WorldWideScience

Sample records for amorphous alloy powder

  1. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    Science.gov (United States)

    Xu, Hu-ping; Wang, Ru-wu; Wei, Ding; Zeng, Chun

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis-Bennett model were 476 kJ/mol and 5.5×1018 s-1, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson-Mehl-Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μe, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a "percent permeability" of more than 82% at H=100 Oe.

  2. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hu-ping [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Wang, Ru-wu, E-mail: ruwuwang@hotmail.com [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China); College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081 (China); Wei, Ding [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Zeng, Chun [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China)

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis–Bennett model were 476 kJ/mol and 5.5×10{sup 18} s{sup −1}, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson–Mehl–Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μ{sub e}, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a “percent permeability” of more than 82% at H=100 Oe. - Highlights: • The crystallization kinetics of FeSiCr amorphous alloy was investigated. • The FeSiCr powder cores exhibit a high value of Q and a stable permeability. • The FeSiCr powder cores exhibit superior DC-bias properties.

  3. Synthesis of amorphous Ti-Al alloys by mechanical alloying of elemental powders

    Institute of Scientific and Technical Information of China (English)

    张俊红; 黄伯云; 贺跃辉; 周科朝; 刘咏

    2002-01-01

    Blended elemental powders with the nominal compositions (mole fraction, %) of Ti54Al46, Ti52Al48 and Ti50Al50 were mechanically alloyed in a planetary ball milling system for up to 100h.The structure evolution in these powders was characterized by scanning electron microscope, X-ray diffraction and differential thermal a nalysis techniques. It was found that elemental powders were progressively trans formed into nanocrystalline Ti(Al) supersaturated solid solution, then into amor phous phase. With increasing Al content, the formation of a fully Ti(Al) supersa turated solid solution and amorphous phase were accelerated, which are attributed to the fine grain size. And the grain size condition for formation of amorpho us phase in this system is ≤16 nm.

  4. Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders

    International Nuclear Information System (INIS)

    Fe74Ni3Si13Cr6W4 amorphous alloy powders were annealed at different temperature (T) for 1.5 h to fabricate the corresponding amorphous and nanocrystalline powders. The influences of T on the crystalline structure, morphology, magnetic and microwave electromagnetic properties of the resultant samples were investigated via X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer. The results show that the powder samples obtained at T of 650 °C or more are composed of lots of ultra-fine α-Fe(Si) grains embedded in an amorphous matrix. When T increases from 350 to 750 °C, the saturated magnetization and coercivity of the as-annealed powder samples both increase monotonously whereas the relative real permittivity shows a minimal value and the relative real permeability shows a maximal value at T of 650 °C. Thus the powder samples annealed at 650 °C show optimal reflection loss under −10 dB in the whole C-band. These results here suggest that the annealing heat treatment of Fe-based amorphous alloy is an effective approach to fabricate high performance microwave absorber with reasonable permittivity and large permeability simultaneously via adjusting T. - Highlights: ► The annealing temperature effect of Fe-based amorphous alloy was studied. ► Fe-based amorphous and nanocrystalline alloy has a good absorbing property in C-band. ► There exists a correspondence between microwave properties and microstructure.

  5. Effect of amorphous evolution on structure and absorption properties of FeSiCr alloy powders

    International Nuclear Information System (INIS)

    The master alloys of Fe87.5−xSi13.5Crx (x=0, 4, 8, 12 at%) were prepared in vacuum induction melting furnace. Corresponding powder samples were obtained by 60 h ball milling of the crushed master alloys, and studied by morphological, microstructural, electromagnetic and microwave absorption tests in the frequency range from 0.5 to 18 GHz. The powders were characterized by a particle size less than 1 μm and a grain size less than 100 nm. In the cases of x≥8, Fe3Si phase with D03-type structure was observed, and the powders became amorphous completely. A crystallization temperature of 685 K was found for x=8. Coercivity force and saturation magnetization of the powders decreased with the increasing of Cr content. As an electromagnetic wave absorbing material, the minimum reflectivity was −15.5 dB at 8.5 GHz and the absorption band was broad for x=8 powders. - Highlights: ► When Cr is 8 at%, after 60 h milling, D03 superlattice appeared. And exothermic peak appears at 685 K. ► With increasing Cr content, Ms decreases from 145 to 99 emu/g; μ″ is larger than the others at low frequency. ► The minimum reflectivity is −15.5 dB at 8.5 GHz for Cr content is 8 at% when thickness is 2 mm. ► The amorphous Fe78.5Si13.5Cr8 alloy can be applied as electromagnetic wave absorber

  6. Microstructures of the silicon carbide nanowires obtained by annealing the mechanically-alloyed amorphous powders

    International Nuclear Information System (INIS)

    Silicon, graphite and boron nitride powders were mechanically alloyed for 40 h in argon. The as-milled powders were annealed at 1700 °C in nitrogen for 30 min. The annealed powders are covered by a thick layer of gray–green SiC nanowires, which are 300 nm to 1000 nm in diameter and several hundred microns in length. Trace iron in the raw powders acts as a catalyst, promoting the V–L–S process. It follows that the actual substances contributing to the growth of the SiC nanowires may be silicon, graphite and the metal impurities in the raw powders. The results from HRTEM and XRD reveal that the products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. It is interestingly found that 6H–SiC coexists with 3C–SiC in one nodular nanowire. This novel structure may introduce periodic potential field along the longitudinal direction of the nanowires, and may find applications in the highly integrated optoelectronic devices. - Graphical abstract: Display Omitted - Highlights: • SiC nanowires were prepared by annealing the mechanically alloyed amorphous powders. • SiC nanowires are 300 nm to 1000 nm in diameter and several hundred microns in length. • The products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. • Trace Fe in the raw powders acts as a catalyst, promoting the V–L–S process. • 6H–SiC coexists with 3C–SiC in one nodular SiC nanowire

  7. Microstructures of the silicon carbide nanowires obtained by annealing the mechanically-alloyed amorphous powders

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei, E-mail: zhangpengfei1984@163.com; Li, Xinli

    2015-07-15

    Silicon, graphite and boron nitride powders were mechanically alloyed for 40 h in argon. The as-milled powders were annealed at 1700 °C in nitrogen for 30 min. The annealed powders are covered by a thick layer of gray–green SiC nanowires, which are 300 nm to 1000 nm in diameter and several hundred microns in length. Trace iron in the raw powders acts as a catalyst, promoting the V–L–S process. It follows that the actual substances contributing to the growth of the SiC nanowires may be silicon, graphite and the metal impurities in the raw powders. The results from HRTEM and XRD reveal that the products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. It is interestingly found that 6H–SiC coexists with 3C–SiC in one nodular nanowire. This novel structure may introduce periodic potential field along the longitudinal direction of the nanowires, and may find applications in the highly integrated optoelectronic devices. - Graphical abstract: Display Omitted - Highlights: • SiC nanowires were prepared by annealing the mechanically alloyed amorphous powders. • SiC nanowires are 300 nm to 1000 nm in diameter and several hundred microns in length. • The products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. • Trace Fe in the raw powders acts as a catalyst, promoting the V–L–S process. • 6H–SiC coexists with 3C–SiC in one nodular SiC nanowire.

  8. Influence of annealing on microstructure and magnetic properties of cobalt-based amorphous/nanocrystalline powders synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Taghvaei, Amir Hossein, E-mail: Amirtaghvaei@gmail.com [Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Bednarčik, Jozef [Photon Science DESY, Notkestraße 85, 22603 Hamburg (Germany); Eckert, Jürgen [IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, 01069 Dresden (Germany); TU Dresden, Institute of Materials Science, 01062 Dresden (Germany)

    2015-05-25

    Highlights: • Structural relaxation in mechanically alloyed Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} powders was studied. • Isochronal annealing notably changes the short-range order of the amorphous phase. • The medium-range correlations experienced volume shrinkage upon annealing. • Annealing decreased the coercivity and saturation magnetization of the powders. - Abstract: The effects of isochronal annealing on microstructure and magnetic properties of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} powders with a large content of amorphous phase produced by mechanical alloying have been investigated. The differential scanning calorimetry (DSC) results indicate that the synthesized powders exhibit a huge exothermic reaction before the crystallization temperature corresponding to structural relaxation of amorphous phase. Furthermore, the structural evolution of the powders upon isochronal heating has been investigated by in-situ X-ray diffraction (XRD) using high energy synchrotron radiation. The occurrence of an irreversible structural relaxation is confirmed by significant changes in position of the first and second diffuse maxima of the total structure factor S(Q) upon isochronal heating–cooling cycles. Moreover, analysis of the reduced pair distribution functions (PDFs) yields a volume shrinkage of about 1.5% after annealing due to annihilation of the excess free volume generated upon milling. The isochronal annealing significantly affects the magnetic properties of the powders through decreasing the saturation magnetization and coercivity. The correlation between structural relaxation and magnetic properties of the powders is discussed.

  9. The influence of structural changes on electrical and magnetic characteristics of amorphous powder of the nixmoy alloy

    Directory of Open Access Journals (Sweden)

    Ribić-Zelenović Lenka

    2006-01-01

    Full Text Available Nickel and molybdenum alloy powder was electrodeposited on a titanium cathode from a NiSO4⋅7H2O and (NH46 Mo7O24⋅4H2O ammonium solution. The desired chemical composition, structure, size and shape of particles in the powder samples were achieved by an appropriate choice of electrolysis parameters (current density, composition and temperature of the solution, cathode material and electrolysis duration. Metal coatings form in the current density range 15 mA cm-2powders form. The chemical composition of powder samples depends on the current density of electrodeposition. The molybdenum content in the powder increases with the increase of current density (in the low current density range, while in the higher current density range the molybdenum content in the alloy decreases with the increase of the current density of deposition. Smaller sized particles form at higher current density. X-ray analysis, differential scanning calorimetric and measurements of the temperature dependence of electric resistance and magnetic permeability of the powder samples were all used to establish a predominantly amorphous structure of the powder samples formed at the current density of j≥70mA cm-2. The crystalline particle content in the powder samples increases with the decrease of the current density of deposition. Powder heating causes structural changes. The process of thermal stabilization of nickel and molybdenum amorphous powders takes place in the temperature interval from 463K to 573K and causes a decrease in electrical resistance and increase in magnetic permeability. The crystallization temperature depends on the value of current density of powder electrodeposition. Powder formed at j=180 mA cm-2 begins to crystallize at 573K, while the powder deposited at j=50 mA cm-2 begins to crystallize at 673K. Crystallization of the powder causes a decrease in electric resistivity and magnetic

  10. Corrosion resistant amorphous alloys

    International Nuclear Information System (INIS)

    A review of publication data on corrosion resistance of amorphous alloys and the methods of amorphization of surface layers of massive materials (laser treatment, iron implantation, detonation-gas spraying, cathode and ion sputtering, electrodeposition) was made. A study was made on corrosion properties of Fe66Cr11B10Si4 alloy in cast state and after laser irradiation, rendering the surface amorphous as well as the samples of Arenco iron and steel 20 with ion-plasma coatings of Fe-Cr-Ni-Ti alloy. It was established that amorphous coatings posses much higher corrosion resistance as compared to crystalline alloys on the same base

  11. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian;

    1993-01-01

    Large scale practical use of bulk amorphous alloys requires the capability of molding the material to a desired design, for instance by compaction of an amorphous powder. This is a difficult task because the sintering temperature is limited by the crystallization temperature of the alloy.1 Here we......, should facilitate a compaction. The passivation layer, however, impedes a compaction. Isostatic pressing at 540 K at a pressure of 200 MPa clearly illustrated this; pellets pressed from passivated powder were much more brittle than pellets pressed from unpassivated powder. The density of the pellets...... was very low ([approximately-equal-to]25% of the density of bulk FeB). We have designed a die for uniaxial pressing in which the compaction can be performed without exposing the powder to air and have obtained densities larger than 60% of that of bulk FeB. We have reported studies of the dependence...

  12. Preparation of Zr50Al15−Ni10Cu25Y amorphous powders by mechanical alloying and thermodynamic calculation

    Indian Academy of Sciences (India)

    Woyun Long; Anxian Lu; Jing Li

    2013-12-01

    Amorphous Zr50Al15−Ni10Cu25Y powders were fabricated by mechanical alloying at a low rotation speed from commercial pure element powders. The beneficial effect of Al partially substituted by Y in Zr50Al15Ni10Cu25 on glass-forming ability was investigated. The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr50Al15Ni10Cu25 alloy. Thermodynamic calculation of equivalent free energy shows that Zr50Al13.8Ni10Cu25Y1.2 alloy has the highest glass-forming ability, which is in good agreement with the report of orthogonal experiments.

  13. High cycle fatigue behavior of a nanostructured composite produced via extrusion of amorphous Al89Gd7Ni3Fe1 alloy powders

    International Nuclear Information System (INIS)

    A nanostructured composite Al89Gd7Ni3Fe1 alloy was created by extruding atomized amorphous Al89Gd7Ni3Fe1 powders at different extrusion ratios (ER = 5:1, 10:1, 20:1). The microstructures and mechanical properties produced were examined with special attention given to the high cycle fatigue properties. High cycle fatigue tests were conducted at room temperature under three-point bending at a stress ratio R = 0.1. Increasing the extrusion ratio (ER) improved the hardness, bend strength, and fatigue behavior, with alloys extruded at higher ER exhibiting bend strengths exceeding 1000 MPa and high cycle fatigue behavior well in excess of conventional aluminum alloys. The results obtained are compared to conventional aluminum alloys and particulate reinforced composites.

  14. Diffraction. Powder, amorphous, liquid

    International Nuclear Information System (INIS)

    Neutron powder diffraction is a unique tool to observe all possible diffraction effects appearing in crystal. High-resolution neutron diffractometers have to be used in this study. Analysis of the magnetic structure of polycrystalline materials requires the use of high-resolution neutron diffraction in the range of large interplanar distances. As distinguished from the double axis diffractometers (DAS), which show high resolution only at small interplanar distances, TOF (time-of-flight) diffractometry offers the best resolution at large interplanar distances. (K.A.)

  15. Morphology and magnetic behavior of cobalt rich amorphous/nanocrystalline (Co-Ni)70Ti10B20 alloyed powders

    Science.gov (United States)

    Raanaei, Hossein; Mohammad-Hosseini, Vahid

    2016-09-01

    The effect of milling time on microstructural and magnetic behavior of mechanically alloyed Co49Ni21Ti10B20 is investigated by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, differential scanning calorimetry and vibrating sample magnetometer. It is shown, with increasing milling time, the crystallite size decreases and finally reaches to a low value after 190 h of milling time. The increase in microstrain is also observed during the milling process. The results indicate the coexistence between amorphous and nanocrystalline phases after 190 h of milling time. Moreover, the lowest magnetic coercivity of about 39 Oe at the final milling stage is observed. The results of annealed sample reveal structural ordering of constituent elements.

  16. Amorphous powders for inhalation drug delivery.

    Science.gov (United States)

    Chen, Lan; Okuda, Tomoyuki; Lu, Xiang-Yun; Chan, Hak-Kim

    2016-05-01

    For inhalation drug delivery, amorphous powder formulations offer the benefits of increased bioavailability for poorly soluble drugs, improved biochemical stability for biologics, and expanded options of using various drugs and their combinations. However, amorphous formulations usually have poor physicochemical stability. This review focuses on inhalable amorphous powders, including the production methods, the active pharmaceutical ingredients and the excipients with a highlight on stabilization of the particles. PMID:26780404

  17. Amorphous yttrium-iron alloys

    International Nuclear Information System (INIS)

    The magnetic properties of amorphous yttrium-iron alloys Ysub(1-x)Fesub(x) have been studied over a wide concentration range 0.32 2Fe17 alloys, lead in the amorphous state to spin-glass behaviour and asperomagnetic order. The dominant positive interactions produce short-range ferromagnetic correlations which persist up to room temperature. However magnetic saturation cannot be achieved for any of the alloys in applied fields of up to 180 kOe, indicating that strong negative interactions are also present. Exchange interactions become increasingly positive with increasing x, and the magnetic properties of iron-rich alloys approach those of a normal ferromagnet. (author)

  18. Synthesis and hydriding/dehydriding properties of amorphous Mg{sub 2}Ni{sub 1.9}M{sub 0.1} alloys mechanically alloyed from Mg{sub 2}Ni{sub 0.9}M{sub 0.1} (M=none, Ni,Ca,La,Y,Al,Si,Cu and Mn) and Ni powder

    Energy Technology Data Exchange (ETDEWEB)

    Terashita, N.; Takahashi, M.; Kobayashi, K.; Sasai, T. [Japan Metals and Chem. Corp., Tsukuba, Ibaraki (Japan). Tsukuba Res. Lab.; Akiba, E. [National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki (Japan)

    1999-12-20

    Amorphous Mg{sub 2}Ni{sub 1.9}M{sub 0.1} (M=none,Ni,Ca,La,Y,Al,Si,Cu and Mn) alloys were prepared by mechanical alloying of pseudo-binary Mg{sub 2}Ni{sub 0.9}M{sub 0.1} intermetallic compounds and Ni powder. The crystal structures, thermal stabilities and hydriding/dehydriding properties of those alloys were characterized by powder X-ray diffraction, thermal analysis and conventional measurement of pressure composition isotherms. In spite of the difference in M element, all specimens formed amorphous structures by mechanical alloying. Owing to the substitution of Ca the amount of desorbed hydrogen increased from 1.8 mass% for M=none to 2.1 mass% for M=Ca by measurement of thermogravimetry. The dehydriding reactions occurred at temperatures below about 400 K in both alloys. (orig.)

  19. Iron - based bulk amorphous alloys

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2010-07-01

    Full Text Available Purpose: The paper presents a structure characterization, thermal and soft magnetic properties analysis of Fe-based bulk amorphous materials in as-cast state and after crystallization process. In addition, the paper gives some brief review about achieving, formation and structure of bulk metallic glasses as a special group of amorphous materials.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 metallic glass in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties contained initial and maximum magnetic permeability, coercive force and magnetic after-effects measurements were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations revealed that the studied as-cast bulk metallic glasses in form of ribbons and rods were amorphous. Two stage crystallization process was observed for studied bulk amorphous alloy. The differences of crystallization temperature between ribbons and rods with chosen thickness are probably caused by different amorphous structures as a result of the different cooling rates in casting process. The SEM images showed that studied fractures could be classified as mixed fractures with indicated two zones contained “river” and “smooth” areas. The changing of chosen soft magnetic properties (μr, Bs, Hc obtained for samples with different thickness is a result of the non-homogenous amorphous structure of tested metallic glasses. The annealing process in temperature range from 373 to 773 K causes structural relaxation of tested amorphous materials, which leads to changes in their physical properties. The qualitative

  20. Novel Fe-based amorphous magnetic powder cores with ultra-low core losses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Amorphous magnetic alloy powders were prepared from bulk metallic glasses Fe74Cr2Mo2Sn2P10Si4B4C2 with supercooled liq-uid region of 32 K by water atomization.Amorphous magnetic powder core precursor was produced from a mixture of the amorphous alloy powder with addition of insulation and bonding materials by mold compacting at room temperature.After annealing the core precursor,the amorphous magnetic core exhibits superior magnetic properties as compared with molypermalloy powder core.The initial permeability up to 1 MHz was about 80,the flux density at 300 Oe was 1.06 T and the core loss at 100 kHz for Bm=0.1 T was only 329 kW/m3.The ultra-low core loss is attributed to the combination of relatively high resistivity and the amorphous structure of the Fe-based amorphous powder.Besides the outstanding magnetic properties,the Fe-based amorphous magnetic powder core had a much lower cost which renders the powder cores a potential candidate for a variety of industrial applications.

  1. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  2. Water atomised aluminium alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Neikov, O.D.; Vasilieva, G.I.; Sameljuk, A.V.; Krajnikov, A.V

    2004-10-10

    The new rapid solidification (RS) process based on high-pressure water atomisation (WA) of the melt for manufacturing of advanced aluminium alloys was realised in the form of a pilot plant. The problems of safe operation in the course of Al alloy powder production and powder quality were solved by the use of water solutions of inhibitors, by the control of suspension temperature and hydrogen ion exponent (pH), by the hydraulic classification of atomised products, and by the optimisation of dehydration procedure. The rate of powder-water interaction strongly depends on the value of pH. While the rate of room temperature reactions is very slow at pH 3.0-4.0, the increase of pH to 6.0 leads to an intensive powder oxidation. A set of powder metallurgy (PM) alloys for various applications was produced on the base of water atomised powders. The characteristics of tensile strength of such alloys essentially exceed those of cast materials of similar compositions.

  3. Water atomised aluminium alloy powders

    International Nuclear Information System (INIS)

    The new rapid solidification (RS) process based on high-pressure water atomisation (WA) of the melt for manufacturing of advanced aluminium alloys was realised in the form of a pilot plant. The problems of safe operation in the course of Al alloy powder production and powder quality were solved by the use of water solutions of inhibitors, by the control of suspension temperature and hydrogen ion exponent (pH), by the hydraulic classification of atomised products, and by the optimisation of dehydration procedure. The rate of powder-water interaction strongly depends on the value of pH. While the rate of room temperature reactions is very slow at pH 3.0-4.0, the increase of pH to 6.0 leads to an intensive powder oxidation. A set of powder metallurgy (PM) alloys for various applications was produced on the base of water atomised powders. The characteristics of tensile strength of such alloys essentially exceed those of cast materials of similar compositions

  4. Shock induced crystallization of amorphous Nickel powders

    Science.gov (United States)

    Cherukara, Mathew; Strachan, Alejandro

    2015-06-01

    Recent experimental work has shown the efficacy of amorphous Ni/crystalline Al composites as energetic materials, with flame velocities twice that of a comparable crystalline Ni/crystalline Al system. Of further interest is the recrystallization mechanisms in the pure amorphous Ni powders, both thermally induced and mechanically induced. We present large-scale molecular dynamics simulations of shock-induced recrystallization in loosely packed amorphous Nickel powders. We study the time dependent nucleation and growth processes by holding the shocked samples at the induced pressures and temperatures for extended periods following the passage of the shock (up to 6 ns). We find that the nanostructure of the recrystallized Ni and time scales of recrystallization are dependent on the piston velocity. At low piston velocities, nucleation events are rare, leading to long incubation times and a relatively coarse nanostructure. At higher piston velocities, local variations in temperature due to jetting phenomena and void collapse, give rise to multiple nucleation events on time scales comparable to the passage of the shock wave, leading to the formation of a fine-grained nanostructure. Interestingly, we observe that the nucleation and growth process occurs in two steps, with the first nuclei crystallizing into the BCC structure, before evolving over time into the expected FCC structure. U.S. Defense Threat Reduction Agency, HDTRA1-10-1-0119 (Program Manager Suhithi Peiris).

  5. CVD of refractory amorphous metal alloys

    International Nuclear Information System (INIS)

    In this work, a novel process is described for the fabrication of multi-metallic amorphous metal alloy coatings using a chemical vapor deposition (CVD) technique. Of special interest in this work are amorphous metal alloys containing Mo and/or Cr which have high crystallization temperatures and readily available low decomposition temperature metal-bearing precursors. The conditions for amorphous alloy formation via CVD are described as well as the chemical properties of these materials. High temperature, aqueous corrosion tests have shown these materials (especially those containing Cr) are among the most corrosion resistant metal alloys known

  6. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio and a...... low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state are...... discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  7. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  8. Preparation of hydrogenated amorphous silicon tin alloys

    OpenAIRE

    Vergnat, M.; Marchal, G.; Piecuch, M.

    1987-01-01

    This paper describes a new method to obtain hydrogenated amorphous semiconductor alloys. The method is reactive co-evaporation. Silicon tin hydrogenated alloys are prepared under atomic hydrogen atmosphere. We discuss the influence of various parameters of preparation (hydrogen pressure, tungsten tube temperature, substrate temperature, annealing...) on electrical properties of samples.

  9. Crystallization of amorphous Zr-Be alloys

    Science.gov (United States)

    Golovkova, E. A.; Surkov, A. V.; Syrykh, G. F.

    2015-02-01

    The thermal stability and structure of binary amorphous Zr100 - x Be x alloys have been studied using differential scanning calorimetry and neutron diffraction over a wide concentration range (30 ≤ x ≤ 65). The amorphous alloys have been prepared by rapid quenching from melt. The studied amorphous system involves the composition range around the eutectic composition with boundary phases α-Zr and ZrBe2. It has been found that the crystallization of alloys with low beryllium contents ("hypoeutectic" alloys with x ≤ 40) proceeds in two stages. Neutron diffraction has demonstrated that, at the first stage, α-Zr crystallizes and the remaining amorphous phase is enriched to the eutectic composition; at the second stage, the alloy crystallizes in the α-Zr and ZrBe2 phases. At higher beryllium contents ("hypereutectic" alloys), one phase transition of the amorphous phase to a mixture of the α-Zr and ZrBe2 phases has been observed. The concentration dependences of the crystallization temperature and activation energy have been revealed.

  10. Pressure effects on Al89La6Ni5 amorphous alloy crystallization

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Jiang, Jianzhong; Zhou, T. J.;

    2000-01-01

    The pressure effect on the crystallization of the Al89La6Ni5 amorphous alloy has been investigated by in situ high-pressure and high-temperature x-ray powder diffraction using synchrotron radiation. The amorphous alloy crystallizes in two steps in the pressure range studied (0-4 GPa). The first......(s). The applied pressure strongly affects the crystallization processes of the amorphous alloy. Both temperatures first decrease with pressure in the pressure range of 0-1 GPa and then increase with pressure up to 4 GPa. The results are discussed with reference to competing processes between the thermodynamic...

  11. Mechanical alloying of aluminium-lithium-magnesium alloy powders

    International Nuclear Information System (INIS)

    The production of high-purity aluminium-lithium-magnesium alloy powders, by mechanical alloying through grinding in a vibratory mill under high vacuum at room temperature, is described in details. The source materials for the grinding mixture were: aluminium-lithium alloy powder obtained by thermal vacuum-dehydrogenization of AlLiH4 hydride; magnesium metal powder; and chemically deoxidized aluminium metal powder. The implications which arose from the high reactivity of the component elements are discussed, and the measures taken to overcome them are described. The procedures used for the chemical analysis and powder characterization are given. (orig.)

  12. Fabrication of TiNi powder by mechanical alloying and shape memory characteristics of the sintered alloy

    International Nuclear Information System (INIS)

    This paper presents the fabrication condition of TiNi alloy powder by mechanical alloying and shape memory characteristics of the sintered alloy. The effect of mechanical alloying condition on the characteristics of mechanically alloyed powder (MA powder) was investigated. Also, the difference in sintering behavior between the MA powder and the elementally mixed powders by V-blender and the shape memory characteristics of the sintered alloys were also examined. The MA powder was fabricated by milling using a planetary ball mill in a rotational speed between 200 and 500 min-1 for various milling times in an atmosphere of Ar gas. These two of powders prepared in different processes were sintered using a pulse-current pressure sintering equipment at various sintering temperatures. The powder agglomerated and its particle size became larger with an increase in milling time. The mixture of Ti and Ni powders changed into an amorphous state by processing for 3.6 ks over 300 min-1. The sintered alloy of the MA powder showed more uniform phase of TiNi than that of the elementally mixed powders sintered in a same manner, however, the former showed a lower density than the latter due to a larger particle size of the MA powder of before-sintering. It was found from the measurement of the transformation temperature of the sintered alloy of the MA powder using DSC that the alloy has shape memory characteristics, and the transformation temperatures of the alloy are higher than those of the alloy of the elementally mixed powders due to waste of Ni powder. (author)

  13. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  14. Fuel powder production from ductile uranium alloys

    International Nuclear Information System (INIS)

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. (author)

  15. Ballistic impact properties of mixed multi-layered amorphous surface alloyed materials fabricated by high-energy electron-beam irradiation

    International Nuclear Information System (INIS)

    The objective of this study is to investigate ballistic impact properties of multi-layered amorphous surface alloyed materials fabricated by high-energy electron-beam irradiation. The mixture of Zr-based amorphous alloy powders and LiF+MgF2 flux powders was deposited on a Ti alloy substrate, and then electron beam was irradiated on this powder mixture to fabricate an one-layered surface alloyed material. On top of this layer, the powder mixture was deposited again and then irradiated with electron beam whose beam current was decreased to fabricate the multi-layered surface alloyed material. In the mixed multi-layered surface alloyed materials fabricated with LM1 alloy powders and LM2 or LM10 alloy powders, the surface region consisted of amorphous phases, together with a small amount of crystalline particles, whereas the center region was complicatedly composed of amorphous phases, crystallized phases, and dendritic β phases. Since the surface region mostly composed of amorphous matrix was quite hard, the alloyed materials sufficiently blocked the travel of a projectile. When cracks formed at the surface region propagated into the center region, the formation of many cracks or debris was accelerated, which could beneficially work for absorbing the ballistic impact energy, thereby leading to the higher ballistic impact properties than the surface alloyed materials fabricated with LM1 or LM2 alloy powders

  16. Superconducting State Parameters of Bulk Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Aditya M. Vora

    2012-12-01

    Full Text Available Well recognized empty core (EMC pseudopotential of Ashcroft is used to investigate the superconducting state parameters viz; electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature TC, isotope effect exponent α and effective interaction strength NOV of some (Ni33Zr671 – xVx (x = 0, 0.05, 0.1, 0.15 bulk amorphous alloys. We have incorporated five different types of local field correction functions, proposed by Hartree (H, Taylor (T, Ichimaru-Utsumi (IU, Farid et al. (F and Sarkar et al. (S to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of the various exchange and correlation functions is concluded from the present study. The TC obtained from Sarkar et al. (S local field correction function are found an excellent agreement with available theoretical data. Quadratic TC equation has been proposed, which provide successfully the TC values of bulk amorphous alloys under consideration. Also, the present results are found in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the s bulk amorphous alloys.

  17. Evidence of eutectic crystallization and transient nucleation in Al89La6Ni5 amorphous alloy

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Jiang, Jianzhong; Lin, Z. G.; Mezouar, M.; Crichton, W.; Inoue, A.

    2001-01-01

    The phase evolution with the temperature and time in the process of crystallization of Al89La6Ni5 amorphous alloy has been investigated by in situ high-temperature and high-pressure x-ray powder diffraction using synchrotron radiation. Two crystalline phases, fcc-Al and a metastable bcc-(AlNi)(11...

  18. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  19. Plasma deposition of amorphous metal alloys

    International Nuclear Information System (INIS)

    Rapid solidification, sputtering and electroless chemical deposition have been used to produce amorphous metal alloys which possess excellent corrosion and abrasion resistance. This paper discusses a new technique for obtaining amorphous metal alloy coatings. Plasma decomposition of Ni(CO)4 and PH3 in argon and hydrogen carrier gases [Ni(CO4/PH3--8/1] yielded films that were black and silver, respectively, in appearance. Both films were amorphous as determined by transmission electron microscopy. Films deposited using a hydrogen carrier gas were three orders of magnitude more conductive than those deposited using an argon carrier gas. Analysis of both films using electron microprobe analysis and inductively-coupled plasma spectroscopy showed an enrichment of P in the films over the P content in the plasma gas mixtures. Reducing the P content of the plasma gas mixture [Ni(CO)4/PH3--17/11 yielded crystalline films with no P enrichment. The grain size in these films was --60Δ as determined by x-ray line-broadening

  20. The influence of initial powder properties on the mechanical alloying process and the final powders structure

    OpenAIRE

    Szymczak, M.; R. Nowosielski; W. Pilarczyk

    2011-01-01

    Purpose: The main aim of this work is to study the influence of initial powder properties on the mechanical alloying process and final powders structure and the production of chosen powder alloy by mechanical alloying method.Design/methodology/approach: The test material was the pure niobium, tin and copper powders. The powders were ground for 2 and 10 hrs. The mechanical alloying process was conducted in a high energy SPEX mill under inert argon atmosphere. The chemical constitution and conc...

  1. Amorphous Alloy Surpasses Steel and Titanium

    Science.gov (United States)

    2004-01-01

    In the same way that the inventions of steel in the 1800s and plastic in the 1900s sparked revolutions for industry, a new class of amorphous alloys is poised to redefine materials science as we know it in the 21st century. Welcome to the 3rd Revolution, otherwise known as the era of Liquidmetal(R) alloys, where metals behave similar to plastics but possess more than twice the strength of high performance titanium. Liquidmetal alloys were conceived in 1992, as a result of a project funded by the California Institute of Technology (CalTech), NASA, and the U.S. Department of Energy, to study the fundamentals of metallic alloys in an undercooled liquid state, for the development of new aerospace materials. Furthermore, NASA's Marshall Space Flight Center contributed to the development of the alloys by subjecting the materials to testing in its Electrostatic Levitator, a special instrument that is capable of suspending an object in midair so that researchers can heat and cool it in a containerless environment free from contaminants that could otherwise spoil the experiment.

  2. Composition Range of Amorphous Mg-Ni-Y Alloys

    Institute of Scientific and Technical Information of China (English)

    陈红梅; 钟夏平; 欧阳义芳

    2003-01-01

    Based on the thermodynamic point of view, a method for predication of the composition range of amorphous ternary alloys was proposed. The composition range of amorphous ternary alloys is determined by the comparison of the excess free energy of the amorphous alloy and the free energy of competing crystalline states. The free energy is extrapolated from the data of three binary alloys by using Toop′s model. The method was applied to predict the composition range of amorphous Mg-Ni-Y alloys. The theoretical results are in good agreement with the available experimental results. It indicates that the present method can be used to predict the composition range for amorphous ternary alloys.

  3. High Energy Storage Mg-based amorphous alloys for nickel-metal hydride battery

    International Nuclear Information System (INIS)

    Full text: Mg-based hydrogen storage alloys possess very high hydrogen absorption capacity (For example, Mg2NiH4 contains 3.6 wt.% of hydrogen). Magnesium is also abundant in nature, light in weight and low in cost. As a result, magnesium alloys have become the subject of increasing research world-wide. For a long period, it was thought that Mg-based alloy-hydrogen systems needed to be operated at high temperature (over 250 deg C) and under high hydrogen pressure. However, in recent years, some research work was successfully done to improve the hydrogen absorption kinetics of Mg2Ni by mechanical grinding and alloying. Some nano and amorphous structured Mg2Ni alloys could absorb hydrogen even at room temperature. Our research results show that it is possible to use Mg2Ni-type alloys as promising materials for increasing the negative electrode capacity of Ni-MH batteries because the theoretical discharge capacity of Mg2Ni alloy is approximately 1000 mAh/g, much higher than that of the main commercial LaNi5 alloy (which has a capacity of only about 370 mAh/g). Mg-based alloy electrodes were manufactured by a powder metallurgical technique or a induction melting method followed by ball milling with Ni and/or other metal powders. The discharge capacities of the Mg-based alloy electrodes were significantly improved by ball milling. An amorphous structure is a key factor in order to achieve high discharge capacities. The figure below shows the ball milled amorphous Mg-based alloy electrodes have very high discharge capacities by comparison with crystalline Mg2Ni alloys or commercial AB5 alloy

  4. Production of amorphous starch powders by solution spray drying

    OpenAIRE

    Niazi, Muhammad B. K.; Broekhuis, Antonius A.

    2012-01-01

    The spray drying of starch/maltodextrin formulations was evaluated as a potential technology for the manufacturing of amorphous thermoplastic starches. Mixtures of starches with high to low amylose (Am)amylopectin (Ap) ratios were spray-dried from water-based solutions and granular dispersions. The effects of the feed composition on the morphology and physical properties of the end product were investigated with the spray-drying conditions kept constant. Powders obtained from the starch solut...

  5. The effect of structural changes on magnetic permeability of amorphous powder Ni80Co20

    Directory of Open Access Journals (Sweden)

    Maričić A.

    2008-01-01

    Full Text Available The structural changes of Ni80Co20 amorphous powder were tested during heating. The alloy was obtained by electrolysis from ammonia solution sulfate of cobalt and nickel on the titanium cathode. The differential scanning calorimetry (DSC method was used to detect that the crystallization process of powder occurred in two stages with crystallization peaks temperatures of the first stage at 690 K and of the second stage at 790 K. The effect of structural relaxation and crystallization of powder on magnetic properties was predicted by measurement of the relative magnetic permeability change in isothermal and nonisothermal conditions. On the basis of the time change of relative magnetic permeability at a defined temperature in the temperature range of the first and second crystallization peak on the thermogram, the kinetics of crystallization was defined. It was predicted, that in the initial time interval, in the range of the first crystallization peak, the rate of crystallization is determined by the rate of nucleation of the amorphous part of the powder. However, in the second time interval, the crystallization rate is determined by the rate of diffusion. In the range of the second peak, in the beginning the rate of crystal growth is determined by activation energy of the atom pass from smaller to bigger crystal grain. In second time interval, the rate of crystal grain growth is determined by the diffusion rate of atoms to the location of integration into bigger crystal grains. For all processes which determine the rate of crystallization in temperature ranges of both crystallization peaks, the Arrhenius temperature dependence of rate for those processes is obtained. The relative magnetic permeability of crystallized powder at 873 K, is smaller for about 30 % than the relative magnetic permeability of fresh powder at room temperature. However, structurally relaxed powder at 573 K has an about 22 % larger magnetic permeability than the same fresh

  6. Bulk amorphous powder cores with low core loss by spark-plasma sintering Fe76Si9.6B8.4P6 amorphous powder with small amounts of SiO2

    International Nuclear Information System (INIS)

    Fe76Si9.6B8.4P6 amorphous powder was produced by gas atomization. Next, bulk amorphous powder discs were prepared by pressing a mixture of Fe76Si9.6B8.4P6 amorphous powder and a small amount of SiO2 powder using the spark plasma sintering technique. The resulting bulk amorphous powder cores were obtained from the compacted discs using an electrical spark erosion machine. The powder core with 5 mass% SiO2 shows both high saturation magnetization of 1.41 T and good soft magnetic properties, 23 A/m for coercive force and 117 for effective permeability at 1 kHz. The core also exhibits much lower core loss than silicon steels or the powder core without SiO2, only 71 W/kg at a maximum magnetic induction of 0.2 T with a frequency of 10 kHz. The low core loss is due to a SiO2 insulator layer forming on the surface of the alloy powder that can effectively reduce the eddy current and consequently reduce the core loss. - Highlights: • An amorphous powder core is prepared by using spark-plasma sintering technique • The core shows good soft magnetic properties and much lower core loss. • The saturation magnetization is 1.41 T and the coercive force is 23 A/m. • The effective permeability at 1 kHz is 117. • The core loss at 10 kHz and maximum induction of 0.2 T is only 71 W/kg

  7. NMR study in amorphous CoZr thin film alloys

    International Nuclear Information System (INIS)

    59Co NMR study has been carried out in a series of magnetic thin film amorphous Co1-xZrx alloys in the concentration range 0.1< x<0.4. The analysis shows that every Zr nearest neighbour lowers the NMR frequency on Co in the amorphous CoZr alloys by about 30 MHz and that the alloy structure in Co-rich compositions resembles the polytetrahedrally closed packed crystalline phases. (orig.)

  8. Unexpected magnetic behavior in amorphous Co90Sc10 alloy

    International Nuclear Information System (INIS)

    An amorphous alloy Co90Sc10 has been prepared by rapid quenching from the melt. The results of magnetization measurements show that this alloy has the highest Curie temperature reported for any amorphous transition metal based alloys. Furthermore, for a Co based amorphous alloy, the magnetic moment is remarkably high. Moreover, the alloy exhibits soft magnetic properties. Based on the findings, amorphous Co90Sc10 appears to be an attractive candidate for applications as a soft magnetic material. The temperature dependence of the reduced magnetization can be described by the Bloch power law. The results show that the B coefficient of the amorphous Co90Sc10 alloy, which is a measure of the rigidity of spin waves, exhibits the lowest value observed until now for any amorphous alloy and is comparable to crystalline alloys. It is found that the Sc atoms in the Co90Sc10 alloy lead to an increase of the itinerant spin moment of Co atoms, and, in contrast to this behaviour, to a decrease of the local 3d-electrons of Co

  9. Powder metallurgy of turbine disc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ingesten, N.G. (Dep. of Engineering Metals)

    1981-03-01

    The first part embraced a study of carbide precipitated in IN 100 and astrology powders. The powder was heat treated at temperatures between 950/sup 0/C and 1150/sup 0/C. After aging at 950-1100/sup 0/C the MC-carbides formed during atomization were replaced by M/sub 23/C/sub 6/-carbides. After 1150/sup 0/C treatments the MC carbides were present again. Precipitation comparable with that obtained in HIP:ed specimens was not observed at free particle surfaces. However, powder particles which had agglomerated during atomization often exhibited considerable precipitation at contiguous surfaces. Obviously, contact between the particles must occur if coarse precipitation at particle surfaces is to develop. Reduced PPB-precipitation was obtained by pre-heat- treatment of powder before compaction. It is suggested that the carbon otherwise available for PPB-precipitation forms carbides in the interior of the powder particles. The aim of the second part was to ..gamma..-strengthen a Co-based super-alloy (Co-15Cr-3Mo-5Ti). Here the Ti-addition gives a coherent and ordered ..gamma..-phase Co/sub 3/Ti. However, upon ageing the alloy is unstable in order to increase the stability modifications of the alloy were prepared by: leaving out the Mo-content, adding 10 % Ni and by decreasing the Ti-content to 4.2 %. In addition, the effect of enhanced grain size and of deformation was investigated. Significant reduction of the transformation rate was only obtained by decresing the Ti-content while deformation of the alloy greatly increased the transformation rate.(author).

  10. Formation and Corrosion Resistance of Amorphous Ti Base Alloys

    OpenAIRE

    Naka, M.; Okada, T.; T. Matsui

    1996-01-01

    Corrosion resistant amorphous Ti-B and Ti-Si alloys were prepared on various substrates by RF sputtering. The alloying of B content of 8 at% or more stabilizes the amorphous structure. The corrosion properties of Ti alloys were evaluated by measuring the polarization curves in 1N HCl. Although the addition of B to crystalline bulky Ti shifts the corrosion potentials of Ti to the less nobles of -0.5 V(SCE) or less, that of B to amorphous sputtered Ti moves the corrosion potentials to the noble...

  11. Alloy element redistribution during sintering of powder metallurgy steels

    OpenAIRE

    Tahir, Abdul Malik

    2014-01-01

    Homogenization of alloying elements is desired during sintering of powder metallurgy components. The redistribution processes such as penetration of liquid phase into the interparticle/grain boundaries of solid particles and subsequent solid-state  diffusion of alloy element(s) in the base powder, are important for the effective homogenization of alloy element(s) during liquid phase sintering of the mixed powders. The aim of this study is to increase the understanding of alloy element redistr...

  12. The effect of temperature on structural changes of NI55CO45 amorphous powder

    Directory of Open Access Journals (Sweden)

    Spasojević M.

    2004-01-01

    Full Text Available Cobalt and nickel alloy powders were obtained by electrochemical deposition on a titanium cathode from an ammonium solution of cobalt and nickel sulfate. Powders of a specific chemical structure and composition, particle shape and size were obtained by an appropriate choice of electrolysis parameters, current density, deposit growth rate and solution temperature and composition. Within the current density range of 5 - 450 mAcm-2, the current density did not significantly affect the chemical composition of the powders, but had a significant effect on the particle structure, shape and size. Crystal particles formed at a current density lower than 30 mAcm-2. Amorphous powders were obtained at a current density higher than 50 mAcm-2. Structural changes of the obtained amorphous powder of 55mol.% Ni, 45 mol.% Co, pressed under the pressure of 100 MPa, were investigated by measuring the temperature dependence of electrical resistance in isothermal and non-isothermal conditions varying from room temperature to 750°C. The process of thermal stabilization of defects that appeared during pressing occurred within the temperature range of 200-390˚C. The DSC method was used to determine that the powder crystallization process occurred in two stages with peak temperatures of the exothermal maximum in the first and second stage of T1 = 438˚C and T2 = 573˚C, respectively. A distinct correlation between the change of electrical resistance and the crystallization process was established. The reduction of electrical resistively occurs during each crystallization stage.

  13. Devitrification of rapidly quenched Al–Cu–Ti amorphous alloys

    Indian Academy of Sciences (India)

    D K Misra; R S Tiwari; O N Srivastava

    2003-08-01

    X-ray diffraction, transmission electron microscopy and differential scanning calorimetry were carried out to study the transformation from amorphous to icosahedral/crystalline phases in the rapidly quenched Al50Cu45Ti5 and Al45Cu45Ti10 alloys. In the present investigation, we have studied the formation and stability of amorphous phase in Al50Cu45Ti5 and Al45Cu45Ti10 rapidly quenched alloys. The DSC curve shows a broad complex type of exothermic overlapping peaks (288–550°C) for Al50Cu45Ti5 and a well defined peak around 373°C for Al45Cu45Ti10 alloy. In the case of Al50Cu45Ti5 alloy amorphous to icosahedral phase transformation has been observed after annealing at 280°C for 73 h. Large dendritic growth of icosahedral phase along with -Al phase has been found. Annealing of Al50Cu45Ti5 alloy at 400°C for 8 h results in formation of Al3Ti type phase. Al45Cu45Ti10 amorphous alloy is more stable in comparison to Al50Cu45Ti5 alloy and after annealing at 400°C for 8 h it also transforms to Al3Ti type phase. However, this alloy does not show amorphous to icosahedral phase transformation.

  14. Amorphous soft magnetic composite-cores with various orientations of the powder-flakes

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.Y.; Wang, Y.G., E-mail: yingang.wang@nuaa.edu.cn; Xia, G.T.

    2015-12-15

    Fe{sub 78}Si{sub 9}B{sub 13} amorphous powder cores were prepared by cold pressing the amorphous powders crushed from amorphous ribbons and orientated with an external magnetic field. Three orientations of magnetic powder cores were obtained: (i) the disorderedly orientated amorphous magnetic powder core (DOAMP), (ii) the circularly orientated amorphous magnetic powder core (COAMP), and (iii) the radially orientated amorphous magnetic powder core (ROAMP). The effect of the shape anisotropy of the flake powders on the magnetic properties of the powder cores was investigated. The powders parallel to external magnetic field is beneficial for achieving the excellent performance of the cores. Below 100 kHz the product of the effective permeability and the quality factor of COAMP core increases by 9.1% and 21.2% compared to that of the DOAMP and the ROAMP cores, respectively, while the coercive field and the magnetic induction intensity keep almost the same. Pressing magnetic powders under a magnetic field to form preferred orientation is suitable for optimal design of soft magnetic cores toward practical applications. - Highlights: • The powders can be orientated to form ordered structure along the magnetic lines. • Circular orientation of the powders improves soft magnetic properties of cores. • Reduction of the demagnetizing field within the powders can increase the µ{sub e}. • Structural ordering can be used for optimal design of magnetic composite materials.

  15. Features of exoelectron emission in amorphous metallic alloys

    CERN Document Server

    Veksler, A S; Morozov, I L; Semenov, A L

    2001-01-01

    The peculiarities of the photothermostimulated exoelectron emission in amorphous metallic alloys of the Fe sub 6 sub 4 Co sub 2 sub 1 B sub 1 sub 5 composition are studied. It is established that the temperature dependences of the exoelectron emission spectrum adequately reflect the two-stage character of the amorphous alloy transition into the crystalline state. The exoelectron emission spectrum is sensitive to the variations in the modes of the studied sample thermal treatment. The thermal treatment of the amorphous metallic alloy leads to growth in the intensity of the exoelectrons yield. The highest growth in the intensify of the exoelectron emission was observed in the alloys at the initial stage of their crystallization

  16. Advances in chemical synthesis and application of metal-metalloid amorphous alloy nanoparticulate catalysts

    Institute of Scientific and Technical Information of China (English)

    WU Zhijie; LI Wei; ZHANG Minghui; TAO Keyi

    2007-01-01

    This paper reviews the advances in the chemical synthesis and application of metal-metalloid amorphous alloy nanoparticles consisting of transition metal (M) and metalloid elements (B,P).After a brief introduction on the history of amorphous alloy catalysts,the paper focuses on the properties and characterization of amorphous alloy catalysts,and recent developments in the solution-phase synthesis of amorphous alloy nanoparticles.This paper further outlines the applications of amorphous alloys,with special emphasis on the problems and strategies for the application of amorphous alloy nanoparticles in catalytic reactions.

  17. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, K

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  18. Structure and thermal stability of biodegradable Mg–Zn–Ca based amorphous alloys synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Room temperature solid state diffusion reaction induced by mechanical alloying (MA) of elemental blends of Mg, Zn and Ca of nominal composition 60 at.% Mg–35 at.% Zn–5 at.% Ca has been studied. Formation of fully amorphous structure has been identified after 5 h of MA performed in a SPEX 8000M shaker mill, with milling continued up to 8 h to confirm the formation of homogeneous amorphous phase. Thermal stability of the amorphous phase has been studied using differential scanning calorimetry (DSC) and isothermal heat treatment at different temperatures. The amorphous powder consolidated using cold isostatic pressing (CIP) showed an envelope density ∼80% of absolute density, which increased to an envelope density ∼84% of absolute density after sintering at an optimized temperature of ∼523 K for 9 h. Electrochemical bio-corrosion testing of the CIP compacted amorphous pellet as well as the sintered pellet performed in Dulbecco's Modified Eagle Medium, showed improved corrosion resistance in comparison to the as-cast pure Mg. Cytotoxicity testing of the CIP compacted amorphous pellet, performed using the MTT assay with MC3T3 osteoblastic cells, showed low cytotoxicity in comparison to the as-cast pure Mg.

  19. Evidence of eutectic crystallization and transient nucleation in Al89La6Ni5 amorphous alloy

    International Nuclear Information System (INIS)

    The phase evolution with the temperature and time in the process of crystallization of Al89La6Ni5 amorphous alloy has been investigated by in situ high-temperature and high-pressure x-ray powder diffraction using synchrotron radiation. Two crystalline phases, fcc-Al and a metastable bcc-(AlNi)11La3-like phase, were identified after the first crystallization reaction, revealing a eutectic reaction instead of a primary reaction suggested in the literature. Time-dependent nucleation in the amorphous alloy is detected and the experimental data can be fitted by both the Zeldovich's and Kashchiev's transient nucleation models with transient nucleation times of 220 and 120 min, respectively. Copyright 2001 American Institute of Physics

  20. Preparation and Cycling Performance of Iron or Iron Oxide Containing Amorphous Al-Li Alloys as Electrodes

    Directory of Open Access Journals (Sweden)

    Franziska Thoss

    2014-12-01

    Full Text Available Crystalline phase transitions cause volume changes, which entails a fast destroying of the electrode. Non-crystalline states may avoid this circumstance. Herein we present structural and electrochemical investigations of pre-lithiated, amorphous Al39Li43Fe13Si5-powders, to be used as electrode material for Li-ion batteries. Powders of master alloys with the compositions Al39Li43Fe13Si5 and Al39Li43Fe13Si5 + 5 mass-% FeO were prepared via ball milling and achieved amorphous/nanocrystalline states after 56 and 21.6 h, respectively. In contrast to their Li-free amorphous pendant Al78Fe13Si9, both powders showed specific capacities of about 400 and 700 Ah/kgAl, respectively, after the third cycle.

  1. The effect of nitrogen on the glass-forming ability and micro-hardness of Fe-Cr-Mn-N amorphous alloys prepared by mechanical alloying

    International Nuclear Information System (INIS)

    In this research, the effect of nitrogen on the thermal behavior and micro-hardness of Fe-Cr-Mn-N amorphous alloys synthesized by mechanical alloying under a nitrogen atmosphere has been considered. The characterization of the as-milled powders by X-ray diffraction, scanning and transmission electron microscopy showed that a fully amorphous structure has been developed by the mechanical alloying process. Differential scanning calorimetry results revealed that the glass transition temperatures and onset crystallization temperatures are in the ranges of 764-766 K and 855-861 K, respectively, for the alloys containing 3.45-3.95 wt.% nitrogen, giving considerable supercooled liquid regions of 91-95 K. The amorphous alloys exhibited an increase in the glass-forming ability by increasing the nitrogen amount. Furthermore, the as-milled amorphous powders showed high micro-hardness values of nearly 1015-1070 HV with an elastic-plastic deformation feature during the indentations. A decrease in the micro-hardness values was found by increasing the nitrogen content.

  2. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  3. Integral bypass diodes in an amorphous silicon alloy photovoltaic module

    Science.gov (United States)

    Hanak, J. J.; Flaisher, H.

    1991-01-01

    Thin-film, tandem-junction, amorphous silicon (a-Si) photovoltaic modules were constructed in which a part of the a-Si alloy cell material is used to form bypass protection diodes. This integral design circumvents the need for incorporating external, conventional diodes, thus simplifying the manufacturing process and reducing module weight.

  4. Microstructure and Aging of Powder-Metallurgy Al Alloys

    Science.gov (United States)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  5. Structural models for amorphous transition metal binary alloys

    International Nuclear Information System (INIS)

    A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe0.75P0.25, Ni0.75P0.25, Co0.75P0.25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys

  6. Neutron scattering studies of amorphous Invar alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Baca, J.A.

    1989-01-01

    This paper reviews recent inelastic neutron scattering experiments performed to study the spin dynamics of two amorphous Invar systems: Fe/sub 100-x/B/sub x/ and Fe/sub 90-x/Ni/sub x/Zr/sub 10/. As in crystalline Invar Fe/sub 65/Ni/sub 35/ and Fe/sub 3/Pt, the excitation of conventional long-wavelength spin waves in these amorphous systems cannot account for the relatively rapid change of their magnetization with temperature. These results are discussed in terms of additional low-lying excitations which apparently have a density of states similar to the spin waves.

  7. Amorphous coatings deposited on aluminum alloy by plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jun; XIA Yuan

    2005-01-01

    Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 μm/min if the current density is 0.9 mA/mm2. XRD results show that the PEO coatings are amorphous in the current density range of 0.3 - 0.9mA/mm2. EDS results show that the coatings are composed of O, Si and Al elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.

  8. Simulation study for atomic size and alloying effects during forming processes of amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    ZHENG Caixing; LIU Rangsu; PENG Ping; ZHOU Qunyi

    2004-01-01

    A molecular dynamics (MD) simulation study has been performed for the solidification processes of two binary liquid alloys Ag6Cu4 and CuNi by adopting the quantum Sutton-Chen many-body potentials. By analyzing bond-types, it is demonstrated that at the cooling rate of 2×1012K/s, the CuNi forms fcc crystal structures, while the Ag6Cu4 forms amorphous structures. The original reason is that the atomic radius ratio (1.13) of the CuAg is bigger than that (1.025) of the CuNi. This shows that the atomic size difference is indeed the main factor for forming amorphous alloys. Moreover, for Ag60Cu40,corresponding to the deep eutectic point in the phase diagram, it forms amorphous structure easily. This confirms that as to the forming tendency and stability of amorphous alloys, the alloying effect plays a key role. In addition, having analyzed the transformation of microstructures by using the bond-type index and cluster-type index methods, not only the key role of the icosahedral configuration to the formation and stability of amorphous alloys can be explained, but also the solidification processes of liquid metals and the characteristics of amorphous structures can be further understood.

  9. TEM study of amorphous alloys produced by ion implantation

    International Nuclear Information System (INIS)

    Ion implantation is a technique for introducing foreign elements into surface layers of solids. Ions, as a suitably accelerated beam, penetrate the surface, slow down by collisions with target atoms to produce a doped layer. This non-equilibrium technique can provide a wide range of alloys without the restrictions imposed by equilibrium phase diagrams. This paper reports on the production of some amorphous transition metal-metalloid alloys by implantation. Thinned foils of Ni, Fe and stainless steel were implanted at room temperature with Dy+ and P+ ions at doses between 1013 - 1017 ions/cm2 at energies of 20 and 40 keV respectively. Transmission electron microscopy and selected area diffraction analysis were used to investigate the implanted specimens. Radial diffracted intensity measurements confirmed the presence of an amorphous implanted layer. The peak positions of the maxima are in good agreement with data for similar alloys produced by conventional techniques. Only certain ion/target combinations produce these amorphous layers. Implantations at doses lower than those needed for amorphization often result in formation of new crystalline phases such as an h.c.p. phase in nickel and a b.c.c. phase in stainless steel. (Auth.)

  10. Glow discharge amorphous silicon tin alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, A H; Sanchez, A; Williamson, D L; von Roedern, B; Madan, A

    1984-06-01

    We present basic density of states, photoresponse, and transport measurements made on low bandgap a-SiSn:H alloys produced by RF glow discharge deposition of SiH/sub 4/, H/sub 2/ and Sn(CH/sub 3/)/sub 4/. Although we demonstrate major changes in the local bonding structure and the density of states, the normalized photoresponse still remains poor. We provide evidence that two types of defect levels are produced with Sn alloying, and that the resultant density of states increase explains not only the n- to p-type conductivity transition reported earlier, but also the photoresponse behavior. We also report that a-SiSn:H can be doped with P. From our device analysis we suggest that in order to improve the alloy performance significantly, the density of states should be decreased to levels comparable to or lower than those presently obtained in a-Si:H.

  11. Developments in the Ni-Nb-Zr amorphous alloy membranes

    Science.gov (United States)

    Sarker, S.; Chandra, D.; Hirscher, M.; Dolan, M.; Isheim, D.; Wermer, J.; Viano, D.; Baricco, M.; Udovic, T. J.; Grant, D.; Palumbo, O.; Paolone, A.; Cantelli, R.

