WorldWideScience

Sample records for amorphous biophotonic nanostructure

  1. Self-assembly of amorphous biophotonic nanostructures by phase separation

    Energy Technology Data Exchange (ETDEWEB)

    Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Cao, Hui; Prum, Richard O.; (Yale)

    2009-04-23

    Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important roles in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.

  2. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure

    Science.gov (United States)

    Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.

    2009-01-01

    Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016

  3. BIOPHOTONICS

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. BIOPHOTONICS. TISSUE STUDIES. DRUG-CELL INTERACTIONS. LIVER INJURY STUDIES. SEPSIS. NERVE INJURY – NURONS. MUSCLES. BACTERIA. LAB-ON-CHIP. DIFFUSE WAVE SPECTROSCOPY.

  4. Biophotonics

    CERN Document Server

    Pavesi, Lorenzo

    2008-01-01

    More profound understanding of the nature of light and light-matter interactions in biology has enabled many applications in the biology and medical fields. So a new discipline is born, namely biophotonics. The aim of this book is to review the current state-of-the-art of the field by means of authoritative chapters written by the world leaders of the respective fields. Biosensors, biochips, optical tomography, optical microsurgery, photodynamics therapy, bioactivation of gene, photobiology of skin, and nanobiophotonics are each introduced and recent advances presented. This book will be useful not only to physicians, biologists, physicists, chemists, materials scientists, and engineers but also to graduate students who are interested in these rapidly developing fields.

  5. Nanostructures having crystalline and amorphous phases

    Science.gov (United States)

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  6. Nanostructural characterization of amorphous diamondlike carbon films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; MARTINEZ-MIRANDA,L.J.; BARBOUR,J. CHARLES; SIMPSON,REGINA L.; OVERMYER,DONALD L.

    2000-01-27

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetic and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of 3- and 4-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetic of PLD growth results in films becoming more ``diamondlike'', i.e. increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film.

  7. Nanostructural characterization of amorphous diamondlike carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Martinez-Miranda, L. J. [University of Maryland, Department of Materials and Nuclear Engineering, College Park, Maryland 20742 (United States); Barbour, J. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2000-04-15

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetics and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of three- and four-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetics of PLD growth results in films becoming more ''diamondlike,'' i.e., increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film. (c) 2000 The American Physical Society.

  8. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    OpenAIRE

    Schriver, Maria Christine

    2012-01-01

    A novel solar cell architecture made completely from the earth abundant elements silicon and carbon has been developed. Hydrogenated amorphous silicon (aSi:H), rather than crystalline silicon, is used as the active material due to its high absorption through a direct band gap of 1.7eV, well matched to the solar spectrum to ensure the possibility of improved cells in this architecture with higher efficiencies. The cells employ a Schottky barrier design wherein the amorphous silicon absorber la...

  9. Relative contributions of pigments and biophotonic nanostructures to natural color production: a case study in budgerigar (Melopsittacus undulatus) feathers.

    Science.gov (United States)

    D'Alba, Liliana; Kieffer, Leah; Shawkey, Matthew D

    2012-04-15

    Understanding the mechanistic bases of natural color diversity can provide insight into its evolution and inspiration for biomimetic optical structures. Metazoans can be colored by absorption of light from pigments or by scattering of light from biophotonic nanostructures, and these mechanisms have largely been treated as distinct. However, the interactions between them have rarely been examined. Captive breeding of budgerigars (Aves, Psittacidae, Melopsittacus undulatus) has produced a wide variety of color morphs spanning the majority of the spectrum visible to birds, including the ultraviolet, and thus they have been used as examples of hypothesized structure-pigment interactions. However, empirical data testing these interactions in this excellent model system are lacking. Here we used ultraviolet-visible spectrometry, light and electron microscopy, pigment extraction experiments and optical modeling to examine the physical bases of color production in seven budgerigar morphs, including grey and chromatic (purple to yellow) colors. Feathers from all morphs contained quasi-ordered air-keratin 'spongy layer' matrices, but these were highly reduced and irregular in grey and yellow feathers. Similarly, all feathers but yellow and grey had a layer of melanin-containing melanosomes basal to the spongy layer. The presence of melanosomes likely increases color saturation produced by spongy layers whereas their absence may allow increased expression of yellow colors. Finally, extraction of yellow pigments caused some degree of color change in all feathers except purple and grey, suggesting that their presence and contribution to color production is more widespread than previously thought. These data illustrate how interactions between structures and pigments can increase the range of colors attainable in birds and potentially in synthetic systems.

  10. Double scattering of light from Biophotonic Nanostructures with short-range order

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui (Yale)

    2010-07-28

    We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.

  11. Fossilized biophotonic nanostructures reveal the original colors of 47-million-year-old moths.

    Science.gov (United States)

    McNamara, Maria E; Briggs, Derek E G; Orr, Patrick J; Wedmann, Sonja; Noh, Heeso; Cao, Hui

    2011-11-01

    Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among animals and have been studied most extensively in butterflies and moths (Lepidoptera), which exhibit the widest diversity of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration in lepidopterans, however, is poorly understood. Existing hypotheses based on phylogenetic and/or structural data are controversial and do not incorporate data from fossils. Here we report the first example of structurally colored scales in fossil lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany). The preserved colors are generated by a multilayer reflector comprised of a stack of perforated laminae in the scale lumen; differently colored scales differ in their ultrastructure. The original colors were altered during fossilization but are reconstructed based upon preserved ultrastructural detail. The dorsal surface of the forewings was a yellow-green color that probably served as a dual-purpose defensive signal, i.e. aposematic during feeding and cryptic at rest. This visual signal was enhanced by suppression of iridescence (change in hue with viewing angle) achieved via two separate optical mechanisms: extensive perforation, and concave distortion, of the multilayer reflector. The fossils provide the first evidence, to our knowledge, for the function of structural color in fossils and demonstrate the feasibility of reconstructing color in non-metallic lepidopteran fossils. Plastic scale developmental processes and complex optical mechanisms for interspecific signaling had clearly evolved in lepidopterans by the mid-Eocene.

  12. Fossilized biophotonic nanostructures reveal the original colors of 47-million-year-old moths.

    Directory of Open Access Journals (Sweden)

    Maria E McNamara

    2011-11-01

    Full Text Available Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among animals and have been studied most extensively in butterflies and moths (Lepidoptera, which exhibit the widest diversity of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration in lepidopterans, however, is poorly understood. Existing hypotheses based on phylogenetic and/or structural data are controversial and do not incorporate data from fossils. Here we report the first example of structurally colored scales in fossil lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany. The preserved colors are generated by a multilayer reflector comprised of a stack of perforated laminae in the scale lumen; differently colored scales differ in their ultrastructure. The original colors were altered during fossilization but are reconstructed based upon preserved ultrastructural detail. The dorsal surface of the forewings was a yellow-green color that probably served as a dual-purpose defensive signal, i.e. aposematic during feeding and cryptic at rest. This visual signal was enhanced by suppression of iridescence (change in hue with viewing angle achieved via two separate optical mechanisms: extensive perforation, and concave distortion, of the multilayer reflector. The fossils provide the first evidence, to our knowledge, for the function of structural color in fossils and demonstrate the feasibility of reconstructing color in non-metallic lepidopteran fossils. Plastic scale developmental processes and complex optical mechanisms for interspecific signaling had clearly evolved in lepidopterans by the mid-Eocene.

  13. Fossilized Biophotonic Nanostructures Reveal the Original Colors of 47-Million-Year-Old Moths

    Science.gov (United States)

    McNamara, Maria E.; Briggs, Derek E. G.; Orr, Patrick J.; Wedmann, Sonja; Noh, Heeso; Cao, Hui

    2011-01-01

    Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among animals and have been studied most extensively in butterflies and moths (Lepidoptera), which exhibit the widest diversity of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration in lepidopterans, however, is poorly understood. Existing hypotheses based on phylogenetic and/or structural data are controversial and do not incorporate data from fossils. Here we report the first example of structurally colored scales in fossil lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany). The preserved colors are generated by a multilayer reflector comprised of a stack of perforated laminae in the scale lumen; differently colored scales differ in their ultrastructure. The original colors were altered during fossilization but are reconstructed based upon preserved ultrastructural detail. The dorsal surface of the forewings was a yellow-green color that probably served as a dual-purpose defensive signal, i.e. aposematic during feeding and cryptic at rest. This visual signal was enhanced by suppression of iridescence (change in hue with viewing angle) achieved via two separate optical mechanisms: extensive perforation, and concave distortion, of the multilayer reflector. The fossils provide the first evidence, to our knowledge, for the function of structural color in fossils and demonstrate the feasibility of reconstructing color in non-metallic lepidopteran fossils. Plastic scale developmental processes and complex optical mechanisms for interspecific signaling had clearly evolved in lepidopterans by the mid-Eocene. PMID:22110404

  14. Next Generation BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2010-01-01

    We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials.......We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials....

  15. A Next Generation BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Tauro, Sandeep

    2011-01-01

    We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials.......We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials....

  16. PREFACE: Ultrafast biophotonics Ultrafast biophotonics

    Science.gov (United States)

    Gu, Min; Reid, Derryck; Ben-Yakar, Adela

    2010-08-01

    The use of light to explore biology can be traced to the first observations of tissue made with early microscopes in the mid-seventeenth century, and has today evolved into the discipline which we now know as biophotonics. This field encompasses a diverse range of activities, each of which shares the common theme of exploiting the interaction of light with biological material. With the rapid advancement of ultrafast optical technologies over the last few decades, ultrafast lasers have increasingly found applications in biophotonics, to the extent that the distinctive new field of ultrafast biophotonics has now emerged, where robust turnkey ultrafast laser systems are facilitating cutting-edge studies in the life sciences to take place in everyday laboratories. The broad spectral bandwidths, precision timing resolution, low coherence and high peak powers of ultrafast optical pulses provide unique opportunities for imaging and manipulating biological systems. Time-resolved studies of bio-molecular dynamics exploit the short pulse durations from such lasers, while other applications such as optical coherence tomography benefit from the broad optical bandwidths possible by using super-continuum generation and additionally allowing for high speed imaging with speeds as high as 47 000 scans per second. Continuing progress in laser-system technology is accelerating the adoption of ultrafast techniques across the life sciences, both in research laboratories and in clinical applications, such as laser-assisted in situ keratomileusis (LASIK) eye surgery. Revolutionizing the field of optical microscopy, two-photon excitation fluorescence (TPEF) microscopy has enabled higher spatial resolution with improved depth penetration into biological specimens. Advantages of this nonlinear optical process include: reduced photo-interactions, allowing for extensive imaging time periods; simultaneously exciting multiple fluorescent molecules with only one excitation wavelength; and

  17. Biophotonics: the big picture

    Science.gov (United States)

    Marcu, Laura; Boppart, Stephen A.; Hutchinson, Mark R.; Popp, Jürgen; Wilson, Brian C.

    2018-02-01

    The 5th International Conference on Biophotonics (ICOB) held April 30 to May 1, 2017, in Fremantle, Western Australia, brought together opinion leaders to discuss future directions for the field and opportunities to consider. The first session of the conference, "How to Set a Big Picture Biophotonics Agenda," was focused on setting the stage for developing a vision and strategies for translation and impact on society of biophotonic technologies. The invited speakers, panelists, and attendees engaged in discussions that focused on opportunities and promising applications for biophotonic techniques, challenges when working at the confluence of the physical and biological sciences, driving factors for advances of biophotonic technologies, and educational opportunities. We share a summary of the presentations and discussions. Three main themes from the conference are presented in this position paper that capture the current status, opportunities, challenges, and future directions of biophotonics research and key areas of applications: (1) biophotonics at the nano- to microscale level; (2) biophotonics at meso- to macroscale level; and (3) biophotonics and the clinical translation conundrum.

  18. In Situ Mechanical Property Measurements of Amorphous Carbon-Boron Nitride Nanotube Nanostructures

    Science.gov (United States)

    Kim, Jae-Woo; Lin, Yi; Nunez, Jennifer Carpena; Siochi, Emilie J.; Wise, Kristopher E.; Connell, John W.; Smith, Michael W.

    2011-01-01

    To understand the mechanical properties of amorphous carbon (a-C)/boron nitride nanotube (BNNT) nanostructures, in situ mechanical tests are conducted inside a transmission electron microscope equipped with an integrated atomic force microscope system. The nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation. We demonstrate multiple in situ tensile, compressive, and lap shear tests with a-C/BNNT hybrid nanostructures. The tensile strength of the a-C/BNNT hybrid nanostructure is 5.29 GPa with about 90 vol% of a-C. The tensile strength and strain of the end-to-end joint structure with a-C welding is 0.8 GPa and 5.2% whereas the lap shear strength of the side-by-side joint structure with a-C is 0.25 GPa.

  19. Introduction to Biophotonics

    Science.gov (United States)

    Prasad, Paras N.

    2003-04-01

    Paras Prasad's text provides a basic knowledge of a broad range of topics so that individuals in all disciplines can rapidly acquire the minimal necessary background for research and development in biophotonics. Introduction to Biophotonics serves as both a textbook for education and training as well as a reference book that aids research and development of those areas integrating light, photonics, and biological systems. Each chapter contains a topic introduction, a review of key data, and description of future directions for technical innovation. Introduction to Biophotonics covers the basic principles of Optics Optical spectroscopy Microscopy Each section also includes illustrated examples and review questions to test and advance the reader's knowledge. Sections on biosensors and chemosensors, important tools for combating biological and chemical terrorism, will be of particular interest to professionals in toxicology and other environmental disciplines. Introduction to Biophotonics proves a valuable reference for graduate students and researchers in engineering, chemistry, and the life sciences.

  20. Evidence for the concentration induced extinction of gas sensitivity in amorphous and nanostructured Te thin films

    International Nuclear Information System (INIS)

    Tsiulyanu, D.; Mocreac, O.; Enachi, M.; Volodina, G.

    2013-01-01

    The extinction of sensitivity to nitrogen dioxide induced by high gas concentration have been observed in ultrathin tellurium films. The phenomenon becomes apparent in both continuous and nanostructured films shown by AFM, SEM and XRD analyses to be in amorphous state. Sensitivity of 30 nm thickness Te film decreases near linearly with concentration increase between 150 and 500 ppb of nitrogen dioxide. The results are explained in terms of formation of a nitrogen dioxide catalytic gate in which a molecule adsorbs (and desorbs) without reacting. (authors)

  1. Information optics in biophotonics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2010-01-01

    I will outline the specifications of a portable Biophotonics Workstation we recently have developed that utilizes a single high-speed spatial light modulator to generate an array of currently up to 100 reconfigurable laser-traps with adjustable power ratios making 3D real-time manipulation possible...... with the click of a laptop mouse....

  2. Information optics in biophotonics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2010-01-01

    I will outline the specifications of a portable Biophotonics Workstation we recently have developed that utilizes a single high-speed spatial light modulator to generate an array of currently up to 100 reconfigurable laser-traps with adjustable power ratios making 3D real-time manipulation possib...

  3. Comparison of microstructure and magnetic properties of 3% Si-steel, amorphous and nanostructure Finemet

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M., E-mail: masoud_yousefi@hotmail.com; Rahmani, Kh.; Amiri Kerahroodi, M.S.

    2016-12-15

    This paper presents a comparison of microstructure and magnetic properties of polycrystalline 3%Si-steel, amorphous and nano-crystalline alloy Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} (known as Finemet). Si-steels are industrially produced by casting, hot and cold rolling, annealing and coating. Samples of thin amorphous ribbons were prepared by the planar flow casting (PFC) method. Nano-crystalline samples are obtained after annealing in vacuum furnace at 560 °C for 1 h. The structure of specimens was investigated by XRD, SEM and FE-SEM. Also, magnetic properties were measured using vibrating sample magnetometer (VSM). The results showed that, hysteresis losses in as-quenched and nano-crystalline ribbons were by 94.75% and 96.06% less than 3%Si-steel, respectively. After the heat treatment of amorphous specimens, hysteresis area was decreased by 25% in comparison with heat treated specimen. This decreasing is occurred due to the formation of Fe{sub 3}Si nanostructure with size of 10–17 nm and removing segregation after heat treatment. - Highlights: • The structure of specimens was investigated by XRD, SEM and FE-SEM. • Hysteresis losses of amorphous ribbon, was 94.75% less than 3% Si-steel. • After heat treatment, hysteresis losses was less than the 3% Si-steel by 96.06%. • Formation of Fe3Si nano structure with size of 10-17 nm. • Removing segregation after heat treatment.

  4. Fabrication of single-crystalline plasmonic nanostructures on transparent and flexible amorphous substrates

    Science.gov (United States)

    Mori, Tomohiro; Mori, Takeshi; Tanaka, Yasuhiro; Suzaki, Yoshifumi; Yamaguchi, Kenzo

    2017-02-01

    A new experimental technique is developed for producing a high-performance single-crystalline Ag nanostructure on transparent and flexible amorphous substrates for use in plasmonic sensors and circuit components. This technique is based on the epitaxial growth of Ag on a (001)-oriented single-crystalline NaCl substrate, which is subsequently dissolved in ultrapure water to allow the Ag film to be transferred onto a wide range of different substrates. Focused ion beam milling is then used to create an Ag nanoarray structure consisting of 200 cuboid nanoparticles with a side length of 160 nm and sharp, precise edges. This array exhibits a strong signal and a sharp peak in plasmonic properties and Raman intensity when compared with a polycrystalline Ag nanoarray.

  5. Biophotonics: a European perspective

    Science.gov (United States)

    Robin, Thierry; Cochard, Jacques; Breussin, Frédéric

    2013-03-01

    The objective of the present work is to determine the opportunities and challenges for Biophotonics business development in Europe for the next five years with a focus on sensors and systems: for health diagnostics and monitoring; for air, water and food safety and quality control. The development of this roadmap was initiated and supported by EPIC (The European Photonics Industry Consortium). We summarize the final roadmap data: market application segments and trends, analysis of the market access criteria, analysis of the technology trends and major bottlenecks and challenges per application.

  6. BioPhotonics Workstation: a university tech transfer challenge

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Bañas, Andrew Rafael; Tauro, Sandeep

    2011-01-01

    distance geometry. This geometry provides three dimensional and real time manipulation of a plurality of traps facilitating precise control and a rapid response in all sorts of optical manipulation undertakings. We present ongoing research and development activities for constructing a compact next...... generation BioPhotonics Workstation to be applied in three-dimensional studies on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and new materials....

  7. Biophotonics for Biofuel Upgradation

    Science.gov (United States)

    Rana, Gopinath; Mandal, Tanusri

    2017-12-01

    Experimental studies have been made to find out Cyanobacterias' biophotonical response in gaseous-fuelation and carbon dioxide fixation during photo-anaerobic digestion. A new horizontal type photo-bioreactor has been designed by using environment hazard plastic bottles and it works ideally for anoxygenic cyanobacterial growth. Through `V3-metagenomics' of 16S rRNA gene sequencing by paired-end Illumina MiSeq and downstream analysis by QIIME program, we have identified anaerobic cyanobacteria, represent the orders YS2 and Streptophyta. OTUs have been identified by aligning against Greengenes and Silva databases, separately. The flame temperature of the fuel gas is 860°C and the percent-content of carbon dioxide (CO2) is 17.6%.

  8. Biophotonics concepts to applications

    CERN Document Server

    Keiser, Gerd

    2016-01-01

    This book is designed to introduce senior-level and postgraduate students to the principles and applications of biophotonics. It also will serve well as a working reference to practicing physicians, clinicians, biomedical researchers, and biomedical engineers dealing with photonics-based tools and instruments. The book topics include the fundamentals of optics and photonics, the optical properties of biological tissues, various types of light-tissue interactions, microscopy for visualizing tissue components, spectroscopy for optically analyzing the properties of healthy and diseased tissue, and optical biomedical imaging. The tools and techniques described in the book include laser and LED optical sources, photodetectors, optical fibers, bioluminescent probes for labeling cells, optical-based biosensors, nanophotonics, surface plasmon resonance, and lab-on-a-chip technologies. Among the applications are optical coherence tomography (OCT), flow cytometery, photodynamic therapy (PDT), low-level light therapy (L...

  9. BIOPHOTONICS FOR BIOFUEL UPGRADATION

    Directory of Open Access Journals (Sweden)

    Gopinath RANA

    2017-10-01

    Full Text Available Experimental studies have been made to find out Cyanobacterias’ biophotonical response in gaseous-fuelation and car-bon dioxide fixation during photo-anaerobic digestion. A new horizontal type photo-bioreactor has been designed by using environment hazard plastic bottles and it works ideally for anoxygenic cyanobacterial growth. Through ‘V3-metagenomics’ of 16S rRNA gene sequencing by paired-end Illumina MiSeq and downstream analysis by QIIME program, we have identified anaerobic cyanobacteria, represent the orders YS2 and Streptophyta. OTUs have been identified by aligning against Greengenes and Silva databases, separately. The flame temperature of the fuel gas is 860°C and the percent-content of carbon dioxide (CO2 is 17.6%.

  10. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    International Nuclear Information System (INIS)

    Martinez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-01-01

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 C. Film surfaces roughen upon annealing to 300 C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films

  11. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-07-23

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 C. Film surfaces roughen upon annealing to 300 C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films.

  12. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    Science.gov (United States)

    Martínez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-07-01

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 °C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 °C. Film surfaces roughen upon annealing to 300 °C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 °C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films.

  13. Terahertz time domain spectroscopy of amorphous and crystalline aluminum oxide nanostructures synthesized by thermal decomposition of AACH

    Energy Technology Data Exchange (ETDEWEB)

    Mehboob, Shoaib, E-mail: smehboob@pieas.edu.pk [National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad (Pakistan); Mehmood, Mazhar [National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad (Pakistan); Ahmed, Mushtaq [National Institute of Lasers and Optronics (NILOP), Nilore 45650, Islamabad (Pakistan); Ahmad, Jamil; Tanvir, Muhammad Tauseef [National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad (Pakistan); Ahmad, Izhar [National Institute of Lasers and Optronics (NILOP), Nilore 45650, Islamabad (Pakistan); Hassan, Syed Mujtaba ul [National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad (Pakistan)

    2017-04-15

    The objective of this work is to study the changes in optical and dielectric properties with the transformation of aluminum ammonium carbonate hydroxide (AACH) to α-alumina, using terahertz time domain spectroscopy (THz-TDS). The nanostructured AACH was synthesized by hydrothermal treatment of the raw chemicals at 140 °C for 12 h. This AACH was then calcined at different temperatures. The AACH was decomposed to amorphous phase at 400 °C and transformed to δ* + α-alumina at 1000 °C. Finally, the crystalline α-alumina was achieved at 1200 °C. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were employed to identify the phases formed after calcination. The morphology of samples was studied using scanning electron microscopy (SEM), which revealed that the AACH sample had rod-like morphology which was retained in the calcined samples. THz-TDS measurements showed that AACH had lowest refractive index in the frequency range of measurements. The refractive index at 0.1 THZ increased from 2.41 for AACH to 2.58 for the amorphous phase and to 2.87 for the crystalline α-alumina. The real part of complex permittivity increased with the calcination temperature. Further, the absorption coefficient was highest for AACH, which reduced with calcination temperature. The amorphous phase had higher absorption coefficient than the crystalline alumina. - Highlights: • Aluminum oxide nanostructures were obtained by thermal decomposition of AACH. • Crystalline phases of aluminum oxide have higher refractive index than that of amorphous phase. • The removal of heavier ionic species led to the lower absorption of THz radiations.

  14. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures

    KAUST Repository

    Mughal, Asad Jahangir

    2014-01-01

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material\\'s luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon. This journal is

  15. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures.

    Science.gov (United States)

    Mughal, A; El Demellawi, J K; Chaieb, Sahraoui

    2014-12-14

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon.

  16. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material.

    Science.gov (United States)

    Fruijtier-Pölloth, Claudia

    2012-04-11

    Synthetic amorphous silica (SAS), in the form of pyrogenic (fumed), precipitated, gel or colloidal SAS, has been used in a wide variety of industrial and consumer applications including food, cosmetics and pharmaceutical products for many decades. Based on extensive physico-chemical, ecotoxicology, toxicology, safety and epidemiology data, no environmental or health risks have been associated with these materials if produced and used under current hygiene standards and use recommendations. With internal structures in the nanoscale size range, pyrogenic, precipitated and gel SAS are typical examples of nanostructured materials as recently defined by the International Organisation for Standardisation (ISO). The manufacturing process of these SAS materials leads to aggregates of strongly (covalently) bonded or fused primary particles. Weak interaction forces (van der Waals interactions, hydrogen bonding, physical adhesion) between aggregates lead to the formation of micrometre (μm)-sized agglomerates. Typically, isolated nanoparticles do not occur. In contrast, colloidal SAS dispersions may contain isolated primary particles in the nano-size range which can be considered nano-objects. The size of the primary particle resulted in the materials often being considered as "nanosilica" and in the inclusion of SAS in research programmes on nanomaterials. The biological activity of SAS can be related to the particle shape and surface characteristics interfacing with the biological milieu rather than to particle size. SAS adsorbs to cellular surfaces and can affect membrane structures and integrity. Toxicity is linked to mechanisms of interactions with outer and inner cell membranes, signalling responses, and vesicle trafficking pathways. Interaction with membranes may induce the release of endosomal substances, reactive oxygen species, cytokines and chemokines and thus induce inflammatory responses. None of the SAS forms, including colloidal nano-sized particles, were shown

  17. BioPhotonics Workstation: 3D interactive manipulation, observation and characterization

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2011-01-01

    In ppo.dk we have invented the BioPhotonics Workstation to be applied in 3D research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and new materials....

  18. Mescoscopic Toolbox for Biophotonics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    ‐fabricated structures possible with the use of a simple joystick. The fabrication of microstructures with nanometer‐sized features, for example a nano‐needle, coupled with the real‐time user‐interactive optical control allows a user to “robotically” actuate appended nanostructures depending on their intended function...

  19. BIOPHOTONICS – STUDIES AT RRCAT

    Indian Academy of Sciences (India)

    BIOPHOTONICS – STUDIES AT RRCAT · Slide 2 · OPTICAL IMAGING · Slide 4 · IMAGING OF ZEBRA FISH EYE · SPECTROSCOPIC DIAGNOSIS · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · CONTROLLED 3D ROTATION OR ORIENTATION OF BIOLOGICAL OBJECTS · Slide 16 · Slide 17.

  20. Biophoton emission induced by heat shock.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Kobayashi

    Full Text Available Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock.

  1. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species.

    Science.gov (United States)

    Saranathan, Vinodkumar; Forster, Jason D; Noh, Heeso; Liew, Seng-Fatt; Mochrie, Simon G J; Cao, Hui; Dufresne, Eric R; Prum, Richard O

    2012-10-07

    Non-iridescent structural colours of feathers are a diverse and an important part of the phenotype of many birds. These colours are generally produced by three-dimensional, amorphous (or quasi-ordered) spongy β-keratin and air nanostructures found in the medullary cells of feather barbs. Two main classes of three-dimensional barb nanostructures are known, characterized by a tortuous network of air channels or a close packing of spheroidal air cavities. Using synchrotron small angle X-ray scattering (SAXS) and optical spectrophotometry, we characterized the nanostructure and optical function of 297 distinctly coloured feathers from 230 species belonging to 163 genera in 51 avian families. The SAXS data provided quantitative diagnoses of the channel- and sphere-type nanostructures, and confirmed the presence of a predominant, isotropic length scale of variation in refractive index that produces strong reinforcement of a narrow band of scattered wavelengths. The SAXS structural data identified a new class of rudimentary or weakly nanostructured feathers responsible for slate-grey, and blue-grey structural colours. SAXS structural data provided good predictions of the single-scattering peak of the optical reflectance of the feathers. The SAXS structural measurements of channel- and sphere-type nanostructures are also similar to experimental scattering data from synthetic soft matter systems that self-assemble by phase separation. These results further support the hypothesis that colour-producing protein and air nanostructures in feather barbs are probably self-assembled by arrested phase separation of polymerizing β-keratin from the cytoplasm of medullary cells. Such avian amorphous photonic nanostructures with isotropic optical properties may provide biomimetic inspiration for photonic technology.

  2. Low-Temperature Preparation of Amorphous-Shell/Nanocrystalline-Core Nanostructured TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Dongshe Zhang

    2008-01-01

    Full Text Available An amorphous shell/nanocrystalline core nanostructured TiO2 electrode was prepared at low temperature, in which the mixture of TiO2 powder and TiCl4 aqueous solution was used as the paste for coating a film and in this film amorphous TiO2 resulted from direct hydrolysis of TiCl4 at 100∘C sintering was produced to connect the particles forming a thick crack-free uniform nanostructured TiO2 film (12 μm, and on which a photoelectrochemical solar cell-based was fabricated, generating a short-circuit photocurrent density of 13.58 mA/cm2, an open-circuit voltage of 0.647 V, and an overall 4.48% light-to-electricity conversion efficiency under 1 sun illumination.

  3. Electrical transport and morphological study of PLD-grown nanostructured amorphous carbon thin films

    International Nuclear Information System (INIS)

    Kant, K Mohan; Reddy, N Mahipal; Rama, N; Sethupathi, K; Rao, M S Ramachandra

    2006-01-01

    Nanostructured carbon thin films have been actively investigated recently for their electroresistance (ER) properties. Furthermore, carbon films with nonlinear current-voltage (I-V) characteristics have potential application in field-emission devices. This has motivated us to study the effect of various growth parameters on the physical and morphological properties of carbon films grown by pulsed laser deposition (PLD). Carbon films have been deposited using a graphite target at different partial pressures of argon. The morphology of film surfaces deposited at various growth conditions was monitored using an atomic force microscope (AFM). AFM studies showed nanostructured grain growth with average grain size of about 80-90 nm. As the deposition time was decreased down to 1 min, the grain size was also found to decrease correspondingly. From Raman spectroscopic measurements an increase in the I(D)/I(G) ratio and a decrease in FWHM (G) clearly revealed the promotion of sp 2 hybridization as the substrate temperature increased. All the films show semiconducting behaviour with the dominant conduction process being the three-dimensional (3D) variable range hopping (VRH) mechanism. Nonlinear I-V curves were obtained for carbon films deposited on p-type Si indicating diode-like behaviour. The most significant result of this study was the observation of a large electroresistance value

  4. Multicolor emission based on amorphous-to-crystalline phase transitions in nanostructured Mn-doped glass

    Science.gov (United States)

    Hoshino, Yoshinobu; Takahashi, Yoshihiro; Terakado, Nobuaki; Fujiwara, Takumi

    2017-12-01

    We fabricated glass-ceramics composed of emissive nanocrystals that show variation in photoluminescence coloration. The change in emission color is based on the amorphous-to-crystalline phase transformation in a Mn-containing zincogermanate glass. The transformation occurred at a 50 °C temperature range (538–588 °C), resulting in a change in photoluminescence color from orange to white to green. The color change is attributed to the co-crystallization of emissive nanophases and a change in the coordination state of Mn2+. Using laser-induced crystallization, we also achieved the space-selective arrangement of the different photoluminescence colors, indicating that photoluminescence coloration can be tuned in this Mn-doped glass.

  5. Electrochemical treatment of domestic wastewater using boron-doped diamond and nanostructured amorphous carbon electrodes.

    Science.gov (United States)

    Daghrir, Rimeh; Drogui, Patrick; Tshibangu, Joel; Delegan, Nazar; El Khakani, My Ali

    2014-05-01

    The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8%, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9%, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9 ± 2 and 85.5 ± 2 %, whereas 70% of total organic carbon removal was achieved.

  6. Dual-Layer Nanostructured Flexible Thin-Film Amorphous Silicon Solar Cells with Enhanced Light Harvesting and Photoelectric Conversion Efficiency.

    Science.gov (United States)

    Lin, Yinyue; Xu, Zhen; Yu, Dongliang; Lu, Linfeng; Yin, Min; Tavakoli, Mohammad Mahdi; Chen, Xiaoyuan; Hao, Yuying; Fan, Zhiyong; Cui, Yanxia; Li, Dongdong

    2016-05-04

    Three-dimensional (3-D) structures have triggered tremendous interest for thin-film solar cells since they can dramatically reduce the material usage and incident light reflection. However, the high aspect ratio feature of some 3-D structures leads to deterioration of internal electric field and carrier collection capability, which reduces device power conversion efficiency (PCE). Here, we report high performance flexible thin-film amorphous silicon solar cells with a unique and effective light trapping scheme. In this device structure, a polymer nanopillar membrane is attached on top of a device, which benefits broadband and omnidirectional performances, and a 3-D nanostructure with shallow dent arrays underneath serves as a back reflector on flexible titanium (Ti) foil resulting in an increased optical path length by exciting hybrid optical modes. The efficient light management results in 42.7% and 41.7% remarkable improvements of short-circuit current density and overall efficiency, respectively. Meanwhile, an excellent flexibility has been achieved as PCE remains 97.6% of the initial efficiency even after 10 000 bending cycles. This unique device structure can also be duplicated for other flexible photovoltaic devices based on different active materials such as CdTe, Cu(In,Ga)Se2 (CIGS), organohalide lead perovskites, and so forth.

  7. Hydrogenated amorphous carbon films on steel balls and Si substrates: Nanostructural evolutions and their trigging tribological behaviors

    Science.gov (United States)

    Wang, Yongfu; Wang, Yan; Zhang, Xingkai; Shi, Jing; Gao, Kaixiong; Zhang, Bin; Zhang, Junyan

    2017-10-01

    In this study, we prepared hydrogenated amorphous carbon films on steel balls and Si substrates (steel ball- and Si substrate-films) with different deposition time, and discussed their carbon nanostructural evolutions and tribological behaviors. The steel ball-film structure started to be graphite-like structure and then gradually transformed into fullerene-like (FL) structure. The Si substrate-film structure began in FL structure and kept it through the thickness. The difference may be result from the competition between high starting substrate temperature after additional nitriding applied on the steel balls (its supply power is higher than that in the film deposition), and relaxation of compressive stress from energized ion bombardment in film deposition process. The FL structural film friction couples could achieve ultra-low friction in open air. In particular, the Si substrate-film with 3 h, against the steel ball-film with 2 h and 3 h, exhibited super-low friction (∼0.009) and superlong wear life (∼5.5 × 105 cycles). Our result could widen the superlubricity scope from previously high load and velocity, to middle load and velocity.

  8. A next generation biophotonics workstation

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    The 2009 Euro American Workshop on Information Optics will be held during July 20 - 24, 2009 at Ecole des Mines in Paris, France. The workshop will address the latest advances in information optics, information photonics, imaging sciences and engineering, 3D image sensing and display, polarimetric...... imaging, image based information security, image recognition, bio-photonics, and novel image sensors. It will be a forum for scientific interaction and collaboration between well known scientists in the field and educational outreach to students. This workshop will consist of keynote and invited talks (by...... invitation only). Regular submissions will be accepted as poster presentations on the following topics that include, but are not limited to: Fundamental advances in optics and photonics Materials for optics and nano-systems Image sensing, visualization and display Inverse problems in optics 3D Image...

  9. The safety of nanostructured synthetic amorphous silica (SAS) as a food additive (E 551).

    Science.gov (United States)

    Fruijtier-Pölloth, Claudia

    2016-12-01

    Particle sizes of E 551 products are in the micrometre range. The typical external diameters of the constituent particles (aggregates) are greater than 100 nm. E 551 does not break down under acidic conditions such as in the stomach, but may release dissolved silica in environments with higher pH such as the intestinal tract. E 551 is one of the toxicologically most intensively studied substances and has not shown any relevant systemic or local toxicity after oral exposure. Synthetic amorphous silica (SAS) meeting the specifications for use as a food additive (E 551) is and has always been produced by the same two production methods: the thermal and the wet processes, resulting in E 551 products consisting of particles typically in the micrometre size range. The constituent particles (aggregates) are typically larger than 100 nm and do not contain discernible primary particles. Particle sizes above 100 nm are necessary for E 551 to fulfil its technical function as spacer between food particles, thus avoiding the caking of food particles. Based on an in-depth review of the available toxicological information and intake data, it is concluded that the SAS products specified for use as food additive E 551 do not cause adverse effects in oral repeated-dose studies including doses that exceed current OECD guideline recommendations. In particular, there is no evidence for liver toxicity after oral intake. No adverse effects have been found in oral fertility and developmental toxicity studies, nor are there any indications from in vivo studies for an immunotoxic or neurotoxic effect. SAS is neither mutagenic nor genotoxic in vivo. In intact cells, a direct interaction of unlabelled and unmodified SAS with DNA was never found. Differences in the magnitude of biological responses between pyrogenic and precipitated silica described in some in vitro studies with murine macrophages at exaggerated exposure levels seem to be related to interactions with cell culture proteins

  10. Sculpting light for contemporary biophotonics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    DTUs IPR portfolio on so-­‐called Generalized Phase Contrast (GPC) covers a family of powerful “light-­‐engine” approaches for generating speckle-­‐free contiguous optical distributions using advanced spatial phase modulation. GPC has been used in applications such as optical trapping and manipul...... for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range.......DTUs IPR portfolio on so-­‐called Generalized Phase Contrast (GPC) covers a family of powerful “light-­‐engine” approaches for generating speckle-­‐free contiguous optical distributions using advanced spatial phase modulation. GPC has been used in applications such as optical trapping...... and manipulation, active microscopy, structured illumination, optical security, parallel laser marking trials and recently in contemporary biophotonics applications such as for real-­‐time parallel two-­‐photon optogenetics and neurophotonics. Our most recent GPC light sculpting developments geared towards...

  11. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  12. Next Genertation BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Tauro, Sandeep

    We will outline the specs of our Biophotonics Workstation that can generate up to 100 reconfigurable laser-traps making 3D real-time optical manipulation of advanced structures, cells or tiny particles possible with the use of joysticks or gaming devices. Optically actuated nanoneedles may be fun...

  13. Biophotonic markers of malignancy: Discriminating cancers using wavelength-specific biophotons

    Directory of Open Access Journals (Sweden)

    Nirosha J. Murugan

    2018-03-01

    Full Text Available Early detection is a critically important factor when successfully diagnosing and treating cancer. Whereas contemporary molecular techniques are capable of identifying biomarkers associated with cancer, surgical interventions are required to biopsy tissue. The common imaging alternative, positron-emission tomography (PET, involves the use of nuclear material which poses some risks. Novel, non-invasive techniques to assess the degree to which tissues express malignant properties are now needed. Recent developments in biophoton research have made it possible to discriminate cancerous cells from normal cells both in vitro and in vivo. The current study expands upon a growing body of literature where we classified and characterized malignant and non-malignant cell types according to their biophotonic activity. Using wavelength-exclusion filters, we demonstrate that ratios between infrared and ultraviolet photon emissions differentiate cancer and non-cancer cell types. Further, we identified photon sources associated with three filters (420-nm, 620-nm., and 950-nm which classified cancer and non-cancer cell types. The temporal increases in biophoton emission within these wavelength bandwidths is shown to be coupled with intrisitic biomolecular events using Cosic's resonant recognition model. Together, the findings suggest that the use of wavelength-exclusion filters in biophotonic measurement can be employed to detect cancer in vitro.

  14. Biomedical device innovation methodology: applications in biophotonics.

    Science.gov (United States)

    Beswick, Daniel M; Kaushik, Arjun; Beinart, Dylan; McGarry, Sarah; Yew, Ming Khoon; Kennedy, Brendan F; Maria, Peter Luke Santa

    2017-12-01

    The process of medical device innovation involves an iterative method that focuses on designing innovative, device-oriented solutions that address unmet clinical needs. This process has been applied to the field of biophotonics with many notable successes. Device innovation begins with identifying an unmet clinical need and evaluating this need through a variety of lenses, including currently existing solutions for the need, stakeholders who are interested in the need, and the market that will support an innovative solution. Only once the clinical need is understood in detail can the invention process begin. The ideation phase often involves multiple levels of brainstorming and prototyping with the aim of addressing technical and clinical questions early and in a cost-efficient manner. Once potential solutions are found, they are tested against a number of known translational factors, including intellectual property, regulatory, and reimbursement landscapes. Only when the solution matches the clinical need, the next phase of building a "to market" strategy should begin. Most aspects of the innovation process can be conducted relatively quickly and without significant capital expense. This white paper focuses on key points of the medical device innovation method and how the field of biophotonics has been applied within this framework to generate clinical and commercial success. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. Biomedical device innovation methodology: applications in biophotonics

    Science.gov (United States)

    Beswick, Daniel M.; Kaushik, Arjun; Beinart, Dylan; McGarry, Sarah; Yew, Ming Khoon; Kennedy, Brendan F.; Maria, Peter Luke Santa

    2018-02-01

    The process of medical device innovation involves an iterative method that focuses on designing innovative, device-oriented solutions that address unmet clinical needs. This process has been applied to the field of biophotonics with many notable successes. Device innovation begins with identifying an unmet clinical need and evaluating this need through a variety of lenses, including currently existing solutions for the need, stakeholders who are interested in the need, and the market that will support an innovative solution. Only once the clinical need is understood in detail can the invention process begin. The ideation phase often involves multiple levels of brainstorming and prototyping with the aim of addressing technical and clinical questions early and in a cost-efficient manner. Once potential solutions are found, they are tested against a number of known translational factors, including intellectual property, regulatory, and reimbursement landscapes. Only when the solution matches the clinical need, the next phase of building a "to market" strategy should begin. Most aspects of the innovation process can be conducted relatively quickly and without significant capital expense. This white paper focuses on key points of the medical device innovation method and how the field of biophotonics has been applied within this framework to generate clinical and commercial success.

  16. Advanced light sculpting for contemporary biophotonics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Villangca, Mark Jayson

    Our proprietary Generalized Phase Contrast (GPC) method is a light efficient approach for generating speckle-­‐free contiguous optical distributions using binary-­‐only or analog spatial phase modulation. It has been used in applications such as optical trapping and manipulation, active microscop...... applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range.......Our proprietary Generalized Phase Contrast (GPC) method is a light efficient approach for generating speckle-­‐free contiguous optical distributions using binary-­‐only or analog spatial phase modulation. It has been used in applications such as optical trapping and manipulation, active microscopy......, structured illumination, optical security, parallel laser marking and recently in contemporary biophotonics applications such as for real-­‐time parallel two-­‐photon optogenetics and neurophotonics. Our most recent GPC light sculpting developments geared towards these applications will be presented...

  17. Biophotonics sensor acclimatization to stem cells environment

    Science.gov (United States)

    Mohamad Shahimin, Mukhzeer

    2017-11-01

    The ability to discriminate, characterise and purify biological cells from heterogeneous population of cells is fundamental to numerous prognosis and diagnosis applications; often forming the basis for current and emerging clinical protocols in stem cell therapy. Current sorting approaches exploit differences in cell density, specific immunologic targets, or receptor-ligand interactions to isolate particular cells. Identification of novel properties by which different cell types may be discerned and of new ways for their selective manipulation are clearly fundamental components for improving sorting methodologies. Biophotonics sensor developed by our team are potentially capable of discriminating cells according to their refractive index (which is highly dependable on the organelles inside the cell), size (indicator to cell stage) and shape (in certain cases as an indicator to cell type). The sensor, which already discriminate particles efficiently, is modified to acclimatize into biological environment, especially for stem cell applications.

  18. Sculpting light for new biophotonics applications

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Villangca, Mark Jayson

    Generalized Phase Contrast (GPC) is a power efficient approach for generating speckle-free contiguous optical distributions using spatial phaseonly light modulation. GPC has been demonstrated in a variety of applications such as optical micro-manipulation [1], active microscopy [2], structured il...... have to be actively shaped into particular light patterns [4]. We show the potential of GPC for biomedical and multispectral applications where we demonstrate phase-only light shaping of a supercontinuum laser over most of its visible wavelength range [5].......Generalized Phase Contrast (GPC) is a power efficient approach for generating speckle-free contiguous optical distributions using spatial phaseonly light modulation. GPC has been demonstrated in a variety of applications such as optical micro-manipulation [1], active microscopy [2], structured...... illumination, optical phase encryption, and recently in contemporary biophotonics applications such as for real-time parallel twophoton optogenetics and neurophotonics [3]. Our most recent GPC light sculpting developments will be presented. These include both static and dynamic GPC Light Shapers where lasers...

  19. Nano-biophotonics explored by Light Robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Palima, Darwin

    for harnessing most of the functionalities required to develop the fascinating concept of true so-­‐called Light Robotics. We foresee that it will soon become possible to equip 3D laser-printed robotic micro-­‐structures with multi functional biophotonics nanoprobes or nanotips fabricated with true nanoscopic...... resolution. The uniqueness of such an approach is that even if a micro biologist aims at exploring e.g. cell biology at nanoscopic scales, the main support of each laser-­‐robotic structure can be 3D printed to have a size and shape that allows convenient laser manipulation in full 3D– even using relatively...... modest numerical aperture optics. An optical robot is typically equipped with a number of 3D printed "trackballs" that allow for real-­‐time 3D light manipulation with six-­‐degrees-­‐of-­‐freedom. This creates a drone-­‐like functionality where each light-­‐driven robot can be e.g. joystick...

  20. Automated design tools for biophotonic systems

    Science.gov (United States)

    Vacca, Giacomo; Lehtimäki, Hannu; Karras, Tapio; Murphy, Sean

    2014-03-01

    Traditional design methods for flow cytometers and other complex biophotonic systems are increasingly recognized as a major bottleneck in instrumentation development. The many manual steps involved in the analysis and translation of the design, from optical layout to a detailed mechanical model and ultimately to a fully functional instrument, are laborintensive and prone to wasteful trial-and-error iterations. We have developed two complementary, linked technologies that address this problem: one design tool (LiveIdeas™) provides an intuitive environment for interactive, real-time simulations of system-level performance; the other tool (BeamWise™) automates the generation of mechanical 3D CAD models based on those simulations. The strength of our approach lies in a parametric modeling strategy that breaks boundaries between engineering subsystems (e.g., optics and fluidics) to predict critical behavior of the instrument as a whole. The results: 70 percent reduction in early-stage project effort, significantly enhancing the probability of success by virtue of a more efficient exploration of the design space.

