boron nitride at high pressure

    Science.gov (United States)

    Durandurdu, Murat

    2016-06-01

    The pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp3 and sp2 bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp3 bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P42/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 °C) conditions.

  7. Challenges in amorphous silicon solar cell technology

    International Nuclear Information System (INIS)

    Hydrogenated amorphous silicon is nowadays extensively used for a range of devices, amongst others solar cells. Solar cell technology has matured over the last two decades and resulted in conversion efficiencies in excess of 15%. In this paper the operation of amorphous silicon solar cells is briefly described. For tandem solar cell, amorphous silicon germanium is often used as material for the intrinsic layer of the bottom cell. This improves the red response of the cell. In order to optimize the performance of amorphous silicon germanium solar cells, profiling of the germanium concentration near the interfaces is applied. We show in this paper that the performance is strongly dependent on the width of the grading near the interfaces. The best performance is achieved when using a grading width that is as small as possible near the p-i interface and as wide as possible near the i-n interface. High-rate deposition of amorphous silicon is nowadays one of the main issues. Using the Expanding Thermal Plasma deposition method very high deposition rates can be achieved. This method has been applied for the fabrication of an amorphous silicon solar cell with a conversion efficiency of 5,8%. (authors)

  8. Can amorphization take place in nanoscale interconnects?

    International Nuclear Information System (INIS)

    The trend of miniaturization has highlighted the problems of heat dissipation and electromigration in nanoelectronic device interconnects, but not amorphization. While amorphization is known to be a high pressure and/or temperature phenomenon, we argue that defect density is the key factor, while temperature and pressure are only the means. For nanoscale interconnects carrying modest current density, large vacancy concentrations may be generated without the necessity of high temperature or pressure due to the large fraction of grain boundaries and triple points. To investigate this hypothesis, we performed in situ transmission electron microscope (TEM) experiments on 200 nm thick (80 nm average grain size) aluminum specimens. Electron diffraction patterns indicate partial amorphization at modest current density of about 105 A cm−2, which is too low to trigger electromigration. Since amorphization results in drastic decrease in mechanical ductility as well as electrical and thermal conductivity, further increase in current density to about 7 × 105 A cm−2 resulted in brittle fracture failure. Our molecular dynamics (MD) simulations predict the formation of amorphous regions in response to large mechanical stresses (due to nanoscale grain size) and excess vacancies at the cathode side of the thin films. The findings of this study suggest that amorphization can precede electromigration and thereby play a vital role in the reliability of micro/nanoelectronic devices. (paper)

  9. Atomistic simulations of nanowelding of single-crystal and amorphous gold nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Da, E-mail: nanowu@cycu.edu.tw [Department of Mechanical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li City, Taoyuan County 32023, Taiwan (China); Fang, Te-Hua, E-mail: fang.tehua@msa.hinet.net; Wu, Chung-Chin, E-mail: 1100303179@kuas.edu.tw [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China)

    2015-01-07

    The mechanism and quality of the welding of single-crystal (SC) and amorphous gold nanowires (NWs) with head-to-head contact are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. The results are discussed in terms of atomic trajectories, slip vectors, stress, and radial distribution function. Simulation results show that the alignment for the amorphous NWs during welding is easier than that for the SC NWs due to the former's relatively stable geometry. A few dislocations nucleate and propagate on the (111) close-packed plane (slip plane) inside the SC NWs during the welding and stretching processes. During welding, an incomplete jointing area first forms through the interactions of the van der Waals attractive force, and the jointing area increases with increasing extent of contact between the two NWs. A crystallization transition region forms in the jointing area for the welding of SC-amorphous or amorphous-SC NWs. With increasing interference, an amorphous gold NW shortens more than does a SC gold NW due to the former's relatively poor strength. The pressure required for welding decreases with increasing temperature.

  10. Microstructural analyses of amorphic diamond, i-C, and amorphous carbon

    DEFF Research Database (Denmark)

    Collins, C. B.; Davanloo, F.; Jander, D.R.;

    1992-01-01

    comparative examinations of the microstructures of samples of amorphic diamond, i-C, and amorphous carbon. Four distinct morphologies were found that correlated closely with the energy densities used in preparing the different materials. Journal of Applied Physics is copyrighted by The American Institute of...... Physics....

  11. Electrons and phonons in amorphous semiconductors

    Science.gov (United States)

    Prasai, Kiran; Biswas, Parthapratim; Drabold, D. A.

    2016-07-01

    The coupling between lattice vibrations and electrons is one of the central concepts of condensed matter physics. The subject has been deeply studied for crystalline materials, but far less so for amorphous and glassy materials, which are among the most important for applications. In this paper, we explore the electron-lattice coupling using current tools of a first-principles computer simulation. We choose three materials to illustrate the phenomena: amorphous silicon (a-Si), amorphous selenium (a-Se) and amorphous gallium nitride (a-GaN). In each case, we show that there is a strong correlation between the localization of electron states and the magnitude of thermally induced fluctuations in energy eigenvalues obtained from the density-functional theory (i.e. Kohn–Sham eigenvalues). We provide a heuristic theory to explain these observations. The case of a-GaN, a topologically disordered partly ionic insulator, is distinctive compared to the covalent amorphous examples. Next, we explore the consequences of changing the charge state of a system as a proxy for tracking photo-induced structural changes in the materials. Where transport is concerned, we lend insight into the Meyer–Neldel compensation rule and discuss a thermally averaged Kubo–Greenwood formula as a means to estimate electrical conductivity and especially its temperature dependence. We close by showing how the optical gap of an amorphous semiconductor can be computationally engineered with the judicious use of Hellmann–Feynman forces (associated with a few defect states) using molecular dynamics simulations. These forces can be used to close or open an optical gap, and identify a structure with a prescribed gap. We use the approach with plane-wave density functional methods to identify a low-energy amorphous phase of silicon including several coordination defects, yet with a gap close to that of good quality a-Si models.

  12. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  13. A Simple ``Sticky Disc'' Model for Crystalline and Amorphous Networks

    Science.gov (United States)

    Huerta, Adrian; Chubynsky, Nikita; Naumis, Gerardo; Thorpe, Michael

    2005-03-01

    Using Monte Carlo simulations, we study the structural and thermodynamic behavior of a simple one component network forming model made up of ``sticky discs.'' Central and bond bending forces was included, modeling such interactions as a simple square well radial and angular three body term in the potential respectively. The main feature of this model is the ability to form crystalline and amorphous networks upon cooling, similar to that obtained using the so called WWW methodology to describe the network of some vitreous structures [1]. With the ``pebble game'' algorithm [2], we evaluate the number of degrees of freedom and the amount of stress in both the amorphous and crystalline structures. We discuss the connection between the configurational entropy (associated with the topology) and the degrees of freedom. Other effects such as elasticity of these structures are also discussed. 1. Wooten, F., Winer, K. and Weaire, D., Phys. Rev. Lett., 54 1392- 1395 (1985). 2. Jacobs, D.J. and Thorpe, M.F., Phys. Rev. Lett., 75 4051- 4054 (1995).

  14. Amorphous silicon detectors in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Conti, M. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy) Lawrence Berkeley Lab., CA (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  15. Amorphous silicon detectors in positron emission tomography

    International Nuclear Information System (INIS)

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters ε2τ's are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs

  16. Crystallization of amorphous Zr-Be alloys

    Science.gov (United States)

    Golovkova, E. A.; Surkov, A. V.; Syrykh, G. F.

    2015-02-01

    The thermal stability and structure of binary amorphous Zr100 - x Be x alloys have been studied using differential scanning calorimetry and neutron diffraction over a wide concentration range (30 ≤ x ≤ 65). The amorphous alloys have been prepared by rapid quenching from melt. The studied amorphous system involves the composition range around the eutectic composition with boundary phases α-Zr and ZrBe2. It has been found that the crystallization of alloys with low beryllium contents ("hypoeutectic" alloys with x ≤ 40) proceeds in two stages. Neutron diffraction has demonstrated that, at the first stage, α-Zr crystallizes and the remaining amorphous phase is enriched to the eutectic composition; at the second stage, the alloy crystallizes in the α-Zr and ZrBe2 phases. At higher beryllium contents ("hypereutectic" alloys), one phase transition of the amorphous phase to a mixture of the α-Zr and ZrBe2 phases has been observed. The concentration dependences of the crystallization temperature and activation energy have been revealed.

  17. Body Odor

    Science.gov (United States)

    ... Health Medical Conditions Nutrition & Fitness Emotional Health Body Odor Posted under Health Guides . Updated 29 October 2014. + ... guy has to deal with. What causes body odor? During puberty, your sweat glands become much more ...

  18. Body Hygiene

    Science.gov (United States)

    ... Home Diaper-Changing Steps for Childcare Settings Body Hygiene Dental Hygiene Water Fluoridation Facial Cleanliness Fish Pedicures and ... spread of hygiene-related diseases . Topics for Body Hygiene Facial Cleanliness Dental Hygiene Water Fluoridation Fish Pedicures and Fish Spas ...

  19. Body Image

    Science.gov (United States)

    ... Help your child have a healthy body image Cosmetic surgery Breast surgery Botox Liposuction Varicose or spider veins Body dysmorphic disorder (BDD) Eating disorders Anorexia nervosa Binge eating ... nervosa Cosmetics and your health Depression during and after pregnancy ...

  20. Body Basics

    Science.gov (United States)

    ... about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System ...

  1. Body embellishment

    OpenAIRE

    Zellweger, Christoph

    2015-01-01

    The exhibition Body Embellishment explores the most innovative artistic expression in the 21st-century international arenas of body extension, augmentation, and modification, focusing on jewelry, tattoos, nail arts, and fashion. The areas of focus are jewelry, tattoos, nail arts, and fashion. Avant-garde jewelry consciously engages the body by intersecting and expanding the planes of the human form. Tattoos are at once on and in the body. Nail art, from manicures to pedicures, has humble ...

  2. Body Clock

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2000-01-01

    Body clocks” are biological methods of controling body activities.Every living thing has one. In humans, a body clock controls normal periods of sleeping and waking. It controls the time swhen you are most likely to feel pain.Eating, sleeping and exercising at about the same time each day will help keep body activities normal. But changes in your life, a new job, for example, destroy the balance and thus cause health problems.

  3. Fabrication and application of amorphous semiconductor devices

    International Nuclear Information System (INIS)

    This invention concerns the design and manufacture of elecric switching or memorisation components with amorphous semiconductors. As is known some compounds, particularly the chalcogenides, have a resistivity of the semiconductor type in the amorphous solid state. These materials are obtained by the high temperature homogeneisation of several single elements such as tellurium, arsenic, germanium and sulphur, followed by water or air quenching. In particular these compounds have useful switching and memorisation properties. In particular they have the characteristic of not suffering deterioration when placed in an environment subjected to nuclear radiations. In order to know more about the nature and properties of these amorphous semiconductors the French patent No. 71 28048 of 30 June 1971 may be consulted with advantage

  4. Amorphous metallic films in silicon metallization systems

    Science.gov (United States)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-01-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  5. Transverse and longitudinal vibrations in amorphous silicon

    Science.gov (United States)

    Beltukov, Y. M.; Fusco, C.; Tanguy, A.; Parshin, D. A.

    2015-12-01

    We show that harmonic vibrations in amorphous silicon can be decomposed to transverse and longitudinal components in all frequency range even in the absence of the well defined wave vector q. For this purpose we define the transverse component of the eigenvector with given ω as a component, which does not change the volumes of Voronoi cells around atoms. The longitudinal component is the remaining orthogonal component. We have found the longitudinal and transverse components of the vibrational density of states for numerical model of amorphous silicon. The vibrations are mostly transverse below 7 THz and above 15 THz. In the frequency interval in between the vibrations have a longitudinal nature. Just this sudden transformation of vibrations at 7 THz from almost transverse to almost longitudinal ones explains the prominent peak in the diffusivity of the amorphous silicon just above 7 THz.

  6. Surface bioactivity of plasma implanted silicon and amorphous carbon

    Institute of Scientific and Technical Information of China (English)

    Paul K CHU

    2004-01-01

    Plasma immersion ion implantation and deposition (PⅢ&D) has been shown to be an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification single-crystal silicon and amorphous carbon is reviewed. Silicon is the most important material in the integrated circuit industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PⅢ into silicon and observed the biomimetic growth of apatite on its surface in simulated body fluid. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness. The use of this material in biomedical engineering has also attracted much attention. It has been observed in our laboratory that doping DLC with nitrogen by means of PⅢ can improve the surface blood compatibility. The properties as well as in vitro biological test results will be discussed in this article.

  7. Amorphous Fe-based metal foam

    International Nuclear Information System (INIS)

    A foam synthesis method that takes advantage of the viscous high-temperature liquid state of Fe-based bulk glass-forming alloys to produce amorphous steel foam is introduced. Zirconium hydride is utilized as a foaming agent taking advantage of the low hydrogen solubility of these glass-forming alloys. Amorphous foams with porosities up to 65% were produced having homogenous cellular morphologies that exhibit cell-size uniformity. Even though intracellular solid regions as thin as a few micrometers are detected, on a global scale the cellular structure is determined to be incapable of alleviating the foam from the brittle nature of the monolithic glass

  8. Ion bombardment and disorder in amorphous silicon

    International Nuclear Information System (INIS)

    The effect of ion bombardment during growth on the structural and optical properties of amorphous silicon are presented. Two series of films were deposited under electrically grounded and positively biased substrate conditions. The biased samples displayed lower growth rates and increased hydrogen content relative to grounded counterparts. The film structure was examined using Raman spectroscopy. The transverse optic like phonon band position was used as a parameter to characterize network order. Biased samples displayed an increased order of the amorphous network relative to grounded samples. Furthermore, biased samples exhibited a larger optical gap. These results are correlated and attributed to reduced ion bombardment effects

  9. Neutron scattering studies of amorphous Invar alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Baca, J.A.

    1989-01-01

    This paper reviews recent inelastic neutron scattering experiments performed to study the spin dynamics of two amorphous Invar systems: Fe/sub 100-x/B/sub x/ and Fe/sub 90-x/Ni/sub x/Zr/sub 10/. As in crystalline Invar Fe/sub 65/Ni/sub 35/ and Fe/sub 3/Pt, the excitation of conventional long-wavelength spin waves in these amorphous systems cannot account for the relatively rapid change of their magnetization with temperature. These results are discussed in terms of additional low-lying excitations which apparently have a density of states similar to the spin waves.

  10. Raman Amplifier Based on Amorphous Silicon Nanoparticles

    OpenAIRE

    M.A. Ferrara; Rendina, I.; S. N. Basu; Dal Negro, L.; Sirleto, L.

    2012-01-01

    The observation of stimulated Raman scattering in amorphous silicon nanoparticles embedded in Si-rich nitride/silicon superlattice structures (SRN/Si-SLs) is reported. Using a 1427 nm continuous-wavelength pump laser, an amplification of Stokes signal up to 0.9 dB/cm at 1540.6 nm and a significant reduction in threshold power of about 40% with respect to silicon are experimentally demonstrated. Our results indicate that amorphous silicon nanoparticles are a great promise for Si-based Raman la...

  11. Nanoindentation-induced amorphization in silicon carbide

    Science.gov (United States)

    Szlufarska, Izabela; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2004-07-01

    The nanoindentation-induced amorphization in SiC is studied using molecular dynamics simulations. The load-displacement response shows an elastic shoulder followed by a plastic regime consisting of a series of load drops. Analyses of bond angles, local pressure, and shear stress, and shortest-path rings show that these drops are related to dislocation activities under the indenter. We show that amorphization is driven by coalescence of dislocation loops and that there is a strong correlation between load-displacement response and ring distribution.

  12. Characterization of inhomogeneities in amorphous superconductors

    International Nuclear Information System (INIS)

    The structure and superconducting properties of rapidly quenched Zr-Ni and Zr-V alloys have been studied by XRD, EXAFS spectroscopy, TEM, electron diffraction, ED, electrical resistivity and ac susceptibility measurements. Amorphous Zr66Ni34 ribbons quenched with different cooling rates were also examined by flux pinning measurements. Characteristic differences are observed in the flux pinning mechanisms of microcrystalline and amorphous samples. The temperature dependence of upper critical fields have been measured down to 0.4 K and the results are analyzed in terms of WHH theory

  13. Polymeric amorphous carbon as p-type window within amorphous silicon solar cells

    OpenAIRE

    Khan, R U A; Silva, S. R. P.; Van Swaaij, R.A.C.M.M.

    2003-01-01

    Amorphous carbon (a-C) has been shown to be intrinsically p-type, and polymeric a-C (PAC) possesses a wide Tauc band gap of 2.6 eV. We have replaced the p-type amorphous silicon carbide layer of a standard amorphous silicon solar cell with an intrinsic ultrathin layer of PAC. The thickness of the p layer had to be reduced from 9 to 2.5 nm in order to ensure sufficient conduction through the PAC film. Although the resulting external parameters suggest a decrease in the device efficiency from 9...

  14. In vitro toxicological assessment of amorphous silica particles in relation to their characteristics and mode of action in human skin cells

    OpenAIRE

    Moia, Claudia

    2015-01-01

    Background: Silica is the common name for silicon dioxide (SiO2) materials and exists in both crystalline and amorphous forms. While crystalline silica is known for its severe health effects, amorphous silica has been considered safe and applied in many areas. However, some recent studies have showed evidence of their toxicity, raising concerns about its use as nanomaterial for biomedical applications. When nanomaterials enter the body, they are enveloped in biological fluid...

  15. Inverted amorphous silicon solar cell utilizing cermet layers

    Science.gov (United States)

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  16. Low-Temperature Crystallization of Amorphous Silicate in Astrophysical Environments

    CERN Document Server

    Tanaka, Kyoko K; Kimura, Hiroshi

    2010-01-01

    We construct a theoretical model for low-temperature crystallization of amorphous silicate grains induced by exothermic chemical reactions. As a first step, the model is applied to the annealing experiments, in which the samples are (1) amorphous silicate grains and (2) amorphous silicate grains covered with an amorphous carbon layer. We derive the activation energies of crystallization for amorphous silicate and amorphous carbon from the analysis of the experiments. Furthermore, we apply the model to the experiment of low-temperature crystallization of amorphous silicate core covered with an amorphous carbon layer containing reactive molecules. We clarify the conditions of low-temperature crystallization due to exothermic chemical reactions. Next, we formulate the crystallization conditions so as to be applicable to astrophysical environments. We show that the present crystallization mechanism is characterized by two quantities: the stored energy density Q in a grain and the duration of the chemical reaction...

  17. Removing and Recovering Phosphate from Poultry Wastewater Using Amorphous Ceramics

    OpenAIRE

    Youhui Xie; Qin Li; Xianzhi Zhao; Yi Luo; Yangming Wang; Xiangwei Peng; Qigui Wang; Jian Su; Yin Lu

    2014-01-01

    A novel and effective technique for phosphate from poultry wastewater was developed using amorphous ceramics. Amorphous ceramics, which showed high performance for phosphate removal and recovery from poultry wastewater, were synthesized using unlimitedly available, inexpensive materials such as silica fume and lime. Dissolved phosphate in poultry wastewater can be deposited as a solid on the surface of amorphous ceramics. Phosphate content on the surface of amorphous ceramics could reach 14.2...

  18. Amorphization of embedded Cu nanocrystals by ion irradiation

    International Nuclear Information System (INIS)

    While bulk crystalline elemental metals cannot be amorphized by ion irradiation in the absence of chemical impurities, the authors demonstrate that finite-size effects enable the amorphization of embedded Cu nanocrystals. The authors form and compare the atomic-scale structure of the polycrystalline, nanocrystalline, and amorphous phases, present an explanation for the extreme sensitivity to irradiation exhibited by nanocrystals, and show that low-temperature annealing is sufficient to return amorphized material to the crystalline form

  19. Radiative recombination of excitons in amorphous semiconductors

    International Nuclear Information System (INIS)

    A theory for calculating the radiative lifetime of excitons in amorphous semiconductors is presented. Four possibilities of excitonic radiative recombination are considered and the corresponding rates are derived at thermal equilibrium. The radiative lifetime is calculated from the inverse of the maximum rate for all the four possibilities. Results agree very well with experiments

  20. A Robust Universal Flying Amorphous Computer

    Czech Academy of Sciences Publication Activity Database

    Petrů, Lukáš; Wiedermann, Jiří

    Cham: Springer, 2014 - (Calude, C.; Freivalds, R.; Kazuo, I.), s. 421-435. (Lecture Notes in Computer Science. 8808). ISBN 978-3-319-13349-2 R&D Projects: GA ČR GAP202/10/1333 Institutional support: RVO:67985807 Keywords : amorphous computing * universal computation * computational complexity Subject RIV: IN - Informatics, Computer Science

  1. Noise and degradation of amorphous silicon devices

    NARCIS (Netherlands)

    Bakker, J.P.R.

    2003-01-01

    Electrical noise measurements are reported on two devices of the disordered semiconductor hydrogenated amorphous silicon (a-Si:H). The material is applied in sandwich structures and in thin-film transistors (TFTs). In a sandwich configuration of an intrinsic layer and two thin doped layers, the obse

  2. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A R M Yusoff; M N Syahrul; K Henkel

    2007-08-01

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the effect of tie coats on film adhesion.

  3. Trap level spectroscopy in amorphous semiconductors

    CERN Document Server

    Mikla, Victor V

    2010-01-01

    Although amorphous semiconductors have been studied for over four decades, many of their properties are not fully understood. This book discusses not only the most common spectroscopic techniques but also describes their advantages and disadvantages.Provides information on the most used spectroscopic techniquesDiscusses the advantages and disadvantages of each technique

  4. Preparation of hydrogenated amorphous silicon tin alloys

    OpenAIRE

    Vergnat, M.; Marchal, G.; Piecuch, M.

    1987-01-01

    This paper describes a new method to obtain hydrogenated amorphous semiconductor alloys. The method is reactive co-evaporation. Silicon tin hydrogenated alloys are prepared under atomic hydrogen atmosphere. We discuss the influence of various parameters of preparation (hydrogen pressure, tungsten tube temperature, substrate temperature, annealing...) on electrical properties of samples.

  5. Neutron diffraction studies of amorphous solids

    International Nuclear Information System (INIS)

    A brief survey is presented of the role of neutron diffraction in structural studies of amorphous solids. The inherent limitations of the diffraction technique are discussed, together with modern instrumentation and methods for separating individual component correlation functions. An introduction is given to the use of modelling and the extraction of structural parameters from experimental data. (author)

  6. Structural studies of amorphous Se under pressure

    OpenAIRE

    Tanaka, Keiji

    1990-01-01

    X-ray-diffraction patterns, macroscopic compressibility, and crystallization in amorphous Se subject to pressure have been investigated. The material exhibits pressure-induced structural modifications in the glassy state and a phase transformation to the hexagonal phase at 120±20 kbar. The observations are discussed on the basis of microscopic and thermodynamic models.

  7. Ion-assisted recrystallization of amorphous silicon

    Science.gov (United States)

    Priolo, F.; Spinella, C.; La Ferla, A.; Rimini, E.; Ferla, G.

    1989-12-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The planar motion of the crystal-amorphous interface was monitored in situ, during irradiations, by transient reflectivity measurements. This technique allows the measurement of the ion-induced growth rate with a very high precision. We have observed that this growth rate scales linearly with the number of displacements produced at the crystal-amorphous interface by the impinging ions. Moreover the regrowth onto oriented substrates is a factor of ≈ 4 faster with respect to that on substrates. Impurities dissolved in the amorphous layer influence the kinetics of recrystallization. For instance, dopants such as As, B and P enhance the ion-induced growth rate while oxygen has the opposite effect. The dependence of the rate on impurity concentration is however less strong with respect to pure thermal annealing. For instance, an oxygen concentration of 1 × 1021 / cm3 decreases the ion-induced growth rate by a factor of ≈ 3; this same concentration would have decreased the rate of pure thermal annealing by more than 4 orders of magnitude. The reduced effects of oxygen during ion-beam crystallization allow the regrowth of deposited Si layers despite the presence of a high interfacial oxygen content. The process is investigated in detail and its possible application to the microelectronic technology is discussed.

  8. Amorphous track models: A numerical comparison study

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, L.; Bassler, N.; Andersen, Claus Erik; Jäkel, O.

    2010-01-01

    We present an open-source code library for amorphous track modelling which is suppose to faciliate the application and numerical comparability as well as serve as a frame-work for the implementation of new models. We show an example of using the library indicating the choice of submodels has a...

  9. 13C NMR spectroscopy of amorphous hydrogenated carbon and amorphous hydrogenated boron carbide

    International Nuclear Information System (INIS)

    We report the 13C NMR spectrum of amorphous hydrogenated carbon and boron carbide. The amorphous hydrogenated carbon spectra consist primarily of an sp3 line at 40 ppm and an sp2 line at 140 ppm and are in reasonable agreement with the recent theoretical calculations of Mauri, Pfrommer, and Louie, but there are some notable discrepancies. The amorphous hydrogenated boron carbide spectra are very different from those of amorphous hydrogenated carbon, being dominated by one line at 15 ppm. We interpret this line as due to carbon bound in boron carbide icosahedra, because polycrystalline boron carbide with boron carbide icosahedra as the unit cell gives very similar NMR spectra. copyright 1999 The American Physical Society

  10. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    DEFF Research Database (Denmark)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger;

    2015-01-01

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co......-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in...... studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from...

  11. AMORPHOUS COATING FORMING IN THE CONDITIONS OF GAS THERMAL SPRAYING

    Directory of Open Access Journals (Sweden)

    V. V. Artemchuk

    2010-06-01

    Full Text Available In the article the issues of forming amorphous coatings in the conditions of gas thermal spraying of coating are considered. On the basis of theoretical analysis the technological factors, determining possibility of obtaining the amorphous coatings at detonation spraying, are formulated. Two groups of factors, influencing on formation of amorphous structure in detonation sprayed coatings from metallic alloys, are marked.

  12. Body punk

    DEFF Research Database (Denmark)

    Mogensen, Kevin

    BODYPUNK - A Treatise on male body builders and the meaning of the body in the shadow of an Anti Doping Campaign Based on a qualitative study, the thesis investigates the visual representation of the male bodybuilder found in the national anti doping campaign: ‗ "The hunt has begun" along with an...... analysis of the embodied meaning of men‘s bodybuilding....

  13. Body Weight and Body Image

    OpenAIRE

    McFarlane Traci; Olmsted Marion P

    2004-01-01

    Abstract Health Issue Body weight is of physical and psychological importance to Canadian women; it is associated with health status, physical activity, body image, and self-esteem. Although the problems associated with overweight and obesity are indeed serious, there are also problems connected to being underweight. Weight prejudice and the dieting industry intensify body image concerns for Canadian women and can have a major negative impact on self-esteem. Key Findings Women have lower BMIs...

  14. AMORPHOUS MATTER IN KAOLINS AND ITS GEOLOGICAL IMPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Selective dissolution with ammonium oxalate was carried out toextract amorphous matter in some kaolins from China.Ammonium oxalate extraction is an effective method to extract amorphous constituents without destroying the kaolinite crystalline structure.The study showed that,absolute amounts of amorphous constituents in kaolins are in the order Al>Si>Fe,but that relative amounts are in the order Fe>Al>Si.The amorphous phases are probably mainly in the form of separate particles,or colloidal particles absorbed on the surface of kaolinite particles.Compared to older kaolins,younger kaolins contain much more amorphous iron content.

  15. Characterization of Poly-Amorphous Indomethacin by Terahertz Spectroscopy

    Science.gov (United States)

    Otsuka, Makoto; Nishizawa, Jun-ichi; Fukura, Naomi; Sasaki, Tetsuo

    2012-09-01

    Since the stability of amorphous solids of pharmaceuticals differs depending on the method of preparation, there are several solid-state chemical structures in amorphous solids, which like poly-amorphous solids might have different characteristics the same as in crystalline solids. However, it is not easy to identify the differences in solid-state characteristics between amorphous solids using conventional analytical methods, such as powder X-ray diffraction analysis, since all of the poly-amorphous solids had similar halo X-ray diffraction patterns. However, terahertz spectroscopy can distinguish the amorphous solids of indomethacin with different physicochemical properties, and is expected to provide a rapid and non-destructive qualitative analysis for the solid materials, it would be useful for the qualitative evaluation of amorphous solids in the pharmaceutical industry.

  16. Amorphous-crystalline transition in thermoelectric NbO2

    International Nuclear Information System (INIS)

    Density functional theory was employed to design enhanced amorphous NbO2 thermoelectrics. The covalent-ionic nature of Nb–O bonding is identical in amorphous NbO2 and its crystalline counterpart. However, the Anderson localisation occurs in amorphous NbO2, which may affect the transport properties. We calculate a multifold increase in the absolute Seebeck coefficient for the amorphous state. These predictions were critically appraised by measuring the Seebeck coefficient of sputtered amorphous and crystalline NbO2 thin films with the identical short-range order. The first-order phase transition occurs at approximately 550 °C, but amorphous NbO2 possesses enhanced transport properties at all temperatures. Amorphous NbO2, reaching  −173 μV K−1, exhibits up to a 29% larger absolute Seebeck coefficient value, thereby validating the predictions. (paper)

  17. Atomic-scale disproportionation in amorphous silicon monoxide.

    Science.gov (United States)

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material. PMID:27172815

  18. Atomic-scale disproportionation in amorphous silicon monoxide

    Science.gov (United States)

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material. PMID:27172815

  19. Ion beam irradiation of relaxed amorphous silicon carbide

    International Nuclear Information System (INIS)

    In-situ transmittance measurements at λ=633 nm are used during ion irradiation to probe the defect generation in relaxed amorphous silicon carbide (SiC). The optical constants of amorphous SiC are strongly correlated to the thermal history of the material and the transmittance of ion implanted amorphous SiC (unrelaxed amorphous) increases after annealing in the temperature range 100-700 deg. C. The transmittance of annealed amorphous SiC (relaxed) during subsequent implantation decreases and saturates to the value of unrelaxed amorphous. In-situ transmittance measurements allow to follow directly the defect generation and to measure the fluence at which the transmittance saturates (derelaxation fluence). The effect of different ions (He and Ar) on these phenomena is explored. The obtained results are compared and discussed with similar measurements performed on amorphous silicon

  20. Role of Amorphous Manganese Oxide in Nitrogen Loss

    Institute of Scientific and Technical Information of China (English)

    LILIANG-MO; WUQI-TU

    1991-01-01

    Studies have been made,by 15N-tracer technique on nitrogen loss resulting from adding amorphous manganese oxide to NH4+-N medium under anaerobic conditions.The fact that the total nitrogen recovery was decreased and that 15NO2,15N2O,15N14NO,15NO,15N2 and 15N14N were emitted has proved that,like amorphous iron oxide,amorphous manganese oxide can also act as an electron acceptor in the oxidation of NH4+-N under anaerobic conditions and give rise to nitrogen loss.This once again illustrates another mechanism by which the loss of ammonium nitrogen in paddy soils is brought about by amorphous iron and manganese oxides.The quantity of nitrogen loss by amorphous manganese oxide increased with an increase in the amount of amorphous manganese oxide added and lessened with time of its aging.The nitrogen loss resulting from amorphous manganese oxide was less than that from amorphous iron oxide.And the nitrogen loss resulting from amorphous manganese oxide was less than that from amorphous iron oxide.And the nitrogen loss by cooperation of amorphous manganese oxide and microorganisms (soil suspension) was larger than that by amorphous manganese oxide alone.In the system,nitrogen loss was associated with the specific surface ares and oxidation-reduction of amorphous manganese oxide.However,their quantitative relationship and the exact reaction processes of nitrogen loss induced by amorphous manganese oxide remain to be further studied.

  1. Texture recognition and localization in amorphous robotic skin.

    Science.gov (United States)

    Hughes, Dana; Correll, Nikolaus

    2015-10-01

    We present a soft robotic skin that can recognize and localize texture using a distributed set of sensors and computational elements that are inspired by the Pacinian corpuscle, the fast adapting, uniformly spaced mechanoreceptor with a wide receptive field, which is responsive to vibrations due to rubbing or slip on the skin. Tactile sensing and texture recognition is important for controlled manipulation of objects and navigating in one's environment. Yet, providing robotic systems or prosthetic devices with such capability at high density and bandwidth remains challenging. Each sensor node in the presented skin is created by collocating computational elements with individual microphones. These nodes are networked in a lattice and embedded in EcoFlex rubber, forming an amorphous medium. Unlike existing skins consisting of passive sensor arrays that feed into a central computer, our approach allows for detecting, conditioning and processing of tactile signals in-skin, facilitating the use of high-bandwidth signals, such as vibration, and allowing nodes to respond only to signals of interest. Communication between nodes allows the skin to localize the source of a stimulus, such as rubbing or slip, in a decentralized manner. Signal processing by individual nodes allows the skin to estimate the material touched. Combining these two capabilities, the skin is able to convert high-bandwidth, spatiotemporal information into low-bandwidth, event-driven information. Unlike taxel-based sensing arrays, this amorphous approach greatly reduces the computational load on the central robotic system. We describe the design, analysis, construction, instrumentation and programming of the robotic skin. We demonstrate that a 2.8 square meter skin with 10 sensing nodes is capable of localizing stimulus to within 2 centimeters, and that an individual sensing node can identify 15 textures with an accuracy of 71%. Finally, we discuss how such a skin could be used for full-body sensing in

  2. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  3. The Local Structure of Amorphous Silicon

    Science.gov (United States)

    Treacy, M. M. J.; Borisenko, K. B.

    2012-02-01

    It is widely believed that the continuous random network (CRN) model represents the structural topology of amorphous silicon. The key evidence is that the model can reproduce well experimental reduced density functions (RDFs) obtained by diffraction. By using a combination of electron diffraction and fluctuation electron microscopy (FEM) variance data as experimental constraints in a structural relaxation procedure, we show that the CRN is not unique in matching the experimental RDF. We find that inhomogeneous paracrystalline structures containing local cubic ordering at the 10 to 20 angstrom length scale are also fully consistent with the RDF data. Crucially, they also matched the FEM variance data, unlike the CRN model. The paracrystalline model has implications for understanding phase transformation processes in various materials that extend beyond amorphous silicon.

  4. Disappearance and Creation of Constrained Amorphous Phase

    Science.gov (United States)

    Cebe, Peggy; Lu, Sharon X.

    1997-03-01

    We report observation of the disappearance and recreation of rigid, or constrained, amorphous phase by sequential thermal annealing. Tempera- ture modulated differential scanning calorimetry (MDSC) is used to study the glass transition and lower melting endotherm after annealing. Cold crystallization of poly(phenylene sulfide), PPS, at a temperature just above Tg creates an initial large fraction of rigid amorphous phase (RAP). Brief, rapid annealing to a higher temperature causes RAP almost to disappear completely. Subsequent reannealing at the original lower temperature restores RAP to its original value. At the same time that RAP is being removed, Tg decreases; when RAP is restored, Tg also returns to its initial value. The crystal fraction remains unaffected by the annealing sequence.

  5. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian;

    1993-01-01

    Large scale practical use of bulk amorphous alloys requires the capability of molding the material to a desired design, for instance by compaction of an amorphous powder. This is a difficult task because the sintering temperature is limited by the crystallization temperature of the alloy.1 Here we......, should facilitate a compaction. The passivation layer, however, impedes a compaction. Isostatic pressing at 540 K at a pressure of 200 MPa clearly illustrated this; pellets pressed from passivated powder were much more brittle than pellets pressed from unpassivated powder. The density of the pellets...... was very low ([approximately-equal-to]25% of the density of bulk FeB). We have designed a die for uniaxial pressing in which the compaction can be performed without exposing the powder to air and have obtained densities larger than 60% of that of bulk FeB. We have reported studies of the dependence...

  6. Body lice

    Science.gov (United States)

    Lice - body; Pediculosis corporis; Vagabond disease ... Diaz JH. Lice (pediculosis). In: Bennett JE, Dolin R, Blaser MJ, eds. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases . 8th ...

  7. Bog bodies

    DEFF Research Database (Denmark)

    Lynnerup, Niels

    2015-01-01

    the bog bodies have been studied using medical and natural scientific methods, and recently many bog bodies have been re-examined using especially modern, medical imaging techniques. Because of the preservation of soft tissue, especially the skin, it has been possible to determine lesions and trauma......In northern Europe during the Iron Age, many corpses were deposited in bogs. The cold, wet and anaerobic environment leads in many cases to the preservation of soft tissues, so that the bodies, when found and excavated several thousand years later, are remarkably intact. Since the 19th century....... Conversely, the preservation of bones is less good, as the mineral component has been leached out by the acidic bog. Together with water-logging of collagenous tissue, this means that if the bog body is simply left to dry out when found, as was the case pre-19th century, the bones may literally warp...

  8. Metastable states in amorphous chalcogenide semiconductors

    CERN Document Server

    Mikla, Victor I

    2009-01-01

    This book addresses an interesting and technologically important class of materials, the amorphous chalcogenide semiconductors. Experimental results on the structural and electronic metastable states in Se-rich chalcogenides are presented. Special attention is paid to the states in the mobility gap and their sensitivity to various factors such as irradiation, annealing and composition. Photoinduced changes of structure and physical properties are also considered and structural transformation at photocrystallization is studied in detail. Finally, the authors discuss potential applications of th

  9. NMR INVESTIGATIONS OF HYDROGENATED AMORPHOUS SILICON

    OpenAIRE

    J. Reimer

    1981-01-01

    A review is presented of the N.M.R. (Nuclear Magnetic Resonance) studies to date of hydrogenated amorphous silicon-hydrogen films. Structural features of proton N.M.R. lineshapes, dynamics of hydrogen containing defect sites, and the promise of quantitative determinations of local silicon-hydrogen bonding environments are discussed in detail. Finally, some comments are given on future directions for N.M.R. studies of hydrogenated thin films.