    2016-03-01

    Most of the global H2 production is derived from hydrocarbon-based fuels, and efficient H2/CO2 separation is necessary to deliver a high-purity H2 product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H2/CO2 separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD ~31,000 kg-1) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni60Nb40)100- x Zr x alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane.

  12. Manufacturing of Titanium and Aluminium Light alloys by powder metallurgy

    OpenAIRE

    Gordo Odériz, Elena; Ruiz Navas, Elisa María

    2008-01-01

    The Group of Powder Technology (GTP) of the University Carlos III has a wide experience in the development and processing of new materials by Powder Metallurgy (PM). The mechanical alloying (MA) process, or high energy milling, allows the attainment of powders with compositions impossible to produce by other techniques, with improved properties for structural applications, where mechanical properties are the main requirement, and for applications where other specific properties are needed....

  13. Correlation of atomic packing with the boson peak in amorphous alloys

    International Nuclear Information System (INIS)

    Boson peaks (BP) have been observed from phonon specific heats in 10 studied amorphous alloys. Two Einstein-type vibration modes were proposed in this work and all data can be fitted well. By measuring and analyzing local atomic structures of studied amorphous alloys and 56 reported amorphous alloys, it is found that (a) the BP originates from local harmonic vibration modes associated with the lengths of short-range order (SRO) and medium-range order (MRO) in amorphous alloys, and (b) the atomic packing in amorphous alloys follows a universal scaling law, i.e., the ratios of SRO and MRO lengths to solvent atomic diameter are 3 and 7, respectively, which exact match with length ratios of BP vibration frequencies to Debye frequency for the studied amorphous alloys. This finding provides a new perspective for atomic packing in amorphous materials, and has significant implications for quantitative description of the local atomic orders and understanding the structure-property relationship.

  14. Cyclic and Linear Polarization of Yttrium-Containing Iron-Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Day, S D; Lian, T; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys are produced by rapid solidification from the melt. These alloys may possess unique mechanical and corrosion resistant properties. The chemical composition of the alloy may influence the cooling rate that is necessary for the alloys to be completely vitreous. At the same time, the corrosion resistance of the amorphous alloys may also depend on their chemical composition. This paper examines the anodic behavior of iron-based amorphous alloys containing three different concentrations (1, 3 and 5 atomic %) of yttrium (Y) in several electrolyte solutions. Results from polarization resistance potentiodynamic polarization show that when the alloy contains 5% atomic Y, the corrosion resistance decreases.

  15. Densification behavior of aluminum alloy powder mixed with zirconia powder inclusion under cold compaction

    International Nuclear Information System (INIS)

    Densification behavior of composite powders was investigated during cold compaction. Experimental data were obtained for aluminum alloy powder mixed with zirconia powder inclusion under triaxial compression. The cap model with constraint factors was implemented into a finite element program(ABAQUS) to simulate compaction responses of composite powders during cold compaction. Finite element results were compared with experimental data for densification behavior of composite powders under cold isostatic pressing and die compaction. The agreements between experimental data and finite element calculations from the cap model with constraint factors were good

  16. Ultralight amorphous silicon alloy photovoltaic modules for space applications

    Science.gov (United States)

    Hanak, J. J.; Chen, Englade; Fulton, C.; Myatt, A.; Woodyard, J. R.

    1987-01-01

    Ultralight and ultrathin, flexible, rollup monolithic PV modules have been developed consisting of multijunction, amorphous silicon alloys for either terrestrial or aerospace applications. The rate of progress in increasing conversion efficiency of stable multijunction and multigap PV cells indicates that arrays of these modules can be available for NASA's high power systems in the 1990's. Because of the extremely light module weight and the highly automated process of manufacture, the monolithic a-Si alloy arrays are expected to be strongly competitive with other systems for use in NASA's space station or in other large aerospace applications.

  17. Barkhausen effect during hydrogen interaction with amorphous alloy 2NSR

    International Nuclear Information System (INIS)

    The Barkhausen effect electromotive force measurements by the two-side saturation of the 2NSR (Fe78B12Si19Ni1) alloy amorphous band through hydrogen is carried out. The multiple increase in the Barkhausen effect electromotive force by hydrogen saturation is determined. It is assumed that in the metallic alloy over-saturated by hydrogen there originates a special structural state providing for decrease in the potential barrier by transition of the 180 deg boundary of the magnetic domain from the equilibrium state to another one. The value of the Barkhausen effect link with the hydrogen content in the material is indicated

  18. Properties of amorphous FeCoB alloy particles (abstract)

    DEFF Research Database (Denmark)

    Charles, S. W.; Wells, S.; Meagher, A.;

    1988-01-01

    Amorphous and crystalline alloy particles (0.05–0.5 nm) of FexCoyBz in which the ratio x:y ranges from 0 to 1 have been prepared by the borohydride reduction of iron and cobalt salts in aqueous solution. The structure of the particles has been studied using Mössbauer spectroscopy and x....... 1). It has been shown that the fraction of boron in the alloys (10–35 at. %) is dependent upon the rate of addition of salts to borohydride and the concentration of cobalt present; this in turn influences the crystallinity and magnetic properties . Journal of Applied Physics is copyrighted...

  19. Atomic structure of Re-Si amorphous alloys

    International Nuclear Information System (INIS)

    The atomic structure of Re100-xSix (x=0, 4, 11, 20, 31, 47, 54, 70, 82, 88, 100) amorphous alloys (AA) was studied by X-ray diffraction. In as-quenched alloys two amorphous phase were observed: the AI-phase-10-90 at.% Si and AII-phase-45-100 at.% Si, especially that in the composition range 45-90 at.% Si is the coexistence of two phase AI and AII. A comparison of the short range order parameters of the AA and those of the corresponding crystalline compounds has been done. The short-range order of AI-phase and coordination polyhedrons of Re5Si3, ReSi2 compounds is similar. Contrary to the Gaskell's model for metal-metalloid AA (trigonal prismatic structural unit) it seems to be tetragonal antiprism. The structure of AII-phase is the same as a-Si. (orig.)

  20. Blistering and flaking of amorphous alloys bombarded with He ions

    International Nuclear Information System (INIS)

    The blistering and flaking behavior of many kinds of amorphous alloys under helium ion bombardment at room temperature was investigated. Helium ions with energies of 40 keV and 60 keV was implanted within the fluence range (1.0-4.0) x 1018 ions/cm2. The surface topography of samples after irradiation was observed by using a scanning electron microscope. The diameter of blister and the thickness of exfoliated blister lids were measured. The results showed that many kinds of surface topography characteristics appeared for different fluences, energies and amorphous alloys, such as flaking, blistering, exfoliation, blister rupture, second generation blistering and porous structure. The dependence of surface damage modes and the critical fluence for the onset of blistering and flaking on the sort of materials and ion energy was discussed

  1. Ion beam mixing in binary amorphous metallic alloys

    International Nuclear Information System (INIS)

    Ion beam mixing (IM) was measured in homogeneous amorphous metallic alloys of Cu-Er and Ni-Ti as a function of temperature using tracer impurities, i.e., the so-called ''marker geometry''. In Cu-Er, a strong temperature dependence in IM was observed between 80 and 3730K, indicating that radiation-enhanced diffusion mechanisms are operative in this metallic glass. Phase separation of the Cu-Er alloy was also observed under irradiation as Er segregated to the vacuum and SiO2 interfaces of the specimen. At low-temperatures, the amount of mixing in amorphous Ni-Ti is similar to that in pure Ni or Ti, but it is much greater in Cu-Er than in either Cu or Er

  2. DOMAIN WALL PINNING IN INHOMOGENEOUSLY DEFORMED AMORPHOUS ALLOYS

    OpenAIRE

    Gibbs, M.; Evetts, J.; Horton, M.

    1980-01-01

    Inhomogeneous deformation in amorphous alloys is characterized by local regions of intense shear. Experiments on VITROVAC 0040 (Fe40Ni40B20) supplied by Vacuumschmelze (Hanau, Germany) show a direct correlation between the number density of the shear bands and the coercive field after inhomogeneous deformation by cold rolling. The deformation process is also shown to induce an off axis magnetic anisotropy whose mean value is large compared to other residual and induced anisotropies in these m...

  3. Crystallization of amorphous Hf100-xCux alloys

    International Nuclear Information System (INIS)

    The crystallization of Hf100-xCux (x=33, 44, 50, 59) amorphous alloys was studied by the TDPAC technique. The different stages in the transformation towards equilibrium were investigated through the evolution of the quadrupole perturbation after thermal annealings. The crystallization kinetics of Hf67Cu33 and Hf56Cu44 was analyzed using the Johnson-Mehl-Avrami equation. General trends in the crystallization behavior are discussed. (orig.)

  4. Study of the fabrication and thermally induced transformation of amorphous Mg50Ni50 obtained by mechanical alloying

    International Nuclear Information System (INIS)

    This work studied the amorphization process by mechanical alloying of a Mg50Ni50 alloy and its later thermal transformation into stable equilibrium phases. The amorphous alloy was produced using a SPEX 8000D mill, under controlled Ar atmosphere, with a ratio in ball mass: material of 20:1, from powders of Ni and cuttings of Mg. The evolution of the phases during the amorphization process was qualitatively determined by X-ray diffraction. The results showed that a noticeable microstructural refinement of the Mg and Ni occurs at the start of the milling, and that this accumulation of defects amorphitizes part of the system, producing an amorphous precursor, which mechanically crystallizes the Mg2Ni. As the milling time increases and more energy is added to the system, the structure of the Mg2Ni collapses giving way to the appearance of the amorphous Mg50Ni50 phase. With reference to the thermal transformation of the amorphous solid to the stable equilibrium phases, the joint results obtained by differential scanning calorimetry and X-ray diffraction, indicate that this occurs in two stages: at temperatures close to 350oC the amorphous Mg50Ni50 transforms into a mixture of phases, composed of Mg2Ni and a residual amorphous, which at temperatures close to 450oC undergoes the transformation into MgNi2. A temperature-heating rate-transformation (T-HR-T) diagram was built for the passage of the amorphous Mg50Ni50 into Mg2Ni and MgNi2 using the calorimetric data (au)

  5. Formation of nano-porous GeOx by de-alloying of an Al–Ge–Mn amorphous alloy

    International Nuclear Information System (INIS)

    The present study shows that nanometer-scale amorphous phase separation occurs by spinodal decomposition of the undercooled liquid in a melt-spun Al60Ge30Mn10 alloy, although there is no atomic pair with positive enthalpy of mixing. By adopting a proper de-alloying process, an interconnected nano-porous germanium oxide with an amorphous structure is successfully synthesized. The present study shows that nano-porous amorphous germanium oxide can be easily obtained by de-alloying of Al-based amorphous alloys with nm-scale composition fluctuation

  6. Structure and magnetic properties of Fe-based amorphous alloys

    Directory of Open Access Journals (Sweden)

    K. Błoch

    2013-12-01

    Full Text Available Purpose: This paper presents studies relating to the structure, magnetic properties and thermal stability of the following bulk amorphous alloys: Fe61Co10Ti3-xY6+xB20 (where x = 0 or 1 Design/methodology/approach: The investigated samples were prepared in the form of rods by using the suction-casting method. The material structures were investigated using X-ray diffractometry and Mössbauer spectroscopy. The thermal stability was determined on the basis of Differential Scanning Calorimetry (DSC plots The magnetic properties were studied using a completely automated set up for measuring susceptibility and its disaccommodation. Findings: It was found that both alloys were amorphous in the as-cast state. The DSC curve obtained for Fe61Co10Ti2Y7B20 alloy exhibited one exothermic peak, while for the Fe61Co10Ti3Y6B20 sample, two peaks were distinguishable, corresponding to the crystallization of the sample. The bifurcation of the maximum on the DSC curve for the Fe61Co10Ti3Y6B20 sample may also testify to the presence of the primary crystallizing phase (FeCo23B6 [1,2]. Data obtained from the analysis of the magnetic susceptibility disaccommodation curves clearly show that in the Fe61Co10Ti3Y6B20 alloy there is less free volumes than in the second of the investigated alloys, this results in a lesser range of relaxation time. Moreover, Fe61Co10Ti3Y6B20 alloy exhibits the better time and thermal stability of magnetic properties In both of the studied alloys, at low frequencies, the total losses were comparable with those observed in classical silicon-iron alloys. Practical implications: A Ferrometer was used for the determination of core losses. Originality/value: The paper presents some researches of the Fe-based bulk amorphous alloys obtained by the suction-casting method.

  7. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  8. Surface-Activated Amorphous Alloy Fuel Electrodes for Methanol Fuel Cell

    OpenAIRE

    Kawashima, Asahi; Hashimoto, Koji

    1983-01-01

    Amorphous alloy electrodes for electrochemical oxidation of methanol and its derivatives were obtained by the surface activation treatment consisting of electrodeposition of zinc on as-quenched amorphous alloy substrates, heating at 200-300℃ for 30 min, and subsequently leaching of zinc in an alkaline solution. The surface activation treatment provided a new method for the preparation of a large surface area on the amorphous alloys. The best result for oxidation of methanol, sodium formate an...

  9. Structure and mechanical properties of Al-Ni-Ti amorphous powder consolidated by pressure-less, pressure-assisted and spark plasma sintering

    International Nuclear Information System (INIS)

    Attempts have been made to prepare highly dense bulk Al-based nanocomposite consisting of evenly distributed nano-intermetallic particles and amorphous phase by consolidating mechanically alloyed amorphous Al88Ni6Ti6 powder using spark plasma sintering (SPS), hot-pressing and pressure-less sintering techniques. SPS technique has been most effective in comparison to other two processes in getting better homogeneity of microstructural features, densification and mechanical properties due to lower sintering temperature and time, hindering excessive crystallization of amorphous phase and grain growth of formed nanocrystals. This helps in producing optimum microstructure consisting of homogeneous distribution of nanocrystalline intermetallic phase and remaining amorphous phase as revealed by detailed electron microscopy and nano-indentation tests.

  10. Bulk amorphous powder cores with low core loss by spark-plasma sintering Fe{sub 76}Si{sub 9.6}B{sub 8.4}P{sub 6} amorphous powder with small amounts of SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue [School of Material and Metallurgy, University of Science and Technology Liaoning (USTL), 185 Qianshan Zhong Road, Anshan, Liaoning 114051 (China); Lu, Gonghao, E-mail: ghlu@ustl.edu.cn [School of Chemical Engineering, University of Science and Technology Liaoning (USTL), 185 Qianshan Zhong Road, Anshan, Liaoning 114051 (China); Zhang, Zhiqiang [School of Chemical Engineering, University of Science and Technology Liaoning (USTL), 185 Qianshan Zhong Road, Anshan, Liaoning 114051 (China); Ju, Dongying [School of Material and Metallurgy, University of Science and Technology Liaoning (USTL), 185 Qianshan Zhong Road, Anshan, Liaoning 114051 (China); Makino, Akihiro [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-10-25

    Fe{sub 76}Si{sub 9.6}B{sub 8.4}P{sub 6} amorphous powder was produced by gas atomization. Next, bulk amorphous powder discs were prepared by pressing a mixture of Fe{sub 76}Si{sub 9.6}B{sub 8.4}P{sub 6} amorphous powder and a small amount of SiO{sub 2} powder using the spark plasma sintering technique. The resulting bulk amorphous powder cores were obtained from the compacted discs using an electrical spark erosion machine. The powder core with 5 mass% SiO{sub 2} shows both high saturation magnetization of 1.41 T and good soft magnetic properties, 23 A/m for coercive force and 117 for effective permeability at 1 kHz. The core also exhibits much lower core loss than silicon steels or the powder core without SiO{sub 2}, only 71 W/kg at a maximum magnetic induction of 0.2 T with a frequency of 10 kHz. The low core loss is due to a SiO{sub 2} insulator layer forming on the surface of the alloy powder that can effectively reduce the eddy current and consequently reduce the core loss. - Highlights: • An amorphous powder core is prepared by using spark-plasma sintering technique • The core shows good soft magnetic properties and much lower core loss. • The saturation magnetization is 1.41 T and the coercive force is 23 A/m. • The effective permeability at 1 kHz is 117. • The core loss at 10 kHz and maximum induction of 0.2 T is only 71 W/kg.

  11. Dense Amorphous Zirconia-Alumina by Low Temperature Consolidation of Spray Pyrolyzed Powders

    OpenAIRE

    Gandhi, Ashutosh S; Vikram, Jayaram; Chokshi, Atul H.

    1999-01-01

    Hot-pressing of metastable amorphous ZrO2-Al2O3 powders was performed at low temperatures (873 and 923 K), under moderately high pressures (500 and 750 MPa), and amorphous pellets with 1 to 8 % porosity were obtained. Crystallization of the amorphous pieces between 1173 and 1673 K produced a range of ultrafine microstructures, the finest of which had 6-8 nm grains of tetragonal (ZrO2-40 mol% Al2O3) solid solution formed at 1173 K. Sub-micron grain sizes of the equilibrium m-ZrO2 and -Al2O3 ar...

  12. Powdering ductile U-Mo alloys for nuclear dispersion fuels

    International Nuclear Information System (INIS)

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-dehydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and γ-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  13. Technology Of Zirconium Alloys Using Powder metallurgy Method

    International Nuclear Information System (INIS)

    Powder metallurgy method has been employed to produce zirconium alloys made of zirconium and its alloying elements powder. Process parameters that influence on the properties of the sintered product and its density have been investigated. The experiments show that at the sintering temperature of 1100oC, variation of compaction pressure process consist of three stages, i.e.: initial, intermediate and final stage which is respectively occurred between 1 to 2.5 hours, 2.5 to 6 hours and above 6 hours sintering time

  14. Mechanical alloying nanotechnology, materials science and powder metallurgy

    CERN Document Server

    El-Eskandarany, M Sherif

    2015-01-01

    This book is a detailed introduction to mechanical alloying, offering guidelines on the necessary equipment and facilities needed to carry out the process and giving a fundamental background to the reactions taking place. El-Eskandarany, a leading authority on mechanical alloying, discusses the mechanism of powder consolidations using different powder compaction processes. A new chapter will also be included on thermal, mechanically-induced and electrical discharge-assisted mechanical milling. Fully updated to cover recent developments in the field, this second edition also introduces new a

  15. Manufacturing the U-Zr-Er alloy by powder metallurgy

    International Nuclear Information System (INIS)

    The U-Zr-Er alloy is used in the nuclear fuel for the TRIGA reactors. The paper present the technological aspects of manufacturing of U-Zr-Er alloys by powder metallurgy. The basic steps are: hydriding of uranium, zirconium and erbium, blending, pressing and sintering. By hydriding the bulk metals can be easily transformed without supplemental contamination in powder. The blending process ensures a homogenous distribution of components. During the vacuum sintering process the metal hydrides are decomposed in metal and the hydrogen that is evacuated. The sintering at 1300 deg C results in densities higher then 95% DT. (author)

  16. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kalay, Yunus Eren [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from

  17. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    International Nuclear Information System (INIS)

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 (micro)m with a Peclet number of ∼0.2, JH and TMK deviate from each other. This

  18. Bonding tungsten, W–Cu-alloy and copper with amorphous Fe–W alloy transition

    International Nuclear Information System (INIS)

    W/Cu graded materials are the leading candidate materials used as the plasma facing components in a fusion reactor. However, tungsten and copper can hardly be jointed together due to their great differences in physical properties such as coefficient of thermal expansion and melting point, and the lack of solid solubility between them. To overcome those difficulties, a new amorphous Fe–W alloy transitional coating and vacuum hot pressing (VHP) method were proposed and introduced in this paper. The morphology, composition and structure of the amorphous Fe–W alloy coating and the sintering interface of the specimens were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The thermal shock resistance of the bonded composite was also tested. The results demonstrated that amorphous structure underwent change from amorphous to nano grains during joining process, and the joined W/Cu composite can endued plasma thermal shock resistance with energy density more than 5.33 MW/m2. It provides a new feasible technical to join refractory tungsten to immiscible copper with amorphous Fe–W alloy coating

  19. Gamma stability and powder formation of UMo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F.B.V.; Andrade, D.A.; Angelo, G.; Belchior Junior, A.; Torres, W.M.; Umbehaun, P.E., E-mail: wmtorres@ipen.br, E-mail: umbehaun@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Angelo, E., E-mail: eangelo@mackenzie.br [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Grupo de Simulacao Numerica (GSN)

    2015-07-01

    A study of the hydrogen embrittlement as well as a research on the relation between gamma decomposition and powder formation of uranium molybdenum alloys were previously presented. In this study a comparison regarding the hypo-eutectoid and hyper-eutectoid molybdenum additions is presented. Gamma uranium molybdenum alloys have been considered as the fuel phase in plate type fuel elements for material and test reactors (MTR). Regarding their usage as a dispersion phase in aluminum matrix, it is necessary to convert the as cast structure into powder, and one of the techniques considered for this purpose is the hydration-dehydration (HDH). This paper shows that, under specific conditions of heating and cooling, γ-UMo fragmentation may occur with non-reactive or reactive mechanisms. Following the production of the alloys by induction melting, samples of the alloys were thermally treated under a constant flow of hydrogen. It was observed that, even without a massive hydration-dehydration process, the alloys fragmented under specific conditions of thermal treatment, during the thermal shock phase of the experiments. Also, there is a relation between absorption and the rate of gamma decomposition or the gamma phase stability of the alloy and this phenomenon can be related to the eutectoid transformation temperature. This study was carried out to search for a new method for the production of powders and for the evaluation of important physical parameter such as the eutectoid transformation temperature, as an alternative to the existing ones. (author)

  20. PECULARITIES OF COMPOSITE POWDERS PLASMA SPRAYING PREPARED BY MECHANICAL ALLOYING

    OpenAIRE

    Kudinov, V.; Pekshev, P.; Tcherniakov, S.; Kondratenko, L.

    1990-01-01

    In the present paper the main advantages of mechanical alloying compared to the other methods of composite powders preparing are discussed from the point of view both of powder quality and structure and properties of sprayed coatings. As an example on the base of NiCr-ZrO2-, NiCr-Cr2C3-, W-Cu- compositions it is shown, that prepared powders are characterized by high particles composition homogeneity, fine disperse components distribution in particles volume, high values of bound strength and ...

  1. Surface modification of magnesium alloys by laser alloying using Si powder

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, K.; Suzuki, A.; Takagi, T.; Kamado, S.; Kojima, Y. [Dept. of Mechanical Engineering, Nagaoka Univ. of Technology (Japan); Hiraga, H. [Foundation Juridical Person Central Niigata Prefecture Regional Industries Promotion Center, Sanjou, Niigata (Japan)

    2003-07-01

    The surface modification of AZ91D magnesium alloy by laser alloying in which powder injection method was used for the purpose of improving the wear resistance of the alloy is evaluated. silicon powder was used as the feeding powder. The silicon powder reacts easily with molten magnesium to form fine Mg{sub 2}Si compound in the modified layer. The wear resistance of the modified layer consisting of magnesium solid solution and Mg{sub 2}Si compound was evaluated by conducting pin-on-plate type sliding test, and a satisfactory result is obtained. However, with large powder feeding rate and large amount of heat input by laser, a hard and brittle Mg-Al intermetallic compound crystallize so much in the matrix, resulting in the flaking of harder Mg{sub 2}Si compound. Consequently, the Mg{sub 2}Si compound drops out easily and the wear depth increases by ternary abrasive wear. (orig.)

  2. Synthesis and characterization of a bulk amorphous alloy

    International Nuclear Information System (INIS)

    The production and characterization of bulk metallic glasses have been an area of intense focus in materials research for many years because of their superior mechanical properties over their crystalline counterparts. A bulk metallic glass Zr/sub 55/Cu/sub 30/Al/sub 10/Ni/sub 5/ has been synthesized by copper mold casting and characterized by differential scanning calorimetry and x-ray diffraction. Crystallization behavior of the alloy is discussed. Composite of amorphous glass was produced by adding SiC and hardness and tensile strength have been measured. (author)

  3. Amorphous magnetism in Mnx Sn1-x alloys

    International Nuclear Information System (INIS)

    Systematic low temperature in situ 119Sn Moessbauer effect (ME) studies in vapor quenched amorphous Mnx Sn1-x (0.09≤ x ≤0,95) alloys between 150 and 4.2 K, are presented. Its is shown that the magnetic behavior of the system is correctly displayed by the transferred magnetic hyperfine (hf) interactions, at the 119Sn site. A complete magnetic phase diagram is proposed, and the effect of an external magnetic field (up to about 3T) on the spin correlations in the spin-glass state is also discussed. (author)

  4. POWDER METALLURGY TiAl ALLOYS: MICROSTRUCTURES AND PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L

    2006-12-11

    The microstructures and properties of powder metallurgy TiAl alloys fabricated by hot extrusion of gas-atomized powder at different elevated temperatures were investigated. Microstructure of the alloy fabricated at 1150 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains and coarse ordered B2 grains. Particles of ordered hexagonal {omega} phase were also observed in some B2 grains. The alloy containing B2 grains displayed a low-temperature superplastic behavior: a tensile elongation of 310% was measured when the alloy was tested at 800 C under a strain rate of 2 x 10{sup -5} s{sup -1}. Microstructure of the alloy fabricated at 1250 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains, coarse {alpha}{sub 2} grains, and lamellar ({gamma} + {alpha}{sub 2}) colonies. An observation of stacking faults associated with fine {gamma} lamellae in {alpha}{sub 2} grains reveals that the stacking fault of {alpha}{sub 2} phase plays an important role in the formation of lamellar ({gamma} + {alpha}{sub 2}) colonies. Unlike the alloy fabricated at 1150{sup o}, the alloy fabricated at 1250{sup o} displayed no low-temperature superplasticity, but a tensile elongation of 260% at 1000 C was measured. Microstructure of the alloy fabricated at 1400 C consisted of fully lamellar ({gamma} + {alpha}{sub 2}) colonies with the colony size ranging between 50 {micro}m and 100 {micro}m, in which the width of {gamma} lamella is in a range between 100 nm and 350 nm, and the width of {alpha}{sub 2} lamella is in a range between 10 nm and 50 nm. Creep behavior of the ultrafine lamellar alloy and the effects of alloying addition on the creep resistance of the fully lamellar alloy are also investigated.

  5. Influence of temperature on structure and magnetic properties of powders alloys

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2007-01-01

    Full Text Available Purpose: The paper presents the research results of nanocrystalline powders obtained by high energetic millingof amorphous ribbons based on cobalt Co77Si11,5B11,5 and Co68Fe4Mo1Si13,5B13,5.Design/methodology/approach: A 8000 SPEX CertiPrep Mixer/Mill high energy ball mill was applied to millthe ribbons both in „as quenched” state and heat treated. Observations of the structure of powders were madeon the Opton DSM-940 scanning electron microscope. The change of powder material structure was measuredwith electron transmitting microscope JEOL JEM 200CX and X-ray analysis. The X-ray tests were realized withthe use of the XRD 7 SEIFERT-FPM diffractometer.Findings: The analysis of the magnetic properties test results of the of the Co77Si11.5B11.5 andCo68Fe4Mo1Si13,5B13,5.powders obtained in the high-energy ball of milling process proved that the processcauses significant decrease in the magnetic properties. The structure and magnetic properties of thismaterial may be improved by means of a proper choice of parameters of this process as well as the finalthermal treatment.Research limitations/implications: For the powders, further magnetical, structure and composition examinationsare planed.Practical implications: The amorphous and nanocrystalline powders of Co77Si11,5B11,5 and Co68Fe4Mo1Si13,5B13,5.alloys obtained by high-energy ball milling of metallic glasses feature an alternative to solid alloys and make itpossible to obtain the ferromagnetic nanocomposites, whose shape and dimensions can be freely formed.Originality/value: The paper presents influence of annealing temperature and parameters of the high-energyball milling process on structure and magnetic properties of soft magnetic powder materials obtained in thistechnique. Results and a discussion of the influence of high energy mechanical milling process on particlesize and their distribution and annealing temperature of powders as well as structure and magnetic propertiesof investigated

  6. Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors

    CERN Document Server

    Idzikowski, Bogdan; Miglierini, Marcel

    2005-01-01

    Metallic (magnetic and non-magnetic) nanocrystalline materials have been known for over ten years but only recent developments in the research into those complex alloys and their metastable amorphous precursors have created a need to summarize the most important accomplishments in the field. This book is a collection of articles on various aspects of metallic nanocrystalline materials, and an attempt to address this above need. The main focus of the papers is put on the new issues that emerge in the studies of nanocrystalline materials, and, in particular, on (i) new compositions of the alloys, (ii) properties of conventional nanocrystalline materials, (iii) modeling and simulations, (iv) preparation methods, (v) experimental techniques of measurements, and (vi) different modern applications. Interesting phenomena of the physics of nanocrystalline materials are a consequence of the effects induced by the nanocrystalline structure. They include interface physics, the influence of the grain boundaries, the aver...

  7. Characteristics and Microstructure of a Hypereutectic Al-Si Alloy Powder by Ultrasonic Gas Atomization Process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the alloy was very fine and its rnicrostructure was mainly consisted of Si crystals plus intermetallic compound Al9FeSi3, which were. very fine and uniformly distributed.

  8. Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying

    International Nuclear Information System (INIS)

    Highlights: • Potential to produce B1′ (thermal- and stress-induced) and B2 was established. • Martensitic transformation occurred without the formation of intermediate R-phase. • Formation of unwanted intermetallics during heating was hindered by milling. • During milling, microhardness was increased, then reduced, and afterward re-increased. • By milling evolution, thermal crystallization steps changed from 3 to 2. - Abstract: In the present paper, the effect of milling process on the chemical composition, structure, microhardness, and thermal behavior of Ti–41Ni–9Cu compounds developed by mechanical alloying was evaluated. The structural characteristic of the alloyed powders was evaluated by X-ray diffraction (XRD). The chemical composition homogeneity and the powder morphology and size were studied by scanning electron microscopy coupled with electron dispersive X-ray spectroscopy. Moreover, the Vickers micro-indentation hardness of the powders milled for different milling times was determined. Finally, the thermal behavior of the as-milled powders was studied by differential scanning calorimetery. According to the results, at the initial stages of milling (typically 0–12 h), the structure consisted of a Ni solid solution and amorphous phase, and by the milling evolution, nanocrystalline martensite (B19′) and austenite (B2) phases were initially formed from the initial materials and then from the amorphous phase. It was found that by the milling development, the composition uniformity is increased, the inter-layer thickness is reduced, and the powders microhardness is initially increased, then reduced, and afterward re-increased. It was also realized that the thermal behavior of the alloyed powders and the structure of heat treated samples is considerably affected by the milling time

  9. Processing TiAl-Based Alloy by Elemental Powder Metallurgy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    TiAl-based alloys with various compositions (including Ti-48Al, Ti-47Al-2Cr-2Nb, Ti-47Al-2Cr-2Nb-0.2B and Ti-47Al-3Cr, in mole fraction) had been prepared by elemental powder metallurgy (EPM). The results have shown that the density of the prepared Ti-48Al alloy increases with increasing hot pressing temperature up to 1300℃. The Ti-48Al alloy microstructure mainly consisted of island-like Ti3Al phase and TiAl matrix at hot pressing temperature below 1300℃, however, coarse α2/γlamellar colonies and γ grains appeared at 1400℃. It has also indicated that the additions of elemental Cr and B can refine the alloy microstructure. The main microstructural inhomogeneity in EPM TiAl-based alloys was the island-like α2 phase or the aggregate of α2/γ lamellar colony, and such island-like structure will be inherited during subsequent heat treatment in (α+γ) field. Only after heat treatment in α field would this structure be eliminated. The mechanical properties of EPM TiAl-based alloys with various compositions were tested, and the effect of alloy elements on the mechanical properties was closely related to that of alloy elements on the alloy microstructures. Based on the above results, TiAl-based alloy exhaust valves were fabricated by elemental powder metallurgy and diffusion joining. The automobile engine test had demonstrated that the performance of the manufactured valves was very promising for engine service.

  10. Phase transformations of mechanically alloyed Fe-Cr-P-C powders

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, N. [Laboratoire de Magnetisme et de Spectroscopie des Solides, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, 23000 Annaba, Algerie (Algeria); Alleg, S. [Laboratoire de Magnetisme et de Spectroscopie des Solides, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, 23000 Annaba, Algerie (Algeria); Greneche, J.M. [Laboratoire de Physique de l' Etat Condense - UMR 6087, Universite du Maine, Faculte des Sciences 72085, Le Mans Cedex 9 (France)]. E-mail: greneche@univ-lemans.fr

    2005-05-03

    Fe{sub 77}Cr{sub 4}P{sub 8}C{sub 11} alloy was prepared by mechanical alloying (MA) of elemental Fe, Cr, P and C (graphite) powders in a planetary ball mill type Fritsch P7 under argon atmosphere. Morphological changes, microstructural and structural evolutions during ball milling were followed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and {sup 57}Fe Moessbauer spectrometry (MS) as a function of the milling time. The crystallite size refinement against the milling time is accompanied by an increase of the atomic level strain. After 6 h of milling, the dissolution of phosphorous into the {alpha}-Fe matrix is evidenced by the formation of a small amount ({approx}4%) of the paramagnetic Fe{sub 2}P phase as revealed by Moessbauer spectrometry. The complete mixing of all the elemental powders at the atomic level is achieved at 12 h of milling and results, after 24 h, in an amorphous matrix where nanocrystalline phosphides and carbides with nearly equal crystallite sizes are embedded. Further milling time up to 190 h gives rise to the formation of both the orthorhombic and the hexagonal (FeCr){sub 7}C{sub 3} carbide as well as the superparamagnetic {epsilon}'-Fe{sub 2.2}C carbide through the recrystallisation of the amorphous phase.

  11. Low temperature irradiation effects on iron boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Three Fe-B amorphous alloys (Fe80B20, Fe27Mo2B20 and Fe75B25) and the crystallized Fe3B alloy have been irradiated at the temperature of liquid hydrogen. Electron irradiation and irradiation by 10B fission fragments induce point defects in amorphous alloys. These defects are characterized by an intrinsic resistivity and a formation volume. The threshold energy for the displacement of iron atoms has also been calculated. Irradiation by 235U fission fragments induces some important structural modifications in the amorphous alloys

  12. Formation and thermal stability of amorphous Ni-Mo-P alloys

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; MA Jun; FANG Yong-kui; DUAN Ji-guo

    2004-01-01

    The experimental researches on the chemical deposition of Ni-Mo-P amorphous alloys were carried out by adding Na2 MoO4 into acidic solutions. The optimum technology conditions were obtained by orthogonal design experiments. The structures and the relationship between compositions and their thermal stability were studied by energy spectrum (EC), scanning electron micrograph and X-ray diffraction spectrum. Compared with Ni-P amorphous alloys, the Ni-Mo-P amorphous alloys have high crystallization temperature and thermal stability, and the hardness reaches its peak when the annealing temperature is 500 ℃. With the increase of the heat treatment temperature, the surface morphology of the alloys changes.

  13. Use of heat of adsorption to quantify amorphous content in milled pharmaceutical powders.

    Science.gov (United States)

    Alam, Shamsul; Omar, Mahmoud; Gaisford, Simon

    2014-01-01

    Isothermal calorimetry operated in gas perfusion mode (IGPC) is often used to quantify the amorphous content of pharmaceutical powders. Typically, the calibration line is constructed using the heat of crystallisation as the sample is exposed to high levels of a plasticising vapour. However, since the physical form to which the amorphous fraction crystallises may be dependent on the presence of any crystalline seed, the calibration line is often seen to be non-linear, especially as the amorphous content of the sample approaches 100% w/w. Redesigning the experiment so that the calibration line is constructed with the heat of adsorption is an alternative approach that, because it is not dependent upon crystallisation to a physical form should ameliorate this problem. The two methods are compared for a model compound, salbutamol sulphate, which forms either a hydrate or an anhydrate depending on the amorphous content. The heat of adsorption method was linear between amorphous contents of 0 and 100% w/w and resulted in a detection limit of 0.3% w/w and a quantification limit of 0.92% w/w. The heat of crystallisation method was linear only between amorphous contents of 0 and 80% w/w and resulted in a detection limit of 1.7% w/w and a quantification limit of 5.28% w/w. Thus, the use of heat of adsorption is shown to be a better method for quantifying amorphous contents to better than 1% w/w. PMID:24315924

  14. On iron contamination in mechanically alloyed Cr-Si powders

    International Nuclear Information System (INIS)

    The present work reports on iron contamination and phase transformation during high-energy ball milling from high-purity elemental powder Cr-25Si, Cr-37.5Si, Cr-50Si, and Cr-66Si mixtures (at%) and their subsequent heat treatment. Samples were characterized in the as-milled state as well as after heat treatment by X-ray diffraction (XRD), scanning electron microscopy (SEM), and microanalysis via energy dispersive spectrometry (EDS). Only Cr peaks were observed in Cr-25Si and Cr-37.5Si powders after milling for 200 h, suggesting that amorphous phases can be formed. In Cr-50Si and Cr-66Si powders, the CrSi and CrSi2 phases were formed during ball milling, respectively. In Cr-25Si and Cr-50Si milled powders, heat-treated at 1200 deg. C for 4 h, the formation of the Cr3Si and CrSi phases dissolving up to 15 and 16.9 at%Fe, respectively, was noted. In addition, the ternary Cr9Fe9Si2 phase was also formed in heat-treated Cr-25Si powders. A small amount of Cr5Si3 and CrSi2 was formed in heat-treated Cr-37.5Si and Cr-66Si powders, respectively

  15. Superplasticity in powder metallurgy aluminum alloys and composites

    International Nuclear Information System (INIS)

    Superplasticity in powder metallurgy Al alloys and composites has been reviewed through a detailed analysis. The stress-strain curves can be put into 4 categories: classical well-behaved type, continuous strain hardening type, continuous strain softening type and complex type. The origin of these different types of is discussed. The microstructural features of the processed material and the role of strain have been reviewed. The role of increasing misorientation of low angle boundaries to high angle boundaries by lattice dislocation absorption is examined. Threshold stresses have been determined and analyzed. The parametric dependencies for superplastic flow in modified conventional aluminum alloys, mechanically alloyed alloys and Al alloy matrix composites is determined to elucidate the superplastic mechanism at high strain rates. The role of incipient melting has been analyzed. A stress exponent of 2, an activation energy equal to that for grain boundary diffusion and a grain size dependence of 2 generally describes superplastic flow in modified conventional Al alloys and mechanically alloyed alloys. The present results agree well with the predictions of grain boundary sliding models. This suggests that the mechanism of high strain rate superplasticity in the above-mentioned alloys is similar to conventional superplasticity. The shift of optimum superplastic strain rates to higher values is a consequence of microstructural refinement. The parametric dependencies for superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of 313 kJ/mol best describes the composites having SiC reinforcements. The role of shape of the reinforcement (particle or whisker) and processing history is addressed. The analysis suggests that the mechanism for superplasticity in composites is interface diffusion controlled grain boundary sliding

  16. New alloying systems for ferrous powder metallurgy precision parts

    Directory of Open Access Journals (Sweden)

    Danninger H.

    2008-01-01

    Full Text Available Traditionally, the common alloy elements for sintered steels have been Cu and Ni. With increasing requirements towards mechanical properties, and also as a consequence of soaring prices especially for these two metals, other alloy elements have also become more and more attractive for sintered steels, which make the steels however more tricky to process through PM. Here, the chances and risks of using in particular Cr and Mn alloy steels are discussed, considering the different alloying techniques viable in powder metallurgy, and it is shown that there are specific requirements in particular for sintering process. The critical importance of chemical reactions between the metal and the atmosphere is described, and it is shown that not only O2 and H2O but also H2 and even N2 can critically affect sintering and microstructural homogenization.

  17. Characterization and pharmacokinetic analysis of crystalline versus amorphous rapamycin dry powder via pulmonary administration in rats.

    Science.gov (United States)

    Carvalho, Simone R; Watts, Alan B; Peters, Jay I; Liu, Sha; Hengsawas, Soraya; Escotet-Espinoza, Manuel S; Williams, Robert O

    2014-09-01

    The pharmacokinetics of inhaled rapamycin (RAPA) is compared for amorphous versus crystalline dry powder formulations. The amorphous formulation of RAPA and lactose (RapaLac) was prepared by thin film freezing (TFF) using lactose as the stabilizing agent in the weight ratio 1:1. The crystalline formulation was prepared by wet ball milling RAPA and lactose and posteriorly blending the mixture with coarse lactose (micronized RAPA/micronized lactose/coarse lactose=0.5:0.5:19). While both powders presented good aerosolization performance for lung delivery, TFF formulation exhibited better in vitro aerodynamic properties than the crystalline physical mixture. Single-dose 24h pharmacokinetic studies were conducted in Sprague-Dawley rats following inhalation of the aerosol mist in a nose-only inhalation exposure system. Lung deposition was higher for the crystalline group than for the TFF group. Despite higher pulmonary levels of drug that were found for the crystalline group, the systemic circulation (AUC₀₋₂₄) was higher for the amorphous group (8.6 ngh/mL) than for crystalline group (2.4 ngh/mL) based on a five-compartmental analysis. Lung level profiles suggest that TTF powder stays in the lung for the same period of time as the crystalline powder but it presented higher in vivo systemic bioavailability due to its enhanced solubility, faster dissolution rate and increased FPF at a more distal part of the lungs. PMID:24859653

  18. Short range ordering and microstructure property relationship in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shariq, A.

    2006-07-01

    A novel algorithm, ''Next Neighbourhood Evaluation (NNE)'', is enunciated during the course of this work, to elucidate the next neighbourhood atomic vicinity from the data, analysed using tomographic atom probe (TAP) that allows specifying atom positions and chemical identities of the next neighbouring atoms for multicomponent amorphous materials in real space. The NNE of the Pd{sub 55}Cu{sub 23}P{sub 22} bulk amorphous alloy reveals that the Pd atoms have the highest probability to be the next neighbours to each other. Moreover, P-P correlation corroborates earlier investigations with scattering techniques that P is not a direct next neighbour to another P atom. Analogous investigations on the Fe{sub 40}Ni{sub 40}B{sub 20} metallic glass ribbons, in the as quenched state and for a state heat treated at 350 C for 1 hour insinuate a pronounced elemental inhomogeneity for the annealed state, though, it also depicts glimpse of a slight inhomogeneity for B distribution even for the as quenched sample. Moreover, a comprehensive microstructural investigation has been carried out on the Zr{sub 53}Co{sub 23.5}Al{sub 23.5} glassy system. TEM and TAP investigations evince that the as cast bulk samples constitutes a composite structure of an amorphous phase and crystalline phase(s). The crystallization is essentially triggered at the mould walls due to heterogeneous nucleation. The three dimensional atomic reconstruction maps of the volume analysed by TAP reveal a complex stereological interconnected network of two phases. The phase that is rich in Zr and Al concentration is depleted in Co concentration while the phase that is rich in Co concentration is depleted both in Zr and Al. Zr{sub 53}Co{sub 23.5}Al{sub 23.5} glassy splat samples exhibit a single exothermic crystallization peak contrary to the as cast bulk sample with a different T{sub g} temperature. A single homogeneous amorphous phase revealed by TEM investigations depicts that the faster cooling

  19. Unexpected magnetic behavior in amorphous Co{sub 90}Sc{sub 10} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, M., E-mail: mohammad.ghafari@kit.edu, E-mail: skamali@utsi.edu; Gleiter, H. [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Sakurai, Y.; Itou, M. [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo, Sayo, Hyogo (Japan); Peng, G.; Fang, Y. N.; Feng, T. [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Hahn, H. [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); KIT-TUD Joint Research Laboratory Nanomaterials, Institute of Materials Science, Technische Universität Darmstadt (TUD), Jovanka-Bontschits-Str. 2, 64287 Darmstadt (Germany); Kamali, S., E-mail: mohammad.ghafari@kit.edu, E-mail: skamali@utsi.edu [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, Tennessee 37388 (United States)

    2015-09-28

    An amorphous alloy Co{sub 90}Sc{sub 10} has been prepared by rapid quenching from the melt. The results of magnetization measurements show that this alloy has the highest Curie temperature reported for any amorphous transition metal based alloys. Furthermore, for a Co based amorphous alloy, the magnetic moment is remarkably high. Moreover, the alloy exhibits soft magnetic properties. Based on the findings, amorphous Co{sub 90}Sc{sub 10} appears to be an attractive candidate for applications as a soft magnetic material. The temperature dependence of the reduced magnetization can be described by the Bloch power law. The results show that the B coefficient of the amorphous Co{sub 90}Sc{sub 10} alloy, which is a measure of the rigidity of spin waves, exhibits the lowest value observed until now for any amorphous alloy and is comparable to crystalline alloys. It is found that the Sc atoms in the Co{sub 90}Sc{sub 10} alloy lead to an increase of the itinerant spin moment of Co atoms, and, in contrast to this behaviour, to a decrease of the local 3d-electrons of Co.

  20. Ferrous Alloy Powder for Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    WEN Jialing; NIU Quanfeng; XU Yanmin

    2005-01-01

    This investigation aimed at how to improve the hardness and wear resistance by B, Si and Cr, and how to improve the synthesis property by Re (rare-earth element). Based on the experiment of Fe-based alloys of Fe-Cr-Ni-B-Si-Re, through experiments and a serious of synthesis analysis, including surface quality, spectrum composite, micro-hardness, scanning electron microscopy, as well as the synthesis evaluation,etc, prescriptions were optimized. As a result, a Fe-Cr-Ni-B-Si-Re cladding material with a high property was obtained.

  1. Electromagnetic wave absorption properties of iron/rare earth oxide composites dispersed by amorphous carbon powder

    International Nuclear Information System (INIS)

    The sludge powders of Nd-Fe-B sintered magnets were oxidized at 250-325 deg. C for 2 h and then the α-Fe/Fe2B/Nd2O3/amorphous carbon (a-C) nanocomposite powders were prepared by ball-milling the sludge with the a-C powder for 12-40 h. The resin composites of 75 mass% of these nanocomposite powders showed excellent electromagnetic wave absorption properties in GHz range. The effective absorption of RL <-20 dB were observed in a range of 7.6-18.0 GHz and the minimum absorption peaks around -58.5 dB appeared at 12.0 GHz with matching thickness of 1.9 mm for the samples heated at 300 deg. C for 2 h and then ball-milled with 4.8 mass% a-C for 30 h

  2. Low-Temperature Annealing Induced Amorphization in Nanocrystalline NiW Alloy Films

    Directory of Open Access Journals (Sweden)

    Z. Q. Chen

    2013-01-01

    Full Text Available Annealing induced amorphization in sputtered glass-forming thin films was generally observed in the supercooled liquid region. Based on X-ray diffraction and transmission electron microscope (TEM analysis, however, here, we demonstrate that nearly full amorphization could occur in nanocrystalline (NC sputtered NiW alloy films annealed at relatively low temperature. Whilst the supersaturation of W content caused by the formation of Ni4W phase played a crucial role in the amorphization process of NiW alloy films annealed at 473 K for 30 min, nearly full amorphization occurred upon further annealing of the film for 60 min. The redistribution of free volume from amorphous regions into crystalline regions was proposed as the possible mechanism underlying the nearly full amorphization observed in NiW alloys.

  3. Soft magnetic amorphous Fe-Zr-Si(Cu) boron-free alloys

    International Nuclear Information System (INIS)

    Research highlights: → Amorphous Fe-Zr-Si(Cu) boron-free alloys were prepared by melt quenching. → Soft magnetic properties were investigated by the specialized rf-Moessbauer technique. → Dependence of coercivity and magnetization on alloy compositions was determined. - Abstract: Amorphous Fe80ZrxSi20-x-yCuy boron-free alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared in the form of ribbons by using the melt quenching technique. X-ray diffraction and Moessbauer spectroscopy measurements revealed that the as-quenched ribbons with the compositions with x = 6-10 at.% and y = 0, 1 at.% are fully or predominantly amorphous. Differential scanning calorimetry (DSC) measurements allowed the estimation of crystallization temperatures of the amorphous alloys. Soft magnetic properties have been studied by the specialized rf-Moessbauer technique. Since the rf-collapse effect observed is very sensitive to the local anisotropy fields it was possible to evaluate the soft magnetic properties of the amorphous alloys studied. The rf-Moessbauer studies were accompanied by conventional measurements of hysteresis loops from which the magnetization and coercive fields were estimated. It was found that amorphous Fe-Zr-Si(Cu) alloys are magnetically very soft, comparable with those of the conventional amorphous B-containing Fe-based alloys.

  4. Radiation Resistance Studies of Amorphous Silicon Alloy Photovoltaic Materials

    Science.gov (United States)

    Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys was investigated. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below lE14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  5. Effect of amorphous Mg50Ni50 on hydriding and dehydriding behavior of Mg2Ni alloy

    International Nuclear Information System (INIS)

    Composite Mg2Ni (25 wt.%) amorphous Mg50Ni50 was prepared by mechanical milling starting with nanocrystalline Mg2Ni and amorphous Mg50Ni50 powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg50Ni50 improved the hydriding and dehydriding kinetics of Mg2Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: → First study of the hydriding behavior of composite Mg2Ni (25 wt.%) amorphous Mg50Ni50. → Microstructural characterization of composite material using XRD and SEM was obtained. → An improved effect of Mg50Ni50 on the Mg2Ni hydriding behavior was verified. → The apparent activation energy for the hydrogen desorption of composite was obtained.

  6. Production and processing of ultra-fine grained, nano structured and amorphous alloys by mechanical alloying; Obtencion y procesado de aleaciones de grano ultrafino, nanometrico y amorgas mediante aleado mecanico

    Energy Technology Data Exchange (ETDEWEB)

    Cintas, J.; Cuevas, F. G.; Montes, J. M.; Rodriguez, J. A.; Urban, P.; Gallardo, J. M.

    2007-07-01

    Several consolidation procedures have been developed during the last fifteen years to process mechanically alloyed (MA) powders at the Metallurgy and Materials Engineering Group (University of Seville). MA powders were processed by conventional cold pressing and vacuum sintering. In addition, several densification promoters were used. The resulting parts, with second phases precipitated during the consolidation, showed good tensile strength, both at room and high temperature. Nowadays, nano structured and amorphous MA alloys are being processed by electrical resistance sintering (ERS), which prevents microstructure evolution during consolidation. (Author) 49 refs.

  7. Formation and crystallization of bulk Pd82Si18 amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    蒲建; 王敬丰; 肖建中; 崔昆

    2003-01-01

    Bulk amorphous Pd82Si18 alloy with the largest diameter of 8 mm was prepared by water quenching the molten alloy with flux medium in a quartz tube. The calculation result indicates that the bulk Pd82Si18 amorphous alloys have a low critical cooling rate (Rc) of 4.589 K/s or less. The experimental results show that purifying melt may improve glass forming ability(GFA) of undercooled melt, while liquid phase separation (LPS) of undercooled melt will decrease its GFA. There are some differences in crystallization experiments between bulk metallic glass and amorphous ribbons of Pd82Si18 alloys. These include the numbers of exothermic peak, glass transition temperature Tg, crystallization temperature Tx, region of undercooling liquid (ΔT=Tx-Tg) respectively. The links of cooling rates of melt and crystallization of Pd82Si18 amorphous alloys are explored.

  8. The preparation of well-dispersed Ni-B amorphous alloy nanoparticles at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wen Ming [Department of Chemistry, Tongji University, Shanghai 200092 (China)], E-mail: m_wen@mail.tongji.edu.cn; Li Lujiang; Liu Qiuyan; Qi Haiquan [Department of Chemistry, Tongji University, Shanghai 200092 (China); Zhang Tao [Department of Materials Science and Engineering, Beijing University of Aeronaut and Astronaut, Beijing 100083 (China)

    2008-05-08

    The air-stable well-dispersed Ni-B amorphous alloy nanoparticles in the similar size of 5 nm with narrow deviation were prepared by a chemical solution alloying process at room temperature in a positive microemulsion system. The proposed interface reaction mechanism, element analysis and thermal stability as well as the magnetic behavior of Ni-B amorphous alloy nanoparticles were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), infrared spectroscopy (IR), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). All the results showed that as synthesized Ni-B amorphous alloy nanoparticles are air-stable in room temperature and coated by macromolecular compound oleic acid. The magnetic property of the as synthesized Ni-B amorphous alloy was discussed based on the obtained results.

  9. Density of states in Mo-Ru amorphous alloys

    International Nuclear Information System (INIS)

    The density of states is calculated for several compositions of amorphous Mo1-x Rux. In order to simulate amorphous clusters, the structures (atomic positions) utilized in the calculations were built from a small dense randomly packed unit of hard spheres with periodic boundary conditions. The density of states is calculated from a tight-binding Hamiltonian with hopping integrals parametrized in terms of the ddσ, ddΠ and ddδ molecular integrals. The results for pure Mo and pure Ru, compared in the canonical band aproximation, agree well with the literature. For binary alloys, the comparison of the calculated density of states with the rigid band aproximation results indicates that a more complex approach than the rigid band model must be used, even when the two atoms have similar bands, with band centers at nearly the same energy. The results also indicate that there is no relation between the peak in the superconducting critical temperature as a function of the number of valence eletrons per atom (e/a) in the region near Mo(e/a=6) and the peak of the density of states at the Fermi level in the same region, as has been sugested by some authors. (Author)

  10. Plasma spraying of Fe-Cr-Al alloy powder

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Leitner, J.; Kolman, Blahoslav Jan; Písačka, Jan; Schneeweiss, Oldřich

    2008-01-01

    Roč. 46, č. 1 (2008), s. 17-25. ISSN 0023-432X R&D Projects: GA AV ČR IAA1041404 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z20410507 Keywords : Fe-Cr-Al alloy powder * plasma spraying * oxidation * vaporization * composition changes Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.345, year: 2007

  11. Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality.

    Science.gov (United States)

    Omar, Chalak S; Dhenge, Ranjit M; Osborne, James D; Althaus, Tim O; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2015-12-30

    The effect of morphology and amorphous content, of three types of lactose, on the properties of ribbon produced using roller compaction was investigated. The three types of lactose powders were; anhydrous SuperTab21AN, α-lactose monohydrate 200 M, and spray dried lactose SuperTab11SD. The morphology of the primary particles was identified using scanning electron microscopy (SEM) and the powder amorphous content was quantified using NIR technique. SEM images showed that 21AN and SD are agglomerated type of lactose whereas the 200 M is a non-agglomerated type. During ribbon production, an online thermal imaging technique was used to monitor the surface temperature of the ribbon. It was found that the morphology and the amorphous content of lactose powders have significant effects on the roller compaction behaviour and on ribbon properties. The agglomerated types of lactose produced ribbon with higher surface temperature and tensile strength, larger fragment size, lower porosity and lesser fines percentages than the non-agglomerated type of lactose. The lactose powder with the highest amorphous content showed to result in a better binding ability between the primary particles. This type of lactose produced ribbons with the highest temperature and tensile strength, and the lowest porosity and amount of fines in the product. It also produced ribbon with more smooth surfaces in comparison to the other two types of lactose. It was noticed that there is a relationship between the surface temperature of the ribbon during production and the tensile strength of the ribbon; the higher the temperature of the ribbon during production the higher the tensile strength of the ribbon. PMID:26117279

  12. Structural and magnetic properties of nanocrystalline Fe–Co–Si alloy powders produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shyni, P.C.; Perumal, Alagarsamy, E-mail: perumal@iitg.ernet.in

    2015-11-05

    We report the structural and magnetic properties of nanocrystalline Fe{sub 100−x−y}Co{sub y}Si{sub x} (x = 10, 15, y = 0–20) alloy powders prepared by mechanical alloying process in a planetary ball mill. All the as-milled powders exhibit non-equilibrium α-Fe(Co,Si) solid solution with average crystallite size of 7–11 nm. The lattice constant increases initially up to 10 at.% Co and then decreases with further increase in Co content due to delay in dissolution of Co into Fe lattice by the introduction of more Si. The variations of structural parameters such as average crystallite size, dislocation density and fraction of grain boundary as a function of Co content show good correlations among them. The substitution of Co in Fe{sub 100−x−y}Co{sub y}Si{sub x} alloy powder increases both saturation magnetization and coercivity due to atomic ordering which induce additional magnetic anisotropy. Thermomagnetization studies reveal that Curie temperature (T{sub C}) increases at a rate of 4 K per at.% Co for Co content up to 10 at.% and the rate of increase in T{sub C} reduces to 1.4 K per at.% Co for higher Co addition. The variation of structural and magnetic parameters reveals a strong dependence on the composition of Fe–Co–Si alloy. The observed results show the improvement in soft magnetic properties of nanocrystalline Fe–Co–Si alloy powders by proper substitution of Co and Si for Fe. - Graphical abstract: Structural and magnetic properties of nanocrystalline Fe{sub 100−x−y}Co{sub y}Si{sub x} alloy powders prepared by mechanical alloying process in a planetary ball mill are reported. The non-equilibrium solid solution with nanosized crystallites could be obtained for all the alloy powders. The substitution of Co in Fe{sub 100−x−y}Co{sub y}Si{sub x} alloy powder increases both saturation magnetization and coercivity. The Curie temperature also increases with increasing Co content. The observed results show the improvement in soft magnetic

  13. Characterization through X-ray diffraction of alloy powders for dental amalgams

    International Nuclear Information System (INIS)

    Several alloy powders for preparing dental amalgam have been investigated in this study, using scanning electron microscopy and X-ray diffraction analysis. In comparison to conventional alloys, the newer alloy powders are characterized by a higher copper content and a decrease in silver. The study of the spectra of the various alloy powders included in this investigation, lead us to conclude and propose that all available amalgam alloy powders can be classified in 3 types, namely: conventional, phase dispersion, and single composition with high copper content

  14. Mechanically Strain-Induced Modification of Selenium Powders in the Amorphization Process

    International Nuclear Information System (INIS)

    For the fabrication of particles designed in the nanoscale structure, or the nanostructural modification of particles using mechanical grinding process, selenium powders ground by a planetary ball mill at various rotational speeds have been investigated. Structural analyses, such as particle size distributions, crystallite sizes, lattice strains and nearest neighbour distances were performed using X-ray diffraction, scanning electron microscopy and dynamical light scattering.By grinding powder particles became spherical composites consisting of nanocrystalline and amorphous phase, and had a distribution with the average size of 2.7 μm. Integral intensities of diffraction peaks of annealed crystal selenium decreased with increasing grinding time, and these peaks broadened due to lattice strains and reducing crystallite size during the grinding. The ground powder at 200 rpm did not have the lattice strain and showed amorphization for the present grinding periods. It indicates that the amorphization of Se by grinding accompanies the lattice strain, and the lattice strain arises from a larger energy concerning intermolecular interaction. In this process, the impact energy is spent on thermal and structural changes according to energy accumulation in macroscopic (the particle size distribution) and microscopic (the crystallite size and the lattice strain) range

  15. Structural analysis of amorphous and hydrogen absorption alloys by neutron diffraction

    International Nuclear Information System (INIS)

    Structural studies of amorphous alloys and hydrogen absorption amorphous alloys by taking advantage of neutron and X-ray diffractions and using the reverse Monte Carlo (RMC) modeling for getting information of the three dimensional atom configuration are reviewed. Voronoi analysis of the RMC models is powerful to elucidate the structural origin of the stability of amorphous state, since Ni-Zr amorphous alloys are unstable in comparison with Cu-Zr ones. The polyhedra around Ni atoms are dominated by trigonal prism-like polyhedra. In contrast, icosahedron-like polyhedra are preferred for Cu. The Ni-Zr amorphous alloys have been reported to stabilize by adding Al. The Voronoi analysis informs us that trigonal prism-like polyhedra decreased in number by adding Al to the Ni-Zr system. On the contrary, the number of icosahedron-like polyhedra was found to increase. The results apparently indicate that the icosahedron-like polyhedra play an important role to stabilize the amorphous state. Moreover, neutron diffraction is a powerful tool to clarify the location of hydrogen atoms in the hydrogen absorption materials. For TbFe2D3.8 and TbNi2D2.4 amorphous alloys, the RMC model structure based on the diffraction data teach us that about 98% of hydrogen atoms occupy tetrahedral sites formed by metal atoms and stabilize the amorphous state. (author)

  16. Mechanical alloying process of vanadium powder with 1.7 wt.%Y addition

    International Nuclear Information System (INIS)

    Alloying process of vanadium-yttrium powders using mechanical alloying (MA) method was studied. Vanadium powder was compressed after 10 h MA, while yttrium powder was comminuted into small particles. Although yttrium powder was broken into small particles, yttrium scarcely dissolves into vanadium powder. Alloying of yttrium started after 20 h MA and finished after 40 h MA. Molybdenum particle, which came from milling vessels and balls, mixed into vanadium powder after 40 h MA and molybdenum started to dissolve into vanadium powder after 60 h MA. After 80 h MA, Y2O3 particles formed in vanadium powder. Oxygen required for the formation of Y2O3 particles was probably discharged from the vessel wall and balls after flaking of those surface layers. Since prolonged MA caused powder contamination, optimum MA time for making V-1.7Y alloy was 40 h.