  1. Functionalized 2PP structures for the BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Matsuoka, Tomoyo; Nishi, Masayuki; Sakakura, Masaaki

    2011-01-01

    In its standard version, our BioPhotonics Workstation (BWS) can generate multiple controllable counter-propagating beams to create real-time user-programmable optical traps for stable three-dimensional control and manipulation of a plurality of particles. The combination of the platform with micr......In its standard version, our BioPhotonics Workstation (BWS) can generate multiple controllable counter-propagating beams to create real-time user-programmable optical traps for stable three-dimensional control and manipulation of a plurality of particles. The combination of the platform...... with microstructures fabricated by two-photon polymerization (2PP) can lead to completely new methods to communicate with micro- and nano-sized objects in 3D and potentially open enormous possibilities in nano-biophotonics applications. In this work, we demonstrate that the structures can be used as microsensors...

  2. Bio-optofluidics and biophotonics at the cellular level

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Tauro, Sandeep

    2012-01-01

    tweezers, the BioPhotonics workstation is e.g. capable of long range 3D manipulation. This enables a variety of biological studies such as manipulation of intricate microfabricated assemblies or for automated and parallel optofluidic cell sorting. To further reduce its overhead, we propose ways of making...... the BioPhotonics Workstation platform more photon efficient by studying the 3D distribution of the counter propagating beams and utilizing the Generalized Phase Contrast (GPC) method for illuminating the applied spatial light modulators. Moving ahead, we envision optimal designs for the manipulated...

  3. Developing a compact and portable BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Tauro, Sandeep; Palima, Darwin

    We will outline the specifications of a portable Biophotonics Workstation we recently have developed that utilizes high-speed spatial light modulation to generate an array of rapidly reconfigurable laser-traps making 3D real-time optical manipulation of advanced structures possible with the use o...

  4. FDTD Modeling of Nano- and Bio-Photonic Imaging

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Tuchin, Valery; Pond, James

    2010-01-01

    In this paper we focus on the discussion of two recent unique applications of the Finite-Difference Time-Domain (FDTD) simulation method to the design and modeling of advanced nano- and bio-photonic problems. The approach that is adopted here focuses on the potential of the FDTD methodology to ad...

  5. Biophoton signal transmission and processing in the brain.

    Science.gov (United States)

    Tang, Rendong; Dai, Jiapei

    2014-10-05

    The transmission and processing of neural information in the nervous system plays a key role in neural functions. It is well accepted that neural communication is mediated by bioelectricity and chemical molecules via the processes called bioelectrical and chemical transmission, respectively. Indeed, the traditional theories seem to give valuable explanations for the basic functions of the nervous system, but difficult to construct general accepted concepts or principles to provide reasonable explanations of higher brain functions and mental activities, such as perception, learning and memory, emotion and consciousness. Therefore, many unanswered questions and debates over the neural encoding and mechanisms of neuronal networks remain. Cell to cell communication by biophotons, also called ultra-weak photon emissions, has been demonstrated in several plants, bacteria and certain animal cells. Recently, both experimental evidence and theoretical speculation have suggested that biophotons may play a potential role in neural signal transmission and processing, contributing to the understanding of the high functions of nervous system. In this paper, we review the relevant experimental findings and discuss the possible underlying mechanisms of biophoton signal transmission and processing in the nervous system. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. FDTD Modeling of Nano- and Bio-Photonic Imaging

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Tuchin, Valery; Pond, James

    2010-01-01

    In this paper we focus on the discussion of two recent unique applications of the Finite-Difference Time-Domain (FDTD) simulation method to the design and modeling of advanced nano- and bio-photonic problems. The approach that is adopted here focuses on the potential of the FDTD methodology to ad...... to the modeling of biophotonics applications including Optical Phase Contrast Microscope (OPCM) imaging of cells containing gold nanoparticles (NPs) as well as its potential application as a modality for in vivo flow cytometry configurations.......In this paper we focus on the discussion of two recent unique applications of the Finite-Difference Time-Domain (FDTD) simulation method to the design and modeling of advanced nano- and bio-photonic problems. The approach that is adopted here focuses on the potential of the FDTD methodology...... to address newly emerging problems and not so much on its mathematical formulation. We will first discuss the application of a traditional formulation of the FDTD approach to the modeling of sub-wavelength photonics structures. Next, a modified total/scattered field FDTD approach will be applied...

  7. Micro/nanostructures formation by femtosecond laser surface processing on amorphous and polycrystalline Ni{sub 60}Nb{sub 40}

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Edwin, E-mail: edwin.peng@huskers.unl.edu [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Tsubaki, Alfred; Zuhlke, Craig A. [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Wang, Meiyu [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Bell, Ryan [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Lucis, Michael J. [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Anderson, Troy P.; Alexander, Dennis R. [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Gogos, George; Shield, Jeffrey E. [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2017-02-28

    Highlights: • Femtosecond laser processing of glass-forming Ni{sub 60}Nb{sub 40} produce surface structures. • Cross sectioning, imaging, & TEM sample preparation with dual-beam SEM. • Low laser fluence surface structures’ form by ablation. • High laserfluence surface structures form by ablation and fluid flow. - Abstract: Femtosecond laser surface processing is a technology that can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or superhydrophilicity/superhydrophobicity. In this study, two unique classes of surface structures, below surface growth (BSG) and above surface growth (ASG) mounds, were formed by femtosecond laser surface processing on amorphous and polycrystalline Ni{sub 60}Nb{sub 40} with two different grain sizes. Cross sectional imaging of these mounds revealed thermal evidence of the unique formation processes for each class of surface structure. BSG mounds formed on all three substrates using the same laser parameters had similar surface morphology. The microstructures in the mounds were unaltered compared with the substrate before laser processing, suggesting their formation was dominated by preferential valley ablation. ASG mounds had similar morphology when formed on the polycrystalline Ni{sub 60}Nb{sub 40} substrates with 100 nm and 2 μm grain size. However, the ASG mounds had significantly wider diameter and higher peak-to-valley heights when the substrate was amorphous Ni{sub 60}Nb{sub 40}. Hydrodynamic melting was primarily responsible for ASG mound formation. On amorphous Ni{sub 60}Nb{sub 40} substrates, the ASG mounds are most likely larger due to lower thermal diffusivity. There was clear difference in growth mechanism of femtosecond laser processed BSG and ASG mounds, and grain size does not appear to be a factor.

  8. Highly tunable electronic properties in plasma-synthesized B-doped microcrystalline-to-amorphous silicon nanostructure for solar cell applications

    Science.gov (United States)

    Lim, J. W. M.; Ong, J. G. D.; Guo, Y.; Bazaka, K.; Levchenko, I.; Xu, S.

    2017-10-01

    Highly controllable electronic properties (carrier mobility and conductivity) were obtained in the sophisticatedly devised, structure-controlled, boron-doped microcrystalline silicon structure. Variation of plasma parameters enabled fabrication of films with the structure ranging from a highly crystalline (89.8%) to semi-amorphous (45.4%) phase. Application of the innovative process based on custom-designed, optimized, remote inductively coupled plasma implied all advantages of the plasma-driven technique and simultaneously avoided plasma-intrinsic disadvantages associated with ion bombardment and overheating. The high degree of SiH4, H2 and B2H6 precursor dissociation ensured very high boron incorporation into the structure, thus causing intense carrier scattering. Moreover, the microcrystalline-to-amorphous phase transition triggered by the heavy incorporation of the boron dopant with increasing B2H6 flow was revealed, thus demonstrating a very high level of the structural control intrinsic to the process. Control over the electronic properties through variation of impurity incorporation enabled tailoring the carrier concentrations over two orders of magnitude (1018-1020 cm-3). These results could contribute to boosting the properties of solar cells by paving the way to a cheap and efficient industry-oriented technique, guaranteeing a new application niche for this new generation of nanomaterials.

  9. Amorphous magnetism

    International Nuclear Information System (INIS)

    Rechenberg, H.R.

    1984-01-01

    The consequences of disorder on magnetic properties of solids are examined. In this context the word 'disorder' is not synonimous of structural amorphicity; chemical disorder can be achieved e.g. by randomly diffusing magnetic atoms on a nonmagnetic crystalline lattice. The name Amorphous Magnetism must be taken in a broad sense. (Author) [pt

  10. Considerations of education in the field of biophotonics in engineering: the experience of the subject fundamentals of biophotonics

    Science.gov (United States)

    Fanjul-Vélez, F.; Arce-Diego, J. L.

    2017-12-01

    Education in the field of photonics is usually somehow complex due to the fact that most of the programs include just a few subjects on the field, apart from specific Master programs in Photonics. There are also specific doctorate programs dealing with photonics. Apart from the problems shared with photonics in education in general, biophotonics specifically needs an interdisciplinary approach between biomedical and technical or scientific fields. In this work, we present our education experience in teaching the subject Fundamentals of Biophotonics, intended preferentially to engineering Bachelor and Master degrees students, but also to science and medicine students. First it was necessary to join a teaching group coming from the scientific technical and medical fields, working together in the subject. This task was easier as our research group, the Applied Optical Techniques group, had previous contacts and experience in working with medicine professors and medical doctors at hospitals. The orientation of the subject, intended for both technical and medical students, has to be carefully selected. All this information could be employed by other education institutions willing to implement studies on biomedical optics.

  11. Lunisolar tidal synchronism with biophoton emission during intercontinental wheat-seedling germination tests

    Czech Academy of Sciences Publication Activity Database

    Gallep, C.M.; Moraes, T.A.; Červinková, Kateřina; Cifra, Michal; Katsumata, M.; Barlow, P. W.

    2014-01-01

    Roč. 9, č. 3 (2014), e28671 ISSN 1559-2324 Institutional support: RVO:67985882 Keywords : Biophoton emission * Chronobiology * Germination Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  12. Physics and engineering of compact quantum dot-based lasers for biophotonics

    CERN Document Server

    Rafailov, Edik U

    2013-01-01

    Written by a team of European experts in the field, this book addresses the physics, the principles, the engineering methods, and the latest developments of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices, as well as their applications in biophotonics. Recommended reading for physicists, engineers, students and lecturers in the fields of photonics, optics, laser physics, optoelectronics, and biophotonics.

  13. Light-driven micro-robotics for contemporary biophotonics

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson

    is a documentation on the design and fabrication process, sample preparation, experimental procedure and demonstration of the capabilities of the micro-robots and our outlook on their potential use in biophotonics. As we have used tools as extension of our hands in the early study of biology, we envision these micro-robots......-driven micro-robots or light robotics. These are self-contained micro-robots that are designed to perform specific tasks. The first micro-robot that we will present is called the wave-guided optical waveguides (WOWs). The WOWs designed for targeted light delivery where a waveguide structure is fabricated...... and handles for trapping are attached. The waveguide is coupled with a holography-controlled beam. We have shown three-dimensional movement, tracking and coupling. The second micro-robot is designed for material transport where we have fabricated a vessel that can be trapped and manipulated. In addition...

  14. NATO Advanced Study Institute on Bio-Photonics

    CERN Document Server

    Bartolo, Baldassare Di

    2011-01-01

    This volume describes an impressive array of the current photonic-related technologies being used in the investigation of biological systems. The topics include various types of microscopy (fluorescence correlation microscopy, two-photon microscopy), sensitive detection of biological molecules, nano-surgery techniques, fluorescence resonance energy transfer, nano-plasmonics, terahertz spectroscopy, and photosynthetic energy conversion. The emphasis is on the physical principles behind each technique, and on examining the advantages and limitations of each.The book begins with an overview by Paras Prasad, a leader in the field of biophotonics, of several important optical techniques currently used for studying biological systems. In the subsequent chapters these techniques are discussed in depth, providing the reader with a detailed understanding of the basic physical principles at work. An excellent treatment of terahertz spectroscopy demonstrates how photonics is being extended beyond the visible region. Rec...

  15. Counter-propagating patterns in the BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Palima, Darwin; Lindballe, T.B.; Kristensen, M.V.

    2010-01-01

    The counter-propagating geometry opens an extra degree of freedom for shaping light while subsuming single-sided illumination as a special case (i.e., one beam set turned off). In its conventional operation, our BioPhotonics Workstation (BWS) uses symmetric, co-axial counter-propagating beams...... for stable three-dimensional manipulation of multiple particles. In this work, we analyze counter-propagating shaped-beam traps that depart from this conventional geometry. We show that projecting shaped beams with separation distances previously considered axially unstable can, in fact, enhance the trap...... by improving axial and transverse trapping stiffness. We also show interesting results of trapping and micromanipulation experiments that combine optical forces with fluidic forces. These results hint about the rich potential of using patterned counter-propagating beams for optical trapping and manipulation...

  16. Prenatal toxicity of synthetic amorphous silica nanomaterial in rats

    NARCIS (Netherlands)

    Hofmanna, T.; Schneider, S.; Wolterbeek, A.; Sandt, H. van de; Landsiedel, R.; Ravenzwaay, B. van

    2015-01-01

    Synthetic amorphous silica is a nanostructured material, which is produced and used in a wide variety of technological applications and consumer products. No regulatory prenatal toxicity studies with this substance were reported yet. Therefore, synthetic amorphous silica was tested for prenatal

  17. Study on Spectrum Estimation in Biophoton Emission Signal Analysis of Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Yitao Liang

    2014-01-01

    Full Text Available The photon emission signal in visible range (380 nm–630 nm was measured from various wheat kernels by means of a low noise photomultiplier system. To study the features of the photon emission signal, the spectrum estimation method of the photon emission signal is described for the first time. The biophoton emission signal, belonging to four varieties of wheat, is analyzed in time domain and frequency domain. It shows that the intensity of the biophoton emission signal for four varieties of wheat kernels is relatively weak and has dramatic changes over time. Mean and mean square value are obviously different in four varieties; the range was, respectively, 3.7837 and 74.8819. The difference of variance is not significant. The range is 1.1764. The results of power spectrum estimation deduced that the biophoton emission signal is a low frequency signal, and its power spectrum is mostly distributed in the frequency less than 0.1 Hz. Then three parameters, which are spectral edge frequency, spectral gravity frequency, and power spectral entropy, are adopted to explain the features of the kernels’ spontaneous biophoton emission signal. It shows that the parameters of the spontaneous biophoton emission signal for different varieties of wheat are similar.

  18. Special Section Guest Editorial:Selected Topics in Biophotonics: Photoacoustic Tomography and Fiber-Based Lasers and Supercontinuum Sources

    DEFF Research Database (Denmark)

    Andersson-Engels, Stefan; Andersen, Peter E.

    2016-01-01

    The present special section entitled “Selected Topics in Biophotonics: Photoacoustic Tomography and Fiber-Based Lasers and Supercontinuum Sources” comprises two invited papers and several contributed papers from the summer school Biophotonics ’15, as well as contributed papers within this general...

  19. Biophotonic patterns of optical interactions between fish eggs and embryos.

    Science.gov (United States)

    Beloussov, L V; Burlakov, A B; Louchinskaia, N N

    2003-05-01

    The optical (non-substantial) interactions between various biological samples have been evident in a number of cases mainly by the effects on their functional activity and developmental patterns. However, the mechanisms of these interactions have remained obscure. Effect of optical interaction has been observed on the intensity and Fourier patterns of biophoton emission of fish embryos. We demonstrate that: (1) the short-term optical interactions are accompanied by a gradual decrease of a total emission intensity of the interacting batches; (2) this effect is spread laterally to that part of a batch which does not have any direct optical contacts with its partner; and (3) the long-term optical contacts lead to a mutual exchange of spectral characteristics of interacting batches in which the total spectral density values are reversed (often with an overshoot). The reversal rate depends upon the developmental distance between the optical partners and the initial differences of their spectral characteristics. The results are discussed in terms of a sub-radiance and Le Chatelier principle.

  20. Bio-optofluidics and Bio-photonics: Programmable Phase Optics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Pedersen, Finn

    We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micromanipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optical...... tweezers, the BioPhotonics workstation is e.g. capable of long range 3D manipulation. This enables a variety of biological studies such as manipulation of intricate microfabricated assemblies or for automated and parallel optofluidic cell sorting. To further reduce its overhead, we propose ways of making...... the BioPhotonics Workstation platform more photon efficient by studying the 3D distribution of the counter propagating beams and utilizing the Generalized Phase Contrast (GPC) method for illuminating the applied spatial light modulators....

  1. Functionalizing 2PP-fabricated microtools for optical manipulation on the BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Matsuoka, Tomoyo; Nishi, Masayuki; Sakakura, Masaaki

    Functionalization of the structures fabricated by two-photon polymerization was achieved by coating them with sol-gel materials, which contain calcium indicators. The structures are expected to work potentially as nano-sensors on the BioPhotonics Workstation....

  2. Software for Real-Time Light Shaping and BioPhotonics Applications

    DEFF Research Database (Denmark)

    Separa, Stephen Daedalus; Glückstad, Jesper; Banas, Andrew Rafael

    2018-01-01

    We design and implement a software for use in real-time light shaping and biophotonics applications. Design considerations are addressed as well as options to mitigate common performance issues that arise in actual use. Testing was done on actual spatial light modulator hardware at 800x600 and 2048...

  3. The BioPhotonics Workstation: from university research to commercial prototype

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    I will outline the specifications of the compact BioPhotonics Workstation we recently have developed that utilizes high-speed spatial light modulation to generate an array of reconfigurable laser-traps making 3D real-time optical manipulation of advanced structures possible with the use of joysti...

  4. Genomic instantiation of consciousness in neurons through a biophoton field theory.

    Science.gov (United States)

    Cacha, Lleuvelyn A; Poznanski, Roman R

    2014-06-01

    A theoretical framework is developed based on the premise that brains evolved into sufficiently complex adaptive systems capable of instantiating genomic consciousness through self-awareness and complex interactions that recognize qualitatively the controlling factors of biological processes. Furthermore, our hypothesis assumes that the collective interactions in neurons yield macroergic effects, which can produce sufficiently strong electric energy fields for electronic excitations to take place on the surface of endogenous structures via alpha-helical integral proteins as electro-solitons. Specifically the process of radiative relaxation of the electro-solitons allows for the transfer of energy via interactions with deoxyribonucleic acid (DNA) molecules to induce conformational changes in DNA molecules producing an ultra weak non-thermal spontaneous emission of coherent biophotons through a quantum effect. The instantiation of coherent biophotons confined in spaces of DNA molecules guides the biophoton field to be instantaneously conducted along the axonal and neuronal arbors and in-between neurons and throughout the cerebral cortex (cortico-thalamic system) and subcortical areas (e.g., midbrain and hindbrain). Thus providing an informational character of the electric coherence of the brain - referred to as quantum coherence. The biophoton field is realized as a conscious field upon the re-absorption of biophotons by exciplex states of DNA molecules. Such quantum phenomenon brings about self-awareness and enables objectivity to have access to subjectivity in the unconscious. As such, subjective experiences can be recalled to consciousness as subjective conscious experiences or qualia through co-operative interactions between exciplex states of DNA molecules and biophotons leading to metabolic activity and energy transfer across proteins as a result of protein-ligand binding during protein-protein communication. The biophoton field as a conscious field is

  5. Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: Reconciling the mechanisms mediating the bystander effect

    OpenAIRE

    Le, Michelle; Fernandez-Palomo, Cristian; McNeill, Fiona E.; Seymour, Colin B.; Rainbow, Andrew J.; Mothersill, Carmel E.

    2017-01-01

    OBJECTIVE: The objective of our study was to explore a possible molecular mechanism by which ultraviolet (UV) biophotons could elicit bystander responses in reporter cells and resolve the problem of seemingly mutually exclusive mechanisms of a physical UV signal & a soluble factor-mediated bystander signal. METHODS: The human colon carcinoma cell line, HCT116 p53 +/+, was directly irradiated with 0.5 Gy tritium beta particles to induce ultraviolet biophoton emission. Bystander cells...

  6. Advances in the FDTD design and modeling of nano- and bio-photonics applications

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Tuchin, Valery; Cheben, Pavel

    2011-01-01

    to the modeling of biophotonics applications including optical phase contrast microscope (OPCM) imaging of cells containing gold nanoparticles (NPs) as well as its potential application as a modality for in vivo flow cytometry configurations. The conclusion provides a justification for the selection of the two......In this paper we focus on the discussion of two recent unique applications of the finite-difference time-domain (FDTD) simulation method to the design and modeling of advanced nano- and bio-photonic problems. The approach that is adopted here focuses on the potential of the FDTD methodology...... to address newly emerging problems and not so much on its mathematical formulation. We will first discuss the application of a traditional formulation of the FDTD approach to the modeling of sub-wavelength photonics structures. Next, a modified total/scattered field FDTD approach will be applied...

  7. Irradiation-Induced Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Birtcher, R.C.; Ewing, R.C.; Matzke, Hj.; Meldrum, A.; Newcomer, P.P.; Wang, L.M.; Wang, S.X.; Weber, W.J.

    1999-08-09

    This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.

  8. Letní škola Bio-Photonics 2003 ve Švédsku

    Czech Academy of Sciences Publication Activity Database

    Pala, Jan

    2003-01-01

    Roč. 48, č. 7 (2003), s. 214-215 ISSN 0447-6441. [Graduate Summer School Bio-Photonics'03. Ven, 15.06.2003-21.06.2003] R&D Projects: GA ČR GA102/01/0429; GA AV ČR KSK2067107 Projekt 07/01:4075 Institutional research plan: CEZ:AV0Z2067918 Keywords : holographic optical elements * biophysics Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  9. Biomolecular Mechanisms of Adaptive Reflectance and Related Biophotonic Systems in Molluscs

    Science.gov (United States)

    2015-01-09

    light onto the high surface area of vertically oriented pillars of the microalgae , while back-reflecting less productive wavelengths. Results of our...endosymbiotic microalgae . (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers submitted or published that acknowledge...Solar Fuel Production ”; D.E. Morse, A, Holt and A. Sweeney. International Symposium on Nano-Energy; London, December, 2013. “Tunable Bio-Photonics

  10. Superhydrophilic nanostructure

    Science.gov (United States)

    Mao, Samuel S; Zormpa, Vasileia; Chen, Xiaobo

    2015-05-12

    An embodiment of a superhydrophilic nanostructure includes nanoparticles. The nanoparticles are formed into porous clusters. The porous clusters are formed into aggregate clusters. An embodiment of an article of manufacture includes the superhydrophilic nanostructure on a substrate. An embodiment of a method of fabricating a superhydrophilic nanostructure includes applying a solution that includes nanoparticles to a substrate. The substrate is heated to form aggregate clusters of porous clusters of the nanoparticles.

  11. Nanostructured superconductors

    National Research Council Canada - National Science Library

    Moshchalkov, V. V; Fritzsche, Joachim

    2011-01-01

    ... through nanostructuring and for developing a variety of novel fluxonics devices based on vortex manipulation. Nanostructuring can, in fact, create such conditions for the flux pinning by arrays of nanofabricated antidots or magnetic dots, which could maximize the second important superconducting critical parameter (critical current) up to its theoretical limit ...

  12. Environment dependent enhanced photoluminescence and Boolean logic gates like behavior of Bi2O3 and Ag:Bi2O3 nanostructures

    Science.gov (United States)

    Hariharan, S.; Karthikeyan, B.

    2018-03-01

    In the evolution of nanotechnology research for smart and precise sensor fabrication, here we report the implementation of simple logic gate operations performing by luminescent nanostructures in biomolecule environment based on photoluminescence (PL) technique. This present work deals with the luminescence property of α-Bi2O3 and Ag modified α-Bi2O3 nanostructures for D-glucose and Bovine serum albumin (BSA) sensing applications. These nanostructures are prepared by simple co-precipitation method and their morphology are examined using transmission electron microscope (TEM). We explore the PL characteristics of the prepared nanostructures and observe their change in PL intensity in the presence of D-glucose and BSA molecules. Enhancement in PL intensity is observed in the presence of D-glucose and BSA. Based on the PL response of prepared nanostructures in the biomolecule environment, we demonstrate biophotonic logic gates including YES, PASS 0, OR and INHIBIT gates.

  13. Novel insights into the risk assessment of the nanomaterial synthetic amorphous silica, additive E551, in food

    NARCIS (Netherlands)

    Kesteren, van P.C.E.; Cubadda, F.; Bouwmeester, H.; Eijkeren, J.C.H.; Dekkers, S.; Jong, de W.H.; Oomen, A.G.

    2015-01-01

    This study presents novel insights in the risk assessment of synthetic amorphous silica (SAS) in food. SAS is a nanostructured material consisting of aggregates and agglomerates of primary particles in the nanorange (

  14. BioPhotonics Workstation supporting 3D joystick-control of microplatforms [invited

    DEFF Research Database (Denmark)

    Tauro, Sandeep; Palima, Darwin; Perch-Nielsen, Ivan R.

    2010-01-01

    of several microtools simultaneously near one single cell. The experiments are performed in our BioPhotonics Workstation with counterpropagating beam geometry. This geometry provides a large manipulation area and allows realtime manipulation or a plurality or traps (euITenl1y 100 independently reconfigurable...... can be chemically activated; this provides an abundance of new opportunities, e.g. by applying enzymes that allows the tip to penetrate the cell walls or utilizing a Ph-sensing fluorochrome to measure on specific sites in or around biological cells....

  15. Monolithic Highly Stable Yb-Doped Femtosecond Fiber Lasers for Applications in Practical Biophotonics

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2012-01-01

    Operational and environmental stability of ultrafast laser systems is critical for their applications in practical biophotonics. Mode-locked fiber lasers show great promise in applications such as supercontinuum sources or multiphoton microscopy systems. Recently, substantial progress has been made...... in the development of all-fiber nonlinear-optical laser control schemes, which resulted in the demonstration of highly stable monolithic, i.e., not containing any free-space elements, lasers with direct fiber-end delivery of femtosecond pulses. This paper provides an overview of the progress in the development...

  16. Advances in Photonics Design and Modeling for Nano- and Bio-photonics Applications

    DEFF Research Database (Denmark)

    Tanev, Stoyan

    2010-01-01

    In this invited paper we focus on the discussion of two recent unique applications of the Finite-Difference Time-Domain (FDTD) simulation method to the design and modeling of advanced nano- and bio-photonic problems. We will first discuss the application of a traditional formulation of the FDTD...... application as a modality for in vivo flow cytometry configurations. The discussion of the results shows that the specifics of optical wave phenomena at the nano-scale opens the opportunity for the FDTD approach to address new application areas with a significant research potential....

  17. The Electronic Structure of Amorphous Carbon Nanodots.

    Science.gov (United States)

    Margraf, Johannes T; Strauss, Volker; Guldi, Dirk M; Clark, Timothy

    2015-06-18

    We have studied hydrogen-passivated amorphous carbon nanostructures with semiempirical molecular orbital theory in order to provide an understanding of the factors that affect their electronic properties. Amorphous structures were first constructed using periodic calculations in a melt/quench protocol. Pure periodic amorphous carbon structures and their counterparts doped with nitrogen and/or oxygen feature large electronic band gaps. Surprisingly, descriptors such as the elemental composition and the number of sp(3)-atoms only influence the electronic structure weakly. Instead, the exact topology of the sp(2)-network in terms of effective conjugation defines the band gap. Amorphous carbon nanodots of different structures and sizes were cut out of the periodic structures. Our calculations predict the occurrence of localized electronic surface states, which give rise to interesting effects such as amphoteric reactivity and predicted optical band gaps in the near-UV/visible range. Optical and electronic gaps display a dependence on particle size similar to that of inorganic colloidal quantum dots.

  18. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  19. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  20. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  1. Amorphization within the tablet

    DEFF Research Database (Denmark)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A.

    2017-01-01

    , the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization......, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90 kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements...

  2. Synthesis of ferroelectric nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roervik, Per Martin

    2008-12-15

    respectively BaTi2O5/BaTi5O11 and Na2Ti6O13 for the two different systems, in contradiction to the previous studies. It was shown that NaCl reacted with BaO(PbO) resulting in loss of volatile BaCl2 (PbCl2 ) and formation and preferential growth of titanium oxide-rich nanorods instead of the target phase BaTiO3 (or PbTiO3 ). The molten salt synthesis route may therefore not necessarily yield nanorods of the target ternary oxide as reported previously. In addition, the importance of NaCl(g) for the growth of nanorods below the melting point of NaCl was demonstrated in a special experimental setup, where NaCl and the precursors were physically separated. In Paper II and III, a hydrothermal synthesis method to grow arrays and hierarchical nanostructures of PbTiO3 nanorods and platelets on substrates is presented. Hydrothermal treatment of an amorphous PbTiO3 precursor in the presence of a surfactant and PbTiO3 or SrTiO3 substrates resulted in the growth of PbTiO3 nanorods and platelets aligned in the crystallographic <100> orientations of the SrTiO3 substrates. PbTiO3 nanorods oriented perpendicular to the substrate surface could also be grown directly on the substrate by a modified synthesis method. The hydrothermal method described in Paper II and III was developed on the basis of the method described in Appendices I and II. In Paper IV, a template-assisted method to make PbTiO3 nanotubes is presented. An equimolar Pb-Ti sol was dropped onto porous alumina membranes and penetrated into the channels of the template. Single-phase PbTiO3 perovskite nanotubes were obtained by annealing at 700 degrees Celsius for 6 h. The nanotubes had diameters of 200 - 400 nm with a wall thickness of approximately 20 nm. Excess PbO or annealing in a Pb-containing atmosphere was not necessary in order to achieve single phase PbTiO3 nanotubes. The influence of the heating procedure and the sol concentration is discussed. In Paper V, a piezoresponse force microscopy study of single PbTiO3 nanorods is

  3. Self-assembled MoS2–carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance

    KAUST Repository

    Das, Shyamal K.

    2012-01-01

    Composites of MoS 2 and amorphous carbon are grown and self-assembled into hierarchical nanostructures via a hydrothermal method. Application of the composites as high-energy electrodes for rechargeable lithium-ion batteries is investigated. The critical roles of nanostructuring of MoS 2 and carbon composition on lithium-ion battery performance are highlighted. © 2012 The Royal Society of Chemistry.

  4. Frontiers in biophotonics for translational medicine in the celebration of year of light (2015)

    CERN Document Server

    Dinish, U

    2016-01-01

    The present book provides recent developments in various in vivo imaging and sensing techniques such as photo acoustics (PA) imaging and microscopy, ultrasound-PA combined modalities, optical coherence tomography (OCT) and micro OCT, Raman and surface enhanced Raman scattering (SERS), Fluorescence lifetime imaging (FLI) techniques and nanoparticle enabled endoscopy etc. There is also a contributing chapter from leading medical instrumentation company on their view of optical imaging techniques in clinical laparoscopic surgery. The UN proclaimed 2015 as the International Year of Light and Light-based Technologies, emphasizing achievements in the optical sciences and their importance to human beings. In this context, this book focusses on the recent advances in biophotonics techniques primarily focused towards translational medicine contributed by thought leaders who have made cutting edge developments in various photonics techniques.

  5. Ultrafast biophotonics

    CERN Document Server

    Vasa, P

    2016-01-01

    This book presents emerging contemporary optical techniques of ultrafast science which have opened entirely new vistas for probing biological entities and processes. The spectrum reaches from time-resolved imaging and multiphoton microscopy to cancer therapy and studies of DNA damage. The book displays interdisciplinary research at the interface of physics and biology. Emerging topics on the horizon are also discussed, like the use of squeezed light, frequency combs and terahertz imaging as the possibility of mimicking biological systems. The book is written in a manner to make it readily accessible to researchers, postgraduate biologists, chemists, engineers, and physicists and students of optics, biomedical optics, photonics and biotechnology.

  6. Carbon nanostructure formation driven by energetic particles

    International Nuclear Information System (INIS)

    Zhu Zhiyuan; Gong Jinlong; Zhu Dezhang

    2006-01-01

    Carbon nanostructures, especially carbon nanotubes (CNTs), have been envisaged to be the building blocks of a variety of nanoscale devices and materials. The inherent nanometer-size and ability of being either metallic or semiconductive of CNTs lead to their application in nanoelectronics. Excellent mechanical characteristics of CNTs suggest their use as structural reinforcements. However, to fully exploit the potential applications, effective means of tailoring CNT properties must be developed. Irradiation of materials with energetic particles beams (ions and electrons) is a standard and important tool for modifying material properties. Irradiation makes it possible to dope the samples, to create local amorphous region or vice versa, recrystallize the lattice and even drive a phase transition. In this paper, we report our results of (1) phase transfromation from carbon nanotubes to nanocrystalline diamond driven by hydrogen plasma, (2) onion-like nanostructure from carbon nanotubes driven by ion beams of several tens keV, and (3) amorphous carbon nanowire network formation by ion beam irradiation. Structural phase transformation from multiwalled carbon nanotubes to nanocrystalline diamond by hydrogen plasma post-treatment was carried out. Ultrahigh equivalent diamond nucleation density of more than 1011 nuclei/cm 2 was obtained. The diamond formation and growth mechanisms were proposed to be the consequence of the formation of sp3 bonded amorphous carbon clusters. The hydrogen chemisorption on curved graphite network and the energy deposited on CNTs by continuous impingement of activated molecular or atomic hydrogen are responsible for the formation of amorphous carbon matrix. Diamond nucleates and grows in the way similar to that of diamond chemical vapor deposition processes on amorphous carbon films. Furthermore, single crystalline diamond nanorods of 4-8 nm in diameter and up to 200 nm in length have been successfully synthesized by hydrogen plasma post

  7. Towards practical implementation of biophotonics-based solutions for cost-effective monitoring of food quality control (Conference Presentation)

    Science.gov (United States)

    Meglinski, Igor; Popov, Alexey; Bykov, Alexander

    2017-03-01

    Biophotonics-based diagnostic and imaging modalities have been widely used in various applications associated with the non-invasive imaging of the internal structure of a range biological media from a range of cells cultures to biological tissues. With the fast growing interest in food securities there remains strong demand to apply reliable and cost effective biophotonics-based technologies for rapid screening of freshness, internal defects and quality of major agricultural products. In current presentation the results of application of optical coherence tomography (OCT) and encapsulated optical bio-sensors for quantitative assessment of freshness of agricultural products, such as meat and sea foods, are presented, and their further perspectives are discussed.

  8. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  9. Radial distribution function imaging by STEM diffraction: Phase mapping and analysis of heterogeneous nanostructured glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiaoke, E-mail: muxiaoke@gmail.com [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Karlsruhe Institute of Technology (KIT), 89081 Ulm (Germany); Wang, Di [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Feng, Tao [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology (NJUST), 210094 Nanjing (China); Kübel, Christian [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Karlsruhe Institute of Technology (KIT), 89081 Ulm (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany)

    2016-09-15

    Characterizing heterogeneous nanostructured amorphous materials is a challenging topic, because of difficulty to solve disordered atomic arrangement in nanometer scale. We developed a new transmission electron microscopy (TEM) method to enable phase analysis and mapping of heterogeneous amorphous structures. That is to combine scanning TEM (STEM) diffraction mapping, radial distribution function (RDF) analysis, and hyperspectral analysis. This method was applied to an amorphous zirconium oxide and zirconium iron multilayer system, and showed extreme sensitivity to small atomic packing variations. This approach helps to understand local structure variations in glassy composite materials and provides new insights to correlate structure and properties of glasses. - Highlights: • A method for phase mapping of nanostructured amorphous materials was developed. • The phase mapping is purely based on structural information. • The method combines STEM diffraction with radial distribution function analysis. • The method was applied on an amorphous multilayer for demonstrating its sensitivity.

  10. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    Science.gov (United States)

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  11. Surface-enhanced FAST CARS: en route to quantum nano-biophotonics

    Science.gov (United States)

    Voronine, Dmitri V.; Zhang, Zhenrong; Sokolov, Alexei V.; Scully, Marlan O.

    2018-02-01

    Quantum nano-biophotonics as the science of nanoscale light-matter interactions in biological systems requires developing new spectroscopic tools for addressing the challenges of detecting and disentangling weak congested optical signals. Nanoscale bio-imaging addresses the challenge of the detection of weak resonant signals from a few target biomolecules in the presence of the nonresonant background from many undesired molecules. In addition, the imaging must be performed rapidly to capture the dynamics of biological processes in living cells and tissues. Label-free non-invasive spectroscopic techniques are required to minimize the external perturbation effects on biological systems. Various approaches were developed to satisfy these requirements by increasing the selectivity and sensitivity of biomolecular detection. Coherent anti-Stokes Raman scattering (CARS) and surface-enhanced Raman scattering (SERS) spectroscopies provide many orders of magnitude enhancement of chemically specific Raman signals. Femtosecond adaptive spectroscopic techniques for CARS (FAST CARS) were developed to suppress the nonresonant background and optimize the efficiency of the coherent optical signals. This perspective focuses on the application of these techniques to nanoscale bio-imaging, discussing their advantages and limitations as well as the promising opportunities and challenges of the combined coherence and surface enhancements in surface-enhanced coherent anti-Stokes Raman scattering (SECARS) and tip-enhanced coherent anti-Stokes Raman scattering (TECARS) and the corresponding surface-enhanced FAST CARS techniques. Laser pulse shaping of near-field excitations plays an important role in achieving these goals and increasing the signal enhancement.

  12. Towards the rare earth functionalization of nano-clays with luminescent reporters for biophotonics

    International Nuclear Information System (INIS)

    Kaup, Gina; Felbeck, Tom; Staniford, Mark; Kynast, Ulrich

    2016-01-01

    Completely water dispersible nanoclays can be equipped with optical functions for eventual uses in biophotonics. For this purpose, 3-mercaptopropylmethyldimethoxysilane is grafted as a linker to the rims of strongly anisotropic clay disks for the subsequent covalent attachement of a rare earth β-diketonate, co-coordinated with epoxy-functional phenanthroline (“Eu(ttfa)_3epoxiphen”). Silane grafting yields of approximately 80% with respect to available rim-SiOH groups can be obtained as demonstrated by reliable determination of the grafted mercapto-groups with 5,5′-dithiol-bis-(2nitrobenzoic acid) (“Ellman's reagent”). The final linkage of Eu(ttfa)_3epoxiphen to the rim mercapto-groups competes with mere polar adsorption on the laponite faces; however, the rim linkage can be confirmed via the complex's excitation and emission spectra and X-ray diffraction of the solids obtained, and corresponding absorption spectra. - Highlights: • Nanoclay disks are modified at their rim with mercaptopropyl silane in high grafting rates. • A reliable analytical method for the determination of graftings rates was developed. • Subsequent linkage to a Eu epoxiphenanthroline complex affords moderate luminescence.

  13. Non-invasive monitoring of Streptococcus pyogenes vaccine efficacy using biophotonic imaging.

    Directory of Open Access Journals (Sweden)

    Faraz M Alam

    Full Text Available Streptococcus pyogenes infection of the nasopharynx represents a key step in the pathogenic cycle of this organism and a major focus for vaccine development, requiring robust models to facilitate the screening of potentially protective antigens. One antigen that may be an important target for vaccination is the chemokine protease, SpyCEP, which is cell surface-associated and plays a role in pathogenesis. Biophotonic imaging (BPI can non-invasively characterize the spatial location and abundance of bioluminescent bacteria in vivo. We have developed a bioluminescent derivative of a pharyngeal S. pyogenes strain by transformation of an emm75 clinical isolate with the luxABCDE operon. Evaluation of isogenic recombinant strains in vitro and in vivo confirmed that bioluminescence conferred a growth deficit that manifests as a fitness cost during infection. Notwithstanding this, bioluminescence expression permitted non-invasive longitudinal quantitation of S. pyogenes within the murine nasopharynx albeit with a detection limit corresponding to approximately 10(5 bacterial colony forming units (CFU in this region. Vaccination of mice with heat killed streptococci, or with SpyCEP led to a specific IgG response in the serum. BPI demonstrated that both vaccine candidates reduced S. pyogenes bioluminescence emission over the course of nasopharyngeal infection. The work suggests the potential for BPI to be used in the non-invasive longitudinal evaluation of potential S. pyogenes vaccines.

  14. Non-Invasive Monitoring of Streptococcus pyogenes Vaccine Efficacy Using Biophotonic Imaging

    Science.gov (United States)

    Alam, Faraz M.; Bateman, Colin; Turner, Claire E.; Wiles, Siouxsie; Sriskandan, Shiranee

    2013-01-01

    Streptococcus pyogenes infection of the nasopharynx represents a key step in the pathogenic cycle of this organism and a major focus for vaccine development, requiring robust models to facilitate the screening of potentially protective antigens. One antigen that may be an important target for vaccination is the chemokine protease, SpyCEP, which is cell surface-associated and plays a role in pathogenesis. Biophotonic imaging (BPI) can non-invasively characterize the spatial location and abundance of bioluminescent bacteria in vivo. We have developed a bioluminescent derivative of a pharyngeal S. pyogenes strain by transformation of an emm75 clinical isolate with the luxABCDE operon. Evaluation of isogenic recombinant strains in vitro and in vivo confirmed that bioluminescence conferred a growth deficit that manifests as a fitness cost during infection. Notwithstanding this, bioluminescence expression permitted non-invasive longitudinal quantitation of S. pyogenes within the murine nasopharynx albeit with a detection limit corresponding to approximately 105 bacterial colony forming units (CFU) in this region. Vaccination of mice with heat killed streptococci, or with SpyCEP led to a specific IgG response in the serum. BPI demonstrated that both vaccine candidates reduced S. pyogenes bioluminescence emission over the course of nasopharyngeal infection. The work suggests the potential for BPI to be used in the non-invasive longitudinal evaluation of potential S. pyogenes vaccines. PMID:24278474

  15. Investigation on dynamics of red blood cells through their behavior as biophotonic lenses

    Science.gov (United States)

    Memmolo, Pasquale; Merola, Francesco; Miccio, Lisa; Mugnano, Martina; Ferraro, Pietro

    2016-12-01

    The possibility to adopt biological matter as photonic optical elements can open scenarios in biophotonics research. Recently, it has been demonstrated that a red blood cell (RBC) can be seen as an optofluidic microlens by showing its imaging capability as well as its focal tunability. Moreover, correlation between an RBC's morphology and its behavior as a refractive optical element has been established and its exploitation for biomedical diagnostic purposes has been foreseen. In fact, any deviation from the healthy RBC morphology can be seen as additional aberration in the optical wavefront passing through the cell. By this concept, accurate localization of focal spots of RBCs can become very useful in the blood disorders identification. We investigate the three-dimensional positioning of such focal spots over time for samples with two different osmolarity conditions, i.e., when they assume discocyte and spherical shapes, respectively. We also demonstrate that a temporal variation of an RBC's focal points along the optical axis is correlated to the temporal fluctuations in the RBC's thickness maps. Furthermore, we show a sort of synchronization of the whole erythrocytes ensemble.

  16. Amorphous Semiconductor Alloys

    Science.gov (United States)

    Madan, Arun

    1985-08-01

    Amorphous silicon (a-Si) based alloys have attracted a considerable amount of interest because of their applications in a wide variety of technologies. However, the major effort has concentrated on inexpensive photovoltaic device applications and has moved from a laboratory curiosity in the early 1970's to viable commercial applications in the 1980's. Impressive progress in this field has been made since the group at University of Dundee demonstrated that a low defect, device quality hydrogenated amorphous silicon (a-Si:H) 12 material could be produced using the radio frequency (r.f.) glow discharge in SiH4 gas ' and that the material could be doped n- and p-type.3 These results spurred a worldwide interest in a-Si based alloys, especially for photovoltaic devices which has resulted in a conversion efficiency approaching 12%. There is now a quest for even higher conversion efficiencies by using the multijunction cell approach. This necessitates the synthesis of new materials of differing bandgaps, which in principle amorphous semiconductors can achieve. In this article, we review some of this work and consider from a device and a materials point of view the hurdles which have to be overcome before this type of concept can be realized.

  17. EUREKA study - the evaluation of real-life use of a biophotonic system in chronic wound management: an interim analysis.

    Science.gov (United States)

    Romanelli, Marco; Piaggesi, Alberto; Scapagnini, Giovanni; Dini, Valentina; Janowska, Agata; Iacopi, Elisabetta; Scarpa, Carlotta; Fauverghe, Stéphane; Bassetto, Franco

    2017-01-01

    Interest has grown regarding photobiomodulation (PBM) with low-level light therapy, which has been shown to positively affect the stages of the wound healing process. In a real-life context clinical setting, the objective of the EUREKA study was to investigate efficacy, safety, and quality of life associated with the use of a BioPhotonic gel (LumiHeal™) in the treatment of chronic wounds such as venous leg ulcers (VLUs), diabetic foot ulcers (DFUs), and pressure ulcers (PUs). This BioPhotonic gel represents a new, first-in-class emission spectrum of light, including fluorescence, to induce PBM and modulate healing. The multicenter, prospective, interventional, uncontrolled, open-label study enrolled 100 patients in 12 wound centers in Italy. We performed an early interim analysis based on the first 33 subjects (13 VLU, 17 DFU, 3 PU) in seven centers who completed the study. Seventeen patients (52%) achieved total wound closure (full re-epithelialization for 2 weeks) during the study period. Two patients (6%) were considered "almost closed" (decrease of the wound area of more than 90% at study end) and three others (9%) were considered "ready for skin grafting". No related serious adverse events were observed, and the compliance was excellent. After the treatment, the average time to "pain-free" was 11.9 days in the VLU group. Quality of life was improved with overall increase of 26.4% of the total score (Cardiff Wound Impact Schedule, p =0.001). The study revealed a positive efficacy profile of the BioPhotonic gel in promoting wound healing and reactivating the healing process in different types of chronic, hard-to-heal wounds. The treatment was shown to be safe and well tolerated by the patients, and a reduction of pain perception was also detected during the treatment period. The improvement of the quality of life was accompanied by a high level of clinician satisfaction.

  18. A prospective case series evaluating the safety and efficacy of the Klox BioPhotonic System in venous leg ulcers

    Directory of Open Access Journals (Sweden)

    Nikolis A

    2016-09-01

    Full Text Available Andreas Nikolis,1 Doria Grimard,2 Yves Pesant,3 Giovanni Scapagnini,4 Denis Vézina5 1Division of Plastic Surgery, Victoria Park Research Centre, Montreal, 2Q&T Research Chicoutimi, Chicoutimi, 3St-Jerome Medical Research Inc., St-Jerome, Quebec, Canada; 4Department of Medicine and Health Sciences, School of Medicine, University of Molise, Campobasso, Italy; 5Klox Technologies, Laval, Quebec, Canada Purpose: To investigate the safety and efficacy of the BioPhotonic System developed by Klox Technologies in a case series of ten patients with venous leg ulcers.Patients and methods: Ten patients with chronic venous leg ulcers, having failed on at least one previous therapy, were enrolled into this case series.Results: Nine patients were evaluable for efficacy. A response (defined as decrease in wound surface area was observed in seven patients (77.8%. Of these, four patients (44.4% achieved wound closure on average 4 months (127.5 days following the beginning of the treatment. Two patients did not respond to the investigational treatment. Quality of life improved over time throughout the study. Compliance was excellent, with 93.2% of visits completed as per protocol. Safety was unremarkable, with only four treatment-emergent-related adverse events, for which no specific intervention was required.Conclusion: The BioPhotonic System was shown to be safe and extremely well tolerated. It also demonstrated potential in terms of wound closure, wound surface area decrease, and wound bed preparation. Keywords: biophotonics, light, photobiomodulation, venous leg ulcers

  19. Optical properties of silver doped amorphous films of composition Ge28S72 and Ge22Ga6S72

    Czech Academy of Sciences Publication Activity Database

    Bartoš, M.; Wágner, T.; Válková, S.; Pavlišta, M.; Vlček, Milan; Beneš, L.; Frumar, M.