  10. Stable Transistors in Hydrogenated Amorphous Silicon

    OpenAIRE

    J. M. Shannon

    2004-01-01

    Thin-film field-effect transistors in hydrogenated amorphous silicon are notoriously unstable due to the formation of silicon dangling bond trapping states in the accumulated channel region during operation. Here, we show that by using a source-gated transistor a major improvement in stability is obtained. This occurs because the electron quasi-Fermi level is pinned near the center of the band in the active source region of the device and strong accumulation of electrons is prevented. The use...

  11. Amorphous silicon for thin-film transistors

    OpenAIRE

    Schropp, Rudolf Emmanuel Isidore

    1987-01-01

    Hydrogenated amorphous silicon (a-Si:H) has considerable potential as a semiconducting material for large-area photoelectric and photovoltaic applications. Moreover, a-Si:H thin-film transistors (TFT’s) are very well suited as switching devices in addressable liquid crystal display panels and addressable image sensor arrays, due to a new technology of low-cost, Iow-temperature processing overlarge areas. ... Zie: Abstract

  12. Transverse and longitudinal vibrations in amorphous silicon

    OpenAIRE

    Beltukov, Y. M.; De Fusco, C; Tanguy, A.; Parshin, D. A.

    2015-01-01

    We show that harmonic vibrations in amorphous silicon can be decomposed to transverse and longitudinal components in all frequency range even in the absence of the well defined wave vector ${\\bf q}$. For this purpose we define the transverse component of the eigenvector with given $\\omega$ as a component, which does not change the volumes of Voronoi cells around atoms. The longitudinal component is the remaining orthogonal component. We have found the longitudinal and transverse components of...

  13. Amorphous computing: examples, mathematics and theory

    OpenAIRE

    Stark, W. Richard

    2013-01-01

    The cellular automata model was described by John von Neumann and his friends in the 1950s as a representation of information processing in multicellular tissue. With crystalline arrays of cells and synchronous activity, it missed the mark (Stark and Hughes, BioSystems 55:107–117, 2000). Recently, amorphous computing, a valid model for morphogenesis in multicellular information processing, has begun to fill the void. Through simple examples and elementary mathematics, this paper begins a comp...

  14. A neutron diffraction study of amorphous boron

    Science.gov (United States)

    Delaplane, R. G.; Lundström, T.; Dahlborg, U.; Howells, W. S.

    1991-07-01

    The structure of amorphous boron has been studied with pulsed neutron diffraction techniques using the ISIS facilities at the Rutherford Appleton Laboratory. The experimental static structure factor S(Q) and radial distribution function support a structural model based on units of B12 icosahedra resembling those found in crystalline β-rhombohedral boron, but with a certain degree of disorder occurring in the linking between these subunits.

  15. Room temperature photoluminescence from nanostructured amorphous carbon

    OpenAIRE

    Henley, SJ; Carey, JD; Silva, SRP

    2004-01-01

    Visible room-temperature photoluminescence (PL) was observed from hydrogen-free nanostructured amorphous carbon films deposited by pulsed laser ablation in different background pressures of argon (PAr). By varying PAr from 5 to 340 mTorr, the film morphology changed from smooth to rough and at the highest pressures, low-density filamentary growth was observed. Over the same pressure regime an increase in the ordering of sp2 bonded C content was observed using visible Raman spectroscopy. Th...

  16. Amorphization and recrystallization of covalent tetrahedral networks

    International Nuclear Information System (INIS)

    In the present paper recent studies on the amorphization and recrystallization of the light covalent ceramics SiC, Si3N4 and SiO2 (and in comparison Si) shall be reviewed. By combining long and short range order sensitive analysis techniques new insights into the disordering/reordering mechanisms and the structure of the disordered materials were gained. The results will be discussed in the light of a topological approach of the transition between periodic and aperiodic networks

  17. Shock induced crystallization of amorphous Nickel powders

    Science.gov (United States)

    Cherukara, Mathew; Strachan, Alejandro

    2015-06-01

    Recent experimental work has shown the efficacy of amorphous Ni/crystalline Al composites as energetic materials, with flame velocities twice that of a comparable crystalline Ni/crystalline Al system. Of further interest is the recrystallization mechanisms in the pure amorphous Ni powders, both thermally induced and mechanically induced. We present large-scale molecular dynamics simulations of shock-induced recrystallization in loosely packed amorphous Nickel powders. We study the time dependent nucleation and growth processes by holding the shocked samples at the induced pressures and temperatures for extended periods following the passage of the shock (up to 6 ns). We find that the nanostructure of the recrystallized Ni and time scales of recrystallization are dependent on the piston velocity. At low piston velocities, nucleation events are rare, leading to long incubation times and a relatively coarse nanostructure. At higher piston velocities, local variations in temperature due to jetting phenomena and void collapse, give rise to multiple nucleation events on time scales comparable to the passage of the shock wave, leading to the formation of a fine-grained nanostructure. Interestingly, we observe that the nucleation and growth process occurs in two steps, with the first nuclei crystallizing into the BCC structure, before evolving over time into the expected FCC structure. U.S. Defense Threat Reduction Agency, HDTRA1-10-1-0119 (Program Manager Suhithi Peiris).

  18. Superconducting State Parameters of Bulk Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Aditya M. Vora

    2012-12-01

    Full Text Available Well recognized empty core (EMC pseudopotential of Ashcroft is used to investigate the superconducting state parameters viz; electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature TC, isotope effect exponent α and effective interaction strength NOV of some (Ni33Zr671 – xVx (x = 0, 0.05, 0.1, 0.15 bulk amorphous alloys. We have incorporated five different types of local field correction functions, proposed by Hartree (H, Taylor (T, Ichimaru-Utsumi (IU, Farid et al. (F and Sarkar et al. (S to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of the various exchange and correlation functions is concluded from the present study. The TC obtained from Sarkar et al. (S local field correction function are found an excellent agreement with available theoretical data. Quadratic TC equation has been proposed, which provide successfully the TC values of bulk amorphous alloys under consideration. Also, the present results are found in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the s bulk amorphous alloys.

  19. Plasma deposition of amorphous metal alloys

    International Nuclear Information System (INIS)

    Rapid solidification, sputtering and electroless chemical deposition have been used to produce amorphous metal alloys which possess excellent corrosion and abrasion resistance. This paper discusses a new technique for obtaining amorphous metal alloy coatings. Plasma decomposition of Ni(CO)4 and PH3 in argon and hydrogen carrier gases [Ni(CO4/PH3--8/1] yielded films that were black and silver, respectively, in appearance. Both films were amorphous as determined by transmission electron microscopy. Films deposited using a hydrogen carrier gas were three orders of magnitude more conductive than those deposited using an argon carrier gas. Analysis of both films using electron microprobe analysis and inductively-coupled plasma spectroscopy showed an enrichment of P in the films over the P content in the plasma gas mixtures. Reducing the P content of the plasma gas mixture [Ni(CO)4/PH3--17/11 yielded crystalline films with no P enrichment. The grain size in these films was --60Δ as determined by x-ray line-broadening

  20. Investigations on silicon/amorphous-carbon and silicon/nanocrystalline palladium/ amorphous-carbon interfaces.

    Science.gov (United States)

    Roy, M; Sengupta, P; Tyagi, A K; Kale, G B

    2008-08-01

    Our previous work revealed that significant enhancement in sp3-carbon content of amorphous carbon films could be achieved when grown on nanocrystalline palladium interlayer as compared to those grown on bare silicon substrates. To find out why, the nature of interface formed in both the cases has been investigated using Electron Probe Micro Analysis (EPMA) technique. It has been found that a reactive interface in the form of silicon carbide and/silicon oxy-carbide is formed at the interface of silicon/amorphous-carbon films, while palladium remains primarily in its native form at the interface of nanocrystalline palladium/amorphous-carbon films. However, there can be traces of dissolved oxygen within the metallic layer as well. The study has been corroborated further from X-ray photoelectron spectroscopic studies. PMID:19049221

  1. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    OpenAIRE

    Goedele Craye; Korbinian Löbmann; Holger Grohganz; Thomas Rades; Riikka Laitinen

    2015-01-01

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin–lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon sp...

  2. Signifying Bodies

    DEFF Research Database (Denmark)

     In our everyday lives we strive to stay healthy and happy, while we live as our selves, engage with each other, and discover an infinite world of possibilities. Health arises and diminishes as human beings draw on a vibrant ecology of actions, interactions and coactions. Intricate processes of...... biosemiosis connect signifying bodies with their natural surroundings, cultural activities and subjective experiences. Health stretches all the way from the ecosocial surroundings, through the skin and into the self-organizing processes of every living cell. Signifying Bodies lays out a new approach to health...... and health care. Eschewing all forms of dualism, the authors emphasise the interdependency of how we act, think, feel and function. They advocate a relational turn in health care, in which bodies live and learn from suffering and care. In this view, health is inseparable from both living beings and...

  3. Body Imaging

    Science.gov (United States)

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images.

  4. Body Rainbow

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Phubu did not know how long hehad walked after leaving Baxoi, buthe did know that he was halfwaybetween home and Lhasa. Feelingthe weight of the sack containingPhumo's body on his back, Fhubuhad calmed down from the grief anddesperation. He had just one wish:to carry Phumo to Lhasa. He knewthat Phumo had gone, and her soulwas no longer in this body. But hewas determined to finish the trip, notonly because he had promised so, butalso that he believed that it would beredemption for him.

  5. Sacralising Bodies

    DEFF Research Database (Denmark)

    Kaur, Ravinder

    2010-01-01

    sacralisation is realised through co-production within a social setting when the object of sacralisation is recognised as such by others. In contemporary Iran, however, the moment of sacralising bodies by the state is also the moment of its own subversion as the political-theological field of martyrdom is......-sacrifice became central to the mass mobilisation against the monarchy. Once the revolutionary government came into existence, this sacred tradition was regulated to create ‘martyrs’ as a fixed category, in order to consolidate the legacy of the revolution. In this political theatre, the dead body is a site of...

  6. Crystallization inhibition of an amorphous sucrose system using raffinose

    Institute of Scientific and Technical Information of China (English)

    LEINEN K.M.; LABUZA T.P.

    2006-01-01

    The shelf life of pure amorphous sucrose systems, such as cotton candy, can be very short. Previous studies have shown that amorphous sucrose systems held above the glass transition temperature will collapse and crystallize. One study,however, showed that adding a small percent of another type of sugar, such as trehalose, to sucrose can extend the shelf life of the amorphous system by slowing crystallization. This study explores the hypothesis that raffinose increases the stability of an amorphous sucrose system. Cotton candy at 5 wt% raffinose and 95 wt% sucrose was made and stored at room temperature and three different relative humidities (%RH) 11%RH, 33%RH, and 43%RH. XRD patterns, and glass transition temperatures were obtained to determine the stability as a function of %RH. The data collected showed that raffinose slows sucrose crystallization in a low moisture amorphous state above the glass transition temperature and therefore improves the stability of amorphous sucrose systems.

  7. Emerging trends in the stabilization of amorphous drugs

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Strachan, Clare J.;

    2013-01-01

    The number of active pharmaceutical substances having high therapeutic potential but low water solubility is constantly increasing, making it difficult to formulate these compounds as oral dosage forms. The solubility and dissolution rate, and thus potentially the bioavailability, of these poorly...... water-soluble drugs can be increased by the formation of stabilized amorphous forms. Currently, formulation as solid polymer dispersions is the preferred method to enhance drug dissolution and to stabilize the amorphous form of a drug. The purpose of this review is to highlight emerging alternative...... methods to amorphous polymer dispersions for stabilizing the amorphous form of drugs. First, an overview of the properties and stabilization mechanisms of amorphous forms is provided. Subsequently, formulation approaches such as the preparation of co-amorphous small-molecule mixtures and the use of...

  8. Amorphous-silicon module hot-spot testing

    Science.gov (United States)

    Gonzalez, C. C.

    1985-01-01

    Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.

  9. Thermal properties of amorphous/crystalline silicon superlattices.

    Science.gov (United States)

    France-Lanord, Arthur; Merabia, Samy; Albaret, Tristan; Lacroix, David; Termentzidis, Konstantinos

    2014-09-01

    Thermal transport properties of crystalline/amorphous silicon superlattices using molecular dynamics are investigated. We show that the cross-plane conductivity of the superlattices is very low and close to the conductivity of bulk amorphous silicon even for amorphous layers as thin as ≃ 6 Å. The cross-plane thermal conductivity weakly increases with temperature which is associated with a decrease of the Kapitza resistance with temperature at the crystalline/amorphous interface. This property is further investigated considering the spatial analysis of the phonon density of states in domains close to the interface. Interestingly, the crystalline/amorphous superlattices are shown to display large thermal anisotropy, according to the characteristic sizes of elaborated structures. These last results suggest that the thermal conductivity of crystalline/amorphous superlattices can be phonon engineered, providing new directions for nanostructured thermoelectrics and anisotropic materials in thermal transport. PMID:25105883

  10. Formation of amorphous silicon by light ion damage

    International Nuclear Information System (INIS)

    Amorphization by implantation of boron ions (which is the lightest element generally used in I.C. fabrication processes) has been systematically studied for various temperatures, various voltages and various dose rates. Based on theoretical considerations and experimental results, a new amorphization model for light and intermediate mass ion damage is proposed consisting of two stages. The role of interstitial type point defects or clusters in amorphization is emphasized. Due to the higher mobility of interstitials out-diffusion to the surface particularly during amorphization with low energy can be significant. From a review of the idealized amorphous structure, diinterstitial-divacancy pairs are suggested to be the embryos of amorphous zones formed during room temperature implantation. The stacking fault loops found in specimens implanted with boron at room temperature are considered to be the origin of secondary defects formed during annealing

  11. Atomic-scale disproportionation in amorphous silicon monoxide

    OpenAIRE

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphou...

  12. Amorphous Dielectric Thin Films with Extremely Low Mechanical Loss

    OpenAIRE

    Liu X; Queen D.R.; Metcalf T.H.; Karel J.E.; Hellman F.

    2015-01-01

    The ubiquitous low-energy excitations are one of the universal phenomena of amorphous solids. These excitations dominate the acoustic, dielectric, and thermal properties of structurally disordered solids. One exception has been a type of hydrogenated amorphous silicon (a-Si:H) with 1 at.% H. Using low temperature elastic and thermal measurements of electron-beam evap-orated amorphous silicon (a-Si), we show that TLS can be eliminated in this system as the films become denser and more structur...

  13. First Principles Prediction of Amorphous Phases Using Evolutionary Algorithms

    OpenAIRE

    Nahas, Suhas; Gaur, Anshu; Bhowmick, Somnath

    2016-01-01

    We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory (DFT) based electronic, ionic an...

  14. Modelling the light induced metastable effects in amorphous silicon

    OpenAIRE

    Munyeme, G.; Chinyama, G.K.; Zeman, M.; R. E. I. Schropp; Weg, W

    2008-01-01

    We present results of computer simulations of the light induced degradation of amorphous silicon solar cells. It is now well established that when amorphous silicon is illuminated the density of dangling bond states increases. Dangling bond states produce amphoteric electronic mid-gap states which act as efficient charge trapping and recombination centres. The increase in dangling bond states causes a decrease in the performance of amorphous silicon solar cells. To show this effect, a modelli...

  15. Memory effect under pressure in low density amorphous silicon

    OpenAIRE

    Garg, Nandini; Pandey, K. K.; K. V. Shanavas; Betty, C. A.; Sharma, Surinder M

    2010-01-01

    Our investigations on porous Si show that on increase of pressure it undergoes crystalline phase transitions instead of pressure induced amorphization - claimed earlier, and the amorphous phase appears only on release of pressure. This amorphous phase, when subjected to higher pressures, transforms reversibly to a higher coordinated primitive hexagonal phase showing a kind of memory effect which may be the only example of its kind in the elemental solids. First principles calculations and the...

  16. Moringa Coagulant as a Stabilizer for Amorphous Solids: Part I

    OpenAIRE

    Bhende, Santosh; Jadhav, Namdeo

    2012-01-01

    Stabilization of amorphous state is a focal area for formulators to reap benefits related with solubility and consequently bioavailability of poorly soluble drugs. In the present work, an attempt has been made to explore the potential of moringa coagulant as an amorphous state stabilizer by investigating its role in stabilization of spray-dried (amorphous) ibuprofen, meloxicam and felodipine. Thermal studies like glass forming ability, glass transition temperature, hot stage microscopy and DS...

  17. Amorphization kinetics of Zr3Fe under electron irradiation

    International Nuclear Information System (INIS)

    Previous investigations using 40Ar ion bombardments have revealed that Zr3 Fe, which has an orthorhombic crystal structure, undergoes an irradiation-induced transformation from the crystalline to the amorphous state. In the present investigation, 0.9 MeV electron irradiations were performed at 28 - 220 K in a high-voltage electron microscope (HVEM). By measuring the onset, spread and final size of the amorphous region, factoring in the Gaussian distribution of the beam, a kinetic description of the amorphization in terms of dose, dose rate and temperature was obtained. The critical temperature for amorphization by electron irradiation was found to be ∼ 220 K, compared with 570 - 625 K for 40Ar ion irradiation. Also, the dose-to-amorphization increased exponentially with temperature. Results indicated that the rate of growth of the amorphous region under the electron beam decreased with increasing temperature and the dose-to-amorphization decreased with increasing dose rate. The size of the amorphous region saturated after a given dose, the final size decreasing with increasing temperature, and it is argued that this is related to the existence of a critical dose rate, which increases with temperature, and below which no amorphization occurs. (author). 26 refs., 6 figs

  18. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  19. Three-Terminal Amorphous Silicon Solar Cells

    OpenAIRE

    Cheng-Hung Tai; Chu-Hsuan Lin; Chih-Ming Wang; Chun-Chieh Lin

    2011-01-01

    Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si...

  20. Magnetoimpedance response in current annealed amorphous wires

    International Nuclear Information System (INIS)

    In this work, the magnetoimpedance (MI) effect in amorphous wires submitted to current annealing treatment in vacuum is presented. The influence of circular anisotropy and stress relaxation induced during the annealing on the impedance dependence on external magnetic field is shown. An increase in the MI ratio for the annealed wires is observed up to a maximum value which is approximately three times higher than the maximum value obtained for the as-cast wire. For high enough times of current annealing treatment a decrease in the MI ratio is observed due to the formation of crystalline phase

  1. Magnetoimpedance response in current annealed amorphous wires

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, D. [Dpto. Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain)]. E-mail: danielgg@usal.es; Raposo, V. [Dpto. Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Borza, F. [Wolfson Centre for Magnetics Technology, Cardiff University, New Port Road, P.O. Box 925, CF24 0YF Cardiff (United Kingdom); Montero, O. [Dpto. Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Iniguez, J. [Dpto. Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain)

    2006-09-15

    In this work, the magnetoimpedance (MI) effect in amorphous wires submitted to current annealing treatment in vacuum is presented. The influence of circular anisotropy and stress relaxation induced during the annealing on the impedance dependence on external magnetic field is shown. An increase in the MI ratio for the annealed wires is observed up to a maximum value which is approximately three times higher than the maximum value obtained for the as-cast wire. For high enough times of current annealing treatment a decrease in the MI ratio is observed due to the formation of crystalline phase.

  2. Inconspicuous Appeal of Amorphous Computing Systems

    Czech Academy of Sciences Publication Activity Database

    Wiedermann, Jiří

    Opava: Institute of Computer Science, Silesian University, 2014 - (Gheorghe, M.; Sosík, P.; Vavrečková, Š.), s. 15-18 ISBN 978-80-7510-036-8. [CMC15. International Conference on Membrane Computing /15./. Prague (CZ), 20.08.2014-22.08.2014] R&D Projects: GA ČR GAP202/10/1333 Institutional support: RVO:67985807 Keywords : amorphous computing * computational universality * computational complexity Subject RIV: IN - Informatics, Computer Science http://www.cs.us.es/~marper/investigacion/cmc15_proceedings.pdf#page=27

  3. Rapid Annealing Of Amorphous Hydrogenated Carbon

    Science.gov (United States)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1989-01-01

    Report describes experiments to determine effects of rapid annealing on films of amorphous hydrogenated carbon. Study represents first efforts to provide information for applications of a-C:H films where rapid thermal processing required. Major finding, annealing causes abrupt increase in absorption and concomitant decrease in optical band gap. Most of change occurs during first 20 s, continues during longer annealing times. Extend of change increases with annealing temperature. Researchers hypothesize abrupt initial change caused by loss of hydrogen, while gradual subsequent change due to polymerization of remaining carbon into crystallites or sheets of graphite. Optical band gaps of unannealed specimens on silicon substrates lower than those of specimens on quartz substrates.

  4. Amorphous computing: examples, mathematics and theory.

    Science.gov (United States)

    Stark, W Richard

    2013-01-01

    The cellular automata model was described by John von Neumann and his friends in the 1950s as a representation of information processing in multicellular tissue. With crystalline arrays of cells and synchronous activity, it missed the mark (Stark and Hughes, BioSystems 55:107-117, 2000). Recently, amorphous computing, a valid model for morphogenesis in multicellular information processing, has begun to fill the void. Through simple examples and elementary mathematics, this paper begins a computation theory for this important new direction. PMID:23946719

  5. Radiation resistance studies of amorphous silicon films

    Science.gov (United States)

    Woodyard, James R.; Payson, J. Scott

    1989-01-01

    Hydrogenated amorphous silicon thin films were irradiated with 2.00 MeV helium ions using fluences ranging from 1E11 to 1E15 cm(-2). The films were characterized using photothermal deflection spectroscopy and photoconductivity measurements. The investigations show that the radiation introduces sub-band-gap states 1.35 eV below the conduction band and the states increase supralinearly with fluence. Photoconductivity measurements suggest the density of states above the Fermi energy is not changing drastically with fluence.

  6. PHYSICAL PROPERTIES OF AMORPHOUS CVD SILICON

    OpenAIRE

    Hirose, M.

    1981-01-01

    Amorphous silicon produced from the chemical vapor decomposition of silane at ~600 °C offers a pure silicon network containing no bonded-hydrogen and involving native defects of the order of 1 x 1019 cm-3. Doped phosphorus or boron atoms in the CVD a-Si interact with the defects to reduce the gap states and the spin density as well. The mechanism of the defect compensation has been interpreted in terms of complex-defect formation through the reaction between three-fold dopant atoms and divaca...

  7. Electrochromism of amorphous ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se-Hee; Liu, Ping; Tracy, C. Edwin; Deb, Satyen K. [National Renewable Energy Laboratory, Center for Basic Sciences, 1617 Cole Boulevard, Golden, CO 80401 (United States); Cheong, Hyeonsik M. [Sogang University, Shinsoo-Dong, Seoul 121-742 (Korea, Republic of)

    2003-12-01

    We report on the electrochromic behavior of amorphous ruthenium oxide thin films and their electrochemical characteristics for use as counterelectrodes for electrochromic devices. Hydrous ruthenium oxide thin films were prepared by cyclic voltammetry on ITO coated glass substrates from an aqueous ruthenium chloride solution. The cyclic voltammograms of this material show the capacitive behavior including two redox reaction peaks in each cathodic and anodic scan. The ruthenium oxide thin film electrode exhibits a 50% modulation of optical transmittance at 670 nm wavelength with capacitor charge/discharge.

  8. The properties of amorphous GaN

    OpenAIRE

    Cai, Bin; Drabold, David A.

    2011-01-01

    In this paper, we present three amorphous GaN models obtained from the first principles simulation. We find that a chemically ordered continuous random network is the ideal structure for a-GaN. If we exclude the tail states, we predict a 3.0eV optical gap for 64-atom model and 2.3eV for 250-atom models. We observe a highly localized valence tail and a remarkably delocalized exponential conduction tail which we associate with different hybridization in the two tails. Based upon these results, ...

  9. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to ""fill in the blanks"" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the curre

  10. Self-Diffusion in Amorphous Silicon

    Science.gov (United States)

    Strauß, Florian; Dörrer, Lars; Geue, Thomas; Stahn, Jochen; Koutsioubas, Alexandros; Mattauch, Stefan; Schmidt, Harald

    2016-01-01

    The present Letter reports on self-diffusion in amorphous silicon. Experiments were done on 29Si/natSi heterostructures using neutron reflectometry and secondary ion mass spectrometry. The diffusivities follow the Arrhenius law in the temperature range between 550 and 700 °C with an activation energy of (4.4 ±0.3 ) eV . In comparison with single crystalline silicon the diffusivities are tremendously higher by 5 orders of magnitude at about 700 °C , which can be interpreted as the consequence of a high diffusion entropy.

  11. Low-temperature crystallization of amorphous silicon and amorphous germanium by soft X-ray irradiation

    International Nuclear Information System (INIS)

    The low-temperature-crystallization effects of soft X-ray irradiation on the structural properties of amorphous Si and amorphous Ge films were investigated. From the differences in crystallization between Si and Ge, it was found that the effects of soft X-ray irradiation on the crystallization strongly depended on the energy band gap and energy level. The crystallization temperatures of the amorphous Si and amorphous Ge films decreased from 953 K to 853 K and 773 K to 663 K, respectively. The decrease in crystallization temperature was also related to atoms transitioning into a quasi-nucleic phase in the films. The ratio of electron excitation and migration effects to thermal effects was controlled using the storage-ring current (photon flux density). Therefore, we believe that low-temperature crystallization can be realized by controlling atomic migration through electron excitation. - Highlights: • This work investigates the crystallization mechanism for soft X-ray irradiation. • The soft X-ray crystallization depended on the energy band gap and energy level. • The decrease in the crystallization temperature for Si and Ge films was 100 K. • This decrement was related to atoms transitioning into a quasi-nucleic phase

  12. Solvent-mediated amorphous-to-crystalline transformation of nitrendipine in amorphous particle suspensions containing polymers

    DEFF Research Database (Denmark)

    Xia, Dengning; Wu, Jian-Xiong; Cui, Fude;

    2012-01-01

    The amorphous-to-crystalline transformation of nitrendipine was investigated using Raman spectroscopy and X-ray powder diffraction (XRPD). The nucleation and growth rate of crystalline nitrendipine in a medium containing poly (vinyl alcohol) (PVA) and polyethylene glycol (PEG 200) were quantitati...

  13. Study of irradiation-induced amorphization in intermetallic compounds

    International Nuclear Information System (INIS)

    Irradiation-induced amorphization was studied in situ in the high voltage electron microscope interfaced to a tandem accelerator. Variation of elastic properties during irradiation was studied with Brillouin scattering spectroscopy, and its relation to amorphization were explored. Four important topics were investigated. (1) The temperature dependence of the critical dose for amorphization and its correlation with chemical disordering were studied in CuTi and Zr3Al with 1-MeV electron irradiation from 10 to 295 K. Similar temperature dependence was observed in CuTi between the critical dose for amorphization and the chemical disordering rate. Chemical disordering is a major driving force for amorphization. The critical dose for amorphization of Zr3Al was twenty times larger than that of CuTi and attributed to the differences in point defect mobility and ordering energy. (2) Projectile mass dependence of amorphization behavior was studied in CuTi irradiated with Ne+,Kr+,Xe+ions. The dose dependence of the amorphous volume fraction indicated that with increasing mass from Ne+ to Kr+ amorphization kinetics changes from the cascade overlap to the direct-impact amorphization. In relation to the kinetics variation, the critical temperature increased with increasing projectile mass and explained in terms of the thermal stability of the primary damage. (3) Effects of simultaneous and sequential irradiation with Kr+ and electrons were studied in CuTi and Zr3Al. Both additive and retardation effects were observed depending on temperature and the electron-to-Kri dose rate ratio and explained as the interaction between point defects and cascade damages. (4) Study of elastic properties during Kr+ irradiation revealed that in FeTi, a large dilation and shear modulus softening accompanied with chemical disordering preceded amorphization, but not observed in NiAl

  14. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    P N Vishwakarma; V Prasad; S V Subramanyam; V Ganesan

    2005-10-01

    Amorphous conducting carbon films deposited over quartz substrates were analysed using X-ray diffraction and AFM technique. X-ray diffraction data reveal disorder and roughness in the plane of graphene sheet as compared to that of graphite. This roughness increases with decrease in preparation temperature. The AFM data shows surface roughness of carbon films depending on preparation temperatures. The surface roughness increases with decrease in preparation temperature. Also some nucleating islands were seen on the samples prepared at 900°C, which are not present on the films prepared at 700°C. Detailed analysis of these islands reveals distorted graphitic lattice arrangement. So we believe these islands to be nucleating graphitic. Power spectrum density (PSD) analysis of the carbon surface indicates a transition from the nonlinear growth mode to linear surface-diffusion dominated growth mode resulting in a relatively smoother surface as one moves from low preparation temperature to high preparation temperature. The amorphous carbon films deposited over a rough quartz substrate reveal nucleating diamond like structures. The density of these nucleating diamond like structures was found to be independent of substrate temperature (700–900°C).

  15. Cyclic behaviors of amorphous shape memory polymers.

    Science.gov (United States)

    Yu, Kai; Li, Hao; McClung, Amber J W; Tandon, Gyaneshwar P; Baur, Jeffery W; Qi, H Jerry

    2016-04-01

    Cyclic loading conditions are commonly encountered in the applications of shape memory polymers (SMPs), where the cyclic characteristics of the materials determine their performance during the service life, such as deformation resistance, shape recovery speed and shape recovery ratio. Recent studies indicate that in addition to the physical damage or some other irreversible softening effects, the viscoelastic nature could also be another possible reason for the degraded cyclic behavior of SMPs. In this paper, we explore in detail the influence of the viscoelastic properties on the cyclic tension and shape memory (SM) behavior of an epoxy based amorphous thermosetting polymer. Cyclic experiments were conducted first, which show that although the epoxy material does not have any visible damage or irreversible softening effect during deformation, it still exhibits obvious degradation in the cyclic tension and SM behaviors. A linear multi-branched model is utilized to assist in the prediction and understanding of the mechanical responses of amorphous SMPs. Parametric studies based on the applied model suggest that the shape memory performance can be improved by adjusting programming and recovery conditions, such as lowering the loading rate, increasing the programming temperature, and reducing the holding time. PMID:26924339

  16. Traveling cluster approximation for uncorrelated amorphous systems

    International Nuclear Information System (INIS)

    In this paper, the authors apply the TCA concepts to spatially disordered, uncorrelated systems (e.g., fluids or amorphous metals without short-range order). This is the first approximation scheme for amorphous systems that takes cluster effects into account while preserving the Herglotz property for any amount of disorder. They have performed some computer calculations for the pair TCA, for the model case of delta-function potentials on a one-dimensional random chain. These results are compared with exact calculations (which, in principle, taken into account all cluster effects) and with the CPA, which is the single-site TCA. The density of states for the pair TCA clearly shows some improvement over the CPA, and yet, apparently, the pair approximation distorts some of the features of the exact results. They conclude that the effects of large clusters are much more important in an uncorrelated liquid metal than in a substitutional alloy. As a result, the pair TCA, which does quite a nice job for alloys, is not adequate for the liquid. Larger clusters must be treated exactly, and therefore an n-TCA with n > 2 must be used

  17. Thermodynamical modeling of nuclear glasses: coexistence of amorphous phases; Modelisation thermodynamique des verres nucleaires: coexistence entre phases amorphes

    Energy Technology Data Exchange (ETDEWEB)

    Adjanor, G

    2007-11-15

    Investigating the stability of borosilicate glasses used in the nuclear industry with respect to phase separation requires to estimate the Gibbs free energies of the various phases appearing in the material. In simulation, using current computational resources, a direct state-sampling of a glassy system with respect to its ensemble statistics is not ergodic and the estimated ensemble averages are not reliable. Our approach consists in generating, at a given cooling rate, a series of quenches, or paths connecting states of the liquid to states of the glass, and then in taking into account the probability to generate the paths leading to the different glassy states in ensembles averages. In this way, we introduce a path ensemble formalism and calculate a Landau free energy associated to a glassy meta-basin. This method was validated by accurately mapping the free energy landscape of a 38-atom glassy cluster. We then applied this approach to the calculation of the Gibbs free energies of binary amorphous Lennard-Jones alloys, and checked the correlation between the observed tendencies to order or to phase separate and the computed Gibbs free energies. We finally computed the driving force to phase separation in a simplified three-oxide nuclear glass modeled by a Born-Mayer-Huggins potential that includes a three-body term, and we compared the estimated quantities to the available experimental data. (author)

  18. Low temperature irradiation of FeB amorphous alloys

    International Nuclear Information System (INIS)

    These experiments show that low temperature electron irradiation induce localized defects in the short range order of the amorphous structure. These defects are assumed to be of Frenkel pair type. At low temperature, 2.5 MeV electron irradiation induces an higher concentration of defects in the amorphous than in its crystallized counterpart

  19. Generation of correlated photons in hydrogenated amorphous-silicon waveguides

    OpenAIRE

    Clemmen, S.; Perret, A; Selvaraja, Shankar Kumar; Bogaerts, Wim; Van Thourhout, Dries; Baets, Roel; Emplit, Ph.; Massar, S.

    2011-01-01

    We report the first (to our knowledge) observation of correlated photon emission in hydrogenated amorphous- silicon waveguides. We compare this to photon generation in crystalline silicon waveguides with the same geome- try. In particular, we show that amorphous silicon has a higher nonlinearity and competes with crystalline silicon in spite of higher loss.

  20. Endurance Tests Of Amorphous-Silicon Photovoltaic Modules

    Science.gov (United States)

    Ross, Ronald G., Jr.; Sugimura, Russell S.

    1989-01-01

    Failure mechanisms in high-power service studied. Report discusses factors affecting endurance of amorphous-silicon solar cells. Based on field tests and accelerated aging of photovoltaic modules. Concludes that aggressive research needed if amorphous-silicon modules to attain 10-year life - value U.S. Department of Energy established as goal for photovoltaic modules in commercial energy-generating plants.

  1. Modelling the light induced metastable effects in amorphous silicon

    NARCIS (Netherlands)

    Munyeme, G.; Chinyama, G.K.; Zeman, M.; Schropp, R.E.I.; van der Weg, W.

    2008-01-01

    We present results of computer simulations of the light induced degradation of amorphous silicon solar cells. It is now well established that when amorphous silicon is illuminated the density of dangling bond states increases. Dangling bond states produce amphoteric electronic mid-gap states which a

  2. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt; Jiang, Jianzhong

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials are...

  3. Modeling SiC swelling under irradiation: Influence of amorphization

    CERN Document Server

    Romano, A; Defranceschi, M; Yip, S

    2003-01-01

    Irradiation-induced swelling of SiC is investigated using a molecular dynamics simulation-based methodology. To mimic the effect of heavy ion irradiation extended amorphous areas of various sizes are introduced in a crystalline SiC sample, and the resulting configurations are relaxed using molecular dynamics at constant pressure. Simulation results compare very well with data from existing ion implantation experiments. Analysis of the relaxed configurations shows very clearly that SiC swelling does not scale linearly with the amorphous fraction introduced. Two swelling regimes are observed depending on the size of the initial amorphous area: for small amorphous zones swelling scales like the amorphous fraction to the power 2/3, while for larger areas it scales like the amorphous fraction to the powers 2/3 and 4/3. Similar dependences on the amorphous fraction are obtained for the number of homonuclear bonds present in the initial amorphous volume and for the number of short bonds created at the interface betw...

  4. SUSCEPTIBILITIES, CORRELATION FUNCTIONS AND NEUTRON SCATTERING LAW IN AMORPHOUS MAGNETS

    OpenAIRE

    Fischer, K

    1988-01-01

    We calculated the static and dynamic susceptibilities χ (Q) and χ (Q, ω), the neutron scattering cross-section S (Q), and the scattering law S (Q, ω) for amorphous magnets with small random anisotropy. These results agree fairly well with those of a recent neutron-spin echo experiment on amorphous TbNi2.

  5. Body contact and body language

    DEFF Research Database (Denmark)

    Winther, Helle Dagmar

    2008-01-01

    and the boundaries between self and world. In western societies, the modern premises for contact are in some ways developing from close contact to virtual communication. With this breadth of perspective in mind, the ques­tion is whether conscious and experimental work with body contact and body language in move......­ment psychology and education provide potential for intense personal develop­ment as well as for social and cultural learning processes. This performative research project originates from the research project entitled, Movement Psy­chol­ogy: The Language of the Body and the Psy­chol­ogy of Movement based...... on the Dance Therapy Form Dansergia. The author, who is a practi­tioner-researcher, is methodologically inspir­ed by phenomenology, performative methods and a narrative and auto-ethnographic approach. The project will be presented in an organic, cre­at­ive and performative way. Through a moving dia...

  6. Composition Range of Amorphous Mg-Ni-Y Alloys

    Institute of Scientific and Technical Information of China (English)

    陈红梅; 钟夏平; 欧阳义芳

    2003-01-01

    Based on the thermodynamic point of view, a method for predication of the composition range of amorphous ternary alloys was proposed. The composition range of amorphous ternary alloys is determined by the comparison of the excess free energy of the amorphous alloy and the free energy of competing crystalline states. The free energy is extrapolated from the data of three binary alloys by using Toop′s model. The method was applied to predict the composition range of amorphous Mg-Ni-Y alloys. The theoretical results are in good agreement with the available experimental results. It indicates that the present method can be used to predict the composition range for amorphous ternary alloys.