  17. Effect of heat treatment on Fe-B-Si-Nb alloy powder prepared by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rodrigo Estevam Coelho

    2005-06-01

    Full Text Available The effect of heat treatment on crystallization behavior of Fe73.5B15Si10Nb1.5 alloy powder prepared by mechanical alloying was studied. The powder samples were prepared by mechanical alloying (MA and for different milling times (1, 5, 25, 70 and 100 hours. Crystalline powders of iron, boron, silicon and niobium were sealed with tungsten carbide balls in a cylindrical vial under nitrogen atmosphere. The ball-to-powder weight ratio was 20 to 1. A Fritsch Pulverizette 5 planetary ball mill was used for MA the powders at room temperature and at 250 rpm. To study the microstructural evolution, a small amount of powder was collected after different milling times and examined by X-ray diffraction, using CuKalpha radiation (lambda = 0.15418 nm. The crystallization behavior was studied by differential thermal analysis, from 25 up to 1000 °C at a heating rate of 25 °C min-1.

  18. STUDY ON MAXIMUM HYDROGEN CAPACITY FOR Zr-Ni AMORPHOUS ALLOY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To design the amorphous hydrogen storage alloy efficiently, the maximum hydrogen capacities for Zr-Ni amorphous alloy were calculated. Based on the Rhomb Unit Structure Model(RUSM) for amorphous alloy and the experimental result that hydrogen atoms exist in 3Zr1Ni and 4Zr tetrahedron interstices in Zr-Ni amorphous alloy, the numbers of 3Zr-1Ni and 4Zr tetrahedron interstices in a RUSM were calculated which correspond to the hydrogen capacity. The two extremum Zr distribution states were calculated, such as highly heterogeneous Zr distribution and homogeneous Zr distribution. The calculated curves of hydrogen capacity with different Zr contents at two states indicate that the hydrogen capacity increases with increasing Zr content and reaches its maximum when Zr is 75%. The theoretical maximum hydrogen capacity for Zr-Ni amorphous alloy is 2.0(H/M). Meanwhile, the hydrogen capacity of heterogeneous Zr distribution alloy is higher than that of homogenous one at the same Zr content. The experimental results prove the calculated results reasonable, and accordingly, the experimental results that the distribution of Zr atom in amorphous alloy occur heterogeneous after a few hydrogen absorption-desorption cycles can be explained.

  19. Microstructure and magnetocaloric effects in partially amorphous Gd55Co15Al30-xSix alloys

    International Nuclear Information System (INIS)

    Highlights: → The primary crystalline phase of the metallic glasses is identified to be Gd2Al. → Phase separation is observed in the system with negative heat of mixing. → Relationship between the microstructure and MCE of Gd-based BMG composite. - Abstract: In order to clarify the phase components and further improve the glass-forming ability of Gd55Co15Al30 alloy, substitution of Al with Si was adopted. Although the X-ray powder diffraction experiment indicated an amorphous structure of the Gd55Co15Al30-xSix (x = 1, 2, 3) alloys, precipitation of crystalline Gd2Al phase was evident from the energy-dispersive spectroscopy, selected-area diffraction, and magnetization measurements. The magnetocaloric effect of Si substituted alloys is lower than that of Gd52.5Co16.5Al31 alloy with a similar composition and full amorphous structure, which is ascribed to the presence of antiferromagnetic Gd2Al phase whose magnetic entropy change is lower.

  20. Spectroscopic and mechanical studies on the Fe-based amorphous alloy 2605SA1

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A.; Garcia S, I. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Contreras V, J. A.; Garcia S, F. [Universidad Autonoma del Estado de Mexico, Facultad de Ciencias, El Cerrillo Piedras Blancas, Toluca, Estado de Mexico (Mexico); Nava, N., E-mail: agustin.cabral@inin.gob.m [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, 07730 Mexico D. F. (Mexico)

    2010-07-01

    The Vickers micro-hardness of this alloy was unusually dependent on the heat treatment from 300 to 634 K, inferring important micro-structural changes and the presence of amorphous grains before its phase transition. Once the alloy is crystallized, the micro-hardness is characteristic of a brittle alloy, the main problem of these alloys. Within the amorphous state, other properties like free-volume, magnetic states and Fe-Fe distances were followed by Positron annihilation lifetime spectroscopy and Moessbauer spectroscopy, respectively, to analyze those micro-structural changes, thermally induced, which are of paramount interest to understand their brittleness problem. (Author)

  1. High pressure magnetic behaviour of amorphous Ysub(x)Nisub(1-x) alloys

    International Nuclear Information System (INIS)

    High pressure magnetization and Curie temperature measurements have been performed on several amorphous Ysub(x)Nisub(1-x) alloys. The results seem to indicate that ferromagnetism disappears in a rather inhomogeneous way

  2. Effect of High Temperature Aging on the Corrosion Resistance of Iron Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Day, S D; Haslam, J J; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys can be more resistant to corrosion than polycrystalline materials of similar compositions. However, when the amorphous alloys are exposed to high temperatures they may recrystallize (or devitrify) thus losing their resistance to corrosion. Four different types of amorphous alloys melt spun ribbon specimens were exposed to several temperatures for short periods of time. The resulting corrosion resistance was evaluated in seawater at 90 C and compared with the as-prepared ribbons. Results show that the amorphous alloys can be exposed to 600 C for 1-hr. without losing the corrosion resistance; however, when the ribbons were exposed at 800 C for 1-hr. their localized corrosion resistance decreased significantly.

  3. Calorimetric studies of non-isothermal crystallization in amorphous CuTi100– alloys

    Indian Academy of Sciences (India)

    N Mehta; K Singh; N S Saxena

    2011-12-01

    The present paper reports the composition dependence of pre-exponential factor and activation energy of non-isothermal crystallization in amorphous alloys of CuTi100– system using differential scanning calorimeter (DSC) technique. The applicability of Meyer–Neldel relation between the pre-exponential factor and activation energy of non-isothermal crystallization for amorphous alloys of Cu–Ti system was verified.

  4. Initial crystal structure of alloys being amorphisized, amorphous ribbon quality and good yield

    International Nuclear Information System (INIS)

    A study is made into crystal structure of Fe75Ni2B14Si9 and Fe81C1.7B14Si3.3 alloys. It is shown that on casting magnetically soft amorphous alloys the crystals of excessive phase Fe2B are practically always precipitate from the matrix and cause the violations of casting technology for amorphous ribbon production. Accelerated cooling of ingots and melt modification are considered to be useful to prevent coarse crystal formation

  5. Welding of cobalt-based amorphous alloys with Nd: YAG laser

    International Nuclear Information System (INIS)

    The paper describes the results concerning the investigation of the welding of cobalt-based amorphous alloys with Nd:YAG laser. Five alloys with different chemical structure and dimensions in shape of amorphous metal foils were welded. The quality of the welded joints were tested by using a microstructure analysis with an optical microscope and SEM, when the metal graphic structure, the chemical structure and the microhardness of the welded joints were tested as well. (Author)

  6. Amorphous Formation in an Undercooled Binary Ni-Si Alloy under Slow Cooling Rate

    Institute of Scientific and Technical Information of China (English)

    Yiping Lu; Gencang Yang; Xiong Li; Yaohe Zhou

    2009-01-01

    High undercooling up to 392 K was achieved in eutectic Ni70.2Si29.8 alloy melt by using glass fluxing combined with cyclic superheating.A small quantity of amorphous phase was obtained in bulk eutectic Ni70.2Si29.8 alloy when undercooling exceeds 240 K under slow cooling conditions (about 1 K/s).The amorphous phase was confirmed by high-resolution transmission electron microscopy and differential scanning calorimetry.

  7. Corrosion resistance of amorphous and crystalline Pd40Ni40P20 alloys in aqueous solutions

    DEFF Research Database (Denmark)

    Wu, Y.F.; Chiang, Wen-Chi; Chu, J.; Nieh, T.G.; Kawamura, Y.; Wu, J.K.

    2006-01-01

    The corrosion behaviors of amorphous and crystalline Pd40Ni40P20 alloys in various aqueous solutions are reported in this paper. The corrosion resistance of crystalline (annealed) Pd40Ni40P20 is better than that of amorphous Pd40Ni40P20 in various corrosive solutions, due to crystalline Pd40Ni40P...

  8. A novel approach to quantify nitrogen distribution in nanocrystalline-amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Amini, R. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Blvd., 7134851154, Shiraz (Iran, Islamic Republic of); Department of Materials Science and Engineering, Shiraz University of Technology, Modarres Blvd., 3619995161, Shiraz (Iran, Islamic Republic of); Salahinejad, E., E-mail: erfan.salahinejad@gmail.com [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Blvd., 7134851154, Shiraz (Iran, Islamic Republic of); Hadianfard, M.J.; Bajestani, E. Askari [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Blvd., 7134851154, Shiraz (Iran, Islamic Republic of); Sharifzadeh, M. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2011-02-03

    Research highlights: > A novel method is introduced to determine nitrogen distribution in nanocrystalline-amorphous alloys, based on X-ray diffraction, thermogravimetry, and differential scanning calorimetery. > The technique determines the contribution of crystal interstitial sites, crystalline defects, and amorphous phase to nitrogen incorporation. > In Fe-18Cr-8Mn-2.5N alloy synthesized by mechanical alloying, about 4, 21 and 75 percent of nitrogen is distributed among the crystal interstitial sites, defects, and amorphous phase, respectively. - Abstract: A method is introduced to estimate nitrogen partitioning in the structure of nanocrystalline-amorphous alloys, based on X-ray diffraction, thermogravimetry, and differential scanning calorimetery. The technique quantitatively determines the contribution of crystal interstitial sites, crystalline defects, and amorphous phase to nitrogen incorporation. Typically, the method shows that in Fe-18Cr-8Mn-2.5N alloy synthesized by mechanical alloying, about 4, 21 and 75 percent of nitrogen is distributed among the crystal interstitial sites, defects, and amorphous phase, respectively.

  9. Studing Tungsten-containing Electroerosion Powders and Alloys Synthesized from Them

    Directory of Open Access Journals (Sweden)

    E.V. Ageev

    2014-07-01

    Full Text Available The results of the X-ray spectral microanalysis of the powder obtained using electroerosion dispersion of tungsten-containing wastes in distilled water, and the alloy powder synthesized from this powder are presented in the article. It is shown that the basic elements both in the powder obtained using electroerosion dispersion of tungsten-containing wastes in distilled water and in the synthesized alloy are tungsten, molybdenum, iron, oxygen and carbon.

  10. Electonic properties of hydrogenated amorphous silicon-germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bullot, J.; Galin, M.; Gauthier, M. (Universite de Paris-Sud, Orsay (France)); Bourdon, B. (CIT-Alcatel Transmission, Marcoussis (France))

    1983-06-01

    The electronic properties of some binary hydrogenated amorphous silicon-germanium alloys a-Sisub(x)Gesub(1-x):H in the silicon rich region (x > 0.6) are investigated. Experimental evidence is presented of photo-induced effects similar to those described in Si:H (Staebler-Wronski effect). The electronic properties are then studied from the dual point of view of the germanium content dependence and of the photo and thermal histories of the films. The dark conductivity changes between the annealed state and the light-soaked state are interpreted in terms of the variation of the temperature coefficient of the Fermi level. The photoconductivity efficiency is shown to remain close to that of a-Si:H for 1 > x >= 0.9 and to strongly decrease when the germanium content is further increased: the photoresponse of the Sisub(0.62)Gesub(0.38) alloy is 10/sup 4/ times smaller than that of a-Si:H. This deterioration of the photoconductive properties is explained in terms of the increase of the density of gap states following Ge substitution. This conclusion is based on the study of the width of the exponential absorption edge and on the results of photoconductivity time response studies. The latter data are interpreted by means of the model of Rose of trapping and recombination kinetics and it is found that for x approximately 0.6 the density of states at 0.4-0.5 eV below the mobility edge is 7 x 10/sup 17/ eV/sup -1/ cm/sup -3/ as compared to 2.4 x 10/sup 16/ eV/sup -1/ cm/sup -3/ for x = 0.97.

  11. Ceramic Inclusions In Powder Metallurgy Disk Alloys: Characterization and Modeling

    Science.gov (United States)

    Bonacuse, Pete; Kantzos, Pete; Telesman, Jack

    2002-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially as the material chosen for turbine disks. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that arise from the powder atomization process. These inclusions can have potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they usually don't reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where a known population of ceramic particles, whose composition and morphology are designed to mimic the 'natural' inclusions, are added to the precursor powder. Surface connected inclusions have been found to have a particularly large detrimental effect on fatigue life, therefore the volume of ceramic 'seeds' added is calculated to ensure that a minimum number will occur on the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface and embedded cross-sectional areas were needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macro

  12. Deployable aerospace PV array based on amorphous silicon alloys

    Science.gov (United States)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  13. Anisotropic phase separation in amorphous Fe--Ge alloys

    International Nuclear Information System (INIS)

    Magnetron sputtered amorphous FexGe100-x films have been examined with anomalous small-angle x-ray scattering (ASAXS) in an attempt to characterize composition fluctuations which have been previously reported in this system. Films grown under various deposition conditions have been studied, with the scattering vector both in and oblique to the plane of the films, to search for anisotropy. By manipulating the deposited power flux and rates of growth, films which have the same composition can be grown to different states of phase separation. The total correlation functions have been calculated from the oblique scattering experiments. The anisotropy can be successfully modeled as a close-packing of oriented prolate ellipsoidal particles, with the elongated axis along the direction of film growth. A method for using these measurements to determine the compositions of the phase-separating species has been developed and utilized. The results indicate phase separation into a-Ge and a-FeGe2 for the a-FexGe100-x (x<33) alloy

  14. Hydrogen distribution in amorphous silicon and silicon based alloys

    International Nuclear Information System (INIS)

    The results of hydrogen evolution experiments on amorphous silicon alloys prepared by high frequency PECVD of gas mixtures containing SiH4, NH3, PH2, B2H6 are compared. Using a very low heating rate of 5 degree/min it is possible to resolve fine structure on the exodiffusion spectra. Three evolution processes are observed: (a) low temperature effusion due to included gas (b) mid temperature effusion due to 'clustered' hydrogen bonds (c) high temperature effusion due to 'isolated' hydrogen bonds In addition it is possible to oberve very fine structure 'puffing' due to the release of molecular hydrogen at mid to high temperature. Silicon and silicon nitride films have been annealed at low temperatures before the exodiffusion experiments and changes in the evolution spectra are observed, dependent on the annealing process. A scanning electron microscope study of the effect of high temperature heat treatment has also been undertaken. These results are correlated with infra-red absorption measurements and the influence of doping concentration and substrate character discussed. Under certain preparation conditions the films blister on heating and finally burst forming circular craters, and these effects are shown to be dependent on substrate material and intrinsic stress of the as-grown films

  15. Effect of La addition on glass-forming ability and stability of mechanically alloyed Zr-Ni amorphous alloys

    International Nuclear Information System (INIS)

    Research highlights: → The minor large atom La addition can improve the glass forming ability of Zr-Ni-La and enhance the stability of the amorphous phase against the mechanically induced crystallization. → The stability of the Zr-Ni-La amorphous phase decreases with increasing La content. → The effect of La addition in contrast with the small atomic size C addition plays a significant role in promoting the stability of the amorphous phase. → We try to systematically discuss the reasons of La addition effect on GFA and stability of the amorphous phase from three factor of negative heat of mixing, distance between neighboring atoms and atomic size mismatch, respectively. - Abstract: In this study, the role of La in the microstructural evolution of Zr66.7-xNi33.3Lax (x = 1, 3, 5 at.%) alloys during mechanical alloying has been investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results show that the single amorphous phase of Zr-Ni-La can be obtained through mechanical alloying. The minor La addition can improve the glass forming ability of Zr-Ni-La, enhance the mechanical stability of the amorphous phase against the mechanically induced crystallization and lead to an altered crystallization mode of Zr-Ni alloy. Moreover, the stability of the Zr-Ni-La amorphous phase decreases with further increasing La content. The best effect is obtained for the Zr65.7Ni33.3La1 alloy. Additionally, the effect of La addition in contrast with the small atomic size C addition plays a more significant role in promoting the stability of the amorphous phase. In addition, the reasons of La addition effect on GFA and stability have also been discussed from three factors of negative heat of mixing, distance between neighboring atoms and atomic size mismatch, respectively.

  16. Coating system of hydrogen storage alloy powder slurry; Suiso kyuzo gokin funmatsu surari no tofu sochi

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, J.

    1995-03-31

    As the hydrogen storage alloy powder slurry has a high density and a high viscosity, it is necessary to apply a considerably high tension to the current collector sheet when the current collector sheet is continuously coated with the hydrogen storage alloy powder slurry. This invention provides a method of continuously coating the hydrogen storage alloy powder slurry on the running current collector sheet. In order to keep the viscosity of alloy powder slurry constant and to reduce the tension to be applied to the sheet during coating, a stirring jig is installed facing to the front surface and back surface of the current collector sheet and rotating in the sheet running direction and in the opposite direction. In this way, the thixotropic structure of the hydrogen storage alloy powder slurry is constantly broken, so that a gradual increase in viscosity does not take place. Resultingly, the homogeneous hydrogen storage alloy electrode can be continuously produced. 6 figs.

  17. Recycling high density tungsten alloy powder by oxidization-reduction process

    Institute of Scientific and Technical Information of China (English)

    张兆森; 陈立宝; 贺跃辉; 黄伯云

    2002-01-01

    The processes of directly recycling high density tungsten alloy by oxidation-reduction technique were investigated. The particle size of recycled powder is fine, and the shape of powder particle is regular when the final reduction temperature is 850℃, in which the average size of the tungsten alloy particles reduced is about 1.5μm. The average size of the alloy particles increase to 6μm and 9μm when increasing the reduction temperature to 900℃ and 950℃, respectively. However, if the reduction temperature is higher than 900℃, the surface feature of powder is complicated. Increasing reduction temperature from 900℃ to 950℃, the content of oxygen of recycled powder decreases from 0.2314% to 0.1700%, and powder particles grow slightly. It has been also found that the chemical composition of the recycled alloy powder is the same as the initial powder.

  18. On amorphization and nanocomposite formation in Al–Ni–Ti system by mechanical alloying

    Indian Academy of Sciences (India)

    K Das; G K Dey; B S Murty; S K Pabi

    2005-11-01

    Amorphous structure generated by mechanical alloying (MA) is often used as a precursor for generating nanocomposites through controlled devitrification. The amorphous forming composition range of ternary Al–Ni–Ti system was calculated using the extended Miedema's semi-empirical model. Eleven compositions of this system showing a wide range of negative enthalpy of mixing (− mix) and amorphization (− amor) of the constituent elements were selected for synthesis by MA. The Al88Ni6Ti6 alloy with relatively small negative mix (−0.4 kJ/mol) and amor (−14.8 kJ/mol) became completely amorphous after 120 h of milling, which is possibly the first report of complete amorphization of an Al-based rare earth element free Al–TM–TM system (TM = transition metal) by MA. The alloys of other compositions selected had much more negative mix and amor; but they yielded either nanocomposites of partial amorphous and crystalline structure or no amorphous phase at all in the as-milled condition, evidencing a high degree of stability of the intermetallic phases under the MA environment. Hence, the negative mix and amor are not so reliable for predicting the amorphization in the present system by MA.

  19. Formation mechanism of amorphous Ni-Fe-P alloys by electrodeposition

    Institute of Scientific and Technical Information of China (English)

    GAO Cheng-hui

    2005-01-01

    The formation mechanism of the amorphous Ni-Fe-P coating was studied by analysis of the forming thermodynamics, dynamics, and crystallography of the amorphous alloy. The results show that, in the initial stage of deposition a thin "crystal epitaxial growth" layer first forms, and then transforms to amorphous gradually. The cross section in Ni-Fe-P coatings by electrolytic etching exhibits a banded structure of alternate dark and light bands. It is proposed that the banded structure is caused by a change in the P content with thickness,which is due to alternated depletion and enrichment of [OH-] in the diffusion layer resulting from the generation and evolution of hydrogen gas. The amorphous Ni-Fe-P coating will be formed in proper composition, high nucleation rate and strongly hindered growth of the crystal nucleus. Amorphous Ni-Fe-P alloys form as islands, and grow up by layer.

  20. Amorphous TM1−xBx alloy particles prepared by chemical reduction (invited)

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1991-01-01

    Amorphous transition-metal boron (TM-B) alloy particles can be prepared by chemical reduction of TM ions by borohydride in aqueous solutions. ln the last few years systematic studies of the parameters which control the composition, and, in turn, many of the properties of the alloy particles, have...... been performed and are reviewed in the present paper. The most important preparation parameters which influence the composition are the concentration of the borohydride solution and the pH of the TM salt solution. By controlling these parameters it is possible to prepare amorphous alloy samples...

  1. Production Of Tandem Amorphous Silicon Alloy Solar Cells In A Continuous Roll-To-Roll Process

    Science.gov (United States)

    Izu, Masat; Ovshinsky, Stanford R.

    1983-09-01

    A roll-to-roll plasma deposition machine for depositing multi-layered amorphous alloys has been developed. The plasma deposition machine (approximately 35 ft. long) has multiple deposition areas and processes 16-inch wide stainless steel substrate continuously. Amorphous photovoltaic thin films (less than 1pm) having a six layered structure (PINPIN) are deposited on a roll of 16-inch wide 1000 ft. long stainless steel substrate, continu-ously, in a single pass. Mass production of low-cost tandem amorphous solar cells utilizing roll-to-roll processes is now possible. A commercial plant utilizing this plasma deposition machine for manufacturing tandem amorphous silicon alloy solar cells is now in operation. At Energy Conversion Devices, Inc. (ECD), one of the major tasks of the photovoltaic group has been the scale-up of the plasma deposition process for the production of amorphous silicon alloy solar cells. Our object has been to develop the most cost effective way of producing amorphous silicon alloy solar cells having the highest efficiency. The amorphous silicon alloy solar cell which we produce has the following layer structure: 1. Thin steel substrate. 2. Multi-layered photovoltaic amorphous silicon alloy layers (approximately 1pm thick; tandem cells have six layers). 3. ITO. 4. Grid pattern. 5. Encapsulant. The deposition of the amorphous layer is technologically the key process. It was clear to us from the beginning of this scale-up program that amorphous silicon alloy solar cells produced in wide width, continuous roll-to-roll production process would be ultimate lowest cost solar cells according to the following reasons. First of all, the material cost of our solar cells is low because: (1) the total thickness of active material is less than 1pm, and the material usage is very small; (2) silicon, fluorine, hydrogen, and other materials used in the device are abundant and low cost; (3) thin, low-cost substrate is used; and (4) product yield is high. In

  2. Friction and wear behavior of electrodeposited amorphous Fe-Co-W alloy deposits

    Institute of Scientific and Technical Information of China (English)

    何凤姣; 雷惊天; 陆欣; 黄宇宁

    2004-01-01

    The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome deposit under the same testing condition was also made. The experimental results show that the hardness and wear resistance of amorphous Fe-Co-W alloy deposits are improved with the increasing of heat treatment temperature, and reach the maximum value at 800 ℃, then decrease above 800 ℃. Under 40 N load, the wear resistance properties of the alloy deposits heat treated at 800 ℃ are superior to those of hard chrome deposit. The main wear mechanisms of amorphous Fe-Co-W alloy deposits heat treated below 600 ℃ are peeling, plastic and flowing deformation; when the deposits are heat treated above 700 ℃, they are plastic and flowing deformation. While the main wear mechanisms of hard chrome are abrasive wear, fatigue and peeling.

  3. Microstructural characterisation of Ti-Nb-(Fe-Cr) alloys obtained by powder metallurgy

    OpenAIRE

    Amigó Mata, Angèlica; Zambrano, Jenny Cecilia; Martínez, S; Amigó Borrás, Vicente

    2014-01-01

    beta alloys based on the Ti Nb alloy system are of growing interest to the biomaterial community. The addition of small amounts of Fe and Cr further increases beta-phase stability, improving the properties of Ti Nb alloy. However, PM materials sintered from elemental powders are inhomogeneous due to restricted solid state diffusion and mechanical alloying provides a route to enhance mixing and lemental diffusion. The microstructural characteristics and bend strength of Ti Nb (Fe Cr) alloys ...

  4. An amorphous alloy stress sensor for wireless battery-free applications

    Science.gov (United States)

    Bowles, Adrian; Gore, Jon; Tomka, George

    2005-05-01

    Battery-free sensor systems would benefit from the availability of a stress or strain sensor that exhibits a large enough property change to allow simplification and power reductions in sensor interface and data transmission circuitry. A new sensor has been developed specifically for this purpose, which uses the large stress induced impedance changes exhibited by ribbons of amorphous magnetic alloy. In comparison to semiconductor strain gauges, which show a change in resistance of 15% when strained to their maximum recommended stress level, the amorphous alloy sensor demonstrates a change in inductance of 315%, when strained to its maximum working level. Although, amorphous magnetic alloys are inherently sensitive to external magnetic fields, a simple, biasing technique renders the stress-sensing device insensitive to modest field strengths. The amorphous magnetic alloys are produced in large volumes and realize an extremely low cost sensor. A low cost and low power analogue electrical circuit has been designed that, in combination with the amorphous alloy sensor, functions as a battery-free sensor 'tag'. The sensor tag can transmit stress data to a transceiver system via an inductive link, negating the need for battery power or a hardwire connection. The system"s range is directly related to the transceiver and tag antenna dimensions; however a system with 20cm diameter antennas has been demonstrated operating over a range of up to 60cm. This range is achieved through the extremely low power demands of the sensor tag (tyre pressure monitoring applications.

  5. Mechanical alloying of Mg-CO-Ni powder for hydrogen storage

    International Nuclear Information System (INIS)

    In order to develop the Mg-based materials for hydrogen storage purposes, Mg-Co-Ni alloy with the atomic ratio of the Mg: Co: Ni = 3:1:2 was prepared by mechanical alloying. The alloy was prepared from pure metal powder of magnesium, cobalt and nickel by using SPEX 8000 high energy milling (HEM) and conventional milling. Mass ratio ball to sample (B/S) were 1:1 and the milling time is varied at 5, 10, 15, 20 and 40 hours. Structure and crystallite sizes were observed by X-ray diffraction (XRD), morphology and particle size by scanning electron micrograph (SEM), and thermal properties of the sample by differential thermal analyzer (DTA). The crystal sizes of the alloy were measured for Mg (101), Ni (200) and Co (101). Calculation results on the crystal size of the Mg exhibited that it is reduced significantly from 29 nm into 6 nm after milling for 40 hours, while Co and Ni are slightly reduced. From the diffraction pattern of the alloy it is also showed that the peaks intensity of Mg disappears gradually, due to the amorphization of Mg particles. It could be happened during the continuous impact between the Mg particles and the balls. A significant change of volume fraction was observed in Mg, where it changed from 62.52 % into 26.04 % after 40 hours of milling. While Co and Ni increased from 7.63 % to 10.63 % and from 25.23 % to 30.02 % respectively. The SEM results showed that the particle sizes reduce after 5 hours milling. The initial particle size of Mg was ≤3.5 μm and the final milling was reduced into 0.5 μm. In addition, agglomeration of the powder was occurred after 10 hours milling. It is due to the increase in surface area of the powder that results in the easier contact of the powders to each other. The DTA differential thermal analyses on milling time of 0 and 10 hours identified that there is an endothermic peak. The peak at 400 degree C is identified as phase transition of Co from hcp into fcc. Weak endothermic peak encountered at temperature of

  6. Hard rhenium–boron–cobalt amorphous alloys with a wide supercooled liquid region

    International Nuclear Information System (INIS)

    Novel Re–B–Co amorphous alloys with compositions of Re65−xB35Cox (at%, x=25, 30, 35, 40, 45, and 50) were fabricated by single-roller melt spinning. These alloys were found to exhibit a clear glass transition phenomenon. The width of supercooled liquid region (ΔTx) is in the range of 52–71 K. Such a large ΔTx allows us to produce amorphous alloy bulks by thermoplastic forming. The Vickers hardness is up to 19.10 GPa for the Re40B35Co25 alloy, which is close to that reported for some hard covalent crystals. Thus, the present alloys with a combination of large ΔTx and high hardness are expected to be used as a new type of structural materials. Furthermore, the relationships of hardness with glass transition temperature and Young's modulus were also discussed

  7. Effect of cobalt powder morphology on the properties of WC-Co hard alloys

    OpenAIRE

    Kurlov, A. S.; Rempel, A. A.

    2013-01-01

    The effect of cobalt powder morphology on the microstructure of WC-Co hard alloys produced by sintering cobalt + tungsten carbide powder mixtures has been studied using X-ray diffraction, laser diffraction, scanning electron microscopy, density measurements, and Vickers microhardness tests. The results indicate that, under identical sintering conditions, the densest and most homogeneous microstructure is formed in hard alloys sintered using cobalt powders consisting of rounded particles. The ...

  8. Injection Molding of W-Ni-Fe Nanocomposite Powder Prepared by Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nanocrystalline 90W-7Ni-3Fe (wt pct) composite powder was prepared by mechanical alloying and mixed with binder to form a feedstock. Its rheological and sintering behaviors were compared with those of the feedstock from the original powder. It is found that milling can increase the maximum powder loading of feedstock and enhance the sintering densification process.

  9. Preparing TiNiNb shape memory alloy powders by hydriding–dehydriding process

    Science.gov (United States)

    Shao, Yang; Cui, Lishan; Jiang, Xiaohua; Guo, Fangmin; Liu, Yinong; Hao, Shijie

    2016-07-01

    High-quality TiNiNb shape memory alloy (SMA) powders were prepared by hydrogenation of cold-worked TiNiNb SMA wire composed of amorphous and nancrystalline microstructure, by mechanical pulverization and vacuum dehydrogenation. It is revealed that abundant structural defects introduced by cold-work greatly promoted hydrogen diffusion, which significantly decreased hydriding temperature and shortened hydriding time. After hydrogenation, the hydrogenated sample composed of TiNiH and NbH with high brittleness can be easily ground into ultra-fine powers. The TiNiNb powers obtained by following vacuum dehydrogenation exhibit almost the same reversible phase transformation behavior as that of the original TiNiNb SMA before cold-work. Moreover, a TiNiNb part was obtained by hot-pressure sintering the hydrogenated powders, where sintering and dehydrogenation are carried out in one single step. The sintered TiNiNb part shows most the same reversible phase transformation behaviors as that of the original TiNiNb SMA and there is no visible additional brittle phase appearance.

  10. Effect of Viscosity on the Microformability of Bulk Amorphous Alloy in Supercooled Liquid Region

    International Nuclear Information System (INIS)

    Previously published results have shown that viscosity greatly influences on the deformation behavior of the bulk amorphous alloy in supercooled liquid region during microforming process. And viscosity is proved to be a component of the evaluation index which indicating microformability. Based on the fluid flow theory and assumptions, bulk amorphous alloy can be regarded as the viscous materials with a certain viscosity. It is helpful to understand how the viscosity plays an important role in viscous materials with various viscosities by numerical simulation on the process. Analysis is carried out by linear state equation in FEM with other three materials, water, lubricant oil and polymer melt, whose viscosities are different obviously. The depths of the materials flow into the U-shaped groove during the microimprinting process are compared in this paper. The result shows that the deformation is quite different when surface tension effect is not considered in the case. With the lowest viscosity, water can reach the bottom of micro groove in a very short time. Lubricant oil and polymer melt slower than it. Moreover bulk amorphous alloys in supercooled liquid state just flow into the groove slightly. Among the alloys of different systems including Pd-, Mg- and Zr-based alloy, Pd-based alloy ranks largest in the depth. Mg-based alloy is the second. And Zr-based alloy is the third. Further more the rank order of the viscosities of the alloys is Pd-, Mg- and Zr-based. It agrees well with the results of calculation. Therefore viscosity plays an important role in the microforming of the bulk amorphous alloy in the supercooled liquid state.

  11. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    Science.gov (United States)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  12. Low temperature irradiation of FeB amorphous alloys

    International Nuclear Information System (INIS)

    These experiments show that low temperature electron irradiation induce localized defects in the short range order of the amorphous structure. These defects are assumed to be of Frenkel pair type. At low temperature, 2.5 MeV electron irradiation induces an higher concentration of defects in the amorphous than in its crystallized counterpart

  13. Hydrogen storage characteristics of Ti45Zr38Ni17−xCox (x = 4, 8) alloy and quasicrystal powders produced by mechanical alloying

    International Nuclear Information System (INIS)

    Highlights: •Ti–Zr–Ni–Co amorphous phase was formed directly by mechanical alloying. •Ti–Zr–Ni–Co quasicrystal phase was formed by subsequent annealing. •The hydrogen capacity at 573 K for the quasicrystal sample was about 58at%. •The quasicrystal samples transformed to several hydrides after hydrogenation. •The activation energies for hydrogen desorption were measured. -- Abstract: The effect of substitution of Co for Ni on hydrogen storage characteristics of Ti–Zr–Ni/Co powders (Ti45Zr38Ni17−xCox (x = 4, 8)) produced by mechanical alloying (MA) was investigated. The final product after MA was amorphous for all the powders, but subsequent annealing caused the formation of the icosahedral quasicrystal (i) phase with a Ti2Ni type crystal and a C14 like Laves phases. The amount of i-phase decreased, and reversely those of Ti2Ni and the Laves phases increased with increasing the amount of Co. After hydrogenation at 573 K and at an initial hydrogen pressure of 3.8 MPa, the maximum hydrogen concentration for the annealed powders reached was about 58 at%, and all the phases in the powders transformed to metallic hydrides ((Zr,Ti)H2, Ni(Zr,Ti)H3 and Co(Zr,Ti)H3). Because of the formation of several hydrides, accelerated hydrogen desorption occurred at several temperatures. The activation energies for hydrogen desorption varied from about 70 kJ/mol to 180 kJ/mol

  14. Powder metallurgy processing of high strength turbine disk alloys

    Science.gov (United States)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  15. Electrochemical Fabrication of Niobium Silicon Alloys from Oxide Powder Mixtures

    OpenAIRE

    Fanke Meng; Huimin Lu

    2013-01-01

    NbSi alloys were prepared by direct electrochemically reducing four mixed Nb2O5 and SiO2 powders (Nb-10Si, Nb-20Si, Nb-30Si, and Nb-37.5Si) in molten CaCl2 electrolyte at 900°C. The samples were characterized with scanning electron microscope (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). No oxidized phases were remained by XRD tests. Under SEM, Nb phase was scattered in Nb5Si3 phase for the samples of Nb-10Si, Nb-20Si, and Nb-30Si. For the sample of Nb-37.5Si...

  16. Dynamic powder compaction of rapidly solidified Path A alloy with increased carbon and titanium content

    International Nuclear Information System (INIS)

    The objective of this study is to show the potential of the dynamic powder compaction technique to consolidate rapidly solidified Path A alloys and to develop microstructures with improved irradiation performance in the fusion environment. Samples of rapidly solidified and dynamically compacted Path A alloy with increased carbon and titanium content have been included in alloy development irradiation experiments

  17. Investigations of the atomic structure of amorphous ytterbium-alloys by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Atomic-scale structures of the amorphous alloys Yb80X20 (X = Cu, Ag, Au, Pd, Bi) have been investigated with a 174Yb-Moessbauer source. The distribution of the quadrupole splitting parameters obtained from the analysis of the Moessbauer spectra was compared with the theoretical function for a charge distribution corresponding to dense random packing (DRP) of ions. The atomic structure deduced from the distribution of splitting parameters was consistent with the DRP-model in the amorphous alloys Yb80Cu20, Yb80Ag20, Yb80Au20, Yb80Pd20. In contrast the Moessbauer spectrum of the amorphous alloy Yb80Bi20 showed clear evidence of short range order. This is presumably due to the tendency of bismuth to form covalent bondings. (orig./GSCH)

  18. Preparation and Properties of Mg-Cu-Y-Al bulk Amorphous Alloys

    DEFF Research Database (Denmark)

    Pryds, Nini; Eldrup, Morten Mostgaard; Ohnuma, M.; Pedersen, Allan Schrøder; Hattel, J.; Linderoth, Søren

    2000-01-01

    Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial and......-ray diffraction (XRD) and differential scanning calorimetry (DSC) for different alloy compositions and annealing temperatures. On annealing into the supercooled liquid state (441 K), specimens with no Al content remain basically amorphous while nanoparticles are formed and remain stable also at higher...... temperatures in specimens containing a few percent Al. The alloy with no Al crystallises apparently without the formation of nanoparticles. The critical cooling rate for the formation of an amorphous Mg(60)CU(30)Y(10) specimen was determined experimentally by a combination of DSC data and temperature vs, time...

  19. Crystallization kinetics of amorphous Zr65Cu25Al10 alloy

    Institute of Scientific and Technical Information of China (English)

    王焕荣; 石志强; 王艳; 滕新营; 叶以富; 闵光辉; 张均艳

    2002-01-01

    Crystallization behavior of amorphous Zr65Cu25Al10 alloy under isothermal annealing condition was investigated by DSC and XRD. It is found that two exothermic peaks appear in the DSC curve of amorphous Zr65Cu25Al10 alloy, indicating that the crystallization proceeds through double-stage mode. The crystallization process of amorphous Zr65Cu25Al10 alloy under isothermal annealing condition is mainly controlled by nucleation and one-dimensional growth with the crystallized volume fraction smaller than 70%. With the crystallized volume fraction ranging from 70% to 90%, crystallization process is mainly dominated by the growth of three-dimensional pre-existing quench-in nuclei. And when the crystallized volume fraction reaches above 90%, transient nucleation becomes the master of the crystallization process.

  20. Phase separation and crystallization process of amorphous Fe78B12Si9Ni1 alloy

    International Nuclear Information System (INIS)

    The influence of the melt heat treatment on the structure and crystallization process of the rapidly quenched amorphous Fe78B12Si9Ni1 alloys have been investigated by means of x-ray diffraction, DSC and TEM. Amorphous phase separation has been observed in the alloys quenched after the preliminary high temperature heat treatment of the liquid alloy (heating above 1400°C). Comparative analysis of the pair distribution functions demonstrates that this phase separation accompanied by a changes in the local atomic arrangement. It has been found that crystallization process at heating is strongly dependent on the initial amorphous phase structure - homogeneous or phase separated. In the last case crystallization goes through the formation of a new metastable hexagonal phase [a=12.2849(9) Ǻ, c=7.6657(8) Ǻ]. At the same time the activation energy for crystallization (Ea) reduces from 555 to 475 kJ mole−1

  1. Relaxation process of Fe(CuNb)SiB amorphous alloys investigated by dynamical calorimetry

    International Nuclear Information System (INIS)

    Differential scanning calorimetry and dynamic differential scanning calorimetry were used to analyze the relaxation process of Fe(CuNb)SiB amorphous alloys. The Curie temperature (TC) evolution of the amorphous phase during relaxation as a function of heating rate, time and pre-annealing temperature were measured. Two distinct relaxation processes are observed, consequent with topological and chemical short range order changes. copyright 1997 American Institute of Physics

  2. Relaxation process of Fe(CuNb)SiB amorphous alloys investigated by dynamical calorimetry

    OpenAIRE

    Zhu, J.; Clavaguera-Mora, M. T.; Clavaguera, N.

    1997-01-01

    Differential scanning calorimetry and dynamic differential scanning calorimetry were used to analyze the relaxation process of Fe(CuNb)SiB amorphous alloys. The Curie temperature(TC) evolution of the amorphous phase during relaxation as a function of heating rate, time and pre-annealing temperature were measured. Two distinct relaxation processes are observed, consequent with topological and chemical short range order changes.

  3. Formation of amorphous and nanocrystalline phases in high velocity oxy-fuel thermally sprayed a Fe-Cr-Si-B-Mn alloy

    International Nuclear Information System (INIS)

    High velocity oxy-fuel (HVOF) thermal spray was used to deposit a Fe-Cr-Si-B alloy coating onto stainless steel (1Cr18Ni9Ti) substrate. Microstructures of the powder and the coating were investigated by X-ray diffraction (XRD), scanning election microscopy (SEM), transmission election microscopy (TEM) and differential scanning calorimeter (DSC). The coating had layered morphologies due to the deposition and solidification of successive molten or half-molten splats. The microstructures of the coating consisted of a Fe-Cr-rich matrix and several kinds of borides. The Fe-Cr-rich matrix contained both amorphous phase and nanocrystalline grains with a size of 10-50 nm. The crystallization temperature of the amorphous phase was about 605 deg. C. The formation of the amorphous phase was attributed to the high cooling rates of molten droplets and the proper powder compositions by effective addition of Cr, Mn, Si and B. The nanocrystalline grains could result from crystallization in amorphous region or interface of the amorphous phase and borides by homogeneous and heterogeneous nucleation

  4. Magnetic circular X-ray dichroism in amorphous Fe-RE alloys

    International Nuclear Information System (INIS)

    Magnetic circular X-ray dichroism and X-ray absorption near-edge structures were measured at the rare-earth (RE) L3,2 edges in amorphous Fe-RE alloys (RE=Pr, Sm, Gd, Tb and Dy). The Gd 5d spin and orbital moments in the amorphous 80 at% Fe-Gd alloy are evaluated to be about 0.39μB and -0.02μB per atom at room temperature using the sum rules. ((orig.))

  5. Formation Range, Mechanical Properties and Thermal Stability of Superconducting Zr-Si Amorphous Alloys

    OpenAIRE

    Inoue, Akihisa; Takahashi, Yoshimi; MASUMOTO, Tsuyoshi

    1980-01-01

    New type of refractory metal-metalloid amorphous alloys containing less than 20 at% Si have been found in binary Zr-Si system by a modified melt-spinning technique for high melting point alloys. Specimens are in the form of continuous ribbons of 1-2 mm width and 0.02-0.03 mm thickness. The silicon content in the amorphous range is limited to the range 12 to 24 at%. The Vickers hardness increases from 395 to 495 DPN with increasing silicon content and the tensile strength is of the order of 14...

  6. Compression behavior and equation of state of Ni77P23 amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    LI Gong; GAO YunPeng; SUN YiNan; MA MingZhen; LIU Jing; LIU RiPing

    2007-01-01

    The compression behavior of Ni77P23 amorphous alloy is investigated at room temperature in a diamond-anvil cell instrument using in-situ high pressure energy dispersive X-ray diffraction with a synchrotron radiation source. The equation of state is determined by fitting the experimental data according to Birch-Murnaghan equation: -△V/V0=0.08606P-3.2×10-4P2+5.7×10-6P3. It is found that the structure of Ni77P23 amorphous alloy is stable under pressures up to 30.5 Gpa.

  7. Compression Behaviour of Ni77P23 Amorphous Alloy up to 30.5 GPa

    Institute of Scientific and Technical Information of China (English)

    LI Gong; ZHANG Xin-Yu; SUN Yi-Nan; QIAN Yu-Qing; LIU Jing; LIU Ri-Ping

    2005-01-01

    @@ The compression behaviour of Ni77P23 amorphous alloy is investigated at room temperature in a diamond-anvil cell instrument using in-situ high pressure energy dispersive x-ray diffraction with a synchrotron radiation source.The equation of state is determined by fitting the experimental data according to the Birch-Murnaghan equation.It is found that the structure of Ni77P23 amorphous alloy is stable under pressures up to 30.5GPa. Within the pressure range from zero to the experimental one, the pressure-induced structural relaxation is reversible.

  8. Effect of Cerium on Chemical Short-Range Order of Al-Fe-Ce Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The chemical short-range order of Al-Fe-Ce amorphous alloy was studied by means of X-ray diffraction(XRD) and differential scanning calorimetry(DSC). It is found that the prepeak position in X-ray diffraction intensity curve shifts to higher angles as the content of Fe increases, but it shifts to smaller angles as the content of Ce increases. The crystallization character of the amorphous alloy changes with the variation of the content of Fe and Ce. Ce can improve the interaction between atoms and the capacity of compound formation, so it is favorable to Al-based glass formability.

  9. Magnetic, magnetocaloric properties and phenomenological model in amorphous Fe60Ru20B20 alloy

    Science.gov (United States)

    Boutahar, A.; Lassri, H.; Hlil, E. K.

    2015-11-01

    Magnetic, magnetocaloric properties and phenomenological model of amorphous Fe60Ru20B20 alloy are investigated in detail. The amorphous alloy has been synthesized using melt spinning method. The magnetic transition nature undergoes a second-order magnetic phase transition from ferromagnetic to paramagnetic states with a Curie temperature of 254 K. Basis on the thermodynamic Maxwell's relation, magnetic entropy change (-ΔSM) is calculated. Further, we also report a theoretical investigation of the magnetocaloric effect using a phenomenological model. The best model parameters and their variation with temperature and the magnetic field were determined. The theoretical predictions are found to agree closely with experimental measurements.

  10. Spark plasma sintering of dispersion hardened Cu–Cr–Nb alloy powders

    International Nuclear Information System (INIS)

    Highlights: •Milled powders show enhanced sinterability during spark plasma sintering (SPS). •Enhanced mechanical properties of SPSed samples made from milled powder. •Mechanism of sintering for SPSed samples of Cu–Cr–Nb alloy is proposed. -- Abstract: The densification behavior of dispersion hardened Cu–Cr–Nb alloy powders has been studied by spark plasma sintering using varying stress and temperature. The densification has been strongly inhibited by the presence of intermetallic Cr2Nb precipitates. The mechanically milled powders with disk shaped nature have resulted in higher relative density as compared to spherical shaped gas atomized powders in all the experiments. The hardness and compressive yield strength of the sintered alloy samples have been found to have a linear relationship with relative density and it was independent of process parameters for both the atomized and milled powders

  11. Effect of Additives on the Sintering of Amorphous Nano-sized Silicon Nitride Powders

    Institute of Scientific and Technical Information of China (English)

    LUO Junting; LIU Riping

    2009-01-01

    Amorphous nano-sized silicon nitride powders were sintered by liquid phase sin-tering.The influences of the additives of Y_2O_3 and Al_2O_3 prepared by two different ways,the poly-acrylamide gel method and the precipitation method,were investigated.The grain sizes of the additives prepared by the first method were finer than those of prepared by the latter method.When sintered at the same temperature,1700℃,the average grain size of the silicon nitride is 0.3 μm for the sample with the former additives,which is much finer than the one with the latter additives.The density of additives prepared by precipitation method is clearly lower than those of prepared by polyacrylamide gel method.

  12. Magnetic and mechanical properties in FeXSiB (X = Cu, Zr, Co) amorphous alloys

    OpenAIRE

    P. Kwapuliński; Rasek, J.; Z. Stokłosa; G. Badura; B. Kostrubiec; Haneczok, G.

    2008-01-01

    Purpose: The idea of the paper is to study the influence of different alloying additions (Cu, Zr, Nb) on structuralrelaxation, crystallization, and improvement of soft magnetic properties in amorphous alloys of the type FeXSiBobtained by melt spinning technique.Design/methodology/approach: Magnetic and electric characteristics of the as quenched and successivelyannealed samples were determined at room temperature. Experiments were carried out by applying magneticpermeability measurements (Max...

  13. Atomic short-range order in Fe-C amorphous metal alloys

    International Nuclear Information System (INIS)

    Within frameworks of computer experiment by the method of molecular dynamics the processes of structural organization of Fe-C system amorphous alloys are investigated. It is shown that the influence of carbon concentration on the relationship between main constituents of local composition order: atomic configurations with a central position of carbon atoms and iron atoms positioned in apices of the configurations of octahedral and trigonal-prismatic coordination is opposite to that observed in crystalline alloys of the system

  14. Boron carbide particles formed from an amorphous boron/graphite powder mixture using a shock-wave technique

    International Nuclear Information System (INIS)

    Boron carbide (B4C) particles with filamental, distorted ellipsoidal, platelike, and polyhedral shapes were formed from vapor generated from an amorphous boron/graphite powder mixture with 14% starting density using a cylindrical shock-wave technique. The crystal phases of shocked compact and microstructures of the B4C particles were characterized by X-ray diffractometry and electron microscopy, respectively

  15. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    Science.gov (United States)

    Medina, Fransisco

    Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with

  16. SYNTHESIS AND PERFORMANCE OF FE-BASED AMORPHOUS ALLOYS FOR NUCLEAR WASTE REPOSITORY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, L; Perepezko, J; Hildal, K

    2007-02-08

    In several Fe-based alloy systems it is possible to produce glasses with cooling rates as low as 100 K/s that exhibit outstanding corrosion resistance compared to typical crystalline alloys such as high-performance stainless steels and Ni-based C-22 alloy. Moreover, novel alloy compositions can be synthesized to maximize corrosion resistance (i.e. adding Cr and Mo) and to improve radiation compatibility (adding B) and still maintain glass forming ability. The applicability of Fe-based amorphous coatings in typical environments where corrosion resistance and thermal stability are critical issues has been examined in terms of amorphous phase stability and glass-forming ability through a coordinated computational analysis and experimental validation. Similarly, a novel computational thermodynamics approach has been developed to explore the compositional sensitivity of glass-forming ability and thermal stability. Also, the synthesis and characterization of alloys with increased cross-section for thermal neutron capture will be outlined to demonstrate that through careful design of alloy composition it is possible to tailor the material properties of the thermally spray-formed amorphous coating to accommodate the challenges anticipated in typical nuclear waste storage applications over tens of thousands of years in a variety of corrosive environments.

  17. Magnetocaloric response of amorphous and nanocrystalline Cr-containing Vitroperm-type alloys

    Science.gov (United States)

    Moreno-Ramírez, L. M.; Blázquez, J. S.; Franco, V.; Conde, A.; Marsilius, M.; Budinsky, V.; Herzer, G.

    2016-07-01

    The broad compositional range in which transition metal (TM) based amorphous alloys can be obtained, yields an easily tunable magnetocaloric effect (MCE) in a wide temperature range. In some TM-based alloys, anomalous behaviors are reported, as a non-monotonous trend with magnetic moment (e.g. FeZrB alloys). Moreover, in certain Cr-containing Vitroperm alloys anomalously high values of the magnetic entropy change were published. In this work, a systematic study on MCE response of Cr-containing amorphous alloys of composition Fe74-xCrxCu1Nb3Si15.5B6.5 (with x=2, 8, 10, 12, 13, 14 and 20) has been performed in a broad Curie temperature range from 100 K to 550 K. Curie temperature and magnetic entropy change peak of the amorphous alloys decrease with the increase of Cr content at rates of -25.6 K/at% Cr and -54 mJ kg-1 K-1/at% Cr, respectively, following a linear trend with the magnetic moment in both cases. The presence of nanocrystalline phases has been considered as a possible cause in order to explain the anomalies. The samples were nanocrystallized in different stages, however, the magnetocaloric response decreases as crystallization progresses due to the large separation of the Curie temperatures of the two phases.

  18. Synthesis and Performance of Fe-based Amorphous Alloys for Nuclear Waste Applications

    International Nuclear Information System (INIS)

    Recent developments in multi-component Fe-based amorphous alloys have shown that these novel materials exhibit outstanding corrosion resistance compared to typical crystalline alloys such as high-performance stainless steels and Ni-based C-22 alloy. During the past decade, amorphous alloy synthesis has advanced to allow for the casting of bulk metallic glasses. In several Fe-based alloy systems it is possible to produce glasses with cooling rates as low as 100 K/s. At such low cooling rates, there is an opportunity to produce amorphous solids through industrial processes such as thermal spray-formed coatings. Moreover, since cooling rates in typical thermal spray processing exceed 1000 K/s, novel alloy compositions can be synthesized to maximize corrosion resistance (i.e. adding Cr and Mo) and to improve radiation compatibility (adding B) and still maintain glass forming ability. The applicability of Fe-based amorphous coatings in typical environments where corrosion resistance and thermal stability are critical issues has been examined in terms of amorphous phase stability and glass-forming ability through a coordinated computational analysis and experimental validation. For example, a wedge casting technique has been applied to examine bulk glass forming alloys by combining multiple thermal probes with a measurement based kinetics analysis and a computational thermodynamics evaluation to elucidate the phase selection competition and critical cooling rate conditions. Based upon direct measurements and kinetics modeling it is evident that a critical cooling rate range should be considered to account for nucleation behavior and that the relative heat flow characteristics as well as nucleation kinetics are important in judging ease of glass formation. Similarly, a novel computational thermodynamics approach has been developed to explore the compositional sensitivity of glass-forming ability and thermal stability. Also, the synthesis and characterization of alloys

  19. Stability of (Fe-Tm-B) amorphous alloys: relaxation and crystallization phenomena

    International Nuclear Information System (INIS)

    Fe-Tm-B base (TM = transition metal) amorphous alloys (metallic glasses) are thermodynamically metastable. This limits their use as otherwise favourable materials, e.g. magnetically soft, corrosion resistant and mechanically firm. By analogy of the mechanical strain-stress dependence, at a certain degree of thermal activation the amorphous structure reaches its limiting state where it changes its character and physical properties. Relaxation and early crystallization processes in amorphous alloys, starting already around 100 C, are reviewed involving subsequently stress relief, free volume shrinking, topological and chemical ordering, pre-crystallization phenomena up to partial (primary) crystallization. Two diametrically different examples are demonstrated from among the soft magnetic materials: relaxation and early crystallization processes in the Fe-Co-B metallic glasses and controlled crystallization of amorphous ribbons yielding rather modern nanocrystalline ''Finemet'' alloys where late relaxation and pre-crystallization phenomena overlap when forming extremely dispersive and fine-grained nanocrystals-in-amorphous-sauce structure. Moessbauer spectroscopy seems to be unique for magnetic and phase analysis of such complicated systems. (orig.)