    2011-01-01

    Roč. 13, 11-12 (2011), 1442-1446 ISSN 1454-4164. [Fifth International Conference on Amorphous and Nanostructured Chalcogenides. Magurele - Bucharest, 26.06.2011-01.07.2011] Institutional research plan: CEZ:AV0Z40500505 Keywords : amorphous films * chalcogenides * optical properties Subject RIV: CA - Inorganic Chemistry Impact factor: 0.457, year: 2011 http://joam.inoe.ro/index.php?option=magazine&op=view&idu=2941&catid=68

  20. Matched filtering Generalized Phase Contrast using binary phase for dynamic spot- and line patterns in biophotonics and structured lighting.

    Science.gov (United States)

    Bañas, Andrew; Aabo, Thomas; Palima, Darwin; Glückstad, Jesper

    2013-01-28

    This work discusses the use of matched filtering Generalized Phase Contrast (mGPC) as an efficient and cost-effective beam shaper for applications such as in biophotonics, optical micromanipulation, microscopy and two-photon polymerization. The theoretical foundation of mGPC is described as a combination of Generalized Phase Contrast and phase-only correlation. Such an analysis makes it convenient to optimize an mGPC system for different setup conditions. Results showing binary-only phase generation of dynamic spot arrays and line patterns are presented.

  1. Matched filtering Generalized Phase Contrast using binary phase for dynamic spot- and line patterns in biophotonics and structured lighting

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Aabo, Thomas; Palima, Darwin

    2013-01-01

    as a combination of Generalized Phase Contrast and phase-only correlation. Such an analysis makes it convenient to optimize an mGPC system for different setup conditions. Results showing binary-only phase generation of dynamic spot arrays and line patterns are presented. © 201 Optical Society of America......This work discusses the use of matched filtering Generalized Phase Contrast (mGPC) as an efficient and cost-effective beam shaper for applications such as in biophotonics, optical micromanipulation, microscopy and two-photon polymerization. The theoretical foundation of mGPC is described...

  2. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    Science.gov (United States)

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  3. Quantitative assessment of biophotonic imaging system performance with phantoms fabricated by rapid prototyping

    Science.gov (United States)

    Wang, Jianting; Coburn, James; Woolsey, Nicholas; Liang, Chia-Pin; Ramella-Roman, Jessica; Chen, Yu; Pfefer, Joshua

    2014-03-01

    In biophotonic imaging, turbid phantoms that are low-cost, biologically-relevant, and durable are desired for standardized performance assessment. Such phantoms often contain inclusions of varying depths and sizes in order to quantify key image quality characteristics such as penetration depth, sensitivity and contrast detectability. The emerging technique of rapid prototyping with three-dimensional (3D) printers provides a potentially revolutionary way to fabricate these structures. Towards this goal, we have characterized the optical properties and morphology of phantoms fabricated by two 3D printing approaches: thermosoftening and photopolymerization. Material optical properties were measured by spectrophotometry while the morphology of phantoms incorporating 0.2-1.0 mm diameter channels was studied by μCT, optical coherence tomography (OCT) and optical microscopy. A near-infrared absorbing dye and nanorods at several concentrations were injected into channels to evaluate detectability with a near-infrared hyperspectral reflectance imaging (HRI) system (650-1100 nm). Phantoms exhibited biologically-relevant scattering and low absorption across visible and near-infrared wavelengths. Although limitations in resolution were noted, channels with diameters of 0.4 mm or more could be reliably fabricated. The most significant problem noted was the porosity of phantoms generated with the thermosoftening-based printer. The aforementioned three imaging methods provided a valuable mix of insights into phantom morphology and may also be useful for detailed structural inspection of medical devices fabricated by rapid prototyping, such as customized implants. Overall, our findings indicate that 3D printing has significant potential as a method for fabricating well-characterized, standard phantoms for medical imaging modalities such as HRI.

  4. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  5. Magnetic anisotropy of (Ge,Mn) nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Jain, A; Jamet, M; Barski, A; Devillers, T; Yu, I-S; Porret, C; Gambarelli, S; Maurel, V; Desfonds, G; Jacquot, J F, E-mail: abhinav.jain@cea.fr [Institut Nanosciences et Cryogenie, CEA-UJF, F-38054, Grenoble (France)

    2011-04-01

    We present a correlation between structural and magnetic properties of different (Ge,Mn) nanostructures grown on Ge(001) and Ge(111) substrates. Thin films of Ge{sub 1-x}Mn{sub x} were grown by low temperature molecular beam epitaxy to favor the out-of-equilibrium growth. Depending on the growth conditions crystalline or amorphous (Ge,Mn) nanocolumns have been observed on Ge(001) substrates. The magnetic properties were probed by superconducting quantum interference device (SQUID), vibrating sample magnetometer (VSM) and electron paramagnetic resonance (EPR). With the help of these complementary techniques (SQUID and EPR), magnetic anisotropy in these nanostructures has been investigated and different anisotropy constants were calculated.

  6. Aluminium base amorphous and crystalline alloys with Fe impurity

    International Nuclear Information System (INIS)

    Sitek, J.; Degmova, J.

    2006-01-01

    Aluminium base alloys show remarkable mechanical properties, however their low thermal stability still limits the technological applications. Further improvement of mechanical properties can be reached by partial crystallization of amorphous alloys, which gives rise to nanostructured composites. Our work was focused on aluminium based alloys with Fe, Nb and V additions. Samples of nominal composition Al 90 Fe 7 Nb 3 and Al 94 Fe 2 V 4 were studied in amorphous state and after annealing up to 873 K. From Moessbauer spectra taken on the samples in amorphous state the value of f-factor was determined as well as corresponding Debye temperatures were calculated. Annealing at higher temperatures induced nano and microcrystalline crystallization. Moessbauer spectra of samples annealed up to 573 K are fitted only by distribution of quadrupole doublets corresponding to the amorphous state. An increase of annealing temperature leads to the structural transformation, which consists in growth of nanometer sized aluminium nuclei. This is partly reflected in Moessbauer parameters. After annealing at 673 K intermetallic phase Al 3 Fe and other Al-Fe phases are created. In this case Moessbauer spectra are fitted by quadrupole doublets. During annealing up to 873 K large grains of Fe-Al phases are created. (authors)

  7. The nanostructure problem

    International Nuclear Information System (INIS)

    Billinge, S.

    2010-01-01

    Diffraction techniques are making progress in tackling the difficult problem of solving the structures of nanoparticles and nanoscale materials. The great gift of x-ray crystallography has made us almost complacent in our ability to locate the three-dimensional coordinates of atoms in a crystal with a precision of around 10 -4 nm. However, the powerful methods of crystallography break down for structures in which order only extends over a few nanometers. In fact, as we near the one hundred year mark since the birth of crystallography, we face a resilient frontier in condensed matter physics: our inability to routinely and robustly determine the structure of complex nanostructured and amorphous materials. Knowing the structure and arrangement of atoms in a solid is so fundamental to understanding its properties that the topic routinely occupies the early chapters of every solid-state physics textbook. Yet what has become clear with the emergence of nanotechnology is that diffraction data alone may not be enough to uniquely solve the structure of nanomaterials. As part of a growing effort to incorporate the results of other techniques to constrain x-ray refinements - a method called 'complex modeling' which is a simple but elegant approach for combining information from spectroscopy with diffraction data to solve the structure of several amorphous and nanostructured materials. Crystallography just works, so we rarely question how and why this is so, yet understanding the physics of diffraction can be very helpful as we consider the nanostructure problem. The relationship between the electron density distribution in three dimensions (i.e., the crystal structure) and an x-ray diffraction pattern is well established: the measured intensity distribution in reciprocal space is the square of the Fourier transform of the autocorrelation function of the electron density distribution ρ(r). The fact that we get the autocorrelation function (rather than just the density

  8. BioPhotonics workstation: A versatile setup for simultaneous optical manipulation, heat stress, and intracellular pH measurements of a live yeast cell

    DEFF Research Database (Denmark)

    Aabo, Thomas; Bañas, Andrew Rafael; Glückstad, Jesper

    2011-01-01

    In this study we have modified the BioPhotonics workstation (BWS), which allows for using long working distance objective for optical trapping, to include traditional epi-fluorescence microscopy, using the trapping objectives. We have also added temperature regulation of sample stage, allowing...

  9. Amorphous Gyroscopic Topological Metamaterials

    Science.gov (United States)

    Mitchell, Noah P.; Nash, Lisa M.; Hexner, Daniel; Turner, Ari M.; Irvine, William T. M.

    Mechanical topological metamaterials display striking mechanical responses, such as unidirectional surface modes that are impervious to disorder. This behavior arises from the topology of their vibrational spectra. All examples of topological metamaterials to date are finely-tuned structures such as crystalline lattices or jammed packings. Here, we present robust recipes for building amorphous topological metamaterials with arbitrary underlying structure and no long-range order. Using interacting gyroscopes as a model system, we demonstrate through experiment, simulation, and theoretical methods that the local geometry and interactions are sufficient to generate topological mobility gaps, allowing for spatially-resolved, real-space calculations of the Chern number. The robustness of our approach enables the design and self-assembly of non-crystalline materials with protected, unidirectional waveguides on the micro and macro scale.

  10. Advanced Magnetic Nanostructures

    CERN Document Server

    Sellmyer, David

    2006-01-01

    Advanced Magnetic Nanostructures is devoted to the fabrication, characterization, experimental investigation, theoretical understanding, and utilization of advanced magnetic nanostructures. Focus is on various types of 'bottom-up' and 'top-down' artificial nanostructures, as contrasted to naturally occurring magnetic nanostructures, such as iron-oxide inclusions in magnetic rocks, and to structures such as perfect thin films. Chapter 1 is an introduction into some basic concepts, such as the definitions of basic magnetic quantities. Chapters 2-4 are devoted to the theory of magnetic nanostructures, Chapter 5 deals with the characterization of the structures, and Chapters 6-10 are devoted to specific systems. Applications of advanced magnetic nanostructures are discussed in Chapters11-15 and, finally, the appendix lists and briefly discusses magnetic properties of typical starting materials. Industrial and academic researchers in magnetism and related areas such as nanotechnology, materials science, and theore...

  11. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  12. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ~ 1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  13. Nanostructured Materials for Magnetoelectronics

    CERN Document Server

    Mikailzade, Faik

    2013-01-01

    This book provides an up-to-date review of nanometer-scale magnetism and focuses on the investigation of the basic properties of magnetic nanostructures. It describes a wide range of physical aspects together with theoretical and experimental methods. A broad overview of the latest developments in this emerging and fascinating field of nanostructured materials is given with emphasis on the practical understanding and operation of submicron devices based on nanostructured magnetic materials.

  14. Controlled Synthesis of Manganese Dioxide Nanostructures via a Facile Hydrothermal Route

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2012-01-01

    Full Text Available Manganese dioxide nanostructures with controllable morphological structures and crystalline phases were synthesized via a facile hydrothermal route at low temperatures without using any templates or surfactants. Both the aging duration and aging temperatures were the main synthesis parameters used to influence and control the rate of morphological and structural evolution of MnO2 nanostructures. MnO2 nanostructures comprise of spherical nanoparticulate agglomerates and highly amorphous in nature were formed at lower temperature and/or short aging duration. In contrast, MnO2 nanostructures of sea-urchin-like and nanorods-like morphologies and nanocrystalline in nature were prepared at the combined higher aging temperatures and longer aging durations. These nanostructures underwent notable phase transformation from δ-MnO2 to α-MnO2 upon prolonged hydrothermal aging duration and exhibited accelerated rate of phase transformation at higher aging temperature.

  15. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  16. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    Unknown

    been found to be having a lot of technological applica- tions. The properties of these amorphous carbons sensi- tively depend on the relative concentration of sp3 and sp2 hybridized carbons. The resulting amorphous materials are variously referred to as tetrahedral amorphous carbon. (ta-C), amorphous carbon (a-C), ...

  17. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro......-containers has shown potential to prevent or delay recrystallization. Another recent approach is the formation of co-amorphous mixtures between either two drugs or one drug and one low molecular weight excipient. Molecular interactions between the two molecules provide an energy barrier that has to be overcome...

  18. Diamond amorphization in neutron irradiation

    International Nuclear Information System (INIS)

    Nikolaenko, V.A.; Gordeev, V.G.

    1996-01-01

    The paper presents the results on neutron irradiation of the diamond in a nuclear reactor. It is shown that the neutron irradiation stimulates the diamond transition to the amorphous state. At a temperature below 750 o K the time required for the diamond-graphite transition decreases with decreasing irradiation temperature. On the contrary, in irradiation at higher temperatures the time of diamond conversion into the amorphous state increases with decreasing but always remains shorter than in the absence of irradiation. (author)

  19. Anomalous magnetoresistance in amorphous metals

    International Nuclear Information System (INIS)

    Kuz'menko, V.M.; Vladychkin, A.N.; Mel'nikov, V.I.; Sudovtsev, A.I.

    1984-01-01

    The magnetoresistance of amorphous Bi, Ca, V and Yb films is investigated in fields up to 4 T at low temperatures. For all metals the magnetoresistance is positive, sharply decreases with growth of temperature and depends anomalously on the magnetic field strength. For amorphous superconductors the results agree satisfactorily with the theory of anomalous magnetoresistance in which allowance is made for scattering of electrons by the superconducting fluctuations

  20. Nanostructured layers of thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffrey J.; Lynch, Jared; Coates, Nelson; Forster, Jason; Sahu, Ayaskanta; Chabinyc, Michael; Russ, Boris

    2018-01-30

    This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermally annealed.

  1. Three-dimensional amorphous silicon solar cells on periodically ordered ZnO nanocolumns

    Czech Academy of Sciences Publication Activity Database

    Neykova, Neda; Moulin, E.; Campa, A.; Hruška, Karel; Poruba, Aleš; Stückelberger, M.; Haug, F.J.; Topič, M.; Ballif, C.; Vaněček, Milan

    2015-01-01

    Roč. 212, č. 8 (2015), s. 1823-1829 ISSN 1862-6300 R&D Projects: GA MŠk 7E12029; GA ČR(CZ) GA14-05053S EU Projects: European Commission(XE) 283501 - FAST TRACK Institutional support: RVO:68378271 Keywords : amorphous materials * hydrothermal growth * nanostructures * silicon * solar cells * ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.648, year: 2015

  2. Nanostructured silicon carbon thin films grown by plasma enhanced chemical vapour deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Coscia, U. [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); CNISM Unita' di Napoli, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Ambrosone, G., E-mail: ambrosone@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); SPIN-CNR, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Basa, D.K. [Department of Physics, Utkal University, Bhubaneswar 751004 (India); Rigato, V. [INFN Laboratori Nazionali Legnaro, 35020 Legnaro (Padova) (Italy); Ferrero, S.; Virga, A. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-09-30

    Nanostructured silicon carbon thin films, composed of Si nanocrystallites embedded in hydrogenated amorphous silicon carbon matrix, have been prepared by varying rf power in ultra high vacuum plasma enhanced chemical vapour deposition system using silane and methane gas mixtures diluted in hydrogen. In this paper we have studied the compositional, structural and electrical properties of these films as a function of rf power. It is shown that with increasing rf power the atomic densities of carbon and hydrogen increase while the atomic density of silicon decreases, resulting in a reduction in the mass density. Further, it is demonstrated that carbon is incorporated into amorphous matrix and it is mainly bonded to silicon. The study has also revealed that the crystalline volume fraction decreases with increase in rf power and that the films deposited with low rf power have a size distribution of large and small crystallites while the films deposited with relatively high power have only small crystallites. Finally, the enhanced transport properties of the nanostructured silicon carbon films, as compared to amorphous counterpart, have been attributed to the presence of Si nanocrystallites. - Highlights: • The mass density of silicon carbon films decreases from 2.3 to 2 g/cm{sup 3}. • Carbon is incorporated in the amorphous phase and it is mainly bonded to silicon. • Nanostructured silicon carbon films are deposited at rf power > 40 W. • Si nanocrystallites in amorphous silicon carbon enhance the electrical properties.

  3. Hydrogenated amorphous silicon photonics

    Science.gov (United States)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  4. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials

    Science.gov (United States)

    Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W.

    2013-01-01

    Among numerous active electrode materials, nickel hydroxide is a promising electrode in electrochemical capacitors. Nickel hydroxide research has thus far focused on the crystalline rather than the amorphous phase, despite the impressive electrochemical properties of the latter, which includes an improved electrochemical efficiency due to disorder. Here we demonstrate high-performance electrochemical supercapacitors prepared from amorphous nickel hydroxide nanospheres synthesized via simple, green electrochemistry. The amorphous nickel hydroxide electrode exhibits high capacitance (2,188 F g−1), and the asymmetric pseudocapacitors of the amorphous nickel hydroxide exhibit high capacitance (153 F g−1), high energy density (35.7 W h kg−1 at a power density of 490 W kg−1) and super-long cycle life (97% and 81% charge retentions after 5,000 and 10,000 cycles, respectively). The integrated electrochemical performance of the amorphous nickel hydroxide is commensurate with crystalline materials in supercapacitors. These findings promote the application of amorphous nanostructures as advanced electrochemical pseudocapacitor materials. PMID:23695688

  5. Aqueous ultracapacitors using amorphous MnO2 and reduced graphene oxide

    Science.gov (United States)

    Mery, Adrien; Ghamouss, Fouad; Autret, Cécile; Farhat, Douaa; Tran-Van, François

    2016-02-01

    Herein, synthesis and characterization of amorphous MnO2 and application in asymmetric aqueous ultracapacitors are reported. Different amorphous manganese oxide (MnO2) materials were synthesized from the reduction of KMnO4 in different media such as ethanol (EtOH) or dimethylformamide (DMF). The electrochemical behavior of amorphous MnO2, labeled MnO2-Et and MnO2-DMF, were studied by using cyclic voltammetry, impedance spectroscopy, and galvanostatic cycling in aqueous electrolyte. XRD, BET, TEM, and SEM characterizations highlighted the amorphous nature and the nanostructuration of these MnO2 materials. BET measurement established that these amorphous MnO2 are mesoporous. In addition, MnO2-Et exhibits a larger specific surface area (168 m2 g-1), a narrower pore diameters distribution with lower diameters compared to MnO2-DMF. These results are in agreement with the electrochemical results. Indeed, MnO2-Et shows a higher specific capacitance and lower impedance in aqueous K2SO4 electrolyte. Furthermore, aqueous asymmetric ultracapacitors were assembled and studied using amorphous MnO2 as positive electrode and reduced graphene oxide (rGO) as negative electrode. These asymmetric systems exhibit an electrochemical stability for more than 20,000 galvanostatic cycles at current density of 1 A g-1 with an operating voltage of 2 V.

  6. Preparation and characterization of rare-earth bulks with controllable nanostructures

    International Nuclear Information System (INIS)

    Song Xiaoyan; Zhang Jiuxing; Li Erdong; Lu Nianduan; Yin Fuxing

    2006-01-01

    The preparation and characterization of pure rare-earth-metal bulks with controllable nanostructures are reported in this paper. A novel 'oxygen-free' in situ synthesis technique that combines inert-gas condensation with spark plasma sintering (SPS) technology is proposed. Taking into account the special mechanisms of SPS consolidation and the scale effects of nanoparticles, we introduced practical procedures for preparing rare-earth bulks of amorphous, mixed amorphous and nanocrystals, and nanocrystalline microstructures, respectively. Compared with the conventional polycrystalline bulk, these nanostructured bulks exhibit substantially improved physical and mechanical properties. This technique enables comprehensive studies on the microstructures and properties of a large variety of nanostructured metallic materials that are highly reactive in the air

  7. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Science.gov (United States)

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  8. Thermal resistances of crystalline and amorphous few-layer oxide thin films

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2017-11-01

    Full Text Available Thermal insulation at nanoscale is of crucial importance for non-volatile memory devices such as phase change memory and memristors. We perform non-equilibrium molecular dynamics simulations to study the effects of interface materials and structures on thermal transport across the few-layer dielectric nanostructures. The thermal resistance across few-layer nanostructures and thermal boundary resistance at interfaces consisting of SiO2/HfO2, SiO2/ZrO2 or SiO2/Al2O3 are obtained for both the crystalline and amorphous structures. Based on the comparison temperature profiles and phonon density of states, we show that the thermal boundary resistances are much larger in crystalline few-layer oxides than the amorphous ones due to the mismatch of phonon density of state between distinct oxide layers. Compared with the bulk SiO2, the increase of thermal resistance across crystalline few-layer oxides results from the thermal boundary resistance while the increase of thermal resistance across amorphous few-layer oxides is attributed to the lower thermal conductivity of the amorphous thin films.

  9. Field Emission and Radial Distribution Function Studies of Fractal-like Amorphous Carbon Nanotips

    Directory of Open Access Journals (Sweden)

    Lebrón-Colón M

    2009-01-01

    Full Text Available Abstract The short-range order of individual fractal-like amorphous carbon nanotips was investigated by means of energy-filtered electron diffraction in a transmission electron microscope (TEM. The nanostructures were grown in porous silicon substrates in situ within the TEM by the electron beam-induced deposition method. The structure factorS(k and the reduced radial distribution functionG(r were calculated. From these calculations a bond angle of 124° was obtained which suggests a distorted graphitic structure. Field emission was obtained from individual nanostructures using two micromanipulators with sub-nanometer positioning resolution. A theoretical three-stage model that accounts for the geometry of the nanostructures provides a value for the field enhancement factor close to the one obtained experimentally from the Fowler-Nordheim law.

  10. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  11. Amorphous nanoparticles — Experiments and computer simulations

    International Nuclear Information System (INIS)

    Hoang, Vo Van; Ganguli, Dibyendu

    2012-01-01

    The data obtained by both experiments and computer simulations concerning the amorphous nanoparticles for decades including methods of synthesis, characterization, structural properties, atomic mechanism of a glass formation in nanoparticles, crystallization of the amorphous nanoparticles, physico-chemical properties (i.e. catalytic, optical, thermodynamic, magnetic, bioactivity and other properties) and various applications in science and technology have been reviewed. Amorphous nanoparticles coated with different surfactants are also reviewed as an extension in this direction. Much attention is paid to the pressure-induced polyamorphism of the amorphous nanoparticles or amorphization of the nanocrystalline counterparts. We also introduce here nanocomposites and nanofluids containing amorphous nanoparticles. Overall, amorphous nanoparticles exhibit a disordered structure different from that of corresponding bulks or from that of the nanocrystalline counterparts. Therefore, amorphous nanoparticles can have unique physico-chemical properties differed from those of the crystalline counterparts leading to their potential applications in science and technology.

  12. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used in an inject......We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used...... in an injection moulding process, to fabricate the antireflective surfaces. The cycle-time was 35 s. The injection moulded structures had a height of 125 nm, and the visible spectrum reflectance of injection moulded black polypropylene surfaces was reduced from 4.5±0.5% to 2.5±0.5%. The gradient of the refractive...

  13. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  14. Nanostructured CNx (0

    NARCIS (Netherlands)

    Bongiorno, G; Blomqvist, M; Piseri, P; Milani, P; Lenardi, C; Ducati, C; Caruso, T; Rudolf, P; Wachtmeister, S; Csillag, S; Coronel, E

    Nanostructured CNx thin films were prepared by supersonic cluster beam deposition (SCBD) and systematically characterized by transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The

  15. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  16. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  17. Atomistic Models of Amorphous Semiconductors

    NARCIS (Netherlands)

    Jarolimek, K.

    2011-01-01

    Crystalline silicon is probably the best studied material, widely used by the semiconductor industry. The subject of this thesis is an intriguing form of this element namely amorphous silicon. It can contain a varying amount of hydrogen and is denoted as a-Si:H. It completely lacks the neat long

  18. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  19. Local Crystalline Structure in an Amorphous Protein Dense Phase

    Science.gov (United States)

    Greene, Daniel G.; Modla, Shannon; Wagner, Norman J.; Sandler, Stanley I.; Lenhoff, Abraham M.

    2015-01-01

    Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein. PMID:26488663

  20. Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Seong Shan Yap

    2015-01-01

    Full Text Available Nanostructured diamond-like carbon (DLC films instead of the ultrasmooth film were obtained by pulsed laser ablation of pyrolytic graphite. Deposition was performed at room temperature in vacuum with substrates placed at off-axis position. The configuration utilized high density plasma plume arriving at low effective angle for the formation of nanostructured DLC. Nanostructures with maximum size of 50 nm were deposited as compared to the ultrasmooth DLC films obtained in a conventional deposition. The Raman spectra of the films confirmed that the films were diamond-like/amorphous in nature. Although grown at an angle, ion energy of >35 eV was obtained at the off-axis position. This was proposed to be responsible for subplantation growth of sp3 hybridized carbon. The condensation of energetic clusters and oblique angle deposition correspondingly gave rise to the formation of nanostructured DLC in this study.

  1. Bio-photonic detection method for morphological analysis of anthracnose disease and physiological disorders of Diospyros kaki

    Science.gov (United States)

    Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Ravichandran, Naresh Kumar; Shirazi, Muhammad Faizan; Moon, Byungin; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun

    2017-04-01

    The pathological and physiological defects in various types of fruits lead to large amounts of economical waste. It is well recognized that internal fruit defects due to pathological infections and physiological disorders can be effectively visualized at an initial stage of the disease using a well-known bio-photonic detection method called optical coherence tomography (OCT). This work investigates the use of OCT for identifying the morphological variations of anthracnose (bitter rot) disease infected and physiologically disordered Diospyros kaki (Asian Persimmon) fruits. An experiment was conducted using fruit samples that were carefully selected from persimmon orchards. Depth-resolved images with a high axial resolution were acquired using 850-nm-based spectral-domain OCT (SD-OCT) system. The obtained exemplary high-resolution two-dimensional and volumetric three-dimensional images revealed complementary morphological differences between healthy and defected samples. Moreover, the obtained depth-profile analysis results confirmed the disappearance of the healthy cell layers among the healthy-infected boundary regions. Thus, the proposed method has the potential to increase the diagnostic accuracy of the OCT technique used in agricultural plantations.

  2. Amorphous Semiconductors: From Photocatalyst to Computer Memory

    Science.gov (United States)

    Sundararajan, Mayur

    encouraging but inconclusive. Then the method was successfully demonstrated on mesoporous TiO2SiO 2 by showing a shift in its optical bandgap. One of the special class of amorphous semiconductors is chalcogenide glasses, which exhibit high ionic conductivity even at room temperature. When metal doped chalcogenide glasses are under an electric field, they become electronically conductive. These properties are exploited in the computer memory storage application of Conductive Bridging Random Access Memory (CBRAM). CBRAM is a non-volatile memory that is a strong contender to replace conventional volatile RAMs such as DRAM, SRAM, etc. This technology has already been commercialized, but the working mechanism is still not clearly understood especially the nature of the conductive bridge filament. In this project, the CBRAM memory cells are fabricated by thermal evaporation method with Agx(GeSe 2)1-x as the solid electrolyte layer, Ag as the active electrode and Au as the inert electrode. By careful use of cyclic voltammetry, the conductive filaments were grown on the surface and the bulk of the solid electrolyte. The comparison between the two filaments revealed major differences leading to contradiction with the existing working mechanism. After compiling all the results, a modified working mechanism is proposed. SAXS is a powerful tool to characterize nanostructure of glasses. The analysis of the SAXS data to get useful information are usually performed by different programs. In this project, Irena and GIFT programs were compared by performing the analysis of the SAXS data of glass and glass ceramics samples. Irena was shown to be not suitable for the analysis of SAXS data that has a significant contribution from interparticle interactions. GIFT was demonstrated to be better suited for such analysis. Additionally, the results obtained by programs for samples with low interparticle interactions were shown to be consistent.

  3. Prenatal toxicity of synthetic amorphous silica nanomaterial in rats.

    Science.gov (United States)

    Hofmann, Thomas; Schneider, Steffen; Wolterbeek, André; van de Sandt, Han; Landsiedel, Robert; van Ravenzwaay, Bennard

    2015-08-15

    Synthetic amorphous silica is a nanostructured material, which is produced and used in a wide variety of technological applications and consumer products. No regulatory prenatal toxicity studies with this substance were reported yet. Therefore, synthetic amorphous silica was tested for prenatal toxicity, according to OECD guideline 414 in Wistar rats following oral (gavage) administration at the dose levels 0, 100, 300, or 1000mg/kg bw/d from gestation day 6-19. At gestation day 20, all pregnant animals were examined by cesarean section. Numbers of corpora lutea, implantations, resorptions, live and dead fetuses were counted. Fetal and placental weights were determined. Fetuses were examined for external, visceral and skeletal abnormalities. No maternal toxicity was observed at any dose level. Likewise, administration of the test compound did not alter cesarean section parameters and did not influence fetal or placental weights. No compound-related increase in the incidence of malformations or variations was observed in the fetuses. The no observed adverse effect level (NOAEL) was 1000mg/kg bw/d. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics.

    Science.gov (United States)

    Johlin, Eric; Al-Obeidi, Ahmed; Nogay, Gizem; Stuckelberger, Michael; Buonassisi, Tonio; Grossman, Jeffrey C

    2016-06-22

    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices.

  5. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  6. Selective Functionalization of Tailored Nanostructures

    NARCIS (Netherlands)

    Slingenbergh, Winand; Boer, Sanne K. de; Cordes, Thorben; Browne, Wesley R.; Feringa, Ben L.; Hoogenboom, Jacob P.; Hosson, Jeff Th.M. De; Dorp, Willem F. van

    2012-01-01

    The controlled positioning of nanostructures with active molecular components is of importance throughout nanoscience and nanotechnology. We present a novel three-step method to produce nanostructures that are selectively decorated with functional molecules. We use fluorophores and nanoparticles to

  7. Nanostructured materials in potentiometry.

    Science.gov (United States)

    Düzgün, Ali; Zelada-Guillén, Gustavo A; Crespo, Gastón A; Macho, Santiago; Riu, Jordi; Rius, F Xavier

    2011-01-01

    Potentiometry is a very simple electrochemical technique with extraordinary analytical capabilities. It is also well known that nanostructured materials display properties which they do not show in the bulk phase. The combination of the two fields of potentiometry and nanomaterials is therefore a promising area of research and development. In this report, we explain the fundamentals of potentiometric devices that incorporate nanostructured materials and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. The paper provides an overview of the role of nanostructured materials in the two commonest potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we provide a few recent examples of new potentiometric sensors that are based on receptors immobilized directly onto the nanostructured material surface. Moreover, we summarize the use of potentiometry to analyze processes involving nanostructured materials and the prospects that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that currently hinder developments in the field and some future trends that will extend potentiometry into new analytical areas such as biology and medicine.

  8. Focused-ion-beam deposition for 3-D nanostructure fabrication

    Science.gov (United States)

    Matsui, Shinji

    2007-04-01

    Three-dimensional nanostructure fabrication has been demonstrated by 30 keV Ga+ focused-ion-beam chemical-vapor-deposition (FIB-CVD) using a phenanthrene (C14H10) source as a precursor. Microstructure plastic arts is advocated as a new field using micro-beam technology, presenting one example of micro-wine-glass with 2.75 μm external diameter and 12 μm height. The deposition film is a diamond like amorphous carbon. A large Young's modulus that exceeds 600 GPa seems to present great possibilities for various applications. Producing of three-dimensional nanostructure is discussed. Micro-coil, nanoelectrostatic actuator and nano-space-wiring with 0.1 μm dimension are demonstrated as parts of nanomechanical system. Furthermore, filtering tool is also fabricated as a novel nano-tool for the manipulation and analysis of subcellular organelles.

  9. Carbon/Clay nanostructured composite obtained by hydrothermal method

    International Nuclear Information System (INIS)

    Barin, G.B.; Bispo, T.S.; Gimenez, I.F.; Barreto, L.S.; Souza Filho, A.G.

    2010-01-01

    The development of strategies for converting biomass into useful materials, more efficient energy carrier and / or hydrogen storage is shown a key issue for the present and future. Carbon nanostructure can be obtained by severe processing techniques such as arc discharge, chemical deposition and catalyzed pyrolysis of organic compounds. In this study we used hydrothermal methods for obtaining nanostructured composites of carbon / clay. To this end, we used coir dust and special clays. The samples were characterized by infrared spectroscopy, X-ray diffraction and Raman. The presence of the D band at 1350 cm -1 in the Raman spectrum shows the formation of amorphous carbon with particle size of about 8.85 nm. (author)

  10. Transient photoconductivity in amorphous semiconductors

    International Nuclear Information System (INIS)

    Mpawenayo, P.

    1997-07-01

    Localized states in amorphous semiconductors are divided in disorder induced shallow trap levels and dangling bonds deep states. Dangling bonds are assumed here to be either neutral or charged and their energy distribution is a single gaussian. Here, it is shown analytically that transient photocurrent in amorphous semiconductors is fully controlled by charge carriers transitions between localized states for one part and tunneling hopping carriers on the other. Localized dangling bonds deep states act as non radiative recombination centres, while hopping tunnelling is assisted by the Coulomb interaction between defects sites. The half-width of defects distribution is the disorder parameter that determines the carrier hopping time between defects sites. The macroscopic time that explains the long decay response times observed will all types of amorphous semiconductors is duly thought to be temperature dependent. Basic equations developed by Longeaud and Kleider are solved for the general case of a semiconductor after photo-generation. It turns out that the transient photoconductivity decay has two components; one with short response times from carriers trap-release transitions between shallow levels and extended states and a hopping component made of inter-dependent exponentials whose time constants span in larger ranges depending on disorder. The photoconductivity hopping component appears as an additional term to be added to photocurrents derived from existing models. The results of the present study explain and complete the power law decay derived in the multiple trapping models developed 20 years ago only in the approximation of the short response time regime. The long response time regime is described by the hopping macroscopic time. The present model is verified for all samples of amorphous semiconductors known so far. Finally, it is proposed to improved the modulated photoconductivity calculation techniques by including the long-lasting hopping dark documents

  11. Uranium incorporation into amorphous silica.

    Science.gov (United States)

    Massey, Michael S; Lezama-Pacheco, Juan S; Nelson, Joey M; Fendorf, Scott; Maher, Kate

    2014-01-01

    High concentrations of uranium are commonly observed in naturally occurring amorphous silica (including opal) deposits, suggesting that incorporation of U into amorphous silica may represent a natural attenuation mechanism and promising strategy for U remediation. However, the stability of uranium in opaline silicates, determined in part by the binding mechanism for U, is an important factor in its long-term fate. U may bind directly to the opaline silicate matrix, or to materials such as iron (hydr)oxides that are subsequently occluded within the opal. Here, we examine the coordination environment of U within opaline silica to elucidate incorporation mechanisms. Precipitates (with and without ferrihydrite inclusions) were synthesized from U-bearing sodium metasilicate solutions, buffered at pH ∼ 5.6. Natural and synthetic solids were analyzed with X-ray absorption spectroscopy and a suite of other techniques. In synthetic amorphous silica, U was coordinated by silicate in a double corner-sharing coordination geometry (Si at ∼ 3.8-3.9 Å) and a small amount of uranyl and silicate in a bidentate, mononuclear (edge-sharing) coordination (Si at ∼ 3.1-3.2 Å, U at ∼ 3.8-3.9 Å). In iron-bearing synthetic solids, U was adsorbed to iron (hydr)oxide, but the coordination environment also contained silicate in both edge-sharing and corner-sharing coordination. Uranium local coordination in synthetic solids is similar to that of natural U-bearing opals that retain U for millions of years. The stability and extent of U incorporation into opaline and amorphous silica represents a long-term repository for U that may provide an alternative strategy for remediation of U contamination.

  12. Micromachining with Nanostructured Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    The purpose of the brief is to explain how nanostructured tools can be used to machine materials at the microscale.  The aims of the brief are to explain to readers how to apply nanostructured tools to micromachining applications. This book describes the application of nanostructured tools to machining engineering materials and includes methods for calculating basic features of micromachining. It explains the nature of contact between tools and work pieces to build a solid understanding of how nanostructured tools are made.

  13. Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures and Solids

    CERN Document Server

    Astapenko, Valeriy

    2013-01-01

    The book is devoted to the modern theory and experimental manifestation of Polarization Bremsstrahlung (PB) which arises due to scattering of charged particles from various targets: atoms, nanostructures (including atomic clusters, nanoparticle in dielectric matrix, fullerens, graphene-like two-dimensional atomic structure) and in condensed matter (monocrystals, polycrystals, partially ordered crystals and amorphous matter) The present book addresses mainly researchers interested in the radiative processes during the interaction between fast particles and matter. It also will be useful for post-graduate students specializing in radiation physics and related fields.

  14. Synthesis engineering of iron oxide raspberry-shaped nanostructures.

    Science.gov (United States)

    Gerber, O; Pichon, B P; Ihiawakrim, D; Florea, I; Moldovan, S; Ersen, O; Begin, D; Grenèche, J-M; Lemonnier, S; Barraud, E; Begin-Colin, S

    2017-01-07

    Magnetic porous nanostructures consisting of oriented aggregates of iron oxide nanocrystals display very interesting properties such as a lower oxidation state of magnetite, and enhanced saturation magnetization in comparison with individual nanoparticles of similar sizes and porosity. However, the formation mechanism of these promising nanostructures is not well understood, which hampers the fine tuning of their magnetic properties, for instance by doping them with other elements. Therefore the formation mechanism of porous raspberry shaped nanostructures (RSNs) synthesized by a one-pot polyol solvothermal method has been investigated in detail from the early stages by using a wide panel of characterization techniques, and especially by performing original in situ HR-TEM studies in temperature. A time-resolved study showed the intermediate formation of an amorphous iron alkoxide phase with a plate-like lamellar structure (PLS). Then, the fine investigation of PLS transformation upon heating up to 500 °C confirmed that the synthesis of RSNs involves two iron precursors: the starting one (hydrated iron chlorides) and the in situ formed iron alkoxide precursor which decomposes with time and heating and contributes to the growth step of nanostructures. Such an understanding of the formation mechanism of RSNs is necessary to envision efficient and rational enhancement of their magnetic properties.

  15. Development of colour-producing β-keratin nanostructures in avian feather barbs

    Science.gov (United States)

    Prum, Richard O.; Dufresne, Eric R.; Quinn, Tim; Waters, Karla

    2009-01-01

    The non-iridescent structural colours of avian feather barbs are produced by coherent light scattering from amorphous (i.e. quasi-ordered) nanostructures of β-keratin and air in the medullary cells of feather barb rami. Known barb nanostructures belong to two distinct morphological classes. ‘Channel’ nanostructures consist of β-keratin bars and air channels of elongate, tortuous and twisting forms. ‘Spherical’ nanostructures consist of highly spherical air cavities that are surrounded by thin β-keratin bars and sometimes interconnected by tiny passages. Using transmission electron microscopy, we observe that the colour-producing channel-type nanostructures of medullary β-keratin in feathers of the blue-and-yellow macaw (Ara ararauna, Psittacidae) develop by intracellular self-assembly; the process proceeds in the absence of any biological prepattern created by the cell membrane, endoplasmic reticulum or cellular intermediate filaments. We examine the hypothesis that the shape and size of these self-assembled, intracellular nanostructures are determined by phase separation of β-keratin protein from the cytoplasm of the cell. The shapes of a broad sample of colour-producing channel-type nanostructures from nine avian species are very similar to those self-assembled during the phase separation of an unstable mixture, a process called spinodal decomposition (SD). In contrast, the shapes of a sample of spherical-type nanostructures from feather barbs of six species show a poor match to SD. However, spherical nanostructures show a strong morphological similarity to morphologies produced by phase separation of a metastable mixture, called nucleation and growth. We propose that colour-producing, intracellular, spongy medullary β-keratin nanostructures develop their characteristic sizes and shapes by phase separation during protein polymerization. We discuss the possible role of capillary flow through drying of medullary cells in the development of the hollow

  16. Development of colour-producing beta-keratin nanostructures in avian feather barbs.

    Science.gov (United States)

    Prum, Richard O; Dufresne, Eric R; Quinn, Tim; Waters, Karla

    2009-04-06

    The non-iridescent structural colours of avian feather barbs are produced by coherent light scattering from amorphous (i.e. quasi-ordered) nanostructures of beta-keratin and air in the medullary cells of feather barb rami. Known barb nanostructures belong to two distinct morphological classes. 'Channel' nanostructures consist of beta-keratin bars and air channels of elongate, tortuous and twisting forms. 'Spherical' nanostructures consist of highly spherical air cavities that are surrounded by thin beta-keratin bars and sometimes interconnected by tiny passages. Using transmission electron microscopy, we observe that the colour-producing channel-type nanostructures of medullary beta-keratin in feathers of the blue-and-yellow macaw (Ara ararauna, Psittacidae) develop by intracellular self-assembly; the process proceeds in the absence of any biological prepattern created by the cell membrane, endoplasmic reticulum or cellular intermediate filaments. We examine the hypothesis that the shape and size of these self-assembled, intracellular nanostructures are determined by phase separation of beta-keratin protein from the cytoplasm of the cell. The shapes of a broad sample of colour-producing channel-type nanostructures from nine avian species are very similar to those self-assembled during the phase separation of an unstable mixture, a process called spinodal decomposition (SD). In contrast, the shapes of a sample of spherical-type nanostructures from feather barbs of six species show a poor match to SD. However, spherical nanostructures show a strong morphological similarity to morphologies produced by phase separation of a metastable mixture, called nucleation and growth. We propose that colour-producing, intracellular, spongy medullary beta-keratin nanostructures develop their characteristic sizes and shapes by phase separation during protein polymerization. We discuss the possible role of capillary flow through drying of medullary cells in the development of the

  17. Nanostructured electronic and magnetic materials

    Indian Academy of Sciences (India)

    Research and development in nanostructured materials is one of the most intensely studied areas in science. As a result of concerted R & D efforts, nanostructured electronic and magnetic materials have achieved commercial success. Specific examples of novel industrially important nanostructured electronic and magnetic ...

  18. Complex nano-patterning of structural, optical, electrical and electron emission properties of amorphous silicon thin films by scanning probe

    Czech Academy of Sciences Publication Activity Database

    Fait, Jan; Čermák, Jan; Stuchlík, Jiří; Rezek, Bohuslav

    2018-01-01

    Roč. 428, Jan (2018), s. 1159-1165 ISSN 0169-4332 R&D Projects: GA ČR GA15-01809S Institutional support: RVO:68378271 Keywords : amorphous silicon * nano-templates * nanostructures * electrical conductivity * electron emission * atomic force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.387, year: 2016

  19. EUREKA study – the evaluation of real-life use of a biophotonic system in chronic wound management: an interim analysis

    Directory of Open Access Journals (Sweden)

    Romanelli M

    2017-12-01

    Full Text Available Marco Romanelli,1 Alberto Piaggesi,2 Giovanni Scapagnini,3 Valentina Dini,1 Agata Janowska,1 Elisabetta Iacopi,2 Carlotta Scarpa,4 Stéphane Fauverghe,5 Franco Bassetto4 1Wound Healing Research Unit, Division of Dermatology, School of Medicine, University of Pisa, Pisa, 2Diabetic Foot Section, Department of Medicine, University of Pisa, Pisa, 3Department of Medicine and Health Sciences, School of Medicine, University of Molise, Campobasso, 4Clinic of Plastic and Reconstructive Surgery, Padova University-Hospital, Padova, Italy; 5KLOX Technologies Inc., Laval, QC, Canada Objective: Interest has grown regarding photobiomodulation (PBM with low-level light therapy, which has been shown to positively affect the stages of the wound healing process. In a real-life context clinical setting, the objective of the EUREKA study was to investigate efficacy, safety, and quality of life associated with the use of a BioPhotonic gel (LumiHeal™ in the treatment of chronic wounds such as venous leg ulcers (VLUs, diabetic foot ulcers (DFUs, and pressure ulcers (PUs. This BioPhotonic gel represents a new, first-in-class emission spectrum of light, including fluorescence, to induce PBM and modulate healing.Design: The multicenter, prospective, interventional, uncontrolled, open-label study enrolled 100 patients in 12 wound centers in Italy. We performed an early interim analysis based on the first 33 subjects (13 VLU, 17 DFU, 3 PU in seven centers who completed the study.Main results: Seventeen patients (52% achieved total wound closure (full re-epithelialization for 2 weeks during the study period. Two patients (6% were considered “almost closed” (decrease of the wound area of more than 90% at study end and three others (9% were considered “ready for skin grafting”. No related serious adverse events were observed, and the compliance was excellent. After the treatment, the average time to “pain-free” was 11.9 days in the VLU group. Quality of life was

  20. Chiral Inorganic Nanostructures.

    Science.gov (United States)

    Ma, Wei; Xu, Liguang; de Moura, André F; Wu, Xiaoling; Kuang, Hua; Xu, Chuanlai; Kotov, Nicholas A

    2017-06-28

    The field of chiral inorganic nanostructures is rapidly expanding. It started from the observation of strong circular dichroism during the synthesis of individual nanoparticles (NPs) and their assemblies and expanded to sophisticated synthetic protocols involving nanostructures from metals, semiconductors, ceramics, and nanocarbons. Besides the well-established chirality transfer from bioorganic molecules, other methods to impart handedness to nanoscale matter specific to inorganic materials were discovered, including three-dimentional lithography, multiphoton chirality transfer, polarization effects in nanoscale assemblies, and others. Multiple chiral geometries were observed with characteristic scales from ångströms to microns. Uniquely high values of chiral anisotropy factors that spurred the development of the field and differentiate it from chiral structures studied before, are now well understood; they originate from strong resonances of incident electromagnetic waves with plasmonic and excitonic states typical for metals and semiconductors. At the same time, distinct similarities with chiral supramolecular and biological systems also emerged. They can be seen in the synthesis and separation methods, chemical properties of individual NPs, geometries of the nanoparticle assemblies, and interactions with biological membranes. Their analysis can help us understand in greater depth the role of chiral asymmetry in nature inclusive of both earth and space. Consideration of both differences and similarities between chiral inorganic, organic, and biological nanostructures will also accelerate the development of technologies based on chiroplasmonic and chiroexcitonic effects. This review will cover both experiment and theory of chiral nanostructures starting with the origin and multiple components of mirror asymmetry of individual NPs and their assemblies. We shall consider four different types of chirality in nanostructures and related physical, chemical, and

  1. Nanostructured piezoelectric energy harvesters

    CERN Document Server

    Briscoe, Joe

    2014-01-01

    This book covers a range of devices that use piezoelectricity to convert mechanical deformation into electrical energy and relates their output capabilities to a range of potential applications. Starting with a description of the fundamental principles and properties of piezo- and ferroelectric materials, where applications of bulk materials are well established, the book shows how nanostructures of these materials are being developed for energy harvesting applications. The authors show how a nanostructured device can be produced, and put in context some of the approaches that are being invest

  2. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  3. Hydrogen in disordered and amorphous solids

    International Nuclear Information System (INIS)

    Bambakidis, G; Bowman, R.C.