  7. Atomistic simulation of damage accumulation and amorphization in Ge

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Selles, Jose L., E-mail: joseluis.gomezselles@imdea.org; Martin-Bragado, Ignacio [IMDEA Materials Institute, Eric Kandel 2, 28906 Getafe, Madrid (Spain); Claverie, Alain [CEMES/CNRS, 29 rue J. Marvig, 31055 Toulouse Cedex (France); Sklenard, Benoit [CEA, LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Benistant, Francis [GLOBALFOUNDRIES Singapore Pte Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore)

    2015-02-07

    Damage accumulation and amorphization mechanisms by means of ion implantation in Ge are studied using Kinetic Monte Carlo and Binary Collision Approximation techniques. Such mechanisms are investigated through different stages of damage accumulation taking place in the implantation process: from point defect generation and cluster formation up to full amorphization of Ge layers. We propose a damage concentration amorphization threshold for Ge of ∼1.3 × 10{sup 22} cm{sup −3} which is independent on the implantation conditions. Recombination energy barriers depending on amorphous pocket sizes are provided. This leads to an explanation of the reported distinct behavior of the damage generated by different ions. We have also observed that the dissolution of clusters plays an important role for relatively high temperatures and fluences. The model is able to explain and predict different damage generation regimes, amount of generated damage, and extension of amorphous layers in Ge for different ions and implantation conditions.

  8. Atomistic simulation of damage accumulation and amorphization in Ge

    International Nuclear Information System (INIS)

    Damage accumulation and amorphization mechanisms by means of ion implantation in Ge are studied using Kinetic Monte Carlo and Binary Collision Approximation techniques. Such mechanisms are investigated through different stages of damage accumulation taking place in the implantation process: from point defect generation and cluster formation up to full amorphization of Ge layers. We propose a damage concentration amorphization threshold for Ge of ∼1.3 × 1022 cm−3 which is independent on the implantation conditions. Recombination energy barriers depending on amorphous pocket sizes are provided. This leads to an explanation of the reported distinct behavior of the damage generated by different ions. We have also observed that the dissolution of clusters plays an important role for relatively high temperatures and fluences. The model is able to explain and predict different damage generation regimes, amount of generated damage, and extension of amorphous layers in Ge for different ions and implantation conditions

  9. Moringa coagulant as a stabilizer for amorphous solids: Part I.

    Science.gov (United States)

    Bhende, Santosh; Jadhav, Namdeo

    2012-06-01

    Stabilization of amorphous state is a focal area for formulators to reap benefits related with solubility and consequently bioavailability of poorly soluble drugs. In the present work, an attempt has been made to explore the potential of moringa coagulant as an amorphous state stabilizer by investigating its role in stabilization of spray-dried (amorphous) ibuprofen, meloxicam and felodipine. Thermal studies like glass forming ability, glass transition temperature, hot stage microscopy and DSC were carried out for understanding thermodynamic stabilization of drugs. PXRD and dissolution studies were performed to support contribution of moringa coagulant. Studies showed that hydrogen bonding and electrostatic interactions between drug and moringa coagulant are responsible for amorphous state stabilization as explored by ATR-FTIR and molecular docking. Especially, H-bonding was found to be predominant mechanism for drug stabilization. Therein, arginine (basic amino acid in coagulant) exhibited various interactions and played important role in stabilization of aforesaid amorphous drugs. PMID:22359158

  10. Properties and atomic structure of amorphous early transition metals

    International Nuclear Information System (INIS)

    Recently, we studied the properties of amorphous Zr-TL alloys (TL = Ni, Cu) in order to obtain parameters associated with the electronic structure and interatomic bonding of amorphous Zr. Here, we provide new data for the magnetic, superconducting and mechanical properties of amorphous Hf-TL and Ti-TL alloys. We combine our results with published data in order to obtain parameters appropriate to hypothetical amorphous Hf and Ti. These parameters are very different from those of the stable crystalline phases (hcp) of Hf and Ti and indicate, as for Zr, an fcc-like short range order for amorphous Hf and Ti. This results in an enhanced electronic density of states at the Fermi level, but in weakened interatomic bonding.

  11. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses. PMID:24052052

  12. Body counter

    International Nuclear Information System (INIS)

    The paper gives a survey on some applications of the whole body counter in clinical practice and a critical study of its application as a routine testing method. Remarks on the necessary precautions are followed by a more detailed discussion of the determination of the natural potassium content, the iron metabolism, the vitamin B12 test, investigations of the metabolism of the bone using 47Ca and 85Sr, investigations with iodine and iodine-labelled substances, clearance investigations (in particular the 51Cr EDTA clearance test), as well as the possibilities of neutron activation in vivo. (ORU/AK)

  13. Charge transport in amorphous organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanov, Alexander

    2011-03-15

    Organic semiconductors with the unique combination of electronic and mechanical properties may offer cost-effective ways of realizing many electronic applications, e. g. large-area flexible displays, printed integrated circuits and plastic solar cells. In order to facilitate the rational compound design of organic semiconductors, it is essential to understand relevant physical properties e. g. charge transport. This, however, is not straightforward, since physical models operating on different time and length scales need to be combined. First, the material morphology has to be known at an atomistic scale. For this atomistic molecular dynamics simulations can be employed, provided that an atomistic force field is available. Otherwise it has to be developed based on the existing force fields and first principle calculations. However, atomistic simulations are typically limited to the nanometer length- and nanosecond time-scales. To overcome these limitations, systematic coarse-graining techniques can be used. In the first part of this thesis, it is demonstrated how a force field can be parameterized for a typical organic molecule. Then different coarse-graining approaches are introduced together with the analysis of their advantages and problems. When atomistic morphology is available, charge transport can be studied by combining the high-temperature Marcus theory with kinetic Monte Carlo simulations. The approach is applied to the hole transport in amorphous films of tris(8- hydroxyquinoline)aluminium (Alq{sub 3}). First the influence of the force field parameters and the corresponding morphological changes on charge transport is studied. It is shown that the energetic disorder plays an important role for amorphous Alq{sub 3}, defining charge carrier dynamics. Its spatial correlations govern the Poole-Frenkel behavior of the charge carrier mobility. It is found that hole transport is dispersive for system sizes accessible to simulations, meaning that calculated

  14. Efficient time-symmetric simulation of torqued rigid bodies using Jacobi elliptic functions

    Science.gov (United States)

    Celledoni, E.; Säfström, N.

    2006-05-01

    If the three moments of inertia are distinct, the solution to the Euler equations for the free rigid body is given in terms of Jacobi elliptic functions. Using the arithmetic-geometric mean algorithm (Abramowitz and Stegun 1992 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover)), these functions can be calculated efficiently and accurately. Compared to standard numerical ODE and Lie-Poisson solvers, the overall approach yields a faster and more accurate numerical solution to the Euler equations. This approach is designed for mass asymmetric rigid bodies. In the case of symmetric bodies, the exact solution is available in terms of trigonometric functions, see Dullweber et al (1997 J. Chem. Phys. 107 5840-51), Reich (1996 Fields Inst. Commun. 10 181-91) and Benettin et al (2001 SIAM J. Sci. Comp. 23 1189-203) for details. In this paper, we consider the case of asymmetric rigid bodies subject to external forces. We consider a strategy similar to the symplectic splitting method proposed in Reich (1996 Fields Inst. Commun. 10 181-91) and Dullweber et al (1997 J. Chem. Phys. 107 5840-51). The method proposed here is time-symmetric. We decompose the vector field of our problem into a free rigid body (FRB) problem and another completely integrable vector field. The FRB problem consists of the Euler equations and a differential equation for the 3 × 3 orientation matrix. The Euler equations are integrated exactly while the matrix equation is approximated using a truncated Magnus series. In our experiments, we observe that the overall numerical solution benefits greatly from the very accurate solution of the Euler equations. We apply the method to the heavy top and the simulation of artificial satellite attitude dynamics.

  15. Efficient time-symmetric simulation of torqued rigid bodies using Jacobi elliptic functions

    International Nuclear Information System (INIS)

    If the three moments of inertia are distinct, the solution to the Euler equations for the free rigid body is given in terms of Jacobi elliptic functions. Using the arithmetic-geometric mean algorithm (Abramowitz and Stegun 1992 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover)), these functions can be calculated efficiently and accurately. Compared to standard numerical ODE and Lie-Poisson solvers, the overall approach yields a faster and more accurate numerical solution to the Euler equations. This approach is designed for mass asymmetric rigid bodies. In the case of symmetric bodies, the exact solution is available in terms of trigonometric functions, see Dullweber et al (1997 J. Chem. Phys. 107 5840-51), Reich (1996 Fields Inst. Commun. 10 181-91) and Benettin et al (2001 SIAM J. Sci. Comp. 23 1189-203) for details. In this paper, we consider the case of asymmetric rigid bodies subject to external forces. We consider a strategy similar to the symplectic splitting method proposed in Reich (1996 Fields Inst. Commun. 10 181-91) and Dullweber et al (1997 J. Chem. Phys. 107 5840-51). The method proposed here is time-symmetric. We decompose the vector field of our problem into a free rigid body (FRB) problem and another completely integrable vector field. The FRB problem consists of the Euler equations and a differential equation for the 3 x 3 orientation matrix. The Euler equations are integrated exactly while the matrix equation is approximated using a truncated Magnus series. In our experiments, we observe that the overall numerical solution benefits greatly from the very accurate solution of the Euler equations. We apply the method to the heavy top and the simulation of artificial satellite attitude dynamics

  16. Foreign Body Retrieval

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Foreign Body Retrieval Foreign body retrieval is the removal ... of foreign body detection and removal? What is Foreign Body Retrieval? Foreign body retrieval involves the removal ...

  17. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    Ranber Singh; S Prakash

    2003-07-01

    The problem of hydrogen diffusion in hydrogenated amorphous silicon (a-Si:H) is studied semiclassically. It is found that the local hydrogen concentration fluctuations-induced extra potential wells, if intense enough, lead to the localized electronic states in a-Si:H. These localized states are metastable. The trapping of electrons and holes in these states leads to the electrical degradation of the material. These states also act as recombination centers for photo-generated carriers (electrons and holes) which in turn may excite a hydrogen atom from a nearby Si–H bond and breaks the weak (strained) Si–Si bond thereby apparently enhancing the hydrogen diffusion and increasing the light-induced dangling bonds.

  18. Amorphous silicon-based microchannel plates

    International Nuclear Information System (INIS)

    Microchannel plates (MCP) based on hydrogenated amorphous silicon (a-Si:H) were recently introduced to overcome some of the limitations of crystalline silicon and glass MCP. The typical thickness of a-Si:H based MCPs (AMCP) ranges between 80 and 100 μm and the micromachining of the channels is realized by deep reactive ion etching (DRIE). Advantages and issues regarding the fabrication process are presented and discussed. Electron amplification is demonstrated and analyzed using Electron Beam Induced Current (EBIC) technique. The gain increases as a function of the bias voltage, limited to −340 V on account of high leakage currents across the structure. EBIC maps on 10° tilted samples confirm that the device active area extend to the entire channel opening. AMCP characterization with the electron beam shows gain saturation and signal quenching which depends on the effectiveness of the charge replenishment in the channel walls.

  19. Amorphous silicon-based microchannel plates

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Andrea, E-mail: andrea.franco@epfl.ch [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and thin-film electronics laboratory, Breguet 2, CH-2000 Neuchatel (Switzerland); Riesen, Yannick; Wyrsch, Nicolas; Dunand, Sylvain [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and thin-film electronics laboratory, Breguet 2, CH-2000 Neuchatel (Switzerland); Powolny, Francois; Jarron, Pierre [European Organization for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Ballif, Christophe [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and thin-film electronics laboratory, Breguet 2, CH-2000 Neuchatel (Switzerland)

    2012-12-11

    Microchannel plates (MCP) based on hydrogenated amorphous silicon (a-Si:H) were recently introduced to overcome some of the limitations of crystalline silicon and glass MCP. The typical thickness of a-Si:H based MCPs (AMCP) ranges between 80 and 100 {mu}m and the micromachining of the channels is realized by deep reactive ion etching (DRIE). Advantages and issues regarding the fabrication process are presented and discussed. Electron amplification is demonstrated and analyzed using Electron Beam Induced Current (EBIC) technique. The gain increases as a function of the bias voltage, limited to -340 V on account of high leakage currents across the structure. EBIC maps on 10 Degree-Sign tilted samples confirm that the device active area extend to the entire channel opening. AMCP characterization with the electron beam shows gain saturation and signal quenching which depends on the effectiveness of the charge replenishment in the channel walls.

  20. Charge ordering in amorphous WOx films

    Science.gov (United States)

    Kopelevich, Yakov; da Silva, Robson R.; Rougier, Aline; Luk'yanchuk, Igor A.

    2007-08-01

    We report on the observation of highly anisotropic viscous electronic conducting phase in amorphous WO1.55 films that occurs below a current (I)- and frequency (f)-dependent temperature T(I,f). At T

  1. Spray drying formulation of amorphous solid dispersions.

    Science.gov (United States)

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. PMID:26705850

  2. A tissue-inspired amorphous photonic metamaterial

    CERN Document Server

    Bi, Dapeng

    2016-01-01

    Inspired by how cells pack in dense biological tissues, we design an amorphous material which possesses a complete photonic band gap. A physical parameter inspired by how cells adhere with one another and regulate their shapes can continuously tune the photonic band gap size as well as the bulk mechanical property of the material. The material can be further tuned to undergo a solid-fluid phase transition during which the shear modulus vanishes yet the photonic band gap persists, hence giving rise to a photonic fluid that is robust to flow and rearrangements. Experimentally this design should lead to the engineering of self-assembled non-rigid photonic structures with photonic band gaps that can be controlled in real time.

  3. Three-Terminal Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Tai

    2011-01-01

    Full Text Available Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si solar cell achieved an efficiency of 11.4%, while the efficiency of a typical a-Si p-i-n solar cell was 9.0%. Furthermore, an efficiency of 11.7% was achieved by thickness optimization of the three-terminal solar cell.

  4. ENHANCING ADHESION OF TETRAHEDRAL AMORPHOUS CARBON FILMS

    Institute of Scientific and Technical Information of China (English)

    Zhao Yuqing; Lin Yi; Wang Xiaoyan; Wang Yanwu; Wei Xinyu

    2005-01-01

    Objective The high energy ion bombardment technique is applied to enhancing the adhesion of the tetrahedral amorphous carbon (TAC) films deposited by the filtered cathode vacuum arc (FCVA). Methods The abrasion method, scratch method, heating and shaking method as well as boiling salt solution method is used to test the adhesion of the TAC films on various material substrates. Results The test results show that the adhesion is increased as the ion bombardment energy increases. However, if the bombardment energy were over the corresponding optimum value, the adhesion would be enhanced very slowly for the harder material substrates and drops quickly, for the softer ones. Conclusion The optimum values of the ion bombardment energy are larger for the harder materials than that for the softer ones.

  5. Amorphous Silicon-Carbon Nanostructure Solar Cells

    Science.gov (United States)

    Schriver, Maria; Regan, Will; Loster, Matthias; Zettl, Alex

    2011-03-01

    Taking advantage of the ability to fabricate large area graphene and carbon nanotube networks (buckypaper), we produce Schottky junction solar cells using undoped hydrogenated amorphous silicon thin films and nanostructured carbon films. These films are useful as solar cell materials due their combination of optical transparency and conductance. In our cells, they behave both as a transparent conductor and as an active charge separating layer. We demonstrate a reliable photovoltaic effect in these devices with a high open circuit voltage of 390mV in buckypaper devices. We investigate the unique interface properties which result in an unusual J-V curve shape and optimize fabrication processes for improved solar conversion efficiency. These devices hold promise as a scalable solar cell made from earth abundant materials and without toxic and expensive doping processes.

  6. Short range atomic migration in amorphous silicon

    Science.gov (United States)

    Strauß, F.; Jerliu, B.; Geue, T.; Stahn, J.; Schmidt, H.

    2016-05-01

    Experiments on self-diffusion in amorphous silicon between 400 and 500 °C are presented, which were carried out by neutron reflectometry in combination with 29Si/natSi isotope multilayers. Short range diffusion is detected on a length scale of about 2 nm, while long range diffusion is absent. Diffusivities are in the order of 10-19-10-20 m2/s and decrease with increasing annealing time, reaching an undetectable low value for long annealing times. This behavior is strongly correlated to structural relaxation and can be explained as a result of point defect annihilation. Diffusivities for short annealing times of 60 s follow the Arrhenius law with an activation enthalpy of (0.74 ± 0.21) eV, which is interpreted as the activation enthalpy of Si migration.

  7. Tunable plasticity in amorphous silicon carbide films.

    Science.gov (United States)

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold. PMID:23876200

  8. Nickel-induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J A; Arce, R D; Buitrago, R H [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Budini, N; Rinaldi, P, E-mail: jschmidt@intec.unl.edu.a [FIQ - UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2009-05-01

    The nickel-induced crystallization of hydrogenated amorphous silicon (a-Si:H) is used to obtain large grained polycrystalline silicon thin films on glass substrates. a-Si:H is deposited by plasma enhanced chemical vapour deposition at 200 deg. C, preparing intrinsic and slightly p-doped samples. Each sample was divided in several pieces, over which increasing Ni concentrations were sputtered. Two crystallization methods are compared, conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization was followed by optical microscopy and scanning electron microscopy observations, X-ray diffraction, and reflectance measurements in the UV region. The large grain sizes obtained - larger than 100{mu}m for the samples crystallized by CFA - are very encouraging for the preparation of low-cost thin film polycrystalline silicon solar cells.

  9. Amorphous Silicon Display Backplanes on Plastic Substrates

    Science.gov (United States)

    Striakhilev, Denis; Nathan, Arokia; Vygranenko, Yuri; Servati, Peyman; Lee, Czang-Ho; Sazonov, Andrei

    2006-12-01

    Amorphous silicon (a-Si) thin-film transistor (TFT) backplanes are very promising for active-matrix organic light-emitting diode displays (AMOLEDs) on plastic. The technology benefits from a large manufacturing base, simple fabrication process, and low production cost. The concern lies in the instability of the TFTs threshold voltage (VT) and its low device mobility. Although VT-instability can be compensated by means of advanced multi-transistor pixel circuits, the lifetime of the display is still dependent on the TFT process quality and bias conditions. A-Si TFTs with field-effect mobility of 1.1 cm2/V · s and pixel driver circuits have been fabricated on plastic substrates at 150 °C. The circuits are characterized in terms of current drive capability and long-term stability of operation. The results demonstrate sufficient and stable current delivery and the ability of the backplane on plastic to meet AMOLED requirements.

  10. On the amorphous and nanocrystalline Zr-Cu and Zr-Ti co-sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.J. [Institute of Materials Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Huang, J.C., E-mail: jacobc@mail.nsysu.edu.t [Institute of Materials Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Chou, H.S.; Lai, Y.H.; Chang, L.W. [Institute of Materials Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Du, X.H. [Institute of Materials Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Department of Materials Engineering, Shenyang Institute of Aeronautical Engineering, Shenyang 110034 (China); Chu, J.P. [Department of Polymer Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Nieh, T.G. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996-2200 (United States)

    2009-08-26

    In the current study, we examined and compared the mixing and vitrification behavior of the Zr-Cu and Zr-Ti binary systems in the form of co-sputtered thin films with or without post-annealing. The co-sputtered Zr-Cu films are all amorphous under various co-sputtering conditions, suggesting the high vitrification tendency. The amorphous Zr-Cu thin film will start to crystallize into nano-crystalline Zr{sub 2}Cu and Zr{sub 7}Cu{sub 10} phases upon long exposure at temperatures above 350 deg. C. On the other hand, it is difficult to form amorphous film with the Zr-Ti system, except at a low sputtering power of 30-50 W. The low powers enable the co-sputtered Zr-Ti thin film to exhibit the diffuse hump in the X-ray diffraction. Examination by high resolution transmission electron microscopy reveals numerous fine nano-crystalline phases around 2 nm in the amorphous matrix. Upon exposure at 700 deg. C, the Zr-Ti films transform into crystalline hexagonal close-packed alpha and body-centered cubic beta phases.

  11. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery.

    Science.gov (United States)

    Tewes, Frederic; Gobbo, Oliviero L; Ehrhardt, Carsten; Healy, Anne Marie

    2016-01-20

    Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution. PMID:26692360

  12. Ion-irradiation-induced amorphization of cobalt nanoparticles

    International Nuclear Information System (INIS)

    The amorphization of Co nanoparticles embedded in SiO2 has been investigated by measuring their structure and size, before and after ion irradiation, by x-ray absorption spectroscopy and small-angle x-ray scattering, respectively. Compared to bulk material, unirradiated crystalline nanoparticles exhibited increased structural disorder and a decreased average coordination number as a result of finite-size effects. Upon irradiation, there was no variation in nanoparticle size yet significant structural change. The coordination number decreased further while the mean value (bondlength), variance (Debye-Waller factor), and asymmetry (third cumulant) of the interatomic distance distribution all increased, as consistent with theoretical predictions for an amorphous elemental metal. Furthermore, the interatomic distance distribution for irradiated Co nanoparticles was in excellent agreement with our molecular dynamics simulations for bulk amorphous Co, and we have thus attributed the observed structural changes to the formation of an amorphous phase. Though such a crystalline-to-amorphous phase transformation is not readily achievable in bulk material by ion irradiation, we suggest that the perturbed structural state prior to irradiation and the amorphous surrounding matrix both contribute to nucleating and stabilizing the amorphous phase in irradiated Co nanoparticles. In addition to the structural properties, the vibrational properties of the amorphous phase were also probed, using temperature-dependent x-ray absorption spectroscopy measurements. The Einstein temperature of the unirradiated crystalline nanoparticles was lower than that of bulk material due to loosely bonded surface/interfacial atoms. In contrast, that of the irradiated amorphous nanoparticles was substantially higher than the bulk value. We attribute this apparent bond stiffening to the influence of the rigid surrounding matrix.

  13. Health hazards due to the inhalation of amorphous silica.

    Science.gov (United States)

    Merget, R; Bauer, T; Küpper, H U; Philippou, S; Bauer, H D; Breitstadt, R; Bruening, T

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic ("thermal" or "fumed") silica, and (3) chemically or physically modified silica. According to the different physicochemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no study

  14. Health hazards due to the inhalation of amorphous silica

    International Nuclear Information System (INIS)

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no

  15. Amorphous Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution

    OpenAIRE

    McEnaney, Joshua M.; Crompton, J. Chance; Callejas, Juan F.; Popczun, Eric J.; Biacchi, Adam J.; Nathan S. Lewis; Schaak, Raymond E.

    2014-01-01

    Amorphous molybdenum phosphide (MoP) nanoparticles have been synthesized and characterized as electrocatalysts for the hydrogen-evolution reaction (HER) in 0.50 M H_2SO_4 (pH 0.3). Amorphous MoP nanoparticles (having diameters of 4.2 ± 0.5 nm) formed upon heating Mo(CO)6 and trioctylphosphine in squalane at 320 °C, and the nanoparticles remained amorphous after heating at 450 °C in H_2(5%)/Ar(95%) to remove the surface ligands. At mass loadings of 1 mg cm^–2, MoP/Ti electrodes exhibited overp...

  16. Substrate induced crystallization of amorphous solid water at low temperatures

    International Nuclear Information System (INIS)

    We show that N2 monolayer desorption from ice surfaces is a quantitative, highly sensitive method for following the surface crystallization kinetics at low temperatures. Vapor deposited water films on a crystalline ice substrate exhibit amorphous growth at temperatures below ∼110 K. The rate of crystallization for these amorphous films is dramatically accelerated compared to the rate of crystallization observed for the amorphous films deposited directly on Pt(111). We find that the crystalline ice substrate acts as a two-dimensional nucleus for the growth of the crystalline phase, thereby accelerating the crystallization kinetics. copyright 1999 American Institute of Physics

  17. Amorphous Photonic Lattices: Band Gaps, Effective Mass and Suppressed Transport

    CERN Document Server

    Rechtsman, Mikael; Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Nolte, Stefan; Segev, Mordechai

    2010-01-01

    We present, theoretically and experimentally, amorphous photonic lattices exhibiting a band-gap yet completely lacking Bragg diffraction: 2D waveguides distributed randomly according to a liquid-like model responsible for the absence of Bragg peaks as opposed to ordered lattices containing disorder, which always exhibit Bragg peaks. In amorphous lattices the bands are comprised of localized states, but we find that defect states residing in the gap are more localized than the Anderson localization length. Finally, we show how the concept of effective mass carries over to amorphous lattices.

  18. An infrared and luminescence study of tritiated amorphous silicon

    International Nuclear Information System (INIS)

    Tritium has been incorporated into amorphous silicon. Infrared spectroscopy shows new infrared vibration modes due to silicon-tritium (Si-T) bonds in the amorphous silicon network. Si-T vibration frequencies are related to Si-H vibration frequencies by simple mass relationships. Inelastic collisions of β particles, produced as a result of tritium decay, with the amorphous silicon network results in the generation of electron-hole pairs. Radiative recombination of these carriers is observed. Dangling bonds associated with the tritium decay reduce luminescence efficiency

  19. A STUDY OF TIN IMPURITY ATOMS IN AMORPHOUS SILICON

    OpenAIRE

    Rabchanova, Tatiana

    2013-01-01

    Using the Mössbauer spectroscopy method for the 119 Sn isotope the state of tin impurity atoms in amorphous a-Si silicon is studied. The electrical and optical properties of tin doped films of thermally spray-coated amorphous silicon have been studied. It is shown that in contrast to the crystalline silicon where tin is an electrically inactive substitution impurity, in vacuum deposited amorphous silicon it produces an acceptor band near the valence band and a fraction of the tin atoms become...

  20. Depressurization amorphization of single-crystal boron carbide.

    Science.gov (United States)

    Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W

    2009-02-20

    We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices. PMID:19257688

  1. Formation and Corrosion Resistance of Amorphous Ti Base Alloys

    OpenAIRE

    Naka, M.; Okada, T.; T. Matsui

    1996-01-01

    Corrosion resistant amorphous Ti-B and Ti-Si alloys were prepared on various substrates by RF sputtering. The alloying of B content of 8 at% or more stabilizes the amorphous structure. The corrosion properties of Ti alloys were evaluated by measuring the polarization curves in 1N HCl. Although the addition of B to crystalline bulky Ti shifts the corrosion potentials of Ti to the less nobles of -0.5 V(SCE) or less, that of B to amorphous sputtered Ti moves the corrosion potentials to the noble...

  2. Pressure-induced crystallization of amorphous red phosphorus

    Science.gov (United States)

    Rissi, Erin N.; Soignard, Emmanuel; McKiernan, Keri A.; Benmore, Chris. J.; Yarger, Jeffery L.

    2012-03-01

    Structural transitions in amorphous red phosphorus were studied at ambient temperature and pressures up to 12 GPa. Amorphous (red) phosphorus was observed to transform into crystalline black phosphorus at 7.5 ± 0.5 GPa using diamond anvil cell Raman spectroscopy, x-ray diffraction and a direct equation of state (EoS) measurement. The transition was found to be irreversible and the material recovered upon pressure cycling to 10 to 12 GPa was crystalline orthorhombic black phosphorus. A third order Birch-Murnaghan EoS was fit to the data and a bulk modulus (B0) of 11.2 GPa was measured for amorphous red phosphorus.

  3. Formation of molecular hydrogen on amorphous silicate surfaces

    CERN Document Server

    Li, Ling; Congiu, Emanuele; Roser, Joe; Swords, Sol; Perets, Hagai B; Lederhendler, Adina; Biham, Ofer; Brucato, John Robert; Pirronello, Valerio; Vidali, Gianfranco

    2007-01-01

    Experimental results on the formation of molecular hydrogen on amorphous silicate surfaces are presented and analyzed using a rate equation model. The energy barriers for the relevant diffusion and desorption processes are obtained. They turn out to be significantly higher than those obtained for polycrystalline silicates, demonstrating the importance of grain morphology. Using these barriers we evaluate the efficiency of molecular hydrogen formation on amorphous silicate grains under interstellar conditions. It is found that unlike polycrystalline silicates, amorphous silicate grains are efficient catalysts of H_2 formation in diffuse interstellar clouds.

  4. Reappraisal of the work hardening behavior of bulk amorphous matrix composites

    International Nuclear Information System (INIS)

    This paper investigates the origin of work hardening in amorphous composites by directly measuring the hardness variations of crystalline particles and amorphous matrices at various strains. The work hardening of the amorphous composites was caused predominantly by hardening of the amorphous matrices, rather than of the crystalline particles. The hardening mechanism was explained based on the kinetics and thermodynamics.

  5. Recombination of atomic oxygen and hydrogen on amorphous carbon

    International Nuclear Information System (INIS)

    Deposit buildup and fuel entrapment due to amorphous carbon are relevant issues in fusion devices with carbon based plasma facing components. Neutral atomic species play a significant role – atomic hydrogen facilitates the formation of amorphous carbon while atomic oxygen could be used to remove carbon deposits. The kinetics of either reaction depends on the density of neutral species, which in turn is influenced by recombination on the vessel walls. In this work, we measured the probability of heterogeneous recombination of atomic hydrogen and oxygen on amorphous carbon deposits. The recombination coefficients were determined by observing density profiles of atomic species in a closed side-arm of a plasma vessel with amorphous carbon deposit-lined walls. Density profiles were measured with fiber optics catalytic probes. The source of atomic species was inductively coupled radiofrequency plasma. The measured recombination coefficient values were of the order of 10−3 for both species

  6. A Molecular-Orbital Model for Amorphous Group IV Semiconductors

    OpenAIRE

    M. Grado-Caffaro; M. A. Grado-Caffaro

    1997-01-01

    A theoretical model based on standard molecular-orbital theory and extended Hückel approach is proposed. This model is valid for amorphous group IV semiconductors and represents a substantial improvement of the state of the art.

  7. Source Molecular Effect on Amorphous Carbon Film Deposition

    OpenAIRE

    Kawazoe, Hiroki; Inayoshi, Takanori; Shinohara, Masanori; Matsuda, Yoshinobu; Fujiyama, Hiroshi; Nitta, Yuki; Nakatani, Tatsuyuki

    2009-01-01

    We investigated deposition process of amorphous carbon films using acetylene and methane as a source molecule, by using infrared spectroscopy in multiple internal reflection geometry (MIR-IRAS). We found that deposited film structures were different due to source molecules.

  8. Amorphous solid dispersions: Rational selection of a manufacturing process.

    Science.gov (United States)

    Vasconcelos, Teófilo; Marques, Sara; das Neves, José; Sarmento, Bruno

    2016-05-01

    Amorphous products and particularly amorphous solid dispersions are currently one of the most exciting areas in the pharmaceutical field. This approach presents huge potential and advantageous features concerning the overall improvement of drug bioavailability. Currently, different manufacturing processes are being developed to produce amorphous solid dispersions with suitable robustness and reproducibility, ranging from solvent evaporation to melting processes. In the present paper, laboratorial and industrial scale processes were reviewed, and guidelines for a rationale selection of manufacturing processes were proposed. This would ensure an adequate development (laboratorial scale) and production according to the good manufacturing practices (GMP) (industrial scale) of amorphous solid dispersions, with further implications on the process validations and drug development pipeline. PMID:26826438

  9. Laser annealing of amorphous silicon core optical fibers

    OpenAIRE

    Healy, N; Mailis, S.; Day, T. D.; Sazio, P.J.A.; Badding, J. V.; A.C. Peacock

    2012-01-01

    Laser annealing of an optical fiber with an amorphous silicon core is demonstrated. The annealing process produces a fiber that has a highly crystalline core, whilst reducing the optical transmission losses by ~3 orders of magnitude.

  10. Nanocavity Shrinkage and Preferential Amorphization during Irradiation in Silicon

    Institute of Scientific and Technical Information of China (English)

    ZHU Xian-Fang; WANG Zhan-Guo

    2005-01-01

    @@ We model the recent experimental results and demonstrate that the internal shrinkage of nanocavities in silicon is intrinsically associated with preferential amorphization as induced by self-ion irradiation.

  11. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  12. Solid state amorphization kinetic of alpha lactose upon mechanical milling.

    Science.gov (United States)

    Caron, Vincent; Willart, Jean-François; Lefort, Ronan; Derollez, Patrick; Danède, Florence; Descamps, Marc

    2011-11-29

    It has been previously reported that α-lactose could be totally amorphized by ball milling. In this paper we report a detailed investigation of the structural and microstructural changes by which this solid state amorphization takes place. The investigations have been performed by Powder X-ray Diffraction, Solid State Nuclear Magnetic Resonance ((13)C CP-MAS) and Differential Scanning Calorimetry. The results reveal the structural complexity of the material in the course of its amorphization so that it cannot be considered as a simple mixture made of a decreasing crystalline fraction and an increasing amorphous fraction. Heating this complexity can give rise to a fully nano-crystalline material. The results also show that chemical degradations upon heating are strongly connected to the melting process. PMID:21983262

  13. Raman and ellipsometric characterization of hydrogenated amorphous silicon thin films

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hydrogenated amorphous silicon (a-Si:H) thin films were deposited by plasma-enhanced vapor deposition (PECVD) at different silane temperatures (Tg) before glow-discharge. The effect of Tg on the amorphous network and optoelectronic properties of the films has been investigated by Raman scattering spectra, ellipsometric transmittance spectra, and dark conductivity measurement, respectively. The results show that the increase in Tg leads to an improved ordering of amorphous network on the short and intermediate scales and an increase of both refractive index and absorption coefficient in a-Si:H thin films. It is indicated that the dark conductivity increases by two orders of magnitude when Tg is raised from room temperature (RT) to 433 K. The continuous ordering of amorphous network of a-Si:H thin films deposited at a higher Tg is the main cause for the increase of dark conductivity.

  14. Raman and ellipsometric characterization of hydrogenated amorphous silicon thin films

    Institute of Scientific and Technical Information of China (English)

    LIAO NaiMan; LI Wei; KUANG YueJun; JIANG YaDong; LI ShiBin; WU ZhiMing; QI KangCheng

    2009-01-01

    Hydrogenated amorphous silicon (a-Si:H) thin films were deposited by plasma-enhanced vapor depo-sition (PEOVD) at different silane temperatures (Tg) before glow-discharge. The effect of Tg on the amorphous network and optoelectronic properties of the films has been investigated by Raman scat-tering spectra, ellipsometric transmittance spectra, and dark conductivity measurement, respectively. The results show that the increase in Tg leads to an improved ordering of amorphous network on the short and intermediate scales and an increase of both refractive index and absorption coefficient in a-Si:H thin films. It is indicated that the dark conductivity increases by two orders of magnitude when Tg is raised from room temperature (RT) to 433 K. The continuous ordering of amorphous network of a-Si:H thin films deposited at a higher Tg is the main cause for the increase of dark conductivity.

  15. Hydrogen-free amorphous silicon with no tunneling states.

    Science.gov (United States)

    Liu, Xiao; Queen, Daniel R; Metcalf, Thomas H; Karel, Julie E; Hellman, Frances

    2014-07-11

    The ubiquitous low-energy excitations, known as two-level tunneling systems (TLSs), are one of the universal phenomena of amorphous solids. Low temperature elastic measurements show that e-beam amorphous silicon (a-Si) contains a variable density of TLSs which diminishes as the growth temperature reaches 400 °C. Structural analyses show that these a-Si films become denser and more structurally ordered. We conclude that the enhanced surface energetics at a high growth temperature improved the amorphous structural network of e-beam a-Si and removed TLSs. This work obviates the role hydrogen was previously thought to play in removing TLSs in the hydrogenated form of a-Si and suggests it is possible to prepare "perfect" amorphous solids with "crystal-like" properties for applications. PMID:25062205

  16. Amorphous coatings deposited on aluminum alloy by plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jun; XIA Yuan

    2005-01-01

    Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 μm/min if the current density is 0.9 mA/mm2. XRD results show that the PEO coatings are amorphous in the current density range of 0.3 - 0.9mA/mm2. EDS results show that the coatings are composed of O, Si and Al elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.

  17. Structure and low temperature thermal relaxation of amorphized germanium

    International Nuclear Information System (INIS)

    The structure of implantation-induced damage in amorphized Ge has been investigated using high resolution extended x-ray absorption fine structure spectroscopy (EXAFS). EXAFS data analysis was performed with the Cumulant Method, allowing a full reconstruction of the interatomic distance distribution (RDF). For the case of MeV implantation at -196 deg C, for an ion-dose range extending two orders of magnitude beyond that required for amorphization, a dose-dependent asymmetric RDF was determined for the amorphous phase including an increase in bond-length as a function of ion dose. Low-temperature thermal annealing resulted in structural relaxation of the amorphous phase as evidenced by a reduction in the centroid, asymmetry and width of the RDF. Such an effect was attributed to the formation (and subsequent annihilation) of three- and five-fold Co-ordinated atoms, comparing favourably to theoretical simulations of the structure of a-Ge

  18. Laser spot welding of cobalt-based amorphous metal foils

    International Nuclear Information System (INIS)

    The results concerning weldability of amorphous alloy (VAC 6025F) in shape of foils and the quality of laser-spot welded joints are presented in this paper. The aim of the research was the production of a high quality welding joint, by preserving the amorphous structure. The quality of the joint was tested by shear strength analysis and microhardness measuring. The metallographic studies were made by using optical microscope and SEM. The results show that (1) overlapped Co based amorphous metals foils can be welded with high-quality by a pulsed Nd: YAG-Laser, but only within a very narrow laser parameter window; (2) the laser welded spots show comparably high strength as the basic material; (3) the structure of the welded spot remains amorphous, so that the same characteristics as the base material can be achieved. (author)

  19. Influence of Amorphous Structure on Polymorphism in Vanadia

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Kevin H.; Schelhas, Laura T.; Garten, Lauren M.; Shyam, Badri; Mehta, Apurva; Ndione, Paul F.; Ginley, David S.; Toney, Michael F.