  20. Powder production processes for AlNiCo permanent magnet alloys

    International Nuclear Information System (INIS)

    A comparative study of powder production processes was carried out for the production of powders of hard and brittle Alnico permanent magnet alloys. The factors on which selection of powder production process is based, such as particle size and shape, purity of powder and subsequent shaping processes, are discussed in details. Atomization process produces powders with a variety of particle shapes. The powders produced by atomization are cheaper and suitable for many shaping processes such as compaction and injection molding. The quality of powder produced by water atomization is rather poor, while centrifugal atomization process produce powders of high quality which are suitable for aerospace applications. Since the quality of powders produced by atomization is greatly improved by special annealing treatment, atomization offers an economical and suitable mean for the production of sintered Alnico magnets. (author)

  1. Electro-oxidation of ethylene glycol on nanoporous Ti-Cu amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Cuijie [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhu Shengli, E-mail: slzhu@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Yang Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Pi Lele; Cui Zhenduo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2011-11-30

    Highlights: > Nanoporous Ti-Cu amorphous alloy exhibits apparent EG electrocatalytic ability EG electro-oxidation occurs more easily in alkaline medium than in acid medium. > In acid medium, heat treatment plays an enhancing role towards EG oxidation. > In alkaline medium, heat treatment has opposite effect below and above 0.1 V. - Abstract: This work describes ethylene glycol (EG) electro-oxidation over nanoporous structure catalyst prepared by dealloying Ti-Cu amorphous alloy. Scanning electron microscopy (SEM) was used to characterize nanoporous catalysts. Electrocatalytic performances in acid and alkaline mediums were measured by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results showed that nanoporous Ti-Cu amorphous alloy exhibited apparent electrocatalytic ability in terms of higher oxidation current in CV and CA curves comparing to raw Ti-Cu amorphous alloy. Electro-oxidation of EG took place more easily in alkaline medium than that in acid medium. In acid medium, heat treatment improved the electrocatalytic activity of nanoporous catalyst. In alkaline medium, heat treatment played an enhancing role below 0.1 V and a depressing role above 0.1 V. Possible electro-oxidation mechanism of EG was also discussed.

  2. Crystallization behavior of amorphous Zr70Cu20Ni10 alloy annealed at 380℃

    Institute of Scientific and Technical Information of China (English)

    王焕荣; 叶以富; 闵光辉; 张均艳; 滕新营; 石志强

    2002-01-01

    Crystallization behavior of amorphous Zr70Cu20Ni10 alloy isothermally annealed at 380℃ was first investigated by employing the differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). It has been found that an exothermic peak appears in the DSC trace when the annealing time is about 17~18min, indicating a certain phase transformation occurs in the matrix of amorphous Zr70Cu20Ni10 alloy. Meanwhile, isothermal annealing experiments for amorphous Zr70Cu20Ni10 alloy ranging from 360℃ to 400℃ with a temperature interval of 10℃ were also carried out, from which no exothermic reaction can be observed except for the case of 380℃. This behavior indicates that the phase transformation during isothermal annealing of amorphous Zr70Cu20Ni10 alloy is strongly temperature- and time-dependent. Further investigations are required to reveal the nature of such phenomenon.

  3. The magnetic properties and the Barkhausen noise of the hydrogenated Fe-V-B amorphous alloy

    International Nuclear Information System (INIS)

    As a consequence of hydrogenation-dehydrogenation process, in the present paper the study of structural changes which could be followed by measuring structure sensitive magnetic properties as the stress induced anisotropy, coercive force, demagnetizing factor and the Barkhausen noise parameters of the as-cast and hydrogenated Fe80V5B15 amorphous alloys is performed. (author)

  4. Thermally induced crystallization of amorphous Fe40Ni40P14B6 alloy

    Czech Academy of Sciences Publication Activity Database

    Vasić, M.; Blagojević, V. A.; Begović, N. N.; Žák, Tomáš; Pavlović, V. B.; Minić, Dragica M.

    2015-01-01

    Roč. 614, AUG (2015), s. 129-136. ISSN 0040-6031 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Amorphous alloy * Crystallization * Kinetics * Deconvolution * Impingement * Surface morphology Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.184, year: 2014

  5. Application of the artificial neural networks for prediction of magnetic saturation of metallic amorphous alloys

    Directory of Open Access Journals (Sweden)

    J. Konieczny

    2008-04-01

    Full Text Available Purpose: The aim of the work is to employ the artificial neural networks for prediction of magnetic saturation ofthe amorphous alloys with the iron and cobalt matrix.Design/methodology/approach: It has been assumed that the artificial neural networks can be used toassign the relationship between the chemical compositions of amorphous alloys, temperature of heat treatment andmagnetic saturation. In order to determine the relationship it has been necessary to work out a suitable calculationmodel. It has been proved that employment of genetic algorithm to selection of input neurons can be very usefultool to improve artificial neural network calculation results. The attempt to use the artificial neural networks forpredicting the effect of the chemical composition and temperature of heat treatment on the magnetic saturation BSsucceeded, as the level of the obtained results was acceptable.Findings: Artificial neural networks, can be applied for predicting the effect of the chemical composition andtemperature of heat treatment on the magnetic saturation.Research limitations/implications: Worked out model should be used for prediction of magnetic saturationonly in particular groups of amorphous alloys, mostly because of the discontinuous character of input data.Practical implications: The results of research make it possible to calculate with a certain admissible error the magneticsaturation Bs value basing on combinations of concentrations of the particular elements and heat treatment temperature.Originality/value: In this paper it has been presented an original trial of prediction of the required magneticproperties of the iron and cobalt amorphous alloys.

  6. Tribological properties of amorphous alloys and the role of surfaces in abrasive wear of materials

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The research approach undertaken by the authors relative to the subject, and examples of results from the authors are reviewed. The studies include programs in adhesion, friction, and various wear mechanisms (adhesive and abrasive wear). The materials which have been studied include such ceramic and metallic materials as silicon carbide, ferrites, diamond, and amorphous alloys.

  7. Diffusion of 59Fe in amorphous Co79Nb14B7 alloy

    International Nuclear Information System (INIS)

    Amorphous alloys have attracted considerable scientific and technological interest because of their unusual properties. Unfortunately, amorphous alloys are not thermodynamically stable and undergo structural transitions, such as relaxation, phase separation, and crystallization, which remarkably change their properties. Diffusion plays a dominant role in these processes. The crucial problem in carrying out direct diffusion measurements is that diffusion lengths are limited to very short distances, typically about 10 nm, to avoid any undesirable structural transition. Therefore only those experimental methods having a very good depth resolution can be used. Such a method is ion sputtering for serial sectioning, which is mostly used in combination with the radiotracer technique or secondary ion mass spectrometry. In the present paper, the iron impurity diffusion in the same amorphous alloy Co79Nb14B7 is studied. The temperature dependence of 59Fe impurity diffusion coefficients in the relaxed amorphous alloy have been compared with that of 58 Co self-diffusion coefficients determined in. Two procedures of the sample prepared were tested to check the influence of the experimental techniques on the resulting diffusion coefficients

  8. Formation and structure of V-Zr amorphous alloy thin films

    KAUST Repository

    King, Daniel J M

    2015-01-01

    Although the equilibrium phase diagram predicts that alloys in the central part of the V-Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V-Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to the first and second nearest neighbours in the system.

  9. Molecular dynamics simulation of amorphous segregation inAg-Rh alloys

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jingxiang; BIAN Xiufang

    2003-01-01

    Molecular dynamics simulation was carried out to investigate the liquid and amorphous microstructures of binary Agx-Rh(100-x) (x = 25, 50, 75 in atom fraction) alloys. Segregation feature of homogeneous interatomic binding of Ag-Rh liquid was found and probed, which can be retained into amorphous solids upon rapid cooling. Homogeneous binding may occur when the difference in the elemental atomic sizes is less than 10%. The icosahedra in liquid before the formation of amorphous state exist in a stable state and the network formed by 1551-clusters in molten alloys would inhibit the crystallization and diffusion of atoms. A higher degree of 155 1-clusters will be favorable to form metallic glasses.

  10. Formation and structure of V–Zr amorphous alloy thin films

    International Nuclear Information System (INIS)

    Although the equilibrium phase diagram predicts that alloys in the central part of the V–Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V–Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to the first and second nearest neighbours in the system

  11. Structure and properties of ductile CuAlMn shape memory alloy synthesized by mechanical alloying and powder metallurgy

    International Nuclear Information System (INIS)

    Highlights: • A ductile Cu–Al–Mn–Ti–B shape memory alloy with fine grain has been prepared via mechanical alloying and powder metallurgy. • Cu diffraction pattern appeares only after 25 h milling. • The quenched alloy with a single β phase has good ductile and high strength. • The aged alloy with a M18R martensite structure remains a shape memory recovery of 92% after 120 cycles. - Abstract: A ductile Cu–Al–Mn–Ti–B shape memory alloy with high fatigue strength has been prepared via mechanical alloying and powder metallurgy. With increasing milling time, the size of the crystallite grains decreases. Cu diffraction pattern appeared only after milling at a speed of 300 rpm for 25 h. The single phase CuAlMnTiB solid solution powder after 35 h milling was hot-pressed and extruded to form the final alloy. The quenched alloy had a single β phase at room temperature and its yield strength, maximum strength and strain were measured to be 390 MPa, 1015 MPa and 14.4%, respectively. The aged alloy showed a martensite structure at room temperature and had a shape memory recovery of 92% after 120 cycles

  12. Domain structure and Barkhausen effect in Fe78B12Si9Ni1 amorphous alloy

    International Nuclear Information System (INIS)

    Domain structure is investigated by using new approaches, which are based on registration of micro-volume material magnetization. One demonstrated absence of correlation of dimensions of domain structure elements of Fe78B12Si9Ni1 magnetically soft alloy in initial state upon hydrogen saturation or annealing with the Barkhausen effect characteristics in the mentioned alloy. It is pointed out that conventional view of the Barkhausen effect the nature of which is linked with domain dimensions and mobility of their boundaries, are not true in disordered structures represented by magnetically soft amorphous metal alloys

  13. Volume and surface magnetic anisotropy of Co75Fe5Si4B16 amorphous alloy

    International Nuclear Information System (INIS)

    Magnetic parameters and processes of mentioned in the title amorphous alloy and its surface layer remagnetization in initial freshly-quenched state after thermomagnetic treatment (TMT) and under the effect of extermnal extension stresses are investigated. The ascertained differences in the values of coercive force and constants of magnetic anisotropy on the surface and in the volume of the alloy testify to the level character of magnetic anisotropy (MA), which is determined by the differences in magnetoelastic energy of local quenching stresses in material microvolumes. Owing to high deficiency of the surface layers, their MA, in cotrast to the alloy volume, is not monoaxial even as a result of optimal model of TMT

  14. Synthesis and Characterization of Nanocrystalline Al-20 at. % Cu Powders Produced by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Molka Ben Makhlouf

    2016-06-01

    Full Text Available Mechanical alloying is a powder processing technique used to process materials farther from equilibrium state. This technique is mainly used to process difficult-to-alloy materials in which the solid solubility is limited and to process materials where nonequilibrium phases cannot be produced at room temperature through conventional processing techniques. This work deals with the microstructural properties of the Al-20 at. % Cu alloy prepared by high-energy ball milling of elemental aluminum and copper powders. The ball milling of powders was carried out in a planetary mill in order to obtain a nanostructured Al-20 at. % Cu alloy. The obtained powders were characterized using scanning electron microscopy (SEM, differential scanning calorimetry (DSC and X-ray diffraction (XRD. The structural modifications at different stages of the ball milling are investigated with X-ray diffraction. Several microstructure parameters such as the crystallite sizes, microstrains and lattice parameters are determined.

  15. Nickel-Containing Alloys for Medical Application Obtained by Methods of Mechanochemistry and Powder Metallurgy

    OpenAIRE

    Radev, D. D.

    2012-01-01

    The methods of mechanochemistry, in combination with cold pressing and pressureless sintering, were used to obtain the most popular nickel-based and nickel-containing alloys used in dentistry and implantology. It was shown that the intense mechanical treatment of Ni, Ti, and Cr powders used as reagents, and the application of the above-mentioned simple powder metallurgical technique for densification allows obtaining NiCr and NiTi alloys with controlled structural properties. The nickel-based...

  16. Processing-microstructure-property relationships for cold spray powder deposition of Al-Cu alloys

    OpenAIRE

    Leazer, Jeremy D.

    2015-01-01

    Approved for public release; distribution is unlimited This thesis presents research on the cold gas-dynamic spray process applied to the deposition of aluminum-copper alloy coatings. Cold spray deposition is a process utilized to create corrosion protection coatings and to perform additive repair for aluminum structures. This thesis utilized a series of Al-Cu binary alloy powders, from 2–5 weight percent copper and characterized their chemistry and microstructure. The powders were deposit...

  17. 57Fe NMR study of amorphous and rapidly quenched crystalline Fe-B alloys

    Science.gov (United States)

    Pokatilov, V. S.

    2009-01-01

    Amorphous and crystalline Fe-B alloys (5-25 at % B) were studied using pulsed 57Fe nuclear magneticr esonance at 4.2 K. The alloy samples were prepared from a mixture of the 57Fe and 10B isotopes by rapid quenching from the melt. In the microcrystalline Fe-(5-12 at %) B alloys, the resonance frequencies were measured for local states of 57Fe nuclei in the tetragonal and orthorhombic Fe3B phases and also in α-Fe. The resonance frequencies characteristic of 57Fe nuclei in α-Fe crystallites with substitutional impurity boron atoms in the nearest neighborhood were also revealed. In the resonance frequency distribution P( f) in the amorphous Fe-(18-25) at % B alloys, there are frequencies corresponding to local Fe atom states with short-range order of the tetragonal and orthorhombic Fe3B phases. As the boron content decreases below 18 at %, the P( f) distributions are shifted to higher frequencies corresponding to 57Fe NMR for atoms exhibiting a short-range order of the α-Fe type. The local magnetic structure of the amorphous Fe-B alloys is also considered.

  18. Wear mechanism of electrodeposited amorphous Ni-Fe-P alloys

    Institute of Scientific and Technical Information of China (English)

    高诚辉; 赵源

    2004-01-01

    The wear mechanism of amorphous Ni-Fe-P coating was discussed. The wear resistance of the amor phous Ni-Fe-P coatings was tested on a Timken wear apparatus, and the wear track of the amorphous Ni-Fe-P coat ings as-deposited and heated at various temperatures was observed by SEM. The results show that the wear resistthe coating will change with the heating temperature increasing from pitting+plowing at 200 ℃ to pitting at 400 ℃,and to plowing at 600 ℃. The pits on the worn surface of the amorphous Ni-Fe-P coating result from the tribo-fatigue fracture. The cracks of spalling initiate at pits and propagate at certain angle with the sliding direction on sur face, and then extend into sub-surface along the poor P layers or the interface between layers. Finally under repeated action of the stress in the rubbing process the cracks meet and the debris forms. The generation of the pits and spal-ling is related with the internal stress, brittleness and layer structure of the amorphous Ni-Fe-P coating.

  19. Amorphous structure in a laser clad Ni-Cr-Al coating on Al-Si alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A mixing microstructure containing Ni-based amorphous structures was observed by TEM in the laser cladzones. As the uniformity of chemical composition and temperature is poor in the laser cladding, the amorphous structurewith some Ni3Al crystals coexists in the cladding. The microhardness of the mixing amorphous structure is HV 600 ~800, which is lower than that of crystal phases in the coating. Differential thermal analysis (DTA) shows that Ni-basedamorphous structure exhibits a higher initial crystallizing temperature (about 588 ℃ ), which is slightly higher than that ofthe eutectic temperature of Al-Si alloy. The wear test results indicate that there are some amorphous structures in the laserclad coating, which reduces the peeling of the granular phases from matrix, and improves the wear resistance

  20. Corrosion of Mechanically Alloyed Nanostructured FeAl Intermetallic Powders

    Directory of Open Access Journals (Sweden)

    A. Torres-Islas

    2012-01-01

    Full Text Available The corrosion behavior of the Fe40Al60 nanostructured intermetallic composition was studied using electrochemical impedance spectroscopy (EIS and linear polarization resistance (LPR techniques with an innovative electrochemical cell arrangement. The Fe40Al60 (% at intermetallic composition was obtained by mechanical alloying using elemental powders of Fe (99.99% and Al (99.99%. All electrochemical testing was carried out in Fe40Al60 particles that were in water with different pH values. Temperature and test time were also varied. The experimental data was analyzed as an indicator of the monitoring of the particle corrosion current density icorr. Different oxide types that were formed at surface particle were found. These oxides promote two types of surface corrosion mechanisms: (i diffusion and (ii charge transfer mechanisms, which are a function of icorr behavior of the solution, pH, temperature, and test time. The intermetallic was characterized before and after each test by transmission electron microscopy. Furthermore, the results show that at the surface particles uniform corrosion takes place. These results confirm that it is possible to sense the nanoparticle corrosion behavior by EIS and LPR conventional electrochemical techniques.

  1. Numerical simulation of tungsten alloy in powder injection molding process

    Institute of Scientific and Technical Information of China (English)

    ZHENG Zhen-xing; XIA Wei; ZHOU Zhao-yao; ZHU Quan-li

    2008-01-01

    The flow behavior of feedstock for the tungsten alloy powder in the mold cavity was approximately described using Hele-Shaw flow model. The math model consisting of momentum equation, consecutive equation and thermo-conduction equation for describing the injection process was established. The equations are solved by the finite element/finite difference hybrid method that means dispersing the feedstock model with finite element method, resolving the model along the depth with finite difference methpd, and tracking the movable boundary with control volume method, then the pressure equation and energy equation can be resolved in turn. The numerical simulation of the injection process and the identification of the process parameters were realized by the Moldflow software. The results indicate that there is low temperature gradient in the cavity while the pressure and shear rate gradient are high at high flow rate. The selection of the flow rate is affected by the structure of the gate. The shear rate and the pressure near the gate can be decreased by properly widening the dimension of the gate. There is a good agreement between the process parameters obtained by the numerical simulation and the actual ones.

  2. In Situ Nanocrystallization-Induced Hardening of Amorphous Alloy Matrix Composites Consolidated by Spark Plasma Sintering

    Science.gov (United States)

    Singh, Ashish; Paul, Tanaji; Katakam, Shravana; Dahotre, Narendra B.; Harimkar, Sandip P.

    2016-07-01

    In situ nanocrystallization of amorphous alloys has recently emerged as a suitable technique for forming nanocomposites with improved mechanical properties. In this paper, we report on the spark plasma sintering (SPS) of Fe-based amorphous alloys with in situ-formed nanocrystals of (Fe,Cr)23(C,B)6. The SPS was performed with a range of sintering temperatures (570-800°C) in and above the supercooled liquid region of the alloy. Significant enhancement in relative density was observed with increasing sintering temperature due to particle deformation and improved interparticle contacts. The formation of nanocrystalline particles and enhanced densification resulted in an increase in the hardness of the nanocomposites from about 1150-1375 VHN.

  3. Model calculations of thermodynamic functions of crystallization of Co-B amorphous alloys

    International Nuclear Information System (INIS)

    A model of perfectly associated solution is used for the approximation of the properties of metal melts. The calculation programs are prepared for modelling thermodynamic properties of solutions on the basis of the model of perfectly associated solution, which programs can enable optimizational calculation relying on the results of several series of experiments. Co-B liquid alloys are modelled using all available in the literature experimental data. Estimated values ΔcrH = 10 kJ/mol; ΔcrS = -2 J/(K mol); ΔcrG = -9 kJ/mol are obtained for the crystallization of amorphous Co0.815B0.185 alloy. The calculated value of amorphous alloy crystallization enthalpy is compared with the literature data. 17 refs., 1 tab

  4. Mg amorphous alloys for biodegradable implants; Ligas amorfas de magnesio utilizadas em implantes consumiveis

    Energy Technology Data Exchange (ETDEWEB)

    Danez, G.P., E-mail: gabidanez@hotmail.co [Universidade Federal de Sao Carlos (PPG-CEMUFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Koga, G.Y.; Tonucci, S.; Bolfarini, C.; Kiminami, C.S.; Botta Filho, W.J. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    The use of implants made from amorphous alloys magnesium-based with additions of zinc and calcium are promising. Properties such as biocompatibility, low density, high mechanical strength, low modulus (as compared to alloys such as stainless steel and titanium), corrosion resistance and wear resistance make it attractive for use in implants. Moreover, the by-products of corrosion and wear are not toxic and may contribute to fixation. Aiming to understand the tendency of this amorphous ternary (Mg-Zn-Ca) and expand the information about this system, this work involved the use of the topological criterion of instability ({lambda}) and the criterion of electronegativity ({Delta}e) to the choice of compositions. The alloys were processed into wedge-shaped and analyzed structurally and in X-ray diffraction and scanning electron microscopy. (author)

  5. Molecular dynamics study of structural and dynamical properties of amorphous Si-Ge alloys

    International Nuclear Information System (INIS)

    Structural and dynamical properties of amorphous silicon-germanium (a-Si1-xGex) alloys have been examined by molecular dynamics simulations using the Tersoff interatomic potential. Amorphous networks were generated by rapid quenching from liquid Si1-xGex alloys. Good agreement was obtained between the simulated and experimentally measured radial distribution functions and phonon densities of states, suggesting that the Tersoff potential is useful for analyzing the atomic configurations and vibrational properties of a-Si1-xGex alloys. Local atomistic structures, such as topological and chemical short-range order states, were also examined in detail, and we compared them with experimental and theoretical results reported previously. On the basis of the results obtained here, we proposed that the bond length and bond angle around Ge atoms have more distortion than those around Si atoms in a-Si1-xGex networks

  6. Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D., E-mail: danny.guzman@uda.cl [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapo (Chile); Ordonez, S. [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Fernandez, J.F.; Sanchez, C. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Av. Los Carrera 01567, Quilpue, Pontificia Universidad Catolica de Valparaiso, PUCV (Chile); Aguilar, C. [Departamento de Ingenieria Metalurgica y Materiales, Universidad Tecnica Federico Santa Maria, Av. Espana 1680, Valparaiso (Chile); Tapia, P. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama, Av. Copayapu 485, Copiapo (Chile)

    2011-04-15

    Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{sub 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.

  7. Nanoporous nickel-copper-phosphorus amorphous alloy film for methanol electro-oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Highlights: • Novel Ni-Cu-P amorphous alloy with nanoporous structure was fabricated by LSV etching. • Lower onset oxidation potential of methanol at NP-NiCuP than both S-NiCuP and NP-NiCu. • Superior activity and stability for methanol oxidation at the NP-NiCuP electrode. • Long lifetime of the NP-NiCuP electrode. - Abstract: Nanoporous Ni-Cu-P amorphous alloy (NP-NiCuP) and nanoporous Ni-Cu crystalline alloy (NP-NiCu) are prepared by the linear sweep voltammetry (LSV) etching of copper from the electroless Ni-Cu-P and Ni-Cu alloy coatings, respectively. The results of X-ray diffraction (XRD) analysis show that the nanoporous Ni-Cu-P alloy is amorphous structure. The scanning electron microscopy (SEM) analysis demonstrates the NP-NiCuP shows a 3-D bi-continuous porous structure with the pore size of 150–200 nm and the ligament size of around 100 nm. Electrochemical performances are measured by cyclic voltammetry (CV) and chronoamperometry (CA). The results prove that the NP-NiCuP electrode exhibits higher the proton diffusion coefficient (D0) of Ni(OH)2 and surface coverage (Γ*) of the redox species than those on smooth electroless Ni-Cu-P amorphous alloy (S-NiCuP) and NP-NiCu electrodes in alkaline solution obviously. Moreover, electro-oxidation of methanol suggests that the NP-NiCuP electrode holds higher anodic current density and lower onset potential than the S-NiCuP and NP-NiCu electrodes. Finally, the NP-NiCuP electrode has stable redox behavior and superior catalytic stability for methanol oxidation

  8. MECHANICAL ALLOYING SYNTHESIS OF FORSTERITE-DIOPSIDE NANOCOMPOSITE POWDER FOR USING IN TISSUE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Sorour Sadeghzade

    2015-03-01

    Full Text Available In present study the pure forsterite-diopside nanocomposite powder was successfully synthesized by the economical method of mechanical alloying and subsequence sintering, for the first time. The starting economical materials were talc (Mg3Si4H2O12, magnesium carbonate (MgCO3 and calcium carbonate (CaCO3 powders. The prepared powder was characterized by thermo gravimetric analysis (TGA, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The results showed preparation of forsterite- diopside nanocomposite powder after 10 h mechanical alloying and sintering at 1200oC for 1 h. The powder crystallite sizes and agglomerated particle sizes were measured about 73 +/- 4 nm and 0.3 - 4 μm, respectively. Absence of enstatite that causes a reduction in mechanical and bioactivity properties of forsterite ceramic, is an important feature of produced powder.

  9. Fabrication and characterization of reactive Ni–Ti–C powder by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghian, Zohreh, E-mail: z.sadeghian@scu.ac.ir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz (Iran, Islamic Republic of); Zohari, Shokat; Lotfi, Behnam [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz (Iran, Islamic Republic of); Broeckmann, Christoph [Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, 52062 Aachen (Germany)

    2014-03-15

    Highlights: • Direct and indirect mechanical alloying was applied to fabricate a Ni–Ti–C metastable powder. • By each different mechanical alloying route suitable milling speed should be chosen. • The metastable mechanically alloyed powder could undergo a reaction to synthesize TiC at high temperatures. -- Abstract: Reactive powder was prepared by mechanical alloying of a mixture of Ni, Ti and C elemental powders using a high energy planetary ball mill. Two MA methods were investigated and the effect of these routes together with the milling intensity was studies. Powders were characterized using X-ray diffractometery (XRD) and scanning electron microscopy (SEM). The thermal stability of reactive powders was investigated by differential scanning calorimetery (DSC). Results show that, by the selection of appropriate conditions, a metastable Ni–Ti–C powder with the nominal composition Ni–32 wt.%Ti–8 wt.%C could be obtained. This metastable powder was capable of in situ synthesis of Ni–TiC composite during exposure to high temperatures and can be applied in reactive sintering methods.

  10. Neutron powder thermo-diffraction in mechanically alloyed Fe64Ni36 invar alloy

    International Nuclear Information System (INIS)

    Nanostructured Fe64Ni36 alloy has been obtained using high-energy ball milling for 35 h of milling time, Fe64Ni36 MA-35 h. The initial as-milled Fe64Ni36 MA-35 h powders are inhomogeneous, showing a majority phase with a face-centred cubic (fcc) crystal structure [88(2)%] and a minority phase with body-centred cubic (bcc) crystal structure [7(2)%]. The evolution of the microstructure with temperature between 300 K and 1100 K has been followed by means of in situ neutron powder thermo-diffraction experiments. The room temperature values for the mean crystalline size and the mechanical-induced microstrain of the fcc phase in the as-milled sample are ∼10 nm and ∼0.7%, respectively. Moreover, after heating the Fe64Ni36 MA-35 h powders up to 1100 K, an increase of around 65 K in the Curie temperature respect to that of the commercial coarse-grained alloy of the same composition is observed. The latter together with the observed temperature dependence of the lattice parameter suggests that the Fe64Ni36 MA-35 h sample subjected to the heating process exhibits invar behaviour. On heating up to 1100 K thermal relaxation of the microstructure occurs giving rise to grain growth above 100 nm, nearly vanishing values for the maximum strain, and the transformation of the bcc phase into the fcc one above 800 K, being the latter stable in subsequent heating-cooling processes.

  11. A study of the diffusion mechanisms in amorphous metallic alloys: diffusion and diffusion under high pressure in an amorphous NiZr alloy

    International Nuclear Information System (INIS)

    The aim of this work is a better understanding of the diffusion mechanism in amorphous metallic alloys. Then interdiffusion and hafnium diffusion in amorphous NiZr alloy have been studied. Samples used are made by sputtering co-deposition under vacuum and are well relaxed before the diffusion measurements. The time evolution of resistivity during annealing due to the decay of a composition modulated film has been measured and from this change in resistivity interdiffusion coefficients have been determined. Dependence of Hf diffusion on temperature and pressure has been studied using (SIMS). In this two cases, the diffusion process obeys an Arrhenius law and gives an activation energy of 1.33 eV for interdiffusion, and 0.76 eV for Hf diffusion. An effect of pressure on Hf diffusion has been found leading to an activation volume of 8.5 angstrom3. Thanks to these results, two approaches of the diffusion mechanisms in these systems have been proposed. The first comes from a comparison with the diffusion mechanisms in crystalline metals, that is to say by point defects. The second is an hypothesis of collective motions in these non crystalline alloys. (author)

  12. Study on the solid-phase sintering of the nano-structured heavy tungsten alloy powder

    International Nuclear Information System (INIS)

    Recently, the high performance W-Ni-Fe-Co heavy tungsten alloy has become as the major core material of armor piercing ammunition. Since the melting temperature of tungsten element is too high to be fabricated by the melting process, that the W-Ni-Fe-Co alloy only can be synthesized by powder metallurgy process. In this study, two compositions of alloy powders, 93W-3Ni-2Fe-2Co and 93W-3.5Ni-1.5Fe-2Co, were selected for investigating their microstructure and mechanical properties after solid-phase sintering. These pre-alloyed powders with crystal cell size about 16 nm were synthesized by mechanical alloying (MA) the mixture of appropriate composition of pure elements in the Spex mill for 8 h. Then, the MA powders were compressed by cold isostatic pressing (CIP) and vacuum sintered at various temperature below 1400 oC for different time. Microstructure characterization of the sintered tungsten heavy alloys was conducted by means of SEM with EDS capability, X-ray diffraction (XRD), and TEM techniques. The result reveals that the microstructure of these sintered alloys was found to consist of the tungsten matrix phase and the Fe-Ni solid solution phase. The hardness of these sintered tungsten heavy alloy presents a trend with increasing sintering temperature and sintering time

  13. Fe based amorphous and compounds metallic alloys for magnetic and structural use

    International Nuclear Information System (INIS)

    Massive amorphous metals (thicker than 1mm) are new types of material that could have a wide range of future applications due to a unique combination of their physical properties, mechanics and magnetics. Among these are the elevated tension of fracture and hardness, and excellent soft magnetic properties. Since 1960, when an amorphous metallic alloy was first discovered, progress has continued on the application possibilities for these materials. One of their main limitations, maximum obtainable thickness, has continued to increase, since at first thicknesses of a few microns were obtained. Now amorphous alloys more than 70 mm thick are obtained using different metallic elements. Since 1995 massive amorphous metals can be produced using Fe as the base element. At first they were made in order to achieve good soft magnetic properties (thicknesses of ∼5 mm) and later a renewed interest in their use as structural material led to the development of materials with thicknesses of 16 mm and paramagnetics at room temperature. Increasing the toughness of these materials is also a challenge and investigators have proposed several solutions, among them is the development of composite materials where dendrites from a solid solution act as crack stoppers of fissures that are spread by an amorphous matrix. This work presents the results of studies with two types of synthesized materials using the rapid cooling technique from injection copper mold casting at air temperature: 1) a massive amorphous metallic alloy with composition (Fe0.375Co0.375B0.2Si0.05)96Nb4 (at.%) and 2) a composite of solid solution dendrites α-(FeCo) scattered in an amorphous matrix with a composition similar to alloy 1. Using the samples obtained structural studies were made (optic and electronic microscopy SEM, XRD, EDAX, DTA), magnetic studies (coercive field and saturation magnetization) and mechanical studies (Vickers microhardness). The fully amorphous alloy could be obtained with a maximum

  14. Investigation of slective laser melting of mecanically alloyed metastable Al5Fe2 powder

    Science.gov (United States)

    Montiel, Hugo

    Selective Laser Melting (SLM), an Additive Manufacturing (AM) technology, enables the production of complex structured metal products. Aluminum alloys are used in SLM as high-strength lightweight materials for weight reduction in structural components. Previous investigations report high laser powers (300 W) and slow scanning speeds (500 mm/s) to process aluminum alloys under SLM. This research investigates the SLM processing of Al-Fe alloy by utilizing metastable Al5Fe2 powder system produced by mechanical alloying. Metastable systems are thermodynamically activated with internal energy that can generate an energy shortcut when processing under SLM. The optimum laser power, scan speeds and scan distances were investigated by test series experiments. Results indicate that metastable Al5Fe2 alloy can be processed and stabilized under a 200 W laser scanning and a relative high scanning speed of 1000 mm/s. Thus, the internal energy of metastable powder contributes in reducing laser energy for SLM process for Al alloys.

  15. Encapsulation of CO2 into amorphous alpha-cyclodextrin powder at different moisture contents - Part 2: Characterization of complexed powders and determination of crystalline structure.

    Science.gov (United States)

    Ho, Thao M; Howes, Tony; Jack, Kevin S; Bhandari, Bhesh R

    2016-09-01

    This study aims to characterize CO2-α-cyclodextrin (α-CD) inclusion complexes produced from amorphous α-CD powder at moisture contents (MC) close to or higher than the critical level of crystallization (e.g. 13, 15 and 17% MC on wet basis, w.b.) at 0.4 and 1.6MPa pressure for 72h. The results of (13)C NMR, SEM, DSC and X-ray analyses showed that these MC levels were high enough to induce crystallization of CO2-α-CD complexed powders during encapsulation, by which amount of CO2 encapsulated by amorphous α-CD powder was significantly increased. The formation of inclusion complexes were well confirmed by results of FTIR and (13)C NMR analyses through an appearance of a peak associated with CO2 on the FTIR (2334cm(-1)) and NMR (125.3ppm) spectra. Determination of crystal packing patterns of CO2-α-CD complexed powders showed that during crystallization, α-CD molecules were arranged in cage-type structure in which CO2 molecules were entrapped in isolated cavities. PMID:27041303

  16. Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys

    International Nuclear Information System (INIS)

    Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Moessbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Moessbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.

  17. Soft magnetic and microstructural investigation in Fe-based amorphous alloy

    International Nuclear Information System (INIS)

    Highlights: • Samples were obtained using the injection-casting method. • The samples were manufactured in the shape of plates of the thickness 0.5 mm. • The amorphous and nanocrystalline structure was confirmed using XRD, SEM, TEM, CT. • Magnetic properties were analysed in terms of contents of the spin waves stiffness parameter b. - Abstract: In this paper, the results of investigations concerning Fe61Co10Y8W1B20 alloy are presented. The alloy samples were produced, using an injection-casting method, in the form of plates of approximate thickness 0.5 mm. Analysis of the results facilitates the description of structural transformations which occurred within the amorphous material as a result of isothermal annealing, the latter having been carried out under specified conditions. This thermal treatment led to the creation within the amorphous matrix of evenly distributed nanometric sized crystalline grains. The structure and microstructure of the samples in the as-quenched and nanocrystalline states were analysed by means of: X-ray diffractometry (XRD), scanning and transmission electron microscopy (SEM and TEM) and computer tomography (CT). The influence of the structural changes on the magnetic properties was studied using a vibrating sample magnetometer (VSM). Detailed analysis of the microstructure was performed on the ferromagnetic alloy samples with amorphous and nanocrystalline structure; this, in connection with the magnetic studies, facilitated full description of the influence of changes in the microstructure, and imperfections created during the production process, on the magnetic properties

  18. Formation and crystallization kinetics of Nd-Fe-B-based bulk amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Ge, Hongliang; Zhang, Pengyue; Li, Dongyun; Wang, Zisheng [China Jiliang University, Magnetism Key Laboratory of Zhejiang Province, Hangzhou (China)

    2014-06-15

    In order to improve the glass-forming ability (GFA) of Nd-Fe-B ternary alloys to obtain fully amorphous bulk Nd-Fe-B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd-Y-Fe-Mo-B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with theYcontent. The fully amorphous structures were all formed in the Nd{sub 6-x}Y{sub x}Fe{sub 68}Mo{sub 4}B{sub 22} (x =1-5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate. (orig.)

  19. STUDY ON THE HOT PRESSED POWDER METALLURGY OF A TiNi SHAPE MEMORY ALLOY

    OpenAIRE

    Sekiguchi, Y.; Funami, K.; Funakubo, H.; Suzuki, Y.

    1982-01-01

    A TiNi shape-memory alloy was experimentally manufactured by the vacuum hot pressing method, using pure titanium and nickel powders. The homogeneity and density of the TiNi alloy obtained by this method varies according to the temperature and pressure applied during vacuum hot pressing as well as the holding time. The results of studies of mechanical and physical properties confirmed that the alloys obtained show extremely effective shape-memory characteristics. Thus, it was demonstrated that...

  20. Properties of rhenium-based master alloys prepared by powder metallurgy techniques

    Directory of Open Access Journals (Sweden)

    A. Wrona

    2010-10-01

    Full Text Available Purpose: The aim of this work was to investigate an effect of phase composition, microstructure and selected properties of the rhenium-based alloys on the conditions of their preparation by mechanical alloying followed by pressure sintering.Design/methodology/approach: The structure and mechanical and physical properties of the Re-14.0% Ni, Re-13.7% Co and Re-9.1% Fe alloys prepared from pure metal powders by mechanical alloying in a planetary mill for 10 hours followed by sintering conducted for 1 hour at the temperature of 1150°C under the pressure of 600 MPa were investigated.Findings: The mechanical alloying results in partial dissolving of alloy components into each other, whereas their structure remains unchanged, and in a decrease in average density of powders and average diameter of their particles. As a result of sintering the alloy additives almost fully pass into rhenium-based solid solution. Density and hardness of the sinter compacts and homogeneity of alloying elements distribution were higher at longer times of mechanical alloying.Research limitations/implications: The obtained results provide complementary information on the possibility of obtaining high-melting alloys by mechanical alloying and on the rate of structural transformations taking place as a result of this process.Practical implications: The obtained materials can be used as master alloys for the production of contact materials and superalloys, providing higher homogeneity of the chemical composition and microstructure of the final products.Originality/value: A new method for preparation of rhenium-based alloys by means of mechanical alloying and powder metallurgy techniques has been successfully tested.

  1. A TECHNIQUE FOR IMPROVING THE TOUGHNESS OF Al-Li POWDER METALLURGY ALLOYS

    OpenAIRE

    Webster, D.

    1987-01-01

    A technique has been developed for increasing the toughness of Al-Li products made by powder metallurgy. The technique which involves the addition of unalloyed aluminum powder to Al-Li powder before compaction was evaluated with Al-Li-Cu-Mg-Zr alloys (Al 8090), and Al-Li-Zn-Cu-Mg-Zr and Al-Li-Mg-Si-Cr alloys . The addition of 15% aluminum to Al 8090 aged at 422K for 40 h produced an increase in impact toughness of 215% at the expense of a drop in yield strength of 11%. The Al-Li-Mg-Si-Cr allo...

  2. Developments in the Ni-Nb-Zr amorphous alloy membranes. A review

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, S.; Chandra, D. [University of Nevada, Materials Science and Engineering, Reno, NV (United States); Hirscher, M. [Max-Planck-Institut fuer Intelligente Systeme, Stuttgart (Germany); Dolan, M.; Viano, D. [CSIRO, QCAT, Energy, Pullenvale, QLD (Australia); Isheim, D. [Northwestern University, Materials Science and Engineering, Evanston, IL (United States); Wermer, J. [Los Alamos National Laboratory, Los Alamos, NM (United States); Baricco, M. [University of Turin, Department of Chemistry and NIS, Turin (Italy); Udovic, T.J. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Grant, D. [University of Nottingham, Nottingham (United Kingdom); Palumbo, O.; Paolone, A. [CNR-ISC, U.O.S. La Sapienza, Rome (Italy); Cantelli, R. [University of Rome, La Sapienza, Roma (Italy)

    2016-03-15

    Most of the global H{sub 2} production is derived from hydrocarbon-based fuels, and efficient H{sub 2}/CO{sub 2} separation is necessary to deliver a high-purity H{sub 2} product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H{sub 2}/CO{sub 2} separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD ∝31,000 kg{sup -1}) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni{sub 60}Nb{sub 40}){sub 100-x} Zr{sub x} alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane. (orig.)

  3. Preparation and Properties of Mg-Cu-Y-Al bulk Amorphous Alloys

    DEFF Research Database (Denmark)

    Pryds, Nini; Eldrup, Morten Mostgaard; Ohnuma, M.;

    2000-01-01

    temporal numerical simulation of that process. It is concluded that good thermal contact is maintained between the amorphous part of the solidified sample and the mould, while a rather poor contact develops between the crystalline part of the sample and the mould, probably due to the appearance of a narrow...... temperatures in specimens containing a few percent Al. The alloy with no Al crystallises apparently without the formation of nanoparticles. The critical cooling rate for the formation of an amorphous Mg(60)CU(30)Y(10) specimen was determined experimentally by a combination of DSC data and temperature vs, time...

  4. Corrosion-Resistant Amorphous Alloy Ribbons for Electromagnetic Filtration of Iron Rusts from Water

    OpenAIRE

    Kawashima, Asahi; Asami, Katsuhiko; Sato, Takeaki; Hashimoto, Koji

    1985-01-01

    An attempt was made to use corrosion-resistant amorphous Fe-9Cr-13P-7C alloy ribbons as an electromagnetic filter material for trapping various iron rusts suspended in water at 40℃. The ferrimagnetic Fe_3O_4 rust was trapped with the 100% efficiency and paramagnetic rusts such as α-Fe_2O_3, α-FeOOH and amorphous ferric oxyhydroxide were trapped with certain efficiencies at the magnetic field strength of 0.5-10 kOe. The regeneration of the filter by back-washing was easy. The trapping capacity...

  5. Comparison of surface and bulk crystallization of the amorphous Fe70Co10B20 alloy

    International Nuclear Information System (INIS)

    The effects of surface and bulk crystallization of the amorphous Fe70Co10B22 alloy are investigated by the aid of optical microscopy, scanning electron microscopy, and Moessbauer spectroscopy after annealings detecting γ-radiation and conversion electrons. The chemical composition of the amorphous matrix and of crystalline particles are determined by energy and wave dispersive analyses of X-rays. Measurements show that eutectic particles of crystallizing phases are observed in the bulk. Besides the non-uniformly distributed eutectic crystallites, an appreciable amount of α-Fe-Co phase is present at the surface of the sample

  6. Sintered stainless steel surface alloyed with Si3N4 powder

    OpenAIRE

    L.A. Dobrzański; Z. Brytan; W. Pakieła

    2011-01-01

    Purpose: The goal of this study was to investigate effects of laser surface alloying with Si3N4 powder on the microstructural changes and properties of vacuum sintered stainless steels, both austenitic X2CrNi17-12-2, ferritic X6Cr13 and duplex X2CrNiMo22-8-2.Design/methodology/approach: High power diode laser (HPDL) was applied to surface modification of sintered stainless steels with Si3N4 powder. The influence of laser alloying conditions on the width, penetration depth of alloyed surface l...

  7. Spontaneously Passivating Amorphous Fe-Cr-Mo-Metalloid Alloys in 6 N HCl at Room Temperature and 80℃

    OpenAIRE

    Kobayashi, Ken-ichi; Hashimoto, Koji; MASUMOTO, Tsuyoshi

    1980-01-01

    Amorphous iron-base alloys capable of passivating spontaneously in 6 N HCl at 80℃ were prepared by rapid quenching of molten alloys. The corrosion resistance and passivating ability of the alloys increased with increasing chromium and molybdenum contents. The critical concentrations of chromium and molybdenum in the alloys necessary for spontaneous passivation in 6 N HCl at room temperature and 80℃ were established. These concentrations were greatly affected by coexisting metalloids. The pass...

  8. Invar behavior of NANOPERM-type amorphous Fe–(Pt)–Zr–Nb–Cu–B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gondro, J.; Świerczek, J., E-mail: swiercz@wip.pcz.pl; Rzącki, J.; Ciurzyńska, W.; Olszewski, J.; Zbroszczyk, J.; Błoch, K.; Osyra, M.; Łukiewska, A.

    2013-09-15

    Transmission Mössbauer spectra of amorphous Fe{sub 86}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 5}, Fe{sub 81}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 10} and Fe{sub 81}Pt{sub 5}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 5} alloys in the as-quenched state and subjected to the accumulative annealing for 15 min in the temperature range from 573 K up to 750 K are presented. After these heat treatments the alloys remain in the amorphous state. The accumulative annealing for 15 min at 573 K and then 600 K of the Fe{sub 86}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 5} and Fe{sub 81}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 10} alloys causes the narrowing of the transmission Mössbauer spectra as compared to the as-quenched state and the decrease of the average hyperfine field induction which is connected with the invar effect. For similar behavior in Fe{sub 81}Pt{sub 5}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 5} alloy the accumulative annealing up to 700 K is needed. With further increase of the annealing temperature up to 750 K the broadening of the Mössbauer spectra and the increase of the average hyperfine field induction occur. The lowest value of the average hyperfine field induction of amorphous samples is accompanied by the lowest value of the Curie temperature. The investigated amorphous alloys do not reach the magnetic saturation up to the magnetizing field of 2 T and the coefficient in Holstein–Primakoff term is about one order in magnitude larger than in other classical FeCo-based amorphous alloys due to the non-collinear magnetic structure. The Mössbauer spectra and hysteresis loops of the amorphous Fe{sub 86}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 5} alloy in the as-quenched state and after the accumulative annealing at 573+620 K for 15 min are sensitive to the tensile stresses subjected to the sample. Such behavior is ascribed to the invar anomalies. - Highlights: • Complex magnetic transformations found in the amorphous Fe{sub 86}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 5}, Fe{sub 81}Zr{sub 7}Nb{sub 1}Cu{sub 1}B

  9. Method of making quasicrystal alloy powder, protective coatings and articles

    Science.gov (United States)

    Shield, J.E.; Goldman, A.I.; Anderson, I.E.; Ellis, T.W.; McCallum, R.W.; Sordelet, D.J.

    1995-07-18

    A method of making quasicrystalline alloy particulates is disclosed wherein an alloy is superheated and the melt is atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture. 3 figs.

  10. The effect of mechanical milling on the soft magnetic properties of amorphous FINEMET alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gheiratmand, T., E-mail: t.gheiratmand@yahoo.com [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O. Box 11155-9466, Tehran (Iran, Islamic Republic of); Hosseini, H.R. Madaah; Davami, P. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O. Box 11155-9466, Tehran (Iran, Islamic Republic of); Gjoka, M. [Institute of Nanoscience and Nanotechnology, National Center for Scientific Research, DEMOKRITOS, Agia Paraskevi, 15310 Athens (Greece); Song, M. [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2015-05-01

    The effect of milling time on the magnetic properties of FINEMET amorphous ribbons has been investigated using X-ray diffraction, Mössbauer spectroscopy, thermo-magnetic measurements, transmission electron microscopy and SQUID magnetometery. Ribbons were melt-spun at a wheel speed of 38 ms{sup -1} and then mechanically milled for different periods up to 45 min. The results showed that the partially crystallization of the amorphous powder occurs during milling. TEM observations confirmed the formation of small volume fraction of the crystalline phase with ~9 nm crystallite size in the amorphous matrix for the ribbon milled for 45 min. Thermo-magnetic measurements indicated the enhancement of the Curie temperature of amorphous phase during milling which is due to the annihilation of free volumes and microstructural ordering. The Hopkinson effect led to the monotonic increase of magnetization with respect to the temperature before reaching the Curie temperature of the milled samples. Moreover; the magnetization increased with the formation of the Fe(Si) phase while the coercivity decreased. Mössbauer spectroscopy and thermo-magnetic measurements revealed the existence of 13% Fe in crystalline phase. The composition of crystalline phase was determined as Fe–16.5Si. Hyperfine field values increased with milling time, suggesting the ordering of the structure and enhancement of the number of Fe–Fe atomic pairs in the crystalline phase comparing to the primary amorphous ribbon. - Highlights: • Effect of crystallization of amorphous FINEMET during milling has been investigated. • Milling of amorphous ribbons for 45 min caused the formation of nano crystals. • Annihilation of free volumes increased the Curie temperature of amorphous phase. • Hyperfine field values increased with milling time suggesting ordering of the structure. • Hopkinson effect led to the monotonic increase in magnetization before T{sub c}.

  11. Nano-particle precipitation in mechanically alloyed and annealed precursor powders of legacy PM2000 ODS alloy

    International Nuclear Information System (INIS)

    Highlights: • Nano-particle formation identified in Plansee PM2000 ODS alloy powders. • Y–Al–O nano-particles observed after annealing at 923 K for 5 h. • Particle diameter ≈2 nm and NV > 1023 m−3 over annealing range 1123–1223 K. • Particles dissolved at, and reprecipitated behind, recrystallisation fronts. - Abstract: The early stages of nano-particulate formation in mechanically alloyed and annealed, precursor powders used to manufacture the legacy commercial oxide dispersion strengthened alloy PM2000, formerly produced by Plansee GmbH, have been investigated. Powders were analysed in both the as-mechanically-alloyed condition and after annealing over the temperature range 923–1423 K. The nucleation and growth of coherent nano-particles in the partially recovered, fine grained, ferritic matrix of powders annealed at temperatures as low as 923 K has been confirmed. Powders annealed for 1 h at temperatures of 1123 K and 1223 K were partially recrystallised and contained high number densities (NV > 1023 m−3) of coherent 2 nm yttrium–aluminium–oxygen rich nano-particles. The identification of particle free zones in recrystallised grains, adjacent to recrystallising interfaces, plus the identical orientation relationships between nano-particles and the matrices in both unrecrystallised and recrystallised grains, indicates that the Y–Al–O nano-particles, first formed in fine grained regions, are dissolved during recrystallisation and re-precipitated subsequently in recrystallised grains

  12. Polarization and resistivity measurements of post-crystallization changes in amorphous Fe-B-Si alloys

    International Nuclear Information System (INIS)

    The effects of grain growth and compositional changes on the electrochemical behavior and the resistivity of amorphous iron-boron-silicon (Fe77.5B15Si7.5) alloys after crystallization were studied. Deterioration of the protective passive film was observed, along with increased annealing. Potentiodynamic polarization provided excellent information about microstructural and chemical changes. It was concluded that electrochemical measurements could be used in conjunction with resistivity measurements in direct studies of grain growth and chemical changes occurring in different phases of the devitrified alloy

  13. Oxygen Behavior in Bulk Amorphous Zr-base Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Bulk Zr55Al10Ni5Cu30 metallic glass plates with a dimension of 85 mm×35mm×4 mm and a complicated plate werefabricated by injecting casting method using spongy zirconium and industrial purity aluminum, nickel and copper asraw materials. It was shown that the holding time of liquid metals at elevated temperatures had a great influence onthe oxygen content of the plates due to the contamination resulting from the atmosphere. Increasing holding timeresulted in the increase of oxygen content in the injected alloy. The glass transition temperatures of the bulk metallicglass plates are higher than that reported in the literature and crystallization temperature is lower for the one withhigher oxygen content at the same heating rate. The extension of the undercooled liquid region △Tx reaching about87 K is 3 K higher than that previously reported and 26 K higher than that with oxygen content of 0.076 wt pct forthe one with oxygen content as high as 0.065 wt pct. Therefore the oxygen content of the alloy has a significantinfluence on the glass forming ability and thermal stability of bulk metal glass. It is suggested that direct correlationbetween high glass forming ability and large △Tx is only valid for a well-defined Iow oxygen concentration or has tobe reconsidered by incorporating oxygen as an additional alloying element.

  14. Mossbauer studies of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1996-01-01

    This paper reports a Mossbauer study of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy between 10 and 673 K. The Curie temperature Tc is found to be 620-+ 1 K. The temperature dependence of the reduced average hyperfine field can be explained on the basis of Handrich's model of amorphous ferromagnetism, in...

  15. A non-resonant RF cavity loaded with amorphous alloy for proton cancer therapy

    CERN Document Server

    Makita, Y; Nayayama, T; Tsuchidate, H; Tsukishima, C; Yoshida, K

    1999-01-01

    A non-resonant RF cavity loaded with amorphous alloy cores has been designed and tested. The cavity has a re-entrant structure loaded with 8 amorphous alloy toroidal core and its characteristic impedance is designed as 450 Omega . The RF power is fed by 1 kW solid state amplifier using a step-up transformer with 1:9 impedance ratio. In the high power test, an accelerating gap voltage of more than 900 V was measured with input power of 1 kW in the frequency range of 1 to 10 MHz. The voltage standing wave ratio (VSWR) was less than 2.0. The results prove that the cavity may be used successfully within a compact proton synchrotron for a cancer therapy facility. (3 refs).

  16. Tensile and compression properties of Zr-based bulk amorphous alloy at different temperatures

    Institute of Scientific and Technical Information of China (English)

    WANG; Xu; LOU; Decheng; GAO; Zhanjun; LIU; Lei; LIANG; Hong

    2005-01-01

    Mechanical properties of the Zr41Ti14Cu12.5Ni10Be22.5 bulk amorphous alloy at different temperatures were investigated. The compression test was carried out on a Gleebe-3200 machine at 345 and 375℃, respectively, in the supercooled liquid region. It is shown that decreasing the compressive rate and increasing temperature have a similar influence trend on the compressive behavior of the bulk amorphous alloy. Room and low temperature tensile strengths were tested on the Instron materials testing system. At low temperature, the tensile strength decreased with decreasing of the testing temperature.Hardness measurement indicated that below the glass transition temperature, the hardness decreased with increasing of the annealing temperature and duration time. It,however, increased when the annealing treatment was performed above the glass transition temperature.

  17. Ion beam mixing in binary amorphous metallic alloys. [Cu-Er; Ni-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, H.; Averback, R.S.; Diaz de la Rubia, T.; Okamoto, P.R.

    1985-12-01

    Ion beam mixing (IM) was measured in homogeneous amorphous metallic alloys of Cu-Er and Ni-Ti as a function of temperature using tracer impurities, i.e., the so-called ''marker geometry''. In Cu-Er, a strong temperature dependence in IM was observed between 80 and 373K, indicating that radiation-enhanced diffusion mechanisms are operative in this metallic glass. Phase separation of the Cu-Er alloy was also observed under irradiation as Er segregated to the vacuum and SiO2 interfaces of the specimen. At low-temperatures, the amount of mixing in amorphous Ni-Ti is similar to that in pure Ni or Ti, but it is much greater in Cu-Er than in either Cu or Er.

  18. Magnetic Properties Of Amorphous And Nanocrystalline FeNiZrCuB Alloys

    International Nuclear Information System (INIS)

    The coercive fields Hc, saturation magnetizations Js and magnetostrictions λs of the amorphous Fe86-xNixZr7Cu1B6 alloys different contents of Ni(0-86 at.%) were investigated at room temperature. Thermomagnetic analyses by means of initial AC permeability and resistivity at the amorphous and nanocrystalline states of the investigated alloys were performed up to 5500 C. It was found that additions of Ni up to x = 33 at.% cause an increase of Hc, Js, λs. Additions of Ni (x = 0 - 43) cause drastic increase of the Curie temperature from 71 deg C for x 0at.% to 373 deg C for x = 43at.% of Ni. Higher concentration of Ni causes a decrease of Hc, Js, λs and Tc. (Authors)

  19. Structure of amorphous Ag/Ge/S alloys: experimentally constrained density functional study

    Science.gov (United States)

    Akola, J.; Beuneu, B.; Jones, R. O.; Jóvári, P.; Kaban, I.; Kolář, J.; Voleská, I.; Wágner, T.

    2015-12-01

    Density functional/molecular dynamics simulations have been performed to determine structural and other properties of amorphous Ag/Ge/S and Ge/S alloys. In the former, the calculations have been combined with experimental data (x-ray and neutron diffraction, extended x-ray absorption fine structure). Ag/Ge/As alloys have high ionic conductivity and are among the most promising candidates for future memristor technology. We find excellent agreement between the experimental results and large-scale (500 atoms) simulations in Ag/Ge/S, and we compare and contrast the structures of Ge/S and Ag/Ge/S. The calculated electronic structures, vibrational densities of states, ionic mobilities, and cavity distributions of the amorphous materials are discussed and compared with data on crystalline phases where available. The high mobility of Ag in solid state electrolyte applications is related to the presence of cavities and can occur via jumps to a neighbouring vacant site.

  20. Hydrogen diffusion in Zr35Ni55V10 amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiao-ying; WAHG Fang

    2007-01-01

    Hydrogen diffusion in Zr35Ni55V10 amorphous alloy was measured by chronopotentiometry. The results show that at lower molar ratio of hydrogen (x<0.06, x=n(H)/n(M)), the diffusivity of hydrogen increases rapidly with increasing the molar ratio of hydrogen. However, when x(H)>0.1, the diffusivity of hydrogen decreases slightly with increasing the molar ratio of hydrogen, which is similar to the change in crystalline alloy. It is proposed that hydrogen atoms mainly occupy the sites corresponding to tetrahedra with 4 Zr atoms at lower molar ratio of hydrogen. When the molar ratio of hydrogen is higher, the additional hydrogen atoms are in sites with higher energy and these sites in amorphous state are similar to these in crystalline states.

  1. Dispersoid reinforced alloy powder and method of making

    Science.gov (United States)

    Anderson, Iver E.; Terpstra, Robert L.

    2012-06-12

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  2. Effect of carbon on mechanical properties of powder-processed Fe–0.35%P alloys

    Indian Academy of Sciences (India)

    Shefali Trivedi; Yashwant Mehta; K Chandra; P S Mishra

    2010-10-01

    The present paper records the results of mechanical tests on iron-phosphorus powder alloys which were made using a hot powder forging technique. In this process mild steel encapsulated powders were hot forged into slabs, hot rolled and annealed to relieve the residual stresses. These alloys were characterized in terms of microstructure, porosity content/densification, hardness and tensile properties. Densification as high as 98.9% of theoretical density, has been realized. Microstructures of these alloys consist of single-phase ferrite only. Alloys containing 0.35 wt% P, such as Fe–0.35P–2Cu–2Ni–1Si–0.5Mo and Fe–0.35P–2Cu–2Ni–1Si–0.5Mo–0.15C show very high strength. It was observed in this present investigation that, the alloying additions, such as Si, Mo, Ni, and C to Fe–P based alloys caused increase in strength along with reduction in ductility. Cu reduces porosity of Fe–P alloys. Alloys developed in the present investigation were capable of hot working to very thin gauge of sheets and wires.