    1986-01-01

    This book presents information on the following topoics: elements of the theory of amorphous semiconductors; electronic structure of alpha-SiH; fluctuation induced gap states in amorphous hydrogenated silicon; hydrogen on semiconductor surfaces; the influence of hydrogen on the defects and instabilities in hydrogenated amorphous silicon; deuteron magnetic resonance in some amorphous semiconductors; formation of amorphous metals by solid state reactions of hydrogen with an intermetallic compound; NMR studies of the hydrides of disordered and amorphous alloys; neutron vibrational spectroscopy of disordered metal-hydrogen system; dynamical disorder of hydrogen in LaNi /SUB 5-y/ M /SUB y/ hydrides studied by quasi-elastic neutron scattering; recent studies of intermetallic hydrides; tritium in Pd and Pd /SUB 0.80/ Sg /SUB 0.20/ ; and determination of hydrogen concentration in thin films of absorbing materials

  4. Epitaxial growth of hybrid nanostructures

    Science.gov (United States)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  5. The physics and applications of amorphous semiconductors

    CERN Document Server

    Madan, Arun

    1988-01-01

    This comprehensive, detailed treatise on the physics and applications of the new emerging technology of amorphous semiconductors focuses on specific device research problems such as the optimization of device performance. The first part of the book presents hydrogenated amorphous silicon type alloys, whose applications include inexpensive solar cells, thin film transistors, image scanners, electrophotography, optical recording and gas sensors. The second part of the book discusses amorphous chalcogenides, whose applications include electrophotography, switching, and memory elements. This boo

  6. Polyamorphous transition in amorphous fullerites C70

    International Nuclear Information System (INIS)

    Borisova, P. A.; Agafonov, S. S.; Glazkov, V. P.; D’yakonova, N. P.; Somenkov, V. A.

    2011-01-01

    Samples of amorphous fullerites C 70 have been obtained by mechanical activation (grinding in a ball mill). The structure of the samples has been investigated by neutron and X-ray diffraction. The high-temperature (up to 1200°C) annealing of amorphous fullerites revealed a polyamorphous transition from molecular to atomic glass, which is accompanied by the disappearance of fullerene halos at small scattering angles. Possible structural versions of the high-temperature amorphous phase are discussed.

  7. Nanostructured catalyst supports

    Science.gov (United States)

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  8. Defects in semiconductor nanostructures

    Indian Academy of Sciences (India)

    Impurities play a pivotal role in semiconductors. One part in a million of phosphorous in silicon alters the conductivity of the latter by several orders of magnitude. Indeed, the information age is possible only because of the unique role of shallow impurities in semiconductors. Although work in semiconductor nanostructures ...

  9. Nanostructures-History

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Nanostructures-History. Inspiration to Nanotechnology-. The Japanese scientist Norio Taniguchi of the Tokyo University of Science was used the term "nano-technology" in a 1974 conference, to describe semiconductor processes such as thin film His definition was, ...

  10. Synthesis and Characterization of Chemically Etched Nanostructured Silicon

    KAUST Repository

    Mughal, Asad Jahangir

    2012-05-01

    Silicon is an essential element in today’s modern world. Nanostructured Si is a more recently studied variant, which has currently garnered much attention. When its spatial dimensions are confined below a certain limit, its optical properties change dramatically. It transforms from an indirect bandgap material that does not absorb or emit light efficiently into one which can emit visible light at room temperatures. Although much work has been conducted in understanding the properties of nanostructured Si, in particular porous Si surfaces, a clear understanding of the origin of photoluminescence has not yet been produced. Typical synthesis approaches used to produce nanostructured Si, in particular porous Si and nanocrystalline Si have involved complex preparations used at high temperatures, pressures, or currents. The purpose of this thesis is to develop an easier synthesis approach to produce nanostructured Si as well as arrive at a clearer understanding of the origin of photoluminescence in these systems. We used a simple chemical etching technique followed by sonication to produce nanostructured Si suspensions. The etching process involved producing pores on the surface of a Si substrate in a solution containing hydrofluoric acid and an oxidant. Nanocrystalline Si as well as nanoscale amorphous porous Si suspensions were successfully synthesized using this process. We probed into the phase, composition, and origin of photoluminescence in these materials, through the use of several characterization techniques. TEM and SEM were used to determine morphology and phase. FT-IR and XPS were employed to study chemical compositions, and steady state and time resolved optical spectroscopy techniques were applied to resolve their photoluminescent properties. Our work has revealed that the type of oxidant utilized during etching had a significant impact on the final product. When using nitric acid as the oxidant, we formed nanocrystalline Si suspensions composed of

  11. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D.; Fujieda, I.; Street, R.A.

    1991-07-01

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  12. Formation of nanostructured TiO2 by femtosecond laser irradiation of titanium in O2

    International Nuclear Information System (INIS)

    Landis, Elizabeth C.; Phillips, Katherine C.; Mazur, Eric; Friend, Cynthia M.

    2012-01-01

    We used femtosecond laser irradiation of titanium metal in an oxidizing environment to form a highly stable surface layer of nanostructured amorphous titanium dioxide (TiO 2 ). We studied the influence of atmospheric composition on these surface structures and found that gas composition and pressure affect the chemical composition of the surface layer but not the surface morphology. Incorporation of nitrogen is only possible when no oxygen is present in the surrounding atmosphere.

  13. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Fan, Xue, E-mail: fanx@szu.edu.cn [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China); Diao, Dongfeng, E-mail: dfdiao@szu.edu.cn [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China)

    2016-10-30

    Graphical abstract: Low-energy electron irradiation was proposed to nanocrystallize the top-surface of the as-deposited amorphous carbon film, and sp{sup 2} nanocrystallites formed in the film top-surface within 4 nm thickness. Display Omitted - Abstract: We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp{sup 2} nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp{sup 2} nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp{sup 2} nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  14. Role of current profiles and atomic force microscope tips on local electric crystallization of amorphous silicon

    Czech Academy of Sciences Publication Activity Database

    Verveniotis, Elisseos; Rezek, Bohuslav; Šípek, Emil; Stuchlík, Jiří; Kočka, Jan

    2010-01-01

    Roč. 518, č. 21 (2010), s. 5965-5970 ISSN 0040-6090 R&D Projects: GA ČR GD202/09/H041; GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : amorphous materials * atomic force microscopy (AFM) * conductivity * crystallization * nanostructures * silicon * nickel Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.909, year: 2010

  15. Studies of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, S G; Carlos, W E

    1984-07-01

    This report discusses the results of probing the defect structure and bonding of hydrogenated amorphous silicon films using both nuclear magnetic resonance (NMR) and electron spin resonance (ESR). The doping efficiency of boron in a-Si:H was found to be less than 1%, with 90% of the boron in a threefold coordinated state. On the other hand, phosphorus NMR chemical shift measurements yielded a ration of threefold to fourfold P sites of roughly 4 to 1. Various resonance lines were observed in heavily boron- and phosphorus-doped films and a-SiC:H alloys. These lines were attributed to band tail states on twofold coordinated silicon. In a-SiC:H films, a strong resonance was attributed to dangling bonds on carbon atoms. ESR measurements on low-pressure chemical-vapor-deposited (LPCVD) a-Si:H were performed on samples. The defect density in the bulk of the films was 10/sup 17//cc with a factor of 3 increase at the surface of the sample. The ESR spectrum of LPCVD-prepared films was not affected by prolonged exposure to strong light. Microcrystalline silicon samples were also examined. The phosphorus-doped films showed a strong signal from the crystalline material and no resonance from the amorphous matrix. This shows that phosphorus is incorporated in the crystals and is active as a dopant. No signal was recorded from the boron-doped films.

  16. Manganese Nanostructures and Magnetism

    Science.gov (United States)

    Simov, Kirie Rangelov

    The primary goal of this study is to incorporate adatoms with large magnetic moment, such as Mn, into two technologically significant group IV semiconductor (SC) matrices, e.g. Si and Ge. For the first time in the world, we experimentally demonstrate Mn doping by embedding nanostructured thin layers, i.e. delta-doping. The growth is observed by in-situ scanning tunneling microscopy (STM), which combines topographic and electronic information in a single image. We investigate the initial stages of Mn monolayer growth on a Si(100)(2x1) surface reconstruction, develop methods for classification of nanostructure types for a range of surface defect concentrations (1.0 to 18.2%), and subsequently encapsulate the thin Mn layer in a SC matrix. These experiments are instrumental in generating a surface processing diagram for self-assembly of monoatomic Mn-wires. The role of surface vacancies has also been studied by kinetic Monte Carlo modeling and the experimental observations are compared with the simulation results, leading to the conclusion that Si(100)(2x1) vacancies serve as nucleation centers in the Mn-Si system. Oxide formation, which happens readily in air, is detrimental to ferromagnetism and lessens the magnetic properties of the nanostructures. Therefore, the protective SC cap, composed of either Si or Ge, serves a dual purpose: it is both the embedding matrix for the Mn nanostructured thin film and a protective agent for oxidation. STM observations of partially deposited caps ensure that the nanostructures remain intact during growth. Lastly, the relationship between magnetism and nanostructure types is established by an in-depth study using x-ray magnetic circular dichroism (XMCD). This sensitive method detects signals even at coverages less than one atomic layer of Mn. XMCD is capable of discerning which chemical compounds contribute to the magnetic moment of the system, and provides a ratio between the orbital and spin contributions. Depending on the amount

  17. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    Unknown

    in nanotubes and sp3 rich amorphous carbons for their application in field emission, device application, etc in- vestigations on sp2 rich amorphous carbon forms are very few. Though DLC films have potential application in field emission (FE) due to their low threshold voltage, the carbon centres, which are believed to play ...

  18. Towards upconversion for amorphous silicon solar cells

    NARCIS (Netherlands)

    de Wild, J.; Meijerink, A.; Rath, J.K.; van Sark, W.G.J.H.M.; Schropp, R.E.I.

    2010-01-01

    Upconversion of subbandgap light of thin film single junction amorphous silicon solar cells may enhance their performance in the near infrared (NIR). In this paper we report on the application of the NIR–vis upconverter β-NaYF4:Yb3+(18%) Er3+(2%) at the back of an amorphous silicon solar cell in

  19. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    flexible triple junction, amorphous silicon solar cells. At the Malaysia Energy Centre (MEC), we fabricated triple junction amorphous silicon solar cells (up to 12⋅7% efficiency (Wang et al 2002)) and laser-interconnected modules on steel, glass and polyimide substrates. A major issue encountered is the adhesion of thin film ...

  20. Colors and the evolution of amorphous galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.

    1987-01-01

    UBVRI and H-alpha photometric observations are presented for 16 amorphous galaxies and a comparison sample of Magellanic irregular (Im) and Sc spiral galaxies. These data are analyzed in terms of star-formation rates and histories in amorphous galaxies. Amorphous galaxies have mean global colors and star-formation rates per unit area that are similar to those in giant Im systems, despite differences in spatial distributions of star-forming centers in these two galactic structural classes. Amorphous galaxies differ from giant Im systems in having somewhat wider scatter in relationships between B - V and U - B colors, and between U - B and L(H-alpha)/L(B). This scatter is interpreted as resulting from rapid variations in star-formation rates during the recent past, which could be a natural consequence of the concentration of star-forming activity into centrally located, supergiant young stellar complexes in many amorphous galaxies. While the unusual spatial distribution and intensity of star formation in some amorphous galaxies is due to interactions with other galaxies, several amorphous galaxies are relatively isolated and thus the processes must be internal. The ultimate evolutionary fate of rapidly evolving amorphous galaxies remains unknown. 77 references

  1. Amorphization of ice under mechanical stresses

    Science.gov (United States)

    Bordonskii, G. S.; Krylov, S. D.

    2017-11-01

    The dielectric parameters of freshly produced freshwater ice in the microwave range are investigated. It is established that this kind of ice contains a noticeable amount of amorphous ice. Its production is associated with plastic deformation under mechanical stresses. An assessment of the dielectric-permeability change caused by amorphous ice in the state of a slowly flowing medium is given.

  2. Electron beam recrystallization of amorphous semiconductor materials

    Science.gov (United States)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  3. Photoexcitation-induced processes in amorphous semiconductors

    International Nuclear Information System (INIS)

    Singh, Jai

    2005-01-01

    Theories for the mechanism of photo-induced processes of photodarkening (PD), volume expansion (VE) in amorphous chalcogenides are presented. Rates of spontaneous emission of photons by radiative recombination of excitons in amorphous semiconductors are also calculated and applied to study the excitonic photoluminescence in a-Si:H. Results are compared with previous theories

  4. Analytical theory of noncollinear amorphous metallic magnetism

    International Nuclear Information System (INIS)

    Kakehashi, Y.; Uchida, T.

    2001-01-01

    Analytical theory of noncollinear magnetism in amorphous metals is proposed on the basis of the Gaussian model for the distribution of the interatomic distance and the saddle-point approximation. The theory removes the numerical difficulty in the previous theory based on the Monte-Carlo sampling method, and reasonably describes the magnetic properties of amorphous transition metals

  5. Hepatic excretory function in sepsis: implications from biophotonic analysis of transcellular xenobiotic transport in a rodent model

    Science.gov (United States)

    2013-01-01

    Introduction Hepatobiliary elimination of endo- and xenobiotics is affected by different variables including hepatic perfusion, hepatocellular energy state and functional integrity of transporter proteins, all of which are altered during sepsis. A particular impairment of hepatocellular transport at the canalicular pole resulting in an accumulation of potentially hepatotoxic compounds would have major implications for critical care pharmacology and diagnostics. Methods Hepatic transcellular transport, that is, uptake and hepatobiliary excretion, was studied in a rodent model of severe polymicrobial sepsis by two different biophotonic techniques to obtain insights into the handling of potentially toxic endo- and xenobiotics in sepsis. Direct and indirect in vivo imaging of the liver was performed by intravital multifluorescence microscopy and non-invasive whole-body near-infrared (NIRF) imaging after administration of two different, primarily hepatobiliary excreted xenobiotics, the organic anionic dyes indocyanine green (ICG) and DY635. Subsequent quantitative data analysis enabled assessment of hepatic uptake and fate of these model substrates under conditions of sepsis. Results Fifteen hours after sepsis induction, animals displayed clinical and laboratory signs of multiple organ dysfunction, including moderate liver injury, cholestasis and an impairment of sinusoidal perfusion. With respect to hepatocellular transport of both dyes, excretion into bile was significantly delayed for both dyes and resulted in net accumulation of potentially cytotoxic xenobiotics in the liver parenchyma (for example, specific dye fluorescence in liver at 30 minutes in sham versus sepsis: ICG: 75% versus 89%; DY635 20% versus 40% of maximum fluorescence; P < 0.05). Transcutaneous assessment of ICG fluorescence by whole body NIRF imaging revealed a significant increase of ICG fluorescence from the 30th minute on in the bowel region of the abdomen in sham but not in septic animals

  6. Solid-state diffusion in amorphous zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Dove, M. T.; Trachenko, K. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zarkadoula, E. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6138 (United States); Todorov, I. T. [STFC Daresbury Laboratory, Warrington WA4 1EP (United Kingdom); Geisler, T. [Steinmann-Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, D-53115 Bonn (Germany); Brazhkin, V. V. [Institute for High Pressure Physics, RAS, 142190 Moscow (Russian Federation)

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  7. Ductility of Nanostructured Bainite

    Directory of Open Access Journals (Sweden)

    Lucia Morales-Rivas

    2016-12-01

    Full Text Available Nanostructured bainite is a novel ultra-high-strength steel-concept under intensive current research, in which the optimization of its mechanical properties can only come from a clear understanding of the parameters that control its ductility. This work reviews first the nature of this composite-like material as a product of heat treatment conditions. Subsequently, the premises of ductility behavior are presented, taking as a reference related microstructures: conventional bainitic steels, and TRIP-aided steels. The ductility of nanostructured bainite is then discussed in terms of work-hardening and fracture mechanisms, leading to an analysis of the three-fold correlation between ductility, mechanically-induced martensitic transformation, and mechanical partitioning between the phases. Results suggest that a highly stable/hard retained austenite, with mechanical properties close to the matrix of bainitic ferrite, is advantageous in order to enhance ductility.

  8. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  9. Relaxation in magnetic nanostructures

    International Nuclear Information System (INIS)

    Novak, M.A.; Folly, W.S.D.; Sinnecker, J.P.; Soriano, S.

    2005-01-01

    Nanostructured magnetic materials present a wide range of magnetic relaxation phenomena. One problem in studying nanomagnetic granular materials is the strong dependence of the relaxation with the anisotropy barrier which, even for systems with narrow size distributions, brings difficulties in the analysis of the experimental data. Molecular magnetism, with the chemists' bottom-up approach to build molecular nanostructures, provides this field with some beautiful model systems, well ordered crystals of single molecule magnets, single molecule chains, molecular magnetic multilayers and others novelties to appear. Most of these systems present slow relaxation and the study of these well-characterized nanomaterials may elucidate many features that are difficult to grasp in the non molecular materials

  10. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  11. Hybrid phonons in nanostructures

    CERN Document Server

    Ridley, Brian K

    2017-01-01

    Crystalline semiconductor nanostructures have special properties associated with electrons and lattice vibrations and their interaction, and this is the topic of the book. The result of spatial confinement of electrons is indicated in the nomenclature of nonostructures: quantum wells, quantum wires, and quantum dots. Confinement also has a profound effect on lattice vibrations and an account of this is the prime focus. The documentation of the confinement of acoustic modes goes back to Lord Rayleigh’s work in the late nineteenth century, but no such documentation exists for optical modes. Indeed, it is only comparatively recently that any theory of the elastic properties of optical modes exists, and the account given in the book is comprehensive. A model of the lattice dynamics of the diamond lattice is given that reveals the quantitative distinction between acoustic and optical modes and the difference of connection rules that must apply at an interface. The presence of interfaces in nanostructures forces ...

  12. Enhanced photocatalytic activity of C@ZnO core-shell nanostructures and its photoluminescence property

    Science.gov (United States)

    Chen, Tao; Yu, Shanwen; Fang, Xiaoxin; Huang, Honghong; Li, Lun; Wang, Xiuyuan; Wang, Huihu

    2016-12-01

    An ultrathin layer of amorphous carbon coated C@ZnO core-shell nanostructures were synthesized via a facile hydrothermal carbonization process using glucose as precursor in this work. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance UV-vis spectroscopy (DRS) were used for the characterization of as-prepared samples. Photoluminescence (PL) properties of C@ZnO samples were investigated using PL spectroscopy. The microstructure analysis results show that the glucose content has a great influence on the size, morphology, crystallinity and surface chemical states of C@ZnO nanostructures. Moreover, the as-prepared C@ZnO core-shell nanostructures exhibit the enhanced photocatalytic activity and good photostability for methyl orange dye degradation due to its high adsorption ability and its improved optical characteristics.

  13. In Situ Transmission Electron Microscopy Observation of Nanostructural Changes in Phase-Change Memory

    KAUST Repository

    Meister, Stefan

    2011-04-26

    Phase-change memory (PCM) has been researched extensively as a promising alternative to flash memory. Important studies have focused on its scalability, switching speed, endurance, and new materials. Still, reliability issues and inconsistent switching in PCM devices motivate the need to further study its fundamental properties. However, many investigations treat PCM cells as black boxes; nanostructural changes inside the devices remain hidden. Here, using in situ transmission electron microscopy, we observe real-time nanostructural changes in lateral Ge2Sb2Te5 (GST) PCM bridges during switching. We find that PCM devices with similar resistances can exhibit distinct threshold switching behaviors due to the different initial distribution of nanocrystalline and amorphous domains, explaining variability of switching behaviors of PCM cells in the literature. Our findings show a direct correlation between nanostructure and switching behavior, providing important guidelines in the design and operation of future PCM devices with improved endurance and lower variability. © 2011 American Chemical Society.

  14. Plasmonic Nanostructured Cellular Automata

    Science.gov (United States)

    Alkhazraji, Emad; Ghalib, A.; Manzoor, K.; Alsunaidi, M. A.

    2017-03-01

    In this work, we have investigated the scattering plasmonic resonance characteristics of silver nanospheres with a geometrical distribution that is modelled by Cellular Automata using time-domain numerical analysis. Cellular Automata are discrete mathematical structures that model different natural phenomena. Two binary one-dimensional Cellular Automata rules are considered to model the nanostructure, namely rule 30 and rule 33. The analysis produces three-dimensional scattering profiles of the entire plasmonic nanostructure. For the Cellular Automaton rule 33, the introduction of more Cellular Automata generations resulted only in slight red and blue shifts in the plasmonic modes with respect to the first generation. On the other hand, while rule 30 introduced significant red shifts in the resonance peaks at early generations, at later generations however, a peculiar effect is witnessed in the scattering profile as new peaks emerge as a feature of the overall Cellular Automata structure rather than the sum of the smaller parts that compose it. We strongly believe that these features that emerge as a result adopting the different 256 Cellular Automata rules as configuration models of nanostructures in different applications and systems might possess a great potential in enhancing their capability, sensitivity, efficiency, and power utilization.

  15. Locomotion of Amorphous Surface Robots

    Science.gov (United States)

    Bradley, Arthur T. (Inventor)

    2016-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  16. Nanostructured porous silicon: The winding road from photonics to cell scaffolds. A review.

    Directory of Open Access Journals (Sweden)

    Jacobo eHernandez-Montelongo

    2015-05-01

    Full Text Available For over 20 years nanostructured porous silicon (nanoPS has found a vast number of applications in the broad fields of photonics and optoelectronics, triggered by the discovery of its photoluminescent behavior in 1990. Besides, its biocompatibility, biodegradability, and bioresorbability make porous silicon (PSi an appealing biomaterial. These properties are largely a consequence of its particular susceptibility to oxidation, leading to the formation of silicon oxide which is readily dissolved by body fluids. This paper reviews the evolution of the applications of PSi and nanoPS from photonics through biophotonics, to their use as cell scaffolds, whether as an implantable substitute biomaterial, mainly for bony and ophthalmological tissues, or as an in-vitro cell conditioning support, especially for pluripotent cells. For any of these applications, PSi/nanoPS can be used directly after synthesis from Si wafers, upon appropriate surface modification processes, or as a composite biomaterial. Unedited studies of fluorescently active PSi structures for cell culture are brought to evidence the margin for new developments.

  17. Concurrent design of quasi-random photonic nanostructures

    Science.gov (United States)

    Lee, Won-Kyu; Yu, Shuangcheng; Engel, Clifford J.; Reese, Thaddeus; Rhee, Dongjoon; Chen, Wei; Odom, Teri W.

    2017-08-01

    Nanostructured surfaces with quasi-random geometries can manipulate light over broadband wavelengths and wide ranges of angles. Optimization and realization of stochastic patterns have typically relied on serial, direct-write fabrication methods combined with real-space design. However, this approach is not suitable for customizable features or scalable nanomanufacturing. Moreover, trial-and-error processing cannot guarantee fabrication feasibility because processing-structure relations are not included in conventional designs. Here, we report wrinkle lithography integrated with concurrent design to produce quasi-random nanostructures in amorphous silicon at wafer scales that achieved over 160% light absorption enhancement from 800 to 1,200 nm. The quasi-periodicity of patterns, materials filling ratio, and feature depths could be independently controlled. We statistically represented the quasi-random patterns by Fourier spectral density functions (SDFs) that could bridge the processing-structure and structure-performance relations. Iterative search of the optimal structure via the SDF representation enabled concurrent design of nanostructures and processing.

  18. Low Temperature Growth of Nanostructured Diamond Films on Metals

    Science.gov (United States)

    Baker, Paul A.; Catledge, Shane A.; Vohra, Yogesh K.

    2001-01-01

    The field of nanocrystalline diamond and tetrahedral amorphous carbon films has been the focus of intense experimental activity in the last few years for applications in field emission display devices, optical windows, and tribological coatings, The choice of substrate used in most studies has typically been silicon. For metals, however, the thermal expansion mismatch between the diamond film and substrate gives rise to thermal stress that often results in delamination of the film. To avoid this problem in conventional CVD deposition low substrate temperatures (less than 700 C) have been used, often with the incorporation of oxygen or carbon monoxide to the feedgas mixture. Conventionally grown CVD diamond films are also rough and would require post-deposition polishing for most applications. Therefore, there is an obvious need to develop techniques for deposition of well-adhered, smooth nano-structured diamond films on metals for various tribological applications. In our work, nanostructured diamond films are grown on a titanium alloy substrate using a two-step deposition process. The first step is performed at elevated temperature (820 C) for 30 minutes using a H2/CH4/N2 gas mixture in order to grow a thin (approx. 600 nm) nanostructured diamond layer and improve film adhesion. The remainder of the deposition involves growth at low temperature (less than 600 C) in a H2/CH4/O2 gas mixture. Laser reflectance Interferometry (LRI) pattern during growth of a nanostructured diamond film on Ti-6Al-4V alloy. The first 30 minutes are at a high temperature of 820 C and the rest of the film is grown at a low temperature of 580 T. The fringe pattern is observed till the very end due to extremely low surface roughness of 40 nm. The continuation of the smooth nanostructured diamond film growth during low temperature deposition is confirmed by in-situ laser reflectance interferometry and by post-deposition micro-Raman spectroscopy and surface profilometry. Similar experiments

  19. Photonic crystals, amorphous materials, and quasicrystals.

    Science.gov (United States)

    Edagawa, Keiichi

    2014-06-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.

  20. Fullerene nanostructures, monolayers and thin films

    International Nuclear Information System (INIS)

    Cotier, B.N.

    2000-10-01

    The interaction of submonolayer, monolayer and multilayer coverages of C 60 with the Ag/Si(111)-(√3x√3)R30 deg. (√3Ag/Si) and Si(111)-7x7 surfaces has been investigated using atomic force microscopy (AFM), photoelectron spectroscopy (PES) and ultra high vacuum scanning tunneling microscopy (UHV-STM). It is shown that it is possible to preserve the √3Ag/Si surface, normally corrupted by exposure to air, in ambient conditions when immersed beneath a few layers of C 60 molecules. Upon removal of the fullerene layers in the UHV-STM some corruption is observed which is linked to the morphology of the fullerene film (defined by the nature of the interaction of C 60 with √3Ag/Si). This technique opens up the possibility of performing experiments on the clean √3Ag/Si surface outside of UHV conditions. With the discovery of techniques whereby structures may be formed that are composed of only a few atoms/molecules, there is a need to perform electrical measurements in order to probe the fascinating properties of these 'nano-scale' devices. Using AFM, PES and STM evaporated metals and ion implantation have been investigated as materials for use in forming sub-micron scale contacts to nanostructures. It is found that ion implantation is a more promising approach after studying the response to annealing of treated surfaces. Electrical measurements between open/short circuited contacts and through Ag films clearly demonstrate the validity of the method, further confirmed by a PES study which probes the chemical nature of the near surface region of ion-implanted samples. Attempts have been made to form nanostructure templates between sub-micron scale contacts as a possible precursor to forming nanostructures. The bonding state of C 60 molecules on the Si(111)-7x7 surface has been in dispute for many years. To properly understand the system a comprehensive AFM, PES and STM study has been performed. PES results indicate covalent bond formation, with the number of bonds

  1. Optical switching systems using nanostructures

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2004-01-01

    High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems.......High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems....

  2. Semiconductors and semimetals nanostructured systems

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Reed, Mark A

    1992-01-01

    This is the first available volume to consolidate prominent topics in the emerging field of nanostructured systems. Recent technological advancements have led to a new era of nanostructure physics, allowing for the fabrication of nanostructures whose behavior is dominated by quantum interference effects. This new capability has enthused the experimentalist and theorist alike. Innumerable possibilities have now opened up for physical exploration and device technology on the nanoscale. This book, with contributions from five pioneering researchers, will allow the expert and novice alike to explore a fascinating new field.Provides a state-of-the-art review of quantum-scale artificially nanostructured electronic systemsIncludes contributions by world-known experts in the fieldOpens the field to the non-expert with a concise introductionFeatures discussions of:Low-dimensional condensed matter physicsProperties of nanostructured, ultrasmall electronic systemsMesoscopic physics and quantum transportPhysics of 2D ele...

  3. Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge₂Sb₂Te₅ phase-change memory material.

    Science.gov (United States)

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-06-28

    Ge(2)Sb(2)Te(5) (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te-Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST.

  4. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  5. Nanostructure of Er3+ doped silicates.

    Science.gov (United States)

    Yao, Nan; Hou, Kirk; Haines, Christopher D; Etessami, Nathan; Ranganathan, Varadh; Halpern, Susan B; Kear, Bernard H; Klein, Lisa C; Sigel, George H

    2005-06-01

    We demonstrate nanostructural evolution resulting in highly increased photoluminescence in silicates doped with Er3+ ions. High-resolution transmission electron microscopy (HRTEM) imaging, nano-energy dispersed X-ray (NEDX) spectroscopy, X-ray diffraction (XRD) and photoluminescence analysis confirm the local composition and structure changes of the Er3+ ions upon thermal annealing. We studied two types of amorphous nanopowder: the first is of the composition SiO2/18Al2O3/2Er2O3 (SAE), synthesized by combustion flame-chemical vapor condensation, and the second is with a composition of SiO2/8Y2O3/2Er2O3 (SYE), synthesized by sol-gel synthesis (composition in mol%). Electron diffraction and HRTEM imaging clearly show the formation of nanocrystallites with an average diameter of approximately 8 nm in SAE samples annealed at 1000 degrees C and SYE samples annealed at 1200 degrees C. The volume fraction of the nanocrystalline phase increased with each heat treatment, eventually leading to complete devitrification at 1400 degrees C. Further XRD and NEDX analysis indicates that the nanocrystalline phase has the pyrochlore structure with the formula Er(x)Al(2-x)Si2O7 or Er(x)Y(2-x)Si2O7 and a surrounding silica matrix.

  6. Surface magnetic structures in amorphous ferromagnetic microwires

    International Nuclear Information System (INIS)

    Usov, N.A.; Serebryakova, O.N.; Gudoshnikov, S.A.; Tarasov, V.P.

    2017-01-01

    The spatial period of magnetization perturbations that occur near the surface of magnetic nanotube or nanowire under the influence of surface magnetic anisotropy is determined by means of numerical simulation as a function of the sample geometry and material parameters. The surface magnetization distribution obtained is then used to estimate the period of the surface magnetic texture in amorphous microwire of several micrometers in diameter by means of appropriate variational procedure. The period of the surface magnetic texture in amorphous microwire is found to be significantly smaller than the wire diameter. - Highlights: • Magnetic structure may arise near the magnetic nanotube surface under the influence of surface magnetic anisotropy. • The period of the surface magnetization pattern is calculated as a function of the sample geometry. • Similar magnetic structure may exist in amorphous microwire of several micrometers in diameter. • The period of the surface magnetic structure in amorphous wire is found to be significantly smaller than the wire diameter.

  7. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio...... and a low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state...... are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  8. Theoretical Considerations in Developing Amorphous Solid Dispersions

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Priemel, Petra Alexandra; Surwase, Sachin

    2014-01-01

    to their glass-forming ability and glass stability. In the main parts of this chapter, we review theoretical approaches to determine amorphous drug polymer miscibility and crystalline drug polymer solubility, as a prerequisite to develop amorphous solid dispersions (glass solutions).......Before pursuing the laborious route of amorphous solid dispersion formulation and development, which is the topic of many of the subsequent chapters in this book, the formulation scientist would benefit from a priori knowledge whether the amorphous route is a viable one for a given drug and how...... much solubility improvement, and hence increase in bioavailability, can be expected, and what forms of solid dispersion have been developed in the past. In this chapter, we therefore initially define the various forms of solid dispersions, and then go on to discuss properties of pure drugs with respect...

  9. Surface magnetic structures in amorphous ferromagnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    Usov, N.A., E-mail: usov@obninsk.ru [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Serebryakova, O.N.; Gudoshnikov, S.A. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Tarasov, V.P. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation)

    2017-05-01

    The spatial period of magnetization perturbations that occur near the surface of magnetic nanotube or nanowire under the influence of surface magnetic anisotropy is determined by means of numerical simulation as a function of the sample geometry and material parameters. The surface magnetization distribution obtained is then used to estimate the period of the surface magnetic texture in amorphous microwire of several micrometers in diameter by means of appropriate variational procedure. The period of the surface magnetic texture in amorphous microwire is found to be significantly smaller than the wire diameter. - Highlights: • Magnetic structure may arise near the magnetic nanotube surface under the influence of surface magnetic anisotropy. • The period of the surface magnetization pattern is calculated as a function of the sample geometry. • Similar magnetic structure may exist in amorphous microwire of several micrometers in diameter. • The period of the surface magnetic structure in amorphous wire is found to be significantly smaller than the wire diameter.

  10. Amorphous Phases on the Surface of Mars

    Science.gov (United States)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made

  11. Improving reversible capacities of high surface lithium insertion materials – the case of amorphous TiO2

    Directory of Open Access Journals (Sweden)

    Swapna eGanapathy

    2014-11-01

    Full Text Available Chemisorbed water and solvent molecules and their reactivity with components from the electrolyte in high-surface nanostructured electrodes remains a contributing factor towards capacity diminishment on cycling in lithium ion batteries due to the limit in maximum annealing temperature. Here we report a marked improvement in the capacity retention of amorphous TiO2 by the choice of preparation solvent, control of annealing temperature and the presence of surface functional groups. Careful heating of the amorphous TiO2 sample prepared in acetone under vacuum lead to complete removal of all molecular solvent and an improved capacity retention of 220 mAh/g over 50 cycles at a C/10 rate. Amorphous TiO2 when prepared in ethanol and heated under vacuum showed an even better capacity retention of 240 mAh/g. From FTIR Spectroscopy and Electron Energy Loss Spectroscopy measurements, the improved capacity is attributed to the complete removal of ethanol and the presence of very small fractions of residual functional groups coordinated to oxygen-deficient surface titanium sites. These displace the more reactive chemisorbed hydroxyl groups, limiting reaction with components from the electrolyte and possibly enhancing the integrity of the solid electrolyte interface (SEI. The present research provides a facile strategy to improve the capacity retention of nanostructured electrode materials.

  12. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  13. Amorphization Mechanism of Icosahedral Platinum Clusters

    International Nuclear Information System (INIS)

    Apra, Edoardo; Baletto, Francesca; Ferrando, Riccardo; Fortunelli, Alessandro

    2004-01-01

    The amorphization mechanism of high-symmetry pt nanoclusters is investigated by a combination of Molecular Dynamics simulations and Density Functional calculations. A general mechanism for amorphization, involving rosette-like structural transformations at fivefold vertices, is proposed. IN the tosette, a fivefold vertex is transformed into a hexagonal ring. We show that for icosahedral Pt nanoclusters, this transformation is associated with an energy gain, so that their most favorable structures have a low symmetry even at icosahedral magic numbers

  14. A Magnetic Sensor with Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Dongfeng He

    2014-06-01

    Full Text Available Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/ÖHz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor.

  15. Biophotonics of diatoms

    DEFF Research Database (Denmark)

    Gössling, Johannes Wilhelm

    Diatoms are unicellular microalgae present in all aquatic environments on earth. Due to their high photosynthetic productivity and abundance, diatoms are main components of aquatic food webs and among the main contributors of global photosynthetic carbon fixation. A unique feature of diatoms...... is the encasement of the cell in a silicate frustule compounded of two valves and corresponding girdle bands. Photonic structures in the frustule, i.e. pores and chambers on the micro- to nanoscale, interact with electromagnetic radiation in the visible spectrum of light. It has therefore been proposed...... in living diatom cells. We could show that the valve of the centric diatom species Coscinodiscus granii guides light in the horizontal plane, and redistributes photosynthetically productive radiation over the entire cell. Optical coupling of chloroplasts to the evanescent field of the valve induced...

  16. Biophotonics and Bone Biology

    Science.gov (United States)

    Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe

    2004-01-01

    One of the more-serious side effects of extended space flight is an accelerated bone loss [Bioastronautics Critical Path Roadmap, http://research.hq.nasa.gov/code_u/bcpr/index.cfm]. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It shows that an extrapolation of the microgravity induced bone loss rates to longer time scales, such as a 2.5 year round-trip to Mars (6 months out at 0 g, 1.5 year stay on Mars at 0.38 g, 6 months back at 0 g), could severely compromise the skeletal system of such a person.

  17. External field-assisted solution synthesis and selectively catalytic properties of amorphous iron nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jianguo; Yan, Gongqin; Wang, Wei; Liu, Jun

    2012-03-07

    This work describes an easy and flexible approach for the synthesis of 2D nanostructures by external composite field-induced self-assembly. Amorphous iron nanoplatelets with a large aspect ratio were prepared by reducing a concentrated FeSO4 solution with NaBH4 without any templates or surfactants under a magnetic field and a shear field, and characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Based on the morphological dependence of the resultant iron nanostructures on the kinetic parameters such as reactant concentration, reaction temperature, external fields as well as reaction time, etc., a novel conceivable formation mechanism of the iron nanoplatelets was substantiated to be a self-assembly of concentrated iron nuclei induced by the synergistic effect of both a magnetic field and a shear field. Due to the amorphous nature and shape anisotropy, the as-synthesized iron nanoplatelets exhibit quite different magnetic properties with an enhanced coercivity of >220 Oe from isotropic iron nanoparticles. In the oxidation of cyclohexane with hydrogen peroxide as a 'green' oxidant, the as-obtained amorphous iron nanoplatelets show a conversion more than 84% and a complete selectivity for cyclohexanol and cyclohexanone due to the unique structure. Moreover, their catalytic performances are strongly influenced by their morphology, and the iron atoms located on the faces tend to catalyze the formation of cyclohexanol while those on the sides tend to catalyze the formation of cyclohexanone. The external composite field-induced solution synthesis reported here can be readily explored for fabricating other 2D magnetic nanoplatelets, and the resulting iron nanoplatelets are promising for a number of applications such as high efficient selective catalysis, energy, environment fields and so forth.

  18. Fabrication of nanowires and nanostructures

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.; Piraux, L.

    2009-01-01

    We report on different approaches that we have adopted and developed for the fabrication of nanowires and nanostructures. Methods based on template synthesis and on self organization seem to be the most promising for the fabrication of nanomaterials and nanostructures due to their easiness and low...... cost. The development of a supported nanoporous alumina template and the possibility of using this template to combine electrochemical synthesis with lithographic methods open new ways for the fabrication of complex nanostructures. The numerous advantages of the supported template and its compatibility...

  19. Mechanical design of DNA nanostructures.

    Science.gov (United States)

    Castro, Carlos E; Su, Hai-Jun; Marras, Alexander E; Zhou, Lifeng; Johnson, Joshua

    2015-04-14

    Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.

  20. Ab initio simulation of amorphous silicon

    International Nuclear Information System (INIS)

    Cooper, N.C.; McKenzie, D.R.; Goringe, C.M.

    1999-01-01

    Full text: A first-principles Car-Parrinello molecular dynamics simulation of amorphous silicon is presented. Density Functional Theory is used to describe the forces between the atoms in a 64 atom supercell which is periodically repeated throughout space in order to generate an infinite network of atoms (a good approximation to a real solid). A quench from the liquid phase is used to achieve a quenched amorphous structure, which is subjected to an annealing cycle to improve its stability. The final, annealed network is in better agreement with experiment than any previous simulation of amorphous silicon. Significantly, the predicted average first-coordination numbers of 3.56 and 3.84 for the quenched and annealed structures from this simulation agree very closely with the experimental values of 3.55 and 3.90 respectively, whereas all previous simulations yielded first coordination numbers greater than 4. This improved agreement in coordination numbers is important because it supports the experimental finding that dangling bonds (which are associated with under-coordinated atoms) are more prevalent than floating bonds (the strained, longer bond of a five coordinate atom) in pure amorphous silicon. Finally, the effect of adding hydrogen to amorphous silicon was investigated by specifically placing hydrogen atoms at the likely defect sites. After a structural relaxation to optimise the positions of these hydrogen atoms, the localised electronic states associated with these defects are absent. Thus hydrogen is responsible for removing these defect states (which are able to trap carriers) from the edge of the band gap of the amorphous silicon. These results confirm the widely held ideas about the effect of hydrogen in producing remarkable improvements in the electronic properties of amorphous silicon

  1. Effects of the amorphization on hysteresis loops of the amorphous spin-1/2 Ising system

    International Nuclear Information System (INIS)

    Essaoudi, I.; Ainane, A.; Saber, M.; Miguel, J.J. de

    2009-01-01

    We examine the effects of the amorphization on the hysteresis loops of the amorphous spin-1/2 Ising system using the effective field theory within a probability distribution technique that accounts for the self-spin correlation functions. The magnetization, the transverse and longitudinal susceptibilities, and pyromagnetic coefficient are also studied in detail

  2. Magnetism in carbon nanostructures

    CERN Document Server

    Hagelberg, Frank

    2017-01-01

    Magnetism in carbon nanostructures is a rapidly expanding field of current materials science. Its progress is driven by the wide range of applications for magnetic carbon nanosystems, including transmission elements in spintronics, building blocks of cutting-edge nanobiotechnology, and qubits in quantum computing. These systems also provide novel paradigms for basic phenomena of quantum physics, and are thus of great interest for fundamental research. This comprehensive survey emphasizes both the fundamental nature of the field, and its groundbreaking nanotechnological applications, providing a one-stop reference for both the principles and the practice of this emerging area. With equal relevance to physics, chemistry, engineering and materials science, senior undergraduate and graduate students in any of these subjects, as well as all those interested in novel nanomaterials, will gain an in-depth understanding of the field from this concise and self-contained volume.

  3. Nanostructured epoxi networks

    International Nuclear Information System (INIS)

    Soares, Bluma G.; Silva, Adriana A.; Sollymossy, Ana Paula F.; Dahmouche, Karim

    2011-01-01

    Nanostructured epoxy materials including nanocomposites were obtained by incorporating different organic or inorganic systems. Epoxy networks containing rubber particles with nanometric size have been obtained by an appropriate functionalization of the elastomers, in order to improve the interfacial adhesion between rubber and epoxy matrix. This adhesion also conferred an improvement of the impact resistance and thermal properties. This work also presents some results related to the utilization of inorganic nanoparticles in epoxy systems, including organo clay or hybrid materials based on functionalized silsesquioxanes. The nanoscopic characterization of these materials were performed by small angle X-ray scattering (SAXS) combined with transmission electron microscopy (TEM). The effect of dispersion degree of the inorganic nanoparticles on the rheological properties was also investigated. (author)

  4. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  5. @AuAg nanostructures

    Science.gov (United States)

    Singh, Rina; Soni, R. K.

    2014-09-01

    Bimetallic and trimetallic nanoparticles have attracted significant attention in recent times due to their enhanced electrochemical and catalytic properties compared to monometallic nanoparticles. The numerical calculations using Mie theory has been carried out for three-layered metal nanoshell dielectric-metal-metal (DMM) system consisting of a particle with a dielectric core (Al@Al2O3), a middle metal Ag (Au) layer and an outer metal Au (Ag) shell. The results have been interpreted using plasmon hybridization theory. We have also prepared Al@Al2O3@Ag@Au and Al@Al2O3@AgAu triple-layered core-shell or alloy nanostructure by two-step laser ablation method and compared with calculated results. The synthesis involves temporal separations of Al, Ag, and Au deposition for step-by-step formation of triple-layered core-shell structure. To form Al@Ag nanoparticles, we ablated silver for 40 min in aluminium nanoparticle colloidal solution. As aluminium oxidizes easily in water to form alumina, the resulting structure is core-shell Al@Al2O3. The Al@Al2O3 particle acts as a seed for the incoming energetic silver particles for multilayered Al@Al2O3@Ag nanoparticles is formed. The silver target was then replaced by gold target and ablation was carried out for different ablation time using different laser energy for generation of Al@Al2O3@Ag@Au core-shell or Al@Al2O3@AgAu alloy. The formation of core-shell and alloy nanostructure was confirmed by UV-visible spectroscopy. The absorption spectra show shift in plasmon resonance peak of silver to gold in the range 400-520 nm with increasing ablation time suggesting formation of Ag-Au alloy in the presence of alumina particles in the solution.

  6. Nanostructured Photovoltaics for Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA NSTRF proposal entitled Nanostructured Photovoltaics for Space Power is targeted towards research to improve the current state of the art photovoltaic...

  7. Quantum optics with semiconductor nanostructures

    CERN Document Server

    Jahnke, Frank

    2012-01-01

    A guide to the theory, application and potential of semiconductor nanostructures in the exploration of quantum optics. It offers an overview of resonance fluorescence emission.$bAn understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics. Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction...