    2016-07-07

    Normally we think of the glassy state as a single phase and therefore crystallization from chemically identical amorphous precursors should be identical. Here we show that the local structure of an amorphous precursor is distinct depending on the initial deposition conditions, resulting in significant differences in the final state material. Using grazing incidence total x-ray scattering, we have determined the local structure in amorphous thin films of vanadium oxide grown under different conditions using pulsed laser deposition (PLD). Here we show that the subsequent crystallization of films deposited using different initial PLD conditions result in the formation of different polymorphs of VO2. This suggests the possibility of controlling the formation of metastable polymorphs by tuning the initial amorphous structure to different formation pathways.

  20. First principles prediction of amorphous phases using evolutionary algorithms

    Science.gov (United States)

    Nahas, Suhas; Gaur, Anshu; Bhowmick, Somnath

    2016-07-01

    We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bond angle are within ˜2% of those reported by ab initio MD calculations and experimental studies.

  1. Amorphous silica from rice husk at various temperatures

    International Nuclear Information System (INIS)

    Rice husk is being used as a source of energy in many heat generating system because of its high calorific value and its availability in many rice producing areas. Rice husk contains approximately 20% silica which is presented in hydrated form. This hydrated silica can be retrieved as amorphous silica under controlled thermal conditions. Uncontrolled burning of rice husk produces crystalline silica which is not reactive silica but can be used as filler in many applications. Amorphous silica is reactive silica which has better market value due to its reactive nature in process industry. The present study deals with the production of amorphous silica at various temperatures from rice husk. Various ashes were prepared in tube furnace by changing the burning temperatures for fixed time intervals and analyzed by XRD. It has been observed that for two hours calculation's of rice husk renders mostly amorphous silica at 650 degree C where as at higher temperatures crystalline silica was obtained. (author)

  2. Synthesis of Siloxanes Directly from Amorphous Silica

    International Nuclear Information System (INIS)

    A direct synthesis of oligomeric-siloxanes from amorphous silica has been achieved. The compound prepared was caedonal-siloxane. Cardonal is a mono hydroxyphenolic compound with a bulky group in the meta position. It was derived as a by-product from the renewable resources cashew nut shell liquid (CNSL). In the synthesis, one pot synthesis was carried out by using ethylene glycol (EG) as solvent. In the reaction ethylene glycol served as a primary precursor chelating ligand in the synthesised product. The one pot synthesis was enhanced by the strong base, triethylenetetramine (TETA) which served as the promoter catalyst. In the synthesis, optimal conditions were established on the basic of the yield percent of organo-siloxane compounds with respect to the variation of the weight fraction of TETA and to the variation of reaction time. Experimental runs were carried out at (ca 210 2c) which was nearly above the boiling point of the solvent. The substituted organo-silicon compounds obtained were characterized by FT- ir, Thermal analysis, XRD and SEM.

  3. Amorphous Alloy Surpasses Steel and Titanium

    Science.gov (United States)

    2004-01-01

    In the same way that the inventions of steel in the 1800s and plastic in the 1900s sparked revolutions for industry, a new class of amorphous alloys is poised to redefine materials science as we know it in the 21st century. Welcome to the 3rd Revolution, otherwise known as the era of Liquidmetal(R) alloys, where metals behave similar to plastics but possess more than twice the strength of high performance titanium. Liquidmetal alloys were conceived in 1992, as a result of a project funded by the California Institute of Technology (CalTech), NASA, and the U.S. Department of Energy, to study the fundamentals of metallic alloys in an undercooled liquid state, for the development of new aerospace materials. Furthermore, NASA's Marshall Space Flight Center contributed to the development of the alloys by subjecting the materials to testing in its Electrostatic Levitator, a special instrument that is capable of suspending an object in midair so that researchers can heat and cool it in a containerless environment free from contaminants that could otherwise spoil the experiment.

  4. High performance amorphous selenium lateral photodetector

    Science.gov (United States)

    Abbaszadeh, Shiva; Allec, Nicholas; Karim, Karim S.

    2012-03-01

    Lateral amorphous selenium (a-Se) detectors based on the metal-semiconductor-metal (MSM) device structure have been studied for indirect detector medical imaging applications. These detectors have raised interest due to their simple structure, ease of fabrication, high-speed, low dark current, low capacitance per unit area and better light utilization. The lateral device structure has a benefit that the electrode spacing may be easily controlled to reduce the required bias for a given desired electric field. In indirect conversion x-ray imaging, the scintillator is coupled to the top of the a-Se MSM photodetector, which itself is integrated on top of the thin-film-transistor (TFT) array. The carriers generated at the top surface of the a-Se layer experience a field that is parallel to the surface, and does not initially sweep them away from the surface. Therefore these carriers may recombine or get trapped in surface states and change the field at the surface, which may degrade the performance of the photodetector. In addition, due to the finite width of the electrodes, the fill factor of the device is less than unity. In this study we examine the effect of lateral drift of carriers and the fill factor on the photodetector performance. The impact of field magnitude on the performance is also investigated.

  5. Amorphous Silicon: Flexible Backplane and Display Application

    Science.gov (United States)

    Sarma, Kalluri R.

    Advances in the science and technology of hydrogenated amorphous silicon (a-Si:H, also referred to as a-Si) and the associated devices including thin-film transistors (TFT) during the past three decades have had a profound impact on the development and commercialization of major applications such as thin-film solar cells, digital image scanners and X-ray imagers and active matrix liquid crystal displays (AMLCDs). Particularly, during approximately the past 15 years, a-Si TFT-based flat panel AMLCDs have been a huge commercial success. a-Si TFT-LCD has enabled the note book PCs, and is now rapidly replacing the venerable CRT in the desktop monitor and home TV applications. a-Si TFT-LCD is now the dominant technology in use for applications ranging from small displays such as in mobile phones to large displays such as in home TV, as well-specialized applications such as industrial and avionics displays.

  6. Electrical properties of pulsed UV laser irradiated amorphous carbon

    OpenAIRE

    Y. Miyajima; Adikaari, AADT; Henley, SJ; Shannon, JM; Silva, SRP

    2008-01-01

    Amorphous carbon films containing no hydrogen were irradiated with a pulsed UV laser in vacuum. Raman spectroscopy indicates an increase in the quantity of sp(2) clustering with the highest laser energy density and a commensurate reduction in resistivity. The reduction of resistivity is explained to be associated with thermally induced graphitization of amorphous carbon films. The high field transport is consistent with a Poole-Frenkel type transport mechanism via neutral trapping centers rel...

  7. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    We demonstrate optical parametric amplification operating at GHz-rates at telecommunications wavelengths using a hydrogenated amorphous silicon waveguide through the nonlinear optical process of four-wave mixing. We investigate how the parametric amplification scales with repetition rate. The ability to achieve amplification at GHz-repetition rates shows hydrogenated amorphous silicon’s potential for telecommunication applications and a GHz-rate optical parametric oscillator. (paper)

  8. Thermal decomposition of silane to form hydrogenated amorphous Si

    Science.gov (United States)

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  9. Intrinsic graphene field effect transistor on amorphous carbon films

    OpenAIRE

    Tinchev, Savcho

    2013-01-01

    Fabrication of graphene field effect transistor is described which uses an intrinsic graphene on the surface of as deposited hydrogenated amorphous carbon films. Ambipolar characteristic has been demonstrated typical for graphene devices, which changes to unipolar characteristic if the surface graphene was etched in oxygen plasma. Because amorphous carbon films can be growth easily, with unlimited dimensions and no transfer of graphene is necessary, this can open new perspective for graphene ...

  10. Domain Wall Mobility in Co-Based Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Maria Kladivova

    2007-01-01

    Full Text Available Dynamics of the domain wall between opposite circularly magnetized domains in amorphous cylindrical sample with circular easy direction is theoretically studied. The wall is driven by DC current. Various mechanisms which influence the wall velocity were taken into account: current magnitude, deformation of the mowing wall, Hall effect, axially magnetized domain in the middle of the wire. Theoretical results obtained are in a good agreement with experiments on Cobased amorphous ferromagnetic wires.

  11. Interaction of hydrogenated amorphous silicon films with transparent conductive films

    OpenAIRE

    Kitagawa, M.; Mori, K; Ishihara, S.; Ohno, M.; Hirao, T.; Yoshioka, Y.; Kohiki, S

    1983-01-01

    The effects of the deposition temperature on the interaction of the hydrogenated amorphous silicon films with indium-tin-oxide and tin-oxide films have been investigated in the temperature range 150-300 degrees C, using Auger electron spectroscopy, secondary ion mass spectrometry, and scanning electron microscopy. It was found that the constituent atoms such as indium and tin are detected in the thin amorphous silicon films deposited. Around the interface between the transparent conductive fi...

  12. Systematic Study of Electron Localization in an Amorphous Semiconductor

    OpenAIRE

    Atta-Fynn, Raymond; Biswas, Parthapratim; Ordejon, Pablo; Drabold, D. A.

    2003-01-01

    We investigate the electronic structure of gap and band tail states in amorphous silicon. Starting with two 216-atom models of amorphous silicon with defect concentration close to the experiments, we systematically study the dependence of electron localization on basis set, density functional and spin polarization using the first principles density functional code Siesta. We briefly compare three different schemes for characterizing localization: information entropy, inverse participation rat...

  13. PHOTOEMISSION STUDIES OF THE TRANSITION FROM AMORPHOUS TO MICROCRYSTALLINE SILICON

    OpenAIRE

    Richter, H.; Ley, L.

    1981-01-01

    We have studied a series of samples spanning the range from purely amorphous to microcrystalline silicon prepared by chemical transport in a hydrogen plasma or by sputtering in a H2/Ar mixture. The first order Raman spectra show a superposition of amorphous and crystalline contribution, showing some features of wurtzite-silicon. The electronic density of states, as deduced from X-ray photoelectron-spectroscopy, shows a gradual change from microcrystalline structure for samples prepared by che...

  14. Experimentally Constrained Molecular Relaxation: The case of hydrogenated amorphous silicon

    OpenAIRE

    Biswas, Parthapratim; Atta-Fynn, Raymond; Drabold, David A.

    2007-01-01

    We have extended our experimentally constrained molecular relaxation technique (P. Biswas {\\it et al}, Phys. Rev. B {\\bf 71} 54204 (2005)) to hydrogenated amorphous silicon: a 540-atom model with 7.4 % hydrogen and a 611-atom model with 22 % hydrogen were constructed. Starting from a random configuration, using physically relevant constraints, {\\it ab initio} interactions and the experimental static structure factor, we construct realistic models of hydrogenated amorphous silicon. Our models ...

  15. The Role of Configurational Entropy in Amorphous Systems

    OpenAIRE

    Kirsten A. Graeser; Patterson, James E.; J. Axel Zeitler; Thomas Rades

    2010-01-01

    Configurational entropy is an important parameter in amorphous systems. It is involved in the thermodynamic considerations, plays an important role in the molecular mobility calculations through its appearance in the Adam-Gibbs equation and provides information on the solubility increase of an amorphous form compared to its crystalline counterpart. This paper presents a calorimetric method which enables the scientist to quickly determine the values for the configurational entropy at any tempe...

  16. NMR study in amorphous CoZr thin film alloys

    International Nuclear Information System (INIS)

    59Co NMR study has been carried out in a series of magnetic thin film amorphous Co1-xZrx alloys in the concentration range 0.1< x<0.4. The analysis shows that every Zr nearest neighbour lowers the NMR frequency on Co in the amorphous CoZr alloys by about 30 MHz and that the alloy structure in Co-rich compositions resembles the polytetrahedrally closed packed crystalline phases. (orig.)

  17. Extraction of valuable metals from amorphous solid wastes

    OpenAIRE

    E. David

    2007-01-01

    Purpose: This paper undertakes to assess what opportunities exist for the economical recovery of valuable metals from amorphous solid wastes that may be considered as“synthetic ores”. Also, this work is an attempt to optimize a leaching process that is the most determinant step of hydrometallurgical process used to extract metals from ores.Design/methodology/approach: The samples of amorphous material formed from spent industrial catalysts based on Cu, Ni / γ-Al2O3 were physically and ...

  18. Structure and Properties of Amorphous Transparent Conducting Oxides

    Science.gov (United States)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The

  19. Fabrication of C60/amorphous carbon superlattice structures

    International Nuclear Information System (INIS)

    The nitrogen doping effects in C60 films by RF plasma source was investigated, and it was found that the nitrogen ion bombardment broke up C60 molecules and changed them into amorphous carbon. Based on these results, formation of C60/amorphous carbon superlattice structure was proposed. The periodic structure of the resulted films was confirmed by XRD measurements, as the preliminary results of fabrication of the superlattice structure

  20. Amorphous SiC:H- layers from precursors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, E.; Hilbig, A. [Institute of Ceramic Materials, Freiberg University of Mining and Technology, Gustav-Zeuner Strasse 3, D-09596 Freiberg (Germany); Wenzel, R.; Trommer, K.; Roewer, G. [Institute of Inorganic Chemistry, Freiberg University of Mining and Technology, Leipziger Strasse 29, D-09596 Freiberg (Germany); Sciurova, O.; Niklas, J.R. [Institute of Experimental Physics, Freiberg University of Mining and Technology, Silbermann Strasse 1, D-09596 Freiberg (Germany)

    2002-11-01

    Low-viscous polymers were synthesized in order to produce high purity amorphous SiC layers stabilised by hydrogen, whose optoelectronic properties were then studied in dependence on the pyrolysis conditions. The SiC:H thin layers were deposited by the conversion of an oligomer (chlorovinylsilane) into amorphous silicon carbide. The influence of Si:C ratio and the polymer structure on the composition and ceramic yield of the pyrolysis products is discussed. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  1. Molecular dynamics in electrospun amorphous plasticized polylactide fibers

    OpenAIRE

    MONNIER, X; DELPOUVE, N; BASSON, N; GUINAULT, A; DOMENEK, S; Saiter, A; MALLON, P.E; Dargent, E

    2015-01-01

    The molecular dynamics in the amorphous phase of electrospun fibers of polylactide (PLA) has been investigated using the cooperative rearranging region concept. An unusual and significant increase of the cooperativity length at the glass transition induced by the electrospinning has been observed. This behavior is attributed to the singularity of the amorphous phase organization. Electrospun PLA fibers rearrange in a pre-ordered metastable state which is characterized by highly oriented but n...

  2. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    OpenAIRE

    Dong Chen; Fei Gao; Bo Liu

    2015-01-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C in...

  3. Synthesis and Characterization of Amorphous Carbide-based Thin Films

    OpenAIRE

    Folkenant, Matilda

    2015-01-01

    In this thesis, research on synthesis, structure and characterization of amorphous carbide-based thin films is presented. Crystalline and nanocomposite carbide films can exhibit properties such as high electrical conductivity, high hardness and low friction and wear. These properties are in many cases structure-related, and thus, within this thesis a special focus is put on how the amorphous structure influences the material properties. Thin films within the Zr-Si-C and Cr-C-based systems hav...

  4. PROCESSING OF SERPENTINITE TAILINGS TO PURE AMORPHOUS SILICA

    OpenAIRE

    Alena Fedorockova; Pavel Raschman; Sucik Gabriel; Plesingerova Beatrice; Popovic Lubos; Briancin Jaroslav

    2015-01-01

    While the published research papers describe preparation of amorphous silica from water glass or using special methods (e.g. hydrolysis of alkoxides), the present study demonstrates a feasible solution for the cheaper synthesis of highly reactive silica using two-stage (acid and alkaline) leaching of serpentinite (Mg3Si2O5(OH)4). The alkaline leaching, the purification of sodium metasilicate solution and the effect of impurities on the precipitation of amorphous silica under the conditions of...

  5. Proton NMR studies of PECVD hydrogenated amorphous silicon films and HWCVD hydrogenated amorphous silicon films

    Science.gov (United States)

    Herberg, Julie Lynn

    This dissertation discusses a new understanding of the internal structure of hydrogenated amorphous silicon. Recent research in our group has included nuclear spin echo double resonance (SEDOR) measurements on device quality hydrogenated amorphous silicon photovoltaic films. Using the SEDOR pulse sequence with and without the perturbing 29Si pulse, we obtain Fourier transform spectra for film at 80K that allows us to distinguish between molecular hydrogen and hydrogen bonded to silicon. Using such an approach, we have demonstrated that high quality a-Si:H films produced by Plasma Enhanced Chemical Vapor Deposition (PECVD) from SiH 4 contains about ten atomic percent hydrogen, nearly 40% of which is molecular hydrogen, individually trapped in the amorphous equivalent of tetragonal sites (T-sites). The main objective of this dissertation is to examine the difference between a-Si:H made by PECVD techniques and a-Si:H made by Hot Wire Chemical Vapor Deposition (HWCVD) techniques. Proton NMR and 1H- 29Si SEDOR NMR are used to examine the hydrogen structure of HWCVD a-Si:H films prepared at the University of Utrecht and at the National Renewable Energy Laboratory (NREL). Past NMR studies have shown that high quality PECVD a-Si:H films have geometries in which 40% of the contained hydrogen is present as H2 molecules individually trapped in the amorphous equivalent of T-sites. A much smaller H2 fraction sometimes is physisorbed on internal surfaces. In this dissertation, similar NMR methods are used to perform structural studies of the two HWCVD aSi:H samples. The 3kHz resonance line from T-site-trapped H2 molecules shows a hole-burn behavior similar to that found for PECVD a-Si:H films as does the 24kHz FWHM line from clustered hydrogen bonded to silicon. Radio frequency hole-burning is a tool to distinguish between inhomogenous and homogeneous broadening. In the hole-burn experiments, the 3kHz FWHM resonance line from T-site-trapped H2 molecules shows a hole

  6. Dementia with Lewy Bodies

    Science.gov (United States)

    ... Awards Enhancing Diversity Find People About NINDS NINDS Dementia With Lewy Bodies Information Page Synonym(s): Lewy Body ... and Information Additional resources from MedlinePlus What is Dementia With Lewy Bodies? Dementia with Lewy bodies (DLB) ...

  7. Nanostructured amorphous nickel oxide with enhanced antioxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Madhu, G. [Department of Physics, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581 (India); Department of Physics, University College, Thiruvananthapuram, Kerala 695034 (India); Biju, V., E-mail: bijunano@gmail.com [Department of Physics, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581 (India)

    2015-07-15

    Highlights: • Synthesis of nanostructured amorphous nickel oxide by a facile chemical route. • Enhanced antioxidant activity of amorphous NiO compared to crystalline samples. • Role of O{sup 2−} vacancies and high specific surface area in antioxidant activity. • Use of DC conductivity, XPS and BET to explain enhanced antioxidant activity. - Abstract: Nanostructured amorphous nickel oxide was synthesized by the thermal decomposition of nickel chloride–ethanol amine complex. The X-ray diffraction and Transmission Electron Microscopic studies established the amorphous nature of the sample. The Fourier Transform Infrared, Scanning Electron Microscopy, Energy Dispersive and X-ray Photoelectron Spectroscopic studies of the sample revealed the formation of NiO. The specific surface area of the sample is measured using Brunauer–Emmett–Teller analysis and the mesoporous nature of the sample is established through Barrett–Joyner–Halenda pore size distribution analysis. The antioxidant activity of the amorphous sample measured by 1,1-diphenyl-2-picryl hydrazyl (DPPH) scavenging is found to be nearly twice greater than that reported for nanocrystalline NiO samples. The estimated radical scavenging activity of the sample is correlated with the DC conductivity values measured in vacuum and air ambience. The enhanced antioxidant activity of the amorphous NiO is accounted by the increase in the concentration of O{sup 2−} vacancies and the specific surface area. The Ni 2p and O 1s X-ray Photoelectron Spectroscopic studies of the sample support the inference.

  8. Effect of Radiation-Induced Amorphization on Smectite Dissolution

    International Nuclear Information System (INIS)

    Effects of radiation-induced amorphization of smectite were investigated using artificial irradiation. Beams of 925 MeV Xenon ions with radiation dose reaching 73 MGy were used to simulate the effects generated by alpha recoil nuclei or fission products in the context of high level nuclear waste repository. Amorphization was controlled by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. An important coalescence of the smectite sheets was observed which lead to a loss of interparticle porosity. The amorphization is revealed by a loss of long-range structure and accompanied by dehydroxylation. The dissolution rate far-from-equilibrium shows that the amount of silica in solution is two times larger in the amorphous sample than in the reference clay, a value which may be enhanced by orders of magnitude when considering the relative surface area of the samples. Irradiation-induced amorphization thus facilitates dissolution of the clay-derived material. This has to be taken into account for the safety assessment of high level nuclear waste repository, particularly in a scenario of leakage of the waste package which would deliver alpha emitters able to amorphize smectite after a limited period of time. (authors)

  9. Unexpected magnetic behavior in amorphous Co90Sc10 alloy

    International Nuclear Information System (INIS)

    An amorphous alloy Co90Sc10 has been prepared by rapid quenching from the melt. The results of magnetization measurements show that this alloy has the highest Curie temperature reported for any amorphous transition metal based alloys. Furthermore, for a Co based amorphous alloy, the magnetic moment is remarkably high. Moreover, the alloy exhibits soft magnetic properties. Based on the findings, amorphous Co90Sc10 appears to be an attractive candidate for applications as a soft magnetic material. The temperature dependence of the reduced magnetization can be described by the Bloch power law. The results show that the B coefficient of the amorphous Co90Sc10 alloy, which is a measure of the rigidity of spin waves, exhibits the lowest value observed until now for any amorphous alloy and is comparable to crystalline alloys. It is found that the Sc atoms in the Co90Sc10 alloy lead to an increase of the itinerant spin moment of Co atoms, and, in contrast to this behaviour, to a decrease of the local 3d-electrons of Co

  10. Electron field emission from amorphous semiconductor thin films

    International Nuclear Information System (INIS)

    The flat panel display market requires new and improved technologies in order to keep up with the requirements of modem lifestyles. Electron field emission from thin film amorphous semiconductors is potentially such a technology. For this technology to become viable, improvements in the field emitting properties of these materials must be achieved. To this end, it is important that a better understanding of the emission mechanisms responsible is attained. Amorphous carbon thin films, amorphous silicon thin films and other materials have been deposited, in-house and externally. These materials have been characterised using ellipsometry, profilometry, optical absorption, scanning electron microscopy, atomic force microscopy, electron paramagnetic resonance and Rutherford backscattering spectroscopy. An experimental system for evaluating the electron field emitting performance of thin films has been developed. In the process of developing thin film cathodes in this study, it has been possible to add a new and potentially more useful semiconductor, namely amorphous silicon, to the family of cold cathode emitters. Extensive experimental field emission data from amorphous carbon thin films, amorphous silicon thin films and other materials has been gathered. This data has been used to determine the mechanisms responsible for the observed electron emission. Preliminary computer simulations using appropriate values for the different material properties have exhibited emission mechanisms similar to those identified by experiment. (author)

  11. CYANATE ION IN COMPACT AMORPHOUS WATER ICE

    Energy Technology Data Exchange (ETDEWEB)

    Mate, Belen; Herrero, Victor J.; Rodriguez-Lazcano, Yamilet; Moreno, Miguel A.; Escribano, Rafael [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, E-28006 Madrid (Spain); Fernandez-Torre, Delia [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28050 Madrid (Spain); Gomez, Pedro C. [Departamento de Quimica Fisica I, Universidad Complutense, Unidad Asociada UCM-CSIC, E-28040 Madrid (Spain)

    2012-11-10

    The 4.62 {mu}m infrared (2164.5 cm{sup -1}) absorption band, observed in ice mantels toward many young stellar objects, has been mostly attributed to the {nu}{sub 3} (CN stretch) band of OCN{sup -} ions. We present in this work a spectroscopic study of OCN{sup -} ions embedded in compact amorphous ice in a range of concentrations and temperatures relevant to astronomical observations together with quantum mechanical calculations of the {nu}{sub 3} band of OCN{sup -} in various H{sub 2}O environments. The ice samples containing the ions are prepared through hyperquenching of liquid droplets of K{sup +}OCN{sup -} solutions on a substrate at 14 K. The {nu}{sub 3} OCN{sup -} band appears as a broad feature peaking at 4.64 {mu}m with a secondary maximum at 4.54 {mu}m and is much weaker than the corresponding peak in the liquid solution or in the solid salt. A similar weakening is observed for other OCN{sup -} absorption peaks at 7.66 {mu}m (2{nu}{sub 2}) and 8.20 {mu}m ({nu}{sub 1}). The theoretical calculations for the {nu}{sub 3} vibration lead to a range of frequencies spanning the experimentally observed width. This frequency spread could help explain the pronounced drop in the band intensity in the ice. The OCN{sup -} {nu}{sub 3} band in the present compact ices is also broader and much weaker than that reported in the literature for OCN{sup -} ions obtained by variously processing porous ice samples containing suitable neutral precursors. The results of this study indicate that the astronomical detection of OCN{sup -} in ice mantels could be significantly impaired if the ion is embedded in a compact water network.

  12. Laser annealing of amorphous carbon films

    International Nuclear Information System (INIS)

    Amorphous (a-C) Carbon thin films were deposited, using pulsed laser deposition (PLD) with a Nd:YAG laser (1064 nm, 7 ns), from a pyrolytic graphite target, on silicon and refractory metal (Mo) substrates to a film thickness of 55, 400 and 500 nm. Samples were grown at RT and then annealed by a laser annealing technique, to reduce residual stress and induce a locally confined 'graphitization' process. The films were exposed to irradiation, in vacuum, by a Nd:YAG pulsed laser, operating at different wavelengths (VIS, N-UV) and increasing values of energy from 6-100 mJ/pulse. The thinner films were completely destroyed by N-UV laser treatment also at lower energies, owing to the almost direct propagation of heat to the Si substrate with melting and ruinous blistering effects. For thicker films the Raman micro-analysis evidenced the influence of laser treatments on the sp3/sp2 content evolution, and established the formation of aromatic nano-structures of average dimension 4.1-4.7 nm (derived from the ID/IG peak ratio), at fluence values round 50 mJ/cm2 for N-UV and 165 mJ/cm2 for VIS laser irradiation. Higher fluences were not suitable for a-Carbon 'graphitization', since a strong ablation process was the prominent effect of irradiation. Grazing incidence XRD (GI-XRD) used to evaluate the dimension and texturing of nano-particles confirmed the findings of Raman analysis. The effects of irradiation on surface morphology were studied by SEM analysis

  13. Amorphous Semiconductors Characteristics and Their Modern Application

    International Nuclear Information System (INIS)

    Chalcogenide glasses are a recognized group of inorganic glassy materials which always contain one or more of the chalcogenide elements S, Se or Te but not O, in conjunction with more electro positive elements as As, Sb, etc. Chalcogenide glasses are generally less robust, more weakly bonded materials than oxide glasses. Glasses were prepared from Sb, Se, Bi and In elements with purity 99.999%. These glasses are reactive at high temperature with oxygen. Therefore, synthesis was accomplished in evacuated clean silica tubes. The tubes were washed by distilled water, and then dried in a furnace whose temperature was about 100 degree C . The weighted materials were introduced into the cleaned silica tubes and then evacuated to about 10-4 torr and sealed. The sealed tubes were placed inside the furnace and the temperature of the furnace was raised gradually up to 90 C within 1 hour and kept constant for 10 hours. Moreover, shaking of the constituent materials inside the tube in the furnace was necessary for realizing the homogeneity of the composition. After synthesis, the tube was quenched into ice water. The glassy ingots could be obtained by drastic quenching. Then materials were removed from the tubes and kept in dry atmosphere. The proper ingot was confirmed to be completely amorphous using x-ray diffraction and differential thermal analysis. Thin films of the selected compositions were prepared by thermal evaporation technique under vacuum 10-4 torr with constant thickness 100 nm. The effect of radiation, optical and some other effects on composition were studied.

  14. Growth and Characterization of Hydrogenated Amorphous Silicon and Hydrogenated Amorphous Silicon Carbide with Liquid Organometallic Sources.

    Science.gov (United States)

    Gaughan, Kevin David

    The growth and characterization of hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous silicon -carbon (rm a-rm Si _{1-X}C_{X}: H) alloys employing liquid organometallic sources are described. N -type a-Si:H films were grown using a mixture of silane and tertiarybutylphosphine (TBP-rm C_4H _9P_2) vapor in a plasma enhanced chemical vapor deposition system. Impurity levels from parts per million to about 5 at. % phosphorus have been incorporated into the film with this method. Tertiarybutylphosphine is less toxic and less pyrophoric than phosphine which is usually used in n-type doping of a-Si:H films. Optical and electronic properties were characterized by room temperature as well as temperature dependent dark conductivity, photothermal deflection spectroscopy, infrared vibrational spectroscopy, electron spin resonance, and electron microprobe analysis. The gross doping properties of a-Si:H doped with TBP are the same as those obtained with phosphine. The experimental results are compared with the predictions of several models that describe the chemical equilibrium between active dopants and deep defects. A pronounced decrease in the effects of doping, such as an increase in the activation energy of electrical conductivity and an decrease in the conductivity of the sample, were seen in heavily doped films (TBP/SiH _4> 0.5%), perhaps influenced by the increased carbon and/or phosphorus concentrations. Amorphous silicon-carbide alloys have been grown by the plasma decomposition of ditertiarybutylsilane ( rm DTBS-rm SiH_2(C _4H_9)_2). The optical bandgaps, which varied from 2.2 to 3.3 eV, are strongly dependent upon the deposition conditions. The carbon concentrations in these films varied from 60 to 95 at. %. The optical band-edge is very broad compared to that which is found in a-Si:H and this breadth is essentially independent of the deposition conditions. The plasma decomposition of admixtures of DTBS and silane has produced rm a- rm Si_{1-X

  15. Health hazards due to the inhalation of amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Merget, R.; Bruening, T. [Research Institute for Occupational Medicine (BGFA), Bochum (Germany); Bauer, T. [Bergmannsheil, University Hospital, Department of Internal Medicine, Division of Pneumonology, Allergology and Sleep Medicine, Bochum (Germany); Kuepper, H.U.; Breitstadt, R. [Degussa-Huels Corp., Wesseling (Germany); Philippou, S. [Department of Pathology, Augusta Krankenanstalten, Bochum (Germany); Bauer, H.D. [Research Institute for Hazardous Substances (IGF), Bochum (Germany)

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or

  16. Development of amorphous wire type MI sensors for automobile use

    Science.gov (United States)

    Honkura, Yoshinobu

    2002-08-01

    Amorphous wire type MI sensors have a high sensitivity compared to thin film MI sensors, but there have been reliability problems in developing an amorphous wire type MI sensor for automobile application because of the wide range of operating temperatures. It was difficult to achieve sufficient soldering strength between the amorphous wire and the electrode of the MI chip. In addition, stress is induced in the amorphous wire during soldering thus lowering the temperature stability characteristics. Therefore, we developed a new method for soldering the amorphous wire and a new method for assembly of the MI chip. Together with the redesign of the electronic circuit, these developments have yielded an MI sensor suitable for automobile application. This MI sensor has a sensitivity of 250 mV/Oe, has stable temperature characteristics between -40°C and 85°C and easily passed the thermal shock test, the most stringent durability test for automobile electronic parts. Two different types of products are under development; one is a standard type whose output is linear to the external magnetic field, and the other is a switch type whose output is ON or OFF relative to a threshold magnetic field. Future applications include an ABS sensor, an electronic compass, an automatic tracking system for automobiles and so on.

  17. Devitrification of rapidly quenched Al–Cu–Ti amorphous alloys

    Indian Academy of Sciences (India)

    D K Misra; R S Tiwari; O N Srivastava

    2003-08-01

    X-ray diffraction, transmission electron microscopy and differential scanning calorimetry were carried out to study the transformation from amorphous to icosahedral/crystalline phases in the rapidly quenched Al50Cu45Ti5 and Al45Cu45Ti10 alloys. In the present investigation, we have studied the formation and stability of amorphous phase in Al50Cu45Ti5 and Al45Cu45Ti10 rapidly quenched alloys. The DSC curve shows a broad complex type of exothermic overlapping peaks (288–550°C) for Al50Cu45Ti5 and a well defined peak around 373°C for Al45Cu45Ti10 alloy. In the case of Al50Cu45Ti5 alloy amorphous to icosahedral phase transformation has been observed after annealing at 280°C for 73 h. Large dendritic growth of icosahedral phase along with -Al phase has been found. Annealing of Al50Cu45Ti5 alloy at 400°C for 8 h results in formation of Al3Ti type phase. Al45Cu45Ti10 amorphous alloy is more stable in comparison to Al50Cu45Ti5 alloy and after annealing at 400°C for 8 h it also transforms to Al3Ti type phase. However, this alloy does not show amorphous to icosahedral phase transformation.

  18. Amorphization of hard crystalline materials by electrosprayed nanodroplet impact

    International Nuclear Information System (INIS)

    A beam of electrosprayed nanodroplets impacting on single-crystal silicon amorphizes a thin surface layer of a thickness comparable to the diameter of the drops. The phase transition occurs at projectile velocities exceeding a threshold, and is caused by the quenching of material melted by the impacts. This article demonstrates that the amorphization of silicon is a general phenomenon, as nanodroplets impacting at sufficient velocity also amorphize other covalently bonded crystals. In particular, we bombard single-crystal wafers of Si, Ge, GaAs, GaP, InAs, and SiC in a range of projectile velocities, and characterize the samples via electron backscatter diffraction and transmission electron microscopy to determine the aggregation state under the surface. InAs requires the lowest projectile velocity to develop an amorphous layer, followed by Ge, Si, GaAs, and GaP. SiC is the only semiconductor that remains fully crystalline, likely due to the relatively low velocities of the beamlets used in this study. The resiliency of each crystal to amorphization correlates well with the specific energy needed to melt it except for Ge, which requires projectile velocities higher than expected

  19. Crystallization of amorphous water ice in the solar system

    Science.gov (United States)

    Jenniskens, P.; Blake, D. F.

    1996-01-01

    Electron diffraction studies of vapor-deposited water ice have characterized the dynamical structural changes during crystallization that affect volatile retention in cometary materials. Crystallization is found to occur by nucleation of small domains, while leaving a significant part of the amorphous material in a slightly more relaxed amorphous state that coexists metastably with cubic crystalline ice. The onset of the amorphous relaxation is prior to crystallization and coincides with the glass transition. Above the glass transition temperature, the crystallization kinetics are consistent with the amorphous solid becoming a "strong" viscous liquid. The amorphous component can effectively retain volatiles during crystallization if the volatile concentration is approximately 10% or less. For higher initial impurity concentrations, a significant amount of impurities is released during crystallization, probably because the impurities are trapped on the surfaces of micropores. A model for crystallization over long timescales is described that can be applied to a wide range of impure water ices under typical astrophysical conditions if the fragility factor D, which describes the viscosity behavior, can be estimated.

  20. Amorphous and Nanocomposite Materials for Energy-Efficient Electric Motors

    Science.gov (United States)

    Silveyra, Josefina M.; Xu, Patricia; Keylin, Vladimir; DeGeorge, Vincent; Leary, Alex; McHenry, Michael E.

    2016-01-01

    We explore amorphous soft-magnetic alloys as candidates for electric motor applications. The Co-rich system combines the benefits of low hysteretic and eddy-current losses while exhibiting negligible magnetostriction and robust mechanical properties. The amorphous precursors can be devitrified to form nanocomposite magnets. The superior characteristics of these materials offer the advantages of ease of handling in the manufacturing processing and low iron losses during motor operation. Co-rich amorphous ribbons were laser-cut to build a stator for a small demonstrator permanent-magnet machine. The motor was tested up to ~30,000 rpm. Finite-element analyses proved that the iron losses of the Co-rich amorphous stator were ~80% smaller than for a Si steel stator in the same motor, at 18,000 rpm (equivalent to an electric frequency of 2.1 kHz). These low-loss soft magnets have great potential for application in highly efficient high-speed electric machines, leading to size reduction as well as reduction or replacement of rare earths in permanent-magnet motors. More studies evaluating further processing techniques for amorphous and nanocomposite materials are needed.

  1. Crystal-amorphous-silicon interface kinetics under ion beam irradiation

    Science.gov (United States)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Campisano, S. U.; Ferla, G.

    1990-01-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The crystallization was induced by a 600 keV Kr2+ beam at a dose rate of 1×1012/cm2 · s. During irradiations the samples were mounted on a resistively heated copper block whose temperature was maintained constant in the range 250-450°C. The planar motion of the crystal-amorphous interface was monitored in situ by dynamic reflectivity measurements. This technique allows the ion-induced growth rate to be measured with a very high precision. We have observed that this growth rate scales linearly with the energy deposited into elastic collisions at the crystal-amorphous interface by the impinging ions. Moreover, the rate shows an Arrhenius temperature dependence with a well defined activation energy of 0.32±0.05 eV. The dependence of this process on substrate orientation and on impurities either dissolved in the amorphous layer or present at very high concentration at the crystal-amorphous interface is also discussed.