  3. The magnetic entropy change on amorphous FeMnZr alloys

    International Nuclear Information System (INIS)

    The magnetization behaviors have been measured for amorphous Fe90-xMnxZr10 (x=0,4,6) alloys. The Curie temperature is decreased from 243 to 218K with increasing Mn concentration (x=0-6). The magnetization measurements were conducted at temperatures above the Curie temperature in the paramagnetic region. In all samples, the magnetic properties showed superparamagnetic behavior above Tc where the mean magnetic moment of the superparamagnetic spin clusters decreased with increasing temperature. A large magnetic entropy change ΔSM, which is calculated from H vs. M curves associated with the ferromagnetic-paramagnetic transitions in amorphous state, has been observed. The maximum of ΔSM was found to appear in the vicinity of the Curie temperature of the amorphous phase. The value is 2.96, 2.51 and 2.29J/kgK at x=0,4 and 6, respectively

  4. Optimization of operational parameters and bath control for electrodeposion of Ni-Mo-B amorphous alloys

    OpenAIRE

    Marinho Fabiano A.; Santana François S. M.; Vasconcelos André L. S.; Santana Renato A. C.; Prasad Shiva

    2002-01-01

    Optimization of operational parameters of an electrodeposition process for deposition of boron-containing amorphous metallic layer of nickel-molybdenum alloy onto a cathode from an electrolytic bath having nickel sulfate, sodium molybdate, boron phosphate, sodium citrate, sodium-1-dodecylsulfate and ammonia for pH adjustments to 9.5 has been studied. Detailed studies of the efects on bath temperature, mechanical agitation, cathode current density and anode format have led to optimum operation...

  5. Magnetic Compton scattering study of the ferromagnetic amorphous alloys Fe1-xBx

    International Nuclear Information System (INIS)

    The boron contribution to the total spin moment in the amorphous alloys Fe1-xBx (x=0.2,0.24) has been determined using magnetic Compton scattering. The magnitude of the induced boron moment was found to be ∼-0.04μB per formula unit which is a factor of ∼2 less than that suggested by supercell linearized muffin-tin orbital electronic structure calculations

  6. Structural transformations of Fe81B13Si4C2 amorphous alloy induced by heating

    Czech Academy of Sciences Publication Activity Database

    Minić, Dragica M.; Minić, Dušan M.; Žák, Tomáš; Roupcová, Pavla; David, Bohumil

    2011-01-01

    Roč. 323, č. 5 (2011), s. 400-404. ISSN 0304-8853 R&D Projects: GA MŠk 1M0512 Institutional research plan: CEZ:AV0Z20410507 Keywords : Amorphous material * Metallic glass * Metal and alloy * Phase transition * Thermal analysis * Mössbauer spectrum * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.780, year: 2011

  7. Crystallization kinetics of an amorphous Co77Si11.5B11.5 alloy

    OpenAIRE

    R. Nowosielski; A. Zajdel; S. Lesz; B. Kostrubiec; Z. Stokłosa

    2006-01-01

    Purpose: This paper describes crystallization kinetics and changes magnetic properties involved by process of crystallization Co-Si-B amorphous alloy.Design/methodology/approach: The following experimental techniques were used: X-ray diffraction (XRD), electrical resistivity in situ measurements (four-point probe) static and dynamic measurements of magnetic properties (magnetic balance, fluxmeter, Maxwell-Wien bridge).Findings: In this work has been performed influence of thermal annealing on...

  8. Crystallization of the Fesub(84-x)Vsub(x)B16 amorphous alloys

    International Nuclear Information System (INIS)

    Resistometric and Moessbauer measurements of the isothermal crystallization of nearly eutectic Fe-V-B amorphous alloys containing up to 8 at.% V were performed. The concentration dependence of the hyperfine fields of the crystallization products was found. The α-Fe-V and tetragonal mixed boride were detected and their contents in the course of crystallization estimated. The crystallization kinetics corresponds to the growth of α-phase nuclei proved by CEMS at the contact surface. (Auth.)

  9. Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth

    International Nuclear Information System (INIS)

    The present study demonstrates the growth of silicon nanocrystals on amorphous silicon carbide alloy thin films. Amorphous silicon carbide films [a-Si1−xCx:H (with x 1−xCx:H layer. The effect of short-time annealing at 700 °C on the composition and properties of the layer was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was observed that the silicon-to-carbon ratio in the layer remains unchanged after short-time annealing, but the reorganization of the film due to a large dehydrogenation leads to a higher density of SiC bonds. Moreover, the film remains amorphous after the performed short-time annealing. In a second part, it was shown that a high density (1 × 1012 cm−2) of silicon nanocrystals can be grown by low pressure chemical vapor deposition on a-Si0.8C0.2 surfaces at 700 °C, from silane diluted in hydrogen. The influence of growth time and silane partial pressure on nanocrystals size and density was studied. It was also found that amorphous silicon carbide surfaces enhance silicon nanocrystal nucleation with respect to SiO2, due to the differences in surface chemical properties. - Highlights: ► Silicon nanocrystals (Si-NC) growth on amorphous silicon carbide alloy thin films ► Plasma deposited amorphous silicon carbide films with well-controlled properties ► Study on the thermal effect of 700 °C short-time annealing on the layer properties ► Low pressure chemical vapor deposition (LPCVD) of Si-NC ► High density (1 × 1012 cm−2) of Si-NC was achieved on a-Si0.8C0.2 surfaces by LPCVD.

  10. Characterization of nanostructured Mg–Cu–Ni powders prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Highlights: • Nanocrystalline Mg55Cu40Ni5 alloy were synthesized by mechanical alloying. • α-Cu(Mg,Ni), MgO and Mg0.85Cu0.15 phases were formed after 50 h of MA. • Crystallite size decreased during mechanical alloying and it was determined ∼15 nm. • DSC traces of the nanostructured Mg55Cu40Ni5 alloy exhibited three exothermic peaks. - Abstract: In this investigation, nanocrystalline Mg55Cu40Ni5 alloy has been synthesized from the elemental powders by mechanical alloying (MA). Microstructural evolution, morphological changes and thermal behaviour of the mechanically alloyed powders at different stages of milling have been examined by a combination of differential scanning calorimetry (DSC), scanning electron microscopy with energy-dispersive X-ray detection ((SEM/EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The crystallite size of Mg55Cu40Ni5 alloy estimated with broadening of XRD peaks by Williamson–Hall and Debye Scherrer formulas. In order to confirm the crystallite size obtained by XRD, the microstructure of the mechanically alloyed powder was also monitored by TEM. The results showed that after 50 h of milling time nanostructured α-Cu(Mg,Ni) solid solution, MgO and Mg0.85Cu0.15 phases whose crystallite sizes are below 20 nm were obtained. According to SEM/EDX results, the elemental powder particles which were initially of different size, shape, and distribution became uniform, confirming the compositional homogeneity of the Mg55Cu40Ni5 alloy and particle size decreased rapidly with increasing milling time

  11. Characterization of nanostructured Mg–Cu–Ni powders prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Kursun, Celal, E-mail: celalkursun@ksu.edu.tr; Gogebakan, Musa

    2015-01-15

    Highlights: • Nanocrystalline Mg{sub 55}Cu{sub 40}Ni{sub 5} alloy were synthesized by mechanical alloying. • α-Cu(Mg,Ni), MgO and Mg{sub 0.85}Cu{sub 0.15} phases were formed after 50 h of MA. • Crystallite size decreased during mechanical alloying and it was determined ∼15 nm. • DSC traces of the nanostructured Mg{sub 55}Cu{sub 40}Ni{sub 5} alloy exhibited three exothermic peaks. - Abstract: In this investigation, nanocrystalline Mg{sub 55}Cu{sub 40}Ni{sub 5} alloy has been synthesized from the elemental powders by mechanical alloying (MA). Microstructural evolution, morphological changes and thermal behaviour of the mechanically alloyed powders at different stages of milling have been examined by a combination of differential scanning calorimetry (DSC), scanning electron microscopy with energy-dispersive X-ray detection ((SEM/EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The crystallite size of Mg{sub 55}Cu{sub 40}Ni{sub 5} alloy estimated with broadening of XRD peaks by Williamson–Hall and Debye Scherrer formulas. In order to confirm the crystallite size obtained by XRD, the microstructure of the mechanically alloyed powder was also monitored by TEM. The results showed that after 50 h of milling time nanostructured α-Cu(Mg,Ni) solid solution, MgO and Mg{sub 0.85}Cu{sub 0.15} phases whose crystallite sizes are below 20 nm were obtained. According to SEM/EDX results, the elemental powder particles which were initially of different size, shape, and distribution became uniform, confirming the compositional homogeneity of the Mg{sub 55}Cu{sub 40}Ni{sub 5} alloy and particle size decreased rapidly with increasing milling time.

  12. Cast bulk Zr57Ti5Al10Cu20Ni8 amorphous alloy with tendency of phase separation

    International Nuclear Information System (INIS)

    Zr-Ti-Al-Cu-Ni alloys show excellent glass forming ability (GFA). Amorphous cylindrical samples of diameter from 8 to 20 mm were produced by casting the Zr57Cu20Al10Ni8Ti5 alloy melt into a copper mould. The Zr57Cu20Al10Ni8Ti5 amorphous alloy shows some particular crystallization characteristics: measurements by differential scanning calorimetry (DSC) reveal three exothermic peaks in the DSC traces at continuous heating. The third peak of the highest peak temperature shifts towards lower temperature with the decrease of the cooling rates at which the amorphous alloys were formed, while the first two peaks remain unchanged. Isothermal annealing near the glass transition temperature causes the third peak shifting towards a definitive temperature and then it becomes quite stable during further annealing. The shift of the third peak is attributed to the tendency of phase separation of the alloy. (orig.)

  13. Amorphous Alloy Membranes Prepared by Melt-Spin methods for Long-Term use in Hydrogen Separation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Dhanesh; Kim, Sang-Mun; Adibhatla, Anasuya; Dolan, Michael; Paglieri, Steve; Flanagan, Ted; Chien, Wen-Ming; Talekar, Anjali; Wermer, Joseph

    2013-02-28

    Amorphous Ni-based alloy membranes show great promise as inexpensive, hydrogenselective membrane materials. In this study, we developed membranes based on nonprecious Ni-Nb-Zr alloys by adjusting the alloying content and using additives. Several studies on crystallization of the amorphous ribbons, in-situ x-ray diffraction, SEM and TEM, hydrogen permeation, hydrogen solubility, hydrogen deuterium exchange, and electrochemical studies were conducted. An important part of the study was to completely eliminate Palladium coatings of the NiNbZr alloys by hydrogen heattreatment. The amorphous alloy (Ni0.6Nb0.4)80Zr20 membrane appears to be the best with high hydrogen permeability and good thermal stability.

  14. Microstructure and properties of hydrophobic films derived from Fe-W amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    Song Wang; Yun-han Ling; Jun Zhang; Jian-jun Wang; Gui-ying Xu

    2014-01-01

    Amorphous metals are totally different from crystalline metals in regard to atom arrangement. Amorphous metals do not have grain boundaries and weak spots that crystalline materials contain, making them more resistant to wear and corrosion. In this study, amorphous Fe-W alloy films were first prepared by an electroplating method and were then made hydrophobic by modification with a water repellent (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. Hierarchical micro-nano structures can be obtained by slightly oxidizing the as-deposited alloy, accompanied by phase transformation from amorphous to crystalline during heat treatment. The mi-cro-nano structures can trap air to form an extremely thin cushion of air between the water and the film, which is critical to producing hydrophobicity in the film. Results show that the average values of capacitance, roughness factor, and impedance for specific surface areas of a 600°C heat-treated sample are greater than those of a sample treated at 500°C. Importantly, the coating can be fabricated on various metal substrates to act as a corrosion retardant.

  15. Properties of WZ21 (%wt) alloy processed by a powder metallurgy route.

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2015-06-01

    Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 μm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times. PMID:25792409

  16. Research on fatigue behavior of welded joint spraying fused by low transformation temperature alloy powder

    International Nuclear Information System (INIS)

    Highlights: • The new prolong life method of MSF about welded joint was put forward. • The low transformation temperature alloy powder was applied to the method of MSF. • The fatigue strength of LTT-joint increases by 74.07%. - Abstract: Modification of spraying fused (MSF) of plasma arc as heat source was used to improve the fatigue performance of welded joint, which both fundamentally reduced stress concentration at weld toe and achieved metallurgical bond between spraying fused coating and welding. The low transformation temperature alloy powder was applied to the method of MSF. After spraying fusion, especially spraying fused joint by low transformation temperature alloy powder, the distribution of residual stress is more difficult to be obtained. Finite element (FE) simulation as an important tool was used to determine the stress field and temperature field of spraying fused joint. Simulated results show that as-welded joint and welded joint spraying fused by conventional nickel base alloy powder (Conventional-joint) present tensile stress. The stress of welded joint spraying fused by low transformation temperature alloy powder (LTT-joint) is compressive stress. Fatigue test results indicated that under the condition of 2 × 106 cycles, the fatigue strength of as-welded joint is 135 MPa, while that of Conventional-joint and LTT-joint is 218 MPa and 235 MPa, respectively. The fatigue strength of Conventional-joint increases by 61.48%, and fatigue strength of LTT-joint increases by 74.07%

  17. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.

    Science.gov (United States)

    Gülsoy, H Özkan; Gülsoy, Nagihan; Calışıcı, Rahmi

    2014-01-01

    Titanium and Titanium alloys exhibits properties that are excellent for various bio-applications. Metal injection molding is a processing route that offers reduction in costs, with the added advantage of near net-shape components. Different physical properties of Titanium alloy powders, shaped and processed via injection molding can achieve high complexity of part geometry with mechanical and bioactivity properties, similar or superior to wrought material. This study describes that the effect of particle morphology on the microstructural, mechanical and biocompatibility properties of injection molded Ti-6Al-4V (Ti64) alloy powder for biomaterials applications. Ti64 powders irregular and spherical in shape were injection molded with wax based binder. Binder debinding was performed in solvent and thermal method. After debinding the samples were sintered under high vacuum. Metallographic studies were determined to densification and the corresponding microstructural changes. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. The results show that spherical and irregular powder could be sintered to a maximum theoretical density. Maximum tensile strength was obtained for spherical shape powder sintered. The tensile strength of the irregular shape powder sintered at the same temperature was lower due to higher porosity. Finally, mechanical tests show that the irregular shape powder has lower mechanical properties than spherical shape powder. The sintered irregular Ti64 powder exhibited better biocompatibility than sintered spherical Ti64 powder. Results of study showed that sintered spherical and irregular Ti64 powders exhibited high mechanical properties and good biocompatibility properties. PMID:25201399

  18. Structural relaxation in Fe(Co)SiAlGaPCB amorphous alloys

    International Nuclear Information System (INIS)

    Highlights: • Structural relaxation of a Fe(Co)SiAlGaPCB amorphous alloys was studied by DSC. • Two relaxation times were use to fit the experimental values of different magnitudes. • HRTEM images suggest some medium range structural order in the amorphous. -- Abstract: The structural relaxation of multicomponent Fe(Co)SiAlGaPCB amorphous alloys was investigated calorimetrically for annealed samples over a wide temperature range below the glass transition temperature. Upon heating, the annealed samples exhibit an endothermic reaction (enthalpy relaxation) starting around the annealing temperature and continuing over a temperature range of about 50–140 K, that it is followed by a broad exothermic reaction. Changes in the heat flow curves with annealing temperature and time were analyzed. Experimental values of the overall enthalpy change, ΔH, the peak temperature of the difference in heat flow between the annealed and the as-quenched samples, Tp, and Curie temperature, TC, were fitted by exponential functions including two relaxation times. Values of the two relaxation times are the same for different annealing temperatures regardless the considered property. Saturation values of these magnitudes show a linear dependence with the inverse of the annealing temperature. Tiny domains (2–3 nm in diameter) in the matrix observed by spherical aberration corrected high-resolution transmission electron microscopy could be attributed to some medium-range order in the atomic structure of these quenched alloys

  19. Dispersoid reinforced alloy powder and method of making

    Science.gov (United States)

    Anderson, Iver E; Rieken, Joel

    2013-12-10

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with an introduced reactive species than does the alloying element and wherein one or more atomizing parameters is/are modified to controllably reduce the amount of the reactive species, such as oxygen, introduced into the atomized particles so as to reduce anneal times and improve reaction (conversion) to the desired strengthening dispersoids in the matrix. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies are made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  20. Encapsulation of CO2 into amorphous alpha-cyclodextrin powder at different moisture contents - Part 1: Encapsulation capacity and stability of inclusion complexes.

    Science.gov (United States)

    Ho, Thao M; Howes, Tony; Bhandari, Bhesh R

    2016-07-15

    This study investigated the effects of water-induced crystallization of amorphous alpha-cyclodextrin (α-CD) powder on CO2 encapsulation at 0.4-1.6MPa pressure for 1-72h through the addition of water (to reach to 13, 15 and 17% wet basis, w.b.) into amorphous α-CD powder prior to the encapsulation. The results showed that the α-CD encapsulation capacity was over 1mol CO2/mol α-CD after pressurizing for longer than 48h. The encapsulated CO2 concentration by the addition of water was considerably higher (pwater and that of crystalline α-CD powders under the same MC and encapsulation conditions. A comparison of CO2 release properties (75% relative humidity, 25°C) from complexed powders prepared from amorphous and crystalline α-CD powders under the same conditions is also presented. PMID:26948624

  1. Glass Forming Ability and Magnetic Property of Fe74Al4Sn2(PSiB)20 Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei-fei; ZHOU Shao-xiong

    2004-01-01

    Amorphous ribbons of Fe74Al4Sn2(PSiB)20 alloy have been synthesized by melt spinning and axial design method. The thermal properties of the amorphous ribbons have been measured by differential scanning calorimeter (DSC). The DSC results show that the Fe74Al4Sn2P12Si4B4 amorphous alloy has relatively wider supercooled liquid region with a temperature interval of 40.38 K (ΔTx=Tx-Tg). The alloys with a higher phosphorous content in the metalloid element composition triangle of Fe74Al4Sn2(PSiB)20 have high glass forming ability. The amorphous alloys also show good magnetic properties in which Fe74Al4Sn2P6.67Si6.67B6.67 alloy has a large maximum permeability (μm), Fe78Al4Sn2P3Si3B10 alloy exhibits a high square ratio (Br/B10) and Fe74Al4Sn2P4Si12B4 shows a low core loss (P0.5/1.3T). High glass forming ability and good magnetic properties make Fe74Al4Sn2(PSiB)20 amorphous alloys valuable in future research.

  2. Morphology and microstructure of rapidly solidified tin-lead alloy powders

    Institute of Scientific and Technical Information of China (English)

    Xiang Qingchun; Zhang Wei; Qiu Keqiang; Qu Yingdong; Li Rongde

    2014-01-01

    Sn60Pb40 al oy powders were fabricated using the planar flow casting (PFC) atomization process. By using OM, SEM and EPMA, the characteristics of the morphologies and microstructures of the powders have been investigated. It is observed that the environment of ambient gas in the atomization box has great effects on the morphology of the al oy powders. The microstructures of Sn60Pb40 al oy powders produced by the PFC atomization process are completely composed of eutectic, which is made up of both oversaturated αsolid solution and β solid solution. The microstructures of smal size powders are extraordinarily undeveloped dendritic eutectic, in which the large majority of the α phase appears nearly spherical, evidently since the cooling rate is higher and the under-cooling is larger. As for the large size powders, since the cooling rate and undercooling are relatively low, lamel ar α phase apparently increases in the eutectic microstructures of these powders, and there is even typical lamellar eutectic structure clearly observed in some micro-areas. After remelting tests by DTA, the microstructures of smal size powders are transformed, which become composed of large crumby α phase and eutectic (α+β), while those of large size powders change into classical tin-lead structures of primary α phase plus lamellar eutectic (α+β). By studying the microstructures of tin-lead alloy powders, a model has been proposed to predict the microstructure formation of Sn60Pb40 al oy powders.

  3. CORROSION OF AMORPHOUS AND NANOCRYSTALLINE Fe-BASED ALLOYS IN NaCl AND H2SO4 SOLUTIONS

    Science.gov (United States)

    Li, Xiang; Lu, Wei; Wang, Yuxin; Yan, Biao; Pan, Deng

    2013-07-01

    Corrosion resistance of nanocrystalline Fe73.5Si13.5B9Nb3Cu1 alloy was investigated and compared to its amorphous counterpart. Low-temperature crystallization occurred during the annealing of amorphous tapes was used to obtain a nanocrystalline structure. The influence of annealing condition on the structure and corrosion resistance of the alloy in NaCl and H2SO4 solutions was investigated. Based on the testing results, it was found that nanocrystalline tapes have higher corrosion resistance than amorphous counterpart and H2SO4 can promote the occurrence of corrosion compared with NaCl.

  4. Amorphization of Zr-Al under mechanical alloying at different temperatures: A re-entrant melting phenomenon

    International Nuclear Information System (INIS)

    Zr100-xAlx powder blends have been subjected to ball milling at different temperatures to investigate the amorphization process. At low temperatures the Zr-Al solid solutions amorphized under the polymorphous constraints, whereas at higher temperatures there was an obvious two-phase coexistence region. The Al concentration for the complete amorphization of Zr-Al increased with increasing temperature, suggesting a re-entrant melting behavior. Both of the temperature- and composition-dependent amorphization mechanisms are analyzed in terms of the thermodynamic properties of the phases involved, as well as the dynamic effects brought in by the non-equilibrium milling process

  5. Laser surface alloying of sintered stainless steels with SiC powder

    Directory of Open Access Journals (Sweden)

    Z. Brytan

    2011-07-01

    Full Text Available Purpose: The goal of this study is to investigate effects of laser surface alloying with SiC powder on microstructural changes and properties of vacuum sintered austenitic X2CrNiMo17-12-2, ferritic X6Cr13 and duplex X2CrNiMo22-8-2 stainless steels.Design/methodology/approach: Surface modification of sintered stainless steels was carried out by laser surface alloying with SiC powder using high power diode laser (HPDL. The influence of laser alloying conditions, the laser beam power (between 0.7 and 2.1 kW at constant scanning rate on the width of alloyed surface layer and penetration depth were studied. The resulting microstructure in laser alloyed surface layer was examined using light and scanning electron microscopy. Phase composition was determined by the X-ray diffraction method. The microhardness results of modified surface layer were also studied.Findings: The alloyed surface layer has a fine dendritic microstructure with iron-chromium carbides precipitations. The surface layer was enriched in silicon and carbon that produced microstructural changes and resulting microhardness increase. Beside studied stainless steels the duplex one revealed highest hardening effect by laser alloying with SiC powder, where related microhardness was about 500-600 HV.Practical implications: Laser surface alloying with SiC powder can be an efficient method of surface layer hardening of sintered stainless steels and produce significant improvement of surface layer properties in terms of hardness and wear resistance.Originality/value: Application of high power diode laser can guarantee uniform heating of treated surface, thus uniform thermal cycle across processed area and uniform penetration depth of alloyed surface layer.

  6. Skeletal Amorphous Nickel Based Alloy Catalysts and Magnetically Stabilized Bed Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    Min Enze

    2004-01-01

    Looking toward 21 century, smaller, cleaner and more energy-efficient technology will be an important trend in the development of chemical industry. In light of the new process requirements,a number of technology breakthroughs have occurred. One of these discoveries, the magnetically stabilized bed (MSB), has been proven a powerful process for intensification. Since its initial research in the late 1980's at Research Institute of Petroleum Processing (RIPP), the MSB technology and related catalytic material have matured rapidly through an intensive research and engineering program, primarily focused on its scaling-up.In this paper, we report the discovery of a novel skeletal amorphous nickel-based alloy and its use in magnetically stabilized bed (MSB). Amorphous alloys are new kinds of catalytic materials with short-range order but long-range disorder structure. In comparison with Raney Ni, the skeletal amorphous nickel-based alloy has an increasingly higher activity in the hydrogenation of reactive groups and compounds including nitro, nitrile, olefin, acetylene, aromatics, etc. Up to now, the amorphous nickel based alloy catalysts, SRNA series catalyst, one with high Ni ratio have been commercially manufactured more than four year. The new SRNA catalyst has been successfully implemented for hydrogenation applications in slurry reactor at Balin Petrochemical, SINOPEC.SRNA catalyst with further improvement in catalytic activity and stability raise its relative stability to 2~4 times of that of conventional catalyst. In the course of the long-cycle operation of SRNA-4 the excellent catalyst activity and stability can bring about such advantage as low reaction temperature, good selectivity and low catalyst resumption.Magnetically stabilized bed (MSB), a fluidized bed of magnetizable particles by applying a spatially uniform and time-invariant magnetic field oriented axially relative to the fluidizing fluid flow, had many advantages such as the low pressure drop and

  7. Preparation and characterisation of electrodeposited amorphous Sn-Co-Fe ternary alloys

    International Nuclear Information System (INIS)

    Electrochemical deposition was investigated as a process to obtain alloys of Sn-Co-Fe, which to date have not been reported in the literature. A constant current technique was used to electrochemically deposit tin-cobalt-iron alloys from a gluconate electrolyte. The gluconate system was chosen as an electrolyte, which could potentially provide an environmentally safe process. The effect of plating parameters such as current density, deposition time, temperature and pH are discussed. Results are reported for current density and plating time using an electrolyte temperature of 20-60 deg. C and pH of 7.0 in relation to phase composition, crystal structure and magnetic anisotropy of the deposited alloys. Investigations were conducted using 57Fe conversion electron Moessbauer spectroscopy (CEMS), 119Sn CEMS, transmission Moessbauer Spectroscopy and XRD. The 57Fe and 119Sn CEMS spectra and XRD showed that the dominant phase in the deposits was amorphous Sn-Co-Fe. The relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases was found to decrease continuously with increasing current density while at the same time no significant changes in the magnetic anisotropy was found with plating time. Magnetically split 119Sn spectra reflecting a transferred hyperfine field were also observed. A range of good quality amorphous Sn-Co-Fe ternary alloys was obtained over a range of operating conditions from an environmentally acceptable gluconate electrolyte

  8. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag87.5Cu12.5-alloy (10 nm)/DLC (140 nm)/Ag87.5Cu12.5-alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  9. Glass forming ability of iron based amorphous alloys depending on Mo, Cr and Co content

    International Nuclear Information System (INIS)

    The Fe41Co7Cr15Mo14C15B6Y2 multicomponent Fe-based alloy is known to be one of the best glass formers in iron-based systems and shows a critical casting thickness of 16 mm. The elements constituting the alloy have different influences on the glass forming ability. Therefore, the content of Mo, Cr and Co was systematically changed in the master alloy Fe77-x(Co,Cr,Mo)xC15B6Y2 to investigate how these three elements support the glassy microstructure. It was found that a certain content of Mo, Cr, and Co leads to a microstructure of amorphous matrix and α-Fe precipitates without any carbides.

  10. The corrosion resistance and neutron-absorbing properties of coatings based on amorphous alloys

    Science.gov (United States)

    Sevryukov, O. N.; Polyansky, A. A.

    2016-04-01

    The object of the present study was the corrosion-resistant amorphizing alloys with an increased content of boron for cladding the surface of metals, rapidly quenched alloys without boron for protective coatings on a high-boron cladding layer, as well as steel samples with a protective coating with a high content of boron and without boron. The aim of the work is to investigate the corrosion resistance of a coating in water at the temperature of 40 °C in conditions of an open access of oxygen for 1000 h, as well as the features of the microstructure of clad samples before and after the corrosion tests. New data on the corrosion resistance of Cr18Ni10Ti steel samples with a protective layer from a rapidly quenched alloy Ni-19Cr-10Si (in wt.%) on a high-boron coating have been obtained.

  11. Structural order and magnetism of rare-earth metallic amorphous alloys

    International Nuclear Information System (INIS)

    Local symmetry (as evaluated from the electric field gradient tensor) and radial distribution functions (obtained by EXAFS measurement) are determined in a series of amorphous rare-earth base alloys. Local order is found to increase with the extent of heteroatomic interactions. Various magnetic phases (including ferromagnetic, spin-glass, reentrant spin-glass) occur for europium alloys with simple metals (Mg, Zn, Cd, Al, Au, ...). This variety reflects the sensitivity of exchange interactions to the presence of non-s conduction electrons. Asperomagnetic structures are established for the Dy alloys. The crystalline electric field interactions at the Dy3+ ions are interpreted with the help of local symmetry data. Quadratic axial and non-axial crystal field terms are sufficient and necessary in order to account for the hyperfine and bulk experimental results

  12. Control and optimization of baths for electrodeposition of Co-Mo-B amorphous alloys

    Directory of Open Access Journals (Sweden)

    S. Prasad

    2000-12-01

    Full Text Available Optimization and control of an electrodeposition process for depositing boron-containing amorphous metallic layer of cobalt-molybdenum alloy onto a cathode from an electrolytic bath having cobalt sulfate, sodium molybdate, boron phosphate, sodium citrate, 1-dodecylsulfate-Na, ammonium sulfate and ammonia or sulfuric acid for pH adjustments has been studied. Detailed studies on bath composition, pH, temperature, mechanical agitation and cathode current density have led to optimum conditions for obtaining satisfactory alloy deposits. These alloys were found to have interesting properties such as high hardness, corrosion resistance, wear resistance and also sufficient ductility. A voltammetric method for automatic monitoring and control of the process has been proposed.

  13. Critical behavior of electrical resistivity in amorphous Fe–Zr alloys

    Indian Academy of Sciences (India)

    A Perumal

    2001-04-01

    Electrical resistivity (ρ) of the amorphous (a-)Fe100-Zr ( = 8.5, 9.5 and 10) alloys has been measured in the temperature range 77 to 300 K, which embraces the second-order magnetic phase transition at the Curie temperature point . Analysis of the resistivity data particularly in the critical region reveals that these systems have a much wider range of critical region compared to other crystalline ferromagnetic materials. The value of and specific heat critical exponent, has the same values as those determined from our earlier magnetic measurements. The value of for all the present investigated alloys are in close agreement with the values predicted for three-dimensional (3D) Heisenberg ferromagnet systems, which gives contradiction to the earlier results on similar alloys. It is observed from the analysis that the presence of quenched disorder does not have any influence on critical behavior.

  14. Properties and local structure of plasma-deposited amorphous silicon-carbon alloys

    International Nuclear Information System (INIS)

    Hydrogenated amorphous silicon-carbon alloy films were plasma-deposited from methane and silane, varying gas ratio, R.F. power and substrate temperature. Carbon addition increases the optical gap, but also raises the dangling bond density while decreasing conductivity. Low C alloys can be gas-phase doped both p and n type. In the IR spectra the various Si-C stretching modes observed between 650 and 780 cm/sup -1/ are explained by back bonding variations. A tentative method of assigning this shift to back bonding of C to the Si is given. A distribution of modes is observed for all alloys, with each mode appearing even at 2% C. The distribution is sensitive to substrate temperature, but is stable after vacuum annealing to 4000C

  15. Electrical transport properties of amorphous Ni32Pd53P15 alloy

    Science.gov (United States)

    Prakruti, Chaudhari; Joshi, R. H.; Bhatt, N. K.; Thakore, B. Y.

    2015-08-01

    A ternary alloy containing nickel, palladium and phosphorous in amorphous form has been studied. The electrical transport properties viz. electrical resistivity, thermoelectrical power (TEP), thermal conductivity are computed using our recently proposed potential. In the present work, five screening functions have been employed to incorporate the exchange and correlation effects. The theoretical structure factors due to hard core fluid theory have been used in the calculations. The liquid alloy is studied as a function of its composition at temperature 294 K. The partial structure factors of the compound-forming Ni32Pd53P15 ternary alloy has been calculated by considering Hoshino's m-component hard-sphere mixture, which is based on Percus-Yevic equation of Hiroike.

  16. Amorphous Structures in Laser Cladding of ZL111 Aluminum Alloy:Semi-quantitative Study by Differential Thermal Analysis (DTA)

    Institute of Scientific and Technical Information of China (English)

    LI Xianqin; CHENG Zhaogu; XIA Jin'an; XU Guoliang; LIANG Gongying

    2000-01-01

    This paper deals with amorphous structures in the laser cladding. ZL111 alloy is the substrate and Ni-Cr-Al alloy is sprayed on the substrate as the coating material. The coating is clad by a 5 kW transverse flow CO2 laser. The observation of SEM and TEM reveal that in the laser cladding there are amorphous structures of two different morphologies: one is space curved flake-like, and exists in the white web-like structures; the other is fir leaf-like, and exists in the grain-like structures. Differential thermal analysis (DTA) is used to semi-quantitatively determine the content of the amorphous structures. A relation is obtained between the content of amorphous structures and the dimensionless laser cladding parameter C. We also show the changes of the amorphous structures after annealing.

  17. Soft magnetic and microstructural investigation in Fe-based amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nabiałek, Marcin, E-mail: nmarcell@wp.pl

    2015-09-05

    Highlights: • Samples were obtained using the injection-casting method. • The samples were manufactured in the shape of plates of the thickness 0.5 mm. • The amorphous and nanocrystalline structure was confirmed using XRD, SEM, TEM, CT. • Magnetic properties were analysed in terms of contents of the spin waves stiffness parameter b. - Abstract: In this paper, the results of investigations concerning Fe{sub 61}Co{sub 10}Y{sub 8}W{sub 1}B{sub 20} alloy are presented. The alloy samples were produced, using an injection-casting method, in the form of plates of approximate thickness 0.5 mm. Analysis of the results facilitates the description of structural transformations which occurred within the amorphous material as a result of isothermal annealing, the latter having been carried out under specified conditions. This thermal treatment led to the creation within the amorphous matrix of evenly distributed nanometric sized crystalline grains. The structure and microstructure of the samples in the as-quenched and nanocrystalline states were analysed by means of: X-ray diffractometry (XRD), scanning and transmission electron microscopy (SEM and TEM) and computer tomography (CT). The influence of the structural changes on the magnetic properties was studied using a vibrating sample magnetometer (VSM). Detailed analysis of the microstructure was performed on the ferromagnetic alloy samples with amorphous and nanocrystalline structure; this, in connection with the magnetic studies, facilitated full description of the influence of changes in the microstructure, and imperfections created during the production process, on the magnetic properties.

  18. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent

    International Nuclear Information System (INIS)

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell–core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell–core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost. (paper)

  19. Effect of Slow Cooling in Reducing Pore Size in a Sintered Powder Metallurgical 6061Aluminium Alloy

    OpenAIRE

    S. Solay Anand; B.Mohan; T. R. Parthasarathy

    2011-01-01

    The usage of powder metallurgy aluminium compacts in lieu of ferrous components in automotives helps to lower vehicle weight. The major drawback in the commercially available press sintered aluminium alloy is porosity which is mainly dependent on the powder metallurgical process parameters such as compaction pressure, sintering temperature and cooling rate after sintering. In this paper the effect of particle size and furnace controlled cooling after sintering on porosity level and micro hard...

  20. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    International Nuclear Information System (INIS)

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  1. Fabrication of powder from ductile uranium alloys for use as nuclear dispersion

    International Nuclear Information System (INIS)

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-dehydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and γ-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  2. Study of soft magnetic iron cobalt based alloys processed by powder injection molding

    International Nuclear Information System (INIS)

    As a near net shape process, powder injection molding (PIM) opens new possibilities to process Fe-Co alloys for magnetic applications. Due to the fact that PIM does not involve plastic deformation of the material during processing, we envisioned the possibility of eliminating vanadium (V), which is generally added to Fe-Co alloys to improve the ductility in order to enable its further shaping by conventional processes such as forging and cold rolling. In our investigation we have found out two main futures related to the elimination of V, which lead to a cost-benefit gain in manufacturing small magnetic components where high-saturation induction is needed at low frequencies. Firstly, the elimination of V enables the achievement of much better magnetic properties when alloys are processed by PIM. Secondly, a lower sintering temperature can be used when the alloy is processed starting with elemental Fe and Co powders without the addition of V

  3. Survey of BGFA Criteria for the Cu-Based Bulk Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    D. Janovszky

    2011-01-01

    Full Text Available To verify the effect of composition on the bulk glass forming ability (BGFA of Cu-based alloys, properties have been collected from the literature (~100 papers, more than 200 alloys. Surveying the BGFA criteria published so far, it has been found that the atomic mismatch condition of Egami-Waseda is fulfilled for all the Cu-based BGFAs, the value being above 0,3. The Zhang Bangwei criterion could be applied for the binary Cu-based alloys. The Miracle and Senkov criteria do not necessarily apply for Cu based bulk amorphous alloys. The critical thickness versus =/(+ plot of Lu and Liu extrapolates to =0.36, somewhat higher than the 0.33 value found in other BGFA alloys. The Park and Kim parameter correlates rather poorly with the critical thickness for Cu based alloys. The Cheney and Vecchino parameter is a good indicator to find the best glass former if it is possible to calculate the exact liquids projection. In 2009 Xiu-lin and Pan defined a new parameter which correlates a bit better with the critical thickness. Based on this survey it is still very difficult to find one parameter in order to characterize the real GFA without an unrealized mechanism of crystallization.

  4. Production of fine tantalum powder by preform reduction process using Mg-Ag alloy reductant

    International Nuclear Information System (INIS)

    A preform reduction process (PRP) using Mg-Ag alloy reductant based on the magnesiothermic reduction of oxide by Mg vapor with reduced vapor pressure was investigated in order to produce fine, high-purity tantalum powder for electronic devices. A solid feed preform was fabricated by calcinating a slurry comprising a mixture of tantalum oxide powder, flux (e.g., CaCl2), and binder. It was then placed on a stainless steel mesh suspended above the Mg-Ag alloy reductant and reduced by Mg vapor generated from the alloy while heating at a constant temperature of 1273 K. Tantalum powder with a purity of more than 99 mass% and a narrow particle size distribution (D 10 = 0.2 μm; D 50 = 0.4 μm; D 90 = 0.9 μm) was successfully obtained under a specific condition. The nickel contamination of the powder from stainless steel is lowered by using the alloy reductant in comparison with using pure Mg reductant. It was found that the particle size of the powder decreased with the vapor pressure of Mg; therefore, it can be controlled by controlling the vapor pressure of Mg

  5. Structural evolutions of the mechanically alloyed Al70Cu20Fe10 powders

    Indian Academy of Sciences (India)

    Musa Göğebakan; Bariş Avar

    2011-10-01

    Elemental mixtures of Al, Cu, Fe powders with the nominal composition of Al70Cu20Fe10 were mechanically alloyed in a planetary ball mill for 80 h. Subsequent annealing of the as-milled powders were performed at 600–800°C temperature range for 4 h. Structural characteristics of the mechanically alloyed Al70Cu20Fe10 powders with the milling time and the heat treatment were investigated by X-ray diffraction (XRD), differential scanning calorimeter (DSC) and differential thermal analysis (DTA). Mechanical alloying of the Al70Cu20Fe10 did not result in the formation of icosahedral quasicrystalline phase (i-phase) and a long time milling resulted in the formation of -Al(Cu,Fe) solid solution phase (-phase). The i-phase was observed only for short-time milled powders after heat treatment above 600°C. The -phase was one of the major phases in the Al70Cu20Fe10 alloy. The w-Al7Cu2Fe1 phase (w-phase) was obtained only after heat treatment of the short-time milled and unmilled samples. The present investigation indicated that a suitable technique to obtain a large amount of quasicrystalline powders is to use a combination of short-time milling and subsequent annealing.

  6. Synthesis, characterization and annealing of mechanically alloyed nanostructured FeAl powder

    Institute of Scientific and Technical Information of China (English)

    M.M.RAJATH HEGDE; A.O.SURENDRANATHAN

    2009-01-01

    Elemental powders of Fe and Al were mechanically alloyed using a high energy rate ball mill. A nanostructure disordered Fe(Al) solid solution was formed at an early stage. After 28 h of milling, it was found that the Fe(Al) solid solution was transformed into an ordered FeAl phase. During the entire ball milling process, the elemental phase co-existed with the alloyed phase. Ball milling was performed under toluene to minimise atmo-spheric contamination. Ball milled powders were subse-quently annealed to induce more ordering. Phase transformation and structural changes during mechanical alloying (MEA) and subsequent annealing were investi-gated by X-ray diffraction (XRD). Scanning electron microscope (SEM) was employed to examine the mor-phology of the powders and to measure the powder particle size. Energy dispersive spectroscopy (EDS) was utilised to examine the composition of mechanically alloyed powder particles. XRD and EDS were also employed to examine the atmospheric and milling media contamination. Phase transformation at elevated temperatures was examined by differential scanning calorimeter (DSC). The crystallite size obtained after 28 h of milling time was around 18 nm. Ordering was characterised by small reduction in crystal-lite size while large reduction was observed during disordering. Micro hardness was influenced by Crystallite size and structural transformation.

  7. Direct Powder Preparation of Nb-Ti Alloy from the Oxide Mixture

    OpenAIRE

    Ohshima, T.; Suzuki, R. O.; Yagura, T.; Ono, K.

    2000-01-01

    A process to produce niobium-50mass% titanium alloy powder is proposed and its applicability is examined experimentally. The oxide mixture (Nb2O5+TiO2) was exposed to the reductant calcium, which can be applied thermodynamically as either the liquid or the gaseous form. Ca gas was favorable for the contamination of impurity such as carbon. The anhydrated co-precipitation from the aqueous solution involving Nb5+ and Ti4+ formed the better uniformity in the obtained alloy powder. The addition o...

  8. Crystallization Kinetics of Pr8Fe86-xZrxB6 Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Crystallization kinetics of Pr8Fe86-xZrxB6 (x=0, 1, 2) amorphous alloys was studied by DTA and XRD methods. The experimental results showed that the crystalline phases of Pr8Fe86B6 alloy are composed of α-Fe phase, Pr2Fe23B3 and Pr2Fe14B, when crystallization temperature is below 900 ℃. The activation energy of α-Fe phase remains relatively constant about 306.09 kJ/mol, as the crystalline fraction of α-Fe phase is below 8 %. At the beginning of crystallization, the activation energy of Pr2Fe23B3 and Pr2Fe14B phases are 510.85 kJ/mol and 725.97 kJ/mol, respectively, and then the activation energy of three phases declines with increasing the crystalline fraction. The crystallization behavior of α-Fe and Pr2Fe14B essentially results in the formation of a α-Fe/Pr2Fe14B composite microstructure with a coarse grain size in annealed Pr8Fe86B6 alloy, which is attributed to a difficult nucleation and an easy growth for both the α-Fe and Pr2Fe14B in the alloy. Zr can be used to change the crystallization behavior of the α-Fe phase in Pr-Fe-B amorphous alloy, which is helpful to the formation of the α-Fe/Pr2Fe14B nanocomposite microstructure with a fine grain size for the α-Fe phase in the alloy.

  9. Thermal Behavior of Mechanically Alloyed Powders Used for Producing an Fe-Mn-Si-Cr-Ni Shape Memory Alloy

    Science.gov (United States)

    Pricop, B.; Söyler, U.; Lohan, N. M.; Özkal, B.; Bujoreanu, L. G.; Chicet, D.; Munteanu, C.

    2012-11-01

    In order to produce shape memory rings for constrained-recovery pipe couplings, from Fe-14 Mn-6 Si-9 Cr-5 Ni (mass%) powders, the main technological steps were (i) mechanical alloying, (ii) sintering, (iii) hot rolling, (iv) hot-shape setting, and (v) thermomechanical training. The article generally describes, within its experimental-procedure section, the last four technological steps of this process the primary purpose of which has been to accurately control both chemical composition and the grain size of shape memory rings. Details of the results obtained in the first technological step, on raw powders employed both in an initial commercial state and in a mixture state of commercial and mechanically alloyed (MA) powders, which were subjected to several heating-cooling cycles have been reported and discussed. By means of differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD), the thermal behaviors of the two sample powders have been analyzed. The effects of the heating-cooling cycles, on raw commercial powders and on 50% MA powders, respectively, were argued from the point of view of specific temperatures and heat variations, of elemental diffusion after thermal cycling and of crystallographic parameters, determined by DSC, SEM, and XRD, respectively.

  10. Development and optimization of an AA2014 powder metallurgy aluminium alloy, characterization and corrosion behavior

    OpenAIRE

    Redondo Ruiz, Enrique

    2014-01-01

    The light density of aluminium has make it one of the main materials used in the aeronautic and automotive industries. Both industries are constantly trying to reduce weight to save costs in combustibles. When heat treated, aluminium alloys obtain values of specific strength that allows them to compete with ferrous alloys. Powder metallurgy is an alternative to conventional manufacturing techniques, such as casting or forging. It can produce small pieces at high rate with a high complexity...

  11. SHORT-RANGE ORDER IN AMORPHOUS Co-Sn ALLOYS THROUGH NMR AND MÖSSBAUER SPECTROSCOPIES

    OpenAIRE

    Nabli, H; Piecuch, M.; Durand, J.; Marchal, G.

    1985-01-01

    The hyperfine field distribution on 59Co obtained by NMR in ferromagnetic amorphous Co-Sn alloys is related to the distribution of Sn environment around the Co resonant nuclei. The mean values of the quadrupole splitting and of the isomershift for tin in paramagnetic Co-Sn alloys, as obtained by 119Sn Mössbauer spectroscopy, suggest that the tin atoms in these alloys are located at the center of trigonal prisms of cobalt atoms.

  12. Research on the influencing factors of nitrogen content during process of zirconium alloy powder preparation

    International Nuclear Information System (INIS)

    In order to control effectively the nitrogen content of the zirconium alloy powder with strong activity, the research about the influencing factors during the process of the zirconium alloy preparation were carried out. Through analyzing the influencing factors during the process of the zirconium preparation, reducing the transient cracking temperature by adding alcohol medium when cracked the zirconium alloy, and removing the adsorbate under high temperature and black vacuum conditions, as well as protecting the zirconium hydride out of the furnace were studied. The combination nitrogen content of the powder and the total nitrogen content were measured by chemistry analysis technique, and high temperature and fusion method respectively; and the powder activity were analyzed. The results shown that adding alcohol medium is an effective method to reducing the nitrogen content of zirconium alloy; and removing the adsorbate under high temperature and black vacuum conditions can not realize the experimental purpose; moreover the method of protecting the zirconium hydride out of the furnace have some effective on reducing the nitrogen content of zirconium alloy, however, the result is not stable clearly. In this present study, it is found that a great deal physics-adsorption nitrogen among zirconium hydride have a direct influencing to the nitrogen content of zirconium alloy, and the transient cracking temperature is also an important influencing factor to it. (authors)

  13. Structures of bulk amorphous Zr41Ti14Ni10Cu12.5Be22.5 alloy in amorphous, crystalline, supercooled liquid and liquid states

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The amorphous and crystal structures of Zr41Ti14Ni10Cu12.5Be22.5 alloy have been analyzed with X-ray diffractometer. The structures of bulk amorphous Zr41Ti14Ni10Cu12.5B22.5 alloy in solid, supercooled liquid and liquid states are almost of the same structure. The RDFs (Radius Distribution Function), the first coordination number, the first coordination radius, the correlation radius and atom number of the cluster were calculated for bulk amorphous Zr41Ti14Ni10Cu12.5B22.5 alloy in different states. The first coordination sphere radii and the first coordination numbers are 0.312nm, 11.2 in solid state, 0.301nm, 10.932 in supercooled liquid region and 0.305nm, 11.296 in liquid state. The crystal structure of Zr41Ti14Ni10Cu12.5B22.5 alloy is consisted of several intermetallic compounds which are CuZr2, Be2Zr, etc. The reason of formation glass for this alloy is that there is a larger resistance for atoms to rearrange and form intermetallic compounds in a long range order.

  14. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction

    Science.gov (United States)

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-08-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.

  15. Synthesis and characteristics of W-Ni-Fe nano-composite powders prepared by mechanical alloying

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The mixture of 90W-7Ni-3Fe(mass fraction, %) powders was milled in a planetary ball mill. Its structurechanged during milling, the surface characteristics and thermal stability of the milled powders were studied with X-raydiffraction(XRD), Brunaure-Emmett-Teller (BET) nitrogen adsorption technique and differential thermal analysis(DTA). The results show that high-energy ball milling leads to the formation of composite powders with amorphousbinder phase and supersaturated W(Ni, Fe) nano-crystalline grains in which great lattice distortion exists. The crystallization temperature of the amorphous binder phase during heating decreases with milling time. The specific surface area andthe pore size of the powder mixtures decreases with milling time due to agglomeration and welding hetween particles

  16. Design and fabrication of a mechanical alloying system for preparing intermetallic, nanocrystalline, amorphous and quasicrystalline compounds

    International Nuclear Information System (INIS)

    In this work a grinding system was designed and fabricated which allowed to improve the operation conditions in time, frequency, temperature and selection of the grinding media and that allow the contamination decrease of the compounds. By means of this method of mechanical alloying new metallic compounds can be produced, starting from elemental powders, with fine and controlled microstructures. These compounds prepared by this method are going to be used as materials for the hydrogen storage. (Author)

  17. Dual-Alloy Disks are Formed by Powder Metallurgy

    Science.gov (United States)

    Harf, F. H.; Miner, R. V.; Kortovich, C. S.; Marder, J. M.

    1982-01-01

    High-performance disks have widely varying properties from hub to rim. Dual property disk is fabricated using two nickel-base alloys, AF-115 for rim and Rene 95 for hub. Dual-alloy fabrication may find applications in automobiles, earth-moving equipment, and energy conversion systems as well as aircraft powerplants. There is potential for such applications as shafts, gears, and blades.

  18. The structure-property relationships of powder processed Fe-Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prichard, P.D.

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D{sub 84} < 32 {micro}m). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 {micro}m. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 {micro}m to 104 {micro}m. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase {alpha} + DO{sub 3} structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  19. INTERNAL FRICTION DAMPING IN A RAPIDLY SOLIDIFIED Al-Fe-Ce POWDER METALLURGY ALLOY

    OpenAIRE

    Winholtz, R.; Weins, W.

    1985-01-01

    The low frequency internal friction behavior of a rapidly solidified Al-8.6Fe-3.8Ce powder metallurgy alloy was investigated over the temperature range of 77 K to 700 K and frequency range of .6 to 1.5 Hz. The alloy has a large high temperature background damping curve as well as a small internal friction peak at about 475 K with an activation energy of 150 KJ/mole (36 kcal/mole) which is believed to be related to a grain boundary relaxation phenomenon. Aging of this alloy for up to 100 hours...

  20. A Study of Making Iron Aluminide Alloy Powders with New Rotating Electrode Technology

    Institute of Scientific and Technical Information of China (English)

    S; S; LIAN; M; L; SHI

    2002-01-01

    A new process was used for producing FeAl alloy pow de rs with double consumable rotating electrodes and the powders made in this appar atus were analyzed. In this new technology, tungsten rod serves as a cathode ele ctrode, while the alloy rod as an anode electrode. The conventional rotating ele ctrode process must have an anode with pre-melting alloys; however, in this new process, using pure iron as cathode electrode and pure aluminum as anode electr ode can eliminate the step of pre-melting. The e...

  1. Low cycle fatigue improvement of powder metallurgy titanium alloy through thermomechanical treatment

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; LIU Yong; HE Xiao-yu; TANG Hui-ping; CHEN Li-fang

    2008-01-01

    A low-cost β type Ti-1.5Fe-6.8Mo-4.8Al-1.2Nd (mass fraction, %)(T12LCC) alloy was produced by blended elemental powder metallurgy(P/M) method and subsequent thermomechanical treatment. Low cycle fatigue(LCF) behavior of P/M T12LCC alloy before and after thermomechanical treatment was studied. The results show that the LCF resistance of P/M titanium alloy is significantly enhanced through the thermomechanical treatment. The mechanisms for the improvement of LCF behavior are attributed to the elimination of residual pores, the microstructure refining and homogenization.

  2. Effect of surfactants on the corrosion of amorphous 76Ni-24P alloy in neutral solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, N.G. (Alexandria Univ. (Egypt). Physics Dept.); Khamis Ibrahim, E. (Alexandria Univ. (Egypt). Chemistry Dept.); Ahmed, A. (Alexandria Univ. (Egypt). Chemistry Dept.); Abaza, S. (Alexandria Univ. (Egypt). Physics Dept.)

    1994-04-01

    76Ni-24P amorphous alloys have been electrodeposited from solutions containing sodium lauryl sulphate (SLS) and triton-X 100 (TX-100) to improve the surface quality of the specimens. Corrosion behaviour of electrodeposited amorphous alloys in sulphate and chloride solutions at 25 C has been studied by potential-time decay, linear polarization resistance and potentiodynamic techniques. Anodic polarization curves show that the specimens exhibit mild passivity at potentials between approximately -200 mV and 200 mV (SCE) and dissolve transpassively above 200 mV (SCE). The sulphate solution was found to increase the dissolution of the samples treated by the surfactants during the substrate brass plating. The nonanionic surfactant increases the corrosion current by 10 times compared to the anionic one which enhances the current by 400 times; the interpretation was based on the enhanced dissolution of the microcrystals of the specimens in the sulphate solution and to the steric hindrance of the surfactants. In addition, the alloys are more resistant to chlorides due to the formation of a phosphate/hypophosphite film which protects the surface from dissolution. (orig.)

  3. Effect of surfactants on the corrosion of amorphous 76Ni-24P alloy in neutral solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, N.G. (Alexandria Univ., Physics Dept. (Egypt)); Khamis, E. (Alexandria Univ., Chemistry Dept. (Egypt)); Ahmed, A. (Alexandria Univ., Chemistry Dept. (Egypt)); Abaza, S. (Alexandria Univ., Physics Dept. (Egypt))

    1993-12-01

    76Ni-24P amorphous alloys have been electrodeposited from solutions containing sodium lauryl sulphate (SLS) and triton-X 100 (TX-100) to improve the surface quality of the specimens. Corrosion behaviour of electrodeposited amorphous alloys in sulphate and chloride solutions at 25 C has been studied by potential-time decay, linear polarization resistance and potentiodynamic techniques. Anodic polarization curves show that the specimens exhibit mild passivity at potentials between approximately -200 mV and 200 mV (SCE) and dissolve transpassively above 200 mV (SCE). The sulphate solution was found to increase the dissolution of the samples treated by the surfactants during the substrate brass plating. The nonanionic surfactant increases the corrosion current by 10 times compard to the anionic one which enhances the current by 400 times; the interpretation was based on the enhanced dissolution of the microcrystals of the specimens in the sulphate solution and to the steric hindrance of the surfactants. In addition, the alloys are more resistant to chlorides due to the formation of a phosphate/hypophosphite film which protects the surface from dissolution. (orig.)

  4. Relaxation of bending stresses and the reversibility of residual stresses in amorphous soft magnetic alloys

    International Nuclear Information System (INIS)

    The reversibility of residual bending stresses is revealed in ribbon samples of cobalt- and iron-based amorphous alloys Co69Fe3.7Cr3.8Si12.5B11 and Fe57Co31Si2.9B9.1: the ribbons that are free of applied stresses and bent under the action of residual stresses become completely or incompletely straight upon annealing at the initial temperatures. The influence of annealing on the relaxation of bending stresses is studied. Preliminary annealing is found to sharply decrease the relaxation rate of bending stresses, and the initial stage of fast relaxation of these stresses is absent. Complete straightening of preliminarily annealed ribbons is shown to occur at significantly higher temperatures than that of the initial ribbons. Incomplete straightening of the ribbons is explained by the fact that bending stresses relaxation at high annealing temperatures proceeds due to both reversible anelastic deformation and viscous flow, which is a fully irreversible process. Incomplete reversibility is also caused by irreversible processes, such as the release of excess free volume and clustering (detected by small-angle X-ray scattering). The revealed differences in the relaxation processes that occur in the cobalt- and iron-based amorphous alloys are discussed in terms of different atomic diffusion mobilities in these alloys

  5. Relaxation of bending stresses and the reversibility of residual stresses in amorphous soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kekalo, I. B.; Mogil’nikov, P. S., E-mail: pavel-mog@mail.ru [National University of Science and Technology MISiS (Russian Federation)

    2015-06-15

    The reversibility of residual bending stresses is revealed in ribbon samples of cobalt- and iron-based amorphous alloys Co{sub 69}Fe{sub 3.7}Cr{sub 3.8}Si{sub 12.5}B{sub 11} and Fe{sub 57}Co{sub 31}Si{sub 2.9}B{sub 9.1}: the ribbons that are free of applied stresses and bent under the action of residual stresses become completely or incompletely straight upon annealing at the initial temperatures. The influence of annealing on the relaxation of bending stresses is studied. Preliminary annealing is found to sharply decrease the relaxation rate of bending stresses, and the initial stage of fast relaxation of these stresses is absent. Complete straightening of preliminarily annealed ribbons is shown to occur at significantly higher temperatures than that of the initial ribbons. Incomplete straightening of the ribbons is explained by the fact that bending stresses relaxation at high annealing temperatures proceeds due to both reversible anelastic deformation and viscous flow, which is a fully irreversible process. Incomplete reversibility is also caused by irreversible processes, such as the release of excess free volume and clustering (detected by small-angle X-ray scattering). The revealed differences in the relaxation processes that occur in the cobalt- and iron-based amorphous alloys are discussed in terms of different atomic diffusion mobilities in these alloys.