  8. Simple Formation of Nanostructured Molybdenum Disulfide Thin Films by Electrodeposition

    Directory of Open Access Journals (Sweden)

    S. K. Ghosh

    2013-01-01

    Full Text Available Nanostructured molybdenum disulfide thin films were deposited on various substrates by direct current (DC electrolysis form aqueous electrolyte containing molybdate and sulfide ions. Post deposition annealing at higher temperatures in the range 450–700°C transformed the as-deposited amorphous films to nanocrystalline structure. High temperature X-ray diffraction studies clearly recorded the crystal structure transformations associated with grain growth with increase in annealing temperature. Surface morphology investigations revealed featureless structure in case of as-deposited surface; upon annealing it converts into a surface with protruding nanotubes, nanorods, or dumbbell shape nanofeatures. UV-visible and FTIR spectra confirmed about the presence of Mo-S bonding in the deposited films. Transmission electron microscopic examination showed that the annealed MoS2 films consist of nanoballs, nanoribbons, and multiple wall nanotubes.

  9. Structure, hardness and fracture features of nanostructural materials

    International Nuclear Information System (INIS)

    Noskova, N.I.; Korznikov, A.V.; Idrisova, S.R.

    2000-01-01

    A study is made into nanocrystalline metals Cu and Mo, nanocrystalline intermetallic compound Ni 3 Al produced using severe plastic deformation; nanophase alloys Fe 73.5 Cu 1 Nb 3 Si 1.35 B 9 and Pd 81 Cu 7 Si 12 produced by crystallization from amorphous state as well as nanophase materials TiN and Al 2 O 3 produced by nano powder compacting in the temperature range of 273-573 K. Methods of transmission and scanning electron microscopy, X-ray diffraction analysis, mechanical testing and microhardness measurement are applied to study structure, internal elastic stress, phase composition, hardness, strength and plastic properties, surface fracture mode of nanostructural materials [ru

  10. Ta-based amorphous metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    McGlone, John M., E-mail: mcglone@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States); Olsen, Kristopher R. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Stickle, William F.; Abbott, James E.; Pugliese, Roberto A.; Long, Greg S. [Hewlett-Packard Company, Corvallis, OR, 97333 (United States); Keszler, Douglas A. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Wager, John F. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States)

    2015-11-25

    With their lack of grains and grain boundaries, amorphous metals are known to possess advantageous mechanical properties and enhanced chemical stability relative to crystalline metals. Commonly, however, they exhibit poor high-temperature stability because of their metastable nature. Here, we describe two new Ta-based ternary metal thin films that retain thermal stability to 600 °C and above. The new thin-film compositions, Ta{sub 2}Ni{sub 2}Si{sub 1} and Ta{sub 2}Mo{sub 2}Si{sub 1}, are amorphous, exhibiting ultra-smooth surfaces (<0.4 nm) and resistivities typical of amorphous metals (224 and 177 μΩ cm, respectively). - Highlights: • New Ta-based amorphous metals were sputter deposited from individual targets. • As-deposited amorphous structure was confirmed through diffraction techniques. • Electrical and surface properties were characterized and possess smooth surfaces. • No evidence of crystallization up to 600 °C (TaNiSi) and 800 °C (TaMoSi). • Ultra-smooth surfaces remained unchanged up to crystallization temperature.

  11. Amorphous silicon detectors in positron emission tomography

    International Nuclear Information System (INIS)

    Conti, M.; Perez-Mendez, V.

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters ε 2 τ's are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs

  12. Amorphous silicon detectors in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Conti, M. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy) Lawrence Berkeley Lab., CA (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  13. The Structure of Liquid and Amorphous Hafnia

    Directory of Open Access Journals (Sweden)

    Leighanne C. Gallington

    2017-11-01

    Full Text Available Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf–O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that show density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf–Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf–Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO6,7 polyhedra resembling that observed in the monoclinic phase.

  14. Synthesis of vertically aligned metal oxide nanostructures

    KAUST Repository

    Roqan, Iman S.

    2016-03-03

    Metal oxide nanostructure and methods of making metal oxide nanostructures are provided. The metal oxide nanostructures can be 1 -dimensional nanostructures such as nanowires, nanofibers, or nanotubes. The metal oxide nanostructures can be doped or undoped metal oxides. The metal oxide nanostructures can be deposited onto a variety of substrates. The deposition can be performed without high pressures and without the need for seed catalysts on the substrate. The deposition can be performed by laser ablation of a target including a metal oxide and, optionally, a dopant. In some embodiments zinc oxide nanostructures are deposited onto a substrate by pulsed laser deposition of a zinc oxide target using an excimer laser emitting UV radiation. The zinc oxide nanostructure can be doped with a rare earth metal such as gadolinium. The metal oxide nanostructures can be used in many devices including light-emitting diodes and solar cells.

  15. Damage of amorphous carbon induced by soft x-ray femtosecond pulses above and below the critical angle

    Czech Academy of Sciences Publication Activity Database

    Chalupský, Jaromír; Hájková, Věra; Altapova, V.; Burian, T.; Gleeson, A.J.; Juha, Libor; Jurek, M.; Sinn, H.; Störmer, M.; Sobierajski, R.; Tiedtke, K.; Toleikis, S.; Tschentscher, T.; Vyšín, Luděk; Wabnitz, H.; Gaudin, J.

    2009-01-01

    Roč. 95, č. 3 (2009), 031111/1-031111/3 ISSN 0003-6951 R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAAX00100903; GA AV ČR IAA400100701 Institutional research plan: CEZ:AV0Z10100523 Keywords : amorphous state * carbon * coatings * graphitisation * laser beam effects * nanostructured materials * phase transformations * reflectivity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.554, year: 2009

  16. Emerging trends in the stabilization of amorphous drugs

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Strachan, Clare J.

    2013-01-01

    water-soluble drugs can be increased by the formation of stabilized amorphous forms. Currently, formulation as solid polymer dispersions is the preferred method to enhance drug dissolution and to stabilize the amorphous form of a drug. The purpose of this review is to highlight emerging alternative...... methods to amorphous polymer dispersions for stabilizing the amorphous form of drugs. First, an overview of the properties and stabilization mechanisms of amorphous forms is provided. Subsequently, formulation approaches such as the preparation of co-amorphous small-molecule mixtures and the use...

  17. Formation of amorphous layers by irradiation

    International Nuclear Information System (INIS)

    Bourgoin, J.C.

    1979-01-01

    When an ordered solid is irradiated with heavy energy particles, disorder is produced. When the irradiation dose exceeds a so-called critical dose, the irradiated area of the solid becomes uniformly disordered. Mention is first made of the nature, concentration and distribution of the defects created by a heavy energy particle. The description is then given -solely with respect to semiconductors- of the effect of the various parameters on the critical dose energy and nature of the ion, nature and temperature of the solid, irradiation flux. The physical properties (electronic and thermodynamic types) and the uniformly disordered areas are briefly discussed and these properties are compared with those of amorphous semiconductor layers fabricated by evaporation. It is concluded that the evaporated and irradiated layers are similar in nature. It is suggested that the transformation of an irradiated crystalline area into an amorphous one occurs when the Gibbs energy of the crystal become greater than the Gibbs energy of the amorphous one [fr

  18. Phase transitions in biogenic amorphous calcium carbonate.

    Science.gov (United States)

    Gong, Yutao U T; Killian, Christopher E; Olson, Ian C; Appathurai, Narayana P; Amasino, Audra L; Martin, Michael C; Holt, Liam J; Wilt, Fred H; Gilbert, P U P A

    2012-04-17

    Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC · H(2)O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC · H(2)O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC · H(2)O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC · H(2)O in vitro.

  19. Fabrication and application of amorphous semiconductor devices

    International Nuclear Information System (INIS)

    Kumurdjian, Pierre.

    1976-01-01

    This invention concerns the design and manufacture of elecric switching or memorisation components with amorphous semiconductors. As is known some compounds, particularly the chalcogenides, have a resistivity of the semiconductor type in the amorphous solid state. These materials are obtained by the high temperature homogeneisation of several single elements such as tellurium, arsenic, germanium and sulphur, followed by water or air quenching. In particular these compounds have useful switching and memorisation properties. In particular they have the characteristic of not suffering deterioration when placed in an environment subjected to nuclear radiations. In order to know more about the nature and properties of these amorphous semiconductors the French patent No. 71 28048 of 30 June 1971 may be consulted with advantage [fr

  20. Heavy ions amorphous semiconductors irradiation study

    International Nuclear Information System (INIS)

    Benmalek, M.

    1978-01-01

    The behavior of amorphous semiconductors (germanium and germanium and arsenic tellurides) under ion bombardment at energies up to 2 MeV was studied. The irradiation induced modifications were followed using electrical parameter changes (resistivity and activation energy) and by means of the transmission electron microscopy observations. The electrical conductivity enhancement of the irradiated samples was interpreted using the late conduction theories in amorphous compounds. In amorphous germanium, Electron Microscopy showed the formations of 'globules', these defects are similar to voids observed in irradiated metals. The displacement cascade theory was used for the interpretation of the irradiation induced defects formation and a coalescence mechanism of growth was pointed out for the vacancy agglomeration [fr

  1. Short range order in amorphous polycondensates

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, C.; Richter, D.; Schweika, W. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Festkoerperforschung; Batoulis, J.; Sommer, K. [Bayer AG, Leverkusen (Germany); Cable, J.W. [Oak Ridge National Lab., TN (United States); Shapiro, S.M. [Brookhaven National Lab., Upton, NY (United States)

    1992-12-01

    The static coherent structure factors S(Q) of the polymer glass Bisphenol-A-Polycarbonate and its chemical variation Bisphenol-A- Polyctherkctone- both in differently deuterated versions- have been measured by spin polarized neutron scattering. The method of spin polarization analysis provided an experimental separation of coherent and incoherent scattering and a reliable intensity calibration. Results are compared to structure factors calculated for model structures which were obtained by ``amorphous cell`` computer simulations. In general reasonable agreement is found between experiment and simulation; however, certain discrepancies hint at an insufficient structural relaxation in the amorphous cell method. 15 refs, 1 fig, 1 tab.

  2. Ion bombardment and disorder in amorphous silicon

    International Nuclear Information System (INIS)

    Sidhu, L.S.; Gaspari, F.; Zukotynski, S.

    1997-01-01

    The effect of ion bombardment during growth on the structural and optical properties of amorphous silicon are presented. Two series of films were deposited under electrically grounded and positively biased substrate conditions. The biased samples displayed lower growth rates and increased hydrogen content relative to grounded counterparts. The film structure was examined using Raman spectroscopy. The transverse optic like phonon band position was used as a parameter to characterize network order. Biased samples displayed an increased order of the amorphous network relative to grounded samples. Furthermore, biased samples exhibited a larger optical gap. These results are correlated and attributed to reduced ion bombardment effects

  3. Irradiation induced crystalline to amorphous transition

    International Nuclear Information System (INIS)

    Bourgoin, J.

    1980-01-01

    Irradiation of a crystalline solid with energetic heavy particles results in cascades of defects which, with increasing dose, overlap and form a continuous disordered layer. In semiconductors the physical properties of such disordered layers are found to be similar to those of amorphous layers produced by evaporation. It is shown in the case of silicon, that the transition from a disordered crystalline (X) layer to an amorphous (α) layer occurs when the Gibbs energy of the X phase and of the defects it contains becomes larger than the Gibbs energy of the α phase. (author)

  4. Excitation of epsilon-near-zero resonance in ultra-thin indium tin oxide shell embedded nanostructured optical fiber.

    Science.gov (United States)

    Minn, Khant; Anopchenko, Aleksei; Yang, Jingyi; Lee, Ho Wai Howard

    2018-02-05

    We report a novel optical waveguide design of a hollow step index fiber modified with a thin layer of indium tin oxide (ITO). We show an excitation of highly confined waveguide mode in the proposed fiber near the wavelength where permittivity of ITO approaches zero. Due to the high field confinement within thin ITO shell inside the fiber, the epsilon-near-zero (ENZ) mode can be characterized by a peak in modal loss of the hybrid waveguide. Our results show that such in-fiber excitation of ENZ mode is due to the coupling of the guided core mode to the thin-film ENZ mode. We also show that the phase matching wavelength, where the coupling takes place, varies depending on the refractive index of the constituents inside the central bore of the fiber. These ENZ nanostructured optical fibers have many potential applications, for example, in ENZ nonlinear and magneto-optics, as in-fiber wavelength-dependent filters, and as subwavelength fluid channel for optical and bio-photonic sensing.

  5. Multiscale modelling of nanostructures

    International Nuclear Information System (INIS)

    Vvedensky, Dimitri D

    2004-01-01

    Most materials phenomena are manifestations of processes that are operative over a vast range of length and time scales. A complete understanding of the behaviour of materials thereby requires theoretical and computational tools that span the atomic-scale detail of first-principles methods and the more coarse-grained description provided by continuum equations. Recent efforts have focused on combining traditional methodologies-density functional theory, molecular dynamics, Monte Carlo methods and continuum descriptions-within a unified multiscale framework. This review covers the techniques that have been developed to model various aspects of materials behaviour with the ultimate aim of systematically coupling the atomistic to the continuum descriptions. The approaches described typically have been motivated by particular applications but can often be applied in wider contexts. The self-assembly of quantum dot ensembles will be used as a case study for the issues that arise and the methods used for all nanostructures. Although quantum dots can be obtained with all the standard growth methods and for a variety of material systems, their appearance is a quite selective process, involving the competition between equilibrium and kinetic effects, and the interplay between atomistic and long-range interactions. Most theoretical models have addressed particular aspects of the ordering kinetics of quantum dot ensembles, with far fewer attempts at a comprehensive synthesis of this inherently multiscale phenomenon. We conclude with an assessment of the current status of multiscale modelling strategies and highlight the main outstanding issues. (topical review)

  6. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  7. Phonon engineering for nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, Sylvie (Stanford University); Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H. (Idaho National Laboratory); Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen

    2010-01-01

    Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.

  8. Nuclear spins in nanostructures

    International Nuclear Information System (INIS)

    Coish, W.A.; Baugh, J.

    2009-01-01

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  9. Nanostructured Basaltfiberconcrete Exploitational Characteristics

    Science.gov (United States)

    Saraykina, K. A.; Shamanov, V. A.

    2017-11-01

    The article demonstrates that the mass use of basalt fiber concrete (BFC) is constrained by insufficient study of their durability and serviceability in a variety of environments. This research is aimed at the study of the basalt fiber corrosion processes in the cement stone of BFC, the control of the new products structure formation in order to protect the reinforcing fiber from alkaline destruction and thereby improve the exploitational characteristics of the composite. The research result revealed that the modification of basaltfiber concrete by the dispersion of MWNTs contributes to the directional formation of new products in the cement matrix. The HAM additive in basaltfiberconcrete provides for the binding of portlandite to low-basic calcium hydroaluminosilicates, thus reducing the aggressive effect of the cement environment on the reinforcing fibers properties. The complex modification of BFC with nanostructured additives provides for an increase in its durability and exploitational properties (strength, frost resistance and water resistance) due to basalt fiber protection from alkali corrosion on account of the compacting of the contact zone “basalt fiber - cement stone” and designing of the new products structure and morphology of cement matrix over the fiber surface.

  10. Nanostructured catalysts for organic transformations.

    Science.gov (United States)

    Chng, Leng Leng; Erathodiyil, Nandanan; Ying, Jackie Y

    2013-08-20

    The development of green, sustainable and economical chemical processes is one of the major challenges in chemistry. Besides the traditional need for efficient and selective catalytic reactions that will transform raw materials into valuable chemicals, pharmaceuticals and fuels, green chemistry also strives for waste reduction, atomic efficiency and high rates of catalyst recovery. Nanostructured materials are attractive candidates as heterogeneous catalysts for various organic transformations, especially because they meet the goals of green chemistry. Researchers have made significant advances in the synthesis of well-defined nanostructured materials in recent years. Among these are novel approaches that have permitted the rational design and synthesis of highly active and selective nanostructured catalysts by controlling the structure and composition of the active nanoparticles (NPs) and by manipulating the interaction between the catalytically active NP species and their support. The ease of isolation and separation of the heterogeneous catalysts from the desired organic product and the recovery and reuse of these NPs further enhance their attractiveness as green and sustainable catalysts. This Account reviews recent advances in the use of nanostructured materials for catalytic organic transformations. We present a broad overview of nanostructured catalysts used in different types of organic transformations including chemoselective oxidations and reductions, asymmetric hydrogenations, coupling reactions, C-H activations, oxidative aminations, domino and tandem reactions, and more. We focus on recent research efforts towards the development of the following nanostructured materials: (i) nanostructured catalysts with controlled morphologies, (ii) magnetic nanocomposites, (iii) semiconductor-metal nanocomposites, and (iv) hybrid nanostructured catalysts. Selected examples showcase principles of nanoparticle design such as the enhancement of reactivity, selectivity

  11. Thermal Conductivity Suppression in Nanostructured Silicon and Germanium Nanowires

    Science.gov (United States)

    Özden, Ayberk; Kandemir, Ali; Ay, Feridun; Perkgöz, Nihan Kosku; Sevik, Cem

    2016-03-01

    The inherent low lattice thermal conductivity (TC) of semiconductor nanowires (s-NW) due to one-dimensional phonon confinement might provide a solution for the long-lasting figure-of-merit problem for highly efficient thermoelectric (TE) applications. Standalone diameter modulation or alloying of s-NW serve as a toolkit for TC control, but realizing the full potential of nanowires requires new atomic-scale designs, growth, characterization, and understanding of the physical mechanisms behind the structure-property (TC) relationship. Before undertaking time-consuming and expensive experimental work, molecular dynamics (MD) simulations serve as an excellent probe to investigate new designs and understand how nanostructures affect thermal transport properties through their capability to capture various phenomena such as phonon boundary scattering, phonon coherence resonance, and phonon backscattering. On the other hand, because different research groups use different structural and MD parameters in their simulations, it is rather difficult to make comparisons between different nanostructures and select appropriate ones for potential TE applications. Therefore, in this work, we systematically investigated pristine, core-shell (C-S), holey (H-N), superlattice (SL), sawtooth (ST), and superlattice sawtooth (SL-ST) nanowires with identical structural parameters. Specifically, we aim to compare the relative TC reduction achieved by these nanostructures with respect to pristine nanowires in order to propose the best structural design with the lowest lattice TC, using Green-Kubo method-based equilibrium molecular dynamics simulations at 300 K. Our results show that the TC can be minimized by changing specific parameters such as the core diameter and monolayer separation for C-S, H-N, and ST structures. In the case of SL structures, the TC is found to be independent of these parameters. However, surface roughness in the form of a ST morphology provides a TC value below 2 W

  12. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  13. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    weak (strained) Si–Si bond thereby apparently enhancing the hydrogen diffusion and increasing the light-induced dangling bonds. Keywords. Hydrogenated amorphous silicon; metastable electronic states; hydrogen diffusion. PACS Nos 61.43.Dq; 66.30.-h; 71.23.Cq. 1. Introduction. Hydrogen passivation of dangling bonds ...

  14. Characterization of amorphous hydrogenated carbon films ...

    Indian Academy of Sciences (India)

    Amorphous hydrogenated carbon films (-C:H) on -type (100) silicon wafers were prepared with a middle frequency pulsed unbalanced magnetron sputtering technique (MFPUMST) at different ratios of methane–argon gases. The band characteristics, mechanical properties as well as refractive index were measured by ...

  15. Characterization of amorphous hydrogenated carbon films ...

    Indian Academy of Sciences (India)

    †Key Laboratory of Radiation and Technology of Education Ministry of China, Institute of Nuclear Science and. Technology, Sichuan University, Chengdu 610064, P. R. China. MS received 14 March 2011; revised 29 October 2011. Abstract. Amorphous hydrogenated carbon films (a-C:H) on p-type (100) silicon wafers were ...

  16. Unusual photoanisotropic alignment in amorphous azobenzene polymers

    DEFF Research Database (Denmark)

    Ramanujam, P.S.

    2015-01-01

    It is well known that irradiation of azobenzene polymer films between 490 and 530nm results in alignment of molecules perpendicular to the polarization of the incident beam. I have recently found that irradiation of amorphous azobenzene polymers with linearly polarized light at wavelengths between...

  17. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian

    1993-01-01

    report on attempts to compact amorphous iron–boron particles prepared by chemical reduction of Fe(II) ions in aqueous solution by NaBH4 (Ref. 2). The particles prepared in this way are pyrophoric, but can be passivated. The small particle size (10–100 nm), characteristic of this preparation technique...

  18. Trap level spectroscopy in amorphous semiconductors

    CERN Document Server

    Mikla, Victor V

    2010-01-01

    Although amorphous semiconductors have been studied for over four decades, many of their properties are not fully understood. This book discusses not only the most common spectroscopic techniques but also describes their advantages and disadvantages.Provides information on the most used spectroscopic techniquesDiscusses the advantages and disadvantages of each technique

  19. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    Abstract. A major issue encountered during fabrication of triple junction a-Si solar cells on polyimide sub- strates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and ...

  20. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    Amorphous conducting carbon films deposited over quartz substrates were analysed using X-ray diffraction and AFM technique. X-ray diffraction data reveal disorder and roughness in the plane of graphene sheet as compared to that of graphite. This roughness increases with decrease in preparation temperature. The AFM ...

  1. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the ...

  2. Characterization of amorphous and nanocrystalline carbon films

    International Nuclear Information System (INIS)

    Chu, Paul K.; Li Liuhe

    2006-01-01

    Amorphous and nanocrystalline carbon films possess special chemical and physical properties such as high chemical inertness, diamond-like properties, and favorable tribological proprieties. The materials usually consist of graphite and diamond microstructures and thus possess properties that lie between the two. Amorphous and nanocrystalline carbon films can exist in different kinds of matrices and are usually doped with a large amount of hydrogen. Thus, carbon films can be classified as polymer-like, diamond-like, or graphite-like based on the main binding framework. In order to characterize the structure, either direct bonding characterization methods or the indirect bonding characterization methods are employed. Examples of techniques utilized to identify the chemical bonds and microstructure of amorphous and nanocrystalline carbon films include optical characterization methods such as Raman spectroscopy, Ultra-violet (UV) Raman spectroscopy, and infrared spectroscopy, electron spectroscopic and microscopic methods such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, transmission electron microscopy, and electron energy loss spectroscopy, surface morphology characterization techniques such as scanning probe microscopy (SPM) as well as other characterization methods such as X-ray reflectivity and nuclear magnetic resonance. In this review, the structures of various types of amorphous carbon films and common characterization techniques are described

  3. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    c0, c being the instantaneous concentration at a local point and c0, the average concentration of hydrogen in the hydrogenated amorphous silicon. If the system is both incompressible and isotropic, the change in Helmholtz free energy due to fluctuations in the local concentration of hydrogen is given as. 122. Pramana – J.

  4. Radiative recombination of excitons in amorphous semiconductors

    International Nuclear Information System (INIS)

    Singh, Jai

    2005-01-01

    A theory for calculating the radiative lifetime of excitons in amorphous semiconductors is presented. Four possibilities of excitonic radiative recombination are considered and the corresponding rates are derived at thermal equilibrium. The radiative lifetime is calculated from the inverse of the maximum rate for all the four possibilities. Results agree very well with experiments

  5. Neutron diffraction studies of amorphous solids

    International Nuclear Information System (INIS)

    Wright, A.C.

    1983-01-01

    A brief survey is presented of the role of neutron diffraction in structural studies of amorphous solids. The inherent limitations of the diffraction technique are discussed, together with modern instrumentation and methods for separating individual component correlation functions. An introduction is given to the use of modelling and the extraction of structural parameters from experimental data. (author)

  6. Amorphous calcium carbonate particles form coral skeletons

    Science.gov (United States)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.; Gilbert, Pupa U. P. A.

    2017-09-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  7. Amorphous track models: A numerical comparison study

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, L.; Bassler, N.

    2010-01-01

    We present an open-source code library for amorphous track modelling which is suppose to faciliate the application and numerical comparability as well as serve as a frame-work for the implementation of new models. We show an example of using the library indicating the choice of submodels has a si...

  8. Plasma deposition of amorphous metal alloys

    Science.gov (United States)

    Hays, Auda K.

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  9. Photonic effects in natural nanostructures

    Science.gov (United States)

    Rey GonzáLez, Rafael Ramón; Barrera Patiã+/-O, Claudia Patricia

    Nature exhibits a great variety of structures and nanostructures. In particular the interaction light-matter has a strong dependence with the shape of the nanostructures. In some cases, in the so called structural color, ordered arrays of nanostructures play a very critical role. One of the most interesting color effects is the iridescence, the angular dependence of the observed color in some species of butterflies, insects, plants, beetles, fishes, birds and even in minerals. In the last years, iridescence has been related with photonic properties. In the present work, we present a theoretical study of the photonic properties for different patterns that exist in natural nanostructures present in wings of butterflies that exhibit iridescence. The nanostructures observed in these cases present spatial variations of the dielectric constant that are possible to model them as 1D and 2D photonic crystal. Partial photonic gaps are found as function of lattice constant, dielectric contrast and geometrical configuration. Also, disordered effects are considered. Authors would like to thank the División de Investigación Sede Bogotá for their financial support at Universidad Nacional de Colombia.

  10. Nano structures of amorphous silicon: localization and energy gap

    Directory of Open Access Journals (Sweden)

    Z Nourbakhsh

    2013-10-01

    Full Text Available Renewable energy research has created a push for new materials; one of the most attractive material in this field is quantum confined hybrid silicon nano-structures (nc-Si:H embedded in hydrogenated amorphous silicon (a-Si:H. The essential step for this investigation is studying a-Si and its ability to produce quantum confinement (QC in nc-Si: H. Increasing the gap of a-Si system causes solar cell efficiency to increase. By computational calculations based on Density Functional Theory (DFT, we calculated a special localization factor, [G Allan et al., Phys. Rev. B 57 (1997 6933.], for the states close to HOMO and LUMO in a-Si, and found most weak-bond Si atoms. By removing these silicon atoms and passivating the system with hydrogen, we were able to increase the gap in the a-Si system. As more than 8% hydrogenate was not experimentally available, we removed about 2% of the most localized Si atoms in the almost tetrahedral a-Si system. After removing localized Si atoms in the system with 1000 Si atoms, and adding 8% H, the gap increased about 0.24 eV. Variation of the gap as a function of hydrogen percentage was in good agreement with the Tight –Binding results, but about 2 times more than its experimental value. This might come from the fact that in the experimental conditions, it does not have the chance to remove the most localized states. However, by improving the experimental conditions and technology, this value can be improved.

  11. Crystallization of biogenic hydrous amorphous silica

    Science.gov (United States)

    Kyono, A.; Yokooji, M.; Chiba, T.; Tamura, T.; Tuji, A.

    2017-12-01

    Diatom, Nitzschia cf. frustulum, collected from Lake Yogo, Siga prefecture, Japan was cultured in laboratory. Organic components of the diatom cell were removed by washing with acetone and sodium hypochlorite. The remaining frustules were studied by SEM-EDX, FTIR spectroscopy, and synchrotron X-ray diffraction. The results showed that the spindle-shaped morphology of diatom frustule was composed of hydrous amorphous silica. Pressure induced phase transformation of the diatom frustule was investigated by in situ Raman spectroscopic analysis. With exposure to 0.3 GPa at 100 oC, Raman band corresponding to quartz occurred at ν = 465 cm-1. In addition, Raman bands known as a characteristic Raman pattern of moganite was also observed at 501 cm-1. From the integral ratio of Raman bands, the moganite content in the probed area was estimated to be approximately 50 wt%. With the pressure and temperature effect, the initial morphology of diatom frustule was completely lost and totally changed to a characteristic spherical particle with a diameter of about 2 mm. With keeping the compression of 5.7 GPa at 100 oC, a Raman band assignable to coesite appeared at 538 cm-1. That is, with the compression and heating, the hydrous amorphous silica can be readily crystallized into quartz, moganite, and coesite. The first-principles calculations revealed that a disiloxane molecule stabilized in a trans configuration is twisted 60o and changed into the cis configuration with a close approach of water molecule. It is therefore a reasonable assumption that during crystallization of hydrous amorphous silica, the Si-O-Si bridging unit with the cis configuration would survive as a structural defect and then crystallized into moganite by keeping the geometry. This hypothesis is adaptable to the phase transformation from hydrous amorphous silica to coesite as well, because coesite has the four-membered rings and easily formed from the hydrous amorphous silica under high pressure and high

  12. Computational design of surfaces, nanostructures and optoelectronic materials

    Science.gov (United States)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of

  13. Thermal conductivity enhancement of paraffin by adding boron nitride nanostructures: A molecular dynamics study

    International Nuclear Information System (INIS)

    Lin, Changpeng; Rao, Zhonghao

    2017-01-01

    Highlights: • Different contributions to thermal conductivity are obtained. • Thermal conductivity of paraffin could be improved by boron nitride. • Crystallization effect from boron nitride was the key factor. • Paraffin nanocomposite is the desirable candidate for thermal energy storage. - Abstract: While paraffin is widely used in thermal energy storage today, its low thermal conductivity has become a bottleneck for the further applications. Here, we construct two kinds of paraffin-based phase change material nanocomposites through introducing boron nitride (BN) nanostructures into n-eicosane to enhance the thermal conductivity. Molecular dynamics (MD) simulation was adopted to estimate their thermal conductivities and related thermal properties. The results indicate that, after adding BN nanostructures, the latent heat of composites is reduced compared with the pure paraffin and they both show a glass-like thermal conductivity which increases as the temperature rises. This happens because the increasing temperature leads to gradually smaller inconsistency in vibrational density of state along three directions and increasingly significant overlaps among them. Furthermore, by decomposing the thermal conductivity, it is found that the major contribution to the overall thermal conductivity comes from BN nanostructures, while the contribution of n-eicosane is insignificant. Though the thermal conductivity from n-eicosane term is small, it has been improved greatly compared with amorphous state of n-eicosane, mainly due to the crystallization effects from BN nanostructures. This work will provide microscopic views and insights into the thermal mechanism of paraffin and offer effective guidances to enhance the thermal conductivity.

  14. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2018-01-01

    The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.

  15. Controllable fabrication of amorphous Si layer by energetic cluster ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vorlíček, Vladimír; Dejneka, Alexandr; Chvostová, Dagmar; Jäger, Aleš; Vacík, Jiří; Jastrabík, Lubomír; Naramoto, H.; Narumi, K.

    2013-01-01

    Roč. 98, SI (2013), s. 49-55 ISSN 0042-207X R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : energetic cluster s * silicon * surface modification * amorphization * nanostructure * Raman scattering * ion channeling Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.426, year: 2013 http://ac.els-cdn.com/S0042207X13001759/1-s2.0-S0042207X13001759-main.pdf?_tid=04e9c946-21dd-11e3-b076-00000aacb361&acdnat=1379672070_859355b2850a09ac74bc8ff413e35dda

  16. Structure and physical properties of Fe{sub 6} O{sub 8}/ba Fe{sub 6} O{sub 11} nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Naseri, Mahmoud, E-mail: mahmoud.naseri55@gmail.com; Ghasemi, Rahmat, E-mail: m.naseri@malayeru.ac.ir

    2016-05-15

    The thermal treatment method was employed to prepare barium hexaferrite (Fe{sub 6} O{sub 8}/Ba Fe{sub 6} O{sub 11}) nanostructure. This method was attempted to achieve higher homogeneity of the final product. Specimens of barium hexaferrite nanostructure were characterized by various experimental techniques including X-ray diffraction (XRD), high resolution Field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FT-IR). X-ray diffraction results showed that there was no crystallinity in the predecessor and it had still amorphous phase. The formations of crystalline phases of barium hexaferrite nanostructures started from 673 to 973 K and the final products had different crystallite sizes ranging from 29 to 48 nm. The chemical analysis of the barium hexaferrite nanostructures was performed by energy dispersion X-ray analysis (EDXA), demonstrated that the barium hexaferrite nanostructures contained the elements of Ba, Fe, and O. The effect of calcination temperature on band gap energy was studied by UV–vis absorption spectra disclosed when calcination temperature increased, the appraised band gap energy values of the BaFe{sub 12}O{sub 19} nanostructures decreased. The formed nanostructures exhibited ferromagnetic behaviors which were confirmed by using a vibrating sample magnetometer (VSM). The technique of the Electron paramagnetic resonance (EPR) spectroscopy was carried out at 300 K on the calcined specimens that exhibited the variation of the line-shapes of the spectra of with calcination temperature. - Highlights: • The thermal treatment method was employed to prepare barium hexaferrite nanostructure. • Formations of crystalline phases of nanostructures occurred after calcination process. • The effects of calcination on structural and physical properties nanostructures were investigated.

  17. First-Principles Prediction of Densities of Amorphous Materials: The Case of Amorphous Silicon

    Science.gov (United States)

    Furukawa, Yoritaka; Matsushita, Yu-ichiro

    2018-02-01

    A novel approach to predict the atomic densities of amorphous materials is explored on the basis of Car-Parrinello molecular dynamics (CPMD) in density functional theory. Despite the determination of the atomic density of matter being crucial in understanding its physical properties, no first-principles method has ever been proposed for amorphous materials until now. We have extended the conventional method for crystalline materials in a natural manner and pointed out the importance of the canonical ensemble of the total energy in the determination of the atomic densities of amorphous materials. To take into account the canonical distribution of the total energy, we generate multiple amorphous structures with several different volumes by CPMD simulations and average the total energies at each volume. The density is then determined as the one that minimizes the averaged total energy. In this study, this approach is implemented for amorphous silicon (a-Si) to demonstrate its validity, and we have determined the density of a-Si to be 4.1% lower and its bulk modulus to be 28 GPa smaller than those of the crystal, which are in good agreement with experiments. We have also confirmed that generating samples through classical molecular dynamics simulations produces a comparable result. The findings suggest that the presented method is applicable to other amorphous systems, including those for which experimental knowledge is lacking.

  18. One-Pot Synthesis of Tunable Crystalline Ni3 S4 @Amorphous MoS2 Core/Shell Nanospheres for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Yu; Sun, Wenping; Rui, Xianhong; Li, Bing; Tan, Hui Teng; Guo, Guilue; Madhavi, Srinivasan; Zong, Yun; Yan, Qingyu

    2015-08-12

    Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS(2) is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni(3)S(4)@MoS(2)) is prepared by a facile one-pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni(3)S(4) @amorphous MoS(2) nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g(-1) at 2 A g(-1) and a good capacitance retention of 90.7% after 3000 cycles at 10 A g(-1). This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nanostructure Neutron Converter Layer Development

    Science.gov (United States)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  20. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...... texturing of different Si solar cells. Theoretically the nanostructure topology may be described as a graded refractive index in a mean-field approximation between air and Si. The optical properties of the developed black Si were simulated and experimentally measured. Total AM1.5G-weighted average...

  1. PREFACE: Self-organized nanostructures

    Science.gov (United States)

    Rousset, Sylvie; Ortega, Enrique

    2006-04-01

    In order to fabricate ordered arrays of nanostructures, two different strategies might be considered. The `top-down' approach consists of pushing the limit of lithography techniques down to the nanometre scale. However, beyond 10 nm lithography techniques will inevitably face major intrinsic limitations. An alternative method for elaborating ultimate-size nanostructures is based on the reverse `bottom-up' approach, i.e. building up nanostructures (and eventually assemble them to form functional circuits) from individual atoms or molecules. Scanning probe microscopies, including scanning tunnelling microscopy (STM) invented in 1982, have made it possible to create (and visualize) individual structures atom by atom. However, such individual atomic manipulation is not suitable for industrial applications. Self-assembly or self-organization of nanostructures on solid surfaces is a bottom-up approach that allows one to fabricate and assemble nanostructure arrays in a one-step process. For applications, such as high density magnetic storage, self-assembly appears to be the simplest alternative to lithography for massive, parallel fabrication of nanostructure arrays with regular sizes and spacings. These are also necessary for investigating the physical properties of individual nanostructures by means of averaging techniques, i.e. all those using light or particle beams. The state-of-the-art and the current developments in the field of self-organization and physical properties of assembled nanostructures are reviewed in this issue of Journal of Physics: Condensed Matter. The papers have been selected from among the invited and oral presentations of the recent summer workshop held in Cargese (Corsica, France, 17-23 July 2005). All authors are world-renowned in the field. The workshop has been funded by the Marie Curie Actions: Marie Curie Conferences and Training Courses series named `NanosciencesTech' supported by the VI Framework Programme of the European Community, by

  2. Interfacing nanostructures to biological cells

    Science.gov (United States)

    Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

    2012-09-04

    Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

  3. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  4. Amorphous Carbon: State of the Art - Proceedings of the 1st International Specialist Meeting on Amorphous Carbon (smac '97)

    Science.gov (United States)

    Silva, S. R. P.; Robertson, J.; Milne, W. I.; Amaratunga, G. A. J.

    1998-05-01

    The Table of Contents for the full book PDF is as follows: * Preface * GROWTH AND STRUCTURE * The Structure of Tetrahedral Amorphous Carbon * Growth of DLC Films and Related Structure and Properties * Deposition Mechanism of Diamond-Like Carbon * Relaxation of sp3 Bonds in Hydrogen Free Carbon Films During Growth * MODELLING * Correlations Between Microstructure and Electronic Properties in Amorphous Carbon Based Materials * Review of Monte Carlo Simulations of Diamondlike Amorphous Carbon: Bulk, Surface, and Interface Structural Properties * DEPOSITION * Preparation of Disordered Amorphous and Partially Ordered Nano Clustered Carbon Films by Arc Deposition: A Critical Review * Plasma Deposition of Diamond-Like Carbon in an ECR-RF Discharge * Deposition of Amorphous Hydrogenated Carbon-Nitrogen Films by PECVD Using Several Hydrocarbon / Nitrogen Containing Gas Mixtures * ELECTRONIC STRUCTURE * 'Defects' and Their Detection in a-C and a-C:H * Valence Band and Gap State Spectroscopy of Amorphous Carbon by Photoelectron Emission Techniques * Photoluminescence Spectroscopy: A Probe for Inhomogeneous Structure in Polymer-Like Amorphous Carbon * Raman Characterization of Amorphous and Nanocrystalline sp3 Bonded Structures * Ultraviolet Raman Spectroscopy of Tetrahedral Amorphous Carbon Thin Films * Excitation Energy Dependent Raman and Photoluminescence Spectra of Hydrogenated Amorphous Carbon * MECHANICAL PROPERTIES * Pulsed Laser Deposited a-C: Growth, Structure and Mechanical Properties * Mechanical Properties of Laser-Assisted Deposited Amorphous Carbon Films * Mechanical and Morphology Study on Tetrahedral Amorphous Carbon Films * Time-Dependent Changes in the Mechanical Properties of Diamond-Like Carbon Films * ELECTRONIC PROPERTIES * Electronic Transport in Amorphous Carbon * Electronic Properties of Undoped/Doped Tetrahedral Amorphous Carbon * The Inclusion of Graphitic Nanoparticles in Semiconducting Amorphous Carbon to Enhance Electronic Transport Properties

  5. Emerging trends in the stabilization of amorphous drugs.

    Science.gov (United States)

    Laitinen, Riikka; Löbmann, Korbinian; Strachan, Clare J; Grohganz, Holger; Rades, Thomas

    2013-08-30

    The number of active pharmaceutical substances having high therapeutic potential but low water solubility is constantly increasing, making it difficult to formulate these compounds as oral dosage forms. The solubility and dissolution rate, and thus potentially the bioavailability, of these poorly water-soluble drugs can be increased by the formation of stabilized amorphous forms. Currently, formulation as solid polymer dispersions is the preferred method to enhance drug dissolution and to stabilize the amorphous form of a drug. The purpose of this review is to highlight emerging alternative methods to amorphous polymer dispersions for stabilizing the amorphous form of drugs. First, an overview of the properties and stabilization mechanisms of amorphous forms is provided. Subsequently, formulation approaches such as the preparation of co-amorphous small-molecule mixtures and the use of mesoporous silicon and silica-based carriers are presented as potential means to increase the stability of amorphous pharmaceuticals. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Amorphous-crystalline transition in thermoelectric NbO2

    International Nuclear Information System (INIS)

    Music, Denis; Chen, Yen-Ting; Bliem, Pascal; Geyer, Richard W

    2015-01-01

    Density functional theory was employed to design enhanced amorphous NbO 2 thermoelectrics. The covalent-ionic nature of Nb–O bonding is identical in amorphous NbO 2 and its crystalline counterpart. However, the Anderson localisation occurs in amorphous NbO 2 , which may affect the transport properties. We calculate a multifold increase in the absolute Seebeck coefficient for the amorphous state. These predictions were critically appraised by measuring the Seebeck coefficient of sputtered amorphous and crystalline NbO 2 thin films with the identical short-range order. The first-order phase transition occurs at approximately 550 °C, but amorphous NbO 2 possesses enhanced transport properties at all temperatures. Amorphous NbO 2 , reaching  −173 μV K −1 , exhibits up to a 29% larger absolute Seebeck coefficient value, thereby validating the predictions. (paper)

  7. Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhengjiao; Guo, Pengqian; Liu, Boli; Xie, Wenhe; Liu, Dequan; He, Deyan, E-mail: hedy@lzu.edu.cn

    2017-02-28

    Silicon is the most promising anode material for the next-generation lithium-ion batteries (LIBs). However, the large volume change during lithiation/delithiation and low intrinsic conductivity hamper its electrochemical performance. Here we report a well-designed LIB anode in which carbon-coated Si nanoparticles/reduced graphene oxide (Si/rGO) multilayer was anchored to nanostructured current collector with stable mechanical support and rapid electron conduction. Furthermore, we improved the integral stability of the electrode through introducing amorphous carbon. The designed anode exhibits superior cyclability, its specific capacity remains above 800 mAh g{sup −1} after 350 cycles at a current density of 2.0 A g{sup −1}. The excellent electrochemical performance can be attributed to the fact that the Si/rGO multilayer is reinforced by the nanostructured current collector and the formed amorphous carbon, which can maintain the structural and electrical integrities of the electrode.

  8. Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode

    Science.gov (United States)

    Liu, Zhengjiao; Guo, Pengqian; Liu, Boli; Xie, Wenhe; Liu, Dequan; He, Deyan

    2017-02-01

    Silicon is the most promising anode material for the next-generation lithium-ion batteries (LIBs). However, the large volume change during lithiation/delithiation and low intrinsic conductivity hamper its electrochemical performance. Here we report a well-designed LIB anode in which carbon-coated Si nanoparticles/reduced graphene oxide (Si/rGO) multilayer was anchored to nanostructured current collector with stable mechanical support and rapid electron conduction. Furthermore, we improved the integral stability of the electrode through introducing amorphous carbon. The designed anode exhibits superior cyclability, its specific capacity remains above 800 mAh g-1 after 350 cycles at a current density of 2.0 A g-1. The excellent electrochemical performance can be attributed to the fact that the Si/rGO multilayer is reinforced by the nanostructured current collector and the formed amorphous carbon, which can maintain the structural and electrical integrities of the electrode.

  9. Determination of boron in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grazhulene, S.S.; Grossman, O.V.; Kuntscher, K.K.; Malygina, L.I.; Muller, E.N.; Telegin, G.F.

    1985-10-01

    In the determination of boron in amorphous alloys containingFe, Co, B, Si, Ni, and P having unusal magnetic and electrical properties, precise analysis and rapid analysis are necessary. To improve the metrological properties of the existing procedure, to find a rapid determination of boron in amorphous alloys, and to verify the accuracy of the results, in the present work the optimization of the photometric determination after extraction of the BF/sup -//sub 4/ ion pair with methylene blue has been studied, and a boron determination by flame photometry using selective methylation has been developed. The determination of boron by the flame photometric and spectrophotometric methods is shown. When a highly precise determination is needed, the spectrophotometric procedure can be used. This procedure is distinguished by its labor intensity and duration. When the need for reproducibility is less severe, the rapid flame photometric procedure is best.

  10. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  11. Annealing behavior of high permeability amorphous alloys

    International Nuclear Information System (INIS)

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co 71 4 Fe 4 6 Si 9 6 B 14 4 were investigated. Annealing this alloy below 400 0 C results in magnetic hardening; annealing above 400 0 C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation

  12. Thermoelectric effects in magnetic nanostructures

    NARCIS (Netherlands)

    Hatami, Moosa; Bauer, Gerrit E.W.; Zhang, Q.F.; Kelly, Paul J.

    2009-01-01

    We model and evaluate the Peltier and Seebeck effects in magnetic multilayer nanostructures by a finite-element theory of thermoelectric properties. We present analytical expressions for the thermopower and the current-induced temperature changes due to Peltier cooling/heating. The thermopower of a

  13. Computer Code for Nanostructure Simulation

    Science.gov (United States)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  14. Nanostructures for Organic Solar Cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jarosław

    2016-01-01

    The experimental work in this thesis is focused on the fabrication of nanostructures that can be implemented in organic solar cell (OSC) architecture for enhancement of the device performance. Solar devices made from organic material are gaining increased attention, compared to their inorganic...... for organic solar cell applications, opening new patterning possibilities....

  15. Nanostructured electronic and magnetic materials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Nanostructured systems are useful in tailoring the magnetic, optical and electronic properties of materials. It is obvious that .... A hysteresis effect is produced and forms a hysteresis loop, this loop is a key tool in the quantitative analysis of ..... below the secondary crystallization temperature, in controlled time. Doing so yields ...

  16. Dry release of suspended nanostructures

    DEFF Research Database (Denmark)

    Forsén, Esko Sebastian; Davis, Zachary James; Dong, M.

    2004-01-01

    A dry release method for fabrication of suspended nanostructures is presented. The technique has been combined with an anti-stiction treatment for fabrication of nanocantilever based nanoelectromechanical systems (NEMS). The process combines a dry release method, using a supporting layer of photo...

  17. Characterization of diamond amorphized by ion implantation

    International Nuclear Information System (INIS)

    Allen, W.R.; Lee, E.H.