  2. Mechanical response of melt-spun amorphous filaments

    International Nuclear Information System (INIS)

    High-speed melt spinning of a cyclo-olefin polymer (COP) and a copolyamide (CoPA) have been performed. Differential scanning calorimetry curves of the resulting monofilaments show that they remain in an amorphous state even after hot drawing. Wide angle x-ray diffraction patterns of undrawn and drawn COP filaments show that although the material remains in an amorphous state, a degree of orientation is induced in the polymer after drawing. The amorphous filaments show an enhanced bending recovery with respect to different semi-crystalline monofilaments commercially available. However, single fiber axial compressive testing indicates that the amorphous filaments exhibit a compressive modulus value which is 50% lower than what is observed for a reference semi-crystalline PET filament. Analysis of the compressive strains applied by the bending recovery test indicates that while the maximum applied strains remain well within the region of elastic deformation of the amorphous materials, the threshold between elastic and plastic deformation is reached for the semi-crystalline materials. (paper)

  3. Development of amorphous wire type MI sensors for automobile use

    International Nuclear Information System (INIS)

    Amorphous wire type MI sensors have a high sensitivity compared to thin film MI sensors, but there have been reliability problems in developing an amorphous wire type MI sensor for automobile application because of the wide range of operating temperatures. It was difficult to achieve sufficient soldering strength between the amorphous wire and the electrode of the MI chip. In addition, stress is induced in the amorphous wire during soldering thus lowering the temperature stability characteristics. Therefore, we developed a new method for soldering the amorphous wire and a new method for assembly of the MI chip. Together with the redesign of the electronic circuit, these developments have yielded an MI sensor suitable for automobile application. This MI sensor has a sensitivity of 250 mV/Oe, has stable temperature characteristics between -40 deg. C and 85 deg. C and easily passed the thermal shock test, the most stringent durability test for automobile electronic parts. Two different types of products are under development; one is a standard type whose output is linear to the external magnetic field, and the other is a switch type whose output is ON or OFF relative to a threshold magnetic field. Future applications include an ABS sensor, an electronic compass, an automatic tracking system for automobiles and so on

  4. Amorphous Dielectric Thin Films with Extremely Low Mechanical Loss

    Directory of Open Access Journals (Sweden)

    Liu X.

    2015-04-01

    Full Text Available The ubiquitous low-energy excitations are one of the universal phenomena of amorphous solids. These excitations dominate the acoustic, dielectric, and thermal properties of structurally disordered solids. One exception has been a type of hydrogenated amorphous silicon (a-Si:H with 1 at.% H. Using low temperature elastic and thermal measurements of electron-beam evap-orated amorphous silicon (a-Si, we show that TLS can be eliminated in this system as the films become denser and more structurally ordered under certain deposition conditions. Our results demonstrate that TLS are not intrinsic to the glassy state but instead reside in low density regions of the amorphous network. This work obviates the role hydrogen was previously thought to play in removing TLS in a-Si:H and favors an ideal four-fold covalently bonded amorphous structure as the cause for the disappearance of TLS. Our result supports the notion that a-Si can be made a “perfect glass” with “crystal-like” properties, thus offering an encouraging opportunity to use it as a simple crystal dielectric alternative in applications, such as in modern quantum devices where TLS are the source of dissipation, decoherence and 1/f noise.

  5. Amorphous metal distribution transformers: The energy-efficient alternative

    Energy Technology Data Exchange (ETDEWEB)

    Garrity, T.F. [GE Power Systems, Schenectady, NY (United States)

    1994-12-31

    Amorphous metal distribution transformers have been commercially available for the past 13 years. During that time, they have realized the promise of exceptionally high core efficiency as compared to silicon steel transformer cores. Utility planners today must consider all options available to meet the requirements of load growth. While additional generation capacity will be added, many demand-side initiatives are being undertaken as complementary programs to generation expansion. The efficiency improvement provided by amorphous metal distribution transformers deserves to be among the demand-side options. The key to understanding the positive impact of amorphous metal transformer efficiency is to consider the aggregate contribution those transformers can make towards demand reduction. It is estimated that distribution transformer core losses comprise at least 1% of the utility`s peak demand. Because core losses are continuous, any significant reduction in their magnitude is of great significance to the planner. This paper describes the system-wide economic contributions amorphous metal distribution transformers can make to a utility and suggests evaluation techniques that can be used. As a conservation tool, the amorphous metal transformer contributes to reduced power plant emissions. Calibration of those emissions reductions is also discussed in the paper.

  6. Amorphous and crystalline blast furnace slag

    International Nuclear Information System (INIS)

    Full text: One of the by-products of iron production from a blast furnace is the slag, Generally 250-300 kg of slag is produced per ton of iron. Liquid blast furnace slag can either be cooled quickly by quenching in a granulator or more slowly in air. The air-cooled product is crushed and sized for use as an aggregate in concrete. The granulated slag is ground to form ground granulated slag, which is a cost-effective supplementary cementitious material. Blends of ground granulated slag and Portland cement produce a cementitious paste that is more resistant to chloride penetration than pastes made from the Portland cement alone. In this study neutron diffraction techniques were used to examine samples of air-cooled and granulated slags from Australian Steel Mill Services stock piles at Port Kembla. Sourced from the same blast furnace, the materials should be expected to posses similar elemental chemistry. The mineral compositions would be different due to the rate of cooling each slag was subjected to. Samples, 15 grams in mass, were mounted in a vanadium can and diffraction patterns were measured using the SLAD instrument on the Reactor R-2 at the Studvik Neutron Research Laboratory in Sweden. The diffraction patterns were transformed into radial distribution functions using the reverse Monte Carlo program, MCGR. The granulated slag showed no diffraction peaks while the air cooled slag showed a crystalline product that can be identified by x-ray diffraction. The radial distribution functions showed differences that were consistent with the granulated slag being amorphous and the air-cooled slag crystalline. Both slag samples showed peaks in the radial distribution function at 1.8 Angstroms and 2.8 Angstroms. The greatest anomaly was a feature about 2.5 Angstroms found only in the radial distribution function for the granulated slag. This demonstration showed that there are differences in the short range bonding between the two compounds. We are currently

  7. Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization

    International Nuclear Information System (INIS)

    A self-organized fringe pattern in a single amorphous mark of a GeTe thin film was formed by multiple femtosecond pulse amorphization. Micro Raman measurement indicates that the fringe is a periodic alternation between crystalline and amorphous phases. The period of the fringe is smaller than the irradiation wavelength and the direction is parallel to the polarization direction. Snapshot observation revealed that the fringe pattern manifests itself via a complex but coherent process, which is attributed to crystallization properties unique to a nonthermally amorphized phase and the distinct optical contrast between crystalline and amorphous phases.

  8. Advances in chemical synthesis and application of metal-metalloid amorphous alloy nanoparticulate catalysts

    Institute of Scientific and Technical Information of China (English)

    WU Zhijie; LI Wei; ZHANG Minghui; TAO Keyi

    2007-01-01

    This paper reviews the advances in the chemical synthesis and application of metal-metalloid amorphous alloy nanoparticles consisting of transition metal (M) and metalloid elements (B,P).After a brief introduction on the history of amorphous alloy catalysts,the paper focuses on the properties and characterization of amorphous alloy catalysts,and recent developments in the solution-phase synthesis of amorphous alloy nanoparticles.This paper further outlines the applications of amorphous alloys,with special emphasis on the problems and strategies for the application of amorphous alloy nanoparticles in catalytic reactions.

  9. Lewy Body Disease

    Science.gov (United States)

    Lewy body disease is one of the most common causes of dementia in the elderly. Dementia is the loss of mental ... to affect normal activities and relationships. Lewy body disease happens when abnormal structures, called Lewy bodies, build ...

  10. Body Odor (For Girls)

    Science.gov (United States)

    ... Gynecology Medical Conditions Nutrition & Fitness Emotional Health Body Odor Posted under Health Guides . Updated 26 June 2015. + ... moisture, your body cools down. Where does body odor come from? When sweat mixes with the natural ...

  11. Body & Lifestyle Changes

    Science.gov (United States)

    ... Close X Home > Pregnancy > Body & lifestyle changes Body & lifestyle changes E-mail to a friend Please fill ... between pregnancies Nutrition, weight & fitness Prenatal care Body & lifestyle changes Is it safe? Labor & birth Postpartum care ...

  12. Inclusion Body Myositis

    Science.gov (United States)

    ... Awards Enhancing Diversity Find People About NINDS NINDS Inclusion Body Myositis Information Page Table of Contents (click ... and Information Additional resources from MedlinePlus What is Inclusion Body Myositis? Inclusion body myositis (IBM) is one ...

  13. Connecting Local Yield Stresses with Plastic Activity in Amorphous Solids

    Science.gov (United States)

    Patinet, Sylvain; Vandembroucq, Damien; Falk, Michael L.

    2016-07-01

    In model amorphous solids produced via differing quench protocols, a strong correlation is established between local yield stress measured by direct local probing of shear stress thresholds and the plastic rearrangements observed during remote loading in shear. This purely local measure shows a higher predictive power for identifying sites of plastic activity when compared with more conventional structural properties. Most importantly, the sites of low local yield stress, thus defined, are shown to be persistent, remaining predictive of deformation events even after fifty or more such plastic rearrangements. This direct and nonperturbative approach gives access to relevant transition pathways that control the stability of amorphous solids. Our results reinforce the relevance of modeling plasticity in amorphous solids based on a gradually evolving population of discrete and local zones preexisting in the structure.

  14. Lasing modes in polycrystalline and amorphous photonic structures

    International Nuclear Information System (INIS)

    We systematically studied the lasing characteristics in photonic polycrystalline and amorphous structures. 2D arrays of air holes were fabricated in a GaAs membrane. InAs quantum dots embedded in the membrane provide gain for lasing under optical pumping. The lasing modes are spatially localized, and blue shift as the structural order becomes short ranged. Our three-dimensional numerical simulations reveal that the out-of-plane leakage of the lasing mode dominates over the in-plane leakage. The lasing modes in a photonic polycrystalline move away from the center frequency of the photonic band gap to reduce the out-of-plane leakage. In a photonic amorphous structure, the short-range order improves optical confinement and enhances the quality factor of resonances. Understanding the behavior of photonic polycrystalline laser and amorphous laser opens the possibility of controlling lasing characteristic by varying the degree of structural order.

  15. Amorphous intergranular phases control the properties of rodent tooth enamel

    Science.gov (United States)

    Gordon, Lyle M.; Cohen, Michael J.; MacRenaris, Keith W.; Pasteris, Jill D.; Seda, Takele; Joester, Derk

    2015-02-01

    Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg2+, F-, and CO32-. However, determining the distribution of these minor ions is challenging. We show—using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques—that in unpigmented rodent enamel, Mg2+ is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue.

  16. Field Emission Properties of Nitrogen-doped Amorphous Carbon Films

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nitrogen-doped amorphous carbon thin films are deposited on the ceramic substrates coated with Ti film by using direct current magnetron sputtering technique at N2 and Ar gas mixture atmosphere during deposition. The field emission properties of the deposited films have been investigated. The threshold field as low as 5.93V/μm is obtained and the maximum current density increases from 4μA/cm2 to 20.67μA/cm2 at 10.67V/μm comparing with undoped amorphous film. The results show that nitrogen doping plays an important role in field emission of amorphous carbon thin films.

  17. Amorphous silicon carbide coatings for extreme ultraviolet optics

    Science.gov (United States)

    Kortright, J. B.; Windt, David L.

    1988-01-01

    Amorphous silicon carbide films formed by sputtering techniques are shown to have high reflectance in the extreme ultraviolet spectral region. X-ray scattering verifies that the atomic arrangements in these films are amorphous, while Auger electron spectroscopy and Rutherford backscattering spectroscopy show that the films have composition close to stoichiometric SiC, although slightly C-rich, with low impurity levels. Reflectance vs incidence angle measurements from 24 to 1216 A were used to derive optical constants of this material, which are presented here. Additionally, the measured extreme ultraviolet efficiency of a diffraction grating overcoated with sputtered amorphous silicon carbide is presented, demonstrating the feasibility of using these films as coatings for EUV optics.

  18. Influence of microstructure and hydrogen concentration on amorphous silicon crystallization

    International Nuclear Information System (INIS)

    Hydrogenated amorphous silicon samples were deposited on glass substrates at different temperatures by high frequency plasma-enhanced chemical vapor deposition. In this way, samples with different hydrogen concentrations and structures were obtained. The transition from an amorphous to a crystalline material, induced by a four-step thermal annealing sequence, has been followed. Effusion of hydrogen from the films plays an important role in the nucleation and growth mechanisms of crystalline silicon grains. Measurements of hydrogen concentrations, Raman scattering, X-ray diffraction and UV reflectance showed that an enhanced crystallization was obtained on samples deposited at lower substrate temperatures. A correlation between these measurements allows to analyze the evolution of structural properties of the samples. The presence of voids in the material, related to disorder in the amorphous matrix, results in a better quality of the resulting nanocrystalline silicon thin films.

  19. Features of exoelectron emission in amorphous metallic alloys

    CERN Document Server

    Veksler, A S; Morozov, I L; Semenov, A L

    2001-01-01

    The peculiarities of the photothermostimulated exoelectron emission in amorphous metallic alloys of the Fe sub 6 sub 4 Co sub 2 sub 1 B sub 1 sub 5 composition are studied. It is established that the temperature dependences of the exoelectron emission spectrum adequately reflect the two-stage character of the amorphous alloy transition into the crystalline state. The exoelectron emission spectrum is sensitive to the variations in the modes of the studied sample thermal treatment. The thermal treatment of the amorphous metallic alloy leads to growth in the intensity of the exoelectrons yield. The highest growth in the intensify of the exoelectron emission was observed in the alloys at the initial stage of their crystallization

  20. Molecular Hydrogen Formation on Amorphous Silicates Under Interstellar Conditions

    CERN Document Server

    Perets, H B; Biham, O; Vidali, G; Li, L; Swords, S; Congiu, E; Roser, J; Manico, G; Brucato, J R; Pirronello, V; Perets, Hagai B.; Lederhendler, Adina; Biham, Ofer; Vidali, Gianfranco; Li, Ling; Swords, Sol; Congiu, Emanuele; Roser, Joe; Manico, Giulio; Brucato, John Robert; Pirronello, Valerio

    2007-01-01

    Experimental results on the formation of molecular hydrogen on amorphous silicate surfaces are presented for the first time and analyzed using a rate equation model. The energy barriers for the relevant diffusion and desorption processes are obtained. They turn out to be significantly higher than those obtained earlier for polycrystalline silicates, demonstrating the importance of grain morphology. These barriers are used in order to evaluate the efficiency of molecular hydrogen formation on amorphous silicate grains under interstellar conditions. It is found that unlike polycrystalline silicates, amorphous silicate grains are efficient catalysts of H_2 formation within a temperature range which is relevant to diffuse interstellar clouds (but not to photo-dissociation regions, where grain temperatures are higher). The results also indicate that the hydrogen molecules are thermalized with the surface and desorb with low kinetic energy. Thus, they are unlikely to occupy highly excited states.

  1. Structural models for amorphous transition metal binary alloys

    International Nuclear Information System (INIS)

    A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe0.75P0.25, Ni0.75P0.25, Co0.75P0.25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys

  2. Electrochromic colour centres in amorphous tungsten trioxide thin films

    International Nuclear Information System (INIS)

    Amorphous tungsten trioxide films, investigated by the Raman scattering method, are shown to be composed of a spatial network of tightly bound (WO6)sub(n).mH2O clusters with a large number of terminal oxygen W(double bond)O and W-O-W bonds between clusters. The injected electrons in an amorphous tungsten trioxide film are localized in the tungsten 5d orbitals in an axially distorted octahedron, as is shown by ESR analysis. The optical absorption of a coloured amorphous tungsten trioxide film, as has previously been proposed, can be satisfactorily described by an intervalence charge-transfer transition between localized W5+ and W6+ states. (Auth.)

  3. Influence of microstructure and hydrogen concentration on amorphous silicon crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Budini, N., E-mail: nbudini@intec.unl.edu.a [Instituto de Desarrollo Tecnologico para la Industria Quimica, UNL-CONICET, Gueemes 3450, S3000GLN Santa Fe (Argentina); Rinaldi, P.A. [Instituto de Desarrollo Tecnologico para la Industria Quimica, UNL-CONICET, Gueemes 3450, S3000GLN Santa Fe (Argentina); Schmidt, J.A.; Arce, R.D.; Buitrago, R.H. [Instituto de Desarrollo Tecnologico para la Industria Quimica, UNL-CONICET, Gueemes 3450, S3000GLN Santa Fe (Argentina); Facultad de Ingenieria Quimica, UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2010-07-01

    Hydrogenated amorphous silicon samples were deposited on glass substrates at different temperatures by high frequency plasma-enhanced chemical vapor deposition. In this way, samples with different hydrogen concentrations and structures were obtained. The transition from an amorphous to a crystalline material, induced by a four-step thermal annealing sequence, has been followed. Effusion of hydrogen from the films plays an important role in the nucleation and growth mechanisms of crystalline silicon grains. Measurements of hydrogen concentrations, Raman scattering, X-ray diffraction and UV reflectance showed that an enhanced crystallization was obtained on samples deposited at lower substrate temperatures. A correlation between these measurements allows to analyze the evolution of structural properties of the samples. The presence of voids in the material, related to disorder in the amorphous matrix, results in a better quality of the resulting nanocrystalline silicon thin films.

  4. Nanovoid formation by change in amorphous structure through the annealing of amorphous Al2O3 thin films

    International Nuclear Information System (INIS)

    The formation mechanism of a high density of nanovoids by annealing amorphous Al2O3 thin films prepared by an electron beam deposition method was investigated. Transmission electron microscopy observations revealed that nanovoids ∼1-2 nm in size were formed by annealing amorphous Al2O3 thin films at 973 K for 1-12 h, where the amorphous state was retained. The elastic stiffness, measured by a picosecond laser ultrasound method, and the density, measured by X-ray reflectivity, increased drastically after the annealing process, despite nanovoid formation. These increases indicate a change in the amorphous structure during the annealing process. Molecular dynamics simulations indicated that an increase in stable AlO6 basic units and the change in the ring distribution lead to a drastic increase in both the elastic stiffness and the density. It is probable that a pre-annealed Al2O3 amorphous film consists of unstable low-density regions containing a low fraction of stable AlO6 units and stable high-density regions containing a high fraction of stable AlO6 units. Thus, local density growth in the unstable low-density regions during annealing leads to nanovoid formation (i.e., local volume shrinkage).

  5. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag87.5Cu12.5-alloy (10 nm)/DLC (140 nm)/Ag87.5Cu12.5-alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  6. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, K

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  7. Foreign body orbital cyst

    DEFF Research Database (Denmark)

    Yazdanfard, Younes; Heegard, Steffen; Fledelius, Hans C.;

    2001-01-01

    Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology......Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology...

  8. Modelling structure and properties of amorphous silicon boron nitride ceramics

    OpenAIRE

    Johann Christian Schön; Alexander Hannemann; Guneet Sethi; Ilya Vladimirovich Pentin; Martin Jansen

    2011-01-01

    Silicon boron nitride is the parent compound of a new class of high-temperature stable amorphous ceramics constituted of silicon, boron, nitrogen, and carbon, featuring a set of properties that is without precedent, and represents a prototypical random network based on chemical bonds of predominantly covalent character. In contrast to many other amorphous materials of technological interest, a-Si3B3N7 is not produced via glass formation, i.e. by quenching from a melt, the reason being that th...

  9. The Role of Configurational Entropy in Amorphous Systems

    Directory of Open Access Journals (Sweden)

    Kirsten A. Graeser

    2010-05-01

    Full Text Available Configurational entropy is an important parameter in amorphous systems. It is involved in the thermodynamic considerations, plays an important role in the molecular mobility calculations through its appearance in the Adam-Gibbs equation and provides information on the solubility increase of an amorphous form compared to its crystalline counterpart. This paper presents a calorimetric method which enables the scientist to quickly determine the values for the configurational entropy at any temperature and obtain the maximum of information from these measurements.

  10. Avalanche size scaling in sheared three-dimensional amorphous solid

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Lemaître, A.;

    2007-01-01

    We study the statistics of plastic rearrangement events in a simulated amorphous solid at T=0. Events are characterized by the energy release and the "slip volume", the product of plastic strain and system volume. Their distributions for a given system size L appear to be exponential, but a chara......We study the statistics of plastic rearrangement events in a simulated amorphous solid at T=0. Events are characterized by the energy release and the "slip volume", the product of plastic strain and system volume. Their distributions for a given system size L appear to be exponential...

  11. Mechanism of Germanium-Induced Perimeter Crystallization of Amorphous Silicon

    OpenAIRE

    Hakim, M. M. A.; Ashburn, P.

    2007-01-01

    We report a study aimed at highlighting the mechanism of a new amorphous silicon crystallization phenomenon that originates from the perimeter of a germanium layer during low-temperature annealing (500°C). Results are reported on doped and undoped amorphous silicon films, with thicknesses in the range 40–200 nm, annealed at a temperature of 500 or 550°C. A comparison is made of crystallization arising from Ge and SiGe layers and the role of damage from a high-dose fluorine implant is investig...

  12. Shape anisotropy in zero-magnetostrictive rapidly solidified amorphous nanowires

    Science.gov (United States)

    Rotărescu, C.; Atitoaie, A.; Stoleriu, L.; Óvári, T.-A.; Lupu, N.; Chiriac, H.

    2016-04-01

    The magnetic behavior of zero-magnetostrictive rapidly solidified amorphous nanowires has been investigated in order to understand their magnetic bistability. The study has been performed both experimentally - based on inductive hysteresis loop measurements - and theoretically, by means of micromagnetic simulations. Experimental hysteresis loops have shown that the amorphous nanowires display an axial magnetic bistability, characterized by a single-step magnetization reversal when the applied field reaches a critical value called switching field. The simulated loops allowed us to understand the effect of shape anisotropy on coercivity. The results are key for understanding and controlling the magnetization processes in these novel nanowires, with important application possibilities in new miniaturized sensing devices.

  13. Potential of amorphous and microcrystalline silicon solar cells

    OpenAIRE

    Meier, Johannes; Spitznagel, J.; Kroll, U.; Bucher, C.; Faÿ Sylvie; Moriarty, T.; Shah, Arvind

    2008-01-01

    Low pressure chemical vapour deposition (LP-CVD) ZnO as front transparent conductive oxide (TCO), developed at IMT, has excellent light-trapping properties for a-Si:H p-i-n single-junction and ‘micromorph’ (amorphous/microcrystalline silicon) tandem solar cells. A stabilized record efficiency of 9.47% has independently been confirmed by NREL for an amorphous silicon single-junction p-i-n cell (~1 cm2) deposited on LP-CVD ZnO coated glass. Micromorph tandem cells with an initial efficiency of ...

  14. Electrical characteristics of amorphous iron-tungsten contacts on silicon

    OpenAIRE

    Finetti, M.; Pan, E. T-S.; Suni, I.; Nicolet, M-A.

    1983-01-01

    The electrical characteristics of amorphous Fe-W contacts have been determined on both p-type and n-type silicon. The amorphous films were obtained by cosputtering from a composite target. Contact resistivities, pc=1×10^−7 and pc=2.8×10^−6, were measured on n+ and p+ silicon, respectively. These values remain constant after thermal treatment up to at least 500°C. A barrier height, φBn=0.61 V, was measured on n-type silicon.

  15. Electrical characteristics of amorphous iron-tungsten contacts on silicon

    Science.gov (United States)

    Finetti, M.; Pan, E. T.-S.; Nicolet, M.-A.; Suni, I.

    1983-01-01

    The electrical characteristics of amorphous Fe-W contacts have been determined on both p-type and n-type silicon. The amorphous films were obtained by cosputtering from a composite target. Contact resistivities of 1 x 10 to the -7th and 2.8 x 10 to the -6th were measured on n(+) and p(+) silicon, respectively. These values remain constant after thermal treatment up to at least 500 C. A barrier height of 0.61 V was measured on n-type silicon.

  16. Hydrogenated amorphous silicon deposited by ion-beam sputtering

    Science.gov (United States)

    Lowe, V. E.; Henin, N.; Tu, C.-W.; Tavakolian, H.; Sites, J. R.

    1981-01-01

    Hydrogenated amorphous silicon films 1/2 to 1 micron thick were deposited on metal and glass substrates using ion-beam sputtering techniques. The 800 eV, 2 mA/sq cm beam was a mixture of argon and hydrogen ions. The argon sputtered silicon from a pure (7.6 cm) single crystal wafer, while the hydrogen combined with the sputtered material during the deposition. Hydrogen to argon pressure ratios and substrate temperatures were varied to minimize the defect state density in the amorphous silicon. Characterization was done by electrical resistivity, index of refraction and optical absorption of the films.

  17. Surface orientation effects in crystalline-amorphous silicon interfaces

    OpenAIRE

    Nolan, Michael; Legesse, Merid; Fagas, Giorgos

    2012-01-01

    In this paper we present the results of empirical potential and density functional theory (DFT) studies of models of interfaces between amorphous silicon (a-Si) or hydrogenated amorphous Si (a-Si:H) and crystalline Si (c-Si) on three unreconstructed silicon surfaces, namely (100), (110) and (111). In preparing models of a-Si on c-Si, melting simulations are run with classical molecular dynamics (MD) at 3000 K for 10 ps to melt part of the crystalline surface and the structure is quenched to 3...

  18. Unveiling the complex electronic structure of amorphous metal oxides

    OpenAIRE

    Arhammar, C.; Pietzsch, A; Bock, N.; Holmstrom, E.; Araujo, C. M.; Grasjo, J.; Zhao, S.; Green, S; Peery, T.; Hennies, F.; Amerioun, S.; Fohlisch, A.; Schlappa, J.; Schmitt, T; Strocov, V. N.

    2011-01-01

    Amorphous materials represent a large and important emerging area of material’s science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today’s integrated circuits. Therefore the investigation of defect states in these structures is crucial....

  19. Elastic properties of amorphous thin films studied by Rayleigh waves

    International Nuclear Information System (INIS)

    Physical vapor deposition in ultra-high vacuum was used to co-deposit nickel and zirconium onto quartz single crystals and grow amorphous Ni1-xZrx (0.1 < x < 0.87) thin film. A high-resolution surface acoustic wave technique was developed for in situ measurement of film shear moduli. The modulus has narrow maxima at x = 0. 17, 0.22, 0.43, 0.5, 0.63, and 0.72, reflecting short-range ordering and formation of aggregates in amorphous phase. It is proposed that the aggregates correspond to polytetrahedral atom arrangements limited in size by geometrical frustration

  20. Optical multilayer films based on an amorphous fluoropolymer

    International Nuclear Information System (INIS)

    Multilayered coatings were made by physical vapor deposition (PVD) of a perfluorinated amorphous polymer, Teflon AF2400, and with other optical materials. A high reflector for 1064 nm light was made with ZnS and AF2400. An all-organic 1064 nm reflector was made from AF2400 and polyethylene. Oxide (HfO2 and SiO2) compatibility with AF2400 was also tested. The multilayer morphologies were influenced by coating stress and unintentional temperature rises from the PVD process. Analysis by liquid nuclear magnetic resonance of the thin films showed slight compositional variations between the coating and starting materials of perfluorinated amorphous polymers

  1. Clathrate hydrate formation in amorphous cometary ice analogs in vacuo

    Science.gov (United States)

    Blake, David; Allamandola, Louis; Sandford, Scott; Hudgins, Doug; Freund, Friedemann

    1991-01-01

    Experiments conducted in clathrate hydrates with a modified electron microscope have demonstrated the possibility of such compounds' formation during the warming of vapor-deposited amorphous ices in vacuo, through rearrangements in the solid state. Subsolidus crystallization of compositionally complex amorphous ices may therefore be a general and ubiquitous process. Phase separations and microporous textures thus formed may be able to account for such anomalous cometary phenomena as the release of gas at large radial distances from the sun and the retention of volatiles to elevated temperatures.

  2. Problems of substance amorphization, relationship with electroplasticity and superconductivity

    International Nuclear Information System (INIS)

    Several measurements of the coefficient of thermal expansion (CTE) of copper samples as wires enriched by stable isotopes 63Cu and 65Cu were carried out. Temperatures of abnormal deviation from the smooth shape of CTE curves are determined. It is shown that in each curve one of temperature abnormality was related with the amorphous state of the substance, while another-with crystalline state of the substance. Debay's maximum characteristic temperatures for each isotopes in it's different phases are determined. Evidence of the fact that EPD promotes amorphization of substances has been obtained.

  3. Containerless synthesis of amorphous and nanophase organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Benmore, Chris J.; Weber, Johann R.

    2016-05-03

    The invention provides a method for producing a mixture of amorphous compounds, the method comprising supplying a solution containing the compounds; and allowing at least a portion of the solvent of the solution to evaporate while preventing the solute of the solution from contacting a nucleation point. Also provided is a method for transforming solids to amorphous material, the method comprising heating the solids in an environment to form a melt, wherein the environment contains no nucleation points; and cooling the melt in the environment.

  4. Light-induced metastable structural changes in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H. [Univ. of Chicago, IL (United States)

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  5. Structure-property relations in amorphous carbon for photovoltaics

    OpenAIRE

    Risplendi, Francesca; Bernardi, Marco; Cicero, Giancarlo; Grossman, Jeffrey C.

    2014-01-01

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles mol...

  6. Optical contrast in ion-implanted amorphous silicon carbide nanostructures

    International Nuclear Information System (INIS)

    Topographic and optical contrasts formed by Ga+ ion irradiation of thin films of amorphous silicon carbide have been investigated with scanning near-field optical microscopy. The influence of ion-irradiation dose has been studied in a pattern of sub-micrometre stripes. While the film thickness decreases monotonically with ion dose, the optical contrast rapidly increases to a maximum value and then decreases gradually. The results are discussed in terms of the competition between the effects of ion implantation and surface milling by the ion beam. The observed effects are important for uses of amorphous silicon carbide thin films as permanent archives in optical data storage applications

  7. Adjustable ultraviolet sensitive detectors based on amorphous silicon

    OpenAIRE

    TOPIC, M; Stiebig, H.; Krause, M.; Wagner, H.

    2001-01-01

    Thin-film detectors made of hydrogenated amorphous silicon (LI-Si:H) and amorphous silicon carbide (a-SiC:H) with adjustable sensitivity in the ultraviolet (UV) spectrum were developed. Thin PIN diodes deposited on glass substrates in N-I-P layer sequence with a total thickness of down to 33 nm and a semitransparent Ag front contact were fabricated. The optimized diodes with a 10 nm Ag contact exhibit spectral response values above 80 mA/W in the wavelength range from 295 to 395 nm with a max...

  8. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-08-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young\\'s modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young\\'s modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  9. Development of empirical potentials for amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Carre, A.

    2007-09-15

    Amorphous silica (SiO{sub 2}) is of great importance in geoscience and mineralogy as well as a raw material in glass industry. Its structure is characterized as a disordered continuous network of SiO{sub 4} tetrahedra. Many efforts have been undertaken to understand the microscopic properties of silica by classical molecular dynamics (MD) simulations. In this method the interatomic interactions are modeled by an effective potential that does not take explicitely into account the electronic degrees of freedom. In this work, we propose a new methodology to parameterize such a potential for silica using ab initio simulations, namely Car-Parrinello (CP) method [Phys. Rev. Lett. 55, 2471 (1985)]. The new potential proposed is compared to the BKS potential [Phys. Rev. Lett. 64, 1955 (1990)] that is considered as the benchmark potential for silica. First, CP simulations have been performed on a liquid silica sample at 3600 K. The structural features so obtained have been compared to the ones predicted by the classical BKS potential. Regarding the bond lengths the BKS tends to underestimate the Si-O bond whereas the Si-Si bond is overestimated. The inter-tetrahedral angular distribution functions are also not well described by the BKS potential. The corresponding mean value of the SiOSi angle is found to be {approx_equal} 147 , while the CP yields to a SiOSi angle centered around 135 . Our aim is to fit a classical Born-Mayer/Coulomb pair potential using ab initio calculations. To this end, we use the force-matching method proposed by Ercolessi and Adams [Europhys. Lett. 26, 583 (1994)]. The CP configurations and their corresponding interatomic forces have been considered for a least square fitting procedure. The classical MD simulations with the resulting potential have lead to a structure that is very different from the CP one. Therefore, a different fitting criterion based on the CP partial pair correlation functions was applied. Using this approach the resulting

  10. Role of amorphous silicon domains on Er3+ emission in the Er-doped hydrogenated amorphous silicon suboxide film

    Institute of Scientific and Technical Information of China (English)

    陈长勇; 陈维德; 李国华; 宋淑芳; 丁琨; 许振嘉

    2003-01-01

    An investigation on the correlation between amorphous Si (a-Si) domains and Er3+ emission in the Er-doped hydrogenated amorphous silicon suboxide (a-Si:O:H) film is presented. On one hand, a-Si domains provide sufficient carriers for Er3+ carrier-mediated excitation which has been proved to be the highest excitation path for Er3+ ion; on the other hand, hydrogen diffusion from a-Si domains to amorphous silicon oxide (a-SiOx) matrix during annealing has been found and this possibly decreases the number of nonradiative centres around Er3+ ions. This study provides a better understanding of the role of a-Si domains on Er3+ emission in a-Si:O:Hfilms.

  11. Role of amorphous silicon domains of Er3+ emission in the Er—doped hydrogenated amorphous silicon suboxide film

    Institute of Scientific and Technical Information of China (English)

    ChenChang-Yong; ChenWei-De; LeGuo-Hua; SongShu-Fang; DingKun; XuZhen-Jia

    2003-01-01

    An investigation on the correlation between amorphous Si(a-Si) domains and Er3+ emission in the Er-doped hydrogenated amorphous silicon suboxide (a-Si:O:H) film is presented. On one hand, a-Si domains provide sufficient carrlers for Er3+ carrier-mediated excitation which has been proved to be the highest excitation path for Er3+ ion; on the other hand, hydrogen diffusion from a-Si domains to amorphous silicon oxide (a-SiOx) matrix during annealing has been found and this possibly decreases the number of nonradiative centres around Er3+ ions. This study provides a better understanding of the role of a-Si domains on Er3+ emission in a-Si:O:H films.

  12. A percolation theory approach to the implantation induced diamond to amorphous-carbon transition

    International Nuclear Information System (INIS)

    The physical fact that diamond is electrically insulating while amorphous carbon and graphite are conducting is used in the present work to study the local damage that each implanted ion creates around its track and to conclude about the processes through which implanted diamond turns amorphous. Experimental data for the conductivity of Sb implanted diamond for various geometries, energies and doses are analyzed by the use of percolation theory. It seems that the amorphization of implanted diamond proceeds gradually with no well defined amorphous regions formed around the ion track. Amorphization in implanted diamond seems to occur in a way different than is believed to be the case for implanted silicon, where some direct amorphization around an ion track is suggested. This major difference can be attributed to the abnormally large change in densities between diamond and amorphous carbon or graphite which suppresses the growth of local amorphous regions in diamond. (author)

  13. Amorphous Metal Composites for use in Long-Life, Low-Temperature Gearboxes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed concept is to explore the use of Amorphous Metals (AMs) and Amorphous Metal Composites (AMCs) (fabricated entirely at JPL) for use as gears and bearing...

  14. Body Matters: Narratives of the Body

    OpenAIRE

    Asandi, Iren; Filipovska, Kalina; Neault, Megan; Olsen, Sara Høier

    2014-01-01

    This project engages the notion of the subjective body in a pasture of social constructions in order to gather an understanding of the narratives created by women about their bodies in relation to cosmetic surgery. The empirical data for this project comes from our virtual ethnographic research on the various forums from the MyLooks website. Moreover, perspectives regarding the body, beauty ideals and theoretical positions from Kathryn Morgan and Kathy Davis fill out the structure of the proj...

  15. Determination of Star Bodies from -Centroid Bodies

    Indian Academy of Sciences (India)

    Lujun Guo; Gangsong Leng

    2013-11-01

    In this paper, we prove that an origin-symmetric star body is uniquely determined by its -centroid body. Furthermore, using spherical harmonics, we establish a result for non-symmetric star bodies. As an application, we show that there is a unique member of $_p\\langle K \\rangle$ characterized by having larger volume than any other member, for all real ≥ 1 that are not even natural numbers, where $_p\\langle K \\rangle$ denotes the -centroid equivalence class of the star body .

  16. Media and Body Image

    Science.gov (United States)

    ... Management Education & Events Advocacy For Patients About ACOG Media and Body Image Home For Patients Search FAQs Media and Body ... and Body Image TFAQ002, June 2016 PDF Format Media and Body Image Especially For Teens How can the media make ...

  17. Reinforced Airfoil Shaped Body

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to an airfoil shaped body with a leading edge and a trailing edge extending along the longitudinal extension of the body and defining a profile chord, the airfoil shaped body comprising an airfoil shaped facing that forms the outer surface of the airfoil shaped body...