  6. Topological and chemical short-range order in amorphous Ni-Ti alloys

    International Nuclear Information System (INIS)

    Neutron and x-ray scattering measurements were made on amorphous Ni35Ti65 and Ni40Ti60 alloys prepared by the melt-spinning process. The x-ray interference functions (structure factors) S/sup x/(K) are dominated by the topological short-range order (TSRO) S/sub NN/(K), but exhibited a small prepeak. The neutron structure factors S/sup n/(K) are dominated by the CSRO S/sub CC/(K)/(c1c2), describing the concentration fluctuations in the alloys. Assuming that the size effect term S/sub NC/(K) which describes the correlation between number density and concentration can be approximated by the Percus-Yevick hard sphere model, the TSRO S/sub NN/(K) and CSRO S/sub CC/(K)/(c1c2) were evaluated. From their Fourier transforms it became possible to evaluate the chemical short-range order parameter α which is of the order of -0.1 to -0.15 indicating a preference for unlike nearest neighbors in the amorphous Ni-Ti alloys

  7. The effect of alloy powder morphology on microstructural evolution of hot worked P/M FeAl

    Directory of Open Access Journals (Sweden)

    K. Doniec

    2007-10-01

    Full Text Available Purpose: This paper presents the results of the research focused on the influence of both the starting FeAl alloy powder particle characteristics and the thermomechanical processing parameters on the microstructural evolution of these materials.Design/methodology/approach: Fully-dense FeAl alloy powder compacts were tested in compression on servo-hydraulic Gleeble testing machine, at the temperature range of 700°C to 1100°C, and at strain rates of 0.1 s-1 and 10 s-1. After processing, the microstructure of each deformed specimen was examined using optical microscopy.Findings: Considerable strain rate sensitivity of the investigated alloy was observed, especially with reference to microstructural development. The use of alloy powders in thermomechanical processing of FeAl alloys can substantially enhance the possibility to control both the microstructure and mechanical behavior of these alloys.Research limitations/implications: The influence of starting FeAl alloy powder particle morphology and processing strain rate on the microstructural evolution of investigated alloy was discussed.Practical implications: The results of this research could be directly employed in the design of deformation schedules for the industrial processing of FeAl alloys.Originality/value: FeAl alloy powder morphology influences the thermomechanical processing of P/M FeAl alloys, what was proved in this paper.

  8. Nano-particle precipitation in mechanically alloyed and annealed precursor powders of legacy PM2000 ODS alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Karl, E-mail: k.dawson@liverpool.ac.uk [Centre for Materials and Structures, School of Engineering, University of Liverpool, L69 3GH (United Kingdom); Haigh, Sarah J. [School of Materials, Materials Science Centre, University of Manchester, M13 9PL (United Kingdom); Tatlock, Gordon J.; Jones, Andy R. [Centre for Materials and Structures, School of Engineering, University of Liverpool, L69 3GH (United Kingdom)

    2015-09-15

    Highlights: • Nano-particle formation identified in Plansee PM2000 ODS alloy powders. • Y–Al–O nano-particles observed after annealing at 923 K for 5 h. • Particle diameter ≈2 nm and N{sub V} > 10{sup 23} m{sup −3} over annealing range 1123–1223 K. • Particles dissolved at, and reprecipitated behind, recrystallisation fronts. - Abstract: The early stages of nano-particulate formation in mechanically alloyed and annealed, precursor powders used to manufacture the legacy commercial oxide dispersion strengthened alloy PM2000, formerly produced by Plansee GmbH, have been investigated. Powders were analysed in both the as-mechanically-alloyed condition and after annealing over the temperature range 923–1423 K. The nucleation and growth of coherent nano-particles in the partially recovered, fine grained, ferritic matrix of powders annealed at temperatures as low as 923 K has been confirmed. Powders annealed for 1 h at temperatures of 1123 K and 1223 K were partially recrystallised and contained high number densities (N{sub V} > 10{sup 23} m{sup −3}) of coherent 2 nm yttrium–aluminium–oxygen rich nano-particles. The identification of particle free zones in recrystallised grains, adjacent to recrystallising interfaces, plus the identical orientation relationships between nano-particles and the matrices in both unrecrystallised and recrystallised grains, indicates that the Y–Al–O nano-particles, first formed in fine grained regions, are dissolved during recrystallisation and re-precipitated subsequently in recrystallised grains.

  9. Structure and hardness of a hard metal alloy prepared with a WC powder synthesized at low temperature

    International Nuclear Information System (INIS)

    The structure and hardness of a WC-10 wt% Co alloy prepared with an experimental WC powder are compared with those of another alloy of the same composition produced under the same conditions and prepared with a commercial WC powder. The experimental WC powder was synthesized by a gas-solid reaction between APT and methane at low temperature and the commercial WC powder was conventionally produced by a solid-solid reaction between tungsten and carbon black. WC-10 wt% Co alloys with the two powders were prepared under the same conditions of milling and sintering. The structure of the sample prepared with the experimental WC powder is homogeneous and coarse grained. The structure of the sample prepared with the commercial powder is heterogeneous. Furthermore the size and shape of the WC grains are significantly different

  10. Structure and hardness of a hard metal alloy prepared with a WC powder synthesized at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F.A. da [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)], E-mail: francineac@yahoo.com; Medeiros, F.F.P. de [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Silva, A.G.P. da [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Gomes, U.U. [Departamento de Fisica Teorica e Experimental, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Filgueira, M. [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Souza, C.P. de [Laboratorio de Termodinamica e Reatores, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)

    2008-06-25

    The structure and hardness of a WC-10 wt% Co alloy prepared with an experimental WC powder are compared with those of another alloy of the same composition produced under the same conditions and prepared with a commercial WC powder. The experimental WC powder was synthesized by a gas-solid reaction between APT and methane at low temperature and the commercial WC powder was conventionally produced by a solid-solid reaction between tungsten and carbon black. WC-10 wt% Co alloys with the two powders were prepared under the same conditions of milling and sintering. The structure of the sample prepared with the experimental WC powder is homogeneous and coarse grained. The structure of the sample prepared with the commercial powder is heterogeneous. Furthermore the size and shape of the WC grains are significantly different.

  11. Mechanical behaviour of nanocomposites derived from zirconium based bulk amorphous alloys

    International Nuclear Information System (INIS)

    The effects on mechanical properties of partial crystallization of a zirconium based bulk amorphous alloy (Vit1) are investigated. Nanocomposites are produced by appropriate heat treatments at temperatures higher than the glass transition temperature. Mechanical properties at room temperature are investigated by compression tests and hardness measurements including nanoindentation. The variation of the fracture stress with the degree of crystallinity is related to the nature, the size and the dispersion of the crystals in the amorphous phase. The variations of microstructure are estimated thanks to differential scanning calorimetry, X-ray diffraction and transmission electron microscopy. A significant connexion between crystals induces a decrease of the fracture stress whereas hardness continuously increases with crystallinity. From nanoindentation tests, Young's modulus and apparent yield stresses were roughly estimated and it is concluded that crystallization tends to increase the yield stress. Nevertheless, AFM observations of the imprints after indentation suggest that the mechanism of deformation can vary significantly with crystallization

  12. First-principle simulation on the crystallization tendency and enhanced magnetization of Fe76B19P5 amorphous alloy

    International Nuclear Information System (INIS)

    Iron-based amorphous alloys have attracted a growing interest due to their potential in the application of magnetic coil production. However, the magnetization of this kind of material is usually low due to the lack of long range ordering and high alloying element content. In this paper, an Fe76B19P5 amorphous alloy was simulated with ab initio molecular dynamics based on a previous simulation work on an Fe76Si9B10P5 amorphous alloy exhibiting that electron absorbers such as B and P can help enhance the magnetization of nearby Fe atoms. The present simulation results show that replacing Si with B can destabilize the amorphous structure, making it easier to crystallize, but no separate α-Fe participation can be observed in experiments during annealing due to its high B/P content. The results also show an increase in saturation magnetization by 8% can be expected due to the intensified electron transfer from Fe to B/P, and the glass forming ability decreases correspondingly. The idea of enhancing electron transfer can be applied to the development of other Fe-based amorphous alloys for the purpose of larger saturation magnetization. (paper)

  13. An investigation of wear behaviors of different Monel alloys produced by powder metallurgy

    Science.gov (United States)

    Esgin, U.; Özyürek, D.; Kaya, H.

    2016-04-01

    In the present study, wear behaviors of Monel 400, Monel 404, Monel R-405 and Monel K-500 alloys produced by Powder Metallurgy (P/M) method were investigated. These compounds prepared from elemental powders were cold-pressed (600 MPa) and then, sintered at 1150°C for 2 hours and cooled down to the room temperature in furnace environment. Monel alloys produced by the P/M method were characterized through scanning electron microscope (SEM+EDS), X-ray diffraction (XRD), hardness and density measurements. In wear tests, standard pin-on-disk type device was used. Specimens produced within four different Monel Alloys were tested under 1ms-1 sliding speed, under three different loads (20N, 30N and 40N) and five different sliding distances (400-2000 m). The results show that Monel Alloys have γ matrix and that Al0,9Ni4,22 intermetallic phase was formed in the structure. Also, the highest hardness value was measured with the Monel K-500 alloy. In wear tests, the maximum weight loss according to the sliding distance, was observed in Monel 400 and Monel 404 alloys while the minimum weight loss was achieved by the Monel K-500 alloy.

  14. Early stages of the mechanical alloying of TiC–TiN powder mixtures

    International Nuclear Information System (INIS)

    The present work focuses on the alloying behavior of TiC–TiN powder mixtures submitted to mechanical processing by ball milling. Accurate X-ray diffraction analyses indicate a progressive modification of the unit cell parameters of the TiC and TiN phases, suggesting the formation of TiC- and TiN-rich solid solutions with an increasingly larger content of solutes. Once the discrete character of the mechanical treatment is taken into due account, the smooth change of the unit cell parameters can be explained by a sequence of mutual dissolution stages related to individual collisions. At each collision, the average chemical composition of small amounts of TiC- and TiN-rich phases changes discontinuously. The discontinuous changes can be tentatively ascribed to local mass transport processes activated by the mechanical deformation of powders at collisions. -- Highlights: ► Mechanically processed TiC–TiN powder mixtures form two solid solutions. ► An analytical model was developed to describe the mechanical alloying kinetics. ► The amount of powder alloyed at collision was indirectly estimated. ► A few nanomoles of material participate in the alloying process at each collision. ► The chemical composition of the solid solutions was shown to change discontinuously.

  15. Compacting the powder of Al-Cr-Mn Alloy with SPS

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Pala, Zdeněk; Novák, P.

    2015-01-01

    Roč. 49, č. 1 (2015), s. 129-132. ISSN 1580-2949 Institutional support: RVO:61389021 Keywords : aluminium alloy * intermetallics * powder metalurgy * spark-plasma sintering Subject RIV: JG - Metallurgy Impact factor: 0.548, year: 2014 http://mit.imt.si/Revija/izvodi/mit151/kubatik.pdf

  16. Interdiffusion in binary cast and powders W-Re and Mo-Re alloys

    International Nuclear Information System (INIS)

    Concentration dependences of diffusion coefficients in the cast and powder alloys of the W-Re and Mo-Re systems are obtained. It is shown, that in spite of the fact that the diffusion coefficients values in dispersed materials are higher than in the cast ones, the peculiarities of the concentration dependences are common for both cases

  17. Rietveld analysis of neutron powder diffraction of Mg6Pd alloy at various hydriding stages

    International Nuclear Information System (INIS)

    The evolution of the crystal structure of Mg6Pd alloy, synthesized by ball milling, was investigated by simultaneous Rietveld refinement of neutron and X-ray powder diffraction. Samples with different deuterium contents were measured, corresponding to reaction end-products of proposed hydrogenation step. After full hydrogenation, Mg6Pd alloy transforms to MgPd alloy and MgD2. Increases in lattice parameters of MgPd alloy agrees well with measured hydrogen capacities. There are some evidences that at each hydrogenation step in magnesium alloys, magnesium atoms with high values of thermal parameters are the ones that will form magnesium hydride upon hydrogenation. Magnesium hydride phases presented a high level of strain which could be related to the important hysteresis in the pressure-composition isotherm curve.

  18. Dynamic powder compaction of rapidly solidified Path A alloy with increased carbon and titanium content

    International Nuclear Information System (INIS)

    Different techniques for consolidation of rapidly solidified alloys which are available or are under study at the present time include conventional consolidation techniques (hot extrusion, HIP,...), high velociy consolidation of atomized partially solidified particulates and dynamic powder compaction (DPC). This report describes the results of dynamic compaction of Path A alloy with increased carbon and titanium content. The microstructure of the as-compated alloy is highly complex, evidencing an extreme degree of deformation. TEM revealed very high dislocation and twin density reflecting high hardness of the as-compacted alloy. Annealing studies revealed that recovery and recrystallization processes in dynamically compacted alloy are slower than in conventionally treated materials. High dislocation density appears to be an intrinsic property of the dynamic compaction process and it may be potentially useful in developing materials for irradiation performance. Other potential applications of dynamic compaction include preparation of graded materials and ceramic materials

  19. Processing and characterization of amorphous magnesium based alloy for application in biomedical implants

    Directory of Open Access Journals (Sweden)

    Telma Blanco Matias

    2014-07-01

    Full Text Available Magnesium-based bulk metallic glasses are attractive due to their single-phase, chemically homogeneous alloy system and the absence of second-phase, which could impair the mechanical properties and corrosion resistance. However, one of the unsolved problems for the manufacturability and the applications of bulk metallic glasses is that their glass-forming ability is very sensitive to the preparation techniques and impurity of components since oxygen in the environment would markedly deteriorate the glass-forming ability. Therefore, the aim of this study was to establish proper processing conditions to obtain a magnesium-based amorphous ternary alloy and its characterization. The final composition was prepared using two binary master alloys by melting in an induction furnace. Carbon steel crucible was used in argon atmosphere with and without addition of SF6 gas in order to minimize the oxygen contamination. The microstructure, amorphous nature, thermal properties and chemical analysis of samples were investigated by scanning electron microscopy (SEM, X-ray diffraction (XRD, differential scanning calorimetry (DSC and inductively coupled plasma emission spectrometry, respectively. The oxygen content of the as-cast samples was chemically analyzed by using carrier gas hot extraction (O/N Analyzer TC-436/LECO and was kept bellow 25 ppm (without SF6 and 10 ppm (with SF6. Bulk samples were produced by rapid cooling in a cooper mold until 1.5 mm thickness, with amorphous structures being observed up to 2.5 mm.

  20. Consolidation processing parameters and alternative processing methods for powder metallurgy Al-Cu-Mg-X-X alloys

    Science.gov (United States)

    Sankaran, K. K.

    1987-01-01

    The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.

  1. New Powder Metallurgical Approach to Achieve High Fatigue Strength in Ti-6Al-4V Alloy

    Science.gov (United States)

    Cao, Fei; Ravi Chandran, K. S.; Kumar, Pankaj; Sun, Pei; Zak Fang, Z.; Koopman, Mark

    2016-05-01

    Recently, manufacturing of titanium by sintering and dehydrogenation of hydride powders has generated a great deal of interest. An overarching concern regarding powder metallurgy (PM) titanium is that critical mechanical properties, especially the high-cycle fatigue strength, are lower than those of wrought titanium alloys. It is demonstrated here that PM Ti-6Al-4V alloy with mechanical properties comparable (in fatigue strength) and exceeding (in tensile properties) those of wrought Ti-6Al-4V can be produced from titanium hydride powder, through the hydrogen sintering and phase transformation process. Tensile and fatigue behavior, as well as fatigue fracture mechanisms, have been investigated under three processing conditions. It is shown that a reduction in the size of extreme-sized pores by changing the hydride particle size distribution can lead to improved fatigue strength. Further densification by pneumatic isostatic forging leads to a fatigue strength of ~550 MPa, comparable to the best of PM Ti-6Al-4V alloys prepared by other methods and approaching the fatigue strengths of wrought Ti-6Al-4V alloys. The microstructural factors that limit fatigue strength in PM titanium have been investigated, and pathways to achieve greater fatigue strengths in PM Ti-6Al-4V alloys have been identified.

  2. Structural and magnetic changes in FeNbCuSiB amorphous alloys during the crystallization process

    International Nuclear Information System (INIS)

    Calorimetric and magnetic measurements, x-ray powder diffraction and Moessbauer spectroscopy have been used to study the magnetic and structural changes occurring after each of the two steps of crystallization that take place in FeNbCuSiB-type alloys. Two samples with different boron and silicon concentrations, Fe73.5Nb3Cu1Si22.5-xBx (x=6, 9), have been studied. They give a somewhat different composition of the crystalline phases appearing after crystallization processes. The most noticeable phenomenon is the observed increase of about 50 K in the Curie temperature of the FeSi crystalline phase between the end of the first crystallization process and the end of the second one, although the composition of this phase remains unchanged. This result is discussed in terms of crystal boundary effects. Also, the Curie temperature of the remaining amorphous phase, in the crystallized samples, is greater than the expected one, due to the coupling with magnetic phases with higher Curie points and inhomogeneities in such a phase. (author)

  3. Amorphous Hydrogenated Carbon-Nitrogen Alloy Thin Films for Solar Cell Application

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-Bin; DING Zheng-Ming; PANG Qian-Jun; CUI Rong-Qiang

    2001-01-01

    Amorphous hydrogenated carbon-nitrogen alloy (a-CNx :H) thin films have been deposited on silicon substratesby improved dc magnetron sputtering from a graphite target in nitrogen and hydrogen gas discharging. Thefilms are investigated by using Raman spectroscopy, x-ray photoelectron spectroscopy, spectral ellipsometer and electron spin resonance techniques. The optimized process condition for solar cell application is discussed. Thephotovoltaic property of a-CNx:H/silicon heterojunctions can be improved by the adjustment of the pressureratio of hydrogen to nitrogen and unbalanced magnetic field intensity. Open-circuit voltage and short-circuitcurrent reach 300mV and 5.52 Ma/cm2, respectively.

  4. Hydrogen effect on properties of iron and cobalt base amorphous alloys

    International Nuclear Information System (INIS)

    Stress relaxation studies were carried out for amorphous alloys 71KNSR (AS-1), 82k3KhSR (AS-2) and Fe78Nb3.5Cu1Si13.5 (AS-3) in their annealing and hydrogenation. Reversible change of elastic properties on hydrogenation is revealed. The restoration of elastic properties is observed in the process of holding at the temperature of 295 K. It is shown that elastic properties vary synchronously with electric conductivity and magnetic susceptibility. On the basis of electric and magnetic variables measurements as well as X-ray diffraction studies possible reasons for phenomena observed are discussed

  5. STUDY ON THE SHOCK WAVE CRYSTALLIZATION OF AMORPHOUS ALLOYS BY DSC

    Institute of Scientific and Technical Information of China (English)

    H.Y. Zhao; H. Wang; Q.J. Liu; J.D. Kan; Z.Q. Liu

    2002-01-01

    Shock wave and annealing crystallization of amorphous alloys FeSiB, FeMoSiB andFeCuNbSiB were studied by isothermal and non-isothermal DSC technique. It wasfound that the shock wave crystallization is very perfect, the fraction crystallized isvery close to 100%, though the period of crystallization is very short, only about10-4-10-6 s. Their produced phases differ from the parent phase in structure andcomposition. The high velocity of the transformation is very difficult to explain by thediffusion theory of solid state phase transition.

  6. Correlation between Structures of Bulk Amorphous Zr-Ti-Ni-Cu-Be Alloy in Different States

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The structures of the bulk amorphous Zr41Ti14Cu12.5Ni10.0Be22.5 alloy have been analyzed in solid, supercooled liquid and liquid with X-ray diffraction. The first coordination sphere radii and the first coordination numbers are 0.312 nm, 11.2 in solid state, 0.301 nm, 10.932 in supercooled liquid region and 0.305 nm, 11.296 in liquid state. The structures are the same in different states. But it shows some tendency to crystallizing that the first coordination sphere radius and the first coordination number drop in supercooled liquid region.

  7. Kinetics of glass transition and crystallization in multicomponent bulk amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Differential scanning calorimeter (DSC) is used to investigate apparent activation energy of glass transition and crystallization of Zr-based bulk amorphous alloys by Kissinger equation under non-isothermal condition. It is shown that the glass transition behavior as well as crystallization reaction depends on the heating rate and has a characteristic of kinetic effects. After being isothermally annealed near glass transition temperature, the apparent activation energy of glass transition increases and the apparent activation energy of crystallization reaction decreases. However, the kinetic effects are independent of the pre-annealing.

  8. Magnetically stabilized bed reactor for selective hydrogenation of olefins in reformate with amorphous nickel alloy catalyst

    Institute of Scientific and Technical Information of China (English)

    Xuhong; Mu; Enze; Min

    2007-01-01

    A magnetically stabilized bed (MSB) reactor for selective hydrogenation of olefins in reformate was developed by combining the advantages of MSB and amorphous nickel alloy catalyst. The effects of operating conditions, such as temperature, pressure, liquid space velocity, hydrogen-to-oil ratio, and magnetic field intensity on the reaction were studied. A mathematical model of MSB reactor for hydrogenation of olefins in reformate was established. A reforming flow scheme with a post-hydrogenation MSB reactor was proposed. Finally, MSB hydrogenation was compared with clay treatment and conventional post-hydrogenation.

  9. Magnetic exchange coupling in amorphous Fe80-xDy xB20 alloys

    International Nuclear Information System (INIS)

    Amorphous Fe80-xDy xB20 alloys have been prepared by melt spinning and their magnetic properties have been studied. The mean field theory has been used to explain the temperature dependence of the magnetization. The exchange interactions between Co-Co and Dy-Co atom pairs have been evaluated. High-field magnetization studies on samples with stoichiometry close to that of a compensated ferrimagnet show a magnetic behavior that is characteristic of a non-collinear magnetic structure of the Dy and Fe sublattices. The region of the canted moments can be described by a phase diagram in the H-T plane

  10. Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth

    Energy Technology Data Exchange (ETDEWEB)

    Barbe, Jeremy, E-mail: jeremy.barbe@hotmail.com [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); Xie, Ling; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden); Faucherand, Pascal; Morin, Christine; Rapisarda, Dario; De Vito, Eric [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Makasheva, Kremena; Despax, Bernard [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France); Perraud, Simon [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2012-11-01

    The present study demonstrates the growth of silicon nanocrystals on amorphous silicon carbide alloy thin films. Amorphous silicon carbide films [a-Si{sub 1-x}C{sub x}:H (with x < 0.3)] were obtained by plasma enhanced chemical vapor deposition from a mixture of silane and methane diluted in hydrogen. The effect of varying the precursor gas-flow ratio on the film properties was investigated. In particular, a wide optical band gap (2.3 eV) was reached by using a high methane-to-silane flow ratio during the deposition of the a-Si{sub 1-x}C{sub x}:H layer. The effect of short-time annealing at 700 Degree-Sign C on the composition and properties of the layer was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was observed that the silicon-to-carbon ratio in the layer remains unchanged after short-time annealing, but the reorganization of the film due to a large dehydrogenation leads to a higher density of SiC bonds. Moreover, the film remains amorphous after the performed short-time annealing. In a second part, it was shown that a high density (1 Multiplication-Sign 10{sup 12} cm{sup -2}) of silicon nanocrystals can be grown by low pressure chemical vapor deposition on a-Si{sub 0.8}C{sub 0.2} surfaces at 700 Degree-Sign C, from silane diluted in hydrogen. The influence of growth time and silane partial pressure on nanocrystals size and density was studied. It was also found that amorphous silicon carbide surfaces enhance silicon nanocrystal nucleation with respect to SiO{sub 2}, due to the differences in surface chemical properties. - Highlights: Black-Right-Pointing-Pointer Silicon nanocrystals (Si-NC) growth on amorphous silicon carbide alloy thin films Black-Right-Pointing-Pointer Plasma deposited amorphous silicon carbide films with well-controlled properties Black-Right-Pointing-Pointer Study on the thermal effect of 700 Degree-Sign C short-time annealing on the layer properties Black-Right-Pointing-Pointer Low pressure

  11. Preparation of fine-grained tungsten heavy alloys by spark plasma sintered W–7Ni–3Fe composite powders with different ball milling time

    International Nuclear Information System (INIS)

    Highlights: ► We fabricate fine-grained W–7Ni–3Fe alloys using HEBM assisted SPS method. ► The γ-(Ni, Fe, W) phase is not observed in HEBM raw powders. ► The density of the WHAs gradually decreased with increasing HEBM time. ► The hardness and bending strength of the WHAs show different trends of variation. ► The intergranular fracture was the main bending fracture mode of the WHAs. -- Abstract: The fine-grained tungsten heavy alloys (WHAs) with grain size of about 1–3 μm were successfully prepared by spark plasma sintered W–7Ni–3Fe composite powders with different high-energy ball milling (HEBM) time. This study analyzes the effects of HEBM time not only on the composite powders but on the microstructure and mechanical properties of WHAs. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to investigate the microstructure and phase evolution rules of powders and alloys, respectively. The γ-(Ni, Fe, W) is not observed in XRD patterns of the ball milled powders. With prolonging HEBM time, the W phase diffraction peak becomes increasingly wider, and its intensity continues to decline. However, the completely amorphous structures are not formed even after HEBM 40 h. The relative density of the WHAs prepared by HEBM assisted SPS technique decreases gradually with increasing the ball milling time. For the WHAs sintered in 1150 °C for 8 min, the W grains grow finer and the content of the γ-(Ni, Fe, W) binding phase greatly increases with prolonging the HEBM time. Meanwhile, over 5 h of HEBM time, the bending strength continuously decreases and the hardness slightly increases. The intergranular fracture of the W grains is the main bending fracture mode in all the WHAs. The microporous of different sizes are distributed on the bending fracture and progressively increased with prolonging the ball milling time

  12. Preparation of fine-grained tungsten heavy alloys by spark plasma sintered W–7Ni–3Fe composite powders with different ball milling time

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, D.P., E-mail: dpxiang@hainu.edu.cn [Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou 570228 (China); School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Ding, L. [Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou 570228 (China); Li, Y.Y.; Chen, G.B. [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhao, Y.W. [Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou 570228 (China)

    2013-06-15

    Highlights: ► We fabricate fine-grained W–7Ni–3Fe alloys using HEBM assisted SPS method. ► The γ-(Ni, Fe, W) phase is not observed in HEBM raw powders. ► The density of the WHAs gradually decreased with increasing HEBM time. ► The hardness and bending strength of the WHAs show different trends of variation. ► The intergranular fracture was the main bending fracture mode of the WHAs. -- Abstract: The fine-grained tungsten heavy alloys (WHAs) with grain size of about 1–3 μm were successfully prepared by spark plasma sintered W–7Ni–3Fe composite powders with different high-energy ball milling (HEBM) time. This study analyzes the effects of HEBM time not only on the composite powders but on the microstructure and mechanical properties of WHAs. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to investigate the microstructure and phase evolution rules of powders and alloys, respectively. The γ-(Ni, Fe, W) is not observed in XRD patterns of the ball milled powders. With prolonging HEBM time, the W phase diffraction peak becomes increasingly wider, and its intensity continues to decline. However, the completely amorphous structures are not formed even after HEBM 40 h. The relative density of the WHAs prepared by HEBM assisted SPS technique decreases gradually with increasing the ball milling time. For the WHAs sintered in 1150 °C for 8 min, the W grains grow finer and the content of the γ-(Ni, Fe, W) binding phase greatly increases with prolonging the HEBM time. Meanwhile, over 5 h of HEBM time, the bending strength continuously decreases and the hardness slightly increases. The intergranular fracture of the W grains is the main bending fracture mode in all the WHAs. The microporous of different sizes are distributed on the bending fracture and progressively increased with prolonging the ball milling time.

  13. Microstructural characterization of a new mechanically alloyed Ni-base ODS superalloy powder

    Energy Technology Data Exchange (ETDEWEB)

    Seyyed Aghamiri, S.M. [Department of Materials Engineering, Tarbiat Modares University, Tehran 14115-143 (Iran, Islamic Republic of); Shahverdi, H.R., E-mail: Shahverdi@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, Tehran 14115-143 (Iran, Islamic Republic of); Ukai, S.; Oono, N.; Taya, K.; Miura, S.; Hayashi, S. [Material Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8626 (Japan); Okuda, T. [Kobelco Research Institute Ltd., Kobe 651-2271 (Japan)

    2015-02-15

    The microstructure of a new Ni-base oxide dispersion strengthened superalloy powder was studied for high temperature gas turbine applications after the mechanical alloying process. In this study, an atomized powder with a composition similar to the CMSX-10 superalloy was mechanically alloyed with yttria and Hf powders. The mechanically alloyed powder included only the supersaturated solid solution γ phase without γ′ and yttria provided by severe plastic deformation, while after the 3-step aging, the γ′ phase was precipitated due to the partitioning of Al and Ta to the γ′ and Co, Cr, Re, W, and Mo to the γ phase. Mechanical alloying modified the morphology of γ′ to the new coherent γ–γ′ nanoscale lamellar structure to minimize the elastic strain energy of the precipitation, which yielded a low lattice misfit of 0.16% at high temperature. The γ′ lamellae aligned preferentially along the elastically soft [100] direction. Also, the precipitated oxide particles were refined in the γ phase by adding Hf from large incoherent YAlO{sub 3} to fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles with the average size of 7 nm and low interparticle spacing of 76 nm. - Highlights: • A new Ni-base ODS superalloy powder was produced by mechanical alloying. • The nanoscale γ–γ′ lamellar structure was precipitated after the aging treatment. • Fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles were precipitated by addition of Hf.

  14. Cyclic Fatigue Fracture of Zr55Al10Ni5Cu30 Bulk Amorphous Alloy with Quenched-in Crystallites

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The effects of quenched-in crystallites on the fracture of bulk amorphous alloys under cyclic loading condition wereinvestigated in this paper. For the fully amorphous alloy and specimen with fine crystallites the fatigue crack initiationoccurred on the surface. For the specimen with larger crystallites the crack originated from a big broken crystallitenear the surface. The average striation spacing on amorphous area is much larger than that on the crystallite.Crack initiation occurred at the crystallites is due to that the brittle crystallites broke easily under cyclic deformationcondition. The fine crystallites seemed to be protruded from the amorphous matrix and some bulges appeared onthe surface of specimen with fine crystallites under cyclic loading.

  15. Performance of single wire earth return transformers with amorphous alloy core in a rural electric energy distribution system

    Directory of Open Access Journals (Sweden)

    Benedito Antonio Luciano

    2012-10-01

    Full Text Available In this paper are presented some considerations about the performance of single wire earth return amorphous alloy core transformers in comparison with conventional silicon steel sheets cores transformers used in rural electric energy distribution network. It has been recognized that amorphous metal core transformers improve electrical power distribution efficiency by reducing transformer core losses. This reduction is due to some electromagnetic properties of the amorphous alloys such as: high magnetic permeability, high resistivity, and low coercivity. Experimental results obtained with some single-phase, 60 Hz, 5 kVA amorphous core transformers installed in a rural area electric distribution system in Northern Brazil have been confirming their superior performance in comparison to identical nominal rated transformers built with conventional silicon steel cores, particularly with regard to the excitation power and to the no-load losses.

  16. Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-Fluxing Alloy and Recycled Cermet Powders

    Directory of Open Access Journals (Sweden)

    Andrei SURŽENKOV

    2012-03-01

    Full Text Available Thermal spray and WC-Co based coatings are widely used in areas subjected to abrasive wear. Commercial  cermet thermal spray powders for HVOF are relatively expensive. Therefore applying these powders in cost-sensitive areas like mining and agriculture are hindered. Nowadays, the use of cheap iron based self-fluxing alloy powders for thermal spray is limited. The aim of this research was to study properties of composite powders based on self-fluxing alloys and recycled cermets and to examine the properties of thermally sprayed (HVOF coatings from composite powders based on iron self-fluxing alloy and recycled cermet powders (Cr3C2-Ni and WC-Co. To estimate the properties of  recycled cermet powders, the sieving analysis, laser granulometry and morphology were conducted. For deposition of coatings High Velocity Oxy-Fuel spray was used. The structure and composition of powders and coatings were estimated by SEM and XRD methods. Abrasive wear performance of coatings was determined and compared with wear resistance of coatings from commercial powders. The wear resistance of thermal sprayed coatings from self-fluxing alloy and recycled cermet powders at abrasion is comparable with wear resistance of coatings from commercial expensive spray powders and may be an alternative in tribological applications in cost-sensitive areas.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1338

  17. Cu clustering stage before the crystallization in Fe-Si-B-Nb-Cu amorphous alloys

    DEFF Research Database (Denmark)

    Ohnuma, M.; Hono, K.; Onodera, H.;

    1999-01-01

    The Cu clustering stage before the crystallization of Fe-Si-B-Nb-Cu amorphous alloys have been studied by three dimensional atom probe (3DAP) small-angle neutron scattering (SANS) and high sensitive differential calorimetry (DSC). Cu clustering occurs prior to the onset of the primary...... crystallization reaction. The number of the clusters estimated by 3DAP is large enough to provide heterogeneous nucleation sites to all bcc/D0(3) Fe-Si crystals which appear at higher temperatures. This fact indicates that the distribution of nanocrystalline Fe-Si is strongly affected by that of the Cu......-enriched clusters. The average diameter and interparticle distance of the Cu-enriched clusters have also been estimated by SANS. An exothermic reaction is observed above the Curie Temperature in the DSC curves of the Fe-Si-B-Nb-Cu alloys. The onset temperature of the exothermic reaction is shifted to lower...

  18. Development of Al–Nb–B master alloys using Nb and KBF4 Powders

    International Nuclear Information System (INIS)

    Highlights: • The successful development of Al–Nb–B master alloys is reported. • Al–Nb–B master alloys contain Nb-based intermetallics which act as heterogeneous nucleation sites. • Nb–B inoculation is highly effective in pure Al, binary Al–Si and commercial Al–Si alloys. • The grain size of Al–Si alloys decreases with the amount of Nb–B inoculants. - Abstract: We recently reported that the combined employment of niobium and boron (i.e. Nb-based intermetallics formed in the melt by the addition of powders), instead of niobium or boron individually, is a highly effective way to refine the grain size of Al–Si alloys without the inconvenience of the poisoning effect typical of commercial Al–Ti–B master alloys. In this work the progress concerning the development of Al–xNb–yB master alloys, which are much more suitable for its use in aluminium foundries, is reported and discussed. Precisely, a first approach to produce Al–xNb–yB master alloys as well as its characterisation by means of EDS mapping and TEM is presented. The study is completed by testing the effectiveness of the produced Al–xNb–yB master alloys on pure aluminium and binary Al–10Si alloy as well as commercial hypoeutectic and near-eutectic Al–Si alloys. It is found that the approach employed to produce the Al–xNb–yB master alloys is suitable because the size of the primary α-Al dendrites is significantly reduced in each of the case investigated

  19. The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process

    Science.gov (United States)

    Annur, Dhyah; Franciska P., L.; Erryani, Aprilia; Amal, M. Ikhlasul; Sitorus, Lyandra S.; Kartika, Ika

    2016-04-01

    Known for its biodegradation and biocompatible properties, magnesium alloys have gained many interests to be researched as implant material. In this study, Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in wt%) were synthesized by means of powder metallurgy method. The compression strength and corrosion resistance of magnesium alloy were thoroughly examined. The microstructures of the alloy were characterized using optical microscopy, Scanning Electron Microscope, and also X-ray diffraction analysis. The corrosion resistance were evaluated using electrochemical analysis. The result indicated that Mg- Zn- Ca alloy could be synthesized using powder metallurgy method. This study showed that Mg-29Zn-1Ca would make the highest mechanical strength up to 159.81 MPa. Strengthening mechanism can be explained by precipitation hardening and grain refinement mechanism. Phase analysis had shown the formation of α Mg, MgO, and intermetallic phases: Mg2Zn11 and also Ca2Mg6Zn3. However, when the composition of Zn reach 53% weight, the mechanical strength will be decreasing. In addition, all of Mg-Zn-Ca alloy studied here had better corrosion resistance (Ecorr around -1.4 VSCE) than previous study of Mg. This study indicated that Mg- 29Zn- 1Ca alloy can be further analyzed to be a biodegradable implant material.

  20. Heterogeneous nucleation in the polyol process for the synthesis of FeCo alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Uk Rae; Lee, Dong Gun; Ahn, Byung Hyun; Lee, Je Hyun; Koo, Bon Heun [Changwon National University, Changwon (Korea, Republic of)

    2014-05-15

    Here, we report a polyol method to prepare monodispersed FeCo alloy particles with Pt seeds added in the production of nanoparticles. The prepared samples were characterized by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and magnetic measurements. Structural studies revealed that the FeCo nanoparticles had a body-centered cubic (BCC) structure. FE-SEM analysis demonstrated a sphere morphology for the FeCo alloy particles. The size of the FeCo nanoparticles could be well tuned by changing the number of Pt-seed partices in the FeCo alloy. The magnetic properties of the FeCo alloys were investigated as a function of the Pt-seed concentration and temperature. The saturation magnetization and coercivity of the FeCo nanoparticles were found to depend on the molar ratio of Fe/Co, as well as the number of Pt-seeds, and increased with increasing FeCo concentration. A higher value of the saturation magnetization, 218 emu/g, was obtained for the 0.07-M concentration of FeCo alloy. In the process of producing an FeCo alloy powder by heterogeneous nucleation, a powder having minute sizes could be produced under the experimental conditions of a Pt-seed-added temperature of 90 .deg. C and a Pt/FeCo mole ratio of 8 x 10{sup -5}, and showed far superior properties.

  1. Atomic structure and crystallization processes of amorphous (Co,Ni)–P metallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Modin, Evgeny B., E-mail: modin.eb@dvfu.ru [Far Eastern Federal University, Shukhanova 8, Vladivostok 690950 (Russian Federation); Pustovalov, Evgeny V.; Fedorets, Aleksander N.; Dubinets, Aleksander V.; Grudin, Boris N.; Plotnikov, Vladimir S. [Far Eastern Federal University, Shukhanova 8, Vladivostok 690950 (Russian Federation); Grabchikov, Sergey S. [Scientific and Practical Centre of Material Science, Belarus National Academy of Sciences, P. Brovki 19, Minsk 220072 (Belarus)

    2015-08-25

    Highlights: • The CoP–CoNiP amorphous alloys were studied by the Cs-corrected high resolution transmission electron microscopy. • In situ heating experiments showed that crystallization starts at 200–250 °C on the network frame and cell boundaries. • Crystal growth occurs at the free surface, then the remaining material in the volume is crystallized. • Adding nickel to the CoP alloy leads to higher thermal stability. • At the beginning of crystallization there are high diffusion coefficients, 1.2–2.4 ∗ 10{sup −18} m{sup 2}/s at 250 °C. - Abstract: This work concerns the in situ investigation of the atomic structure of (Co,Ni)–P alloys during relaxation and crystallization by high resolution transmission electron microscopy. The CoP–CoNiP alloys, in the initial state, have a hierarchical network-like disordered structure. Crystallization starts at 200–250 °C on the network frame and cell boundaries. In the early stages, crystal growth occurs at the free surface, then the remaining material in the volume is crystallized. The diffusion coefficient at the start of crystallization is 1.2–2.4 × 10{sup −18} m{sup 2}/s at 250 °C and we assume that the high diffusion speed is due to surface diffusion.

  2. Atomic structure and crystallization processes of amorphous (Co,Ni)–P metallic alloy

    International Nuclear Information System (INIS)

    Highlights: • The CoP–CoNiP amorphous alloys were studied by the Cs-corrected high resolution transmission electron microscopy. • In situ heating experiments showed that crystallization starts at 200–250 °C on the network frame and cell boundaries. • Crystal growth occurs at the free surface, then the remaining material in the volume is crystallized. • Adding nickel to the CoP alloy leads to higher thermal stability. • At the beginning of crystallization there are high diffusion coefficients, 1.2–2.4 ∗ 10−18 m2/s at 250 °C. - Abstract: This work concerns the in situ investigation of the atomic structure of (Co,Ni)–P alloys during relaxation and crystallization by high resolution transmission electron microscopy. The CoP–CoNiP alloys, in the initial state, have a hierarchical network-like disordered structure. Crystallization starts at 200–250 °C on the network frame and cell boundaries. In the early stages, crystal growth occurs at the free surface, then the remaining material in the volume is crystallized. The diffusion coefficient at the start of crystallization is 1.2–2.4 × 10−18 m2/s at 250 °C and we assume that the high diffusion speed is due to surface diffusion

  3. Effect of the nanocrystallization of amorphous soft magnetic Fe-P-Nb alloys on corrosion resistance in a damp SO2-polluted atmosphere

    Science.gov (United States)

    Vavilova, V. V.; Zabolotnyi, V. T.; Korneev, V. P.; Anosova, M. O.; Baldokhin, Yu. V.

    2014-09-01

    The effect of the nanocrystallization of amorphous soft magnetic Fe-P-Nb alloys on their electrochemical behavior in a damp SO2-polluted industrial atmosphere is studied. It is shown that their electro-chemical characteristics shit toward positive values when the phosphorus content in the Fe-P-Nb alloys increases and when they undergo nanocrystallization from an amorphous state.

  4. Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder

    Directory of Open Access Journals (Sweden)

    Haris Rudianto

    2015-01-01

    Full Text Available Sintering of light aluminium alloys powder has been investigated as a way to substitute steels in automotive and aerospace industries. Premix Al-5.5Zn-2.5Mg-0.5Cu composite powder called Alumix 431D was analyzed in this research. Sintering was carried out under ultra high purity nitrogen gas and before reaching sintering temperature, green samples were delubricated at 400°C for 30 min. The powder possesses high sinterability by reaching 96% relative density at 580°C sintering temperature. Formation of liquid phase seems to support achieving high sintering density. Optimum mechanical properties also were obtained under those conditions. T6 heat treatment was done to improve the mechanical properties by formation of precipitation strengthening, and MgZn2 appears to be dominant strengthening precipitate. X-ray diffraction, optical microscopy, and SEM-EDS were used to characterize powder, and sintered and heat treated samples.

  5. Study of α-phase precipitation on crystallization of Fe88B12 amorphous alloy by NMR method

    International Nuclear Information System (INIS)

    NMR method is used to study processes, occurring at heating of Fe88B12 amorphous alloy to determine the possibility of preparation of supersaturated boron solid solution in α-iron. Samples in the form of 15-25 mcm thickness tape were prepared by means of spinning. Crystallization of amorphous matrix begins over 593 K and passes two stages. α-Fe precipitates during the first stage. Crystallization second stage starts over 723 K and results in essential structural variations. At this stage the residual amorphous matrix is crystallized with formation of metastable tetragonal boride Fe3B. Thus, one may conclude, that boron eurichment of amorphous matrix at heating results in change of orthorhombic Fe3B type short-range order for tetragonal F3B. At 730 K residual amorphous phase approaches stoichiometric boride-Fe3B-composition

  6. Sample-Size Effects on the Compression Behavior of a Ni-BASED Amorphous Alloy

    Science.gov (United States)

    Liang, Weizhong; Zhao, Guogang; Wu, Linzhi; Yu, Hongjun; Li, Ming; Zhang, Lin

    Ni42Cu5Ti20Zr21.5Al8Si3.5 bulk metallic glasses rods with diameters of 1 mm and 3 mm, were prepared by arc melting of composing elements in a Ti-gettered argon atmosphere. The compressive deformation and fracture behavior of the amorphous alloy samples with different size were investigated by testing machine and scanning electron microscope. The compressive stress-strain curves of 1 mm and 3 mm samples exhibited 4.5% and 0% plastic strain, while the compressive fracture strength for 1 mm and 3 mm rod is 4691 MPa and 2631 MPa, respectively. The compressive fracture surface of different size sample consisted of shear zone and non-shear one. Typical vein patterns with some melting drops can be seen on the shear region of 1 mm rod, while fish-bone shape patterns can be observed on 3 mm specimen surface. Some interesting different spacing periodic ripples existed on the non-shear zone of 1 and 3 mm rods. On the side surface of 1 mm sample, high density of shear bands was observed. The skip of shear bands can be seen on 1 mm sample surface. The mechanisms of the effect of sample size on fracture strength and plasticity of the Ni-based amorphous alloy are discussed.

  7. Crystallization of Fe83B17 amorphous alloy by electric pulses produced by a capacitor discharge

    International Nuclear Information System (INIS)

    Heating of conductive materials by electric current is used in many technological processes. Application of electric pulses to metallic glasses induces their fast crystallization, which is an interesting and complex phenomenon. In this work, crystallization of the Fe83B17 amorphous alloy induced by pulses of electric current produced has been studied using X-ray diffraction and transmission electron microscopy. Ribbons of the alloy were directly subjected to single pulses of electric current 250 μs long formed by a capacitor discharge. As the value of ∫I2dt was increased from 0.33 to 2.00 A2 s, different crystallization stages could be observed. The crystallization began through the formation of the nuclei of α-Fe. At high values of ∫I2dt, α-Fe and tetragonal and orthorhombic Fe3B and Fe23B6 were detected in the crystallized ribbons with crystallites of about 50 nm. Thermal annealing of the ribbons at 600 C for 2 min resulted in the formation of α-Fe and tetragonal Fe3B. It was concluded that pulses of electric current produced by a capacitor discharge induced transformation of the Fe83B17 amorphous phase into metastable crystalline products. (orig.)

  8. Room-temperature amorphous alloy field-effect transistor exhibiting particle and wave electronic transport

    International Nuclear Information System (INIS)

    The realization of room-temperature macroscopic field effect transistors (FETs) will lead to new epoch-making possibilities for electronic applications. The Id-Vg characteristics of the millimeter-sized aluminum-oxide amorphous alloy (Ni0.36Nb0.24Zr0.40)90H10 FETs were measured at a gate-drain bias voltage of 0–60 μV in nonmagnetic conditions and under a magnetic fields at room temperature. Application of dc voltages to the gate electrode resulted in the transistor exhibiting one-electron Coulomb oscillation with a period of 0.28 mV, Fabry-Perot interference with a period of 2.35 μV under nonmagnetic conditions, and a Fano effect with a period of 0.26 mV for Vg and 0.2 T under a magnetic field. The realization of a low-energy controllable device made from millimeter-sized Ni-Nb-Zr-H amorphous alloy throws new light on cluster electronics

  9. Room-temperature amorphous alloy field-effect transistor exhibiting particle and wave electronic transport

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, M., E-mail: fukuhara@niche.tohoku.ac.jp [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan); Kawarada, H. [Research and Development Center, Waseda University, Tokyo 162-0041 (Japan)

    2015-02-28

    The realization of room-temperature macroscopic field effect transistors (FETs) will lead to new epoch-making possibilities for electronic applications. The I{sub d}-V{sub g} characteristics of the millimeter-sized aluminum-oxide amorphous alloy (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} FETs were measured at a gate-drain bias voltage of 0–60 μV in nonmagnetic conditions and under a magnetic fields at room temperature. Application of dc voltages to the gate electrode resulted in the transistor exhibiting one-electron Coulomb oscillation with a period of 0.28 mV, Fabry-Perot interference with a period of 2.35 μV under nonmagnetic conditions, and a Fano effect with a period of 0.26 mV for Vg and 0.2 T under a magnetic field. The realization of a low-energy controllable device made from millimeter-sized Ni-Nb-Zr-H amorphous alloy throws new light on cluster electronics.

  10. Design and development of powder processed Fe-P based alloys

    International Nuclear Information System (INIS)

    Highlights: → The forming technique does not require any binder. Thus the system remains uncontaminated. → The use of ceramic protective coating eliminates the need of hydrogen protective atmosphere during heating. → Combined application of glassy ceramic coating and use of graphite as a reducing agent has lead to economy in P/M processing. → The technology developed in the present investigation showed very low coercivity and total loss values. -- Abstract: The present investigation deals with designing Fe, Fe-P binary and Fe-P-Si ternary alloys produced by an in-house developed powder metallurgical technique based on 'Hot Powder Preform Forging'. Proper soaking of preforms at high temperature (1050 oC) eliminates iron-phosphide eutectic and brings entire phosphorus into solution in iron. Attempting hot forging thereafter completely eliminates hot as well as cold shortness and thereby helps to form these preforms (alloys) into very thin sheets of 0.5 mm. The use of costly hydrogen atmosphere during sintering has been eliminated by the addition of carbon as a reducing agent to form CO gas within the compact by reacting with oxygen of iron powder particles. The glassy ceramic coating applied over the compact serves as a protective coating to avoid atmospheric oxygen attack over the compact held at high temperature. These alloys so formed were subjected to density examination at various stages. Microstructural study has been carried out to estimate the grain size, volume percentage of porosity in the alloys, and uniform distribution of phosphorus and silicon in an iron matrix. X-ray diffraction studies of these alloys revealed the presence of only ferrite as product phase. Addition of alloying elements such as P and Si has improved the resistivity and magnetic properties of iron. Fe-0.07C-0.2O-0.3P-0.5Si alloy showed a resistivity as high as 31.7 μΩ cm. Coercivity values of the alloys ranged from 0.51 to 1.98 Oe. The total magnetic loss of Fe-0.07C-0.2O-0.3P

  11. Dynamic magnetic characteristics of Fe78Si13B9 amorphous alloy subjected to operating temperature

    Science.gov (United States)

    He, Aina; Wang, Anding; Yue, Shiqiang; Zhao, Chengliang; Chang, Chuntao; Men, He; Wang, Xinmin; Li, Run-Wei

    2016-06-01

    The operating temperature dependence of dynamic magnetic characteristics of the annealed Fe78Si13B9 amorphous alloy core was systematically investigated. The core loss, magnetic induction intensity and complex permeability of the amorphous core were analyzed by means of AC B-H loop tracer and impedance analyzer. It is found that the operating temperature below 403 K has little impact on core loss when the induction (B) is less than 1.25 T. As B becomes higher, core loss measured at high temperature becomes higher. For the cores measured at power frequency, the B at 80 A/m and the coercivity (Hc) at 1 T decline slightly as the temperature goes up. Furthermore, the real part of permeability (μ‧) increases with the rise of temperature. The imaginary part of permeability (μ″) maxima shifts to lower frequency side with increasing temperature, indicating the magnetic relaxation behavior in the sample. In addition, with the rise in the operating temperature of the annealed amorphous core, the relaxation time tends to increase.

  12. Amorphous structure and properties in laser-clad Ni-Cr-Al coating on Al-Si alloy

    Science.gov (United States)

    Liang, Gongying; Wong, T. T.; Su, J. Y.; Woo, C. H.

    1999-09-01

    A Ni-Cr-Al coating was clad by a 5 kW CO2 laser with different laser power on Al-Si alloy. Using transmission electron microscopy, a mixing microstructure containing Ni- based amorphous structures was observed in the laser clad zones. As the uniformity of chemical composition and temperature is poor in the laser cladding, the amorphous structure with some Ni3Al crystals coexisted in the cladding. According to the morphologies of Ni-based amorphous structures, the amorphous structure existed not only in the net-like boundaries surrounding the granular structure but also in the granular structure. The microhardness of the mixture amorphous structure is between HV 600 - 800, which is lower than that of crystal phases in the coating. A differential thermal analysis showed that Ni- based amorphous structure exhibits a higher initial crystallizing temperature (about 588 degree(s)C), which is slightly higher than that of the eutectic temperature of Al- Si alloy. The wear experimental results showed that some amorphous structure exist in the laser cladding can reduce the peeling of the granular phases from matrix, and improve the its wear resistance.

  13. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I. E., E-mail: andersoni@ameslab.gov; Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J. [Ames Laboratory (USDOE), Iowa State University, Ames, Iowa 50011 (United States)

    2015-05-07

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250 °C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. While a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  14. Preparation of porous U-10%Mo alloy by powder metallurgy and its microstructure characterization

    International Nuclear Information System (INIS)

    U-Mo alloy is one of candidates of metallic fuel for advanced nuclear reactor due to its good irradiation behavior. Reasonably analysis suggests that the irradiation swell of U-Mo alloy can be decreased by introducing homogeneously distributed voids, because they can accommodate gaseous fission products. The process of preparing low density U-Mo alloy by powder metallurgy was described, including preparing low density bulk materials by pressing and vacuum sintering. A serial of U-10%Mo alloys with different densities were obtained and the microstructure was analyzed by optical microscopy (OM) and scanning electron microscopy (SEM). It is proved that the density of sample increases with sinister time under 1100℃. The void ratio can be controlled by adjusting sinister process conveniently. (authors)

  15. Microstructural features, texture and strengthening mechanisms of nanostructured AA6063 alloy processed by powder metallurgy

    International Nuclear Information System (INIS)

    Research highlights: → Nanostructured AA6063 (NS-Al) alloy contains Cu and P texture components. → The microstructure consists of nano-size grains and ultrafine grains (200-400 nm). → NS-Al exhibits a lower work hardening compared to coarse-grained Al alloy. → Grain boundary strengthening mechanism plays an important role for NS-Al. - Abstract: Nanostructured AA6063 (NS-Al) powder with an average grain size of ∼100 nm was synthesized by high-energy attrition milling of gas-atomized AA6063 powder followed by hot extrusion. The microstructural features of the consolidated specimen were studied by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) techniques and compared with those of coarse-grained AA6063 (CG-Al) produced by hot powder extrusion of gas-atomized powder (without using mechanical milling). The consolidated NS-Al alloy consisted of elongated ultrafine grains (aspect ratio of ∼2.9) and equiaxed nanostructured grains. A high fraction (∼78%) of high-angle grain boundaries with average misorientation angle of 33o was noticed. Microtexture evaluation by plotting pole-figures and orientation distribution function (ODF) analysis showed Copper and P texture components for both the consolidated Al alloys. Tensile test at room temperature and microhardness measurement revealed that a significant improvement in the strength of AA6063 alloy is obtained through refinement of the grain structure. The strengthening mechanisms are discussed based on the dislocation-based models. The role of high-angle and low-angle grain boundaries on the strengthening mechanisms is discussed.

  16. X-ray diffraction study of the structure Ti{sub 1-x}Ni{sub x} amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Barmin, Yu. [State Technical Univ., Voronezh (Russian Federation). Dept. of Solid State Physics; Doonichev, I.; Kosilov, A. [Dept. of Physics of Metals, State Technical Univ., Voronezh (Russian Federation)

    2000-07-01

    The Ti-Ni amorphous alloys were prepared by high rate sputter-deposition. The Ti{sub 1-x}Ni{sub x} (x = 0,61; 0,65; 0,74) alloys structure was investigated by the X-ray diffraction method. The topological short-range order parameters (the radius of the first coordination sphere and coordination number) was established. The experimental data were compared with the results of computer simulation. (orig.)

  17. Microstructural evolution and mechanical properties of powder metallurgy Ti–6Al–4V alloy based on heat response

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ruipeng [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xu, Lei, E-mail: lxu@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wu, Jie; Yang, Rui [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zong, Bernie Y. [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China)

    2015-07-15

    In present work, powder metallurgy (PM) Ti–6Al–4V alloy was produced by hot isostatic pressing (HIPing) from gas atomized powder. Various HIPing conditions and heat treatments were used to investigate the heat response of PM Ti–6Al–4V alloy. The results show that the optimization of HIPing parameters is temperature from 920 to 940 °C, pressure over 120 MPa and holding for 3 h. The microstructure of powder compact changes significantly after different heat treatments, while there was no obvious difference in tensile properties. Temperature induced porosity (TIP) in powder compact occurred after annealing at 930 °C for 1 h plus aging. The TIP has no obvious effects on tensile, impact, and fracture toughness properties of powder compact, but the TIP has an adverse effect on fatigue property, especially at shorter fatigue lives. In order to eliminate the TIP in powder compact, several probable solutions were suggested for the application of titanium powder components.

  18. Microstructural evolution and mechanical properties of powder metallurgy Ti–6Al–4V alloy based on heat response

    International Nuclear Information System (INIS)

    In present work, powder metallurgy (PM) Ti–6Al–4V alloy was produced by hot isostatic pressing (HIPing) from gas atomized powder. Various HIPing conditions and heat treatments were used to investigate the heat response of PM Ti–6Al–4V alloy. The results show that the optimization of HIPing parameters is temperature from 920 to 940 °C, pressure over 120 MPa and holding for 3 h. The microstructure of powder compact changes significantly after different heat treatments, while there was no obvious difference in tensile properties. Temperature induced porosity (TIP) in powder compact occurred after annealing at 930 °C for 1 h plus aging. The TIP has no obvious effects on tensile, impact, and fracture toughness properties of powder compact, but the TIP has an adverse effect on fatigue property, especially at shorter fatigue lives. In order to eliminate the TIP in powder compact, several probable solutions were suggested for the application of titanium powder components

  19. The Mössbauer spectra of amorphous Fe-W powder

    Czech Academy of Sciences Publication Activity Database

    Minić, D. M.; Žák, Tomáš; Schneeweiss, Oldřich; Ristić, I. S.