    1992-01-01

    Single crystal diamond has been implanted at 1 MeV with 2 x 10 20 Ar/m 2 . Rutherford backscattering spectrometry in a channeled geometry revealed a broad amorphized region underlying a thin, partially crystalline layer. Raman spectroscopy disclosed modifications in the bonding characteristic of the appearance of non-diamond carbon. The complementary nature of the two analysis techniques is demonstrated. The Knoop hardness of the implanted diamond was reduced by implantation

  18. Metastable states in amorphous chalcogenide semiconductors

    CERN Document Server

    Mikla, Victor I

    2009-01-01

    This book addresses an interesting and technologically important class of materials, the amorphous chalcogenide semiconductors. Experimental results on the structural and electronic metastable states in Se-rich chalcogenides are presented. Special attention is paid to the states in the mobility gap and their sensitivity to various factors such as irradiation, annealing and composition. Photoinduced changes of structure and physical properties are also considered and structural transformation at photocrystallization is studied in detail. Finally, the authors discuss potential applications of th

  19. Effect of acetic acid complex on physical properties of nanostructured spray deposited FeCdS{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ubale, A.U., E-mail: ashokuu@yahoo.com [Thin Film Physics Laboratory, Department of Physics, Govt. Vidarbha Institute of Science and Humanities, VMV Road, Amravati 444604, Maharashtra (India); Ibrahim, S.G. [Thin Film Physics Laboratory, Department of Physics, Govt. Vidarbha Institute of Science and Humanities, VMV Road, Amravati 444604, Maharashtra (India)

    2011-02-03

    Research highlights: > Nanostructured FeCdS{sub 3} thin films were prepared onto glass substrate by spray pyrolysis method. > The acetic acid complex used in deposition process affects the structural, electrical and optical properties of FeCdS{sub 3} thin films. > The films deposited at lower concentration of acetic acid are nanocrystalline and becomes amorphous above 0.15 M concentration of acetic acid. - Abstract: Spray pyrolysis method which is simple as well as economic was used for the preparation of ternary nanostructured FeCdS{sub 3} thin films onto glass substrates from ferric nitrate and cadmium chloride as Cd and Fe source and acetic acid as a complexing agent. The prepared films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical absorption techniques. The structural, electrical, optical and morphological properties of FeCdS{sub 3} thin films were influenced by quantity of acetic acid in spray solution. The X-ray spectrum and SEM reveal that the FeCdS{sub 3} shows transition from nanocrystalline to amorphous phase depending on concentration of acetic acid. Optical band-gap of the amorphous and nanocrystalline film is found 2.40 and 2.65 eV, respectively. Nanocrystalline films have dark resistivity of the order of 10{sup 3} {Omega} cm whereas amorphous films have 10{sup 4} {Omega} cm. Thermoelectric power (TEP) measurement studies reveal that the films have p-type conductivity. It also shows that amorphous film generates less thermo-emf as compared to nanocrystalline film.

  20. Fluctuation microscopy analysis of amorphous silicon models

    International Nuclear Information System (INIS)

    Gibson, J.M.; Treacy, M.M.J.

    2017-01-01

    Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.

  1. Intrinsic electron trapping in amorphous oxide

    Science.gov (United States)

    Strand, Jack; Kaviani, Moloud; Afanas’ev, Valeri V.; Lisoni, Judit G.; Shluger, Alexander L.

    2018-03-01

    We demonstrate that electron trapping at intrinsic precursor sites is endemic in non-glass-forming amorphous oxide films. The energy distributions of trapped electron states in ultra-pure prototype amorphous (a)-HfO2 insulator obtained from exhaustive photo-depopulation experiments demonstrate electron states in the energy range of 2–3 eV below the oxide conduction band. These energy distributions are compared to the results of density functional calculations of a-HfO2 models of realistic density. The experimental results can be explained by the presence of intrinsic charge trapping sites formed by under-coordinated Hf cations and elongated Hf–O bonds in a-HfO2. These charge trapping states can capture up to two electrons, forming polarons and bi-polarons. The corresponding trapping sites are different from the dangling-bond type defects responsible for trapping in glass-forming oxides, such as SiO2, in that the traps are formed without bonds being broken. Furthermore, introduction of hydrogen causes formation of somewhat energetically deeper electron traps when a proton is immobilized next to the trapped electron bi-polaron. The proposed novel mechanism of intrinsic charge trapping in a-HfO2 represents a new paradigm for charge trapping in a broad class of non-glass-forming amorphous insulators.

  2. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    Directory of Open Access Journals (Sweden)

    Goedele Craye

    2015-12-01

    Full Text Available In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS as a solubilizer, was explored as a production method for co-amorphous simvastatin–lysine (SVS-LYS at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD and differential scanning calorimetry (DSC showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a “spring and parachute” effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions was observed when SLS was spray-dried with SVS (and LYS. In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  3. Plasmonic Nanostructures for Biosensor Applications

    Science.gov (United States)

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  4. Fabrication of zein nanostructure

    Science.gov (United States)

    Luecha, Jarupat

    resins. The soft lithography technique was mainly used to fabricate micro and nanostructures on zein films. Zein material well-replicated small structures with the smallest size at sub micrometer scale that resulted in interesting photonic properties. The bonding method was also developed for assembling portable zein microfluidic devices with small shape distortion. Zein-zein and zein-glass microfluidic devices demonstrated sufficient strength to facilitate fluid flow in a complex microfluidic design with no leakage. Aside from the fabrication technique development, several potential applications of this environmentally friendly microfluidic device were investigated. The concentration gradient manipulation of Rhodamine B solution in zein-glass microfluidic devices was demonstrated. The diffusion of small molecules such as fluorescent dye into the wall of the zein microfluidic channels was observed. However, with this formulation, zein microfluidic devices were not suitable for cell culture applications. This pioneer study covered a wide spectrum of the implementation of the two nanotechnology approaches to advance zein biomaterial which provided proof of fundamental concepts as well as presenting some limitations. The findings in this study can lead to several innovative research opportunities of advanced zein biomaterials with broad applications. The information from the study of zein nanocomposite structure allows the packaging industry to develop the low cost biodegradable materials with physical property improvement. The information from the study of the zein microfluidic devices allows agro-industry to develop the nanotechnology-enabled microfluidic sensors fabricated entirely from biodegradable polymer for on-site disease or contaminant detection in the fields of food and agriculture.

  5. Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors

    KAUST Repository

    Zhu, Shijin

    2015-03-01

    Coaxial mesoporous MnO2/amorphous-carbon nanotubes have been synthesized via a facile and cost-effective strategy at room temperature. The coaxial double nanotubes of inner (outer) MnO2 and outer (inner) amorphous carbon can be obtained via fine tuning the preparative factors (e.g., deposition order and processing temperature). Furthermore, the electrochemical properties of the coaxial nanotubes were evaluated by cycle voltammetric (CV) and galvanostatic charge-discharge (GC) measurements. The as-prepared coaxial double nanotubes of outer MnO2 and inner amorphous carbon exhibit the optimized pseudocapacitance performance (362 F g-1) with good cycling stability, and ideal rate capability owning to the unique nanostructures. When assembled into two-electrode asymmetric supercapacitor, an energy density of 22.56 W h kg-1 at a power density of 224.9 W kg-1 is obtained. These findings provide a new and facile approach to fabricate high-performance electrode for supercapacitors.

  6. Enhanced Cycleability of Amorphous MnO₂ by Covering on α-MnO₂ Needles in an Electrochemical Capacitor.

    Science.gov (United States)

    Liu, Quanbing; Ji, Shan; Yang, Juan; Wang, Hui; Pollet, Bruno G; Wang, Rongfang

    2017-08-24

    An allomorph MnO₂@MnO₂ core-shell nanostructure was developed via a two-step aqueous reaction method. The data analysis of Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction and N₂ adsorption-desorption isotherms experiments indicated that this unique architecture consisted of a porous layer of amorphous-MnO₂ nano-sheets which were well grown onto the surface of α-MnO₂ nano-needles. Cyclic voltammetry experiments revealed that the double-layer charging and Faradaic pseudo -capacity of the MnO₂@MnO₂ capacitor electrode contributed to a specific capacitance of 150.3 F·g -1 at a current density of 0.1 A·g -1 . Long cycle life experiments on the as-prepared MnO₂@MnO₂ sample showed nearly a 99.3% retention after 5000 cycles at a current density of 2 A·g -1 . This retention value was found to be significantly higher than those reported for amorphous MnO₂-based capacitor electrodes. It was also found that the remarkable cycleability of the MnO₂@MnO₂ was due to the supporting role of α-MnO₂ nano-needle core and the outer amorphous MnO₂ layer.

  7. Solvent-mediated amorphous-to-crystalline transformation of nitrendipine in amorphous particle suspensions containing polymers

    DEFF Research Database (Denmark)

    Xia, Dengning; Wu, Jian-Xiong; Cui, Fude

    2012-01-01

    The amorphous-to-crystalline transformation of nitrendipine was investigated using Raman spectroscopy and X-ray powder diffraction (XRPD). The nucleation and growth rate of crystalline nitrendipine in a medium containing poly (vinyl alcohol) (PVA) and polyethylene glycol (PEG 200) were quantitati......The amorphous-to-crystalline transformation of nitrendipine was investigated using Raman spectroscopy and X-ray powder diffraction (XRPD). The nucleation and growth rate of crystalline nitrendipine in a medium containing poly (vinyl alcohol) (PVA) and polyethylene glycol (PEG 200) were...

  8. Atomistic modeling of ion beam induced amorphization in silicon

    International Nuclear Information System (INIS)

    Pelaz, Lourdes; Marques, Luis A.; Lopez, Pedro; Santos, Ivan; Aboy, Maria; Barbolla, Juan

    2005-01-01

    Ion beam induced amorphization in Si has attracted significant interest since the beginning of the use of ion implantation for the fabrication of Si devices. Nowadays, a renewed interest in the modeling of amorphization mechanisms at atomic level has arisen due to the use of preamorphizing implants and high dopant implantation doses for the fabrication of nanometric-scale Si devices. In this work, we briefly describe the existing phenomenological and defect-based amorphization models. We focus on the atomistic model we have developed to describe ion beam induced amorphization in Si. In our model, the building block for the amorphous phase is the bond defect or IV pair, whose stability increases with the number of surrounding IV pairs. This feature explains the regrowth behavior of different damage topologies and the kinetics of the crystalline to amorphous transition. The model provides excellent quantitative agreement with experimental results

  9. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  10. Chiroplasmonic DNA-based nanostructures

    Science.gov (United States)

    Cecconello, Alessandro; Besteiro, Lucas V.; Govorov, Alexander O.; Willner, Itamar

    2017-09-01

    Chiroplasmonic properties of nanoparticles, organized using DNA-based nanostructures, have attracted both theoretical and experimental interest. Theory suggests that the circular dichroism spectra accompanying chiroplasmonic nanoparticle assemblies are controlled by the sizes, shapes, geometries and interparticle distances of the nanoparticles. In this Review, we present different methods to assemble chiroplasmonic nanoparticle or nanorod systems using DNA scaffolds, and we discuss the operations of dynamically reconfigurable chiroplasmonic nanostructures. The chiroplasmonic properties of the different systems are characterized by circular dichroism and further supported by high-resolution transmission electron microscopy or cryo-transmission electron microscopy imaging and theoretical modelling. We also outline the applications of chiroplasmonic assemblies, including their use as DNA-sensing platforms and as functional systems for information processing and storage. Finally, future perspectives in applying chiroplasmonic nanoparticles as waveguides for selective information transfer and their use as ensembles for chiroselective synthesis are discussed. Specifically, we highlight the upscaling of the systems to device-like configurations.

  11. Reactor casts light on nanostructures

    International Nuclear Information System (INIS)

    Garvey, C.

    2002-01-01

    Chris Garvey explains how the replacement research reactor will help scientists to design better materials by understanding how macromolecules behave. Australia is making a substantial financial commitment to providing scientists with facilities to scatter neutrons. Neutron scattering is one of the core areas of science in which the Australian Nuclear Science and Technology Organisation (ANSTO) invests its resources. His particular interest is to find out the way nature uses macromolecules, and how the shape and interaction of macromolecules with other molecules change their function. Biologists call aggregates of macromolecules, 'nanostructures'. Neutron probes are used at ANSTO for studying nanostructures, and in particular the organisation of the protein that is used to transport oxygen in the blood. Small angle neutron scattering was also allowed to understand at microscopic level, how humidity changes the mechanical properties of fibres

  12. Imaging edges of nanostructured graphene

    DEFF Research Database (Denmark)

    Kling, Jens; Cagliani, Alberto; Booth, T. J.

    Graphene, as the forefather of 2D-materials, attracts much attention due to its extraordinary properties like transparency, flexibility and outstanding high conductivity, together with a thickness of only one atom. However, graphene also possesses no band gap, which makes it unsuitable for many...... electronic applications like transistors. It has been shown theoretically that by nanostructuring pristine graphene, e.g. with regular holes, the electronic properties can be tuned and a band gap introduced. The size, distance and edge termination of these “defects” influence the adaptability....... Such nanostructuring can be done experimentally, but especially characterization at atomic level is a huge challenge. High-resolution TEM (HRTEM) is used to characterize the atomic structure of graphene. We optimized the imaging conditions used for the FEI Titan ETEM. To reduce the knock-on damage of the carbon atoms...

  13. Nanostructured Biomaterials and Their Applications

    Directory of Open Access Journals (Sweden)

    Kirsten Parratt

    2013-05-01

    Full Text Available Some of the most important advances in the life sciences have come from transitioning to thinking of materials and their properties on the nanoscale rather than the macro or even microscale. Improvements in imaging technology have allowed us to see nanofeatures that directly impact chemical and mechanical properties of natural and man-made materials. Now that these can be imaged and quantified, substantial advances have been made in the fields of biomimetics, tissue engineering, and drug delivery. For the first time, scientists can determine the importance of nanograins and nanoasperities in nacre, direct the nucleation of apatite and the growth of cells on nanostructured scaffolds, and pass drugs tethered to nanoparticles through the blood-brain barrier. This review examines some of the most interesting materials whose nanostructure and hierarchical organization have been shown to correlate directly with favorable properties and their resulting applications.

  14. Pressure effects on nanostructured manganites

    International Nuclear Information System (INIS)

    Acha, C.; Garbarino, G.; Leyva, A.G.

    2007-01-01

    We have measured the pressure sensitivity of magnetic properties on La 5/8-y Pr y Ca 3/8 MnO 3 (y=0.3) nanostructured powders. Samples were synthesized following a microwave assisted denitration process and a final heat treatment at different temperatures to control the grain size of the samples. A span in grain diameters from 40 nm to ∼1000 nm was obtained. Magnetization curves as a function of temperature were measured following different thermomagnetic histories. AC susceptibility as a function of temperature was also measured at different hydrostatic pressures (up to 10 kbar) and for different frequencies. Our results indicate that the nanostructuration plays a role of an internal pressure, producing a structural deformation with similar effects to those obtained under an external hydrostatic pressure

  15. Thermoelectric effects in graphene nanostructures.

    Science.gov (United States)

    Dollfus, Philippe; Hung Nguyen, Viet; Saint-Martin, Jérôme

    2015-04-10

    The thermoelectric properties of graphene and graphene nanostructures have recently attracted significant attention from the physics and engineering communities. In fundamental physics, the analysis of Seebeck and Nernst effects is very useful in elucidating some details of the electronic band structure of graphene that cannot be probed by conductance measurements alone, due in particular to the ambipolar nature of this gapless material. For applications in thermoelectric energy conversion, graphene has two major disadvantages. It is gapless, which leads to a small Seebeck coefficient due to the opposite contributions of electrons and holes, and it is an excellent thermal conductor. The thermoelectric figure of merit ZT of a two-dimensional (2D) graphene sheet is thus very limited. However, many works have demonstrated recently that appropriate nanostructuring and bandgap engineering of graphene can concomitantly strongly reduce the lattice thermal conductance and enhance the Seebeck coefficient without dramatically degrading the electronic conductance. Hence, in various graphene nanostructures, ZT has been predicted to be high enough to make them attractive for energy conversion. In this article, we review the main results obtained experimentally and theoretically on the thermoelectric properties of graphene and its nanostructures, emphasizing the physical effects that govern these properties. Beyond pure graphene structures, we discuss also the thermoelectric properties of some hybrid graphene structures, as graphane, layered carbon allotropes such as graphynes and graphdiynes, and graphene/hexagonal boron nitride heterostructures which offer new opportunities. Finally, we briefly review the recent activities on other atomically thin 2D semiconductors with finite bandgap, i.e. dichalcogenides and phosphorene, which have attracted great attention for various kinds of applications, including thermoelectrics.

  16. Electrochemical Positioning of Ordered Nanostructures

    Science.gov (United States)

    2016-04-26

    TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15...MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING ORGANIZATION REPORT NUMBER 19a. NAME OF RESPONSIBLE PERSON 19b...make images on semiconducting surfaces and to show that we can modify the surface of DNA nanostructures with electro-active molecules. We will use

  17. Fibrin nanostructures for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Riedelová-Reicheltová, Zuzana; Brynda, Eduard; Riedel, Tomáš

    2016-01-01

    Roč. 65, Suppl. 2 (2016), S263-S272 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LQ1604 Institutional support: RVO:61389013 Keywords : fibrinogen * fibrin-bound thrombin * nanostructures Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.461, year: 2016 http://www.biomed.cas.cz/physiolres/pdf/65%20Suppl%202/65_S263.pdf

  18. Stress Controlled Catalysis via Engineered Nanostructures

    Science.gov (United States)

    2016-03-02

    fields on catalysis : “Stress Controlled Catalysis via Engineered Nanostructures.” For this effort a workshop was organized and held at Brown... Catalysis via Engineered Nanostructures" The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued...Support for current award "Stress Controlled Catalysis via Engineered Nanostructures" Report Title This is the final report of the ARO project of

  19. Metal chalcogenide nanostructures for renewable energy applications

    CERN Document Server

    Qurashi, Ahsanulhaq

    2014-01-01

    This first ever reference book that focuses on metal chalcogenide semiconductor nanostructures for renewable energy applications encapsulates the state-of-the-art in multidisciplinary research on the metal chalcogenide semiconductor nanostructures (nanocrystals, nanoparticles, nanorods, nanowires,  nanobelts, nanoflowers, nanoribbons and more).  The properties and synthesis of a class of nanomaterials is essential to renewable energy manufacturing and this book focuses on the synthesis of metal chalcogendie nanostructures, their growth mechanism, optical, electrical, and other important prop

  20. Nanostructured materials in electroanalysis of pharmaceuticals.

    Science.gov (United States)

    Rahi, A; Karimian, K; Heli, H

    2016-03-15

    Basic strategies and recent developments for the enhancement of the sensory performance of nanostructures in the electroanalysis of pharmaceuticals are reviewed. A discussion of the properties of nanostructures and their application as modified electrodes for drug assays is presented. The electrocatalytic effect of nanostructured materials and their application in determining low levels of drugs in pharmaceutical forms and biofluids are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Synthesis, characterization, and properties of low-dimensional nanostructured materials

    Science.gov (United States)

    Hu, Xianluo

    2007-05-01

    Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely

  2. Amorphization of equimolar alloys with HCP elements during mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Liang [Materials and Electro-Optics Research Division, Chung-Shan Institute of Science and Technology, Armaments Bureau, MND, P.O. Box 90008-8-5, Lung-Tan, Tao-Yuan 32599, Taiwan (China); Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Tsai, Che-Wei; Juan, Chien-Chang; Chuang, Ming-Hao [Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Yeh, Jien-Wei, E-mail: jwyeh@mx.nthu.edu.t [Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Chin, Tsung-Shune [Department of Materials Science and Engineering, Feng Chia University, 100, Wenhwa Rd., Seatwen District, Taichung 40724, Taiwan (China); Chen, Swe-Kai [Center for Nanotechnology, Materials Science and Microsystems, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2010-09-10

    This study prepares two equimolar alloys, entirely composed of HCP elements, BeCoMgTi and BeCoMgTiZn, from elemental powders by mechanical alloying. No crystalline solid solutions and compounds formed during milling except an amorphous phase formed gradually until full amorphization was attained. The amorphization processes of these two alloys conform to type II according to the Weeber and Bakker classification based on binary alloys. The inhibition of crystalline solid solutions and compounds before amorphization relates to chemical compatibility, high entropy effect and large atomic size difference effect.

  3. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  4. Fast surface crystallization of amorphous griseofulvin below T g.

    Science.gov (United States)

    Zhu, Lei; Jona, Janan; Nagapudi, Karthik; Wu, Tian

    2010-08-01

    To study crystal growth rates of amorphous griseofulvin (GSF) below its glass transition temperature (T (g)) and the effect of surface crystallization on the overall crystallization kinetics of amorphous GSF. Amorphous GSF was generated by melt quenching. Surface and bulk crystal growth rates were determined using polarized light microscope. X-ray powder diffraction (XRPD) and Raman microscopy were used to identify the polymorph of the crystals. Crystallization kinetics of amorphous GSF powder stored at 40 degrees C (T (g)-48 degrees C) and room temperature (T (g)-66 degrees C) was monitored using XRPD. Crystal growth at the surface of amorphous GSF is 10- to 100-fold faster than that in the bulk. The surface crystal growth can be suppressed by an ultrathin gold coating. Below T (g), the crystallization of amorphous GSF powder was biphasic with a rapid initial crystallization stage dominated by the surface crystallization and a slow or suspended late stage controlled by the bulk crystallization. GSF exhibits the fastest surface crystallization kinetics among the known amorphous pharmaceutical solids. Well below T (g), surface crystallization dominated the overall crystallization kinetics of amorphous GSF powder. Thus, surface crystallization should be distinguished from bulk crystallization in studying, modeling and controlling the crystallization of amorphous solids.

  5. Amorphization kinetics of Zr3Fe under electron irradiation

    International Nuclear Information System (INIS)

    Motta, A.T.; Howe, L.M.; Okamoto, P.R.

    1994-11-01

    Previous investigations using 40 Ar ion bombardments have revealed that Zr 3 Fe, which has an orthorhombic crystal structure, undergoes an irradiation-induced transformation from the crystalline to the amorphous state. In the present investigation, 0.9 MeV electron irradiations were performed at 28 - 220 K in a high-voltage electron microscope (HVEM). By measuring the onset, spread and final size of the amorphous region, factoring in the Gaussian distribution of the beam, a kinetic description of the amorphization in terms of dose, dose rate and temperature was obtained. The critical temperature for amorphization by electron irradiation was found to be ∼ 220 K, compared with 570 - 625 K for 40 Ar ion irradiation. Also, the dose-to-amorphization increased exponentially with temperature. Results indicated that the rate of growth of the amorphous region under the electron beam decreased with increasing temperature and the dose-to-amorphization decreased with increasing dose rate. The size of the amorphous region saturated after a given dose, the final size decreasing with increasing temperature, and it is argued that this is related to the existence of a critical dose rate, which increases with temperature, and below which no amorphization occurs. (author). 26 refs., 6 figs

  6. Amorphization of silicon by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Jia, Jimmy; Li Ming; Thompson, Carl V.

    2004-01-01

    We have used femtosecond laser pulses to drill submicron holes in single crystal silicon films in silicon-on-insulator structures. Cross-sectional transmission electron microscopy and energy dispersive x-ray analysis of material adjacent to the ablated holes indicates the formation of a layer of amorphous Si. This demonstrates that even when material is ablated using femtosecond pulses near the single pulse ablation threshold, sufficient heating of the surrounding material occurs to create a molten zone which solidifies so rapidly that crystallization is bypassed

  7. Atomic Distribution in Catalytic Amorphous Metals

    Directory of Open Access Journals (Sweden)

    Sanghita Mridha

    2015-01-01

    Full Text Available The atomic distribution in catalytically active metallic glass alloys, Pd43Cu27Ni10P20 and Pt57.5Cu14.7Ni5.3P22.5, was investigated using three-dimensional atom probe microscopy. Atom probe analysis showed uniform distribution of constituent elements for both the starting amorphous alloys, with no phase separation. Both the crystallized alloys showed eutectic microstructure with a very sharp interface (~0.5 nm as determined from atom probe. The atomic distribution in the devitrified state is explained based on the “fragile liquid” behavior for these noble-metal glassy alloys.

  8. Protective amorphous carbon coatings on glass substrates

    Science.gov (United States)

    Silins, Kaspars; Baránková, Hana; Bardos, Ladislav

    2017-11-01

    Thick amorphous carbon films were deposited by the Magnets-in-Motion (M-M) rf linear hollow cathode at varying acetylene contents in Ar in a hybrid PVD/PE-CVD process directly on glass substrates. The hollow cathode plates manufactured from graphite were used as the PVD target. The measurements show that the films can reach thickness of up to 50 μm at deposition rates of up to 2.5 μm/min. Scratch test measurements confirm that well adhering films several μm thick can be achieved at C2H2 contents of up to 0.5%.

  9. Medical imaging applications of amorphous silicon

    International Nuclear Information System (INIS)

    Mireshghi, A.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.K.; Perez-Mendez, V.

    1994-07-01

    Two dimensional hydrogenated amorphous silicon (a-Si:H) pixel arrays are good candidates as flat-panel imagers for applications in medical imaging. Various performance characteristics of these imagers are reviewed and compared with currently used equipments. An important component in the a-Si:H imager is the scintillator screen. A new approach for fabrication of high resolution CsI(Tl) scintillator layers, appropriate for coupling to a-Si:H arrays, are presented. For nuclear medicine applications, a new a-Si:H based gamma camera is introduced and Monte Carlo simulation is used to evaluate its performance

  10. Biological insertion of nanostructured germanium and titanium oxides into diatom biosilica

    Science.gov (United States)

    Jeffryes, Clayton S.

    There is significant interest in titanium oxide and germanium-silicon oxide nanocomposites for optoelectronic, photocatalytic, and solar cell applications. The ability of the marine diatom Pinnularia sp. to uptake soluble metal oxides from cell culture medium, and incorporate them into the micro- and nano-structure of their amorphous silica cell walls, called frustules, was evaluated using an engineered photobioreactor system. The effects of metal oxides on the structural and elemental properties of the frustule were also evaluated. Diatom cell cultures grown in 5 L photobioreactors were initially charged with 0.5 mM of soluble silicon, Si(OH)4, an obligate substrate required for frustule fomation. Upon exhaustion of Si(OH)4 cells were exposed to the mixed pulse-addition of soluble silicon and germanium or co-perfusion addition of soluble silicon and titanium, which were incorporated into the frustules. Metals composition of the cell culture medium, diatom biomass and purified frustules were measured, as was the local elemental composition within the frustule pores and the metal oxide crystallinity. Diatom frustules having a germanium composition of 1.6 wt % were devoid of the native intra-pore structures and possessed enhanced photoluminescence and electroluminescence when compared to frustules without Ge. Diatoms cultivated in the presence of soluble titanium incorporated amorphous titania into the frustule, which maintained native structure even when local TiO2 concentrations within the nanopores approached 60 wt. %. Titanium oxide could also be biomimetically deposited directly within the diatom nanopores by adsorbing poly-L-lysine to the diatom biosilica where it catalyzed the soluble titanium precursor Ti-BALDH into amorphous titania nanoparticles. Both biogenic and biomimetic titania could be converted to anatase titanium by thermal annealing. It was determined that nanostructured metal oxide composites can be fabricated biomimetically or in cell culture to

  11. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    DEFF Research Database (Denmark)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger

    2015-01-01

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co...

  12. Reactor and method for production of nanostructures

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Kim, Jeong H.; Kumar, Vivekanand

    2017-04-25

    A reactor and method for production of nanostructures, including metal oxide nanowires or nanoparticles, are provided. The reactor includes a regulated metal powder delivery system in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes providing a reactor to form nanostructures and collecting the formed nanostructures, optionally from a filter located downstream of the dielectric tube.

  13. Synthesis, electronic and optical properties of Si nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L.N.

    1996-09-01

    Silicon and silicon oxide nanostructures have been deposited on solid substrates, in an ultra high vacuum (UHV) chamber, by laser ablation or thermal vaporization. Laser ablation followed by substrate post annealing produced Si clusters with average size of a few nanometers, on highly oriented pyrolytic graphite (HOPG) surfaces. This technique, which is based on surface diffusion, is limited to the production of less than one layer of clusters on a given surface. The low coverage of Si clusters and the possibility of nonradiative decay of excitation in the Si cores to the HOPG substrates in these samples rendered them unsuitable for many optical measurements. Thermal vaporization of Si in an Ar buffer gas, on the contrary, yielded multilayer coverage of Si nanoclusters with a fairly narrow size distribution of about 2 nm, full width at half maximum (FWHM). As a result, further study was performed only on Si nanoclusters synthesized by thermal vaporization in a buffer gas. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) revealed that these nanoclusters were crystalline. However, during synthesis, if oxygen was the buffer gas, a network of amorphous Si oxide nanostructures (an-SiO{sub x}) with occasional embedded Si dots was formed. All samples showed strong infrared and/or visible photoluminescence (PL) with varying decay times from nanoseconds to microseconds depending on synthesis conditions. There were differences in PL spectra for hydrogen and oxygen passivated nc-Si, while many common PL properties between oxygen passivated nc-Si and an SiO{sub x} were observed. The observed experimental results can be best explained by a model involving absorption between quantum confined states in the Si cores and emission for which the decay times are very sensitive to surface and/or interface states.

  14. Core/shell structured NaYF4:Yb3+/Er3+/Gd+3 nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Li, Z Q; Li, X D; Liu, Q Q; Chen, X H; Sun, Z; Huang, S M; Liu, C; Ye, X J

    2012-01-01

    A simple approach for preparing near-infrared (NIR) to visible upconversion (UC) NaYF 4 :Yb/Er/Gd nanorods in combination with gold nanostructures has been reported. The grown UC nanomaterials with Au nanostructures have been applied to flexible amorphous silicon solar cells on the steel substrates to investigate their responses to sub-bandgap infrared irradiation. Photocurrent–voltage measurements were performed on the solar cells. It was demonstrated that UC of NIR light led to a 16-fold to 72-fold improvement of the short-circuit current under 980 nm illumination compared to a cell without upconverters. A maximum current of 1.16 mA was obtained for the cell using UC nanorods coated with Au nanoparticles under 980 nm laser illumination. This result corresponds to an external quantum efficiency of 0.14% of the solar cell. Mechanisms of erbium luminescence in the grown UC nanorods were analyzed and discussed. (paper)

  15. Amorphous Hierarchical Porous GeOx as High-Capacity Anodes for LiIon Batteries with Very Long Cycling Life

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.L.; Han, W.-Q.; Chen, H.; Bai, J.; Tyson, T.A.; Yu, X.-Q.; Wang, X.-J.; Yang, X.-Q.

    2011-12-28

    Many researchers have focused in recent years on resolving the crucial problem of capacity fading in Li ion batteries when carbon anodes are replaced by other group-IV elements (Si, Ge, Sn) with much higher capacities. Some progress was achieved by using different nanostructures (mainly carbon coatings), with which the cycle numbers reached 100-200. However, obtaining longer stability via a simple process remains challenging. Here we demonstrate that a nanostructure of amorphous hierarchical porous GeO{sub x} whose primary particles are {approx}3.7 nm diameter has a very stable capacity of {approx}1250 mA h g{sup -1} for 600 cycles. Furthermore, we show that a full cell coupled with a Li(NiCoMn){sub 1/3}O{sub 2} cathode exhibits high performance.

  16. A Tunable Molten-Salt Route for Scalable Synthesis of Ultrathin Amorphous Carbon Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Yixian; Tian, Wei; Wang, Luhai; Zhang, Haoran; Liu, Jialiang; Peng, Tingyue; Pan, Lei; Wang, Xiaobo; Wu, Mingbo

    2018-02-14

    Amorphous carbon is regarded as a promising alternative to commercial graphite as the lithium-ion battery anode due to its capability to reversibly store more lithium ions. However, the structural disorder with a large number of defects can lead to low electrical conductivity of the amorphous carbon, thus limiting its application for high power output. Herein, ultrathin amorphous carbon nanosheets were prepared from petroleum asphalt through tuning the carbonization temperature in a molten-salt medium. The amorphous nanostructure with expanded carbon interlayer spacing can provide substantial active sites for lithium storage, while the two-dimensional (2D) morphology can facilitate fast electrical conductivity. As a result, the electrodes deliver a high reversible capacity, outstanding rate capability, and superior cycling performance (579 and 396 mAh g -1 at 2 and 5 A g -1 after 900 cycles). Furthermore, full cells consisting of the carbon anodes coupled with LiMn 2 O 4 cathodes exhibit high specific capacity (608 mAh g -1 at 50 mA g -1 ) and impressive cycling stability with slow capacity loss (0.16% per cycle at 200 mA g -1 ). The present study not only paves the way for industrial-scale synthesis of advanced carbon materials for lithium-ion batteries but also deepens the fundamental understanding of the intrinsic mechanism of the molten-salt method.

  17. Traveling cluster approximation for uncorrelated amorphous systems

    International Nuclear Information System (INIS)

    Kaplan, T.; Sen, A.K.; Gray, L.J.; Mills, R.

    1985-01-01

    In this paper, the authors apply the TCA concepts to spatially disordered, uncorrelated systems (e.g., fluids or amorphous metals without short-range order). This is the first approximation scheme for amorphous systems that takes cluster effects into account while preserving the Herglotz property for any amount of disorder. They have performed some computer calculations for the pair TCA, for the model case of delta-function potentials on a one-dimensional random chain. These results are compared with exact calculations (which, in principle, taken into account all cluster effects) and with the CPA, which is the single-site TCA. The density of states for the pair TCA clearly shows some improvement over the CPA, and yet, apparently, the pair approximation distorts some of the features of the exact results. They conclude that the effects of large clusters are much more important in an uncorrelated liquid metal than in a substitutional alloy. As a result, the pair TCA, which does quite a nice job for alloys, is not adequate for the liquid. Larger clusters must be treated exactly, and therefore an n-TCA with n > 2 must be used

  18. Memristive effects in oxygenated amorphous carbon nanodevices

    Science.gov (United States)

    Bachmann, T. A.; Koelmans, W. W.; Jonnalagadda, V. P.; Le Gallo, M.; Santini, C. A.; Sebastian, A.; Eleftheriou, E.; Craciun, M. F.; Wright, C. D.

    2018-01-01

    Computing with resistive-switching (memristive) memory devices has shown much recent progress and offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and memory, which limits the performance of conventional computer architectures. Due to their good scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral amorphous carbon or ta-C, typically suffer from a low cycling endurance. A material that has proven to be capable of combining the advantages of elemental carbon-based memories with simple fabrication methods and good endurance performance for binary memory applications is oxygenated amorphous carbon, or a-CO x . Here, we examine the memristive capabilities of nanoscale a-CO x devices, in particular their ability to provide the multilevel and accumulation properties that underpin computing type applications. We show the successful operation of nanoscale a-CO x memory cells for both the storage of multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and simultaneously store the computed result in the self-same a-CO x cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses.

  19. Comparative study of the structural damage of nano-structured and micro-structured ceramics SiC under irradiation

    International Nuclear Information System (INIS)

    Leconte, Y.; Herlin-Boime, N.; Reynaud, C.; Monnet, I.; Levalois, M.; Morales, M.; Portier, X.; Thome, L.

    2006-01-01

    In order to know if the nano-structured ceramics SiC are possible materials for the future nuclear applications, SiC pellets have been submitted to low and mean energy irradiation experiments. These samples have been characterized by grazing X-ray diffraction and confocal Raman spectroscopy as well as conventional SiC ceramic pellets as reference. The low energy irradiations have allowed to exceed the amorphization threshold and to obtain a total disorder in the two types of samples. At the mean energies, this amorphization has not been obtained in spite of the doses generating a number of dpa superior to those of the low energies. The hypothesis of a synergy between the effects of the electronic and nuclear energy losses is advanced. (O.M.)

  20. Carbon/Clay nanostructured composite obtained by hydrothermal method; Compositos nanoestruturados carbono/argila obtidos por metodo hidotermico

    Energy Technology Data Exchange (ETDEWEB)

    Barin, G.B.; Bispo, T.S.; Gimenez, I.F.; Barreto, L.S., E-mail: gabriela.borin@gmail.co [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Souza Filho, A.G. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica

    2010-07-01

    The development of strategies for converting biomass into useful materials, more efficient energy carrier and / or hydrogen storage is shown a key issue for the present and future. Carbon nanostructure can be obtained by severe processing techniques such as arc discharge, chemical deposition and catalyzed pyrolysis of organic compounds. In this study we used hydrothermal methods for obtaining nanostructured composites of carbon / clay. To this end, we used coir dust and special clays. The samples were characterized by infrared spectroscopy, X-ray diffraction and Raman. The presence of the D band at 1350 cm{sup -1} in the Raman spectrum shows the formation of amorphous carbon with particle size of about 8.85 nm. (author)

  1. Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials

    DEFF Research Database (Denmark)

    Mujtaba, Jawayria; Sun, Hongyu; Huang, Guoyong

    2016-01-01

    We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries......, the as-prepared Co3O4 hierarchical electrodes delivered high lithium storage properties comparing to the other Co3O4 nanostructures, including a high reversible capacity of 1053.1 mAhg-1 after 50 cycles at a current density of 0.2 C (1 C = 890 mAg-1), good cycling stability and rate capability....

  2. Structural, thermal, optical and photoacoustic study of nanostructured FeSb{sub 2} prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Poffo, C.M. [Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.br [Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Souza, S.M.; Trichês, D.M. [Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Grandi, T.A. [Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Biasi, R.S. de [Seção de Engenharia Mecânica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil)

    2013-03-15

    Mechanical alloying of elemental Fe and Sb powders yielded nanostructured FeSb{sub 2}, an amorphous phase, along with unreacted Sb. The volume fractions of FeSb{sub 2}, Sb nanocrystals and interfacial/amorphous components were estimated from the X-ray diffraction pattern of the as-miller powder. The thermal stability of FeSb{sub 2} was investigated by heating the powder at 250 °C and 400 °C. The XRD pattern of the sample annealed at 250 °C showed nucleation of Fe{sub 3}O{sub 4} and decomposition of FeSb{sub 2}. For an annealing temperature of 400 °C, besides crystallization of the amorphous phase, the volume fractions of Sb and Fe{sub 3}O{sub 4} increased and the volume fraction of FeSb{sub 2} decreased. The optical band gap energy for samples as-milled and annealed at 400 °C was measured, and a slight decrease in the band gap was observed in the annealed sample. Thermal diffusivity parameter of the as-milled sample and of the annealed sample at 400 °C was also measured, as well as other transport properties. We also studied the contribution of the thermal diffusivity of the interfacial/amorphous component to the thermal diffusivity of the as-milled sample.

  3. Recent advances in co-amorphous drug formulations

    DEFF Research Database (Denmark)

    Dengale, Swapnil Jayant; Grohganz, Holger; Rades, Thomas

    2016-01-01

    Co-amorphous drug delivery systems have recently gained considerable interest in the pharmaceutical field because of their potential to improve oral bioavailability of poorly water-soluble drugs through drug dissolution enhancement as a result of the amorphous nature of the material. A co...

  4. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    Science.gov (United States)

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  5. CONDUCTION MECHANISM IN AMORPHOUS As2S3

    African Journals Online (AJOL)

    User

    port measurements in disordered semiconduc- tors and .... 2, with T0 = Eg/2. Eg is the mobility gap and has the same value (2.15 Ev) over the whole measured temperature range. This indicates that the conduction in amorphous As2S3 is intrinsic ... 2 : lnρ as a function of reciprocal temperature for amorphous As2S3. 15. 17.

  6. Amorphous Computing: A Research Agenda for the Near Future

    Czech Academy of Sciences Publication Activity Database

    Wiedermann, Jiří

    2012-01-01

    Roč. 11, č. 1 (2012), s. 59-63 ISSN 1567-7818 R&D Projects: GA ČR GAP202/10/1333 Institutional research plan: CEZ:AV0Z10300504 Keywords : amorphous computing * nano-machines * flying amorphous computer Subject RIV: IN - Informatics, Computer Science Impact factor: 0.683, year: 2012

  7. A beam position monitor using an amorphous magnetic core

    International Nuclear Information System (INIS)

    Kobayashi, Toshiaki; Ueda, Toru; Yoshida, Yoichi; Kozawa, Takahiro; Uesaka, Mitsuru; Miya, Kenzo; Tagawa, Seiichi; Kobayashi, Hitoshi.

    1994-01-01

    A beam position monitor for an electron accelerator has been developed by using an amorphous magnetic core. The position is detected by the difference of leakage inductances of four pickup coils wound on the amorphous magnetic core. The accuracy of the beam position monitor is less than 1 mm for the various electron pulses from nanosecond to microsecond. (author)

  8. Phase transformations of amorphous semiconductor alloys under high pressures

    CERN Document Server

    Antonov, V E; Fedotov, V K; Harkunov, A I; Ponyatovsky, E G

    2002-01-01

    The paper reviews the results of experimental studies and thermodynamical modelling of metastable T-P diagrams of initially amorphous GaSb-Ge and Zn-Sb alloys which provide a new insight into the problem of pressure-induced amorphization.

  9. Calorimetric studies of non-isothermal crystallization in amorphous

    Indian Academy of Sciences (India)

    Administrator

    The applicability of Meyer–Neldel relation between the pre-exponential factor and activation energy of non-isothermal crystallization for amorphous alloys of Cu–Ti system was verified. Keywords. Amorphous materials; differential scanning calorimetry (DSC); phase transitions. 1. Introduction. There is a significant attention ...

  10. Devitrification of rapidly quenched Al–Cu–Ti amorphous alloys

    Indian Academy of Sciences (India)

    Unknown

    spinning, the entire apparatus was ... The crystallization behaviour of these amorphous alloys has been studied using DSC 2910 (TA ... Thus the change in the structure of amorphous Al50Cu45Ti5 and Al45Cu45Ti10 alloys may be summarized as ...

  11. Amorphization kinetics of Zr3Fe under electron irradiation

    International Nuclear Information System (INIS)

    Motta, A.T.; Howe, L.M.; Okamoto, P.R.

    1992-10-01

    0.9 MeV electron irradiations were performed at 28--220 K in a high-voltage electron microscope (HVEM). By measuring onset, spread and final size of the amorphous region, factoring in the Guassian distribution of the beam, a kinetic description of the amorphization in terms of dose, dose rate and temperature was obtained. The critical temperature for amorphization by electron irradiation was found to be ∼220 K, compared to 570--625 K for 40 Ar ion irradiation. Also, the dose-to-amorphization increased exponentially with temperature. Results indicated that the rate of growth of the amorphous region under the electron beam decreased with increasing temperature and the does-to-amorphization decreased with increasing dose rate. The size of the amorphous region saturated after a region dose, the final size decreasing with increasing temperature, and it was argued that this is related to the existence of a critical dose rate, which increased with temperature, below which no amorphization occurred. The above observations can be understood in the framework of the kinetics of damage accumulation under irradiation

  12. Modeling SiC swelling under irradiation: Influence of amorphization

    CERN Document Server

    Romano, A; Defranceschi, M; Yip, S

    2003-01-01

    Irradiation-induced swelling of SiC is investigated using a molecular dynamics simulation-based methodology. To mimic the effect of heavy ion irradiation extended amorphous areas of various sizes are introduced in a crystalline SiC sample, and the resulting configurations are relaxed using molecular dynamics at constant pressure. Simulation results compare very well with data from existing ion implantation experiments. Analysis of the relaxed configurations shows very clearly that SiC swelling does not scale linearly with the amorphous fraction introduced. Two swelling regimes are observed depending on the size of the initial amorphous area: for small amorphous zones swelling scales like the amorphous fraction to the power 2/3, while for larger areas it scales like the amorphous fraction to the powers 2/3 and 4/3. Similar dependences on the amorphous fraction are obtained for the number of homonuclear bonds present in the initial amorphous volume and for the number of short bonds created at the interface betw...

  13. Spin tunneling and manipulation in nanostructures.

    Science.gov (United States)

    Sherman, E Ya; Ban, Yue; Gulyaev, L V; Khomitsky, D V

    2012-09-01

    The results for joint effects of tunneling and spin-orbit coupling on spin dynamics in nanostructures are presented for systems with discrete and continuous spectra. We demonstrate that tunneling plays the crucial role in the spin dynamics and the abilities of spin manipulation by external electric field. This result can be important for design of nanostructures-based spintronics devices.

  14. Simple Approach to Superamphiphobic Overhanging Silicon Nanostructures

    DEFF Research Database (Denmark)

    Kumar, Rajendra; Mogensen, Klaus Bo; Bøggild, Peter

    2010-01-01

    Superhydrophobic silicon nanostructures were fabricated by anisotropic etching of silicon coated with a thin hydrophobic layer. At certain etch parameters, overhanging nanostructures form at the apexes of the rod-shaped tips, This leads to superoleophobic behavior for several oily liquids...

  15. Electron Microscopy of Nanostructures in Cells

    DEFF Research Database (Denmark)

    Købler, Carsten

    with cells is therefore increasingly more relevant from both an engineering and a toxicological viewpoint. My work involves developing and exploring electron microscopy (EM) for imaging nanostructures in cells, for the purpose of understanding nanostructure-cell interactions in terms of their possibilities...

  16. Electroluminescence from Silicon and Germanium Nanostructures

    African Journals Online (AJOL)

    quantum confinement model (QCM), that can explain PL and EL on pure Si nanostructures and Si-terminated with impurities. Keywords: Quantum confinement, Nanostructure, Exciton binding energy,. Electroluminescence. INTRODUCTION. It has been realized that the integration of optoelectronic components on all Si ...