  18. Adolescence and Body Image.

    Science.gov (United States)

    Weinshenker, Naomi

    2002-01-01

    Discusses body image among adolescents, explaining that today's adolescents are more prone to body image distortions and dissatisfaction than ever and examining the historical context; how self-image develops; normative discontent; body image distortions; body dysmorphic disorder (BDD); vulnerability of boys (muscle dysmorphia); who is at risk;…

  19. Avalanche size scaling in sheared three-dimensional amorphous solid

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Lemaître, A.;

    2007-01-01

    We study the statistics of plastic rearrangement events in a simulated amorphous solid at T=0. Events are characterized by the energy release and the "slip volume", the product of plastic strain and system volume. Their distributions for a given system size L appear to be exponential, but a...

  20. Thermally induced structural consolidation (physical aging) of amorphous polymers

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Kubát, J.

    Yonezawa: Venture business laboratory in Yamagata university, 2004. s. 16-23. [Micro-symposium on polymer melt rheology and processing in Yamagata university 2004. 17.03.2004-18.03.2004, Yonezawa] R&D Projects: GA AV ČR IAA2060401 Keywords : amorphous polymers * thermodynamics * experiments Subject RIV: BK - Fluid Dynamics

  1. Earthquake lubrication and healing explained by amorphous nanosilica

    Science.gov (United States)

    Rowe, C. D.; Lamothe, K. G.; Rempe, M.; Andrews, M.; Mitchell, T. M.; Di Toro, G.; White, J. C.

    2015-12-01

    Earthquake slip and rupture propagation require fault strength to decrease during slip. Extreme shear weakening observed in laboratory friction experiments on silica-rich rocks has been explained by the formation of a hydrated amorphous 'silica gel' on the slip surface, but the mode of formation and deformation behavior of this material are not known. In addition, the wear material displays time-dependent strengthening on timescales of hours to days. We performed shearing experiments on chert rocks and analyzed the wear material formed at a range of slip rates from 10-4 - 10-1 m/s. We show by transmission electron microscopy (TEM) and X-ray diffraction that silica lubrication is the result of the formation of amorphous nanopowder rather than a gel. The nanopowder has distinct structure and properties when compared to commercially available amorphous silica nanoparticles, which result from the degree and distribution of hydration and the style of bond strain within particles (observed by Raman spectroscopy and FTIR). The lubrication effect is due to intra-particle plasticity, even at low temperature and interparticle lubrication caused by trapping of water layers between hydrated surfaces. The hours to days timescale of healing may be explained by the natural time-dependent sintering between the hydrated surfaces of the nanopowder. Formation of amorphous silica nanopowders during slip can explain the general characteristics of earthquake ruptures, including the timescales of coseismic weakening and post-seismic healing.

  2. Strain sensor system based on amorphous ferromagnetic ribbons

    Czech Academy of Sciences Publication Activity Database

    Jančárik, V.; Švec, P.; Kraus, Luděk

    2002-01-01

    Roč. 53, 10/S (2002), s. 92-94. ISSN 1335-3632. [Magnetic Measurements'02. Bratislava, 11.09.2002-13.09.2002] Grant ostatní: NATO(XX) SfP 973649 Institutional research plan: CEZ:AV0Z1010914 Keywords : strain sensor * magnetoelastic effect * amorphous ferromagnetic Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Evolution of clusters in energetic heavy ion bombarded amorphous graphite

    CERN Document Server

    Akhtar, M N; Ahmad, Shoaib

    2016-01-01

    Carbon clusters have been generated by a novel technique of energetic heavy ion bombardment of amorphous graphite. The evolution of clusters and their subsequent fragmentation under continuing ion bombardment is revealed by detecting various clusters in the energy spectra of the direct recoils emitted as a result of collision between ions and the surface constituents.

  4. Influence of polymer content on stabilizing milled amorphous salbutamol sulphate.

    Science.gov (United States)

    Balani, P N; Wong, S Y; Ng, W K; Widjaja, E; Tan, R B H; Chan, S Y

    2010-05-31

    The study investigates the influence of polyvinyl pyrrolidone (PVP) concentration on stabilizing the amorphous form of salbutamol sulphate (SS) before and after storage under ambient and elevated humidity conditions. Different mass ratios of SS and PVP (0-90wt%) were co-milled using a planetary ball mill. X-ray powder diffraction (XRPD), high sensitivity differential scanning calorimetry (HSDSC), dynamic vapor sorption (DVS), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and Raman microscopy (RM) were used to analyze the stability of the co-milled mixtures against heat and humidity treatments as well as storage at different humidity conditions. Prior storage, DSC and DVS analyses revealed that re-crystallization of amorphous SS was suppressed above PVP content of 33 wt%. Probable hydrogen bond interaction between SS and PVP was found in FT-IR analysis. XRPD diffractograms and SEM analysis showed stability against re-crystallization was achieved in the co-milled mixtures with a minimum PVP content of 80 wt% after storage. Homogeneous distribution of SS and PVP from RM analysis showed fine clustering of SS and PVP, suggesting the formation of an amorphous dispersion at molecular level. The results provide insights on the application of thermal and humidity treatments, accelerated stability testing and investigations on drug-excipient interactions to predict the minimum ratio of an excipient for stabilizing the amorphous state of a milled API. PMID:20211717

  5. The Many Forms of Amorphous Computational Systems. Chapter 13

    Czech Academy of Sciences Publication Activity Database

    Wiedermann, Jiří

    Singapore : World Scientific Publishing Company , 2013 - (Zenil, H.), s. 243-256 ISBN 978-981-4374-29-3 R&D Projects: GA ČR GAP202/10/1333 Institutional research plan: CEZ:AV0Z10300504 Keywords : non-standard models of computations * amorphous computing * nano-machines Subject RIV: IN - Informatics, Computer Science

  6. Off-diagonal magnetoimpedance in stress-annealed amorphous ribbons

    Czech Academy of Sciences Publication Activity Database

    Kraus, Luděk

    2008-01-01

    Roč. 320, č. 20 (2008), e746-e749. ISSN 0304-8853 Institutional research plan: CEZ:AV0Z10100520 Keywords : amorphous ribbon * giant magnetoimpedance * off-diagonal magnetoimpedance * stress annealing * magnetic anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.283, year: 2008

  7. Spatial confinement can lead to increased stability of amorphous indomethacin

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Keller, Stephan Sylvest; Gordon, Keith C.; Boisen, Anja; Rades, Thomas; Müllertz, Anette

    2012-01-01

    crystallised in the 223μm microcontainers. Both these values were significantly different from that observed in the amorphous bulk indomethacin, where 51.0% crystallised to the γ-form after 30days. Comparing the 174 and 223μm microcontainers also revealed a significantly greater stabilising effect of the 174μm...

  8. First-principles study of hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Jarolimek, K.; Groot, R.A. de; Wijs, G.A. de; Zeman, M.

    2009-01-01

    We use a molecular-dynamics simulation within density-functional theory to prepare realistic structures of hydrogenated amorphous silicon. The procedure consists of heating a crystalline structure of Si64H8 to 2370 K, creating a liquid and subsequently cooling it down to room temperature. The effect

  9. Photocurrent images of amorphous-silicon solar-cell modules

    Science.gov (United States)

    Kim, Q.; Shumka, A.; Trask, J.

    1985-01-01

    Results obtained in applying the unique characteristics of the solar cell laser scanner to investigate the defects and quality of amorphous silicon cells are presented. It is concluded that solar cell laser scanners can be effectively used to nondestructively test not only active defects but also the cell quality and integrity of electrical contacts.

  10. Long-term stability of amorphous-silicon modules

    Science.gov (United States)

    Ross, R. G., Jr.

    1986-01-01

    The Jet Propulsion Laboratory (JPL) program of developing qualification tests necessary for amorphous silicon modules, including appropriate accelerated environmental tests reveal degradation due to illumination. Data were given which showed the results of temperature-controlled field tests and accelerated tests in an environmental chamber.

  11. Integral bypass diodes in an amorphous silicon alloy photovoltaic module

    Science.gov (United States)

    Hanak, J. J.; Flaisher, H.

    1991-01-01

    Thin-film, tandem-junction, amorphous silicon (a-Si) photovoltaic modules were constructed in which a part of the a-Si alloy cell material is used to form bypass protection diodes. This integral design circumvents the need for incorporating external, conventional diodes, thus simplifying the manufacturing process and reducing module weight.

  12. Atomistic models of hydrogenated amorphous silicon nitride from first principles

    NARCIS (Netherlands)

    Jarolimek, K.; De Groot, R.A.; De Wijs, G.A.; Zeman, M.

    2010-01-01

    We present a theoretical study of hydrogenated amorphous silicon nitride (a-SiNx:H), with equal concentrations of Si and N atoms (x=1), for two considerably different densities (2.0 and 3.0 g/cm3). Densities and hydrogen concentration were chosen according to experimental data. Using first-principle

  13. Atomistic models of hydrogenated amorphous silicon nitride from first principles

    NARCIS (Netherlands)

    Jarolimek, K.; Groot, R.A. de; Wijs, G.A. de; Zeman, M.

    2010-01-01

    We present a theoretical study of hydrogenated amorphous silicon nitride (a-SiNx:H), with equal concentrations of Si and N atoms (x=1), for two considerably different densities (2.0 and 3.0 g/cm3). Densities and hydrogen concentration were chosen according to experimental data. Using first-principle

  14. Anharmonic Decay of Vibrational States in Amorphous Silicon

    OpenAIRE

    Fabian, Jaroslav; Allen, Philip B.

    1996-01-01

    Anharmonic decay rates are calculated for a realistic atomic model of amorphous silicon. The results show that the vibrational states decay on picosecond timescales and follow the two-mode density of states, similar to crystalline silicon, but somewhat faster. Surprisingly little change occurs for localized states. These results disagree with a recent experiment.

  15. Wear mechanism of electrodeposited amorphous Ni-Fe-P alloys

    Institute of Scientific and Technical Information of China (English)

    高诚辉; 赵源

    2004-01-01

    The wear mechanism of amorphous Ni-Fe-P coating was discussed. The wear resistance of the amor phous Ni-Fe-P coatings was tested on a Timken wear apparatus, and the wear track of the amorphous Ni-Fe-P coat ings as-deposited and heated at various temperatures was observed by SEM. The results show that the wear resistthe coating will change with the heating temperature increasing from pitting+plowing at 200 ℃ to pitting at 400 ℃,and to plowing at 600 ℃. The pits on the worn surface of the amorphous Ni-Fe-P coating result from the tribo-fatigue fracture. The cracks of spalling initiate at pits and propagate at certain angle with the sliding direction on sur face, and then extend into sub-surface along the poor P layers or the interface between layers. Finally under repeated action of the stress in the rubbing process the cracks meet and the debris forms. The generation of the pits and spal-ling is related with the internal stress, brittleness and layer structure of the amorphous Ni-Fe-P coating.

  16. Amorphous Silk Fibroin Membranes for Separation of CO2

    Science.gov (United States)

    Aberg, Christopher M.; Patel, Anand K.; Gil, Eun Seok; Spontak, Richard J.; Hagg, May-Britt

    2009-01-01

    Amorphous silk fibroin has shown promise as a polymeric material derivable from natural sources for making membranes for use in removing CO2 from mixed-gas streams. For most applications of silk fibroin, for purposes other than gas separation, this material is used in its highly crystalline, nearly natural form because this form has uncommonly high tensile strength. However, the crystalline phase of silk fibroin is impermeable, making it necessary to convert the material to amorphous form to obtain the high permeability needed for gas separation. Accordingly, one aspect of the present development is a process for generating amorphous silk fibroin by treating native silk fibroin in an aqueous methanol/salt solution. The resulting material remains self-standing and can be prepared as thin film suitable for permeation testing. The permeability of this material by pure CO2 has been found to be highly improved, and its mixed-gas permeability has been found to exceed the mixed-gas permeabilities of several ultrahigh-CO2-permeable synthetic polymers. Only one of the synthetic polymers poly(trimethylsilylpropyne) [PTMSP] may be more highly permeable by CO2. PTMSP becomes unstable with time, whereas amorphous silk should not, although at the time of this reporting this has not been conclusively proven.

  17. Amorphous photonic membranes for broadband chemical sensing applications

    Science.gov (United States)

    Abbey, Sonja P.; Whaley, Ralph D., Jr.

    2012-01-01

    While there has been extensive development on integrated sensors in the near-IR region due to the maturation of Si, SOI, and III-V materials, these technologies are not easily translated into the visible and near-UV regions which are critical for the detection of many chemicals of environmental and security interest. This work focuses on the use of wide bandgap, amorphous materials, specifically, amorphous zinc oxide (a-ZnO), amorphous hafnium oxide (a-HfO2) and amorphous beryllium zinc oxide (a-BeZnO), in the development of broadband chemical sensors operating at critical absorption lines spanning the near-UV (200 nm) to the near-IR (1.55 μm). The architecture employed for this research is a nanoscale membrane (typically 40 - 100 nm thick) that supports a guided low optical overlap mode (LOOM) - an optical mode in which approximately 1% of the electric field is confined to the lossy core region. The resulting extended mode has a greatly enhanced analyte overlap, yielding a device sensitivity (~70%) that is over an order of magnitude higher than current high-performance, dielectric evanescent wave sensors (~2%) as modeled by analytical and finite element methods. Due to the extended nature of the LOOM, sensing across the entire spectral range can be achieved with a single waveguide design - critical for multi-point chemical sensing architectures.

  18. Thermodynamic phasing of a glass transition of amorphous polymers

    Czech Academy of Sciences Publication Activity Database

    Říha, Pavel; Hadač, J.; Slobodian, P.; Sáha, P.; Kubát, J.

    Yamagata: PPS, 2006, G12.29. ISBN 4-9903109-1-8. [Annual Meeting of the Polymer Processing Society /22./. Yamagata (JP), 02.07.2006-06.07.2006] R&D Projects: GA ČR GA103/05/0803 Institutional research plan: CEZ:AV0Z20600510 Keywords : Glass transition * Amorphous polymers Subject RIV: BJ - Thermodynamics

  19. Amorphous silica studied by high energy x-ray diffraction

    DEFF Research Database (Denmark)

    Poulsen, H.F.; Neuefeind, J.; Neumann, H.B.; Schneider, J.R.; Zeidler, M.D.

    neutron data. A feasibility study of amorphous silica has been performed at 95 keV, using a wiggler synchrotron beam-line at HASYLAB and a cylindrical sample, 3 mm in diameter. The range of Q between 0.8 and 32 Angstrom(-1) was covered. A thorough discussion of the experimental challenges is given. The...

  20. Nitrosyl isomerism in amorphous Mn(TPP)(NO) solids.

    Science.gov (United States)

    Kurtikyan, Tigran S; Hayrapetyan, Vardan A; Martirosyan, Garik G; Ghazaryan, Robert K; Iretskii, Alexei V; Zhao, Hailiang; Pierloot, Kristine; Ford, Peter C

    2012-12-25

    Reaction of NO with amorphous Mn(TPP) layers gives two Mn(TPP)(NO) isomers with linear and bent Mn-N-O geometries that reversibly interconvert with changes in temperature. DFT computations predict that the linear complex is the singlet ground state while the bent structure is a triplet state. PMID:23143019

  1. Bolometric detection of ferromagnetic resonance in amorphous microwires

    Czech Academy of Sciences Publication Activity Database

    Kraus, Luděk

    2015-01-01

    Roč. 51, č. 1 (2015), s. 6100104. ISSN 0018-9464 R&D Projects: GA ČR GAP102/12/2177 Institutional support: RVO:68378271 Keywords : amorphous microwires * anisotropic magnetoresistance (AMR) * bolometric effect * ferromagnetic resonance (FMR) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  2. Electrical properties of Bi-implanted amorphous chalcogenide films

    International Nuclear Information System (INIS)

    The impact of Bi implantation on the conductivity and the thermopower of GeTe, Ge–Sb–Te, and Ga–La–S films is investigated. The enhanced conductivity appears to be notably sensitive to a dose of an implant. Incorporation of Bi in amorphous chalcogenide films at doses up to 1 × 1015 cm−2 is seen not to change the majority carrier type and activation energy for the conduction process. Higher implantation doses may reverse the majority carrier type in the studied films. Electron conductivity was observed in GeTe films implanted with Bi at a dose of 2 × 1016 cm−2. These studies indicate that native coordination defects present in amorphous chalcogenide semiconductors can be deactivated by means of ion implantation. A substantial density of implantation-induced traps in the studied films and their interfaces with silicon is inferred from analysis of the space-charge-limited current and capacitance-voltage characteristics taken on Au/amorphous chalcogenide/Si structures. - Highlights: • Electron conductivity is observed in Bi-implanted GeTe films. • Higher conductivity in Bi-implanted films stems from increased density of electrically active defects. • Bi implanted in amorphous chalcogenides may promote formation of a more chemically ordered alloy

  3. Electrical properties of Bi-implanted amorphous chalcogenide films

    Energy Technology Data Exchange (ETDEWEB)

    Fedorenko, Yanina G.

    2015-08-31

    The impact of Bi implantation on the conductivity and the thermopower of GeTe, Ge–Sb–Te, and Ga–La–S films is investigated. The enhanced conductivity appears to be notably sensitive to a dose of an implant. Incorporation of Bi in amorphous chalcogenide films at doses up to 1 × 10{sup 15} cm{sup −2} is seen not to change the majority carrier type and activation energy for the conduction process. Higher implantation doses may reverse the majority carrier type in the studied films. Electron conductivity was observed in GeTe films implanted with Bi at a dose of 2 × 10{sup 16} cm{sup −2}. These studies indicate that native coordination defects present in amorphous chalcogenide semiconductors can be deactivated by means of ion implantation. A substantial density of implantation-induced traps in the studied films and their interfaces with silicon is inferred from analysis of the space-charge-limited current and capacitance-voltage characteristics taken on Au/amorphous chalcogenide/Si structures. - Highlights: • Electron conductivity is observed in Bi-implanted GeTe films. • Higher conductivity in Bi-implanted films stems from increased density of electrically active defects. • Bi implanted in amorphous chalcogenides may promote formation of a more chemically ordered alloy.

  4. A new tevchnique for production of amorphous silicon solar cells

    International Nuclear Information System (INIS)

    It is presented a new technique for the production of amorphous silicon solar cells based on the development of thin films of a-Si in a reactor in which the decomposition of the sylane, induced by capacitively coupled RF, and the film deposition occur in separate chambers. (M.W.O.)

  5. TEM study of amorphous alloys produced by ion implantation

    International Nuclear Information System (INIS)

    Ion implantation is a technique for introducing foreign elements into surface layers of solids. Ions, as a suitably accelerated beam, penetrate the surface, slow down by collisions with target atoms to produce a doped layer. This non-equilibrium technique can provide a wide range of alloys without the restrictions imposed by equilibrium phase diagrams. This paper reports on the production of some amorphous transition metal-metalloid alloys by implantation. Thinned foils of Ni, Fe and stainless steel were implanted at room temperature with Dy+ and P+ ions at doses between 1013 - 1017 ions/cm2 at energies of 20 and 40 keV respectively. Transmission electron microscopy and selected area diffraction analysis were used to investigate the implanted specimens. Radial diffracted intensity measurements confirmed the presence of an amorphous implanted layer. The peak positions of the maxima are in good agreement with data for similar alloys produced by conventional techniques. Only certain ion/target combinations produce these amorphous layers. Implantations at doses lower than those needed for amorphization often result in formation of new crystalline phases such as an h.c.p. phase in nickel and a b.c.c. phase in stainless steel. (Auth.)

  6. Co nanocrystals in amorphous multilayers–a structure study

    Czech Academy of Sciences Publication Activity Database

    Bernstorff, S.; Holý, V.; Endres, J.; Valeš, V.; Sobota, Jaroslav; Siketić, Z.; Bogdanović-Radović, I.; Buljan, M.; Dražić, G.

    2013-01-01

    Roč. 46, č. 6 (2013), s. 1711-1721. ISSN 0021-8898 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Co nanocrystals * amorphous multilayers * structure study Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.950, year: 2013

  7. Three-parameter feedback control of amorphous ribbon magnetization

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Oleksandr; Švec, P.

    2013-01-01

    Roč. 64, č. 3 (2013), s. 166-172. ISSN 0013-578X R&D Projects: GA ČR GP102/09/P108 Institutional support: RVO:68378271 Keywords : magnetic variables measurement * magnetic hysteresis * digital feedback control * amorphous magnetic materials Subject RIV: JB - Sensors, Measurment, Regulation

  8. AMORPHOUS Fe-POLYETHYLENE Co-EVAPORATED FILMS

    OpenAIRE

    Maro, Tsuyoshi; Kitakami, Osamu; Fujiwara, Hideo

    1988-01-01

    Fe-polyethylene films were prepared by simultaneous evaporation of Fe and polyethylene. It was found that these films become amorphous and exhibit softmagnetism. The minimum coercivity in these films was 2 Oe and the saturation magnetization with the minimum coercivity was 1368 G.

  9. Pyrolytic transformation from polydihydrosilane to hydrogenated amorphous silicon film

    International Nuclear Information System (INIS)

    The fabrication of thin film silicon devices based on solution processes rather than on conventional vacuum processes is of substantial interest since cost reductions may result. Using a solution process, we coated substrates with polydihydrosilane solution and studied the pyrolytic transformation of the material into hydrogenated amorphous silicon (a-Si:H). From thermal gravimetry and differential thermal analysis data a significant reduction in weight of the material and a construction of Si-Si bonds are concluded for the pyrolysis temperature Tp = 270 to 360 °C. The appearance of amorphous silicon phonon bands in Raman spectra for films prepared at Tp ≥ 330 °C suggests the construction of a three-dimensional amorphous silicon network. Films prepared at Tp ≥ 360 °C exhibit a hydrogen content near 10 at.% and an optical gap near 1.6 eV similar to device-grade vacuum processed a-Si:H. However, the infrared microstructure factor, the spin density, and the photosensitivity require significant improvements. - Highlights: ► We fabricate hydrogenated amorphous silicon (a-Si:H) films by a solution process. ► The a-Si:H films are prepared by pyrolytic transformation in polysilane solution. ► We investigate basic properties in relation to the pyrolysis temperature. ► Raman spectra, hydrogen content, and optical gap are similar to device-grade a-Si:H. ► Microstructure factor, spin density, and photoconductivity show poor quality.

  10. Practical application of amorphous solar cells. High quality production technology

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    The targets of the project are to develop production technology of amorphous solar cells for electric power generation which will possess good reproducibility and be highly sensitive to solar light, and to elucidate their technological and economical applicability. During the years of from 1980 to 1982, studies on research and development of amorphous solar cells with multi-layer structure were made, and the conversion efficiency of the amorphous sollar cell was improved to 82.5% (10 cm square cell). (1) Amorphous growth equipment for continuous formation of tandem structure was designed and constructed. Boron concentration when grown in independent separate reaction chambers was found to be less than 1/10 of that grown in the single chanber. Film formation rate of 7/sup 0/ A/sec was achieved using Si/sub 2/H/sub 6/ for the growth of a-Si:H(i). (2) In the technology for stainless steel substrate modules, modules of the sizes specified by NEDO were assembled with the super strail structure employing tempered glass, achieving 4.7% conversion rate. (3) For materials and formation technology of the transparent conductive film grid electrode, light transmittance and resistance of the film made by sputtering evaporation of ITO film were studied. (4) As regards reliability technology, it was found that the tandem structure will greatly decreace the deterioration rate as compared with the single layer structure. The modules with super strait structre proved to be weatherproof. (4 figs)

  11. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    Science.gov (United States)

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-11-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized.

  12. Linear and Nonlinear Wave Dynamics in Amorphous Photonic Lattices

    Science.gov (United States)

    Rechtsman, Mikael; Szameit, Alexander; Segev, Mordechai

    Conventional intuition in solid-state physics holds that in order for a solid to have an electronic band-gap, it must be periodic, allowing the use of Bloch's theorem. Indeed, the free-electron approximation seems to imply that Bragg scattering in periodic potentials is a necessary condition for the formation of a band-gap. But this is obviously untrue: looking through a window reveals that glassy silica (SiO2), although possessing no order at all, still displays a band-gap spanning the entire photon energy range of visible light, without absorption. Several experimental studies have probed the properties of the band-gap in such "amorphous" electronic systems using spectroscopic techniques [1], time-of-flight measurements [2], and others. With the major progress in photonic crystals [3, 4], it is natural to explore amorphous photonic structures with band-gaps, where the actual wavefunction can be observed directly, and hence, many physical issues can be studied at an unprecedented level. Indeed, amorphous photonic media have been studied theoretically in several pioneering papers (e.g., [5, 6]), and experiments in the microwave regime have demonstrated the existence of a band-gap [5]. However, amorphous band-gap media have never been studied experimentally in the optical regime. Particularly in optics, the full beauty of disorder can be revealed: optics offers the possibility to precisely engineer the potential strength and period, as well as the unique opportunity to employ nonlinearity under controlled conditions, which could unravel unknown features that are much harder to access experimentally in other systems. Here, we present the first experimental study of amorphous photonic lattices: a two-dimensional array of randomly organized evanescently coupled waveguides. We demonstrate that the bands in this medium, comprising inherently localized Anderson states, are separated by gaps, despite the total lack of Bragg scattering. We find that amorphous photonic

  13. General -Harmonic Blaschke Bodies

    Indian Academy of Sciences (India)

    Yibin Feng; Weidong Wang

    2014-02-01

    Lutwak introduced the harmonic Blaschke combination and the harmonic Blaschke body of a star body. Further, Feng and Wang introduced the concept of the -harmonic Blaschke body of a star body. In this paper, we define the notion of general -harmonic Blaschke bodies and establish some of its properties. In particular, we obtain the extreme values concerning the volume and the -dual geominimal surface area of this new notion.

  14. Bivalves build their shells from amorphous calcium carbonate

    Science.gov (United States)

    Jacob, D. E.; Wirth, R.; Soldati, A. L.; Wehrmeister, U.

    2012-04-01

    One of the most common shell structures in the bivalve class is the prism and nacre structure. It is widely distributed amongst both freshwater and marine species and gives cultured pearls their sought-after lustre. In freshwater bivalves, both shell structures (prism and nacre) consist of aragonite. Formation of the shell form an amorphous precursor phase is a wide-spread strategy in biomineralization and presents a number of advantages for the organisms in the handling of the CaCO3 material. While there is already evidence that larval shells of some mollusk species use amorphous calcium carbonate (ACC) as a transient precursor phase for aragonite, the use of this strategy by adult animals was only speculated upon. We present results from in-situ geochemistry, Raman spectroscopy and focused-ion beam assisted TEM on three species from two different bivalve families that show that remnants of ACC can be found in shells from adult species. We show that the amorphous phase is not randomly distributed, but is systematically found in a narrow zone at the interface between periostracum and prism layer. This zone is the area where spherulitic CaCO3- structures protrude from the inner periostracum to form the initial prisms. These observations are in accordance with our earlier results on equivalent structures in freshwater cultured pearls (Jacob et al., 2008) and show that the original building material for the prisms is amorphous calcium carbonate, secreted in vesicles at the inner periostracum layer. Quantitative temperature calibrations for paleoclimate applications using bivalve shells are based on the Mg-Ca exchange between inorganic aragonite (or calcite) and water. These calibrations, thus, do not take into account the biomineral crystallization path via an amorphous calcium carbonate precursor and are therefore likely to introduce a bias (a so-called vital effect) which currently is not accounted for. Jacob et al. (2008) Geochim. Cosmochim. Acta 72, 5401-5415

  15. Fluctuation Electron Microscopy of Amorphous and Polycrystalline Materials

    Science.gov (United States)

    Rezikyan, Aram

    Fluctuation Electron Microscopy (FEM) has become an effective materials' structure characterization technique, capable of probing medium-range order (MRO) that may be present in amorphous materials. Although its sensitivity to MRO has been exercised in numerous studies, FEM is not yet a quantitative technique. The holdup has been the discrepancy between the computed kinematical variance and the experimental variance, which previously was attributed to source incoherence. Although high-brightness, high coherence, electron guns are now routinely available in modern electron microscopes, they have not eliminated this discrepancy between theory and experiment. The main objective of this thesis was to explore, and to reveal, the reasons behind this conundrum. The study was started with an analysis of the speckle statistics of tilted dark-field TEM images obtained from an amorphous carbon sample, which confirmed that the structural ordering is sensitively detected by FEM. This analysis also revealed the inconsistency between predictions of the source incoherence model and the experimentally observed variance. FEM of amorphous carbon, amorphous silicon and ultra nanocrystalline diamond samples was carried out in an attempt to explore the conundrum. Electron probe and sample parameters were varied to observe the scattering intensity variance behavior. Results were compared to models of probe incoherence, diffuse scattering, atom displacement damage, energy loss events and multiple scattering. Models of displacement decoherence matched the experimental results best. Decoherence was also explored by an interferometric diffraction method using bilayer amorphous samples, and results are consistent with strong displacement decoherence in addition to temporal decoherence arising from the electron source energy spread and energy loss events in thick samples. It is clear that decoherence plays an important role in the long-standing discrepancy between experimental FEM and its

  16. Body Image and Body Dysmorphic Concerns.

    Science.gov (United States)

    Tomas-Aragones, Lucia; Marron, Servando E

    2016-08-23

    Most people would like to change something about their bodies and the way that they look, but for some it becomes an obsession. A healthy skin plays an important role in a person's physical and mental wellbeing, whereas a disfiguring appearance is associated with body image concerns. Skin diseases such as acne, psoriasis and vitiligo produce cosmetic disfigurement and patients suffering these and other visible skin conditions have an increased risk of depression, anxiety, feelings of stigmatization and self-harm ideation. Body image affects our emotions, thoughts, and behaviours in everyday life, but, above all, it influences our relationships. Furthermore, it has the potential to influence our quality of life. Promotion of positive body image is highly recommended, as it is important in improving people's quality of life, physical health, and health-related behaviors. Dermatologists have a key role in identifying body image concerns and offering patients possible treatment options. PMID:27283435

  17. Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

    Science.gov (United States)

    Hai-Yang, Song; Yu-Long, Li

    2016-02-01

    The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

  18. Phase diagram of amorphous solid water: low-density, high-density, and very-high-density amorphous ices.

    Science.gov (United States)

    Giovambattista, Nicolas; Stanley, H Eugene; Sciortino, Francesco

    2005-09-01

    We calculate the phase diagram of amorphous solid water by performing molecular dynamics simulations using the extended simple point charge (SPC/E) model. Our simulations follow different paths in the phase diagram: isothermal compression/decompression, isochoric cooling/heating, and isobaric cooling/heating. We are able to identify low-density amorphous (LDA), high-density amorphous (HDA), and very-high density amorphous (VHDA) ices. The density rho of these glasses at different pressure P and temperature T agree well with experimental values. We also study the radial distribution functions of glassy water. In agreement with experiments, we find that LDA, HDA, and VHDA are characterized by a tetrahedral hydrogen-bonded network and that, as compared to LDA, HDA has an extra interstitial molecule between the first and second shell. VHDA appears to have two such extra molecules. We obtain VHDA, as in experiment, by isobaric heating of HDA. We also find that "other forms" of glassy water can be obtained upon isobaric heating of LDA, as well as amorphous ices formed during the transformation of LDA to HDA. We argue that these other forms of amorphous ices, as well as VHDA, are not altogether new glasses but rather are the result of aging induced by heating. Samples of HDA and VHDA with different densities are recovered at normal P, showing that there is a continuum of glasses. Furthermore, the two ranges of densities of recovered HDA and recovered VHDA overlap at ambient P. Our simulations reproduce the experimental findings of HDA --> LDA and VHDA --> LDA transformations. We do not observe a VHDA --> HDA transformation, and our final phase diagram of glassy water together with equilibrium liquid data suggests that for the SPC/E model the VHDA --> HDA transformation cannot be observed with the present heating rates accessible in simulations. Finally, we discuss the consequences of our findings for the understanding of the transformation between the different amorphous

  19. Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells

    OpenAIRE

    Seif, Johannes Peter; Descoeudres, Antoine; Filipic, Miha; Smole, Franc; Topic, Marko; Holman, Zachary Charles; De Wolf, Stefaan; Ballif, Christophe

    2014-01-01

    In amorphous/crystalline silicon heterojunction solar cells, optical losses can be mitigated by replacing the amorphous silicon films by wider bandgap amorphous silicon oxide layers. In this article, we use stacks of intrinsic amorphous silicon and amorphous silicon oxide as front intrinsic buffer layers and show that this increases the short-circuit current density by up to 0.43 mA/cm2 due to less reflection and a higher transparency at short wavelengths. Additionally, high open-circuit volt...

  20. Correlation of atomic packing with the boson peak in amorphous alloys

    International Nuclear Information System (INIS)

    Boson peaks (BP) have been observed from phonon specific heats in 10 studied amorphous alloys. Two Einstein-type vibration modes were proposed in this work and all data can be fitted well. By measuring and analyzing local atomic structures of studied amorphous alloys and 56 reported amorphous alloys, it is found that (a) the BP originates from local harmonic vibration modes associated with the lengths of short-range order (SRO) and medium-range order (MRO) in amorphous alloys, and (b) the atomic packing in amorphous alloys follows a universal scaling law, i.e., the ratios of SRO and MRO lengths to solvent atomic diameter are 3 and 7, respectively, which exact match with length ratios of BP vibration frequencies to Debye frequency for the studied amorphous alloys. This finding provides a new perspective for atomic packing in amorphous materials, and has significant implications for quantitative description of the local atomic orders and understanding the structure-property relationship.

  1. Lewy Body Dementia Diagnosis

    Science.gov (United States)

    ... Diagnosis Symptoms Treatment Options Help end Lewy body dementia now! Donate Diagnosis An experienced clinician within the ... an experienced diagnostic team skilled in Lewy body dementia. A thorough dementia diagnostic evaluation includes physical and ...

  2. Lewy Body Dementia Research

    Science.gov (United States)

    ... Research Abstracts Clinical Trials Help end Lewy body dementia now! Donate Research Links Treating Psychosis in Parkinson’s ... The use of antipsychotic medications in Lewy body dementias is a known challenge. Are the medications helpful ...

  3. About Body Water

    Science.gov (United States)

    ... Insulin Delivery Additional Content Medical News About Body Water By James L. Lewis, III, MD NOTE: This ... Version. DOCTORS: Click here for the Professional Version Water Balance About Body Water Dehydration Overhydration Water accounts ...

  4. Abstract: Body Work

    DEFF Research Database (Denmark)

    Otto, Lene

    2012-01-01

    This panel will explore the usefulness of the term ‘body work’ in cultural history. Body work is understood as work focusing on the bodies of others as component in a range of occupations in health and social care, as well as in unpaid work in the family. How can the notion of body work inform...... cultural history of health and illness whether through a micro-social focus on the intercorporeal aspects of work in health and social care, or through clarifying our understanding of the times and spaces of work, or through highlighting the relationship between mundane body work and global processes....... The British sociologist Julia Twigg has introduced and explored the term `bodywork', most recently in Body Work in Health and Social Care - Critical Themes, New Agendas (2011). She extends the term body work from applying to the work that individuals undertake on their own bodies, often as part of regimens...

  5. Body mass index

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007196.htm Body mass index To use the sharing features on this ... your height is to figure out your body mass index (BMI). You and your health care provider ...

  6. Written on the Body

    DEFF Research Database (Denmark)

    Christiansen, Steen Ledet

    Our bodies define a border between ourselves and the world around us. However we might feel about our body, it is what we present to the world. Victoria L. Blum in her book Flesh Wounds discusses how bodies are a form of inkblots, where discontent is projected onto. As bodies can be modified, we...... to the photo shoots, as the models remain in control, not the photographer. Marked by their body modifications, the Suicide Girls (as they call themselves), they actively attempt to subvert the typical pin-up conventions, by transgressing mainstream standards of beauty. In what seems remarkably...... similar to Judith Butler's account of subversive bodily acts, the pin-up shoots of the Suicide Girls mount a critique of a culture's view of the body as a natural entity. Cultural borders are crossed, as the bodies of the Suicide Girls embed ink into their bodies in the form of tattoos, and gender is...

  7. Zooplankton body composition

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2013-01-01

    I compiled literature on zooplankton body composition, from protozoans to gelatinous plankton, and report allometric relations and average body composition. Zooplankton segregate into gelatinous and non-gelatinous forms, with few intermediate taxa (chaetognaths, polychaetes, and pteropods). In most...... groups body composition is size independent. Exceptions are protozoans, chaetognaths, and pteropods, where larger individuals become increasingly watery. I speculate about the dichotomy in body composition and argue that differences in feeding mechanisms and predator avoidance strategies favor either a...