    Belgrade : University of Belgrade, 2002, s. 496-498. [Physical Chemistry /6./. Belgrade (YU), 12.03.2002-14.03.2002] R&D Projects: GA ČR GA102/01/1335 Institutional research plan: CEZ:AV0Z2041904 Keywords : Mössbauer spectroscopy * amorphous FeW Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Microstructural and mechanical properties analysis of an aluminium matrix composite reinforced with the amorphous alloy Al{sub 87.5}Ni{sub 4}Sm{sub 8.5} consolidated by hot extrusion; Propriedades mecanicas e microestruturais de um composito com matrix de aluminio e reforco amorfo de Al{sub 87.5}Ni{sub 4}Sm{sub 8.5} consolidado por extrusao a quente por extrusao a quente

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, L.C.R.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Peres, M.M., E-mail: peresmm@yahoo.com.b [Universidade Federal de Itajuba (UNIFEI), Itabira, MG (Brazil)

    2010-07-01

    The aim of this work is the microstructure and the mechanical properties analysis of an aluminium matrix composite reinforced with the Al{sub 87.5}Ni{sub 4}Sm{sub 8.5} amorphous alloy. The amorphous alloy was produced by melt-spinning and fragmented in powder particles by milling. Pure aluminium power was moistured with amorphous powder in a proportion of 80:20 (% weight) and processed by milling using 350 rpm during 30 minutes for the generation of a homogeneous composite powder. This product was consolidated by extrusion at 235 deg C, ram speed of 2mm/min and extrusion ratio of 7/1, generating a compact and cylindrical bar with 3 mm of width. The result sample was characterized by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC) and by X-Ray Diffraction (XRD). Microhardness and compression tests show an improvement on the mechanical properties. (author)

  1. Characterization of a NiTiCu shape memory alloy produced by powder technology

    Directory of Open Access Journals (Sweden)

    J. Van Humbeeck

    2006-04-01

    Full Text Available Purpose: The main aim of presented work was to find a sintering conditions (temperature and time for manufacturing of a Ni(1-XTi50CuX alloy (where X = 2; 3; 5; 10; 15; 20 and 25at%. by powder technology.Design/methodology/approach: Various conditions of sintering considering temperature and time were applied to compacted powders. Sintering temperature varied from 850°C to 1100°C and sintering time was chosen from a range of 5 to 50 hours, respectively. Microstructure, structure, chemical composition and thermal behavior of sintered blends were studied by scanning electron microscopy (SEM, differential scanning calorimetry (DSC and X-ray diffraction.Findings: Homogenous alloys, containing lower addition of copper (less than 10 at%, were sintered at 940°C for 7 hours. For higher copper content (10-25at% lower sintering temperature 8500C but longer sintering time was preferred (20 hours. The quality of the alloy was characterized by porosity and density. In sintered blends non-transformable phases Ti2(Ni,Cu and (Ni,Cu3Ti, which posses the crystal structure of Ti2Ni and Cu3Ti respectively, were found. Despite the fact that same sintering conditions lead to an increase of inhomogeneity all sintered alloys reveal the presence of the reversible martensitic transformation.Practical implications: Obtained results allowed to optimize sintering condition for NiTiCu shape memory alloy manufacturing.Originality/value: A NiTiCu shape memory alloy, with various content of copper, was successfully produced by powder metallurgy.

  2. In-situ Formation of Ti Alloys via Powder Injection Molding

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Nyberg, Eric A.; Weil, K. Scott; Miller, Megan R.

    2005-01-01

    We have developed a unique blend of powder injection molding (PIM) feedstock materials in which only a small volume fraction of binder (< 8%) is required; the remainder of the mixture consists of the metal powder and a solid aromatic solvent. Because of the nature of the decomposition in the binder system and the relatively small amount used, the binder can be completely removed from the molded component during heat treatment. Here, we present results from an initial study on in-situ titanium alloy formation in near-net shape components manufactured by this novel PIM technique.

  3. Characterization of a NiTiCu shape memory alloy produced by powder technology

    OpenAIRE

    Van Humbeeck, J.; Goryczka, T.

    2006-01-01

    Purpose: The main aim of presented work was to find a sintering conditions (temperature and time) for manufacturing of a Ni(1-X)Ti50CuX alloy (where X = 2; 3; 5; 10; 15; 20 and 25at%.) by powder technology.Design/methodology/approach: Various conditions of sintering considering temperature and time were applied to compacted powders. Sintering temperature varied from 850°C to 1100°C and sintering time was chosen from a range of 5 to 50 hours, respectively. Microstructure, structure, chemical c...

  4. Sintered stainless steel surface alloyed with Si3N4 powder

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2011-07-01

    Full Text Available Purpose: The goal of this study was to investigate effects of laser surface alloying with Si3N4 powder on the microstructural changes and properties of vacuum sintered stainless steels, both austenitic X2CrNi17-12-2, ferritic X6Cr13 and duplex X2CrNiMo22-8-2.Design/methodology/approach: High power diode laser (HPDL was applied to surface modification of sintered stainless steels with Si3N4 powder. The influence of laser alloying conditions on the width, penetration depth of alloyed surface layer were studied and analysed via FEM simulation. The microstructure of alloyed layers was examined using light and scanning electron microscopy as well as X-ray diffraction. The microhardness and wear resistance of studied surface layers were also evaluated.Findings: The hardness increased with addition of Si3N4 due to strong solution hardening effect of nitrogen and silicon that dissolved in the steel matrix during laser alloying. The strong austenite stabilizer effect of nitrogen was observed in ferritic stainless steel that revealed duplex microstructure. The hardness increased with addition of Si3N4 due to strong solution hardening effect of nitrogen and silicon dissolved in the steel matrix during laser alloying. The hardening effect of Si3N4 was strongest in case of ferritic stainless steel where microhardness increased to 450 HV0.1 for 2.1 kW of laser beam power. The duplex stainless steel shows the regular microhardness on the whole penetration depth. Laser surface alloying with Si3N4 improved wear resistance of sintered stainless steels compared to not processed stainless steel as well as comparing layers prepared as machined grooves and surface with pre-coated paste.Practical implications: Laser surface alloying with Si3N4 powder can be an efficient method of surface layer hardening of sintered stainless steels and produce improvement of surface layer properties in terms of hardness and wear resistance. Moreover, application of high power diode

  5. Rapid nanocrystallization of soft-magnetic amorphous alloys using microwave induction heating

    International Nuclear Information System (INIS)

    The crystallization of Fe73Nb3Cu1Si16B7 alloy during microwave heating was investigated in situ using synchrotron radiation powder diffraction. The phase transformation comprises a primary nanocrystallization stage and a final microcrystallization step. We provide evidence for a strong enhancement of the transformation kinetics. Microwave heating occurs as a result of both ohmic and magnetic losses induced by eddy currents, which defines a volumetric microwave induction heating process. Nanocrystallization is completed within 5 s, while full crystallization is achieved in less than 10 s

  6. Compact Process for the Preparation of Microfine Spherical High-Niobium-Containing TiAl Alloy Powders

    Science.gov (United States)

    Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.

    2015-03-01

    High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.

  7. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti41.5Zr2.5Hf5Cu42.5-xNi7.5Si1Sn x (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti41.5Zr2.5Hf5Cu37.5Ni7.5Si1Sn5 alloy. The activation energies for glass transition and crystallization for Ti41.5Zr2.5Hf5Cu37.5Ni7.5Si1Sn5 amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti41.5Zr2.5Hf5Cu37.5Ni7.5Si1Sn5 alloy also possesses superior mechanical properties

  8. Tensile and impact behaviour of sinter-forged Cr, Ni and Mo alloyed powder metallurgy steels

    International Nuclear Information System (INIS)

    Sintered and forged low-alloy P/M steels containing Cr, Ni and Mo were subjected to tensile, hardness and impact tests, in order to understand the influence of the alloying elements and microstructure on their mechanical properties. Elemental powders of atomized iron, graphite, chromium, nickel and molybdenum were mixed in suitable proportions using a ball mill, compacted and sintered in order to yield the following alloy compositions: Fe-0.2%C, Fe-0.2%C-1%Cr, Fe-0.2%C-1%Cr-2%Ni, Fe-0.2%C-2%Ni and Fe-0.2%C-2%Ni-1.5%Mo. Cylindrical compacts of 24 mm diameter and 32 mm height were prepared from the powder mixes in a 1000 kN hydraulic press using suitable cylindrical die-punch combination. Sintering of the ceramic-coated cylindrical preforms was carried out at 1000 ± 10 oC in a muffle furnace for a period of 120 min. Immediately after sintering, the cylindrical compacts were hot upset forged and drawn into square cross-section bars of density values to near-theoretical using a 2000 kN friction screw press. The size of the bars was maintained as 10 x 10 x 110 mm for preparing tensile specimen and 12 x 12 x 70 mm for impact specimen. Standard tensile and impact specimens were machined off from the forged square rods. Standard procedure was followed for conducting tensile test and impact test on the forged alloys. Hardness of the hot forged alloys was also measured using Rockwell hardness tester. Microstructures of the alloys were examined for correlating with the mechanical properties. Fractographs of the fractured surfaces of the tensile specimens were obtained using a scanning electron microscope. From the present study, it is contended that the alloying elements Cr, Ni and Mo have strong influence on the tensile and impact properties of the low-alloy steels studied. Among all the five alloys considered, the steel with chromium addition has exhibited the highest tensile strength with the corresponding impact strength being the least. The same alloy has also been

  9. Glass formation in mechanical milled Ni-Ti-Zr-Sn pre-alloy powders

    International Nuclear Information System (INIS)

    Glass formation by mechanical milling was achieved in a multicomponent Ni-based alloy system. It was found that the milling time required for forming a fully glassy phase decreased with the increase in Zr content. The enhanced atomic size mismatch of constituents was responsible for the increase of glass forming ability of these alloys. The transformation from crystalline to glassy phase might be due to the destabilization of crystalline phase, induced by a combination of factors involving refinement of grain size, high pressure exerted to powders during repeated collision, and elastic mismatch energy.

  10. Rapidly solidified hypereutectic Al-Si alloys prepared by powder hot extrusion

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Rapidly solidified hypereutectic Al-Si alloys were prepared by powder hot extrusion. By eliminating vacuum degassing procedure, the fabrication routine was simplified. The tensile fracture mechanisms at room temperature and elevated temperature were investigated by SEM fractography. Compared with KS282 casting material, the tensile strength of rapidly solidified Al-Si alloy is greatly improved due to silicon particles refining while its density and coefficient of thermal expansion are lower than those of KS282. The wear resistance of RS AlSi is better than that of KS282.

  11. Powder metallurgical processing of self-passivating tungsten alloys for fusion first wall application

    International Nuclear Information System (INIS)

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten, presently the main candidate material for first wall armour of future fusion reactors. In case of a loss of coolant accident with simultaneous air ingress, a protective oxide scale will be formed on the surface of W avoiding the formation of volatile and radioactive WO3. Bulk WCr12Ti2.5 alloys were manufactured by mechanical alloying (MA) and hot isostatic pressing (HIP), and their properties compared to bulk WCr10Si10 alloys from previous work. The MA parameters were adjusted to obtain the best balance between lowest possible amount of contaminants and effective alloying of the elemental powders. After HIP, a density >99% is achieved for the WCr12Ti2.5 alloy and a very fine and homogeneous microstructure with grains in the submicron range is obtained. Unlike the WCr10Si10 material, no intergranular ODS phase inhibiting grain growth was detected. The thermal and mechanical properties of the WCr10Si10 material are dominated by the silicide (W,Cr)5Si3; it shows a sharp ductile-to brittle transition in the range 1273–1323 K. The thermal conductivity of the WCr12Ti2.5 alloy is close to 50 W/mK in the temperature range of operation; it exhibits significantly higher strength and lower DBTT – around 1170 K – than the WCr10Si10 material

  12. Effect of cobalt on the corrosion behaviour of amorphous Fe-Co-Cr-B-Si alloys in dilute mineral acids

    International Nuclear Information System (INIS)

    The aim of this paper was to investigate the effect of increasing cobalt content on the corrosion resistance of the Fe-Co-Cr-B-Si alloys in dilute mineral acids. The corrosion rates in 0.5N HCl, 1N HCl and 1N H2SO4 significantly decrease with an increase in cobalt content. The alloys with a larger amount of cobalt can passivate spontaneously. The high corrosion resistance of the Fe-Co-Cr-B-Si alloys is also due to the formation of chromium -enriched passive film. Generally, the corrosion resistance of chromium -bearing alloy is improved by alloying with various metalloids but it is lowered by addition of boron and silicon. The corrosion behaviour of the amorphous Fe75-xCoxCr1B7Si17 alloys obtained by the melt-spinning technique was studied using gravimetric method. The best results were obtained with Fe65Co10Cr1B7Si17 alloy. The studied amorphous alloy ribbons exhibit not only excellent physical properties which are useful for many electric and magnetic applications: magnetic sensors, power transformers, high frequency transformers, etc., but also a very good corrosion resistance which extend their application domain. (Author).

  13. Effect of Cu addition on the martensitic transformation of powder metallurgy processed Ti–Ni alloys

    International Nuclear Information System (INIS)

    Highlights: • Ms of Ti50Ni50 powders is 22 °C, while Ms of SPS-sintered porous bulk increases up to 50 °C. • Ms of Ti50Ni40Cu20 porous bulk is only 2 °C higher than that of the powders. • Recovered stain of porous TiNi and TiNiCu alloy is more than 1.5%. - Abstract: Ti50Ni50 and Ti50Ni30Cu20 powders were prepared by gas atomization and their transformation behaviors were examined by means of differential scanning calorimetry and X-ray diffraction. One-step B2–B19’ transformation occurred in Ti50Ni50 powders, while Ti50Ni30Cu20 powders showed B2–B19 transformation behavior. Porous bulks with 24% porosity were fabricated by spark plasma sintering. The martensitic transformation start temperature (50 °C) of Ti50Ni50 porous bulk is much higher than that (22 °C) of the as-solidified powders. However, the martensitic transformation start temperature (35 °C) of Ti50Ni30Cu20 porous bulk is almost the same as that (33 °C) of the powders. When the specimens were compressed to the strain of 8% and then unloaded, the residual strains of Ti50Ni50 and Ti50Ni30Cu20 alloy bulks were 3.95 and 3.7%, respectively. However, these residual strains were recovered up to 1.7% after heating by the shape memory phenomenon

  14. Fabrication of Sn-3.5Ag Eutectic Alloy Powder by Annealing Sub-Micrometer Sn@Ag Powder Prepared by Citric Acid-Assisted Ag Immersion Plating.

    Science.gov (United States)

    Chee, Sang-Soo; Choi, Eun Byeol; Lee, Jong-Hyun

    2015-11-01

    A Sn-3.5Ag eutectic alloy powder has been developed by chemically synthesizing sub-micrometer Sn@Ag powder at room temperature. This synthesis was achieved by first obtaining a sub-micrometer Sn powder for the core using a modified variant of the polyol method, and then coating this with a uniformly thin and continuous Ag layer through immersion plating in 5.20 mM citric acid. The citric acid was found to play multiple roles in the Ag coating process, acting as a chelating agent, a reducing agent and a stabilizer to ensure coating uniformity; and as such, the amount used has an immense influence on the coating quality of the Ag shells. It was later verified by transmission electron microscopy and X-ray diffraction analysis that the coated Ag layer transfers to the Sn core via diffusion to form an Ag3Sn phase at room temperature. Differential scanning calorimetry also revealed that the synthesized Sn@Ag powder is nearly transformed into Sn-3.5Ag eutectic alloy powder upon annealing three times at a temperature of up to 250 degrees C, as evidenced by a single melting peak at 220.5 degrees C. It was inferred from this that Sn-3.5Ag eutectic alloy powder can be successfully prepared through the synthesis of core Sn powders by a modified polyol method, immersion plating using citric acid, and annealing, in that order. PMID:26726525

  15. Microstructure and properties of liquid-phase sintered tungsten heavy alloys by using ultra-fine tungsten powders

    Institute of Scientific and Technical Information of China (English)

    于洋; 王尔德

    2004-01-01

    The microstructure and properties of liquid-phase sintered 93W-4.9Ni-2.1Fe tungsten heavy alloys using ultra-fine tungsten powders (medium particle size of 700 nm) and original tungsten powders (medium particle size of 3 μm) were investigated respectively. Commercial tungsten powders (original tungsten powders) were mechanically milled in a high-energy attritor mill for 35 h. Ultra-fine tungsten powders and commercial Ni, Fe powders were consolidated into green compacts by using CIP method and liquid-phase sintering at 1 465 ℃ for 30 min in the dissociated ammonia atmosphere. Liquid-phase sintered tungsten heavy alloys using ultra-fine tungsten powders exhibit full densification (above 99% in relative density) and higher strength and elongation compared with conventional liquidphase sintered alloys using original tungsten powders due to lower sintering temperature at 1 465 ℃ and short sintering time. The mechanical properties of sintered tungsten heavy alloy are found to be mainly dependent on the particles size of raw tungsten powders and liquid-phase sintering temperature.

  16. Structural study of Cu-Cr mechanical alloying powders

    International Nuclear Information System (INIS)

    The changes of grain size, micro strain, stacking fault probability, stacking fault energy and dislocations density on powder mixtures of copper with 1 and 3 weights after higher energy mechanical milling. The X-ray diffraction profile was analysed by Williamson-Hall (W-H) method. Grain size decreased with the increase of milling time, until values of 106 and 59 nm for 1 and 3 weight % Cr, respectively. As well micro strain increased with milling time. Stacking fault probability increased in function of milling time to value between 1x10''-3 -8x10''-3 for Cu-1 weighty Cr and 3x10''-3 -8x10''-3 for Cu-3 weight % Cr. The stacking fault energy decreased with milling time and amount of chromium. Finally, the dislocations density is between 1x10''14 -1x10''15 m/m''3. (Author) 29 refs

  17. Kinetics of crystallization of a Fe-based multicomponent amorphous alloy

    Indian Academy of Sciences (India)

    Arun Pratap; T Lilly Shanker Rao; Kinnary Patel; Mukesh Chawda

    2009-10-01

    The Fe-based multicomponent amorphous alloys (also referred to as metallic glasses) are known to exhibit soft magnetic properties and, it makes them important for many technological applications. However, metallic glasses are in a thermodynamically metastable state and in case of high temperature operating conditions, the thermally activated crystallization would be detrimental to their magnetic properties. The study of crystallization kinetics of metallic glasses gives useful insight about its thermal stability. In the present work, crystallization study of Fe67Co18B14Si1 (2605CO) metallic glass has been carried out using differential scanning calorimetry (DSC) technique. Mössbauer study has also been undertaken to know the phases formed during the crystallization process. The alloy shows two-stage crystallization. The activation energy has been derived using the Kissinger method. It is found to be equal to 220 kJ/mol and 349 kJ/mol for the first and second crystallization peaks, respectively. The Mössbauer study indicates the formation of -(Fe, Co) and (Fe, Co)3B phases in the alloy.

  18. Formation of ultra-thin amorphous conversion films on zinc alloy coatings

    International Nuclear Information System (INIS)

    Within the two parts of this contribution a detailed investigation of the nucleation and growth of ultra-thin amorphous conversion coatings on hot dip galvanised steel is reported. The first part deals with the composition and reactivity of the native ultra-thin oxyhydroxide films that are formed on the zinc alloy surface during the hot dip galvanising process due to the enrichment of aluminium at the outer surface of the alloy coating. Complimentary surface analytical techniques such as FT-IR-spectroscopy at grazing incidence and X-ray photo electron spectroscopy, high resolution AFM on selected grains to study the surface topography and cyclovoltammetry as well as quasi stationary current potential curves and Kelvin probe measurements to study surface ion and electron transfer reactions were applied. Changes in the chemical composition, the electronic properties and the morphology of the ultra-thin surface could thereby be analysed. The surface of the ZnAl alloy is composed of an about 3-4 nm thick mixed Zn and Al-oxyhydroxide layer with Zn-oxyhydroxide slightly enriched at the outermost surface. This mixed oxyhydroxide causes to a significant inhibition of electron transfer reactions. During alkaline cleaning the surface is nanoscopically roughened and the mixed oxyhydroxide is converted into an electro-conducting hydroxyl rich pure Zn-oxyhydroxide layer with a thickness of about 4 nm. In the second part of this paper the effect of the inorganic surface layer on the film formation is correlated with these findings

  19. In vitro metal ion release and biocompatibility of amorphous Mg67Zn28Ca5 alloy with/without gelatin coating

    International Nuclear Information System (INIS)

    Amorphous zinc-rich Mg–Zn–Ca alloys have exhibited good tissue compatibility and low hydrogen evolution in vivo. However, suboptimal cell–surface interaction on magnesium alloy surface observed in vitro could lead to reduced integration with host tissue for regenerative purpose. This study aims to improve cell–surface interaction of amorphous Mg67Zn28Ca5 alloy by coating a gelatin layer by electrospinning. Coated/uncoated alloys were immersed and extracted for 3 days under different CO2. The immersion results showed that pH and metal ion release in the alloy extracts were affected by gelatin coating and CO2, suggesting their roles in alloy biocorrosion and a mechanism has been proposed for the alloy–CO2 system with/without coating. Cytotoxicity results are evident that gelatin-coated alloy with 2-day crosslinking not only exhibited no indirect cytotoxicity, but also supported attachment of L929 and MG63 cell lines around/on the alloy with high viability. Therefore, amorphous Mg67Zn28Ca5 alloy coated with gelatin by electrospinning technique provides a useful method to improve alloy biocompatibility. - Highlights: • Electrospinning is a new method to coat amorphous Mg67Zn28Ca5 alloy with gelatin. • Gelatin-coated alloy has differential effect on pH and ion release at various CO2. • L929 cell proliferation correlates with Mg2+ level in alloy extracts. • Biomimetic gelatin coating significantly improves cell–surface interaction

  20. Effect of replacing RE and TM on magnetic properties and thermal stability of some Al–Ni-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Uporov, S.A., E-mail: segga@bk.ru [Institute of Metallurgy UB RAS, Ekaterinburg (Russian Federation); Uporova, N.S. [Ural State Pedagogical University, Ekaterinburg (Russian Federation); Bykov, V.A.; Kulikova, T.V.; Pryanichnikov, S.V. [Institute of Metallurgy UB RAS, Ekaterinburg (Russian Federation)

    2014-02-15

    Highlights: ► X-ray diffraction analysis of the quenched Al–Ni-based alloys revealed a clear prepeak. ► The amorphous alloys demonstrate the superparamagnetic behavior. ► The variation of the RE and TM caused the radical changes of thermal properties. -- Abstract: Amorphous ribbons Al{sub 86}Ni{sub 8}Ho{sub 6}, Al{sub 86}Ni{sub 8}Gd{sub 6} and Al{sub 86}Ni{sub 6}Co{sub 2}Gd{sub 4}Y{sub 2} were prepared by quenching from 1580–1600 K using spinning technique at a wheel speed of 32 m/s. X-ray diffraction (XRD) analysis of the quenched alloys revealed a clear prepeak located below the main amorphous peak. The specimens crystallize in three stages but glass transition temperature was not found. The crystalinity was calculated by both XRD and differential scanning calorimetry (DSC) methods for all samples. Magnetic properties of ribbons were investigated in wide ranges of temperature (T = 4–900 K) and magnetic field (up to 30 kOe) by Faraday method and vibration sample magnetometry (VSM). The amorphous alloys investigated have no magnetic ordering at low temperatures down to T = 4 K but demonstrate the superparamagnetic behavior. The magnetic properties are discussed in the frames of conception of existence the superparamagnetic clusters with ferrimagnetic ordering.

  1. Effect of replacing RE and TM on magnetic properties and thermal stability of some Al–Ni-based amorphous alloys

    International Nuclear Information System (INIS)

    Highlights: ► X-ray diffraction analysis of the quenched Al–Ni-based alloys revealed a clear prepeak. ► The amorphous alloys demonstrate the superparamagnetic behavior. ► The variation of the RE and TM caused the radical changes of thermal properties. -- Abstract: Amorphous ribbons Al86Ni8Ho6, Al86Ni8Gd6 and Al86Ni6Co2Gd4Y2 were prepared by quenching from 1580–1600 K using spinning technique at a wheel speed of 32 m/s. X-ray diffraction (XRD) analysis of the quenched alloys revealed a clear prepeak located below the main amorphous peak. The specimens crystallize in three stages but glass transition temperature was not found. The crystalinity was calculated by both XRD and differential scanning calorimetry (DSC) methods for all samples. Magnetic properties of ribbons were investigated in wide ranges of temperature (T = 4–900 K) and magnetic field (up to 30 kOe) by Faraday method and vibration sample magnetometry (VSM). The amorphous alloys investigated have no magnetic ordering at low temperatures down to T = 4 K but demonstrate the superparamagnetic behavior. The magnetic properties are discussed in the frames of conception of existence the superparamagnetic clusters with ferrimagnetic ordering

  2. Effect of hydrogen on the properties of amorphous alloys 'finemet' type: PEN-X effect

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, L.V.; Skryabina, N.Ye. [Perm State Univ. (Russian Federation)

    1999-09-01

    Elastic properties of the amorphous metallic alloys based on iron and cobalt were found to decrease after hydrogenation, and to recover upon subsequent storage at 295 K. The possible causes for this unusual behaviour are discussed on the basis of measurements of electrical resistance and magnetic susceptibility, as well as X-ray diffraction data.

  3. Plasma resonance of binary amorphous and crystalline Al-transition metal alloys: Experiments and ab initio calculations

    International Nuclear Information System (INIS)

    Highlights: • A comprehensive study of the plasma resonance of amorphous Al-transition metal alloys is given. • A characteristic fingerprint for the plasma energy versus concentration is presented. • The experimental results are supported by DFT calculations. • Amorphous alloys are found to be model systems for studying the influence of interband transitions on the plasma resonance. - Abstract: We report on measurements of the volume plasmon loss energy EP by electron energy loss spectroscopy of binary amorphous Al–(Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Pd, Ce) alloys. In these systems the measured EP can be described by an effective valence of the transition metal independent of the particular transition metal. By exploiting ab initio calculations for the crystalline counterparts in the case of Al–(Ti, V, Fe, Ni) we show that this behavior can be understood in terms of the full dielectric function taking into account intra- and interband transitions mainly due to the presence of d-states close to the Fermi energy. This is validated by the comparison with published experimental data on binary Al systems with the non-transition metals Be, Mg, Ca, and Zn. Due to the absence of composition-dependent structural phase changes, amorphous alloys are found to be model-like systems for studying the influence of interband transitions on the plasma resonance

  4. Nanocrystal Growth in Thermally Treated Fe75Ni2Si8B13C2 Amorphous Alloy

    Czech Academy of Sciences Publication Activity Database

    Minić, Dragica M.; Blagojević, V.; Minić, Dušan M.; David, Bohumil; Pizúrová, Naděžda; Žák, Tomáš

    43A, č. 9 (2012), s. 3062-3069. ISSN 1073-5623 R&D Projects: GA MŠk 1M0512 Institutional support: RVO:68081723 Keywords : Nanocrystal growth * Fe75Ni2Si8B13C2 * Amorphous alloy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.627, year: 2012

  5. Plasma resonance of binary amorphous and crystalline Al-transition metal alloys: Experiments and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Stiehler, M., E-mail: martin.stiehler@mailbox.org [Technische Universität Chemnitz, Institute of Physics, 09107 Chemnitz (Germany); Kaltenborn, S. [Physics Department and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern (Germany); Gillani, S.S.A.; Pudwell, P. [Technische Universität Chemnitz, Institute of Physics, 09107 Chemnitz (Germany); Schneider, H.C., E-mail: hcsch@physik.uni-kl.de [Physics Department and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern (Germany); Häussler, P. [Technische Universität Chemnitz, Institute of Physics, 09107 Chemnitz (Germany)

    2015-07-15

    Highlights: • A comprehensive study of the plasma resonance of amorphous Al-transition metal alloys is given. • A characteristic fingerprint for the plasma energy versus concentration is presented. • The experimental results are supported by DFT calculations. • Amorphous alloys are found to be model systems for studying the influence of interband transitions on the plasma resonance. - Abstract: We report on measurements of the volume plasmon loss energy E{sub P} by electron energy loss spectroscopy of binary amorphous Al–(Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Pd, Ce) alloys. In these systems the measured E{sub P} can be described by an effective valence of the transition metal independent of the particular transition metal. By exploiting ab initio calculations for the crystalline counterparts in the case of Al–(Ti, V, Fe, Ni) we show that this behavior can be understood in terms of the full dielectric function taking into account intra- and interband transitions mainly due to the presence of d-states close to the Fermi energy. This is validated by the comparison with published experimental data on binary Al systems with the non-transition metals Be, Mg, Ca, and Zn. Due to the absence of composition-dependent structural phase changes, amorphous alloys are found to be model-like systems for studying the influence of interband transitions on the plasma resonance.

  6. Thermal treatment of the amorphous base alloy Fe 2605SA1, analysis of its defects and microhardness

    International Nuclear Information System (INIS)

    By means of the use of the positron lifetime technique those characteristics of the present crystalline defects in an amorphous base alloy Fe (SA1) are determined, when this is subjected to thermal treatments from 293 K until 808 K. Also, some results about the microhardness and electric resistivity are presented. (Author)

  7. Synthesis and characterization of Mg-based amorphous alloys and their use for decolorization of Azo dyes

    International Nuclear Information System (INIS)

    Mg-based alloys are light weight and have wide range of applications in the automotive industry. These alloys are widely used because of their very attractive physical and mechanical properties and corrosion resistance. The properties and applications can be further improved by changing the nature of materials from crystalline to amorphous. In this study, melt spun ribbons (MSRs) of Mg70Zn25Ca5 Mg68Zn27Ca5 alloys were prepared by melt spinning technique by using 3-4N pure metals. Characterization of the samples was done by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and energy dispersive x-ray analyzer (EDAX). Microstructural investigations were conducted by using scanning electron microscopy (SEM), atomic force microscopy (AFM) as well as optical and stereo scan microscopy techniques. DSC results showed multistage crystallization. Activation energy was found to be 225 kJ/mol by Kissinger method indicating good thermal stability against crystallization. XRD, DSC, SEM and EDS (energy dispersive spectroscopy) results are agreed very well. In order to study decolorization, the MSRs of Mg70Zn25Ca5 Mg68Zn27Ca5 alloys were treated repeatedly with various azo dyes at room temperature. In order to compare the results, MSRs of amorphous Zr- and Ni-based metallic glasses were also treated. Reaction of MSRs with azo dyes results in their decolorization in a few hours. Decolorization of azo dyes takes place by introducing amorphous MSRs which results in breaking the -N=N- bonds that exist in dye contents. It is concluded that Mg-based alloys are useful for paint and dye industries and will be beneficial to control water pollution. Comparison of results showed that Mg-based alloys are more efficient than Zr- and Ni-based amorphous alloys for decolorization of azo dyes

  8. Synthesis and characterization of Mg-based amorphous alloys and their use for decolorization of Azo dyes

    International Nuclear Information System (INIS)

    Mg-based alloys are light weight and have wide range of applications in the automotive industry. These alloys are widely used because of their very attractive physical and mechanical properties and corrosion resistance. The properties and applications can be further improved by changing the nature of materials from crystalline to amorphous. In this study, melt spun ribbons (MSRs) of Mg/sub 70/Zn/sub 25/Ca/sub 5/ Mg/sub 68/Zn/sub 27/Ca/sub 5/ alloys were prepared by melt spinning technique by using 3-4N pure metals. Characterization of the samples was done by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and energy dispersive x-ray analyzer (EDAX). Microstructural investigations were conducted by using scanning electron microscopy (SEM), atomic force microscopy (AFM) as well as optical and stereo scan microscopy techniques. DSC results showed multistage crystallization. Activation energy was found to be 225 kJ/mol by Kissinger method indicating good thermal stability against crystallization. XRD, DSC, SEM and EDS (energy dispersive spectroscopy) results are agreed very well. In order to study decolorization, the MSRs of Mg/sub 70/Zn/sub 25/Ca/sub 5/ Mg/sub 68/Zn/sub 27/Ca/sub 5/ alloys were treated repeatedly with various azo dyes at room temperature. In order to compare the results, MSRs of amorphous Zr- and Ni-based metallic glasses were also treated. Reaction of MSRs with azo dyes results in their decolorization in a few hours. Decolorization of azo dyes takes place by introducing amorphous MSRs which results in breaking the -N=N- bonds that exist in dye contents. It is concluded that Mg-based alloys are useful for paint and dye industries and will be beneficial to control water pollution. Comparison of results showed that Mg-based alloys are more efficient than Zr- and Ni-based amorphous alloys for decolorization of azo dyes. (author)

  9. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    International Nuclear Information System (INIS)

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable γ (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  10. Structure and properties of rapidly solidified Al-Cr-Fe-Si powder alloys

    Czech Academy of Sciences Publication Activity Database

    Bártová, Barbora; Vojtěch, D.; Verner, J.; Gemperle, Antonín; Studnička, Václav

    2005-01-01

    Roč. 387, 1-2 (2005), s. 193-200. ISSN 0925-8388 Grant ostatní: VŠCHT(CZ) GA106/00/0571 Institutional research plan: CEZ:AV0Z10100520 Keywords : aluminium -based alloy * rapid solidification * quasi-ctrystalline phase * powder metalurgy * hardening Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.370, year: 2005

  11. Studies of oxide reduction and nitrogen uptake in sintering of chromium-alloyed steel powder

    OpenAIRE

    Bergman, Ola

    2008-01-01

    The powder metallurgy (PM) process route is very competitive for mass production of structural steel components with complex shape, due to efficient material utilisation, low energy consumption, and short overall production time. The most commonly used alloying elements are the processing friendly metals Cu, Ni and Mo. However, the prices for these metals are today high and volatile, which threatens to make the PM process less competitive compared to conventional metal forming processes. Cons...

  12. Short-range order in ab initio computer generated amorphous and liquid Cu–Zr alloys: A new approach

    International Nuclear Information System (INIS)

    Using ab initio molecular dynamics and a new approach based on the undermelt-quench method we generated amorphous and liquid samples of CuxZr100−x (x=64, 50, 36) alloys. We characterized the topology of our resulting structures by means of the pair distribution function and the bond-angle distribution; a coordination number distribution was also calculated. Our results for both amorphous and liquids agree well with experiment. Dependence of short-range order with the concentration is reported. We found that icosahedron-like geometry plays a major role whenever the alloys are Cu-rich or Zr-rich disregarding if the samples are amorphous or liquid. The validation of these results, in turn would let us calculate other properties so far disregarded in the literature

  13. Short-range order in ab initio computer generated amorphous and liquid Cu–Zr alloys: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    Galván-Colín, Jonathan, E-mail: jgcolin@ciencias.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D.F. 04510, México (Mexico); Valladares, Ariel A., E-mail: valladar@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D.F. 04510, México (Mexico); Valladares, Renela M.; Valladares, Alexander [Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, México, D.F. 04510, México (Mexico)

    2015-10-15

    Using ab initio molecular dynamics and a new approach based on the undermelt-quench method we generated amorphous and liquid samples of Cu{sub x}Zr{sub 100−x} (x=64, 50, 36) alloys. We characterized the topology of our resulting structures by means of the pair distribution function and the bond-angle distribution; a coordination number distribution was also calculated. Our results for both amorphous and liquids agree well with experiment. Dependence of short-range order with the concentration is reported. We found that icosahedron-like geometry plays a major role whenever the alloys are Cu-rich or Zr-rich disregarding if the samples are amorphous or liquid. The validation of these results, in turn would let us calculate other properties so far disregarded in the literature.

  14. Structure and service properties of parts with coatings obtained with the help of electrospark alloying by powder materials

    International Nuclear Information System (INIS)

    Results of metallographic, X-ray phase and X-ray spectral microanalysis of electrospark coatings, made of powder materials on St45, 35KhGSL and 14Kh17N2A steels, VTL-1 nickel alloy and VT9, VT20 titanium alloys,, are presented. A principle possibility to make coatings of oxides (Al2O3, ZrO2) is shown. Comparative wear tests show the prospects of electrospark formation of coatings of powder materials

  15. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH3: a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH3. The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  16. Production of a low young modulus titanium alloy by powder metallurgy

    Directory of Open Access Journals (Sweden)

    Dalcy Roberto dos Santos

    2005-12-01

    Full Text Available Titanium alloys have several advantages over ferrous and non-ferrous metallic materials, such as high strengthto-weight ratio and excellent corrosion resistance. A blended elemental titanium powder metallurgy process has been developed to offer low cost commercial products. The process employs hydride-dehydride (HDH powders as raw material. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy due to its lower modulus of elasticity and high biocompatibility is a promising candidate for aerospace and medical use. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 900 up to 1600 °C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like alpha structure and intergranular beta. A few remaining pores are still found and density above 90% for specimens sintered in temperatures over 1500 °C is reached.

  17. Powder metallurgy of NiTi-alloys with defined shape memory properties

    International Nuclear Information System (INIS)

    The aim of the present work is the development of fabrication processes for NiTi shape memory alloys by powder metallurgical means. The starting materials used were prealloyed powders as well as elemental powder mixtures. Three techniques seem to be very promising for shaping of NiTi compacts. Hot Isostatic Pressing (HIP) has been examined for the production of dense semi-finished components. A promising technique for the production of dense and porous coatings with an increased wear resistance is Vacuum Plasma Spraying (VPS). Metal Injection Moulding (MIM) is especially suitable for near-net shape fabrication of small components with a complex geometry considering that large numbers of units have to be produced for compensating high tool and process costs. Subsequently, thermal treatments are required to establish defined shape memory properties. The reproducibility and stability of the shape memory effect are main aspects thinking about a production of NiTi components in an industrial scale. (author)

  18. Carbide alloyed composite manufactured with the Powder Injection Moulding method and sinterhardened

    Directory of Open Access Journals (Sweden)

    G. Matula

    2010-09-01

    Full Text Available Purpose: Development of a new generation tool materials on the basis of M2 high speed-steel reinforced with the mixture of carbides and with their structure and mechanical properties, fill the gap in tool materials between the high-speed steels and cemented carbides.Design/methodology/approach: Powder metallurgy, powder injection moulding, sintering, sinter hardening, heat treatment, microstructure and porosity examination, X-ray analysis, TEM, bending test, hardness test.Findings: Powder injection moulding processes were used to fabricate the proposed carbide alloyed composite materials. The addition of hard particles increase hardness after heat treatment and slightly reduces the ductility of these materials. Compared with M2 high-speed steel the bending strength of carbide alloyed composite decrease. The main advantage of the presented experimental tool materials is application of powder injection moulding to produce tool materials in a mass scale with relative low cost of production. Moreover the cost of production reduce application of sinterhardening.Practical implications: Application of heat treatment and especially sinterhardening to improve the mechanical properties of presented experimental tool materials gives the possibility to obtain tool materials with the relative high ductility and high hardness typical for cemented carbides.Originality/value: The essential advantage of the investigated injection moulded material and sintered is the broad range of the optimum sintering temperatures and the relatively small effect of the sintering temperature growth on the carbides growth makes using the industrial heating equipment possible.

  19. Local order dynamics: its application to the study of atomic mobility, of point defects in crystalline alloys, and of structural relaxation in amorphous alloys

    International Nuclear Information System (INIS)

    This research thesis addressed the study of the atomic mobility mechanism and of the atom movement dynamics in the case of crystalline alloys and of amorphous alloys. The first part is based on a previous study performed on an α-Cu70-Zn30 crystalline alloy, and addresses the case of an α-Au70-Ni30 alloy. The specificity of this case relies in the fact that the considered solid solution is metastable and susceptible to de-mixing in the considered temperature range. This case of off-equilibrium crystalline alloy is at the crossroad between steady crystalline alloys and metallic glasses which are studied in the second part. The third part addresses the irradiation of metallic amorphous alloys by fast particles (neutrons or electrons). The author tried to characterise atomic defects induced by irradiation and to compare them with pre-existing ones. He studied how these defects may change atomic mobility, and, more generally, to which extent the impact of energetic particles could modify local order status

  20. Influence of Si on glass forming ability and properties of the bulk amorphous alloy Mg60Cu30Y10

    International Nuclear Information System (INIS)

    Research highlights: → The partial substitution of Cu by the right amount of Si increases the glass forming ability of the bulk amorphous alloy Mg60Cu30Y10. → The serrations size of Mg60Cu30-xY10Six is dependent on the content of Si. → The creep displacement of Mg60Cu30-xY10Six alloys decrease with increasing Si content. → The elastic modulus and nano-hardness of Mg60Cu30-xY10Six are dependent on the Si content. - Abstract: We studied the influence of partially replacing Cu by Si in the bulk amorphous alloy Mg30Cu30Y10. Glass forming ability (GFA), examined using X-ray diffraction and a differential scanning calorimeter, was increased at 1% Si, but decreased for larger Si concentrations. Nano-indentation measured nano-hardness, elastic modulus and load-displacement curves. The elastic modulus and nano-hardness increased with increasing Si content to a maximum at 2.5%. The load-displacement curves during nano-indentation revealed displacement serrations. These increased with decreasing loading rates, decreased with increasing Si content. The load-displacement curves also indicated that these bulk amorphous alloys exhibited primary creep at room temperature just like other high strength alloys. The creep displacement decreased with increasing Si content.

  1. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    Science.gov (United States)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  2. Effects of (Cr,Fe)2B borides on hardness in powder-injection-molded product fabricated with Fe-based alloy powders

    International Nuclear Information System (INIS)

    In the present study, a powder injection molding (PIM) product containing (Cr,Fe)2B borides was fabricated with Fe-based alloy powders, and its microstructure and hardness were investigated in relation with volume fraction of (Cr,Fe)2B. In the Fe-based alloys designed by the thermodynamic calculation, the volume fractions of (Cr,Fe)2B increased with increasing (XCr+XB) value, and were well matched with those obtained from the thermodynamic calculation. The hardness of the Fe-based alloys linearly increased with increasing volume fraction of (Cr,Fe)2B. When Fe-based alloy powders were injection-molded and sintered at 1165 °C, a densified microstructure with almost no pores was obtained. In the sintered microstructure, 56 vol% of (Cr,Fe)2B borides, together with a few pores (porosity; 0.5%), were relatively homogeneously distributed in the tempered martensite matrix, which resulted in the very high hardness over 600 VHN. Such a high hardness suggested that the present Fe-based alloy powders could be readily adopted for fabricating PIM products or for replacing conventional stainless steel PIM products.

  3. General laws of the effect of hydrogen on the crystallization of amorphous alloys based on the quasi-binary TiNi-TiCu system

    Science.gov (United States)

    Spivak, L. V.; Shelyakov, A. V.; Shchepina, N. E.

    2014-02-01

    The crystallization processes that occur during heating of hydrogen-containing melt-quenched alloys based on the quasi-binary TiNi-TiCu system alloyed with aluminum, iron, hafnium, and zirconium are studied by high-resolution differential scanning calorimetry. The general laws of the transition of the hydrogen-containing alloys from an amorphous into a crystalline state are determined.

  4. Rapid Synthesis of a Near-β Titanium Alloy by Blended Elemental Powder Metallurgy (BEPM) with Induction Sintering

    Science.gov (United States)

    Jia, Mingtu; Gabbitas, Brian

    2015-10-01

    A near-β Ti-13V-11Cr-3Al alloy was produced by blended elemental powder metallurgy combining warm compaction and induction sintering. Two Ti-13V-11Cr-3Al powder compacts with different oxygen content were manufactured by mixing PREP and HDH Ti powders with Cr and AlV master alloy powders, respectively. The effect of isothermal holding time, at a sintering temperature of 1573 K (1300 °C), on pore characteristics and compositional homogeneity was investigated in this study. Pore coarsening by Ostwald ripening occurred with an increase in the isothermal holding time and Kirkendall voids were produced by a reaction between Ti and Cr. After an isothermal holding time of 10 minutes, the two sintered powder compacts had a homogeneous composition. Ti/AlV and Ti/Cr diffusion couples were used to predict the distribution of alloying elements, and the binary Ti-V, Ti-Al, and Ti-Cr interdiffusion coefficients were consistent with the distribution of alloying elements after isothermal holding. The mechanical properties of sintered powder compacts, prepared using PREP Ti powder as the raw powder, were optimized by sintered density and pore size.

  5. Electronic structure and sign reversal of the Hall coefficient in amorphous CuZr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Manh, D.N.; Pavuna, D.; Cyrot-Lackmann, F.; Mayou, D.; Pasturel, A.

    1986-04-15

    We present calculated densities of states (DOS) for Cu/sub x/Zr/sub 1-x/ amorphous alloys across the compositional range. We find that for x<80 at. % Cu there is no ordering and the Fermi level E/sub F/ is dominated by the Zr 4d subband, while above 80 at. % Cu the local order increases and the DOS at E/sub F/ abruptly decreases and is dominated by the s states. These changes in DOS and the fact that the energy derivative of the self-energy changes its sign (implying a change of sign of the Fermi velocity) gives further insight into the experimentally observed sign reversal of the Hall coefficient which occurs for 80< or =x< or =85 at. % Cu.

  6. Electronic structure and sign reversal of the Hall coefficient in amorphous CuZr alloys

    International Nuclear Information System (INIS)

    We present calculated densities of states (DOS) for Cu/sub x/Zr/sub 1-x/ amorphous alloys across the compositional range. We find that for x<80 at. % Cu there is no ordering and the Fermi level E/sub F/ is dominated by the Zr 4d subband, while above 80 at. % Cu the local order increases and the DOS at E/sub F/ abruptly decreases and is dominated by the s states. These changes in DOS and the fact that the energy derivative of the self-energy changes its sign (implying a change of sign of the Fermi velocity) gives further insight into the experimentally observed sign reversal of the Hall coefficient which occurs for 80< or =x< or =85 at. % Cu

  7. Computer experiments on radiation strength and radiation enhanced segregation of Al–Si amorphous alloys

    International Nuclear Information System (INIS)

    Computer experiments of irradiated Al–Si alloys were performed to clarify the mechanism of radiation enhanced segregation. The atomic configurations of pure Al, Al–5 at%Si and Al–10 at%Si with amorphous structure after the irradiation of high energy beam were calculated by the molecular dynamics method. We estimated the threshold energies to create voids in pure Al, Al–5 at%Si and Al–10 at%Si as 0.23, 0.25 and 0.25 keV/nm, respectively. This fact means that addition of Si to Al enhances strength against void formation by beam irradiation. We also confirmed that addition of Si to Al gave strong effect on radiation enhanced segregation. The degree of enhancement depended on the degree of dispersion of Si atoms in Al matrix because the Si atoms enhances clustering of the Al atoms surrounding them. (author)

  8. SEM investigation of surface blistering for argon ion bombarded amorphous alloys

    International Nuclear Information System (INIS)

    Surface blistering of the amorphous alloys Co70.2Fe3.9Nb3.9Si14B8 and Co66Fe4.5V2.25Ni2.25Si10B15 due to argon ion bombardment at energies of 150, 195 and 300 keV has been observed with a scanning electron microscope (SEM). The critical dose for onset of blistering and the blister diameter are determined and found to increase with increasing projectile energy. Above about 195 keV, blisters and rupture of blisters are the predominant surface damage phenomena. However, at 150 keV, there is no evidence of cracked blisters. The effects are interpreted in terms of argon agglomeration, building-up of the critical argon pressure, and argon releasing from near-surface regions

  9. A thermodynamic approach towards glass-forming ability of amorphous metallic alloys

    Indian Academy of Sciences (India)

    Sonal R Prajapati; Supriya Kasyap; Arun Pratap

    2015-12-01

    A quantitative measure of the stability of a glass as compared to its corresponding crystalline state can be obtained by calculating the thermodynamic parameters, such as the Gibbs free energy difference (), entropy difference () and the enthalpy difference () between the super-cooled liquid and the corresponding crystalline phase. is known as the driving force of crystallization. The driving force of crystallization () provides very important information about the glass-forming ability (GFA) of metallic glasses (MGs). Lesser the driving force of crystallization more is the GFA. The varies linearly with the critical size (). According to Battezzati and Garonne the parameter ( = (1−(/))/(1−( / ))) in the expression for should be a constant (i.e., 0.8), but its uniqueness is not observed for all MGs. The thermal stability of various alloy compositions is studied by their undercooled liquid region ( = − ). Large implies greater stability against crystallization of the amorphous structure. Other GFA parameters are also calculated and correlated with critical size ().

  10. Intensity dependence of the minority-carrier difusion length in amorphous silicon based alloys

    Science.gov (United States)

    Hack, M.; Shur, M.

    1984-04-01

    Many of the recent measurements of the minority-carrier diffusion length (Lp) in amorphous silicon based alloys have been based on a utilization of the surface photovoltage (SPV). In this case an equation relating photon flux and Lp under ideal conditions has to be modified because of the back diffusion of carriers and the effects of high field regions. To account for the high field region, the 'aparent' diffusion length has been determined for varying intensities of bias light. In the present investigation, a theoretical analysis shows that the zero field diffusion length is indeed intensity dependent and that this dependence can be directly related to the slope of the density of states near the valence band edge. The intensity dependence of the minority carrier diffusion length and the energy slope of the density of states near the valence band edge are obtained on the basis of experimental results.

  11. Structure of amorphous silicon alloy films: Annual subcontract report, January 15, 1988--January 14, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Norberg, R.E.; Fedders, P.A.

    1989-06-01

    The principal objective of this research program has been to improve the understanding at the microscopic level of amorphous silicon-germanium-alloy films deposited under various conditions to assist researchers to produce higher quality films. The method has been a joint theoretical and experimental approach to the correlation of NMR, ESR, and other characterizations, especially relating to rearrangements of hydrogen. Deuteron magnetic resonance reveals the presence of (and changes in) tightly bonded hydrogen (deuterium), weakly bonded hydrogen, molecular hydrogen, and rotating silyl groups. Microvoids are investigated via observation of para D/sub 2/ for which /Delta/M/sub J/ transitions are frozen out. Solid echoes reveal HD and ortho D/sub 2/ trapped as singles in the semiconductor matrix. Theoretical calculations show dangling bonds to be more likely than floating bonds. 23 refs., 11 figs.

  12. Preparation of oxide powder by continuous oxidation process from recycled Fe-77Ni alloy scrap

    Science.gov (United States)

    Yun, J. Y.; Park, D. H.; Jung, G. J.; Wang, J. P.

    2015-12-01

    The oxidation behavior of Fe-77Ni alloy scrap was studied under a 0.2 atm oxygen partial pressure at the temperature range of 400°C to 900°C. The oxidation rate was found to be increased with an increase of temperature and followed the parabolic rate law with linearly proportional to temperature. Microstructure and cross-sectional area of the oxide layer were examined by SEM, EDX, and XRD. It could be speculated that rate-limiting step was controlled by diffusion through either the spinel structure or the NiO layer, both of which were present in this alloy during oxidation at elevated temperatures. In the long run, oxide powder less than 10 μm from Fe-77Ni alloy scrap was obtained using ball-milling and sieving processes and recovery ratio approached up to 97% for 15 hours.

  13. Low-field magnetic properties of amorphous and nanocystalline FeCrCuNbSiB alloys

    International Nuclear Information System (INIS)

    The AC susceptibility dependence on magnetic field, time and temperature of amorphous as well as nanocrystalline Fe73.5-xCrxCu1Nb3Si13.5B9 (x=0-4) alloys was studied. Micromagnetic model is used for calculating the activation energy spectra (AES) of the magnetic after-effect (MAE). It was observed that addition of Cr to the amorphous FeCrCuNbSiB alloys highly decreases the amplitude of the MAE so that no MAE is observed for Cr content higher than 2 at%. After annealing at 550 deg. C, the initial susceptibility increases as a result of magnetic softening during nanocrystallization and the MAE vanishes. The nanocrystalline state was characterized by the high magnetic as well as structural stability. Moreover, addition of 1 at% Cr makes the initial susceptibility of the nanocrytalline sample higher than in the FINEMET alloy

  14. Magneto x-ray study of a gadolinium-iron amorphous alloy

    International Nuclear Information System (INIS)

    This work reports the measurement of the magnetic x-ray absorption of an amorphous Gd-Fe ferrimagnetic thin film. The Gd to Fe concentration in the sample was 1:4. The magnetic x-ray effect is the x-ray analog of magneto-optic absorption effects. Magneto x-ray effects arise when a solid has different indices of refraction for right and left circularly polarized x-rays. The difference in absorption of left and right circularly polarized x-rays is called the magneto x-ray absorption. This absorption is proportional to the net spin of the final state density of states. At the L3 edge, the main x-ray transition is from initial Gd(2p) core states to final Gd(5d) unoccupied states. Since the 5d states have a net spin polarization in ferromagnetic Gd, this experiment hoped to directly observe how that polarization changes for Gd in the alloy. The magneto x-ray absorption at the Gd L3 edge will be proportional to the sign and amount of the net spin polarization of the 5d electrons. The magnetic x-ray absorption coefficient was found to be at least 0.0005 smaller than the linear absorption coefficient at the Gd white line energy. This was measured for the amorphous alloy at room temperature. Lock-in techniques were used to obtain the small limit to the absorption. A simple model for the size of the magnetic x-ray absorption coefficient in Gd suggests that the Gd(5d) net spin polarization is less than 0.01 Bohr magnetons per atom

  15. Hot deformation behaviour and flow stress prediction of 7075 aluminium alloy powder compacts during compression at elevated temperatures

    OpenAIRE

    Jabbari Taleghani, M. A.; Salehi, M.; Ruiz Navas, Elisa María; Torralba, José Manuel

    2012-01-01

    In the present study, the hot deformation behaviour of 7075 aluminium alloy powder compacts was studied by performing hot compression tests on a Gleeble 3800 machine. The main objectives were to evaluate the effect of the relative green density on the hot deformation behaviour and to model and predict the hot deformation flow stress of powder compacts using constitutive equations. For this purpose, powder compacts with relative green densities ranging from 83 to 95%, which were prepared by un...

  16. Search for novel amorphous alloys with high crystallization temperature by combinatorial arc plasma deposition

    International Nuclear Information System (INIS)

    This paper describes a combinatorial search for novel amorphous alloys with high crystallization temperatures (Tx) using combinatorial arc plasma deposition (CAPD). The CAPD technique can deposit 1089 (33 x 33) thin film samples with different compositions on a substrate at one time. These 1089 samples on the substrate are individually referred to as CAPD samples and collectively referred to as a thin film library. Thin film libraries of Ir-Zr-Fe, Ir-Zr-Al, Mo-Zr-Al, Mo-Zr-Si, Ru-Zr-Fe and Ru-Zr-Si were deposited by CAPD. The compositions and phases of the CAPD samples were measured by energy dispersive X-ray fluorescence spectrometry and X-ray diffractometry, respectively. The results revealed that each library included amorphous CAPD samples. Since it is impossible to measure the Tx, fracture strength, fracture strain and Young's modulus of the CAPD samples by conventional measurement methods, larger samples having the same compositions as the amorphous CAPD samples were fabricated by a sputtering system. Since all CAPD samples of Ir-Zr-Fe and Ir-Zr-Al were too brittle, their corresponding sputter-deposited samples were not prepared. Sputter-deposited Mo-Zr-Al, Mo-Zr-Si, Ru-Zr-Fe and Ru-Zr-Si samples with ∼50 at.% Mo- or Ru-content were fabricated, and Tx and mechanical properties of these sputter-deposited samples were evaluated. All the sputter-deposited samples of Mo-Zr-Al and Mo-Zr-Si showed high Tx exceeding 973 K and as well as brittle characteristics. Ru50Zr35Fe10 samples showed high Tx exceeding 1273 K and a low fracture strength of 0.26 GPa. Samples of Ru51Zr5Si44 showed a high Tx of 923 K and a high fracture strength of 1.25 GPa

  17. First-principles study of the structural and dynamic properties of the liquid and amorphous Li–Si alloys

    International Nuclear Information System (INIS)

    We have performed density functional theory calculations and ab initio molecular dynamics to investigate the structures and dynamic properties of the liquid and amorphous LixSi alloys over a range of composition from x = 1.0 − 4.8. Our results show that Si atoms can form a variety of covalently bonded polyanions with diverse local bonding structures in the liquid alloys. Like in c-LiSi, Si atoms can form a continuous bond network in liquid Li1.0Si at 1050 K, while it gradually disintegrates into many smaller Si polyanions as the Li content increases in the alloys. The average sizes of Si polyanions in these liquid alloys were found to be relatively larger than those in their crystalline counterparts, which can even persist in the highly lithiated Li4.81Si alloy at 1500 K. Our results also show that amorphous LixSi alloys have similar local bonding structures but a largely increased short-range order as compared to their liquid counterparts. The differences between the average coordination number of each atomic pair in amorphous solids and that in the liquids are less than 1.1. Furthermore, our calculations reveal that Li and Si atoms can exhibit very distinct dynamic behaviors in the liquids and their diffusivities appear to be largely dependent on the chemical composition of the alloys. The diffusivity of Li was found to increase with the Li content in the alloys primarily because of the reduced interactions between Li and Si atoms, while the Si diffusivity also increases due to the gradual disintegration of the strongly interconnected Si bond network. The diffusivity of Li in amorphous LixSi was predicted to lie in the range between 10−7 and 10−9 cm2/s at 300 K, which is more than 20-fold larger than that of Si over the composition range considered. Our calculations further show that the diffusivities of both Li and Si can increase by two orders of magnitude as x increases from 1.0 to 3.57 in amorphous LixSi, indicating a more profound dependence on the

  18. First-principles study of the structural and dynamic properties of the liquid and amorphous Li–Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Han-Hsin; Kuo, Chin-Lung, E-mail: chinlung@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lu, Jian-Ming [National Center for High-Performance Computing, Tainan 74147, Taiwan (China)

    2016-01-21

    We have performed density functional theory calculations and ab initio molecular dynamics to investigate the structures and dynamic properties of the liquid and amorphous Li{sub x}Si alloys over a range of composition from x = 1.0 − 4.8. Our results show that Si atoms can form a variety of covalently bonded polyanions with diverse local bonding structures in the liquid alloys. Like in c-LiSi, Si atoms can form a continuous bond network in liquid Li{sub 1.0}Si at 1050 K, while it gradually disintegrates into many smaller Si polyanions as the Li content increases in the alloys. The average sizes of Si polyanions in these liquid alloys were found to be relatively larger than those in their crystalline counterparts, which can even persist in the highly lithiated Li{sub 4.81}Si alloy at 1500 K. Our results also show that amorphous Li{sub x}Si alloys have similar local bonding structures but a largely increased short-range order as compared to their liquid counterparts. The differences between the average coordination number of each atomic pair in amorphous solids and that in the liquids are less than 1.1. Furthermore, our calculations reveal that Li and Si atoms can exhibit very distinct dynamic behaviors in the liquids and their diffusivities appear to be largely dependent on the chemical composition of the alloys. The diffusivity of Li was found to increase with the Li content in the alloys primarily because of the reduced interactions between Li and Si atoms, while the Si diffusivity also increases due to the gradual disintegration of the strongly interconnected Si bond network. The diffusivity of Li in amorphous Li{sub x}Si was predicted to lie in the range between 10{sup −7} and 10{sup −9} cm{sup 2}/s at 300 K, which is more than 20-fold larger than that of Si over the composition range considered. Our calculations further show that the diffusivities of both Li and Si can increase by two orders of magnitude as x increases from 1.0 to 3.57 in amorphous Li

  19. Highly ordered amorphous silicon-carbon alloys obtained by RF PECVD

    CERN Document Server

    Pereyra, I; Carreno, M N P; Prado, R J; Fantini, M C A

    2000-01-01

    We have shown that close to stoichiometry RF PECVD amorphous silicon carbon alloys deposited under silane starving plasma conditions exhibit a tendency towards c-Si C chemical order. Motivated by this trend, we further explore the effect of increasing RF power and H sub 2 dilution of the gaseous mixtures, aiming to obtain the amorphous counterpart of c-Si C by the RF-PECVD technique. Doping experiments were also performed on ordered material using phosphorus and nitrogen as donor impurities and boron and aluminum as acceptor ones. For nitrogen a doping efficiency close to device quality a-Si:H was obtained, the lower activation energy being 0,12 eV with room temperature dark conductivity of 2.10 sup - sup 3 (OMEGA.cm). Nitrogen doping efficiency was higher than phosphorous for all studied samples. For p-type doping, results indicate that, even though the attained conductivity values are not device levels, aluminum doping conducted to a promising shift in the Fermi level. Also, aluminum resulted a more efficie...