  17. Charge transport in amorphous organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanov, Alexander

    2011-03-15

    Organic semiconductors with the unique combination of electronic and mechanical properties may offer cost-effective ways of realizing many electronic applications, e. g. large-area flexible displays, printed integrated circuits and plastic solar cells. In order to facilitate the rational compound design of organic semiconductors, it is essential to understand relevant physical properties e. g. charge transport. This, however, is not straightforward, since physical models operating on different time and length scales need to be combined. First, the material morphology has to be known at an atomistic scale. For this atomistic molecular dynamics simulations can be employed, provided that an atomistic force field is available. Otherwise it has to be developed based on the existing force fields and first principle calculations. However, atomistic simulations are typically limited to the nanometer length- and nanosecond time-scales. To overcome these limitations, systematic coarse-graining techniques can be used. In the first part of this thesis, it is demonstrated how a force field can be parameterized for a typical organic molecule. Then different coarse-graining approaches are introduced together with the analysis of their advantages and problems. When atomistic morphology is available, charge transport can be studied by combining the high-temperature Marcus theory with kinetic Monte Carlo simulations. The approach is applied to the hole transport in amorphous films of tris(8- hydroxyquinoline)aluminium (Alq{sub 3}). First the influence of the force field parameters and the corresponding morphological changes on charge transport is studied. It is shown that the energetic disorder plays an important role for amorphous Alq{sub 3}, defining charge carrier dynamics. Its spatial correlations govern the Poole-Frenkel behavior of the charge carrier mobility. It is found that hole transport is dispersive for system sizes accessible to simulations, meaning that calculated

  18. Amorphous molybdenum sulfides as hydrogen evolution catalysts.

    Science.gov (United States)

    Morales-Guio, Carlos G; Hu, Xile

    2014-08-19

    Providing energy for a population projected to reach 9 billion people within the middle of this century is one of the most pressing societal issues. Burning fossil fuels at a rate and scale that satisfy our near-term demand will irreversibly damage the living environment. Among the various sources of alternative and CO2-emission-free energies, the sun is the only source that is capable of providing enough energy for the whole world. Sunlight energy, however, is intermittent and requires an efficient storage mechanism. Sunlight-driven water splitting to make hydrogen is widely considered as one of the most attractive methods for solar energy storage. Water splitting needs a hydrogen evolution catalyst to accelerate the rate of hydrogen production and to lower the energy loss in this process. Precious metals such as Pt are superior catalysts, but they are too expensive and scarce for large-scale applications. In this Account, we summarize our recent research on the preparation, characterization, and application of amorphous molybdenum sulfide catalysts for the hydrogen evolution reaction. The catalysts can be synthesized by electrochemical deposition under ambient conditions from readily available and inexpensive precursors. The catalytic activity is among the highest for nonprecious catalysts. For example, at a loading of 0.2 mg/cm(2), the optimal catalyst delivers a current density of 10 mA/cm(2) at an overpotential of 160 mV. The growth mechanism of the electrochemically deposited film catalysts was revealed by an electrochemical quartz microcrystal balance study. While different electrochemical deposition methods produce films with different initial compositions, the active catalysts are the same and are identified as a "MoS(2+x)" species. The activity of the film catalysts can be further promoted by divalent Fe, Co, and Ni ions, and the origins of the promotional effects have been probed. Highly active amorphous molybdenum sulfide particles can also be prepared

  19. Salt Fog Testing Iron-Based Amorphous Alloys

    International Nuclear Information System (INIS)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-01-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  20. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  1. Pressure-induced structural transformation in radiation-amorphized zircon.

    Science.gov (United States)

    Trachenko, Kostya; Brazhkin, V V; Tsiok, O B; Dove, Martin T; Salje, E K H

    2007-03-30

    We study the response of a radiation-amorphized material to high pressure. We have used zircon ZrSiO4 amorphized by natural radiation over geologic times, and have measured its volume under high pressure, using the precise strain-gauge technique. On pressure increase, we observe apparent softening of the material, starting from 4 GPa. Using molecular dynamics simulation, we associate this softening with the amorphous-amorphous transformation accompanied by the increase of local coordination numbers. We observe permanent densification of the quenched sample and a nontrivial "pressure window" at high temperature. These features point to a new class of amorphous materials that show a response to pressure which is distinctly different from that of crystals.

  2. Vicinal surfaces for functional nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tegenkamp, Christoph [Institut fuer Festkoerperphysik, Gottfried Wilhelm Leibniz Universitaet Hannover, Appelstrasse 2, D-30167 Hannover (Germany)], E-mail: tegenkamp@fkp.uni-hannover.de

    2009-01-07

    Vicinal surfaces are currently the focus of research. The regular arrangements of atomic steps on a mesoscopic scale reveal the possibility to functionalize these surfaces for technical applications, e.g. nanowires, catalysts, etc. The steps of the vicinal surface are well-defined defect structures of atomic size for nucleation of low-dimensional nanostructures. The concentration and therefore the coupling between the nanostructures can be tuned over a wide range by simply changing the inclination angle of the substrate. However, the coupling of these nano-objects to the substrate is just as important in controlling their electronic or chemical properties and making a functionality useable. On the basis of stepped insulating films, these aspects are fulfilled and will be considered in the first part of this review. Recent results for the epitaxial growth of wide bandgap insulating films (CaF{sub 2}, MgO, NaCl, BaSrO) on metallic and semiconducting vicinal substrates (Si(100), Ge(100), Ag(100)) will be presented. The change of the electronic structure, the adsorption behavior as well as the kinetics and energetics of color centers in the presence of steps is discussed. The successful bridging of the gap between the atomic and mesoscopic world, i.e. the functionalization of vicinal surfaces by nanostructures, is demonstrated in the second part by metal adsorption on semiconducting surfaces. For (sub)monolayer coverage these systems have in common that the surface states do not hybridize with the support, i.e. the semiconducting surfaces are insulating. Here I will focus on the latest results of macroscopic transport measurements on Pb quantum wires grown on vicinal Si(111) showing indeed a one-dimensional transport behavior. (topical review)

  3. Nanostructuring steel for injection molding tools

    DEFF Research Database (Denmark)

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography...... and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...... has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items...

  4. Nanostructures, systems, and methods for photocatalysis

    Science.gov (United States)

    Reece, Steven Y.; Jarvi, Thomas D.

    2015-12-08

    The present invention generally relates to nanostructures and compositions comprising nanostructures, methods of making and using the nanostructures, and related systems. In some embodiments, a nanostructure comprises a first region and a second region, wherein a first photocatalytic reaction (e.g., an oxidation reaction) can be carried out at the first region and a second photocatalytic reaction (e.g., a reduction reaction) can be carried out at the second region. In some cases, the first photocatalytic reaction is the formation of oxygen gas from water and the second photocatalytic reaction is the formation of hydrogen gas from water. In some embodiments, a nanostructure comprises at least one semiconductor material, and, in some cases, at least one catalytic material and/or at least one photosensitizing agent.

  5. Polarized electroluminescence from silicon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, Nikolay; Danilovsky, Eduard; Gets, Dmitry; Klyachkin, Leonid; Kudryavtsev, Andrey; Kuzmin, Roman; Malyarenko, Anna [Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Mashkov, Vladimir [St. Petersburg State Polytechnical University, 195251 St. Petersburg (Russian Federation)

    2012-05-15

    We present the first findings of the circularly polarized electroluminescence (CPEL) from silicon nanostructures which are the p-type ultra-narrow silicon quantum well (Si-QW) confined by {delta}-barriers heavily doped with boron. The CPEL dependences on the forward current and lateral electric field show the circularly polarized light emission which appears to be caused by the exciton recombination through the negative-U dipole boron centers at the Si-QW-{delta}-barriers interface with the assistance of phosphorus donors. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Transport Properties of Nanostructured Graphene

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka

    2017-01-01

    Despite of its many wonderful properties, pristine graphene has one major drawback: it does not have a band gap, which complicates its applications in electronic devices. Many routes have been suggested to overcome this difficulty, such as cutting graphene into nanoribbons, using chemical methods...... device operation. In this talk I elaborate these ideas and review the state-of-the-art both from the theoretical and the experimental points of view. I also introduce two new ideas: (1) triangular antidots, and (2) nanobubbles formed in graphene. Both of these nanostructuring methods are predicted...

  7. Field Emission from Carbon Nanostructures

    Directory of Open Access Journals (Sweden)

    Filippo Giubileo

    2018-03-01

    Full Text Available Field emission electron sources in vacuum electronics are largely considered to achieve faster response, higher efficiency and lower energy consumption in comparison with conventional thermionic emitters. Carbon nanotubes had a leading role in renewing attention to field emission technologies in the early 1990s, due to their exceptional electron emitting properties enabled by their large aspect ratio, high electrical conductivity, and thermal and chemical stability. In the last decade, the search for improved emitters has been extended to several carbon nanostructures, comprising carbon nanotubes, either individual or films, diamond structures, graphitic materials, graphene, etc. Here, we review the main results in the development of carbon-based field emitters.

  8. Optoelectronic properties of semiconductor nanostructures

    Science.gov (United States)

    Maher, Kristin Nicole

    Semiconductor nanostructures have unique optical and electronic properties that have inspired research into their technological applications and basic science. This thesis presents approaches to the fabrication and characterization of optoelectronic devices incorporating individual semiconductor nanostructures. Nanowires of the II-VI semiconductors CdSe and CdS were synthesized using nanoparticle-catalysed solution-liquid-solid growth. Single-component nanowires and heterostructure nanowires with axial compositional modulation were generated using this method. Individual nanowires and nanocrystals were then incorporated into devices with a three-terminal field-effect transistor geometry. An experimental platform was developed which allows for simultaneous electrical characterization of devices and measurement of their optical properties. This setup enables the measurement of spatially and spectrally resolved electroluminescence (EL) and photoluminescence (PL) from individual nanostructures and nanostructure devices. It also allows the measurement of photon coincidence histograms for emitted light and the acquisition of photocurrent images via laser scanning microscopy. Electroluminescence was observed from individual CdSe nanocrystals contacted by gold electrodes. Concomitant transport measurements at low temperature showed clear evidence of Coulomb blockade at low bias voltage, with light only emitted from devices exhibiting asymmetric tunnel couplings between the nanocrystal and electrodes. Combined analyses of the data indicate that the resistances of the tunnel barriers are bias voltage dependent and that light emission results from the inelastic scattering of tunneling electrons. Three-terminal devices incorporating individual CdSe nanoNvires exhibited EL localized near the positively-biased electrode. Characterization of these devices by scanning photocurrent microscopy (SPCM) and Kelvin probe microscopy (KPM) indicates that while there are n-type Schottky

  9. MAGNETIC PROPERTIES OF HEMATITE NANOSTRUCTURES

    OpenAIRE

    Munayco S., J.; 5aavedra V., I.; Munayco S., P.; Ale B., N.

    2014-01-01

    Nanostructured a-Fe203 (hematite) was produced usíng high-energy ball milling and analized by X-ray diffraction (XRD), 57Fe Mi.issbauer spectrometry and magnetization measurements. The results showed that after 2 h milling, a-Fe203 nanosize particles were obtained about 15 nm. The 57 Fe Mossbauer spectrometry correlated with magnetometry showed also that Morin transition was notobserved after 0,75 h milling. Son estudiados los procedimientos de producción nanopartículas de hematita, evaluá...

  10. Charge ordering in amorphous WOx films

    International Nuclear Information System (INIS)

    Kopelevich, Yakov; Silva, Robson R. da; Rougier, Aline; Luk'yanchuk, Igor A.

    2008-01-01

    We observed highly anisotropic viscous electronic conducting phase in amorphous WO 1.55 films that occurs below a current (I)- and frequency (f)-dependent temperature T*(I, f). At T< T*(I, f) the rotational symmetry of randomly disordered electronic background is broken leading to the appearance of mutually perpendicular metallic- and insulating-like states. A rich dynamic behavior of the electronic matter occurring at T< T*(I, f) provides evidence for an interplay between pinning effects and electron-electron interactions. The results suggest a dynamic crystallization of the disordered electronic matter, viz. formation of sliding Wigner crystal, as well as the occurrence of quantum liquid-like crystal or stripe phase at low drives

  11. Three-Terminal Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Tai

    2011-01-01

    Full Text Available Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si solar cell achieved an efficiency of 11.4%, while the efficiency of a typical a-Si p-i-n solar cell was 9.0%. Furthermore, an efficiency of 11.7% was achieved by thickness optimization of the three-terminal solar cell.

  12. Extracting Crystal Chemistry from Amorphous Carbon Structures.

    Science.gov (United States)

    Deringer, Volker L; Csányi, Gábor; Proserpio, Davide M

    2017-04-19

    Carbon allotropes have been explored intensively by ab initio crystal structure prediction, but such methods are limited by the large computational cost of the underlying density functional theory (DFT). Here we show that a novel class of machine-learning-based interatomic potentials can be used for random structure searching and readily predicts several hitherto unknown carbon allotropes. Remarkably, our model draws structural information from liquid and amorphous carbon exclusively, and so does not have any prior knowledge of crystalline phases: it therefore demonstrates true transferability, which is a crucial prerequisite for applications in chemistry. The method is orders of magnitude faster than DFT and can, in principle, be coupled with any algorithm for structure prediction. Machine-learning models therefore seem promising to enable large-scale structure searches in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  14. Preparation and Characterisation of Nobiletin-Loaded Nanostructured Lipid Carriers

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2017-01-01

    Full Text Available The objective of this manuscript was to investigate and optimise the potential of nanostructured lipid carriers (NLCs as a carrier system for nobiletin (NOB, which was prepared by high-pressure homogenisation method. Additionally, this study was focused on the application of NOB-loaded NLC (NOB-NLC in functional food. Response surface method with a three-level Box–Behnken design was validated through analysis of variance, and the robustness of the design was confirmed through the correspondence between the values measured in the experiments and the predicted ones. Properties of the prepared NOB-NLC, such as Z-average, polydispersity, entrapment efficiency, zeta potential, morphology, and crystallinity, were investigated. NOB-NLC exhibited a spherical shape with a diameter of 112.27 ± 5.33 nm, zeta potential of −35.1 ± 2.94 mV, a polydispersity index of 0.251 ± 0.058, and an EE of 81.06%  ±  6.02%. Results from X-ray diffraction and differential scanning calorimetry of NOB-NLC reviewed that the NOB crystal might be converted to an amorphous state. Fourier transform infrared spectroscopic analysis demonstrated that chemical interaction was absent between the compound and lipid mixture in NOB-NLC.

  15. Phyllosilicates and Amorphous Gel in the Nakhlites

    Science.gov (United States)

    Hicks, L. J.; Bridges, J. C.; Gurman, S. J.

    2013-09-01

    Previous studies of the nakhlite martian meteorites have revealed hydrothermal minerals present within the fractures of the olivine minerals and the mesostasis. The olivine fractures of the Lafayette nakhlite reveal variations with initial deposits of siderite on the fracture walls, followed by crystalline phyllosilicates (smectite), and finishing with a rapidly cooled amorphous silicate gel within the central regions of the fractures. The mesostasis fractures of Lafayette also contain a crystalline phyllosilicate (serpentine). The amorphous gel is the most abundant secondary phase within the fractures of the other nakhlites [1, 2]. By studying nine nakhlite samples, including Lafayette, Governador Valadares, Nakhla, Y-000593, Y-000749, Miller-Range 03346, NWA 817, NWA 998, and NWA 5790, our aim is to constrain the identity of the phyllosilicate secondary phase minerals found throughout the nakhlite martian meteorites. This is achieved using methods including Electron Probe Micro-analysis (EPMA); X-ray Absorption Near-Edge Structure (Fe-K XANES) spectroscopy measured using Beamline I-18 at the Diamond Light Source synchrotron; and the use of Transmission Electron Microscopy (TEM) at the University of Leicester for High-Resolution (HR) imaging and Selected Area Electron Diffraction (SAED). BF studying nine nakhlite samples, including Lafayette, Governador Valadares, Nakhla, Y-000593, Y-000749, Miller-Range 03346, NWA 817, NWA 998, and NWA 5790, our aim is to constrain the identity of the phyllosilicate secondary phase minerals found throughout the nakhlite martian meteorites. This is achieved using methods including Electron Probe Micro-analysis (EPMA); X-ray Absorption Near-Edge Structure (Fe-K XANES) spectroscopy measured using Beamline I-18 at the Diamond Light Source synchrotron; and the use of Transmission Electron Microscopy (TEM) at the University of Leicester for High-Resolution (HR) imaging and Selected Area Electron Diffraction (SAED).

  16. Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    See, Kevin C.; Urban, Jeffrey J.; Segalman, Rachel A.; Coates, Nelson E.; Yee, Shannon K.

    2017-11-28

    The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.

  17. Wet chemical synthesis and magnetic properties of single crystal Co nanochains with surface amorphous passivation Co layers

    Directory of Open Access Journals (Sweden)

    Zhou Shao-Min

    2011-01-01

    Full Text Available Abstract In this study, for the first time, high-yield chain-like one-dimensional (1D Co nanostructures without any impurity have been produced by means of a solution dispersion approach under permanent-magnet. Size, morphology, component, and structure of the as-made samples have been confirmed by several techniques, and nanochains (NCs with diameter of approximately 60 nm consisting of single-crystalline Co and amorphous Co-capped layer (about 3 nm have been materialized. The as-synthesized Co samples do not include any other adulterants. The high-quality NC growth mechanism is proposed to be driven by magnetostatic interaction because NC can be reorganized under a weak magnetic field. Room-temperature-enhanced coercivity of NCs was observed, which is considered to have potential applications in spin filtering, high density magnetic recording, and nanosensors. PACS: 61.46.Df; 75.50; 81.07.Vb; 81.07.

  18. Quantitative Characterization of Nanostructured Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Frank (Bud) Bridges, University of California-Santa Cruz

    2010-08-05

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to real-world materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  19. Process Development for Nanostructured Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  20. Aluminum nanostructures for ultraviolet plasmonics

    Science.gov (United States)

    Martin, Jérôme; Khlopin, Dmitry; Zhang, Feifei; Schuermans, Silvère; Proust, Julien; Maurer, Thomas; Gérard, Davy; Plain, Jérôme

    2017-08-01

    An electromagnetic field is able to produce a collective oscillation of free electrons at a metal surface. This allows light to be concentrated in volumes smaller than its wavelength. The resulting waves, called surface plasmons can be applied in various technological applications such as ultra-sensitive sensing, Surface Enhanced Raman Spectroscopy, or metal-enhanced fluorescence, to name a few. For several decades plasmonics has been almost exclusively studied in the visible region by using nanoparticles made of gold or silver as these noble metals support plasmonic resonances in the visible and near-infrared range. Nevertheless, emerging applications will require the extension of nano-plasmonics toward higher energies, in the ultraviolet range. Aluminum is one of the most appealing metal for pushing plasmonics up to ultraviolet energies. The subsequent applications in the field of nano-optics are various. This metal is therefore a highly promising material for commercial applications in the field of ultraviolet nano-optics. As a consequence, aluminum (or ultraviolet, UV) plasmonics has emerged quite recently. Aluminium plasmonics has been demonstrated efficient for numerous potential applications including non-linear optics, enhanced fluorescence, UV-Surface Enhanced Raman Spectroscopy, optoelectronics, plasmonic assisted solid-state lasing, photocatalysis, structural colors and data storage. In this article, different preparation methods developed in the laboratory to obtain aluminum nanostructures with different geometries are presented. Their optical and morphological characterizations of the nanostructures are given and some proof of principle applications such as fluorescence enhancement are discussed.

  1. Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases.

    Science.gov (United States)

    Klingan, Katharina; Ringleb, Franziska; Zaharieva, Ivelina; Heidkamp, Jonathan; Chernev, Petko; Gonzalez-Flores, Diego; Risch, Marcel; Fischer, Anna; Dau, Holger

    2014-05-01

    Water oxidation in the neutral pH regime catalyzed by amorphous transition-metal oxides is of high interest in energy science. Crucial determinants of electrocatalytic activity were investigated for a cobalt-based oxide film electrodeposited at various thicknesses on inert electrodes. For water oxidation at low current densities, the turnover frequency (TOF) per cobalt ion of the bulk material stayed fully constant for variation of the thickness of the oxide film by a factor of 100 (from about 15 nm to 1.5 μm). Thickness variation changed neither the nanostructure of the outer film surface nor the atomic structure of the oxide catalyst significantly. These findings imply catalytic activity of the bulk hydrated oxide material. Nonclassical dependence on pH was observed. For buffered electrolytes with pKa values of the buffer base ranging from 4.7 (acetate) to 10.3 (hydrogen carbonate), the catalytic activity reflected the protonation state of the buffer base in the electrolyte solution directly and not the intrinsic catalytic properties of the oxide itself. It is proposed that catalysis of water oxidation occurs within the bulk hydrated oxide film at the margins of cobalt oxide fragments of molecular dimensions. At high current densities, the availability of a proton-accepting base at the catalyst-electrolyte interface controls the rate of water oxidation. The reported findings may be of general relevance for water oxidation catalyzed at moderate pH by amorphous transition-metal oxides. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Lithium Storage in Microstructures of Amorphous Mixed-Valence Vanadium Oxide as Anode Materials.

    Science.gov (United States)

    Zhao, Di; Zheng, Lirong; Xiao, Ying; Wang, Xia; Cao, Minhua

    2015-07-08

    Constructing three-dimensional (3 D) nanostructures with excellent structural stability is an important approach for realizing high-rate capability and a high capacity of the electrode materials in lithium-ion batteries (LIBs). Herein, we report the synthesis of hydrangea-like amorphous mixed-valence VOx microspheres (a-VOx MSs) through a facile solvothermal method followed by controlled calcination. The resultant hydrangea-like a-VOx MSs are composed of intercrossed nanosheets and, thus, construct a 3 D network structure. Upon evaluation as an anode material for LIBs, the a-VOx MSs show excellent lithium-storage performance in terms of high capacity, good rate capability, and long-term stability upon extended cycling. Specifically, they exhibit very stable cycling behavior with a highly reversible capacity of 1050 mA h g(-1) at a rate of 0.1 A g(-1) after 140 cycles. They also show excellent rate capability, with a capacity of 390 mA h g(-1) at a rate as high as 10 A g(-1) . Detailed investigations on the morphological and structural changes of the a-VOx MSs upon cycling demonstrated that the a-VOx MSs went through modification of the local VO coordinations accompanied with the formation of a higher oxidation state of V, but still with an amorphous state throughout the whole discharge/charge process. Moreover, the a-VOx MSs can buffer huge volumetric changes during the insertion/extraction process, and at the same time they remain intact even after 200 cycles of the charge/discharge process. Thus, these microspheres may be a promising anode material for LIBs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dhandapani, Vishnu Shankar [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Subbiah, Ramesh [Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejon 305-333 (Korea, Republic of); Thangavel, Elangovan [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Arumugam, Madhankumar [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Park, Kwideok [Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejon 305-333 (Korea, Republic of); Gasem, Zuhair M. [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Veeraragavan, Veeravazhuthi, E-mail: vv.vazhuthi@gmail.com [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Kim, Dae-Eun, E-mail: kimde@yonsei.ac.kr [Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-05-15

    Highlights: • a-C:Ti nanocomposite coatings were prepared on 316L stainless steel by using R.F. magnetron sputtering method. • Properties of the nanocomposite coatings were analyzed with respect to titanium content. • Corrosion resistance, biocompatibility and hydrophobicity of nanocomposite coating were enhanced with increasing titanium content. • Coating with 2.33 at.% titanium showed superior tribological properties compared to other coatings. - Abstract: Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp{sup 2} bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  4. Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability.

    Science.gov (United States)

    Peltola, Emilia; Wester, Niklas; Holt, Katherine B; Johansson, Leena-Sisko; Koskinen, Jari; Myllymäki, Vesa; Laurila, Tomi

    2017-02-15

    We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups ND andante or amine ND amine , carboxyl ND vox or hydroxyl groups ND H and drop-casted or spray-coated onto substrate. By utilizing these novel structures we show that (i) the detection limit for dopamine can be improved by two orders of magnitude [from 10µM to 50nM] in comparison to ta-C thin film electrodes and (ii) the coating method significantly affects electrochemical properties of NDs and (iii) the ND coatings selectively promote cell viability. ND andante and ND H showed most promising electrochemical properties. The viability of human mesenchymal stem cells and osteoblastic SaOS-2 cells was increased on all ND surfaces, whereas the viability of mouse neural stem cells and rat neuroblastic cells was improved on ND andante and ND H and reduced on ND amine and ND vox. The viability of C6 cells remained unchanged, indicating that these surfaces will not cause excess gliosis. In summary, we demonstrated here that by using functionalized NDs on ta-C thin films we can significantly improve sensitivity towards dopamine as well as selectively promote cell viability. Thus, these novel carbon nanostructures provide an interesting concept for development of various in vivo targeted sensor solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2018-01-23

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  6. Silicon-embedded copper nanostructure network for high energy storage

    Science.gov (United States)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  7. Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis.

    Science.gov (United States)

    Murdande, Sharad B; Pikal, Michael J; Shanker, Ravi M; Bogner, Robin H

    2010-03-01

    In recent years there has been growing interest in advancing amorphous pharmaceuticals as an approach for achieving adequate solubility. Due to difficulties in the experimental measurement of solubility, a reliable estimate of the solubility enhancement ratio of an amorphous form of a drug relative to its crystalline counterpart would be highly useful. We have developed a rigorous thermodynamic approach to estimate enhancement in solubility that can be achieved by conversion of a crystalline form to the amorphous form. We rigorously treat the three factors that contribute to differences in solubility between amorphous and crystalline forms. First, we calculate the free energy difference between amorphous and crystalline forms from thermal properties measured by modulated differential scanning calorimetry (MDSC). Secondly, since an amorphous solute can absorb significant amounts of water, which reduces its activity and solubility, a correction is made using water sorption isotherm data and the Gibbs-Duhem equation. Next, a correction is made for differences in the degree of ionization due to differences in solubilities of the two forms. Utilizing this approach the theoretically estimated solubility enhancement ratio of 7.0 for indomethacin (amorphous/gamma-crystal) was found to be in close agreement with the experimentally determined ratio of 4.9. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  8. Health hazards due to the inhalation of amorphous silica.

    Science.gov (United States)

    Merget, R; Bauer, T; Küpper, H U; Philippou, S; Bauer, H D; Breitstadt, R; Bruening, T

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic ("thermal" or "fumed") silica, and (3) chemically or physically modified silica. According to the different physicochemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no study

  9. Health hazards due to the inhalation of amorphous silica

    International Nuclear Information System (INIS)

    Merget, R.; Bruening, T.; Bauer, T.; Kuepper, H.U.; Breitstadt, R.; Philippou, S.; Bauer, H.D.

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no

  10. Depressurization amorphization of single-crystal boron carbide.

    Science.gov (United States)

    Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W

    2009-02-20

    We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices.

  11. New amorphous interface for precipitate nitrides in steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Kadkhodazadeh, Shima; Grumsen, Flemming Bjerg

    2014-01-01

    According to classical theories precipitate interfaces are described by their degree of coherency with the matrix, which affects their strengthening contribution. Investigations of nitride precipitate interfaces in 12% Cr steels with transmission electron microscopy have shown the nitrides...... to be enveloped in an amorphous shell a few nm thick, thus leaving them without any coherency with the matrix. The amorphous nature of the shells could be ascertained with high resolution microscopy and dark field techniques. When extracted from the ferrite matrix the amorphous shells were observed to crystallize...

  12. Transformation processes during annealing of Al-amorphous alloys

    International Nuclear Information System (INIS)

    Petrescu, N.; Petrescu, M.; Calin, M.; Jianu, A.D.; Fecioru, M.

    1993-01-01

    As the amorphous aluminum alloys represent the newest achievement in rapid solidification of Al-based high strength heat resistent materials, a study was undertaken on the amorphous alloys in the Al-RE-TM system, the rare-earth metal being a lanthanide mixture and the transition metal a Ni-Fe substitution in definite proportions. The decomposition on heating of the most highly alloyed amorphous alloy in the investigated series is characterized by differential thermal analysis, electron microscopy and X-ray diffraction. (orig.)

  13. Transformation processes during annealing of Al-amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Petrescu, N. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Petrescu, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Calin, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Jianu, A.D. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania) IFTM-Bucharest (Romania)); Fecioru, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania) DACIA Enterprise-Bucharest (Romania))

    1993-11-01

    As the amorphous aluminum alloys represent the newest achievement in rapid solidification of Al-based high strength heat resistent materials, a study was undertaken on the amorphous alloys in the Al-RE-TM system, the rare-earth metal being a lanthanide mixture and the transition metal a Ni-Fe substitution in definite proportions. The decomposition on heating of the most highly alloyed amorphous alloy in the investigated series is characterized by differential thermal analysis, electron microscopy and X-ray diffraction. (orig.).

  14. Density measurement of amorphous SixGe1-x alloys

    International Nuclear Information System (INIS)

    Laaziri, K.; Roorda, S.; Cliche, L.

    1994-01-01

    The atomic density of amorphous Si x Ge 1-x alloys (x = 1, 0.85, 0.67, 0.50, 0.20 and 0) has been measured. Mono-crystalline Si x Ge 1-x layers were implanted with 1.50-2.75 MeV Si 2+ and Ge 2+ ions to produce the amorphous material. Using surface profilometry and RBS/channeling, it was found that amorphous alloys are less dense than the crystalline alloys, and that Vegard's law underestimates the a-Si x Ge 1-x density. (orig.)

  15. Amorphization of C-implanted Fe(Cr) alloys

    International Nuclear Information System (INIS)

    Knapp, J.A.; Follstaedt, D.M.; Sorensen, N.R.; Pope, L.E.

    1991-01-01

    The amorphous phase formed by implanting C into Fe alloyed with Cr, which is a prototype for the amorphous phase formed by implanting C into stainless steels, is compared to that formed by implanting C and Ti into Fe and steels. The composition range of the phase has been examined; higher Cr and C concentrations are required than needed with Ti and C. The friction and wear benefits obtained by implanting stainless steels with C only do not persist for the long durations and high wear loads found with Ti and C. However, the amorphous Fe-Cr-C alloys exhibit good aqueous corrosion resistance. (orig.)

  16. The composition of secondary amorphous phases under different environmental conditions

    Science.gov (United States)

    Smith, R.; Rampe, E. B.; Horgan, B. H. N.; Dehouck, E.; Morris, R. V.

    2017-12-01

    X-ray diffraction (XRD) patterns measured by the CheMin instrument on the Mars Science Laboratory Curiosity rover demonstrate that amorphous phases are major components ( 15-60 wt%) of all rock and soil samples in Gale Crater. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., silica, ferrihydrite) phases. Secondary amorphous phases are frequently found as weathering products in soils on Earth, but these materials remain poorly characterized. Here we study a diverse suite of terrestrial samples including: sediments from recently de-glaciated volcanoes (Oregon), modern volcanic soils (Hawaii), and volcanic paleosols (Oregon) in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of amorphous phases. We combine bulk XRD mineralogy with bulk chemical compositions (XRF) to calculate the abundance and bulk composition of the amorphous materials in our samples. We then utilize scanning transmission electron microscopy (STEM) and energy dispersive x-ray spectroscopy (EDS) to study the composition of individual amorphous phases at the micrometer scale. XRD analyses of 8 samples thus far indicate that the abundance of amorphous phases are: modern soils (20-80 %) > paleosols (15-40 %) > glacial samples (15-30 %). Initial calculations suggest that the amorphous components consist primarily of SiO2, Al2O3, TiO2, FeO and Fe2O3, with minor amounts of other oxides (e.g., MgO, CaO, Na2O). Compared to their respective crystalline counterparts, calculations indicate bulk amorphous components enriched in SiO2 for the glacial sample, and depleted in SiO2 for the modern soil and paleosol samples. STEM analyses reveal that the amorphous components consist of a number of different phases. Of the two samples analyzed using STEM thus far, the secondary amorphous phases have compositions with varying ratios of SiO2, Al2O3, TiO2, and Fe-oxides, consistent with mass

  17. Amorphous photonic crystals with only short-range order.

    Science.gov (United States)

    Shi, Lei; Zhang, Yafeng; Dong, Biqin; Zhan, Tianrong; Liu, Xiaohan; Zi, Jian

    2013-10-04

    Distinct from conventional photonic crystals with both short- and long-range order, amorphous photonic crystals that possess only short-range order show interesting optical responses owing to their unique structural features. Amorphous photonic crystals exhibit unique light scattering and transport, which lead to a variety of interesting phenomena such as isotropic photonic bandgaps or pseudogaps, noniridescent structural colors, and light localization. Recent experimental and theoretical advances in the study of amorphous photonic crystals are summarized, focusing on their unique optical properties, artificial fabrication, bionspiration, and potential applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of large area, high efficiency amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K.S.; Kim, S.; Kim, D.W. [Yu Kong Taedok Institute of Technology (Korea, Republic of)

    1996-02-01

    The objective of the research is to develop the mass-production technologies of high efficiency amorphous silicon solar cells in order to reduce the costs of solar cells and dissemination of solar cells. Amorphous silicon solar cell is the most promising option of thin film solar cells which are relatively easy to reduce the costs. The final goal of the research is to develop amorphous silicon solar cells having the efficiency of 10%, the ratio of light-induced degradation 15% in the area of 1200 cm{sup 2} and test the cells in the form of 2 Kw grid-connected photovoltaic system. (author) 35 refs., 8 tabs., 67 figs.

  19. Lithium adsorption on amorphous aluminum hydroxides and gibbsite

    OpenAIRE

    Prodromou, Konstantinos P.

    2016-01-01

    Lithium (Li) adsorption on both amorphous aluminum hydroxides and gibbsite was studied. For the amorphous Al(OH)3 the adsorption was found to be pH dependent. Generally, 1.6 times more Li was adsorbed at initial pH value 8.0 compared with pH value 6.50. Gibbsite adsorbed 11.6 to 45.5 times less Li quantities compared with amorphous Al(OH)3. Lithium adsorption was not depended on equilibrium times. It remained stable for all equilibrium times used. Lithium quantities extracted with 1N CH3COONH...

  20. Measurement of the saturation magnetostriction constant of amorphous wire

    International Nuclear Information System (INIS)

    Mitra, A.; Vazquez, M.

    1990-01-01

    Measurement of the magnetostriction constant of amorphous wire by conventional techniques is very difficult because of its small diameter. However, accurate determination of the magnetostriction constant is important in the study of amorphous wires. Here the saturation magnetostriction constant (λ s ) for a low-magnetostriction amorphous wire of nominal composition (Fe 6.3 Co 92.7 Nb 1 ) 77.5 Si 7.5 B 15 has been determined by means of the small-angle magnetization-rotation method. λ s has been evaluated to be 2.1x10 -7 for its as-received state. The dependence of thermal treatment is also reported

  1. Nanostructured organic and hybrid solar cells.

    Science.gov (United States)

    Weickert, Jonas; Dunbar, Ricky B; Hesse, Holger C; Wiedemann, Wolfgang; Schmidt-Mende, Lukas

    2011-04-26

    This Progress Report highlights recent developments in nanostructured organic and hybrid solar cells. The authors discuss novel approaches to control the film morphology in fully organic solar cells and the design of nanostructured hybrid solar cells. The motivation and recent results concerning fabrication and effects on device physics are emphasized. The aim of this review is not to give a summary of all recent results in organic and hybrid solar cells, but rather to focus on the fabrication, device physics, and light trapping properties of nanostructured organic and hybrid devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Solar Cells Having a Nanostructured Antireflection Layer

    DEFF Research Database (Denmark)

    2013-01-01

    An solar cell having a surface in a first material is provided, the optical device having a non-periodic nanostructure formed in the surface, the nanostructure comprising a plurality of cone -haped structures wherein the cones are distributed non-periodically on the surface and have a random height...... distribution, at least a part of the cone-shaped structures having a height of at least 100 nm. The first material may be SiC or GaN. A method of manufacturing a non-periodic nanostructured surface on a solar cell, is furthermore provided, the method comprising the steps of providing a surface comprising Si...

  3. Nanostructured transparent conducting oxide electrochromic device

    Science.gov (United States)

    Milliron, Delia; Tangirala, Ravisubhash; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2016-05-17

    The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.

  4. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  5. Elucidating the atomistic mechanisms underpinning plasticity in Li-Si nanostructures

    Science.gov (United States)

    Yan, Xin; Gouissem, Afif; Guduru, Pradeep R.; Sharma, Pradeep

    2017-10-01

    Amorphous lithium-silicon (a-Li-Si), especially in nanostructure form, is an attractive high-capacity anode material for next-generation Li-ion batteries. During cycles of charging and discharging, a-Li-Si undergoes substantive inelastic deformation and exhibits microcracking. The mechanical response to repeated lithiation-delithiation eventually results in the loss of electrical contact and consequent decrease of capacity, thus underscoring the importance of studying the plasticity of a-Li-Si nanostructures. In recent years, a variety of phenomenological continuum theories have been introduced that purport to model plasticity and the electro-chemo-mechanical behavior of a-Li-Si. Unfortunately, the micromechanisms and atomistic considerations underlying plasticity in Li-Si material are not yet fully understood and this impedes the development of physics-based constitutive models. Conventional molecular dynamics, although extensively used to study this material, is grossly inadequate to resolve this matter. As is well known, conventional molecular dynamics simulations can only address phenomena with characteristic time scales of (at most) a microsecond. Accordingly, in such simulations, the mechanical behavior is deduced under conditions of very high strain rates (usually, 108s-1 or even higher). This limitation severely impacts a realistic assessment of rate-dependent effects. In this work, we attempt to circumvent the time-scale bottleneck of conventional molecular dynamics and provide novel insights into the mechanisms underpinning plastic deformation of Li-Si nanostructures. We utilize an approach that allows imposition of slow strain rates and involves the employment of a new and recently developed potential energy surface sampling method—the so-called autonomous basin climbing—to identify the local minima in the potential energy surface. Combined with other techniques, such as nudged elastic band, kinetic Monte Carlo and transition state theory, we assess

  6. The Structure and Properties of Silica Glass Nanostructures using Novel Computational Systems

    Science.gov (United States)

    Doblack, Benjamin N.

    The structure and properties of silica glass nanostructures are examined using computational methods in this work. Standard synthesis methods of silica and its associated material properties are first discussed in brief. A review of prior experiments on this amorphous material is also presented. Background and methodology for the simulation of mechanical tests on amorphous bulk silica and nanostructures are later presented. A new computational system for the accurate and fast simulation of silica glass is also presented, using an appropriate interatomic potential for this material within the open-source molecular dynamics computer program LAMMPS. This alternative computational method uses modern graphics processors, Nvidia CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model select materials, this enhancement allows the addition of accelerated molecular dynamics simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal of this project is to investigate the structure and size dependent mechanical properties of silica glass nanohelical structures under tensile MD conditions using the innovative computational system. Specifically, silica nanoribbons and nanosprings are evaluated which revealed unique size dependent elastic moduli when compared to the bulk material. For the nanoribbons, the tensile behavior differed widely between the models simulated, with distinct characteristic extended elastic regions. In the case of the nanosprings simulated, more clear trends are observed. In particular, larger nanospring wire cross-sectional radii (r) lead to larger Young's moduli, while larger helical diameters (2R) resulted in smaller Young's moduli. Structural transformations and theoretical models are also analyzed to identify

  7. nanostructures

    Indian Academy of Sciences (India)

    Wintec

    collected at the bottom of the cell after electrolysis at 2 V for 1 h, (b) is the representative TEM micro- graph of dense Cu2O network of nanowires, obtained after electrolysis at 6 and 10 V, respectively for 1 h and (c) is the X-ray diffraction of the as obtained materials at the bottom of the electrolytic cell after electrolysis at 6 V.

  8. Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, R., E-mail: rambrosi@uacj.mx [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Moreno, M.; Torres, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Carrillo, A. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Vivaldo, I.; Cosme, I. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Heredia, A. [Universidad Popular Autónoma del Estado de Puebla, Puebla (Mexico)

    2015-09-15

    Highlights: • Nanostructured silicon thin films were deposited by PECVD. • Polymorphous and microcrystalline were obtained varying the pressure and power. • Structural and optoelectronics properties were studied. • The σ{sub dark} changed by 5 order of magnitude under illumination, V{sub d} was at 2.5 A/s. • The evidence of embedded nanocrystals into the amorphous matrix was investigated. - Abstract: Amorphous silicon thin films with embedded nanocrystals and microcrystalline silicon were deposited by the standard Radio Frequency (RF) Plasma Enhanced Chemical Vapor Deposition (PECVD) technique, from SiH{sub 4}, H{sub 2}, Ar gas mixture at substrate temperature of 200 °C. Two series of films were produced varying deposition parameters as chamber pressure and RF power density. The chemical bonding in the films was characterized by Fourier transform infrared spectroscopy, where it was observed a correlation between the hydrogen content and the morphological and electrical properties in the films. Electrical and optical parameters were extracted in both series of films, as room temperature conductivity (σ{sub RT}), activation energy (E{sub a}), and optical band gap (E{sub g}). As well, structural analysis in the films was performed by Raman spectroscopy and Atomic Force Microscopy (AFM), which gives an indication of the films crystallinity. The photoconductivity changed in a range of 2 and 6 orders of magnitude from dark to AM 1.5 illumination conditions, which is of interest for thin film solar cells applications.

  9. Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells

    International Nuclear Information System (INIS)

    Ambrosio, R.; Moreno, M.; Torres, A.; Carrillo, A.; Vivaldo, I.; Cosme, I.; Heredia, A.

    2015-01-01

    Highlights: • Nanostructured silicon thin films were deposited by PECVD. • Polymorphous and microcrystalline were obtained varying the pressure and power. • Structural and optoelectronics properties were studied. • The σ dark changed by 5 order of magnitude under illumination, V d was at 2.5 A/s. • The evidence of embedded nanocrystals into the amorphous matrix was investigated. - Abstract: Amorphous silicon thin films with embedded nanocrystals and microcrystalline silicon were deposited by the standard Radio Frequency (RF) Plasma Enhanced Chemical Vapor Deposition (PECVD) technique, from SiH 4 , H 2 , Ar gas mixture at substrate temperature of 200 °C. Two series of films were produced varying deposition parameters as chamber pressure and RF power density. The chemical bonding in the films was characterized by Fourier transform infrared spectroscopy, where it was observed a correlation between the hydrogen content and the morphological and electrical properties in the films. Electrical and optical parameters were extracted in both series of films, as room temperature conductivity (σ RT ), activation energy (E a ), and optical band gap (E g ). As well, structural analysis in the films was performed by Raman spectroscopy and Atomic Force Microscopy (AFM), which gives an indication of the films crystallinity. The photoconductivity changed in a range of 2 and 6 orders of magnitude from dark to AM 1.5 illumination conditions, which is of interest for thin film solar cells applications

  10. Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations

    Science.gov (United States)

    Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei

    2017-02-01

    Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiCxO6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young’s modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young’s modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions.

  11. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ferreira, Nildemar A.M.; Rumbao, Ana Carolina S. Coutinho; Lazar, Dolores R.R.; Ussui, Valter

    2009-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150°C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  12. Nanostructured systems with GMR behaviour

    CERN Document Server

    Bergenti, I; Savini, L; Bonetti, E; Bosco, E; Baricco, M

    2002-01-01

    Fe/Fe-oxide core-shell systems obtained by inert-gas condensation and Au sub 8 sub 0 Fe sub 2 sub 0 nanostructured alloys prepared by fast-quenching techniques followed by thermal treatment have been studied by polarised small-angle neutron scattering (SANS). The particle-size distribution was derived from the fit of the scattering curves. In the core-shell samples, the results support the model of a magnetic iron core surrounded by a surface layer (oxide shell) with a reduced magnetisation. The SANS measurements on the Au sub 8 sub 0 Fe sub 2 sub 0 alloys do not show any appreciable magnetic signal, indicating that the iron precipitates have a superparamagnetic behaviour. Thermal treatment induces the formation of small precipitates of atomic size. (orig.)

  13. Optical Characterization of Nanostructured Surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft

    Micro- and nanostructured surfaces are interesting due to the unique properties they add to the bulk material. One example is structural colors, where the interaction between surface structures and visible light produce bright color effects without the use of paints or dyes. Several research groups...... modeling to evaluate the dimensions of subwavelength gratings, by correlating the reflected light measured from the structures with a database of simulations. A new method is developed and termed color scatterometry, since compared to typical spectroscopic scatterometry, which evaluates the full reflection...... spectrum; the new method only evaluates the color of the reflected light using a standard RGB color camera. Color scatterometry provides the combined advantages of spectroscopic scatterometry, which provides fast evaluations, and imaging scatterometry that provides an overview image from which small...

  14. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, W.K.; Ferreira, N.A.M.; Lazar, D.R.R.; Ussui, V.; Rumbao, A.C.S.

    2011-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150 deg C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  15. Precipitation of Co(2+) carbonates from aqueous solution: insights on the amorphous to crystalline transformation.

    Science.gov (United States)

    González-López, Jorge; Fernández-González, Ángeles; Jiménez, Amalia

    2016-04-01

    water content. It was surprising the low solubility product (Ksp) of the new phase Co2CO3(OH)2 in the order of 10-30 and this could explain its appearance only after 7 days of aging. On the other hand, the high solubility product of amorphous is consistent with its instantaneous precipitation at the beginning of the reaction. Solution calorimetry shows a higher value of exothermic solution enthalpy for crystalline cobalt hydroxide carbonate and hence, the solubility result are confirmed. Although geochemical models indicated that aqueous solution was supersaturated with respect both phases, the sequence of obtained phases (first amorphous and next crystalline) indicate that the evolution of the saturation index has to be dropped with respect to amorphous phase with time. These results points towards a simultaneous dissolution of the amorphous and the precipitation of crystalline phase Co2CO3(OH)2 at the first stages of the reaction. González-López, J. ; Fernández-González, Á. ; Jiménez, A. (2015) Prepublication: Crystallization of nanostructured cobalt hydroxide carbonate at ambient conditions: a key precursor of Co3O4. DOI: http://dx.doi.org/10.1180/minmag.2015.079.7.02

  16. Directional amorphization of boron carbide subjected to laser shock compression.

    Science.gov (United States)

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A; LaSalvia, Jerry C; Wehrenberg, Christopher E; Behler, Kristopher D; Meyers, Marc A

    2016-10-25

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.

  17. Hydrogen-free amorphous silicon with no tunneling states.

    Science.gov (United States)

    Liu, Xiao; Queen, Daniel R; Metcalf, Thomas H; Karel, Julie E; Hellman, Frances

    2014-07-11

    The ubiquitous low-energy excitations, known as two-level tunneling systems (TLSs), are one of the universal phenomena of amorphous solids. Low temperature elastic measurements show that e-beam amorphous silicon (a-Si) contains a variable density of TLSs which diminishes as the growth temperature reaches 400 °C. Structural analyses show that these a-Si films become denser and more structurally ordered. We conclude that the enhanced surface energetics at a high growth temperature improved the amorphous structural network of e-beam a-Si and removed TLSs. This work obviates the role hydrogen was previously thought to play in removing TLSs in the hydrogenated form of a-Si and suggests it is possible to prepare "perfect" amorphous solids with "crystal-like" properties for applications.

  18. Synthesis and characterization of amorphous cellulose from triacetate of cellulose

    International Nuclear Information System (INIS)

    Vega-Baudrit, Jose; Sibaja, Maria; Nikolaeva, Svetlana; Rivera A, Andrea

    2014-01-01

    It was carried-out a study for the synthesis and characterization of amorphous cellulose starting from cellulose triacetate. X-rays diffraction was used in order to obtain the cellulose crystallinity degree, also infrared spectroscopy FTIR was used. (author)

  19. Crystallization of HWCVD amorphous silicon thin films at elevated temperatures

    CSIR Research Space (South Africa)

    Muller, TFG

    2006-01-01

    Full Text Available Hot-wire chemical vapour deposition (HWCVD) has been used to prepare both hydrogenated amorphous silicon (a-Si:H) and nano/ microcrystalline thin layers as intrinsic material at different deposition conditions, in order to establish optimum...