  8. Pathologically Collapsed Vertebral Body

    Directory of Open Access Journals (Sweden)

    Reza Saadat Mostafavi

    2010-05-01

    Full Text Available An 8-year-old boy, a case of CGD, presenting with quadriparesis "nFindings: Collapsed contiguous vertebral bodies"nSpared disks"nEpidural components extending one level above and below the involved vertebral bodies"nSignal of involved vertebral bodies: low on T1W and high on T2W image

  9. Photo stability Assessment in Amorphous-Silicon Solar Cells

    International Nuclear Information System (INIS)

    The present status of amorphous-silicon-solar-cell research and development at CIEMAT requires the possibility to characterise the devices prepared from the point of view of their stability against sunlight exposure. Therefore a set of tools providing such a capacity has been developed. Together with an introduction to photovoltaic applications of amorphous silicon and to the photodegradation problem, the present work describes the process of setting up these tools. An indoor controlled photodegradation facility has been designed and built, and a procedure has been developed for the measurement of J-V characterisation in well established conditions. This method is suitable for all kinds of solar cells, even for those for which no model is still available. The photodegradation and characterisation of some cells has allowed to validate both the new testing facility and method. (Author) 14 refs

  10. Water sorption and glass transition of amorphous sugars containing BSA

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, K.; Suzuki, T.; Tatsumichi, T.; Kirii, S.; Okazaki, M. [Kyoto Univ., Kyoto (Japan). Dept. of Chemical Engineering

    2000-08-01

    Water sorption and glass transition of four amorphous sugars (lactose, maltose, sucrose, and trehalose) containing bovine serum albumin (BSA) are investigated. Freeze-dried sugar-BSA samples equilibrated at several water activities ranging from 0 to 0.43 were prepared. Moisture content and glass transition temperature (T{sub g}) were measured. For the all sugars, it is found that BSA lowers T{sub g} at low water activity, and raises it at high water activity. It is also found that the difference between T{sub g} of the sugar-BSA samples and that of the corresponding amorphous sugar samples (T{sub g0}) depends mainly on T{sub g0}. (author)

  11. Atomic structure of Re-Si amorphous alloys

    International Nuclear Information System (INIS)

    The atomic structure of Re100-xSix (x=0, 4, 11, 20, 31, 47, 54, 70, 82, 88, 100) amorphous alloys (AA) was studied by X-ray diffraction. In as-quenched alloys two amorphous phase were observed: the AI-phase-10-90 at.% Si and AII-phase-45-100 at.% Si, especially that in the composition range 45-90 at.% Si is the coexistence of two phase AI and AII. A comparison of the short range order parameters of the AA and those of the corresponding crystalline compounds has been done. The short-range order of AI-phase and coordination polyhedrons of Re5Si3, ReSi2 compounds is similar. Contrary to the Gaskell's model for metal-metalloid AA (trigonal prismatic structural unit) it seems to be tetragonal antiprism. The structure of AII-phase is the same as a-Si. (orig.)

  12. Structure of amorphous selenium studied by neutron diffraction

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Knudsen, Torben Steen; Carneiro, K.

    1975-01-01

    Neutron diffraction measurements on amorphous selenium have been performed at 293 and 80 K. Careful analyses of the instrumental corrections were made to avoid systematic errors in the measured structure factor S (kappa) in the wave vector region 0 ? kappa ? 12 Å−1. As a result of the data...... treatment, the neutron scattering cross sections of selenium are determined to be sigmacoh = 8.4±0.1 b and sigmainc = 0.1±0.1 b. Using the fact that S (kappa) for large kappa's is determined by the short distances in the sample, a new method for extrapolation of the experimental S (kappa) until convergence...... considered. Finally, we give a brief discussion of the different models for the structure of amorphous selenium, taking both diffraction measurements and thermodynamic considerations into account. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  13. Amorphous silicon materials and solar cells - Progress and directions

    Science.gov (United States)

    Sabisky, E.; Mahan, H.; McMahon, T.

    In 1978, the U.S. Department of Energy initiated government sponsored research in amorphous materials and thin film solar cells. The program was subsequently transferred to the Solar Energy Research Institute for program management. The program grew into a major program for the development of high efficiency (greater than 10 percent), cost effective (15-40 cents per peak watt) thin film amorphous solar cells. The present international interest, the substantial progress made in the device area (2 percent PIN cell in 1976 to 10 percent PIN cell in 1982), and the marketing of the first consumer products using thin film solar cells are to a large ducts using thin film solar cells are to a large extent a consequence of this goal-oriented program.

  14. Electron-irradiation-induced crystallization of amorphous orthophosphates

    International Nuclear Information System (INIS)

    Amorphous LaPO4, EuPO4, GdPO4, ScPO4, and fluorapatite [Ca5(PO4)3F] were irradiated by electron beam in a TEM. Irradiations were done at -150 to 300 C, 80 to 200 keV, and current densities from 0.3 to 16 A/cm2. In all cases, the materials crystallized to form a randomly oriented polycrystalline assemblage. Crystallization is driven dominantly by inelastic processes, although ballistic collisions with target nuclei can be important above 175 keV, particularly in apatite. Using a high current density, crystallization is so fast that continuous lines of crystallites can be ''drawn'' on the amorphous matrix

  15. Nanomechanical characterization of amorphous hydrogenated carbon thin films

    International Nuclear Information System (INIS)

    Amorphous hydrogenated carbon (a-C:H) thin films deposited on a silicon substrate under various mixtures of methane-hydrogen gas by electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-MPCVD) was investigated. Microstructure, surface morphology and mechanical characterizations of the a-C:H films were analyzed using Raman spectroscopy, atomic force microscopy (AFM) and nanoindentation technique, respectively. The results indicated there was an increase of the hydrogen content, the ratio of the D-peak to the G-peak (I D/I G) increased but the surface roughness of the films was reduced. Both hardness and Young's modulus increased as the hydrogen content was increased. In addition, the contact stress-strain analysis is reported. The results confirmed that the mechanical properties of the amorphous hydrogenated carbon thin films improved using a higher H2 content in the source gas

  16. Amorphous silicon based large format uncooled FPA microbolometer technology

    Science.gov (United States)

    Schimert, T.; Brady, J.; Fagan, T.; Taylor, M.; McCardel, W.; Gooch, R.; Ajmera, S.; Hanson, C.; Syllaios, A. J.

    2008-04-01

    This paper presents recent developments in next generation microbolometer Focal Plane Array (FPA) technology at L-3 Communications Infrared Products (L-3 CIP). Infrared detector technology at L-3 CIP is based on hydrogenated amorphous silicon (a-Si:H) and amorphous silicon germanium(a-SiGe:H). Large format high performance, fast, and compact IR FPAs are enabled by a low thermal mass pixel design; favorable material properties; an advanced ROIC design; and wafer level packaging. Currently at L-3 CIP, 17 micron pixel FPA array technology including 320x240, 640 x 480 and 1024 x768 arrays is under development. Applications of these FPAs range from low power microsensors to high resolution near-megapixel imager systems.

  17. Blistering and flaking of amorphous alloys bombarded with He ions

    International Nuclear Information System (INIS)

    The blistering and flaking behavior of many kinds of amorphous alloys under helium ion bombardment at room temperature was investigated. Helium ions with energies of 40 keV and 60 keV was implanted within the fluence range (1.0-4.0) x 1018 ions/cm2. The surface topography of samples after irradiation was observed by using a scanning electron microscope. The diameter of blister and the thickness of exfoliated blister lids were measured. The results showed that many kinds of surface topography characteristics appeared for different fluences, energies and amorphous alloys, such as flaking, blistering, exfoliation, blister rupture, second generation blistering and porous structure. The dependence of surface damage modes and the critical fluence for the onset of blistering and flaking on the sort of materials and ion energy was discussed

  18. Amorphous diffusion bonding of steel pipe and its impact toughness

    Institute of Scientific and Technical Information of China (English)

    WANG Xuegang; YAN Fengjie; YAN Qian; LI Xingeng

    2007-01-01

    An iron-based amorphous foil (FeNiCrSiB) was used as an interlayer for the amorphous diffusion bonding of low carbon steel pipes under argon flux. The microstructure and mechanical properties of the joint were analyzed using an electron probe micro-analyzer (EPMA), tensile test, bending test and impact test. The results show that the joint micro-structure resembles that of the base metal and no precipitates form at the joint. Melting point depressants 03, Si) diffuse far away from the joint and the base metal element is homoge-nous across the joint. The joint impact toughness is greater than the base metal toughness and the mechanical properties of the joint are similar around the pipe.

  19. Coaxial carbon plasma gun deposition of amorphous carbon films

    International Nuclear Information System (INIS)

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented

  20. The reliability and stability of multijunction amorphous silicon PV modules

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D.E. [Solarex, Newtown, PA (United States)

    1995-11-01

    Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies are about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.

  1. Nucleation of amorphous shear bands at nanotwins in boron suboxide.

    Science.gov (United States)

    An, Qi; Reddy, K Madhav; Qian, Jin; Hemker, Kevin J; Chen, Ming-Wei; Goddard Iii, William A

    2016-01-01

    The roles of grain boundaries and twin boundaries in mechanical properties are well understood for metals and alloys. However, for covalent solids, their roles in deformation response to applied stress are not established. Here we characterize the nanotwins in boron suboxide (B6O) with twin boundaries along the planes using both scanning transmission electron microscopy and quantum mechanics. Then, we use quantum mechanics to determine the deformation mechanism for perfect and twinned B6O crystals for both pure shear and biaxial shear deformations. Quantum mechanics suggests that amorphous bands nucleate preferentially at the twin boundaries in B6O because the twinned structure has a lower maximum shear strength by 7.5% compared with perfect structure. These results, which are supported by experimental observations of the coordinated existence of nanotwins and amorphous shear bands in B6O, provide a plausible atomistic explanation for the influence of nanotwins on the deformation behaviour of superhard ceramics. PMID:27001922

  2. Anatomy of plastic events in magnetic amorphous solids

    Science.gov (United States)

    Hentschel, H. George E.; Procaccia, Itamar; Gupta, Bhaskar Sen

    2016-03-01

    Plastic events in amorphous solids can be much more than just "shear transformation zones" when the positional degrees of freedom are coupled nontrivially to other degrees of freedom. Here we consider magnetic amorphous solids where mechanical and magnetic degrees of freedom interact, leading to rather complex plastic events whose nature must be disentangled. In this paper we uncover the anatomy of the various contributions to some typical plastic events. These plastic events are seen as Barkhausen noise or other "serrated noises." Using theoretical considerations we explain the observed statistics of the various contributions to the considered plastic events. The richness of contributions and their different characteristics imply that in general the statistics of these serrated noises cannot be universal, but rather highly dependent on the state of the system and on its microscopic interactions.

  3. Spherical silicon photonic microcavities: From amorphous to polycrystalline

    Science.gov (United States)

    Fenollosa, R.; Garín, M.; Meseguer, F.

    2016-06-01

    Shaping silicon as a spherical object is not an obvious task, especially when the object size is in the micrometer range. This has the important consequence of transforming bare silicon material in a microcavity, so it is able to confine light efficiently. Here, we have explored the inside volume of such microcavities, both in their amorphous and in their polycrystalline versions. The synthesis method, which is based on chemical vapor deposition, causes amorphous microspheres to have a high content of hydrogen that produces an onionlike distributed porous core when the microspheres are crystallized by a fast annealing regime. This substantially influences the resonant modes. However, a slow crystallization regime does not yield pores, and produces higher-quality-factor resonances that could be fitted to the Mie theory. This allows the establishment of a procedure for obtaining size calibration standards with relative errors of the order of 0.1%.

  4. Electrochemical degradation of amorphous-silicon photovoltaic modules

    Science.gov (United States)

    Mon, G. R.; Ross, R. G., Jr.

    1985-01-01

    Techniques of module electrochemical corrosion research, developed during reliability studies of crystalline-silicon modules (C-Si), have been applied to this new investigation into amorphous-silicon (a-Si) module reliability. Amorphous-Si cells, encapsulated in the polymers polyvinyl butyral (PVB) and ethylene vinyl acetate (EVA), were exposed for more than 1200 hours in a controlled 85 C/85 percent RH environment, with a constant 500 volts applied between the cells and an aluminum frame. Plotting power output reduction versus charge transferred reveals that about 50 percent a-Si cell failures can be expected with the passage of 0.1 to 1.0 Coulomb/cm of cell-frame edge length; this threshold is somewhat less than that determined for C-Si modules.

  5. Growth, characterisation and electronic applications of amorphous hydrogenated carbon

    CERN Document Server

    Paul, S

    2000-01-01

    temperature on GaAs, has been studied and concluded to be satisfactory on the basis of good adherence and low leakage currents. Such a structure was motivated by the applicability in Metal Insulator Semiconductor Field Effect Transistors (MISFET). My thesis proposes solutions to a number of riddles associated with the material, hydrogenated amorphous carbon, (a-C:H). This material has lately generated interest in the electronic engineering community, owing to some remarkable properties. The characterisation of amorphous carbon films, grown by radio frequency plasma enhanced chemical vapour deposition has been reported. The coexistence of multiple phases in the same a-C:H film manifests itself in the inconsistent electrical behaviour of different parts of the film, thus rendering it difficult to predict the nature of films. For the first time, in this thesis, a reliable prediction of Schottky contact formation on a-C:H films is reported. A novel and simple development on a Scanning Electron Microscope, configu...

  6. Optical properties of amorphous tungsten oxide films: Effect of stoichiometry

    International Nuclear Information System (INIS)

    The optical properties of sputter deposited amorphous tungsten oxide films have been measured in-situ during slow electrochemical cycling in a lithium containing electrolyte. Amorphous films exhibit coloration under Li insertion and bleaching under Li extraction. Substoichiometric films show almost reversible optical changes already in the first electrochemical cycle and are completely reversible thereafter. Tungsten oxide films sputtered in a large excess of oxygen were found to be slightly overstoichiometric, as determined by Rutherford Backscattering Spectrometry. They exhibit irreversible charge transfer and coloration in the first cycle. Thereafter they cannot be completely bleached and exhibit transmittance contrast between coloured and partially bleached states. The irreversible colouration of the stoichiometric films is associated with a feature at 2.6 to 2.9 eV vs. Li in electrochemical measurements. Possible chemical reactions giving rise to this behaviour are discussed

  7. Amorphous tin-cadmium oxide films and the production thereof

    Science.gov (United States)

    Li, Xiaonan; Gessert, Timothy A

    2013-10-29

    A tin-cadmium oxide film having an amorphous structure and a ratio of tin atoms to cadmium atoms of between 1:1 and 3:1. The tin-cadmium oxide film may have an optical band gap of between 2.7 eV and 3.35 eV. The film may also have a charge carrier concentration of between 1.times.10.sup.20 cm.sup.-3 and 2.times.10.sup.20 cm.sup.-3. The tin cadmium oxide film may also exhibit a Hall mobility of between 40 cm.sup.2V.sup.-1 s.sup.-1 and 60 cm.sup.2V.sup.-1 s.sup.-1. Also disclosed is a method of producing an amorphous tin-cadmium oxide film as described and devices using same.

  8. Ion beam mixing in binary amorphous metallic alloys

    International Nuclear Information System (INIS)

    Ion beam mixing (IM) was measured in homogeneous amorphous metallic alloys of Cu-Er and Ni-Ti as a function of temperature using tracer impurities, i.e., the so-called ''marker geometry''. In Cu-Er, a strong temperature dependence in IM was observed between 80 and 3730K, indicating that radiation-enhanced diffusion mechanisms are operative in this metallic glass. Phase separation of the Cu-Er alloy was also observed under irradiation as Er segregated to the vacuum and SiO2 interfaces of the specimen. At low-temperatures, the amount of mixing in amorphous Ni-Ti is similar to that in pure Ni or Ti, but it is much greater in Cu-Er than in either Cu or Er

  9. Electronic structure of a realistic model of amorphous graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kapko, V.; Thorpe, M.F. [Department of Physics and Astronomy, Arizona State University, Tempe, AZ (United States); Drabold, D.A. [Department of Physics and Astronomy, Ohio University, Athens, OH (United States)

    2010-05-15

    In this note, we calculate the electronic properties of a realistic atomistic model of amorphous graphene. The model contains odd-membered rings, particularly five and seven membered rings and no coordination defects. We show that odd-membered rings increase the electronic density of states at the Fermi level relative to crystalline graphene; a honeycomb lattice with semi-metallic character. Some graphene samples contain amorphous regions, which even at small concentrations, may strongly affect many of the exotic properties of crystalline graphene, which arise because of the linear dispersion and semi-metallic character of perfectly crystalline graphene. Estimates are given for the density of states at the Fermi level using a tight-binding model for the {pi} states. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Tungsten oxide nanowires grown on amorphous-like tungsten films.

    Science.gov (United States)

    Dellasega, D; Pietralunga, S M; Pezzoli, A; Russo, V; Nasi, L; Conti, C; Vahid, M J; Tagliaferri, A; Passoni, M

    2015-09-11

    Tungsten oxide nanowires have been synthesized by vacuum annealing in the range 500-710 °C from amorphous-like tungsten films, deposited on a Si(100) substrate by pulsed laser deposition (PLD) in the presence of a He background pressure. The oxygen required for the nanowires formation is already adsorbed in the W matrix before annealing, its amount depending on deposition parameters. Nanowire crystalline phase and stoichiometry depend on annealing temperature, ranging from W18O49-Magneli phase to monoclinic WO3. Sufficiently long annealing induces the formation of micrometer-long nanowires, up to 3.6 μm with an aspect ratio up to 90. Oxide nanowire growth appears to be triggered by the crystallization of the underlying amorphous W film, promoting their synthesis at low temperatures. PMID:26292084

  11. Crystallization kinetics of amorphous aluminum-tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Car, T.; Radic, N. [Rugjer Boskovic Inst., Zagreb (Croatia). Div. of Mater. Sci.; Ivkov, J. [Institute of Physics, Bijenicka 46, P.O.B. 304, HR-10000 Zagreb (Croatia); Babic, E.; Tonejc, A. [Faculty of Sciences, Physics Department, Bijenicka 32, P.O.B. 162, HR-10000 Zagreb (Croatia)

    1999-01-01

    Crystallization kinetics of the amorphous Al-W thin films under non-isothermal conditions was examined by continuous in situ electrical resistance measurements in vacuum. The estimated crystallization temperature of amorphous films in the composition series of the Al{sub 82}W{sub 18} to Al{sub 62}W{sub 38} compounds ranged from 800 K to 920 K. The activation energy for the crystallization and the Avrami exponent were determined. The results indicated that the crystallization mechanism in films with higher tungsten content was a diffusion-controlled process, whereas in films with the composition similar to the stoichiometric compound (Al{sub 4}W), the interface-controlled crystallization probably occurred. (orig.) With 4 figs., 1 tab., 26 refs.

  12. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  13. Thermal behaviour of amorphous zircon prepared by ball milling

    International Nuclear Information System (INIS)

    Results are presented on the recrystallisation behaviour of the mineral zircon (ZrSiO4) which has been amorphised by ball milling. X-ray diffraction and thermal analysis techniques were used to investigate the structural evolution after mechanical treatment. Phase transformations detected by the differential thermal analysis technique included transient formation of tetragonal or pseudo cubic ZrO2, followed by recrystallisation of zircon at reduced temperatures of around 1000 C. The behaviour of the milled samples was compared to literature data concerning amorphous zircon prepared by other techniques, including natural and ion beam radiation damage and sol-gel processing. The ball milled zircon was found to have similar thermal behaviour, but had a structural recovery temperature 180-600 C lower than that found for other amorphous samples. (orig.)

  14. High-density amorphous ice: A path-integral simulation

    CERN Document Server

    Herrero, Carlos P; 10.1063/1.4750027

    2012-01-01

    Structural and thermodynamic properties of high-density amorphous (HDA) ice have been studied by path-integral molecular dynamics simulations in the isothermal-isobaric ensemble. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. Quantum nuclear motion is found to affect several observable properties of the amorphous solid. At low temperature (T = 50 K) the molar volume of HDA ice is found to increase by 6%, and the intramolecular O--H distance rises by 1.4% due to quantum motion. Peaks in the radial distribution function of HDA ice are broadened respect to their classical expectancy. The bulk modulus, B, is found to rise linearly with the pressure, with a slope dB/dP = 7.1. Our results are compared with those derived earlier from classical and path-integral simulations of HDA ice. We discuss similarities and discrepancies with those earlier simulations.

  15. Preparation and Characterization of Amorphous Silicon Oxide Nanowires

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Large-scale amorphous silicon nanowires (SiNWs) with a diameter about 100 nm and a length of dozens of micrometers on silicon wafers were synthesized by thermal evaporation of silicon monoxide (SiO).Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations show that the silicon nanowires are smooth.Selected area electron diffraction (SAED) shows that the silicon nanowires are amorphous and energy-dispersive X-ray spectroscopy (EDS) indicates that the nanowires have the composition of Si and O elements in an atomic ratio of 1:2, their composition approximates that of SiO2.SiO is considered to be used as a Si sources to produce SiNWs.We conclude that the growth mechanism is closely related to the defect structure and silicon monoxide followed by growth through an oxide-assisted vapor-solid reaction.

  16. Monokinetic electron backsttering from amorphous or polycrystalline specimens

    International Nuclear Information System (INIS)

    We have considered the interaction of electrons with thin amorphous specimens: one part of these electrons is transmitted through the substance, the other being backscattered. This last phenomena, which is not perfectly understood, has been studied in the energy range from 0.3 to 3 MeV. First this work deals with the realization of a fully automatic apparatus which has been adapted to the column of the 3 MeV electron microscope of the HVFM laboratory in Toulouse. The variation of the transmission and backscattering coefficients, for amorphous and polycrystalline specimens, is determined. From this coefficient the electron range in this substance can be deduced. In addition the experimental results can be used to understand the image contrast in scanning electron microscopy. A short presentation of the cross-section, introduces the theoretical study of Monte-Carlo calculation. The Monte-Carlo calculation is used to take into account all elementary processus, which take place during electron scattering

  17. Amorphous Hafnium-Indium-Zinc Oxide Semiconductor Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (α-HfIZO thin film transistors (TFTs. Co-sputtering-processed α-HfIZO thin films have shown an amorphous phase in nature. We could modulate the In, Hf, and Zn components by changing the co-sputtering power. Additionally, the chemical composition of α-HfIZO had a significant effect on reliability, hysteresis, field-effect mobility (μFE, carrier concentration, and subthreshold swing (S of the device. Our results indicated that we could successfully and easily fabricate α-HfIZO TFTs with excellent performance by the co-sputtering process. Co-sputtering-processed α-HfIZO TFTs were fabricated with an on/off current ratio of ~106, higher mobility, and a subthreshold slope as steep as 0.55 V/dec.

  18. TEM characterization of Solid-Phase Epitaxy in amorphized polysilicon

    International Nuclear Information System (INIS)

    Solid Phase Epitaxy (SPE) of amorphous silicon thin films can be employed to build novel device structures for VLSI applications. One way of achieving SPE is to use a room temperature silicon implant to amorphize a polysilicon layer followed by a thermal treatment to promote epitaxial growth. Both vertical SPE, in which the epitaxial film is grown directly on silicon substrate, and lateral SPE, in which the epitaxial growth is extended over a thin layer of oxide using the vertical SPE region as a seed, have been realized using this approach. This paper presents results obtained by cross-sectional TEM analysis of the epitaxial films, with particular emphasis on the effects of implant schedule and annealing conditions on the epitaxial regrowth

  19. Charged particle detectors made from thin layers of amorphous silicon

    International Nuclear Information System (INIS)

    A series of experiments was conducted to determine the feasibility of using hydrogenated amorphous silicon (α-Si:H) as solid state thin film charged particle detectors. 241Am alphas were successfully detected with α-Si:H devices. The measurements and results of these experiments are presented. The problems encountered and changes in the fabrication of the detectors that may improve the performance are discussed

  20. Inconspicuous Appeal of Amorphous Computing Systems (Invited Talk)

    Czech Academy of Sciences Publication Activity Database

    Wiedermann, Jiří

    Cham: Springer, 2014 - (Gheorghe, M.; Rozenberg, G.; Salomaa, A.; Sosík, P.; Zandron, S.), XIII-XVI. (Lecture Notes in Computer Science. 8961). ISBN 978-3-319-14369-9. ISSN 0302-9743. [CMC15. International Conference on Membrane Computing /15./. Prague (CZ), 20.08.2014-22.08.2014] R&D Projects: GA ČR GAP202/10/1333 Institutional support: RVO:67985807 Keywords : amorphous computing * computational universality * computational complexity Subject RIV: IN - Informatics, Computer Science

  1. Presence of Amorphous Carbon Nanoparticles in Food Caramels

    OpenAIRE

    Md Palashuddin Sk; Amit Jaiswal; Anumita Paul; Siddhartha Sankar Ghosh; Arun Chattopadhyay

    2012-01-01

    We report the finding of the presence of carbon nanoparticles (CNPs) in different carbohydrate based food caramels, viz. bread, jaggery, sugar caramel, corn flakes and biscuits, where the preparation involves heating of the starting material. The CNPs were amorphous in nature; the particles were spherical having sizes in the range of 4–30 nm, depending upon the source of extraction. The results also indicated that particles formed at higher temperature were smaller than those formed at lower ...

  2. Migration of Cations and Anions in Amorphous Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    N.A.Stolwijk; S.H.Obeidi; M.Wiencierz

    2007-01-01

    1 Results Polymer electrolytes are used as ion conductors in batteries and fuel cells.Simple systems consist of a polymer matrix complexing an inorganic salt and are fully amorphous at the temperatures of interest.Both cations and anions are mobile and contribute to charge transport.Most studies on polymer electrolytes use the electrical conductivity to characterize the ion mobility.However,conductivity measurements cannot discriminate between cations and anions.This paper reports some recent results fr...

  3. Constitutive model for plasticity in an amorphous polycarbonate

    OpenAIRE

    Fortunelli, A.; M. Ortiz

    2007-01-01

    A constitutive model for describing the mechanical response of an amorphous glassy polycarbonate is proposed. The model is based on an isotropic elastic phase surrounded by an SO(3) continuum of plastic phases onto which the elastic phase can collapse under strain. An approximate relaxed energy is developed for this model on the basis of physical considerations and extensive numerical testing, and it is shown that it corresponds to an ideal elastic-plastic behavior. Kinetic effects are introd...

  4. Simulation of swift boron clusters traversing amorphous carbon foils

    OpenAIRE

    Heredia Ávalos, Santiago; Abril Sánchez, Isabel; Denton Zanello, Cristian D.; García Molina, Rafael

    2007-01-01

    We use a simulation code to study the interaction of swift boron clusters (Bn+, n=2–6, 14) with amorphous carbon foils. We analyze different aspects of this interaction, such as the evolution of the cluster structure inside the target, the energy and angle distributions at the detector or the stopping power ratio. Our simulation code follows in detail the motion of the cluster fragments through the target and in the vacuum until reaching a detector, taking into account the following interacti...

  5. On the Universal Computing Power of Amorphous Computing Systems

    Czech Academy of Sciences Publication Activity Database

    Wiedermann, Jiří; Petrů, L.

    2009-01-01

    Roč. 45, č. 4 (2009), s. 995-1010. ISSN 1432-4350 R&D Projects: GA AV ČR 1ET100300517; GA ČR GD201/05/H014 Institutional research plan: CEZ:AV0Z10300504 Keywords : amorphous computing systems * universal computing * random access machine * simulation Subject RIV: IN - Informatics, Computer Science Impact factor: 0.726, year: 2009

  6. Charge Ordering in Amorphous WO$_{x}$ Films

    OpenAIRE

    Kopelevich, Yakov; da Silva, Robson R.; Rougier, Aline; Lukyanchuk, Igor A.

    2007-01-01

    We report on the observation of highly anisotropic viscous electronic conducting phase in amorphous WO$_{1.55}$ films that occurs below a current (I)- and frequency (f)- dependent temperature T*(I, f). At T < T*(I, f) the rotational symmetry of randomly disordered electronic background is broken leading to the appearance of mutually perpendicular metallic- and insulating-like states. A rich dynamic behavior of the electronic matter occurring at T < T*(I, f) provides evidence for an interplay ...

  7. DOMAIN WALL PINNING IN INHOMOGENEOUSLY DEFORMED AMORPHOUS ALLOYS

    OpenAIRE

    Gibbs, M.; Evetts, J.; Horton, M.

    1980-01-01

    Inhomogeneous deformation in amorphous alloys is characterized by local regions of intense shear. Experiments on VITROVAC 0040 (Fe40Ni40B20) supplied by Vacuumschmelze (Hanau, Germany) show a direct correlation between the number density of the shear bands and the coercive field after inhomogeneous deformation by cold rolling. The deformation process is also shown to induce an off axis magnetic anisotropy whose mean value is large compared to other residual and induced anisotropies in these m...

  8. Pyrolytic transformation from polydihydrosilane to hydrogenated amorphous silicon film

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); Matsuki, Yasuo [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); Yokkaichi Research Center, JSR Corporation, 100 Kawajiri-cho, Yokkaichi, Mie, 510-8552 (Japan); Shimoda, Tatsuya [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292 (Japan)

    2012-08-31

    The fabrication of thin film silicon devices based on solution processes rather than on conventional vacuum processes is of substantial interest since cost reductions may result. Using a solution process, we coated substrates with polydihydrosilane solution and studied the pyrolytic transformation of the material into hydrogenated amorphous silicon (a-Si:H). From thermal gravimetry and differential thermal analysis data a significant reduction in weight of the material and a construction of Si-Si bonds are concluded for the pyrolysis temperature T{sub p} = 270 to 360 Degree-Sign C. The appearance of amorphous silicon phonon bands in Raman spectra for films prepared at T{sub p} {>=} 330 Degree-Sign C suggests the construction of a three-dimensional amorphous silicon network. Films prepared at T{sub p} {>=} 360 Degree-Sign C exhibit a hydrogen content near 10 at.% and an optical gap near 1.6 eV similar to device-grade vacuum processed a-Si:H. However, the infrared microstructure factor, the spin density, and the photosensitivity require significant improvements. - Highlights: Black-Right-Pointing-Pointer We fabricate hydrogenated amorphous silicon (a-Si:H) films by a solution process. Black-Right-Pointing-Pointer The a-Si:H films are prepared by pyrolytic transformation in polysilane solution. Black-Right-Pointing-Pointer We investigate basic properties in relation to the pyrolysis temperature. Black-Right-Pointing-Pointer Raman spectra, hydrogen content, and optical gap are similar to device-grade a-Si:H. Black-Right-Pointing-Pointer Microstructure factor, spin density, and photoconductivity show poor quality.

  9. Strained ion tracks in amorphous solids: Origin of plastic deformation

    International Nuclear Information System (INIS)

    Track formation in amorphous solids is treated in terms of viscoelastic shear stress relaxation in thermal spike regions which is followed by the freezing-in of the associated strain increment. The resulting strained tracks are considered to be the mesoscopic defects responsible for anisotropic creep and growth. A recently presented approximate quantitative approach to the problem is reviewed. In addition, a new set of constitutive equations describing the viscous flow in thermal spike regions is suggested and general solutions are discussed

  10. Tungsten oxide nanowire synthesis from amorphous-like tungsten films.

    Science.gov (United States)

    Seelaboyina, Raghunandan

    2016-03-18

    A synthesis technique which can lead to direct integration of tungsten oxide nanowires onto silicon chips is essential for preparing various devices. The conversion of amorphous tungsten films deposited on silicon chips by pulsed layer deposition to nanowires by annealing is an apt method in that direction. This perspective discusses the ingenious features of the technique reported by Dellasega et al on the various aspects of tungsten oxide nanowire synthesis. PMID:26871521

  11. Amorphous Silicon 16—bit Array Photodetector①

    Institute of Scientific and Technical Information of China (English)

    ZHANGShaoqiang; XUZhongyang; 等

    1997-01-01

    An amorphous silicon 16-bit array photodetector with the a-SiC/a-Si heterojunction diode is presented.The fabrication processes of the device were studied systematically.By the optimum of the diode structure and the preparation procedures,the diode with Id<10-12A/mm2 and photocurrentIp≥0.35A/W has been obtained at the wavelength of 632nm.

  12. Corrosion In Amorphous-Silicon Solar Cells And Modules

    Science.gov (United States)

    Mon, Gordon R.; Wen, Liang-Chi; Ross, Ronald G., Jr.

    1988-01-01

    Paper reports on corrosion in amorphous-silicon solar cells and modules. Based on field and laboratory tests, discusses causes of corrosion, ways of mitigating effects, and consequences for modules already in field. Suggests sealing of edges as way of reducing entry of moisture. Cell-free perimeters or sacrificial electrodes suggested to mitigate effects of sorbed moisture. Development of truly watertight module proves to be more cost-effective than attempting to mitigate effects of moisture.

  13. Thermally stimulated H emission and diffusion in hydrogenated amorphous silicon

    OpenAIRE

    Abtew, T. A.; Inam, F.; Drabold, D. A.

    2006-01-01

    We report first principles ab initio density functional calculations of hydrogen dynam- ics in hydrogenated amorphous silicon. Thermal motion of the host Si atoms drives H diffusion, as we demonstrate by direct simulation and explain with simple models. Si-Si bond centers and Si ring centers are local energy minima as expected. We also describe a new mechanism for break- ing Si-H bonds to release free atomic H into the network: a fluctuation bond center detachment (FBCD) assisted diffusion. H...

  14. Crystallization of amorphous silicon induced by mechanical shear deformations

    OpenAIRE

    Kerrache, Ali; Mousseau, Normand; Lewis, Laurent J.

    2011-01-01

    We have investigated the response of amorphous silicon (a-Si), in particular crystallization, to external mechanical shear deformations using classical molecular dynamics (MD) simulations and the empirical Environment Dependent Inter-atomic Potential (EDIP) [Phys. Rev. B 56, 8542 (1997)]. In agreement with previous results we find that, at low shear velocity and low temperature, shear deformations increase disorder and defect density. At high temperatures, however, the deformations are found ...

  15. Pyrolytic transformation from polydihydrosilane to hydrogenated amorphous silicon film

    OpenAIRE

    Masuda, Takashi; Matsuki, Yasuo; Shimoda, Tatsuya

    2012-01-01

    The fabrication of thin film silicon devices based on solution processes rather than on conventional vacuum processes is of substantial interest since cost reductions may result. Using a solution process, we coated substrates with polydihydrosilane solution and studied the pyrolytic transformation of the material into hydrogenated amorphous silicon (a-Si:H). From thermal gravimetry and differential thermal analysis data a significant reduction in weight of the material and a construction of S...

  16. CURRENT PATH IN AMORPHOUS-SILICON FIELD EFFECT TRANSISTORS

    OpenAIRE

    M. MATSUMURA; Kuno, S.; Uchida, Y.

    1981-01-01

    On-resistance of amorphous-silicon field effect transistors with staggered electrodes was investigated. It was found that dependences of the on-resistance on geometrical parameters were classified into two groups. The origin was attributed to the residual resistance between the n+ electrode and the channel which was formed at the silicon-silicon dioxide interface. The resistance was analyzed by taking space charge effect into account, and we found that it changes in accordance with sample pre...

  17. Deposition-induced defect profiles in amorphous hydrogenated silicon

    OpenAIRE

    Hata, N.; Wagner, S.; Roca i Cabarrocas, P.; Favre, M.

    2008-01-01

    The thickness dependence of the subgap optical absorption in plasma-deposited hydrogenated amorphous silicon is carefully studied by photothermal deflection spectroscopy. The deep-level defect concentration decays from the top surface into the bulk where it approaches the thermal equilibrium defect density. This defect profile is interpreted in terms of the annealing, during growth, of growth-induced surface defects. It is also shown that this defect profile is compatible with the known growt...

  18. First-principles study of hydrogenated amorphous silicon

    OpenAIRE

    Jarolimek, K.; de Groot, R. A.; de Wijs, G. A.; Zeman, M.

    2009-01-01

    We use a molecular-dynamics simulation within density-functional theory to prepare realistic structures of hydrogenated amorphous silicon. The procedure consists of heating a crystalline structure of Si64H8 to 2370 K, creating a liquid and subsequently cooling it down to room temperature. The effect of the cooling rate is examined. We prepared a total of five structures which compare well to experimental data obtained by neutron-scattering experiments. Two structures do not contain any struct...

  19. Amorphous calcium phosphate composites with improved mechanical properties

    OpenAIRE

    O’Donnell, J.N.R.; Antonucci, J.M.; Skrtic, D.

    2006-01-01

    Hybridized zirconium amorphous calcium phosphate (ACP)-filled methacrylate composites make good calcium and phosphate releasing materials for anti-demineralizing/remineralizing applications with low mechanical demands. The objective of this study was to assess the effect of the particle size of the filler on the mechanical properties of these composites. Photo-curable resins were formulated from ethoxylated bisphenol A dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacry...

  20. Amorphous thin film growth: theory compared with experiment

    OpenAIRE

    Raible, M.; Mayr, S. G.; Linz, S. J.; Moske, M.; Hänggi, P.; Samwer, K.

    1999-01-01

    Experimental results on amorphous ZrAlCu thin film growth and the dynamics of the surface morphology as predicted from a minimal nonlinear stochastic deposition equation are analysed and compared. Key points of this study are (i) an estimation procedure for coefficients entering into the growth equation and (ii) a detailed analysis and interpretation of the time evolution of the correlation length and the surface roughness. The results corroborate the usefulness of the deposition equation as ...

  1. Crystallization of amorphous Hf100-xCux alloys

    International Nuclear Information System (INIS)

    The crystallization of Hf100-xCux (x=33, 44, 50, 59) amorphous alloys was studied by the TDPAC technique. The different stages in the transformation towards equilibrium were investigated through the evolution of the quadrupole perturbation after thermal annealings. The crystallization kinetics of Hf67Cu33 and Hf56Cu44 was analyzed using the Johnson-Mehl-Avrami equation. General trends in the crystallization behavior are discussed. (orig.)

  2. Cardiac calcified amorphous tumor: A systematic review of the literature

    OpenAIRE

    Quentin de Hemptinne; Didier de Cannière; Jean-Luc Vandenbossche; Philippe Unger

    2015-01-01

    Background: Calcified amorphous tumor (CAT) of the heart is a rare non-neoplastic intracavitary cardiac mass. Several case reports have been published but large series are lacking. Objective: To determine clinical features, current management and outcomes of this rare disease. Design: A systematic review of all articles reporting cases of CAT in order to perform a pooled analysis of its clinical features, management and outcomes. Data sources: An electronic search of all English arti...

  3. Production of amorphous starch powders by solution spray drying

    OpenAIRE

    Niazi, Muhammad B. K.; Broekhuis, Antonius A.

    2012-01-01

    The spray drying of starch/maltodextrin formulations was evaluated as a potential technology for the manufacturing of amorphous thermoplastic starches. Mixtures of starches with high to low amylose (Am)amylopectin (Ap) ratios were spray-dried from water-based solutions and granular dispersions. The effects of the feed composition on the morphology and physical properties of the end product were investigated with the spray-drying conditions kept constant. Powders obtained from the starch solut...

  4. Nanoparticles embedded in hydrogenated amorphous silicon thin layers

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Stuchlík, Jiří; Stuchlíková, The-Ha; Purkrt, Adam; Fajgar, Radek; Dřínek, Vladislav; Zhuravlev, K.; Galkin, N.G.

    Aachen : ICANS26, 2015 - (Carius, R.). s. 196-197 [International Conference on Amorphous and Nanocrystalline Semiconductors /26./ (ICANS26). 13.09.2015-18.09.2015, Aachen] R&D Projects: GA ČR(CZ) GA14-05053S; GA MŠk(CZ) LD14011; GA MŠk LH12236 Institutional support: RVO:68378271 ; RVO:67985858 Keywords : a-Si:H * LED * RLA * RDE Subject RIV: BM - Solid Matter Physics ; Magnetism

  5. Temperature dependence of hydrogenated amorphous silicon solar cell performances

    OpenAIRE

    Riesen, Y.; Stuckelberger, M.; Haug, F. -J.; Ballif, C.; N. Wyrsch

    2016-01-01

    Thin-film hydrogenated amorphous silicon solar (a-Si:H) cells are known to have better temperature coefficients than crystalline silicon cells. To investigate whether a-Si:H cells that are optimized for standard conditions (STC) also have the highest energy yield, we measured the temperature and irradiance dependence of the maximum power output (Pmpp), the fill factor (FF), the short-circuit current density (Jsc), and the open-circuit voltage (Voc) for four series of cells fabricated with dif...

  6. Ferromagnetic resonance of transversally magnetized amorphous microwires and nanowires

    Czech Academy of Sciences Publication Activity Database

    Kraus, Luděk; Frait, Zdeněk; Ababei, G.; Chiriac, H.

    2013-01-01

    Roč. 113, č. 18 (2013), "183907-1"-"183907-8". ISSN 0021-8979 R&D Projects: GA ČR GAP102/12/2177 Institutional support: RVO:68378271 Keywords : ferromagnetic resonance * magnetostatic modes * amorphous microwires * nanowires Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.185, year: 2013 http://dx.doi.org/10.1063/1.4804147

  7. Magnetostriction measurements of amorphous ribbons and thin films

    Science.gov (United States)

    Ouyang, Chien

    The theme of the present work is to measure the saturation magnetostriction constants of amorphous ribbons and thin films. The saturation magnetostriction constants of amorphous ribbons, and thin films of Cosb{39}Nisb{31}Fesb8Sisb8Bsb{14}, CoZrY, and CoZrTb have been measured either by the Small Angle Magnetization Rotation (SAMR) method or by the initial susceptibility method. The SAMR method is used for the soft materials. It is found that the amorphous Cosb{39}Nisb{31}Fesb8Sisb8Bsb{14} prepared by ion beam deposition from an alloy target shows very soft magnetic properties and has a very small negative saturation magnetostriction, lambdasb{s}, of about {-}1×10sp{-7}. Sputtered films of CoZrTb show a strong perpendicular anisotropy when the Tb content is high. We have found that the SAMR method can be applied to CoZrTb films when the Tb content is low. The saturation magnetostriction constant of a sputtered film of Cosb{78.4}Zrsb{20.8}Tbsb{0.8} is 2×10sp{-6}. When the material is not magnetically soft or has a strong perpendicular anisotropy, the initial susceptibility method is used. The saturation magnetostriction constants of amorphous Cosb{77.2}Zrsb{20.4}Tbsb{2.4} and Cosb{72.2}Zrsb{14.6}Ysb{13.2} thin films are 6×10sp{-6}, and (2{˜}6)×10sp{-7}, respectively. The two methods, the SAMR and the initial susceptibility, utilize the same measurement setup making it a very convenient technique which is applicable for a range of materials.

  8. Effect of ion irradiation on the stability of amorphous Ge2Sb2Te5 thin films

    International Nuclear Information System (INIS)

    The archival life of phase-change memories (PCM) is determined by the thermal stability of amorphous phase in a crystalline matrix. In this paper, we report the effect of ion beam irradiation on the crystallization kinetics of amorphous Ge2Sb2Te5 alloy (GST). The transition rate of amorphous GST films was measured by in situ time resolved reflectivity (TRR). The amorphous to crystal transformation time decreases considerably in irradiated amorphous GST samples when ion fluence increases. The stability of amorphous Ge2Sb2Te5 thin films subjected to ion irradiation is discussed in terms of the free energy variation of the amorphous state because of damage accumulation

  9. New sunscreen materials based on amorphous cerium and titanium phosphate

    International Nuclear Information System (INIS)

    Cerium-titanium pyrophosphates Ce1-xTi xP2O7 (with x = 0, 0.50, and 1.0), which are novel phosphate materials developed as UV-shielding agents for use in cosmetics, were characterized by X-ray diffraction, X-ray fluorescent analysis, UV-vis reflectance, and Raman spectroscopy. Since the optical reflectance shifted to lower wavelengths by the crystallization of the phosphates and the stabilization of the amorphous state of the cerium-titanium pyrophosphates was carried out by doping niobium (Nb). Raman spectroscopic study of the phosphate showed that P-O-P bending and stretching modes decreased with the loading of Nb, accompanying with the formation of Nb-O stretching mode. Therefore, the increase in the amount of the non-bridging oxygen in the amorphous phosphate should be the reason for the inhibition of the crystallization. This stabilization is a significant improvement, which enables to apply these amorphous phosphates not only to cosmetics and paints, but also plastics and films

  10. Electrochromic study on amorphous tungsten oxide films by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan, E-mail: cli10@yahoo.com [Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan (China); Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan (China); Hsieh, J.H. [Department of Materials Engineering, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan (China); Hung, Ming-Tsung [Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan (China); Huang, B.Q. [Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan (China)

    2015-07-31

    Tungsten oxide films under different oxygen flow rates are deposited by DC sputtering. The voltage change at target and analyses for the deposited films by X-ray diffraction, scanning electronic microscope, X-ray photoelectron spectroscopy and ultraviolet–visible-near infrared spectroscopy consistently indicate that low oxygen flow rate (5 sccm) only creates metal-rich tungsten oxide films, while higher oxygen flow rate (10–20 sccm) assures the deposition of amorphous WO{sub 3} films. To explore the electrochromic function of deposited WO{sub 3} films, we use electrochemical tests to perform the insertion of lithium ions and electrons into films. The WO{sub 3} films switch between color and bleach states effectively by both potentiostat and cyclic voltammetry. Quantitative evaluation on electrochemical tests indicates that WO{sub 3} film with composition close to its stoichiometry is an optimal choice for electrochromic function. - Highlights: • Amorphous WO{sub 3} films are deposited by DC sputtering under different O{sub 2} flow rates. • Higher oxygen flow rate (> 10 sccm) assures the deposition of amorphous WO{sub 3} films. • Both potentiostat and cyclic voltammetry make WO{sub 3} films switch its color. • An optimal electrochromic WO{sub 3} is to make films close to its stoichiometry.

  11. Electrical characteristics of amorphous molybdenum-nickel contacts to silicon

    Science.gov (United States)

    Kung, K. T.-Y.; Nicolet, M.-A.; Suni, I.

    1984-01-01

    The electrical characteristics of sputtered, amorphous Mo-Ni contacts have been measured on both p- and n-type Si, as functions of composition (30, 54, and 58 at. percent Mo). The contact resistivity on both p(+) and n(+) Si is in the 0.00000 ohm sq cm range. The barrier height for as-deposited samples varies between phi-bp = 0.47-0.42 V on p-type Si and between phi-bn = 0.63-0.68 V on n-type Si, as the composition of the amorphous layer goes from Ni-rich to Mo-rich. The sum phi-bp + phi-bn always equals 1.12 V, within experimental error. After thermal treatment at 500 C for 1/2 h, the contact resistivity changes by a factor of two or less, while the barrier height changes by at most approximately 0.05 V. In light of these results, the amorphous Mo-Ni film makes good ohmic contacts to silicon.

  12. Low-temperature internal friction in quenched amorphous selenium films

    Science.gov (United States)

    Metcalf, Thomas; Liu, Xiao; Abernathy, Matthew; Stephens, Richard

    Using ultra-high-quality-factor silicon mechanical resonators, we have measured the internal friction and shear modulus of amorphous selenium (a-Se) films at liquid helium temperatures. The glass transition temperature of selenium lies at a conveniently accessible 40 -50° C, facilitating a series of in- and ex-situ annealing and quench cycles. The a-Se films exhibit the low-temperature internal friction plateau (10-4 amorphous solids, which is a result of (and direct measure of) a broad distribution of two-level tunneling systems (TLS), whose origin is still unknown. We find a clear correlation between the post-anneal quench rate and the value of this plateau. The implications of these observations for understanding the microscopic origin of TLS will be discussed. Principally, the observed changes in the internal friction plateau could show the way in which the density of TLS could be manipulated or suppressed in other amorphous systems. Work supported by the Office of Naval Research and the University of Pennsylvania Materials Research Science and Engineering Center.

  13. Theory of structural transformation in lithiated amorphous silicon.

    Science.gov (United States)

    Cubuk, Ekin D; Kaxiras, Efthimios

    2014-07-01

    Determining structural transformations in amorphous solids is challenging due to the paucity of structural signatures. The effect of the transitions on the properties of the solid can be significant and important for applications. Moreover, such transitions may not be discernible in the behavior of the total energy or the volume of the solid as a function of the variables that identify its phases. These issues arise in the context of lithiation of amorphous silicon (a-Si), a promising anode material for high-energy density batteries based on lithium ions. Recent experiments suggest the surprising result that the lithiation of a-Si is a two-phase process. Here, we present first-principles calculations of the structure of a-Si at different lithiation levels. Through a detailed analysis of the short and medium-range properties of the amorphous network, using Voronoi-Delaunay methods and ring statistics, we show that a-LixSi has a fundamentally different structure below and above a lithiation level corresponding to x ∼ 2. PMID:24911996

  14. Electrochromic study on amorphous tungsten oxide films by sputtering

    International Nuclear Information System (INIS)

    Tungsten oxide films under different oxygen flow rates are deposited by DC sputtering. The voltage change at target and analyses for the deposited films by X-ray diffraction, scanning electronic microscope, X-ray photoelectron spectroscopy and ultraviolet–visible-near infrared spectroscopy consistently indicate that low oxygen flow rate (5 sccm) only creates metal-rich tungsten oxide films, while higher oxygen flow rate (10–20 sccm) assures the deposition of amorphous WO3 films. To explore the electrochromic function of deposited WO3 films, we use electrochemical tests to perform the insertion of lithium ions and electrons into films. The WO3 films switch between color and bleach states effectively by both potentiostat and cyclic voltammetry. Quantitative evaluation on electrochemical tests indicates that WO3 film with composition close to its stoichiometry is an optimal choice for electrochromic function. - Highlights: • Amorphous WO3 films are deposited by DC sputtering under different O2 flow rates. • Higher oxygen flow rate (> 10 sccm) assures the deposition of amorphous WO3 films. • Both potentiostat and cyclic voltammetry make WO3 films switch its color. • An optimal electrochromic WO3 is to make films close to its stoichiometry

  15. Developments in the Ni-Nb-Zr amorphous alloy membranes

    Science.gov (United States)

    Sarker, S.; Chandra, D.; Hirscher, M.; Dolan, M.; Isheim, D.; Wermer, J.; Viano, D.; Baricco, M.; Udovic, T. J.; Grant, D.; Palumbo, O.; Paolone, A.; Cantelli, R.

    2016-03-01

    Most of the global H2 production is derived from hydrocarbon-based fuels, and efficient H2/CO2 separation is necessary to deliver a high-purity H2 product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H2/CO2 separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD ~31,000 kg-1) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni60Nb40)100- x Zr x alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane.

  16. Stochastic approach to plasticity and yield in amorphous solids.

    Science.gov (United States)

    Hentschel, H G E; Jaiswal, Prabhat K; Procaccia, Itamar; Sastry, Srikanth

    2015-12-01

    We focus on the probability distribution function (PDF) P(Δγ;γ) where Δγ are the measured strain intervals between plastic events in a athermal strained amorphous solids, and γ measures the accumulated strain. The tail of this distribution as Δγ→0 (in the thermodynamic limit) scales like Δγ(η). The exponent η is related via scaling relations to the tail of the PDF of the eigenvalues of the plastic modes of the Hessian matrix P(λ) which scales like λ(θ), η=(θ-1)/2. The numerical values of η or θ can be determined easily in the unstrained material and in the yielded state of plastic flow. Special care is called for in the determination of these exponents between these states as γ increases. Determining the γ dependence of the PDF P(Δγ;γ) can shed important light on plasticity and yield. We conclude that the PDF's of both Δγ and λ are not continuous functions of γ. In slowly quenched amorphous solids they undergo two discontinuous transitions, first at γ=0(+) and then at the yield point γ=γ(Y) to plastic flow. In quickly quenched amorphous solids the second transition is smeared out due to the nonexisting stress peak before yield. The nature of these transitions and scaling relations with the system size dependence of 〈Δγ〉 are discussed. PMID:26764687

  17. Physicochemical determinants in the cellular responses to nanostructured amorphous silicas.

    Science.gov (United States)

    Gazzano, Elena; Ghiazza, Mara; Polimeni, Manuela; Bolis, Vera; Fenoglio, Ivana; Attanasio, Angelo; Mazzucco, Gianna; Fubini, Bice; Ghigo, Dario

    2012-07-01

    Amorphous silicas, opposite to crystalline polymorphs, have been regarded so far as nonpathogenic, but few studies have addressed the toxicity of the wide array of amorphous silica forms. With the advent of nanotoxicology, there has been a rising concern about the safety of silica nanoparticles to be used in nanomedicine. Here, we report a study on the toxicity of amorphous nanostructured silicas obtained with two different preparation procedures (pyrolysis vs. precipitation), the pyrogenic in two very different particle sizes, in order to assess the role of size and origin on surface properties and on the cell damage, oxidative stress, and inflammatory response elicited in murine alveolar macrophages. A quartz dust was employed as positive control and monodispersed silica spheres as negative control. Pyrogenic silicas were remarkably more active than the precipitated one as to cytotoxicity, reactive oxygen species production, lipid peroxidation, nitric oxide synthesis, and production of tumor necrosis factor-α, when compared both per mass and per unit surface. Between the two pyrogenic silicas, the larger one was the more active. Silanols density is the major difference in surface composition among the three silicas, being much larger than the precipitated one as indicated by joint calorimetric and infrared spectroscopy analysis. We assume here that full hydroxylation of a silica surface, with consequent stable coverage by water molecules, reduces/inhibits toxic behavior. The preparation route appears thus determinant in yielding potentially toxic materials, although the smallest size does not always correspond to an increased toxicity. PMID:22491428

  18. Amorphous cyclosporin A nanoparticles for enhanced dermal bioavailability.

    Science.gov (United States)

    Romero, Gregori B; Arntjen, Anja; Keck, Cornelia M; Müller, Rainer H

    2016-02-10

    Cylosporin A (CyA) was formulated as amorphous nanoparticle suspension to increase dermal penetration, e.g. applicable in psoriasis. The suspension consisted of 5% CyA in water, stabilized with vitamin E polyethylene glycol succinate (TPGS, Kolliphor TPGS) and was produced by bead milling. The diameter of the bulk population was about 350 nm, laser diffraction diameter 99% was 690 nm. The suspension was physically stable over one year of storage at room temperature, and most important the amorphous state also remained stable. Despite the high dispersitivity and related large surface area in contact with water, the drug content reduced only by 5% over 1 year of storage. i.e. the formulation is feasible as commercial product with expiry date. The CyA nanoparticles and μm-sized CyA particles were incorporated into hydroxypropylcellulose (HPC) gels and the penetration studied into fresh pig ear skin applying the tape stripping method. At tape number 30, the penetrated cumulative amount of CyA from nanoparticles was 6.3 fold higher compared to the μm-sized raw drug powder (450.1 μg/cm(2) vs. 71.3 μg/cm(2)). A theoretical mechanism is presented to explain the observed superiority in penetration. Based on amorphous CyA nanoparticles, dermal formulations for improved dermal CyA delivery seem to be feasible. PMID:26688038

  19. Annealing simulations of nano-sized amorphous structures in Sic

    International Nuclear Information System (INIS)

    A two-dimensional model of a nano-sized amorphous layer embedded in a perfect crystal has been developed, and the amorphous-to-crystalline (a-c) transition in 3C-Sic at 2000 K has been studied using molecular dynamics methods, with simulation times of up to 88 ns. Analysis of the a-c interfaces reveals that the recovery of the bond defects existing at the a-c interfaces plays an important role in recrystallization. During the recrystallization process, a second ordered phase, crystalline 2H-SiC, nucleates and grows, and this phase is stable for long simulation times. The crystallization mechanism is a two-step process that is separated by a longer period of second-phase stability. The kink sites formed at the interfaces between 2H- and 3C-SiC provide a low energy path for 2H-SiC atoms to transfer to 3C-SiC atoms, a process which can be defined as a solid-phase epitaxial transformation (SPET). It is observed that the nano-sized amorphous structure can be fully recrystallized at 2000 K in SiC, which is in agreement with experimental observations

  20. Toxicity of amorphous silica nanoparticles in mouse keratinocytes

    International Nuclear Information System (INIS)

    The present study was designed to examine the uptake, localization, and the cytotoxic effects of well-dispersed amorphous silica nanoparticles in mouse keratinocytes (HEL-30). Mouse keratinocytes were exposed for 24 h to various concentrations of amorphous silica nanoparticles in homogeneous suspensions of average size distribution (30, 48, 118, and 535 nm SiO2) and then assessed for uptake and biochemical changes. Results of transmission electron microscopy revealed all sizes of silica were taken up into the cells and localized into the cytoplasm. The lactate dehydrogenase (LDH) assay shows LDH leakage was dose- and size-dependent with exposure to 30 and 48 nm nanoparticles. However, no LDH leakage was observed for either 118 or 535 nm nanoparticles. The mitochondrial viability assay (MTT) showed significant toxicity for 30 and 48 nm at high concentrations (100 μg/mL) compared to the 118 and 535 nm particles. Further studies were carried out to investigate if cellular reduced GSH and mitochondria membrane potential are involved in the mechanism of SiO2 toxicity. The redox potential of cells (GSH) was reduced significantly at concentrations of 50, 100, and 200 μg/mL at 30 nm nanoparticle exposures. However, silica nanoparticles larger than 30 nm showed no changes in GSH levels. Reactive oxygen species (ROS) formation did not show any significant change between controls and the exposed cells. In summary, amorphous silica nanoparticles below 100 nm induced cytotoxicity suggest size of the particles is critical to produce biological effects.

  1. New sunscreen materials based on amorphous cerium and titanium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Masui, Toshiyuki [Department of Applied Chemistry, Faculty of Engineering and Handai Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hirai, Hidekazu [Department of Applied Chemistry, Faculty of Engineering and Handai Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Imanaka, Nobuhito [Department of Applied Chemistry, Faculty of Engineering and Handai Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)]. E-mail: imanaka@chem.eng.osaka-u.ac.jp; Adachi, Gin-ya [Juri Institute for Environmental Science and Chemistry, College of Analytical Chemistry, 2-1-8 Temma, Kita-ku, Osaka 530-0043 (Japan)

    2006-02-09

    Cerium-titanium pyrophosphates Ce{sub 1-x}Ti {sub x}P{sub 2}O{sub 7} (with x = 0, 0.50, and 1.0), which are novel phosphate materials developed as UV-shielding agents for use in cosmetics, were characterized by X-ray diffraction, X-ray fluorescent analysis, UV-vis reflectance, and Raman spectroscopy. Since the optical reflectance shifted to lower wavelengths by the crystallization of the phosphates and the stabilization of the amorphous state of the cerium-titanium pyrophosphates was carried out by doping niobium (Nb). Raman spectroscopic study of the phosphate showed that P-O-P bending and stretching modes decreased with the loading of Nb, accompanying with the formation of Nb-O stretching mode. Therefore, the increase in the amount of the non-bridging oxygen in the amorphous phosphate should be the reason for the inhibition of the crystallization. This stabilization is a significant improvement, which enables to apply these amorphous phosphates not only to cosmetics and paints, but also plastics and films.

  2. Michel Foucault's bodies

    OpenAIRE

    Potte-Bonneville, Mathieu

    2012-01-01

    How is it possible for Foucault to present the body at the same time as the foundation and the result of history, as condition and horizon of the theory that takes hold of it ? One has to pay attention to the various registers in which Foucault distributes the acceptations ordinarily confused with the general notion of the body : from "my body" (as it appears in Merleau-Ponty's phenomenology) to "the body' (as it is understood by modern medicine) ; from this body as an object for positive exp...

  3. Study on the substrate-induced crystallisation of amorphous SiC-precursor ceramics. TIB/A; Untersuchungen zur substratinduzierten Kristallisation amorpher SiC-Precursorkeramiken

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C.

    2000-12-01

    In the present thesis the crystallization behaviour of amorphous silicon-carbon materials (SiC{sub x}) was studied. The main topic of the experimental studies formed thereby the epitactical crystallization of thin silicon carbide layers on monocrystalline substrates of silicon carbides or silicon. Furthermore by thermolysis of the polymer amorphous SiC{sub x}-powder was obtained.

  4. Il potere di Prometeo e il dovere di Kant

    Directory of Open Access Journals (Sweden)

    Stefano Picchetti

    2006-10-01

    Full Text Available Kant ci suggerisce qualcosa che Prometeo e il mito greco avevano già accennato. L'imperativo che pone freno al fare, è già in sé nel soggetto ed è per questo che egli che egli è responsabile delle proprie azioni, indipendentemente dalla legge scritta.

  5. Il potere di Prometeo e il dovere di Kant

    OpenAIRE

    Stefano Picchetti

    2006-01-01

    Kant ci suggerisce qualcosa che Prometeo e il mito greco avevano già accennato. L'imperativo che pone freno al fare, è già in sé nel soggetto ed è per questo che egli che egli è responsabile delle proprie azioni, indipendentemente dalla legge scritta.

  6. Essere e dover essere nel modello weberiano di scienza giuridica

    Directory of Open Access Journals (Sweden)

    Realino Marra

    2014-05-01

    Full Text Available In this essay the author discusses Weber’s critique on a book by Rudolf Stammler of 1906 on the „overcoming“ of a materialistic account of history. In his text Weber postulates a double existence of juridical norms: on one hand they can be considered as ideal norms (if considered on the grounds of the logically correct meaning they express; on the other hand they represent empirical precepts that can be determined on the behaviour of concrete men. Marra criticizes Weber’s assumption and its consequences (in particular the division of juridical science into dogmatics and sociology.

  7. New School of Management, Delaware State University, Dover, Delaware.

    Science.gov (United States)

    Design Cost Data, 2001

    2001-01-01

    Presents features of Delaware State University's New School of Management designed to stimulate positive gains in teaching and learning. The design incorporates state of the art distance learning systems that includes a 350-seat auditorium possessing the same capability, and a commercial kitchen and dining facility for chef and hotel management…

  8. Validation of a Microsimulation of the Port of Dover

    CERN Document Server

    Roadknight, Chris; Sherman, Galina

    2013-01-01

    Modelling and simulating the traffic of heavily used but secure environments such as seaports and airports is of increasing importance. Errors made when simulating these environments can have long standing economic, social and environmental implications. This paper discusses issues and problems that may arise when designing a simulation strategy. Data for the Port is presented, methods for lightweight vehicle assessment that can be used to calibrate and validate simulations are also discussed along with a diagnosis of overcalibration issues. We show that decisions about where the intelligence lies in a system has important repercussions for the reliability of system statistics. Finally, conclusions are drawn about how microsimulations can be moved forward as a robust planning tool for the 21st century.

  9. TEM study of microstructural development during heating in a nanolaminated amorphous ZrAlCuFe/crystalline CuCoFeNi composite structure

    International Nuclear Information System (INIS)

    Highlights: • Microstructural transformation in amorphous/crystalline structure was studied. • Amorphous/crystalline structure was stable during heating up to 600 °C. • Transformation of the amorphous/crystalline structure occurred at temperatures above 600 °C. • Heating of the non-equilibrium multicomponent system produced complex patterns. • Heating at 900 °C produced a new morphologically complex nanocomposite structure. - Abstract: A nanolaminated amorphous/crystalline composite structure with a mean lamellar thickness of around 10 nm was fabricated on a Cu plate. The crystalline phase was a multicomponent non-equilibrium face-centered cubic (fcc) Cu(CoFeNi) solid solution, and the amorphous phase was a Zr-based compound containing Al, Cu, and Fe. The composite’s thermal stability and microstructural transformation was studied over the temperature range of 200–900 °C. The lamellae maintained their shape during heating up to 600 °C. Transformation of the structure began with separation of the elements inside the crystalline lamellae. In early stages of the transformation, hardening occurred. At 600 °C, an interconnected CoFe phase started to appear with an ordered body-centered cubic (bcc) crystal structure. When the temperature was increased further, the nanolaminated structure degraded and the bcc CoFe phase grew. At 750 °C, the bcc CoFe phase formed a complex network that surrounded the formerly amorphous regions, and the bcc CoFe phase started transforming to the fcc configuration. The Cu atoms segregated to the grain boundaries of the fcc CoFe(Ni) phase. The amorphous phase gradually crystallized into nanometer-sized polycrystalline grains that were attributed to the Zr(Al)O2 phase. As a result of these transformations, heating at 900 °C produced a morphologically complex nanocomposite structure consisting of branched grains of Zr(Al)O2 and fcc CoFe(Ni) with Cu inclusions. When the nanolaminated structure had completely transformed

  10. TEM study of microstructural development during heating in a nanolaminated amorphous ZrAlCuFe/crystalline CuCoFeNi composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Romankov, S., E-mail: romankovs@mail.ru [Chonbuk National University, 664-14 Duckjin-dong, Jeonju 561756 (Korea, Republic of); Park, Y.C., E-mail: parkyc@nnfc.re.kr [National Nanofab Center, 53-3 Eoeun-dong, Daejeon 305806 (Korea, Republic of)

    2015-01-15

    Highlights: • Microstructural transformation in amorphous/crystalline structure was studied. • Amorphous/crystalline structure was stable during heating up to 600 °C. • Transformation of the amorphous/crystalline structure occurred at temperatures above 600 °C. • Heating of the non-equilibrium multicomponent system produced complex patterns. • Heating at 900 °C produced a new morphologically complex nanocomposite structure. - Abstract: A nanolaminated amorphous/crystalline composite structure with a mean lamellar thickness of around 10 nm was fabricated on a Cu plate. The crystalline phase was a multicomponent non-equilibrium face-centered cubic (fcc) Cu(CoFeNi) solid solution, and the amorphous phase was a Zr-based compound containing Al, Cu, and Fe. The composite’s thermal stability and microstructural transformation was studied over the temperature range of 200–900 °C. The lamellae maintained their shape during heating up to 600 °C. Transformation of the structure began with separation of the elements inside the crystalline lamellae. In early stages of the transformation, hardening occurred. At 600 °C, an interconnected CoFe phase started to appear with an ordered body-centered cubic (bcc) crystal structure. When the temperature was increased further, the nanolaminated structure degraded and the bcc CoFe phase grew. At 750 °C, the bcc CoFe phase formed a complex network that surrounded the formerly amorphous regions, and the bcc CoFe phase started transforming to the fcc configuration. The Cu atoms segregated to the grain boundaries of the fcc CoFe(Ni) phase. The amorphous phase gradually crystallized into nanometer-sized polycrystalline grains that were attributed to the Zr(Al)O{sub 2} phase. As a result of these transformations, heating at 900 °C produced a morphologically complex nanocomposite structure consisting of branched grains of Zr(Al)O{sub 2} and fcc CoFe(Ni) with Cu inclusions. When the nanolaminated structure had completely

  11. Characterization, quantification and stability of differently prepared amorphous forms of some oral hypoglycaemic agents.

    Science.gov (United States)

    Chadha, Renu; Bhandari, Swati; Arora, Poonam; Chhikara, Rekha

    2013-01-01

    The study deals with the investigation of possible differences induced in the physicochemical properties within the amorphous forms prepared by different methods. Enthalpy of solution measured by solution calorimetry was utilized to highlight the differences prevailing within the amorphous forms and to determine the percentage of amorphous content. Emphasis is laid on the quantification and physical stability of these forms. Amorphization was induced in poorly water-soluble oral hypoglycaemic agents (repaglinide, gliclazide and glipizide), by quench cooling, vaporization under reduced pressure and lyophilization. The amorphous nature was evident from a halo pattern in powder X-ray diffraction. A glass transition event is evident in differential scanning calorimetry thermograms of the amorphous forms of the three drugs. As expected, the amorphous forms show improvement in solubility and dissolution profiles. On subjecting these amorphous forms to different relative humidities at 25°C for three months and subsequent analysis showed that amorphous form of repaglinide prepared by quench cooling is most stable and has the potential to be formulated without any additive while amorphous form of gliclazide tends to devitrify pointing towards its unstable nature. PMID:23061933

  12. Amorphous zone evolution in Si during ion bombardment

    International Nuclear Information System (INIS)

    Heavy ion induced damage in crystalline Si has been extensively studied for the last several decades. It has been experimentally ascertained that if the damage level in the collision (sub)cascade volume exceeds some threshold value, an amorphous zone in a crystalline matrix can be created. Such amorphous zones (a-zones) have been directly observed by transmission electron microscopy (TEM) for the low dose heavy ion bombardment of Si at relatively low temperatures (at room temperature and below). Such a-zones in a surrounding crystalline matrix are also expected to be formed during ion bombardment at elevated temperatures (T∼ 200-550 deg C), but their direct post-implantation observation is difficult because of dynamic annealing of displacement damage during implantation. Dynamic annealing can occur via both direct thermal and ion beam assisted processes. These processes are rather effective since the annealing temperatures for a-zones have been shown to be much lower than those required for crystallisation at a planar amorphous-crystalline (a/c) interface for thermal and ion beam induced crystallisation. This reduction of the annealing temperature has been successfully explained on the basis of the additional driving force available for crystallisation from the derivative of the surface free-energy density of a curved phase boundary. Although a lot of work has been undertaken to understand the formation and stabilisation of a-zones in Si, very little effort has been made to study their thermal and, especially, ion / electron beam induced evolution. In this report a-zone evolution in Si is considered based on a point defect diffusion model for ion beam induced Crystallisation and amorphization in Si modified to take into account purely thermal annealing and the additional interfacial driving force for crystallisation. In addition, the previously unconsidered problem of determination of the a-zone size distribution under different implant conditions is addressed

  13. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    Science.gov (United States)

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition. PMID:26716230

  14. The Mallory body

    DEFF Research Database (Denmark)

    Jensen, K; Gluud, C

    1994-01-01

    , a variety of experimental drugs have been developed that cause Mallory body formation, but markedly different cell dynamics and metabolic pathways may raise questions about the relevance of such animal models for human Mallory body formation. In conclusion, the Mallory body is indicative but not......To aid understanding of markers of disease and predictors of outcome in alcohol-exposed systems, we undertook a literature survey of more than 700 articles to view the morphological characteristics and the clinical and experimental epidemiology of the Mallory body. Mallory bodies are filaments of...... electron microscopy (with fibrillar structure parallel, random or absent), they remain stereotypical manifestations of hepatocyte injury. A summary of the conditions associated with Mallory bodies in the literature and their validity and potential etiological relationships is presented and discussed...

  15. Orphan Nuclear Bodies

    OpenAIRE

    Carmo-Fonseca, Maria; Berciano, Maria T.; Lafarga, Miguel

    2010-01-01

    Orphan nuclear bodies are defined as nonchromatin nuclear compartments that have been less well studied compared with other well-characterized structures in the nucleus. Nuclear bodies have traditionally been thought of as uniform distinct entities depending on the protein “markers” they contain. However, it is becoming increasingly apparent that nuclear bodies enriched in different sets of transcriptional regulators share a link to the ubiquitin-proteasome and SUMO-conjugation pathways. An e...

  16. Recent advances in the characterization of amorphous pharmaceuticals by X-ray diffractometry.

    Science.gov (United States)

    Thakral, Seema; Terban, Maxwell W; Thakral, Naveen K; Suryanarayanan, Raj

    2016-05-01

    For poorly water soluble drugs, the amorphous state provides an avenue to enhance oral bioavailability. The preparation method, in addition to sample history, can dictate the nature and the stability of the amorphous phase. Conventionally, X-ray powder diffractometry is of limited utility for characterization, but structural insights into amorphous and nanocrystalline materials have been enabled by coupling X-ray total scattering with the pair distribution function. This has shown great promise for fingerprinting, quantification, and even modeling of amorphous pharmaceutical systems. A consequence of the physical instability of amorphous phases is their crystallization propensity, and recent instrumental advances have substantially enhanced our ability to detect and quantify crystallization in a variety of complex matrices. The International Centre for Diffraction Data has a collection of the X-ray diffraction patterns of amorphous drugs and excipients and, based on the available supporting information, provides a quality mark of the data. PMID:26712710

  17. Low-Temperature Annealing Induced Amorphization in Nanocrystalline NiW Alloy Films

    Directory of Open Access Journals (Sweden)

    Z. Q. Chen

    2013-01-01

    Full Text Available Annealing induced amorphization in sputtered glass-forming thin films was generally observed in the supercooled liquid region. Based on X-ray diffraction and transmission electron microscope (TEM analysis, however, here, we demonstrate that nearly full amorphization could occur in nanocrystalline (NC sputtered NiW alloy films annealed at relatively low temperature. Whilst the supersaturation of W content caused by the formation of Ni4W phase played a crucial role in the amorphization process of NiW alloy films annealed at 473 K for 30 min, nearly full amorphization occurred upon further annealing of the film for 60 min. The redistribution of free volume from amorphous regions into crystalline regions was proposed as the possible mechanism underlying the nearly full amorphization observed in NiW alloys.

  18. HRTEM study of Popigai impact diamond: heterogeneous diamond nanostructures in native amorphous carbon matrix

    Science.gov (United States)

    Kis, Viktoria K.; Shumilova, Tatyana; Masaitis, Victor

    2016-07-01

    High-resolution transmission electron microscopy was applied for the detailed nanostructural investigation of Popigai impact diamonds with the aim of revealing the nature of the amorphous carbon of the matrix. The successful application of two complementary specimen preparation methods, focused ion beam (FIB) milling and mechanical cleavage, allowed direct imaging of nanotwinned nanodiamond crystals embedded in a native amorphous carbon matrix for the first time. Based on its stability under the electron beam, native amorphous carbon can be easily distinguished from the amorphous carbon layer produced by FIB milling during specimen preparation. Electron energy loss spectroscopy of the native amorphous carbon revealed the dominance of sp 2-bonded carbon and the presence of a small amount of oxygen. The heterogeneous size distribution and twin density of the nanodiamond crystals and the structural properties of the native amorphous carbon are presumably related to non-graphitic (organic) carbon precursor material.

  19. Reaction of amorphous Ni-W and Ni-N-W films with substrate silicon

    Science.gov (United States)

    Zhu, M. F.; Suni, I.; Nicolet, M.-A.; Sands, T.

    1984-01-01

    Wiley et al. (1982) have studied sputtered amorphous films of Nb-Ni, Mo-Ni, Si-W, and Si-Mo. Kung et al. (1984) have found that amorphous Ni-Mo films as diffusion barriers between multilayer metallizations on silicon demonstrate good electrical and thermal stability. In the present investigation, the Ni-W system was selected because it is similar to the Ni-Mo system. However, W has a higher silicide formation temperature than Mo. Attention is given to aspects of sample preparation, sample characterization, the interaction between amorphous Ni-W films and Si, the crystallization of amorphous Ni(36)W(64) films on SiO2, amorphous Ni-N-W films, silicide formation and phase separation, and the crystallization of amorphous Ni(36)W(64) and Ni(30)N(21)W(49) layers.

  20. Amorphization in Al induced by high-energy Ni ion implantation

    International Nuclear Information System (INIS)

    High-energy nickel ion implantation into pure aluminum targets induces local phase transformations. Samples implanted in a TANDEM accelerator at room temperature were studied by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The TEM observations revealed the presence of spherical amorphous zones. In order to understand this not yet fully explained amorphous phase formation, the mean diameter of the amorphous zones, their numerical density and their amorphous fraction have been determined for samples implanted with different doses. Electron dispersive spectroscopy (EDS) measurements performed on the sample implanted with a dose corresponding to 3.05 at.% Ni have shown that the Ni concentration inside the amorphous zones is about 25 at.%, whereas it is 2.1 at.% in the matrix. Mechanisms explaining the relatively high Ni concentration inside the amorphous zones are discussed. (orig.)