  20. Structural observation of amorphous alloys by neutron diffraction

    International Nuclear Information System (INIS)

    Fukunaga, Toshiharu; Itoh, Keiji

    2006-01-01

    Neutron diffraction is a powerful tool to elucidate the atomic arrangement of amorphous alloys because of characteristic scattering lengths of constituent elements. For hydrogen absorption amorphous alloys H/D isotopic substitution was employed to observe the location of deuterium atoms because the neutron coherent scattering length of deuterium is large enough to observe in comparison with those of the constituent atoms. Moreover, Reverse Monte Carlo (RMC) modeling has been recognized to be an excellent method for visualizing the three-dimensional atomic arrangement of amorphous alloys, based on the results of neutron and X-ray diffraction experiments. Therefore, the combination of neutron, X-ray diffraction experiments and the RMC modeling was used to clarify the topological characteristics of the structure of amorphous alloys. (author)

  1. Hall Mobility of Amorphous Ge2Sb2Te5

    National Research Council Canada - National Science Library

    Baily, S. A; Emin, David; Li, Heng

    2006-01-01

    The electrical conductivity, Seebeck coefficient, and Hall coefficient of 3 micron thick films of amorphous Ge2Sb2Te5 have been measured as functions of temperature from room temperature down to as low as 200 K...

  2. Directional amorphization of boron carbide subjected to laser shock compression

    Science.gov (United States)

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.

    2016-10-01

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45˜50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C.

  3. Amorphous silicon films doped with BF3 and PF5

    International Nuclear Information System (INIS)

    Ortiz, A.; Muhl, S.; Sanchez, A.; Monroy, R.; Pickin, W.

    1984-01-01

    By using gaseous discharge process, thin films of hydrogenated amorphous silicon (a-Si:H) were produced. This process consists of Silane (SiH 4 ) decomposition at low pressure, in a chamber. (A.C.A.S.) [pt

  4. Amorphous and nanocrystalline materials preparation, properties, and applications

    CERN Document Server

    Inoue, A

    2001-01-01

    Amorphous and nanocrystalline materials are a class of their own. Their properties are quite different to those of the corresponding crystalline materials. This book gives systematic insight into their physical properties, structure, behaviour, and design for special advanced applications.

  5. Local order and magnetism of amorphous and disordered solids

    International Nuclear Information System (INIS)

    Friedt, J.M.

    1985-01-01

    Some topics related with the magnetic properties and local order in amorphous and disordered solids studied by Moessbauer spectroscopy, EXAFS, static and dynamical susceptibilities are presented. (L.C.) [pt

  6. Designed synthesis of tunable amorphous carbon nanotubes (a ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Designed synthesis of tunable amorphous carbon nanotubes (a-CNTs) by a novel route and their oxidation resistance properties by Longlong. Xu et al (pp 1397–1402).

  7. Stray field interaction of stacked amorphous tapes

    International Nuclear Information System (INIS)

    Guenther, Wulf; Flohrer, Sybille

    2008-01-01

    In this study, magnetic cores made of amorphous rectangular tape layers are investigated. The quality factor Q of the tape material decreases rapidly, however, when stacking at least two tape layers. The hysteresis loop becomes non-linear, and the coercivity increases. These effects are principally independent of the frequency and occur whether tape layers are insulated or not. The Kerr-microscopy was used to monitor local hysteresis loops by varying the distance of two tape layers. The magnetization direction of each magnetic domain is influenced by the anisotropy axis, the external magnetic field and the stray field of magnetic domains of the neighboring tape layers. We found that crossed easy axes (as the extreme case for inclined axes) of congruent domains retain the remagnetization and induce a plateau of the local loop. Summarizing local loops leads to the observed increase of coercivity and non-linearity of the inductively measured loop. A high Q-factor can be preserved if the easy axes of stacked tape layers are identical within the interaction range in the order of mm

  8. Sustained-release amorphous solid dispersions.

    Science.gov (United States)

    Maincent, Julien; Williams, Robert O

    2018-03-01

    The use of amorphous solid dispersions (ASD) to overcome poor drug solubility has gained interest in the pharmaceutical industry over the past decade. ASDs are challenging to formulate because they are thermodynamically unstable, and the dispersed drugs tend to recrystallize. Until now, most research on ASDs has focused on immediate-release formulations, supersaturation, and stability; only a few studies have recently reported on the manufacturing of sustained-release ASDs. Sustained-release ASDs can minimize the frequency of administration and prevent high concentrations that can lead to toxicity. Sustained-release ASDs can also decrease the reprecipitation rate in the medium, which can lead to increased bioavailability. However, sustained-release ASDs also pose some significant challenges, such as intramatrix recrystallization, inhibition of drug release as a result of drug-polymer gelling, and low supersaturation due to a slow dissolution rate. This review details the challenges and the formulation approaches that have been investigated to manufacture sustained-release ASDs. In particular, the advantages and drawbacks of hydrophilic polymers, hydrophobic polymers, and lipid-based systems are discussed.

  9. Amorphous Silicon: Flexible Backplane and Display Application

    Science.gov (United States)

    Sarma, Kalluri R.

    Advances in the science and technology of hydrogenated amorphous silicon (a-Si:H, also referred to as a-Si) and the associated devices including thin-film transistors (TFT) during the past three decades have had a profound impact on the development and commercialization of major applications such as thin-film solar cells, digital image scanners and X-ray imagers and active matrix liquid crystal displays (AMLCDs). Particularly, during approximately the past 15 years, a-Si TFT-based flat panel AMLCDs have been a huge commercial success. a-Si TFT-LCD has enabled the note book PCs, and is now rapidly replacing the venerable CRT in the desktop monitor and home TV applications. a-Si TFT-LCD is now the dominant technology in use for applications ranging from small displays such as in mobile phones to large displays such as in home TV, as well-specialized applications such as industrial and avionics displays.

  10. Synthesis of Siloxanes Directly from Amorphous Silica

    International Nuclear Information System (INIS)

    Myint Sandar Win

    2011-12-01

    A direct synthesis of oligomeric-siloxanes from amorphous silica has been achieved. The compound prepared was caedonal-siloxane. Cardonal is a mono hydroxyphenolic compound with a bulky group in the meta position. It was derived as a by-product from the renewable resources cashew nut shell liquid (CNSL). In the synthesis, one pot synthesis was carried out by using ethylene glycol (EG) as solvent. In the reaction ethylene glycol served as a primary precursor chelating ligand in the synthesised product. The one pot synthesis was enhanced by the strong base, triethylenetetramine (TETA) which served as the promoter catalyst. In the synthesis, optimal conditions were established on the basic of the yield percent of organo-siloxane compounds with respect to the variation of the weight fraction of TETA and to the variation of reaction time. Experimental runs were carried out at (ca 210 2c) which was nearly above the boiling point of the solvent. The substituted organo-silicon compounds obtained were characterized by FT- ir, Thermal analysis, XRD and SEM.

  11. Mechanical Performance of Amorphous Metallic Cellular Structures

    Science.gov (United States)

    Schramm, Joseph P.

    Metallic glass and metallic glass matrix composites are excellent candidates for application in cellular structures because of their outstanding plastic yield strengths and their ability to deform plastically prior to fracture. The mechanical performance of metallic-glass and metallic-glass-matrix-composite honeycomb structures are discussed, and their strength and energy absorption capabilities examined in quasi-static compression tests for both in-plane and out-of-plane loading. These structures exhibit strengths and energy absorption that well exceed the performance of similar structures made from crystalline metals. The strength and energy absorption capabilities of amorphous metal foams produced by a powder metallurgy process are also examined, showing that foams produced by this method can be highly porous and are able to inherit the strength of the parent metallic glass and absorb large amounts of energy. The mechanical properties of a highly stochastic set of foams are examined at low and high strain rates. It is observed that upon a drastic increase in strain rate, the dominant mechanism of yielding for these foams undergoes a change from elastic buckling to plastic yielding. This mechanism change is thought to be the result of the rate of the mechanical test approaching or even eclipsing the speed of elastic waves in the material.

  12. Porphyrin-Based Nanostructures for Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Yingzhi Chen

    2016-03-01

    Full Text Available Well-defined organic nanostructures with controllable size and morphology are increasingly exploited in optoelectronic devices. As promising building blocks, porphyrins have demonstrated great potentials in visible-light photocatalytic applications, because of their electrical, optical and catalytic properties. From this perspective, we have summarized the recent significant advances on the design and photocatalytic applications of porphyrin-based nanostructures. The rational strategies, such as texture or crystal modification and interfacial heterostructuring, are described. The applications of the porphyrin-based nanostructures in photocatalytic pollutant degradation and hydrogen evolution are presented. Finally, the ongoing challenges and opportunities for the future development of porphyrin nanostructures in high-quality nanodevices are also proposed.

  13. Second harmonic spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Yu, Ping; Bozhevolnyi, Sergey I.

    1999-01-01

    Semiconductor nanostructures and their application to optoelectronic devices have attracted much attention recently. Lower-dimensional structures, and in particular quantum dots, are highly anisotropic resulting in broken symmetry as compared to their bulk counterparts. This is not only reflected...

  14. Nanostructure Science and Technology. A Worldwide Study

    National Research Council Canada - National Science Library

    Siegel, Richard

    1999-01-01

    ... and other leading industrialized countries. Topics covered include particle synthesis and assembly, dispersions and coatings of nanoparticles, high surface area materials, functional nanoscale devices, bulk behavior of nanostructured materials...

  15. Optical Biosensors Based on Semiconductor Nanostructures

    Directory of Open Access Journals (Sweden)

    Raúl J. Martín-Palma

    2009-06-01

    Full Text Available The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented.

  16. Sulfated glycopeptide nanostructures for multipotent protein activation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng; Álvarez, Zaida; Sleep, Eduard; Chun, Danielle S.; Weiner, Joseph A.; Cook, Ralph W.; Freshman, Ryan D.; Schallmo, Michael S.; Katchko, Karina M.; Schneider, Andrew D.; Smith, Justin T.; Yun, Chawon; Singh, Gurmit; Hashmi, Sohaib Z.; McClendon, Mark T.; Yu, Zhilin; Stock, Stuart R.; Hsu, Wellington K.; Hsu, Erin L.; Stupp , Samuel I. (NWU)

    2017-06-19

    Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.

  17. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau

    2017-08-03

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures extending from the HNWs.

  18. Carbon Nanostructures Containing Polyhedral Oligomeric Silsesquioxanes (POSS)

    NARCIS (Netherlands)

    Potsi, Georgia; Rossos, Andreas; Kouloumpis, Antonios; Antoniou, Myrsini K.; Spyrou, Konstantinos; Karakassides, Michael A.; Gournis, Dimitrios; Rudolf, Petra

    2015-01-01

    This mini review describes the synthesis and properties of carbon nanostructures containing organic-inorganic cage-like polyhedral oligomeric silsesquioxane (POSS). The physical and chemical functionalization of carbon nanomaterials such as graphene, graphene oxide, carbon nanotubes, and fullerenes

  19. Nanostructured Materials: Symthesis in Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuehe; Ye, Xiangrong; Wai, Chien M.

    2009-03-24

    This chapter summarizes the recent developent of synthesis and characterization of nanostructured materials synthesized in supercritical fluids. Nanocomposite catalysts such as Pt and Pd on carbon nanotube support have been synthesized and used for fuel cell applications.

  20. Chemical modifications and reactions in DNA nanostructures

    DEFF Research Database (Denmark)

    Gothelf, Kurt Vesterager

    2017-01-01

    provides rich opportunity to incorporate molecules, biomolecules, and a variety of nanomaterials in specific positions on DNA nanostructures. Several standard modifications for oligonucleotides are available commercially, such as dyes, biotin, and chemical handles, and such modified oligonucleotides can...

  1. Noise and dissipation in magnetoelectronic nanostructures

    NARCIS (Netherlands)

    Foros, J.; Brataas, A.; Bauer, G.E.W.; Tserkovnyak, Y.

    2009-01-01

    The interplay between current and magnetization fluctuations and dissipation in layered-ferromagnetic-normal-metal nanostructures is investigated. We use scattering theory and magnetoelectronic circuit theory to calculate charge and spin-current fluctuations. Via the spin-transfer torque,

  2. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Directory of Open Access Journals (Sweden)

    Zheng eRen

    2013-11-01

    Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  3. Nanostructures for Electrical Energy Storage (NEES) EFRC

    Data.gov (United States)

    Federal Laboratory Consortium — The Nanostructures for Electrical Energy Storage (NEES) EFRC is a multi-institutional research center, one of 46 Energy Frontier Research Centers established by the...

  4. Probing plasmonic nanostructures by photons and electrons

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Harald; Kneipp, Janina

    2015-01-01

    We discuss recent developments for studying plasmonic metal nanostructures. Exploiting photons and electrons opens up new capabilities to probe the complete plasmon spectrum including bright and dark modes and related local optical fields at subnanometer spatial resolution. This comprehensive...

  5. Metallic Nanostructures Based on DNA Nanoshapes

    Directory of Open Access Journals (Sweden)

    Boxuan Shen

    2016-08-01

    Full Text Available Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects.

  6. Poly(hydridocarbyne as Highly Processable Insulating Polymer Precursor to Micro/Nanostructures and Graphite Conductors

    Directory of Open Access Journals (Sweden)

    Aaron M. Katzenmeyer

    2009-01-01

    Full Text Available Carbon-based electronic materials have received much attention since the discovery and elucidation of the properties of the nanotube, fullerene allotropes, and conducting polymers. Amorphous carbon, graphite, graphene, and diamond have also been the topics of intensive research. In accordance with this interest, we herein provide the details of a novel and facile method for synthesis of poly(hydridocarbyne (PHC, a preceramic carbon polymer reported to undergo a conversion to diamond-like carbon (DLC upon pyrolysis and also provide electrical characterization after low-temperature processing and pyrolysis of this material. The results indicate that the strongly insulating polymer becomes notably conductive in bulk form upon heating and contains interspersed micro- and nanostructures, which are the subject of ongoing research.

  7. Influence of measuring temperature in size dependence of coercivity in nanostructured alloys

    International Nuclear Information System (INIS)

    Lopez, M.; Marin, P.; Kulik, T.; Hernando, A.

    2005-01-01

    An increase of coercive field with decreasing particle size has been observed in ball milled nanocomposite of Fe-rich nanocrystals embedded in an amorphous matrix. Previous works (J. Appl. Phys. 64 (1998) 6044) have concluded that for high lattice strain, , the increase of coercivity is due to the magnetoelastic anisotropy generated by . Even though other effects can also be involved, the experimental results seem to indicate that the influence of the particle size on the average structural anisotropy noticeably contributes to the hardening observed for low . The influence of measuring temperature in size dependence of coercivity in nanostructured alloys has been analyzed. Some analogies and differences in respect of that observed in partially nanocrystallized samples have been found

  8. Structure and Properties of Amorphous Transparent Conducting Oxides

    Science.gov (United States)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The

  9. Monte Carlo Simulation of Random-Anisotropy Amorphous Magnets

    Science.gov (United States)

    Bondarev, A. V.; Bataronov, I. L.

    2018-01-01

    Using the Monte Carlo method, within the frame of the Heisenberg model, we studies the magnetic properties of amorphous Tb. The relaxation of magnetization of the model of amorphous Tb was studied. We stablished that the relaxation goes in two stages. On the first stage the magnetization sharply decreases by some amount ΔMz , on the second stage the magnetization decreases with time according to the logarithmic law. The possible mechanisms of relaxation is discussed.

  10. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Wang, Ke-Yao; Foster, Amy C

    2015-01-01

    We demonstrate optical parametric amplification operating at GHz-rates at telecommunications wavelengths using a hydrogenated amorphous silicon waveguide through the nonlinear optical process of four-wave mixing. We investigate how the parametric amplification scales with repetition rate. The ability to achieve amplification at GHz-repetition rates shows hydrogenated amorphous silicon’s potential for telecommunication applications and a GHz-rate optical parametric oscillator. (paper)

  11. Electromagnetic stress tensor for an amorphous metamaterial medium

    Science.gov (United States)

    Wang, Neng; Wang, Shubo; Ng, Jack

    2018-03-01

    We analytically and numerically investigated the internal optical forces exerted by an electromagnetic wave inside an amorphous metamaterial medium. We derived, by using the principle of virtual work, the Helmholtz stress tensor, which takes into account the electrostriction effect. Several examples of amorphous media are considered, and different electromagnetic stress tensors, such as the Einstein-Laub tensor and Minkowski tensor, are also compared. It is concluded that the Helmholtz stress tensor is the appropriate tensor for such systems.

  12. Thermal decomposition of silane to form hydrogenated amorphous Si film

    Science.gov (United States)

    Strongin, Myron; Ghosh, Arup K.; Wiesmann, Harold J.; Rock, Edward B.; Lutz, III, Harry A.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silano (SiH.sub.4) or other gases comprising H and Si, at elevated temperatures of about 1700.degree.-2300.degree. C., and preferably in a vacuum of about 10.sup.-8 to 10.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseous mixture onto a substrate outside said source of thermal decomposition to form hydrogenated amorphous silicon.

  13. Domain Wall Mobility in Co-Based Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Maria Kladivova

    2007-01-01

    Full Text Available Dynamics of the domain wall between opposite circularly magnetized domains in amorphous cylindrical sample with circular easy direction is theoretically studied. The wall is driven by DC current. Various mechanisms which influence the wall velocity were taken into account: current magnitude, deformation of the mowing wall, Hall effect, axially magnetized domain in the middle of the wire. Theoretical results obtained are in a good agreement with experiments on Cobased amorphous ferromagnetic wires.

  14. Thermal decomposition of silane to form hydrogenated amorphous Si

    Science.gov (United States)

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  15. Directional amorphization of boron carbide subjected to laser shock compression

    OpenAIRE

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.

    2016-01-01

    When crystalline solids are stressed quasi-statically, dislocation slip, twinning, and phase transformations are the predominant mechanisms to dissipate the imparted elastic energy. Under shock, high hydrostatic and shear stresses promptly build up at the shock front, favoring fast energy dissipation mechanisms. Amorphization, which may only involve localized atomic arrangements, is therefore an additional potential candidate. Shock-induced amorphization has now been reported in various mater...

  16. Superconducting and normal properties of metallic amorphous systems

    International Nuclear Information System (INIS)

    Esquinazi, P.D.

    1983-02-01

    The superconducting and transport properties (superconducing critical temperature, superconducting critical currents, electric resistivity and thermal conductivity) of the amorphous alloys La 70 Cu 30 and Zr 70 Cu 30 prepared by melt spinning have been investigated. The modification of these properties when, the initial amorphous metals relax to other metastable state under thermal treatment at below crystallization temperatures, have also been studied. (M.E.L.) [es

  17. ZnO nanostructures and their applications

    CERN Document Server

    Xiaowei, Sun

    2011-01-01

    This book focuses on the various functional properties and potential applications of one-dimensional ZnO nanostructures, from basic principles to our most recent discoveries. It comprises experimental analysis of various properties of ZnO nanostructures, preparation techniques, research methods, and some promising applications. The areas of focus include ZnO-based gas/biochemical sensing devices, field emitters, solar cells, light-emitting diodes, e-papers, and single-nanowire-based transistors.

  18. Production of fullerenic nanostructures in flames

    Science.gov (United States)

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das

    1999-01-01

    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  19. Gold nanostructures and methods of use

    Science.gov (United States)

    Zhang, Jin Z [Santa Cruz, CA; Schwartzberg, Adam [Santa Cruz, CA; Olson, Tammy Y [Santa Cruz, CA

    2012-03-20

    The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.

  20. Nano-fabrication of depth-varying amorphous silicon crescent shell array for light trapping

    Science.gov (United States)

    Yang, Huan; Li, Ben Q.; Jiang, Xinbing; Yu, Wei; Liu, Hongzhong

    2017-12-01

    We report a new structure of depth controllable amorphous silicon (a-Si) crescent shells array, fabricated by the SiO2 monolayer array assisted deposition of a-Si by plasma enhanced chemical vapor deposition and nanosphere lithography, for high-efficiency light trapping applications. The depth of the crescent shell cavity was tailored by selective etching of a-Si layer of the SiO2/a-Si core/shell nanoparticle array with a varied etching time. The morphological changes of the crescent shells were examined by scanning electron microscopy and atomic force microscopy. A simple model is developed to describe the geometrical evolution of the a-Si crescent shells. Spectroscopic measurements and finite difference time domain simulations were conducted to examine the optical performance of the crescent shells. Results show that these nanostructures all have a broadband high efficiency absorption and that the light trapping capability of these crescent shell structures depends on the excitation of depths-regulated optical resonance modes. With an appropriate selection of process parameters, the structure of crescent a-Si shells may be fine-tuned to achieve an optimal light trapping capacity.

  1. Electron field emission from amorphous semiconductor thin films

    International Nuclear Information System (INIS)

    Forrest, R.D.

    2001-01-01

    The flat panel display market requires new and improved technologies in order to keep up with the requirements of modem lifestyles. Electron field emission from thin film amorphous semiconductors is potentially such a technology. For this technology to become viable, improvements in the field emitting properties of these materials must be achieved. To this end, it is important that a better understanding of the emission mechanisms responsible is attained. Amorphous carbon thin films, amorphous silicon thin films and other materials have been deposited, in-house and externally. These materials have been characterised using ellipsometry, profilometry, optical absorption, scanning electron microscopy, atomic force microscopy, electron paramagnetic resonance and Rutherford backscattering spectroscopy. An experimental system for evaluating the electron field emitting performance of thin films has been developed. In the process of developing thin film cathodes in this study, it has been possible to add a new and potentially more useful semiconductor, namely amorphous silicon, to the family of cold cathode emitters. Extensive experimental field emission data from amorphous carbon thin films, amorphous silicon thin films and other materials has been gathered. This data has been used to determine the mechanisms responsible for the observed electron emission. Preliminary computer simulations using appropriate values for the different material properties have exhibited emission mechanisms similar to those identified by experiment. (author)

  2. Nanostructured gold microelectrodes for extracellular recording

    Energy Technology Data Exchange (ETDEWEB)

    Brueggemann, Dorothea; Wolfrum, Bernhard; Maybeck, Vanessa; Offenhaeusser, Andreas [CNI Center of Nanoelectronic Systems for Information Technology and Institute of Bio- and Nanosystems 2, Forschungszentrum Juelich (Germany)

    2010-07-01

    Electrophysiological activity of electrogenic cells is currently recorded with planar bioelectronic interfaces such as microelectrode arrays (MEAs). In this work, a novel concept of biocompatible nanostructured gold MEAs for extracellular signal recording is presented. MEAs were fabricated using clean room technologies, e.g. photolithography and metallization. Subsequently, they were modified with gold nanopillars of approximately 300 to 400 nm in height and 60 nm width. The nanostructuring process was carried out with a template-assisted approach using nanoporous aluminium oxide. Impedance spectroscopy of the resulting nanostructures showed higher capacitances compared to planar gold. This confirmed the expected increase of the surface area via nanostructuring. We used the nanostructured microelectrodes to record extracellular potentials from heart muscle cells (HL1), which were plated onto the chips. Good coupling between the HL1 cells and the nanostructured electrodes was observed. The resulting signal-to-noise ratio of nanopillar-MEAs was increased by a factor of 2 compared to planar MEAs. In future applications this nanopillar concept can be adopted for distinct interface materials and coupling to cellular and molecular sensing components.

  3. Dissolution and storage stability of nanostructured calcium carbonates and phosphates for nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Posavec, Lidija; Knijnenburg, Jesper T. N., E-mail: jesper.knijnenburg@alumni.ethz.ch; Hilty, Florentine M. [ETH Zurich, Human Nutrition Laboratory, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology (Switzerland); Krumeich, Frank; Pratsinis, Sotiris E. [ETH Zurich, Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering (Switzerland); Zimmermann, Michael B. [ETH Zurich, Human Nutrition Laboratory, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology (Switzerland)

    2016-10-15

    Rapid calcium (Ca) dissolution from nanostructured Ca phosphate and carbonate (CaCO{sub 3}) powders may allow them to be absorbed in much higher fraction in humans. Nanosized Ca phosphate and CaCO{sub 3} made by flame-assisted spray pyrolysis were characterized by nitrogen adsorption, X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy. As-prepared nanopowders contained both CaCO{sub 3} and CaO, but storing them under ambient conditions over 130 days resulted in a complete transformation into CaCO{sub 3}, with an increase in both crystal and particle sizes. The small particle size could be stabilized against such aging by cation (Mg, Zn, Sr) and anion (P) doping, with P and Mg being most effective. Calcium phosphate nanopowders made at Ca:P ≤ 1.5 were XRD amorphous and contained γ-Ca{sub 2}P{sub 2}O{sub 7} with increasing hydroxyapatite content at higher Ca:P. Aging of powders with Ca:P = 1.0 and 1.5 for over 500 days gradually increased particle size (but less than for CaCO{sub 3}) without a change in phase composition or crystallinity. In 0.01 M H{sub 3}PO{sub 4} calcium phosphate nanopowders dissolved ≈4 times more Ca than micronsized compounds and about twice more Ca than CaCO{sub 3} nanopowders, confirming that nanosizing and/or amorphous structuring sharply increases Ca powder dissolution. Because higher Ca solubility in vitro generally leads to greater absorption in vivo, these novel FASP-made Ca nanostructured compounds may prove useful for nutrition applications, including supplementation and/or food fortification.

  4. Dissolution and storage stability of nanostructured calcium carbonates and phosphates for nutrition

    International Nuclear Information System (INIS)

    Posavec, Lidija; Knijnenburg, Jesper T. N.; Hilty, Florentine M.; Krumeich, Frank; Pratsinis, Sotiris E.; Zimmermann, Michael B.

    2016-01-01

    Rapid calcium (Ca) dissolution from nanostructured Ca phosphate and carbonate (CaCO 3 ) powders may allow them to be absorbed in much higher fraction in humans. Nanosized Ca phosphate and CaCO 3 made by flame-assisted spray pyrolysis were characterized by nitrogen adsorption, X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy. As-prepared nanopowders contained both CaCO 3 and CaO, but storing them under ambient conditions over 130 days resulted in a complete transformation into CaCO 3 , with an increase in both crystal and particle sizes. The small particle size could be stabilized against such aging by cation (Mg, Zn, Sr) and anion (P) doping, with P and Mg being most effective. Calcium phosphate nanopowders made at Ca:P ≤ 1.5 were XRD amorphous and contained γ-Ca 2 P 2 O 7 with increasing hydroxyapatite content at higher Ca:P. Aging of powders with Ca:P = 1.0 and 1.5 for over 500 days gradually increased particle size (but less than for CaCO 3 ) without a change in phase composition or crystallinity. In 0.01 M H 3 PO 4 calcium phosphate nanopowders dissolved ≈4 times more Ca than micronsized compounds and about twice more Ca than CaCO 3 nanopowders, confirming that nanosizing and/or amorphous structuring sharply increases Ca powder dissolution. Because higher Ca solubility in vitro generally leads to greater absorption in vivo, these novel FASP-made Ca nanostructured compounds may prove useful for nutrition applications, including supplementation and/or food fortification.

  5. Synthesis of nano-patterned and Nickel Silicide embedded amorphous Si thin layer by ion implantation for higher efficiency solar devices

    Science.gov (United States)

    Bhowmik, D.; Bhattacharjee, S.; Lavanyakumar, D.; Naik, V.; Satpati, B.; Karmakar, P.

    2017-11-01

    We report the ion beam based single step synthesis process of surface-patterned amorphous Silicon (a-Si) with a buried plasmon active nickel silicide layer for the realization of cost-effective, higher efficiency Silicon (Si) photovoltaic devices. Simultaneous amorphization, surface pattern formation and buried layer development are achieved by normal incidence 10 keV Ni1+ ion bombardment on Si(100) surface at a fluence of 1 × 1017. Atomic Force Microscopy study shows rim-surrounded crater like periodic nanostructure on the surface whereas cross-sectional Transmission Electron Microscopy detects the amorphization and implant buried layer just below the surface. The distribution of implanted Ni ions and Si vacancies, obtained by the Monte Carlo simulation (SRIM) is consistent with the experimental results. Spatially resolved Electron Energy Loss Spectroscopy measurement detects that the buried layer is nickel silicide. The potential application of such nano-patterned and plasmon active system for future low-cost a-Si based higher efficient Photovoltaic devices is discussed.

  6. Enhanced Cycleability of Amorphous MnO2 by Covering on α-MnO2 Needles in an Electrochemical Capacitor

    Directory of Open Access Journals (Sweden)

    Quanbing Liu

    2017-08-01

    Full Text Available An allomorph MnO2@MnO2 core-shell nanostructure was developed via a two-step aqueous reaction method. The data analysis of Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction and N2 adsorption-desorption isotherms experiments indicated that this unique architecture consisted of a porous layer of amorphous-MnO2 nano-sheets which were well grown onto the surface of α-MnO2 nano-needles. Cyclic voltammetry experiments revealed that the double-layer charging and Faradaic pseudo-capacity of the MnO2@MnO2 capacitor electrode contributed to a specific capacitance of 150.3 F·g−1 at a current density of 0.1 A·g−1. Long cycle life experiments on the as-prepared MnO2@MnO2 sample showed nearly a 99.3% retention after 5000 cycles at a current density of 2 A·g−1. This retention value was found to be significantly higher than those reported for amorphous MnO2-based capacitor electrodes. It was also found that the remarkable cycleability of the MnO2@MnO2 was due to the supporting role of α-MnO2 nano-needle core and the outer amorphous MnO2 layer.

  7. Enhanced Cycleability of Amorphous MnO2 by Covering on α-MnO2 Needles in an Electrochemical Capacitor

    Science.gov (United States)

    Liu, Quanbing; Yang, Juan; Wang, Hui; Pollet, Bruno G.; Wang, Rongfang

    2017-01-01

    An allomorph MnO2@MnO2 core-shell nanostructure was developed via a two-step aqueous reaction method. The data analysis of Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction and N2 adsorption-desorption isotherms experiments indicated that this unique architecture consisted of a porous layer of amorphous-MnO2 nano-sheets which were well grown onto the surface of α-MnO2 nano-needles. Cyclic voltammetry experiments revealed that the double-layer charging and Faradaic pseudo-capacity of the MnO2@MnO2 capacitor electrode contributed to a specific capacitance of 150.3 F·g−1 at a current density of 0.1 A·g−1. Long cycle life experiments on the as-prepared MnO2@MnO2 sample showed nearly a 99.3% retention after 5000 cycles at a current density of 2 A·g−1. This retention value was found to be significantly higher than those reported for amorphous MnO2-based capacitor electrodes. It was also found that the remarkable cycleability of the MnO2@MnO2 was due to the supporting role of α-MnO2 nano-needle core and the outer amorphous MnO2 layer. PMID:28837099

  8. Commercial Implementation of Model-Based Manufacturing of Nanostructured Metals

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Terry C. [Los Alamos National Laboratory

    2012-07-24

    Computational modeling is an essential tool for commercial production of nanostructured metals. Strength is limited by imperfections at the high strength levels that are achievable in nanostructured metals. Processing to achieve homogeneity at the micro- and nano-scales is critical. Manufacturing of nanostructured metals is intrinsically a multi-scale problem. Manufacturing of nanostructured metal products requires computer control, monitoring and modeling. Large scale manufacturing of bulk nanostructured metals by Severe Plastic Deformation is a multi-scale problem. Computational modeling at all scales is essential. Multiple scales of modeling must be integrated to predict and control nanostructural, microstructural, macrostructural product characteristics and production processes.

  9. Optical properties of amorphous hydrogenated carbon films

    Science.gov (United States)

    Chen, Jing Qiu

    Carbon can be formed either as fully crystalline structures, such as diamond, graphite, and fullerene (C60). or as mostly amorphous structures, like amorphous hydrogenated carbon (a-C:H). A study was made of a-C:H films which had been deposited by plasma enhanced chemical vapor deposition (PECVD) using CH4, H2 and Ar (or N2 for doping) gas mixtures. Each film exhibits unique physical, optical and electronic properties dependent upon the specific deposition parameters. The study is intended to extend our understanding of the properties of a-C:H films. Samples prepared by James Johnson, similar to those used in his previous studies (using mainly 4 separate sets of deposition parameters), were evaluated along with other samples which were unique to this study. Film preparation parameters were varied to allow an examination of the effects induced through the variation of deposition power level, partial substitution of nitrogen for methane in the deposition process gasses and post-deposition thermal annealing. The film optical properties were evaluated using combination of non-destructive test methods, including Raman scattering, photoluminescence (PL), optical absorption and photoluminescence excitation (PLE) spectroscopies. Different PL responses at low temperature (6 K) were recorded for doped and/or annealed samples deriving from the main set of samples. Two new features at 564 and 637 nm of nitrogen doped films replaced the 597 and 703 nm of undoped films. For the first time, three Raman phonon peaks were observed in a nitrogen doped and annealed film. Additional FTIR data indicated that the third Raman phonon peak was associated with CH2 and CH3 bonding structures. The Raman scattering data contributed to an improved understanding of the two-phase (sp2, sp3) model developed by Robertson. Optical absorption measurements could only be obtained for the films deposited on fused quartz. All other measurements were made on films deposited on silicon, which is opaque in

  10. Amorphous Semiconductors Characteristics and Their Modern Application

    International Nuclear Information System (INIS)

    Elshazly, A.A.

    2013-01-01

    Chalcogenide glasses are a recognized group of inorganic glassy materials which always contain one or more of the chalcogenide elements S, Se or Te but not O, in conjunction with more electro positive elements as As, Sb, etc. Chalcogenide glasses are generally less robust, more weakly bonded materials than oxide glasses. Glasses were prepared from Sb, Se, Bi and In elements with purity 99.999%. These glasses are reactive at high temperature with oxygen. Therefore, synthesis was accomplished in evacuated clean silica tubes. The tubes were washed by distilled water, and then dried in a furnace whose temperature was about 100 degree C . The weighted materials were introduced into the cleaned silica tubes and then evacuated to about 10-4 torr and sealed. The sealed tubes were placed inside the furnace and the temperature of the furnace was raised gradually up to 90 C within 1 hour and kept constant for 10 hours. Moreover, shaking of the constituent materials inside the tube in the furnace was necessary for realizing the homogeneity of the composition. After synthesis, the tube was quenched into ice water. The glassy ingots could be obtained by drastic quenching. Then materials were removed from the tubes and kept in dry atmosphere. The proper ingot was confirmed to be completely amorphous using x-ray diffraction and differential thermal analysis. Thin films of the selected compositions were prepared by thermal evaporation technique under vacuum 10-4 torr with constant thickness 100 nm. The effect of radiation, optical and some other effects on composition were studied.

  11. Morphology, Microstructure, and Hydrogen Content of Carbon Nanostructures Obtained by PECVD at Various Temperatures

    Directory of Open Access Journals (Sweden)

    M. Acosta Gentoiu

    2017-01-01

    Full Text Available Carbon nanostructures were obtained by acetylene injection into an argon plasma jet in the presence of hydrogen. The samples were synthesized in similar conditions, except that the substrate deposition temperatures TD were varied, ranging from 473 to 973 K. A strong dependence of morphology, structure, and graphitization upon TD was found. We obtained vertical aligned carbon nanotubes (VA-CNTs at low temperatures as 473 K, amorphous carbon nanoparticles (CNPs at temperatures from about 573 to 673 K, and carbon nanowalls (CNWs at high temperatures from 773 to 973 K. Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, elastic recoil detection analysis, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to substantiate the differences in these material types. It is known that hydrogen concentration modifies strongly the properties of the materials. Different concentrations of hydrogen-bonded carbon could be identified in amorphous CNP, VA-CNT, and CNW. Also, the H : C ratios along depth were determined for the obtained materials.

  12. Fabrication of n-type Si nanostructures by direct nanoimprinting with liquid-Si ink

    Science.gov (United States)

    Takagishi, Hideyuki; Masuda, Takashi; Yamazaki, Ken; Shimoda, Tatsuya

    2018-01-01

    Nanostructures of n-type amorphous silicon (a-Si) and polycrystalline silicon (poly-Si) with a height of 270 nm and line widths of 110-165 nm were fabricated directly onto a substrate through a simple imprinting process that does not require vacuum conditions or photolithography. The n-type Liquid-Si ink was synthesized via photopolymerization of cyclopentasilane (Si5H10) and white phosphorus (P4). By raising the temperature from 160 °C to 200 °C during the nanoimprinting process, well-defined angular patterns were fabricated without any cracking, peeling, or deflections. After the nanoimprinting process, a-Si was produced by heating the nanostructures at 400°C-700 °C, and poly-Si was produced by heating at 800 °C. The dopant P diffuses uniformly in the Si films, and its concentration can be controlled by varying the concentration of P4 in the ink. The specific resistance of the n-type poly-Si pattern was 7.0 × 10-3Ω ṡ cm, which is comparable to the specific resistance of flat n-type poly-Si films.

  13. Silicon-ion-implanted PMMA with nanostructured ultrathin layers for plastic electronics

    Science.gov (United States)

    Hadjichristov, G. B.; Ivanov, Tz E.; Marinov, Y. G.

    2014-12-01

    Being of interest for plastic electronics, ion-beam produced nanostructure, namely silicon ion (Si+) implanted polymethyl-methacrylate (PMMA) with ultrathin nanostructured dielectric (NSD) top layer and nanocomposite (NC) buried layer, is examined by electric measurements. In the proposed field-effect organic nanomaterial structure produced within the PMMA network by ion implantation with low energy (50 keV) Si+ at the fluence of 3.2 × 1016 cm-2 the gate NSD is ion-nanotracks-modified low-conductive surface layer, and the channel NC consists of carbon nanoclusters. In the studied ion-modified PMMA field-effect configuration, the gate NSD and the buried NC are formed as planar layers both with a thickness of about 80 nm. The NC channel of nano-clustered amorphous carbon (that is an organic semiconductor) provides a huge increase in the electrical conduction of the material in the subsurface region, but also modulates the electric field distribution in the drift region. The field effect via the gate NSD is analyzed. The most important performance parameters, such as the charge carrier field-effect mobility and amplification of this particular type of PMMA- based transconductance device with NC n-type channel and gate NSD top layer, are determined.

  14. Three-Dimensional Nanostructure Fabrication by Focused Ion Beam Chemical Vapor Deposition

    Science.gov (United States)

    Matsui, Shinji

    In this chapter, we describe three-dimensional nanostructure fabrication using 30 keV Ga+ focused ion beam chemical vapor deposition (FIB-CVD) and a phenanthrene (C14H10) source as a precursor. We also consider microstructure plastic art, which is a new field that has been made possible by microbeam technology, and we present examples of such art, including a "micro wine glass" with an external diameter of 2.75 μm and a height of 12 μm. The film deposited during such processes is diamond-like amorphous carbon, which has a Young's modulus exceeding 600 GPa, appearing to make it highly desirable for various applications. The production of three-dimensional nanostructures is also discussed. The fabrication of microcoils, nanoelectrostatic actuators, and 0.1 μm nanowiring - all potential components of nanomechanical systems - is explained. The chapter ends by describing the realization of nanoinjectors and nanomanipulators, novel nanotools for manipulating and analyzing subcellular organelles.

  15. Nanostructural Organization of Naturally Occurring Composites—Part I: Silica-Collagen-Based Biocomposites

    Directory of Open Access Journals (Sweden)

    Hermann Ehrlich

    2008-01-01

    Full Text Available Glass sponges, as examples of natural biocomposites, inspire investigations aiming at both a better understanding of biomineralization mechanisms and novel developments in the synthesis of nanostructured biomimetic materials. Different representatives of marine glass sponges of the class Hexactinellida (Porifera are remarkable because of their highly flexible basal anchoring spicules. Therefore, investigations of the biochemical compositions and the micro- and nanostructure of the spicules as examples of naturally structured biomaterials are of fundamental scientific relevance. Here we present a detailed study of the structural and biochemical properties of the basal spicules of the marine glass sponge Monorhaphis chuni. The results show unambiguously that in this glass sponge a fibrillar protein of collagenous nature is the template for the silica mineralization in all silica-containing structural layers of the spicule. The structural similarity and homology of collagens derived from M. chuni spicules to other sponge and vertebrate collagens have been confirmed by us using FTIR, amino acid analysis and mass spectrometric sequencing techniques. We suggest that nanomorphology of silica formed on proteinous structures could be determined as an example of biodirected epitaxial nanodistribution of amorphous silica phase on oriented fibrillar collagen templates. Finally, the present work includes a discussion relating to silica-collagen-based hybrid materials for practical applications as biomaterials.

  16. Mimicking the Nanostructure of Bone: Comparison of Polymeric Process-Directing Agents

    Directory of Open Access Journals (Sweden)

    Laurie B. Gower

    2010-12-01

    Full Text Available The nanostructure of bone has been replicated using a polymer-induced liquid-precursor (PILP mineralization process. This polymer-mediated crystallization process yields intrafibrillar mineralization of collagen with uniaxially-oriented hydroxyapatite crystals. The process-directing agent, an anionic polymer which we propose mimics the acidic non-collagenous proteins associated with bone formation, sequesters calcium and phosphate ions to form amorphous precursor droplets that can infiltrate the interstices of collagen fibrils. In search of a polymeric agent that produces the highest mineral content in the shortest time, we have studied the influence of various acidic polymers on the in vitro mineralization of collagen scaffolds via the PILP process. Among the polymers investigated were poly-L-aspartic acid (PASP, poly-L-glutamic acid (PGLU, polyvinylphosphonic acid (PVPA, and polyacrylic acid (PAA. Our data indicate that PASP and the combination of PGLU/PASP formed stable mineralization solutions, and yielded nano-structured composites with the highest mineral content. Such studies contribute to our goal of preparing biomimetic bone graft substitutes with composition and structure that mimic bone.

  17. Plastic deformation of indium nanostructures

    International Nuclear Information System (INIS)

    Lee, Gyuhyon; Kim, Ju-Young; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2011-01-01

    Highlights: → Indium nanopillars display two different deformation mechanisms. → ∼80% exhibited low flow stresses near that of bulk indium. → Low strength nanopillars have strain rate sensitivity similar to bulk indium. → ∼20% of compressed indium nanopillars deformed at nearly theoretical strengths. → Low-strength samples do not exhibit strength size effects. - Abstract: Mechanical properties and morphology of cylindrical indium nanopillars, fabricated by electron beam lithography and electroplating, are characterized in uniaxial compression. Time-dependent deformation and influence of size on nanoscale indium mechanical properties were investigated. The results show two fundamentally different deformation mechanisms which govern plasticity in these indium nanostructures. We observed that the majority of indium nanopillars deform at engineering stresses near the bulk values (Type I), with a small fraction sustaining flow stresses approaching the theoretical limit for indium (Type II). The results also show the strain rate sensitivity and flow stresses in Type I indium nanopillars are similar to bulk indium with no apparent size effects.

  18. Nanostructured Surfaces of Dental Implants

    Directory of Open Access Journals (Sweden)

    Stefano Sivolella

    2013-01-01

    Full Text Available The structural and functional fusion of the surface of the dental implant with the surrounding bone (osseointegration is crucial for the short and long term outcome of the device. In recent years, the enhancement of bone formation at the bone-implant interface has been achieved through the modulation of osteoblasts adhesion and spreading, induced by structural modifications of the implant surface, particularly at the nanoscale level. In this context, traditional chemical and physical processes find new applications to achieve the best dental implant technology. This review provides an overview of the most common manufacture techniques and the related cells-surface interactions and modulation. A Medline and a hand search were conducted to identify studies concerning nanostructuration of implant surface and their related biological interaction. In this paper, we stressed the importance of the modifications on dental implant surfaces at the nanometric level. Nowadays, there is still little evidence of the long-term benefits of nanofeatures, as the promising results achieved in vitro and in animals have still to be confirmed in humans. However, the increasing interest in nanotechnology is undoubted and more research is going to be published in the coming years.

  19. Novel nanostructured biomaterials: implications for coronary stent thrombosis

    Science.gov (United States)

    Karagkiozaki, Varvara; Karagiannidis, Panagiotis G; Kalfagiannis, Nikolaos; Kavatzikidou, Paraskevi; Patsalas, Panagiotis; Georgiou, Despoina; Logothetidis, Stergios

    2012-01-01

    Background Nanomedicine has the potential to revolutionize medicine and help clinicians to treat cardiovascular disease through the improvement of stents. Advanced nanomaterials and tools for monitoring cell–material interactions will aid in inhibiting stent thrombosis. Although titanium boron nitride (TiBN), titanium diboride, and carbon nanotube (CNT) thin films are emerging materials in the biomaterial field, the effect of their surface properties on platelet adhesion is relatively unexplored. Objective and methods In this study, novel nanomaterials made of amorphous carbon, CNTs, titanium diboride, and TiBN were grown by vacuum deposition techniques to assess their role as potential stent coatings. Platelet response towards the nanostructured surfaces of the samples was analyzed in line with their physicochemical properties. As the stent skeleton is formed mainly of stainless steel, this material was used as reference material. Platelet adhesion studies were carried out by atomic force microscopy and scanning electron microscopy observations. A cell viability study was performed to assess the cytocompatibility of all thin film groups for 24 hours with a standard immortalized cell line. Results The nanotopographic features of material surface, stoichiometry, and wetting properties were found to be significant factors in dictating platelet behavior and cell viability. The TiBN films with higher nitrogen contents were less thrombogenic compared with the biased carbon films and control. The carbon hybridization in carbon films and hydrophilicity, which were strongly dependent on the deposition process and its parameters, affected the thrombogenicity potential. The hydrophobic CNT materials with high nanoroughness exhibited less hemocompatibility in comparison with the other classes of materials. All the thin film groups exhibited good cytocompatibility, with the surface roughness and surface free energy influencing the viability of cells. PMID:23269867

  20. Health hazards due to the inhalation of amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Merget, R.; Bruening, T. [Research Institute for Occupational Medicine (BGFA), Bochum (Germany); Bauer, T. [Bergmannsheil, University Hospital, Department of Internal Medicine, Division of Pneumonology, Allergology and Sleep Medicine, Bochum (Germany); Kuepper, H.U.; Breitstadt, R. [Degussa-Huels Corp., Wesseling (Germany); Philippou, S. [Department of Pathology, Augusta Krankenanstalten, Bochum (Germany); Bauer, H.D. [Research Institute for Hazardous Substances (IGF), Bochum (Germany)

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or