  20. Structure and soft magnetic properties of the bulk samples prepared by compaction of the mixtures of Co-based and Fe-based powders

    International Nuclear Information System (INIS)

    Ball milling of CoFeZrB ribbons and subsequent compaction of the resulting powders were used to prepare bulk amorphous samples. Further, two sets of powder samples were prepared by cryomilling of FeCuNbMoSiB alloy in amorphous and nanocrystalline state. Amorphous and nanocrystalline FeCuNbMoSiB powders were blended with CoFeZrB powder at different concentrations. Such powder mixtures were consolidated and several bulk nanocomposites have been synthesized. An addition of nanocrystalline or amorphous FeCuNbMoSiB powder to amorphous CoFeZrB powder caused a decrease of the magnetostriction of the resultant bulk samples, while the coercivity shows an opposite behavior. Our results show that the powder consolidation by hot pressing is an alternative method for the preparation of bulk metallic glasses, which are difficult to prepare by casting methods

  1. Highly mismatched crystalline and amorphous GaN(1-x)As(x) alloys in the whole composition range

    Energy Technology Data Exchange (ETDEWEB)

    Yu, K. M.; Novikov, S. V.; Broesler, R.; Demchenko, I. N.; Denlinger, J. D.; Liliental-Weber, Z.; Luckert, F.; Martin, R. W.; Walukiewicz, W.; Foxon, C. T.

    2009-08-29

    Alloying is a commonly accepted method to tailor properties of semiconductor materials for specific applications. Only a limited number of semiconductor alloys can be easily synthesized in the full composition range. Such alloys are, in general, formed of component elements that are well matched in terms of ionicity, atom size, and electronegativity. In contrast there is a broad class of potential semiconductor alloys formed of component materials with distinctly different properties. In most instances these mismatched alloys are immiscible under standard growth conditions. Here we report on the properties of GaN1-xAsx, a highly mismatched, immiscible alloy system that was successfully synthesized in the whole composition range using a nonequilibrium low temperature molecular beam epitaxy technique. The alloys are amorphous in the composition range of 0.17amorphous films have smooth morphology, homogeneous composition, and sharp, well defined optical absorption edges. The band gap energy varies in a broad energy range from ~;;3.4 eV in GaN to ~;;0.8 eV at x~;;0.85. The reduction in the band gap can be attributed primarily to the downward movement of the conduction band for alloys with x>0.2, and to the upward movement of the valence band for alloys with x<0.2. The unique features of the band structure offer an opportunity of using GaN1-xAsx alloys for various types of solar power conversion devices.

  2. Microstructure and Thermomechanical Properties of Shape Memory Alloys TI50-NI50 Elaborated by Arc Melting and by Powder Metallurgy

    OpenAIRE

    Olier, P.; Brachet, J.; Guenin, G.

    1995-01-01

    This study was focussed on the elaboration and transformation of Ti50Ni50 shape memory alloys in relation to structural and thermomechanical properties. An original method for producing TiNi alloys by powder metallurgy (PM), through combustion synthesis, was developed. After hot extrusion, intermetallic rods without porosity were obtained. Microstructural and thermomechanical properties of products obtained by this method were systematically compared to those of some alloys elaborated by the ...

  3. Mechanical alloying for fabrication of aluminium matrix composite powders with Ti-Al intermetallics reinforcement

    Directory of Open Access Journals (Sweden)

    M. Adamiak

    2008-12-01

    Full Text Available Purpose: The aim of this work is to report the effect of the high energy milling processes, on fabrication ofaluminium matrix composite powders, reinforced with a homogeneous dispersion of the intermetallic Ti3Alreinforcing particles.Design/methodology/approach: MA process are considered as a method for producing composite metalpowders with a controlled fine microstructure. It occurs by the repeated fracturing and re-welding of powdersparticles mixture in a highly energetic ball mill.Findings: Mechanical alloying, applied for composite powder fabrication, improves the distribution of theTi3Al intermetallic reinforcing particles throughout the aluminium matrix, simultaneously reducing their size.Observed microstructural changes influence on the mechanical properties of powder particles.Research limitations/implications: Contributes to the knowledge on composite powders production via MA.Practical implications: Gives the answer to evolution of the powder production stages, during mechanicalalloying and theirs final properties.Originality/value: Broadening of the production routes for homogeneous particles reinforced aluminium matrixcomposites.

  4. Application of powder metallurgy to an advanced-temperature nickel-base alloy, NASA-TRW 6-A

    Science.gov (United States)

    Freche, J. C.; Ashbrook, R. L.; Waters, W. J.

    1971-01-01

    Bar stock of the NASA-TRW 6-A alloy was made by prealloyed powder techniques and its properties evaluated over a range of temperatures. Room temperature ultimate tensile strength was 1894 MN/sq m (274 500 psi). The as-extruded powder product showed substantial improvements in strength over the cast alloy up to 649 C (1200 F) and superplasticity at 1093 C (2000 F). Both conventional and autoclave heat treatments were applied to the extruded powder product. The conventional heat treatment was effective in increasing rupture life at 649 and 704 C (1200 and 1300 F); the autoclave heat treatment, at 760 and 816 C (1400 and 1500 F).

  5. The effect of minor addition of insoluble elements on transformation kinetics in amorphous Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.; Perepezko, J.H., E-mail: perepezk@engr.wisc.edu

    2015-09-15

    Highlights: • By doping Pb or In in AlYFe alloys, the primary crystallization of Al is promoted. • The catalytic effect is based on the good wetting behavior between Al and Pb. • Pb promotes crystallization by providing heterogeneous nucleation sites. • Through doping 0.5–2 at.% of In, T{sub x} decreases by 35–47 °C. • The coherent interface shows a good contacting behavior between Al and In. - Abstract: Nanocrystalline metallic materials based on partial devitrification of amorphous aluminum alloys show an attractive combination of high strength and low density. A key feature concerning the improved mechanical properties is the high number density of Al nanocrystals (10{sup 22}–10{sup 23} m{sup −3}) that precipitate within the amorphous precursor structure upon low temperature annealing. For Al{sub 87}Y{sub 7}Fe{sub 5}Pb, the melt-spun ribbons consisted of an amorphous matrix with a dispersion of Pb nanoparticles (10 nm diameter). HRTEM images of the Pb–Al interface revealed a good wetting behavior between the Al and the Pb nanoparticles. Isothermal annealing for Al{sub 87}Y{sub 7}Fe{sub 5}Pb showed no transient stage even though the crystallization onset, T{sub x}, was at a much lower temperature (247 °C) compared with Al{sub 88}Y{sub 7}Fe{sub 5} (267 °C). For Al{sub (88−x)}Y{sub 7}Fe{sub 5}In{sub x} (x = 0.5, 1.0, 1.5, 2.0), the DSC results indicated that T{sub x} continuously decreased from 232 °C to 220 °C as the indium level increases from 0.5 at.% to 2.0 at.%. Under STEM, the image showed a coherent interface between Al and In particles. In the analysis of the transformation kinetics, the addition of minor elements can effectively promote additional nucleation of Al nanocrystals by providing heterogeneous nucleation sites. These developments offer new opportunities for the control of nanoscale microstructures.

  6. Ni-WC composite coatings by carburizing electrodeposited amorphous and nanocrystalline Ni-W alloys

    International Nuclear Information System (INIS)

    In situ formation of tungsten carbide in the matrix of FCC nickel has been achieved by carburizing of the electrodeposited Ni-W alloy coatings. The size of the carbide particles ranges between 100 and 500 nm. The carbide phase is also present in the form of very small precipitates inside the nickel grains. The size of such precipitates is between 10 and 40 nm. The carburizing environment was created by introducing a flowing mixture of vaporized 95.5% alcohol (0.25 ml/min, liquid) and argon (0.5 L/min, gas) into the carburizing furnace. Supersaturated nature of electrodeposited amorphous and nanocrystalline alloys, in addition to high diffusivity, have been attributed for the formation of carbide phase in the deposits at a temperature range of 700-850 deg. C. The carbide-metal interface is clean and the composite coatings are compact. Hardness values up to about 1100 KHN are achieved. Hardness increases with tungsten content and carburizing temperature.

  7. PIXE from thin films and amorphous alloys induced by medium energy heavy ions

    International Nuclear Information System (INIS)

    Highlights: •Low energy heavy-ion PIXE were used for surface characterization. •It was performed in time sequence and at grazing incidence-exit geometry. •Stability of thin films against implantation and interface mixing was analyzed. •Sputtering of multicomponent alloys subjected to irradiation was monitored. -- Abstract: Characteristic X-rays emitted under impact of fast light ions with surfaces (PIXE) provide information not only on atomic excitation and further recombination processes but also on elemental composition and dynamics of restructuration of the surface. In this work radiation emitted during interaction of medium energy (∼200 keV) heavy ions (Ar, N) with Si (1 1 0) surface and with Fe/Si and Fe/Cu/Si thin (1–50 nm) films in grazing incidence-exit angle geometry were measured in time sequence in order to show that dynamics of selective modification of surface structure and composition can be monitored in-situ with PIXE. It is shown that surfaces of amorphous alloys are not stable against heavy ions (HI) irradiation due to preferential sputtering and implantation and that the dynamics of such modification can also be monitored with PIXE. The method is used for example to find detection limit for implanted Ar ions

  8. Amorphous Fe-B alloys in B-Fe-Ag multilayers studied by magnetization and Moessbauer measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, L.F., E-mail: kissl@szfki.hu [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Balogh, J.; Bujdoso, L.; Kaptas, D.; Kemeny, T. [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Kovacs, A. [Center for Electron Nanoscopy, Technical University of Denmark, Kgs. Lyngby 2800 (Denmark); Vincze, I. [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary)

    2011-06-15

    Research highlights: > The magnetic properties of B-Fe-Ag multi-trilayers were investigated. > They are influenced by the Ag thickness when it is below 5 nm. > The formation of amorphous Fe-B alloys of different B content is observed. > It is due to the role of the Ag layer as barrier to the mixing of Fe and B. > The ultra-thin Fe-rich alloy between Ag and B layers shows ferromagnetic properties. - Abstract: Bulk and local magnetic properties were studied in [1 nm B + 1 nm {sup 57}Fe + x nm Ag]{sub 5}, x = 1, 2, 4, 5 and 10, multilayer samples. Although Ag does not mix with either of the other two elements the magnetic properties of the multilayers are strongly influenced by the Ag thickness below x = 5, whereas no such effect is observed above this value. The Moessbauer measurements indicate a complete amorphization of the thin Fe layers in each sample, as a result of intermixing with the B layers. The variation of the magnetic properties is explained by the variation of the average B concentration of the amorphous Fe-B layers, which depends on the thickness of the Ag barrier layers. The magnetization measurements indicate ferromagnetic behaviour of the ultra-thin amorphous layers with the presence of less than 10% superparamagnetic moments for x = 5 and 10. The average B concentration of the amorphous Fe-B alloy, as estimated from the Fe hyperfine fields, is around 40 at%. It is significantly lower than the 60 at% nominal B concentration, suggesting the presence of an unalloyed B layer, as well. This picture is supported by transmission electron microscopy investigations which reveal two amorphous layers of different B concentration in between the crystalline Ag layers.

  9. Mechanical properties of equal channel angular pressed powder extrudates of a rapidly solidified hypereutectic Al-20 wt% Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seung Chae [Department of Metallurgical Engineering, Chungnam National University, Yuseoung, Daejeon 305-764 (Korea, Republic of); Hong, Soon-Jik [Division of Advanced Engineering, Kongju National University, Kongju, 314-701 (Korea, Republic of); Korean Atomic Energy Research Institute, Yuseoung, Daejeon 305-353 (Korea, Republic of); Hong, Sun Ig [Department of Metallurgical Engineering, Chungnam National University, Yuseoung, Daejeon 305-764 (Korea, Republic of); Kim, Hyoung Seop [Department of Metallurgical Engineering, Chungnam National University, Yuseoung, Daejeon 305-764 (Korea, Republic of)], E-Mail: hskim@cnu.ac.kr

    2007-03-25

    The processing and mechanical properties of rapidly solidified and consolidated hypereutectic Al-20 wt% Si alloys were studied. A bulk form of rapidly solidified Al-20 wt% Si alloy was prepared by extruding gas atomized powders having a powder size of 106-145 {mu}m. Powder extrudates were subsequently equal channel angular pressed up to eight repetitive route C passes to refine matrix microstructure and Si particles by imposing severe plastic deformation. The microstructures of the gas atomized powders, extrudates and equal channel angular pressed samples were investigated via a scanning electron microscope. The mechanical properties of the bulk samples were measured by compressive tests. Equal channel angular pressing was found to be effective in matrix grain and Si particle refinement, which enhanced the strength of the Al-20 wt% Si alloy without deteriorating ductility in a range of experimental strain of up to 30%.

  10. Cold compaction behavior of nano-structured Nd–Fe–B alloy powders prepared by different processes

    International Nuclear Information System (INIS)

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd2Fe14B phase are two major effective means to improve magnetic properties. Since the matrix Nd2Fe14B phase in the starting Nd–Fe–B alloy can be disproportionated into a nano-structured mixture of NdH2.7, Fe2B, and α-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd16Fe76B8 alloy powders, we find that the as-disproportionated Nd16Fe76B8 alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density–pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: ► Nano-structured disproportionated Nd–Fe–B alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated Nd–Fe–B alloy powders. ► Density–pressure data fitted well by an empirical powder compaction model. ► As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. ► The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd16Fe76B8 (atomic ratio) alloy powders, which were prepared by three different processing routes including melt spinning, mechanical milling in argon, and mechanically activated disproportionation by milling in hydrogen, was experimentally

  11. Sintered powder cores of high Bs and low coreloss Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-06-01

    Full Text Available Nano-crystalline Fe-rich Fe84.3Si4B8P3Cu0.7 alloy ribbon with saturation magnetic flux density (Bs close to Si-steel exhibits much lower core loss (Wt than Si-Steels. Low glass forming ability of this alloy limits fabrication of magnetic cores only to stack/wound types. Here, we report on fabrication, structural, thermal and magnetic properties of bulk Fe84.3Si4B8P3Cu0.7 cores. Partially crystallized ribbons (obtained after salt-bath annealing treatment were crushed into powdered form (by ball milling, and were compacted to high-density (∼88% bulk cores by spark plasma sintering (SPS. Nano-crystalline structure (consisting of α-Fe grain in remaining amorphous matrix similar to wound ribbon cores is preserved in the compacted cores. At 50 Hz, cores sintered at Ts = 680 K show Wt 1 kHz. A trade-off between porosity and electrical resistivity is necessary to get low Wt at higher f. In the f range of ∼1 to 100 kHz, we have shown that the cores mixed with SiO2 exhibit much lower Wt than Fe-powder cores, non-oriented Si-steel sheets and commercially available sintered cores. We believe our core material is very promising to make power electronics/electrical devices much more energy-efficient.

  12. Influence of pulsing current on the glass transition and crystallizing kinetics of a Zr base bulk amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    WU Wenfei; YAO Kefu; ZHAO Zhankui

    2004-01-01

    Based on the thermal analysis, the influence of pulsing current on the glass transition and crystallizing kinetics of Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy has been studied. The obtained results show that after the Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy was pretreated by high-density pulsing current at low temperature, its glass transition temperature Tg, the initial crystallizing temperature Tx and the corresponding exothermic peak of crystallization Tpi were reduced. But the temperature range of supercooled liquid ΔT=Tx-Tg is almost the same. The calculated results with Kissinger equation show that the activation energy of glass transition of the alloy pretreated is reduced significantly, while the activation energy of crystallization is basically unchanged. The influence of pulsing current on the glass transition and crystallization of the Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy is believed to be related with the structure relaxation of the glass caused by the current.

  13. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    International Nuclear Information System (INIS)

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments

  14. Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

    Science.gov (United States)

    Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping

    2016-03-01

    Ultra-high strength and ductile powder metallurgy (PM) binary Ti-20at.%Ta alloy has been fabricated via sintering from elemental Ti and Ta powders and subsequent hot swaging and annealing. The microstructural evolution and mechanical properties in each stage were evaluated. Results show that inhomogeneous microstructures with Ti-rich and Ta-rich areas formed in the as-sintered Ti-Ta alloys due to limited diffusion of Ta. In addition, Kirkendall porosity was observed as a result of the insufficient diffusion of Ta. Annealing at 1000°C for up to 24 h failed to eliminate the pores. Hot swaging eliminated the residual sintering porosity and created a lamellar microstructure, consisting of aligned Ta-enriched and Ti-enriched phases. The hot-swaged and annealed PM Ti-20Ta alloy achieved an ultimate tensile strength of 1600 MPa and tensile elongation of more than 25%, due to its unique lamellar microstructure including the high toughness of Ta-enriched phases, the formation of α phase in the β matrix and the refined lamellae.

  15. High strength bulk Fe-Co alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Fe-Co alloys are extensively used in lamination form, but there are certain power generation applications that require Fe-Co rotors in bulk form. Experiencing only a dc magnetic field, these rotors can be as large as 0.5 m in diameter, depending on the size of the generator. The forging of such large pieces of Fe-Co has proven to be difficult. The present study investigates powder metallurgy processing of a gas atomized FeCoNbV alloy through hot isostatic pressing (HIP) for manufacturing large size rotors with improved mechanical strength. Gas atomized FeCoNbV alloy powders with and without ball milling were hot isostatic pressed at temperatures between 675 and 850 deg. C at a fixed pressure of 193 MPa for up to 6 h. Ball milling prior to HIP improved the yield strength. A further improvement in yield strength and in ductility was obtained after a disordering heat treatment at 730 deg. C followed by a rapid quench to room temperature. The optimum HIP and annealing conditions resulted in samples with yield strengths of 870 MPa. The compacts exhibited average coercivity values of 6.4 Oe and maximum permeability values of 1100

  16. Characterization of U-10wt%Zr alloy powder and dispersion type (U-10wt%ZR)-Zr fuels

    International Nuclear Information System (INIS)

    The characteristics of U-10wt%Zr alloy powder solidified rapidly by the centrifugal atomization process and dispersion-type (U-10wt%Zr)-xZr(x=50,55,60wt%) fuels have been examined. The results indicate that most of atomized U-10wt%Zr alloy powders have a smooth surface and frequently near-perfect spherical shape with few attached satellites. All phases of atomized powder are found to be α-U phases and δ-UZr2 with fine and homogeneous structure, and as powder size decreases, these phases are much finer owing to high cooling rate. The atomized powder was cold pressed, and then hot extruded to rod at 1073K. During the extrusion, U- 10wt%Zr particles are dispersed in Zr matrix by mechanical work, and they are broken and torn into harder Zr matrix

  17. Characterization of U-10wt%Zr alloy powder and dispersion type (U-10wt%ZR)-Zr fuels

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Choon Ho; Lee, Bong Sang; Park, Won Seok; Lee, Byong Oon [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    The characteristics of U-10wt%Zr alloy powder solidified rapidly by the centrifugal atomization process and dispersion-type (U-10wt%Zr)-xZr(x=50,55,60wt%) fuels have been examined. The results indicate that most of atomized U-10wt%Zr alloy powders have a smooth surface and frequently near-perfect spherical shape with few attached satellites. All phases of atomized powder are found to be {alpha}-U phases and {delta}-UZr{sub 2} with fine and homogeneous structure, and as powder size decreases, these phases are much finer owing to high cooling rate. The atomized powder was cold pressed, and then hot extruded to rod at 1073K. During the extrusion, U- 10wt%Zr particles are dispersed in Zr matrix by mechanical work, and they are broken and torn into harder Zr matrix.

  18. Effect of Particle Size on Microstructure and Cold Compaction of Gas-Atomized Hypereutectic Al-Si Alloy Powder

    Science.gov (United States)

    Cai, Zhiyong; Wang, Richu; Peng, Chaoqun; Zhang, Chun

    2015-04-01

    The effect of particle size on the cold compaction behavior of rapidly solidified hypereutectic Al-27 wt pct Si alloy powder was studied by double action axial pressing at room temperature. The geometrical characteristics (morphology, size, shape, and distribution of Si reinforcing phase) and hardness of the powder as a function of the particle size were investigated. The result shows that finer powder particle size showed smaller primary Si particles and achieved a lower density at a given pressure. Whereas, the microhardness of Al matrix increases while the particle size decreases, which indicates that the supersaturation due to the high solidification rate increases the deformation resistance of the alloy powder. Furthermore, the geometrical characteristics of Si phases strongly depend on the particle size due to the suppressed growth of Si phases during atomization. This microstructural characteristic evidently affects the powder compactibility at high applied pressures.

  19. Neutron powder thermo-diffraction in mechanically alloyed Fe{sub 64}Ni{sub 36} invar alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gorria, Pedro, E-mail: pgorria@uniovi.e [Departamento de Fisica, Universidad de Oviedo, Avda. Calvo Sotelo s/n, Oviedo 33007, Asturias (Spain); Martinez-Blanco, David [Unidad de Magnetometria, SCT' s, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo, Avda. Calvo Sotelo s/n, Oviedo 33007, Asturias (Spain); Smith, Ronald I. [ISIS Facility, RAL, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2010-04-16

    Nanostructured Fe{sub 64}Ni{sub 36} alloy has been obtained using high-energy ball milling for 35 h of milling time, Fe{sub 64}Ni{sub 36} MA-35 h. The initial as-milled Fe{sub 64}Ni{sub 36} MA-35 h powders are inhomogeneous, showing a majority phase with a face-centred cubic (fcc) crystal structure [88(2)%] and a minority phase with body-centred cubic (bcc) crystal structure [7(2)%]. The evolution of the microstructure with temperature between 300 K and 1100 K has been followed by means of in situ neutron powder thermo-diffraction experiments. The room temperature values for the mean crystalline size and the mechanical-induced microstrain of the fcc phase in the as-milled sample are {approx}10 nm and {approx}0.7%, respectively. Moreover, after heating the Fe{sub 64}Ni{sub 36} MA-35 h powders up to 1100 K, an increase of around 65 K in the Curie temperature respect to that of the commercial coarse-grained alloy of the same composition is observed. The latter together with the observed temperature dependence of the lattice parameter suggests that the Fe{sub 64}Ni{sub 36} MA-35 h sample subjected to the heating process exhibits invar behaviour. On heating up to 1100 K thermal relaxation of the microstructure occurs giving rise to grain growth above 100 nm, nearly vanishing values for the maximum strain, and the transformation of the bcc phase into the fcc one above 800 K, being the latter stable in subsequent heating-cooling processes.

  20. Mechanically driven nanocrystallization of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy induced by high-energy ball milling

    International Nuclear Information System (INIS)

    The mechanically driven nanocrystallization of amorphous Finemet alloy caused by high-energy ball milling was investigated by XRD, DSC and TEM techniques. A structural relaxation occurred in the amorphous Finemet alloy after milling for 0.5-2 h. Further milling for more than 3.5 h, uniformly and randomly distributed nanocrystalline α-Fe with grain size from ∝2 nm to ∝5 nm formed. The kinetics of the mechanical nanocrystallization of amorphous Finemet alloy was described by JMA model with the Avrami exponent n=1.55, which indicates a zero-nucleation rate and grain growth in all shapes from very small dimensions. In addition, the mechanical crystallization of amorphous Finemet alloys is mainly due to the severe deformation and local temperature rise during ball milling. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States)

    2014-08-05

    A novel gas atomization reaction synthesis (GARS) method was developed in this project to enable production (at our partner’s facility) a precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE) containing intermetallic compound (IMC) phase. Consolidation and heat-treatment experiments were performed at Ames Lab to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nano-metric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiments at Ames Lab and found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloy, i.e., the Hf-containing system exhibited five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was less complex to characterize, and make observations on the effects of processing parameters, the Ti-containing system was selected by Ames Lab for experimental atomization trials at our partner. An internal oxidation model was developed at Ames Lab and used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed at Ames Lab with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing at Ames Lab to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed at our partner to investigate the effects of: gas atomization pressure and reactive gas concentration on the particle size distribution (PSD) and the oxygen content of the resulting powder. Also, the effect on the rapidly solidified microstructure (as a

  2. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, Joel [Iowa State Univ., Ames, IA (United States)

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  3. Microstructural Analysis of Al/Al2O3/Gr Powder Composites Produced by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Gheorghe Iacob

    2011-09-01

    Full Text Available Powder samples of Al/Al2O3/Gr hybrid composites with different weight percents were obtained by mechanical alloying in a high energy ball mill. The aim of this study is to investigate the effect of alumina and graphite particles content on the microstructure of Al/Al2O3/Gr hybrid composites. Results obtained using Scanning Electron Microscopy (SEM as well as Energy-Dispersive X-ray Spectroscopy (EDS show that the addition of alumina particles as the reinforcement has a drastic effect on the size and morphology of the composite powders. Also, the addition of graphite particles as one of the reinforcing components is presumed to improve tribological properties by forming a graphite-rich lubricant film between the sliding surfaces.

  4. Sintered Fe-Ni-Cu-Sn-C Alloys Made of Ball-Milled Powders

    Directory of Open Access Journals (Sweden)

    Romański A.

    2014-10-01

    Full Text Available The main objective of this paper was to perform sinterability studies of ball-milled Fe-12%Ni-6.4%Cu-1.6%Sn-0.6%C powders. A mixture of precisely weighed amounts of elemental iron, nickel and graphite, and pre-alloyed 80/20 bronze powders was ball-milled for 8, 30 and 120 hours. After cold-pressing at 400 MPa the specimens were sintered at 900oC for 30 minutes in a reducing atmosphere and subsequently tested for density and hardness as well as subjected to structural studies using scanning electron microscopy (SEM and X-ray diffraction (XRD analysis.

  5. Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization

    Energy Technology Data Exchange (ETDEWEB)

    Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David

    2011-04-01

    As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top

  6. CHARACTERISTICS OF FATIGUE SURFACE MICROCRACK GROWTH IN VICINAL INCLUSION FOR POWDER METALLURGY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    WangXishu; LiYongqiang

    2003-01-01

    Inclusion flaw is one of the worst flaws of powder metallurgy. The inclusion flaw plays an important role in the failure of high temperature turbine materials in aircraft components and automotive parts, especially fatigue failure. In this paper, an experimental investigation of fatigue microcrack propagation in the vicinal inclusion were carried out by the servo-hydraulic fatigue test system with scanning electron microscope (SEM). It has been found from the SEM images that the fatigue surface microcrack occurs in the matrix and inclusion. According to the SEM images, the characteristics of fatigue crack initiation and growth in vicinal inclusion for powder metallurgy alloys are analyzed in detail. The effect of the geometrical shape and material type of surface inclusions on the cracking is also discussed with the finite element method (FEM).

  7. Influence of electronic structure on Compton scattering through comparing Cu-Ni alloys with Cu-Ni powder mixtures

    Institute of Scientific and Technical Information of China (English)

    Guang LUO; Xianquan HU; Guangyu XIAO; Chunyang KONG

    2012-01-01

    The application fields of Compton scattering have been further broadened through the studies of theories and experiments as well as the electronic structure of the scatters.The relationship between the contents of binary alloys (also binary powder mixtures) and the number of Compton scattered photons has been thoroughly examined.The linear expression of the relationship has been obtained approximately according to the Compton scattering theory.And the relationship has been validated well through the Compton scattering experiments with the scatters of Cu-Ni binary alloys or Cu-Ni binary powder mixtures.Furthermore,it is found that the slope of Cu-Ni powder mixture series is steeper than that of Cu-Ni alloy series,and through the pseudopotential plane wave theory of DFT the microscopic principles of Compton scattering of Cu-Ni alloy and Cu-Ni powder mixture series have been discussed and compared with each other.The results show that the electronic structure is the main reason for the difference of the linear slopes,and the line slope of Cu-Ni powder mixtures series is steeper than that of Cu-Ni alloy series.

  8. Comparative anomalous small-angle X-ray scattering study of hotwire and plasma grown amorphous silicon-germanium alloys

    OpenAIRE

    Goerigk, G.; Williamson, D. L.

    2001-01-01

    The nanostructure of hydrogenated amorphous silicon-germanium alloys, a-Si1-xGex:H, prepared by the hotwire deposition technique (x=0.06-0.79) and by the plasma enhanced chemical vapor deposition technique (x=0 and 0.50) was analyzed by anomalous small-angle x-ray scattering experiments. For all alloys with x >0 the Ge component was found to be inhomogeneously distributed with correlation lengths of about 1 nm. A systematic increase of the separated scattering was found due to the increasing ...

  9. Improvement of Ductility of Powder Metallurgy Titanium Alloys by Addition of Rare Earth Element

    Institute of Scientific and Technical Information of China (English)

    Yong LIU; Lifang CHEN; Weifeng WEI; Huiping TANG; Bin LIU; Baiyun HUANG

    2006-01-01

    Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD).It was found out that the addition of Nd increased the density of sintered titanium alloys slightly by a maximum increment of 1% because small amount of liquid phase occurred during sintering. The addition of Nd shows little effect on the improvement of tensile strength, while the elongation is significantly improved. For example, the elongation of Ti-4.5Al-6.0Mo-1.5Fe can be increased from 1% without addition of Nd to 13% at a Nd content of 1.2 wt pct.

  10. Martensitic transformation of Ti50Ni30Cu20 alloy prepared by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Valeanu, M., E-mail: valeanu@infim.ro [National Institute of Materials Physics, 077125 Bucharest (Romania); Lucaci, M. [National Institute for Electrical Engineering ICPE-CA, 030138 Bucharest (Romania); Crisan, A.D.; Sofronie, M. [National Institute of Materials Physics, 077125 Bucharest (Romania); Leonat, L. [National Institute for Electrical Engineering ICPE-CA, 030138 Bucharest (Romania); Kuncser, V. [National Institute of Materials Physics, 077125 Bucharest (Romania)

    2011-03-31

    Research highlights: > Martensitic transformation sequence in Ti50Ni30Cu20 prepared high - energy milling. > Two transformations (B2-B19, B2-B19') are evidenced after 10 hours of milling. > B2-B19 transformation is not more observed after 20 hours of milling. > A longer milling process promotes the formation of the secondary Ti{sub 2}(NiCu) phase. - Abstract: Phase transformation behavior of Ti50Ni30Cu20 shape memory alloys prepared by powder metallurgy is analyzed with respect to the duration of mechanical alloying. The processed blends were studied by differential scanning calorimetry and room temperature X-ray diffraction. The martensitic transformations evidenced by thermal scans are discussed in correlation with the relative phase content obtained from the refinement of the X-ray diffraction patterns.

  11. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Lopez B, I.; Trapaga M, L. G. [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Juriquilla, 76230 Queretaro (Mexico); Martinez F, E. [Centro de Investigacion e Innovacion Tecnologica, Cerrada de Cecati s/n, Col. Santa Catarina Azcapotzalco, 02250 Mexico D. F. (Mexico); Zoz, H., E-mail: israelbaez@gmail.co [Zoz GmbH, D-57482, Wenden (Germany)

    2011-07-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  12. Laser cladding of Al + Ir powders on ZM5 magnesium base alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Laser cladding of preplaced Al + Ir powders on a ZM5 magnesium alloy was performed to enhance the corrosion resistance of the ZM5 magnesium alloy. A metallurgical bond was obtained at the coating/substrate interface. The corrosion potential (Ecorr) of the laser cladded sample was 169 mV positive to that of the untreated ZM5 substrate, while the corrosion current (Icorr) was some one order of magnitude lower. The laser cladded sample, unlike the untreated ZM5 substrate,showed a passive region in the polarization plot. Immersion tests confirmed that the corrosion resistance of the laser cladded ZM5 sample was significantly enhanced in 3.5 wt.% NaCl solution. The Al-rich phases of AlIr, Mg17Al12, and Al formed in the cladding layer and the rapid solid characteristics were contributed to the improved corrosion behavior of the coating.

  13. Powder metallurgy route in production of aluminium alloy matrix particulate composites

    OpenAIRE

    Al-Rashed, A.; Holecek, S.; PrazÁk, M.; Procio, M.

    1993-01-01

    Meta1 matrix composites based on an aluminium alloys were produced by powder metallurgy route, involved unidirectionally hot pressing under 500 MPa for 15 minutes at temperature about 0.95 Ts [Solidus Temperature]. Metal matrix contains different weight percents of SiC, αAl2O3, WC and Si3N4 with different particle size. Wear and mechanical tests have been carried out on composites, and it was found that about 90% of wear reduction occured in composite with 30% SiC compared with pressed matrix.

  14. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    Science.gov (United States)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  15. Improvement of Laser Deposited High Alloyed Powder Metallurgical Tool Steel by a Post-tempering Treatment

    Science.gov (United States)

    Leunda, J.; Navas, V. García; Soriano, C.; Sanz, C.

    Laser cladding process of a high alloyed powder metallurgical tool steel was studied for die repairing purposes. The low hardness obtained after the deposition process was improved by later tempering cycles, achieving crack free coatings with hardness well above 700 HV. The effect of different post tempering cycles was investigated in order to determine the optimal temperature range. The microstructure of the samples was studied using optical and scanning electron microscope and the volumetric ratio of retained austenite was determined by X-ray diffraction. The tempering effect was mainly evaluated through cross-section microhardness profiles.

  16. Microstructural Evolution of Alloy Powder for Electronic Materials with Liquid Miscibility Gap

    Science.gov (United States)

    Ohnuma, I.; Saegusa, T.; Takaku, Y.; Wang, C. P.; Liu, X. J.; Kainuma, R.; Ishida, K.

    2009-01-01

    The microstructure of powders that are applicable for electronic materials were studied for some systems in which there is a liquid miscibility gap. The characteristic morphologies of an egg-like core type and a uniform second-phase dispersion are shown in relation to the phase diagram, where thermodynamic calculations are a powerful tool for alloy design and the prediction of microstructure. Typical examples of microstructural evolution and properties of Pb-free solders and Ag-based micropowders with high electrical conductivity produced by a gas-atomizing method are presented.

  17. Comparison of Microstructure and Properties of Ti-6Al-7Nb Alloy Processed by Different Powder Metallurgy Routes

    OpenAIRE

    Bolzoni, Leandro; Hari Babu, N; Ruiz Navas, Elisa María; Gordo Odériz, Elena

    2013-01-01

    Proceedings of: The Minerals, Metals and Materials Society 2013: 142nd Annual meeting and Exhibition. San Antonio, Texas, USA, March 3-7, 2013. The Ti-6Al-7Nb alloy was specially developed to replace the well-known Ti-6Al-4V alloy in biomedical applications due to supposed cytotoxicity of vanadium in the human body. This alloy is normally fabricated by conventional ingot metallurgy by forging bulk material. Nevertheless, powder metallurgy techniques could be used to obtain this alloy with ...

  18. A study of the diffusion mechanism in glasses: a theoretical and experimental study of tracers diffusion in amorphous metallic alloys

    International Nuclear Information System (INIS)

    The principal aims of this work are a better understanding of the experimental situation in amorphous metallic alloys and a tentative explanation of the role of collective mechanisms in matter transport. Self- and solute-diffusion of Hf, Au and Cu tracers in amorphous Ni Zr alloy have been studied. We study by SIMS analysis the broadening of the concentration profile with temperature and pressure, in thin amorphous layers which were prepared by sputtering and properly relaxed. The diffusion coefficient variation with temperature shows an Arrhenius behaviour for all of our tracers. The activation energy amount to 1.55 eV for Cu, 1.65 eV for Au and 1.78 eV for Hf and corresponds to nearly one half of the corresponding energy in crystalline zirconium. The diffusion coefficients variation with hydrostatic pressure yields an activation volume equal to one half of an average atomic volume of our matrix for medium and large sized tracers Au, Hf and a smaller activation volume for Cu. The second part of our work consists of numerical simulations of atomic displacements in a generic glass by two complementary methods. In a Lennard-Jones alloy with size effect, we observe by molecular dynamics (MD) some correlated displacements which consist of substitution cycles or chains. The associated energy of these collective events represents nearly 15 pc of that found in crystalline Lennard- Jones. The systematic exploration of energy surface in space configuration made with activation-relaxation technique ART yields energy distributions of stable and saddles positions and opens the way to an evaluation of diffusion coefficients. The events found by ART are qualitatively close to MD ones, but the averaged activation energy associated with these events represents only 10 pc of the crystalline one. This clearly points towards the limit of Lennard-Jones potential, which is not enough representative of actual glasses. This is the reason why an interaction model closer to amorphous

  19. Structural relaxation and crystallization in the Fe-Cr-Si-B and Fe-Cu-Cr-Si-B amorphous alloys

    International Nuclear Information System (INIS)

    Structural relaxation, crystallization and optimisation processes in soft magnetic amorphous alloys based on iron are examined by applying different experimental techniques: X-ray diffraction analysis, high-resolution electron microscopy, measurements of magnetic and electric properties (permeability, after-effect resistivity). The presented results are discussed in terms of annealing out of microvoids, formation of nanocrystalline phase and changes of effective magnetostriction constant. (author)

  20. Influence of Kinetic and Thermodynamic Factors on the Glass-Forming Ability of Zirconium-Based Bulk Amorphous Alloys

    OpenAIRE

    Mukherjee, S.; Schroers, J.; Johnson, W. L.; Rhim, W. K.

    2005-01-01

    The time-temperature-transformation curves for three zirconium-based bulk amorphous alloys are measured to identify the primary factors influencing their glass-forming ability. The melt viscosity is found to have the most pronounced influence on the glass-forming ability compared to other thermodynamic factors. Surprisingly, it is found that the better glass former has a lower crystal-melt interfacial tension. This contradictory finding is explained by the icosahedral short-range order of the...

  1. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    International Nuclear Information System (INIS)

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500 C to 600 C) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: (1) Hot working fabrication using mechanical alloying and extrusion - Design, fabricate, and assemble extrusion equipment - Extrusion database on DU metal - Extrusion database on U-10Zr alloys - Extrusion database on U-20xx-10Zr alloys - Evaluation and testing of tube sheath metals (2) Low-temperature sintering of U alloys - Design, fabricate, and assemble equipment - Sintering database on DU metal - Sintering database on U-10Zr alloys - Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research and Development (FCR and D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the

  2. Effects of superimposed hydrostatic pressure on flow and fracture of a Zr-Ti-Ni-Cu-Be bulk amorphous alloy

    International Nuclear Information System (INIS)

    Recent successes in producing bulk amorphous alloys have renewed interest in this class of materials. Although amorphous metallic alloys have been shown to exhibit strengths in excess of 2.0 GPa, most of the earlier studies on such materials were conducted on tape or ribbon specimens due to the high cooling rates required to achieve the amorphous structure. The primary purpose of this investigation was to determine the effects of superimposed hydrostatic pressure on the flow and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass utilizing procedures successfully utilized on a range of structural materials, as reviewed recently. In general, few studies of this type have been conducted on metallic glasses, although thin ribbons (i.e., 300 microm thick) of a Pd-Cu-Si amorphous material tested with superimposed pressure have been reported previously. In particular, the effects of superimposed hydrostatic pressure over levels ranging from 50 MPa to 575 MPa on the flow/fracture behavior of cylindrical tensile specimens were compared to the flow and fracture behavior of identical materials tested in uniaxial tension and compression. It is shown that changes in stress triaxiality, defined as σm/bar σ, over the range of -0.33 to 0.33 produced a negligible effect on the fracture stress and fracture strain, while the orientation of the macroscopic fracture plane with respect to the loading axis was significantly affected by changes in σm/bar σ

  3. Anisotropic phase separation through the metal-insulator transition in amorphous Mo-Ge and Fe-Ge alloys

    International Nuclear Information System (INIS)

    Since an amorphous solid is often defined as that which lacks long-range order, the atomic structure is typically characterized in terms of the high-degree of short-range order. Most descriptions of vapor-deposited amorphous alloys focus on characterizing this order, while assuming that the material is chemically homogeneous beyond a few near neighbors. By coupling traditional small-angle x-ray scattering which probes spatial variations of the electron density with anomalous dispersion which creates a species-specific contrast, one can discern cracks and voids from chemical inhomogeneity. In particular, one finds that the chemical inhomogeneities which have been previously reported in amorphous FexGe1-x and MoxGe1-x are quite anisotropic, depending significantly on the direction of film growth. With the addition of small amounts of metal atoms (x2 or MoGe3. Finally, by manipulating the deposited power flux and rates of growth, FexGe1-x films which have the same Fe composition x can be grown to different states of phase separation. These results may help explain the difficulty workers have had in isolating the metal/insulator transition for these and other vapor-deposited amorphous alloys

  4. Preparation and Characterization of Mg1-xB2 Bulk Samples and Cu/Nb Sheathed Wires with Low Grade Amorphous Boron Powder

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Alexiou, Aikaterini; Rubesova, Katerina;

    2014-01-01

    MgB2 bulk and wire samples were prepared using cheap, low grade amorphous boron powders. Based on chemical analysis performed on the starting reagents, three nominal stoichiometries were studied. It was found that the structural and superconducting properties of the bulk samples were not affected...... by the composition, but that residual Mg was left in the wires for the nominal MgB2 composition. In contrast, slightly Mg-deficient compositions were free from residual Mg and exhibited higher critical current densities. The MgB2 phase formation kinetics was not influenced by the variations in the...... nominal powder composition....

  5. Ab initio molecular dynamics simulation of the atom packing and density of Al-Ni amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Al-Ni alloys have better glass forming ability (GFA) than other Al-based alloys. However, the relationship among the atomic arrangement, glass transition, packing density and composition hasn’t been systematically studied. In this paper the ab initio molecular dynamics simulation (AIMD) was performed on the atom packing and density of AlxNi100-x (x=80, 83, 85, 86, 87 and 90) alloys. The pair correlation function and Voronoi tessellation indicated that there are obvious topological and chemical short-range orders in these alloys. The topological structure consists of Al-centered icosahedra like and Ni-centered tri-capped trigonal prism (TTP) like polyhedra. There is strong chemical short-range ordering between Al and Ni atoms indicated by the bond-length of Al-Ni pair shorter than the sum of the radii of Al and Ni atoms, which increases with the increasing of Ni content. It is shown that the densities of amorphous alloys don’t agree with the linear law with a peak at x=85. Based on the features of the structure and density, it is concluded that Al-Ni alloys at x=84–86 have high GFA, which can be extended to multi-component Al-based alloys.

  6. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sean M. McDeavitt

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich

  7. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean M

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich

  8. Self-similar transformation of surface relief of amorphous alloy stressed foil

    International Nuclear Information System (INIS)

    Paper contains a series (time sequence) of topographic patterns of the stressed surface of Fe70Cr15B15 amorphous alloy foil. It is shown that in contrast to the standard (polycrystalline) metal foil the surface relief of the mentioned material is characterized initially by the fractal properties due to the nonequilibrium conditions of its formation. Upon reaching of tensile stress equal to 500 MPa at the surface the relief fractal dimension initially increases from 1.21 ± 0.02 up to 1.22 ± 0.02 and then drops up to 1.12 ± 0.03 and, finally, increases step-by-step up to 1.22 ± 0.02. Approximately in an hour and a half a system of regular bands of shift with about 300 nm amplitude substitutes for an intricate relief with the peculiar depth equal to several tens of nanometers. Self-similar transformations of relief are explained by competition of the following processes: cracking, straightening of a stretched surface, self-diffusion

  9. Elastic and plastic characteristics of a model Cu–Zr amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Akiho; Kamimura, Yasushi [Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Edagawa, Keiichi, E-mail: edagawa@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Takeuchi, Shin [Tokyo University of Science, Kagurazaka, Sinjuku-ku, Tokyo 162-8601 (Japan)

    2014-09-22

    Athermal quasistatic simulation of shear deformation has been conducted for a realistic model Cu–Zr amorphous alloy to investigate characteristic features of elasticity and plasticity of the material. Significant reduction of the shear modulus by nonaffine atomic displacements and appreciable nonlinearity of elasticity have been observed. The fourth-order elastic constant in shear deformation and the ideal shear strength have been evaluated. Plastic deformation has been observed to start with isolated local shear transformations (LSTs) followed by collective LSTs leading to the formation of a shear band. Participation-ratio analysis (PRA) has demonstrated how the nonaffine displacement field converges as the system approaches the critical point of losing structural stability. PRA has also evaluated quantitatively the numbers of atoms participating in LSTs – the average number is about 30. Spatially anisotropic development of nascent shear band on a plane has been shown, attributable to anisotropic internal stress field induced by an LST. The evaluated stresses for the shear-band nucleation and for its propagation have indicated that the yielding in real materials is controlled by the shear-band propagation, as previously pointed out.

  10. Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al-Si-Mg alloys

    Science.gov (United States)

    Bahrami, A.; Pech-Canul, M. I.; Gutiérrez, C. A.; Soltani, N.

    2015-12-01

    A study of the wetting behavior of three substrate types (SiC, SiO2-derived RHA and SiC/SiO2-derived RHA) by two Al-Si-Mg alloys using the sessile drop method has been conducted, using amorphous and crystalline SiO2 in the experiment. Mostly, there is a transition from non-wetting to wetting contact angles, being the lowest θ values achieved with the alloy of high Mg content in contact with amorphous SiO2. The observed wetting behavior is attributed to the deposited Mg on the substrates. A strong diffusion of Si from the SiC/Amorphous RHA substrate into the metal drop explains the free Si segregated at the drop/substrate interface and drop surface. Although incorporation of both SiO2-derived RHA structures into the SiC powder compact substrates increases the contact angles in comparison with the SiC substrate alone, the still observed acute contact angles in RHA/SiC substrates make them promising for fabrication of composites with high volume fraction of reinforcement by the pressureless infiltration technique. The observed wetting characteristics, with decrease in surface tension and contact angles is explained by surface related phenomena. Based on contact angle changes, drop dimensions and surface tension values, as well as on the interfacial elemental mapping, and XRD analysis of substrates, some wetting and reaction pathways are proposed and discussed.

  11. Effect of reduced cobalt contents on hot isostatically pressed powder metallurgy U-700 alloys

    Science.gov (United States)

    Harf, F. H.

    1982-01-01

    The effect of reducing the cobalt content of prealloyed powders of UDIMET 700 (U-700) alloys to 12.7, 8.6, 4.3, and 0% was examined. The powders were hot isostatically pressed into billets, which were given heat treatments appropriate for turbine disks, namely partial solutioning at temperatures below the gamma prime solvus and four step aging treatments. Chemical analyses, metallographic examinations, and X-ray diffraction measurements were performed on the materials. Minor effects on gamma prime content and on room temperature and 650 C tensile properties were observed. Creep rupture lives at 650 C reached a maximum at the 8.4% concentration, while at 760 C a maximum in life was reached at the 4.3% cobalt level. Minimum creep rates increased with decreasing cobalt content at both test temperatures. Extended exposures at 760 and 815 C resulted in decreased tensile strengths and rupture lives for all alloys. Evidence of sigma phase formation was also found.

  12. Plasma Sprayed NiA1 Intermetallic Coating Produced with Mechanically Alloyed Powder

    Institute of Scientific and Technical Information of China (English)

    Mehrshad Moshref Javadi; Hossein Edris; Mahdi Salehi

    2011-01-01

    In the present research, mechanically alloyed Ni-AI powder was utilized to develop plasma sprayed coatings, and the effect of the spray distance and heat treatment on the phases, microstructure, and hardness of the coat- ings were examined. Coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and through microhardness measurements. Although mechanically alloyed Ni-AI powder showed no intermetallic phases, the coatings did. Different spray distances from 5 to 19 cm were employed for plasma spray and the specimens were heat treated at different temperatures, then the amount of oxides, porosity and hardness of the coatings were changed according to the spray condition. The thermal energy of the plasma spray caused the formation of NiAI phases while particles flew to the substrate or after that. Extreme increase in heat treatment temperature and spray distance resulted in oxidation and reduction in the quality of the coating. Furthermore, the best spray distance and heat treatment temperature to gain the NiAI intermetallic coating were established.

  13. Mechanically alloyed Al7075–TiC nanocomposite: Powder processing, consolidation and mechanical strength

    International Nuclear Information System (INIS)

    Highlights: • Al7075–TiC nanocomposite was synthesized by mechanical alloying followed by hot pressing. • Microstructure of obtained powders was characterized during milling. • The effect of milling and hot pressing parameters on mechanical strength was investigated. • Significant enhancements in tensile strength was achieved for Al7075–TiC nanocomposite. - Abstract: This work aimed to fabricate high strength Al7075–TiC nanocomposite by mechanical alloying (MA) followed by hot pressing considering preparation parameters. The effect of milling time on the microstructure of the synthesized powder was characterized by means of X-ray diffraction measurements (XRD) and scanning electron microscopy (SEM). Subsequently, the integrated effects of three major parameters including milling time (10, 30 and 50 h), hot pressing temperature (350, 400 and 450 °C) and pressure (400, 500 and 600 MPa) were investigated on the microhardness. Improved sintering and mechanical properties were achieved by increasing hot pressing temperature and pressure; while rising temperature over 400 °C resulted in reduced hardness due to severe grain growth during hot pressing. More interestingly, influence of milling time on the mechanical properties was strongly depended on the hot pressing pressure value. Furthermore, tensile strength of ∼725 MPa was obtained by consolidation under optimal parameters

  14. Structure evolution and solid solubility extension of copper-niobium powders during mechanical alloying

    International Nuclear Information System (INIS)

    Highlights: → A supersaturated Cu-Nb solid solution with 10 wt.% Nb can be obtained by MA at RT. → For Cu-Nb powders after 100 h milling, the Cu crystallite sizes decrease to 7-13 nm. → Using a thermodynamic analysis, the solubility of Nb in Cu after MA is 11.6 wt.%. - Abstract: The supersaturated Cu-Nb solid solutions were produced by mechanical alloying (MA) at room temperature (RT). The microstructural evolution and mechanical property of Cu100-xNbx (x = 5, 10, 15, 20, wt.%) powder mixtures during milling were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) observations and microhardness measurement. The results show that the solid solubility limit of Nb in Cu can be extended to more than 10 wt.% Nb by MA at RT. The Cu crystallite size decreases with increasing milling time, and approaches 7 nm in Cu80Nb20 and 13 nm in Cu95Nb5 after 100 h milling, respectively. The maximum value of microhardness is about 4.8 GPa for Cu80Nb20 milled for 100 h. The mechanism of solid solubility extension by MA was discussed using a thermodynamical analysis. The surface and elastic strain energy produced by milling supply the main driving force for alloying.

  15. Effect of powder milling on mechanical properties of hot-pressed and hot-rolled Cu–Cr–Nb alloy

    International Nuclear Information System (INIS)

    Highlights: •Milled powder enhances sintering and mechanical properties after hot pressing. •Hot-rolling of hot-pressed samples made from milled powder enhances ductility. •Pore size and number of pores decreases after hot-rolling. -- Abstract: The present study is on the effect of mechanical milling of gas-atomized powders on mechanical properties of the hot-pressed and subsequently hot-rolled Cu–8 at% Cr–4 at% Nb alloy with a microstructure consisting of pure copper matrix hardened by intermetallic Cr2Nb precipitates. The mechanically milled powders result in lower sintering temperature during hot pressing compared to the atomized powders. The hot-pressed samples made from the milled powder exhibit significantly higher hardness and tensile strength, but lower ductility and electrical conductivity compared to that made from the un-milled gas-atomized powders. The hot rolling results in marginal increase in strength, but significant increase in ductility compared to the hot-pressed alloy for both the milled and atomized powders and it is attributed to the decrease in size of the pores and amount of porosities after hot rolling

  16. Hot deformation behavior and processing map of a powder metallurgy Ti–22Al–25Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jianbo, E-mail: xingxing6453@163.com [National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); School of Mechanical Engineering, Beihua University, Jilin 132021 (China); Zhang, Kaifeng [National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); Liu, Liming; Wu, Fuyao [Research Institute of Aerospace Special Material and Technology, China Aerospace Science and Industry Corporation, Beijing 100074 (China)

    2014-07-05

    Graphical abstract: It can be discovered that the nucleation occurs at trigeminal grain boundary. It is easy for newly formed recrystallized grains to grow owing to large recrystallization driving force, and then necklace-shaped grains with serrated grain boundary form along the elongated grains boundaries. - Highlights: • A powder metallurgy Ti–22Al–25Nb alloy was fabricated by hot pressed sintering. • Isothermal compression tests of the P/M Ti–22Al–25Nb alloy were performed. • The hot deformation behavior was studied by processing maps and microstructures. • Stability and instability domains were obtained based on the instability parameters. • The deformation mechanisms and microstructures in stability domains were discussed. - Abstract: Powder metallurgy (P/M) Ti–22Al–25Nb alloy billets were fabricated by hot pressing (HP) from argon atomized pre-alloyed powders at a temperature of 1050 °C under a pressure of 35 MPa, sintering for 1 h. Cylindrical specimens from HP’ed billets were compressed within the deformation temperature range of 950–1070 °C using strain rates from 0.001 to 1 s{sup −1} to a height reduction of 50%. Processing maps at strains of 0.4 and 0.6 were constructed on the basis of dynamic material model (DMM) theory by using the flow stress data obtained from hot compression tests. The processing map at a strain of 0.6 reveals a single dynamic recrystallization (DRX) domain and three lamellar globularization domains. Furthermore, an instability region is exhibited at temperatures lower than 980 °C and strain rates higher than 0.1 s{sup −1}. The hot deformation behavior regimes represented by DRX, lamellar globularization and the instability flow have been discussed in reference to microstructural evolution during hot compression. Kinetic analysis of the flow stress data at a strain of 0.6 was investigated. The results indicate that dislocation slip and climb (DSC) are likely to be the deformation mechanism

  17. Hot deformation behavior and processing map of a powder metallurgy Ti–22Al–25Nb alloy

    International Nuclear Information System (INIS)

    Graphical abstract: It can be discovered that the nucleation occurs at trigeminal grain boundary. It is easy for newly formed recrystallized grains to grow owing to large recrystallization driving force, and then necklace-shaped grains with serrated grain boundary form along the elongated grains boundaries. - Highlights: • A powder metallurgy Ti–22Al–25Nb alloy was fabricated by hot pressed sintering. • Isothermal compression tests of the P/M Ti–22Al–25Nb alloy were performed. • The hot deformation behavior was studied by processing maps and microstructures. • Stability and instability domains were obtained based on the instability parameters. • The deformation mechanisms and microstructures in stability domains were discussed. - Abstract: Powder metallurgy (P/M) Ti–22Al–25Nb alloy billets were fabricated by hot pressing (HP) from argon atomized pre-alloyed powders at a temperature of 1050 °C under a pressure of 35 MPa, sintering for 1 h. Cylindrical specimens from HP’ed billets were compressed within the deformation temperature range of 950–1070 °C using strain rates from 0.001 to 1 s−1 to a height reduction of 50%. Processing maps at strains of 0.4 and 0.6 were constructed on the basis of dynamic material model (DMM) theory by using the flow stress data obtained from hot compression tests. The processing map at a strain of 0.6 reveals a single dynamic recrystallization (DRX) domain and three lamellar globularization domains. Furthermore, an instability region is exhibited at temperatures lower than 980 °C and strain rates higher than 0.1 s−1. The hot deformation behavior regimes represented by DRX, lamellar globularization and the instability flow have been discussed in reference to microstructural evolution during hot compression. Kinetic analysis of the flow stress data at a strain of 0.6 was investigated. The results indicate that dislocation slip and climb (DSC) are likely to be the deformation mechanism responsible for the

  18. Response Surface Modeling and Evaluation of the Influence of Deposition Parameters on the Electrolytic Cu-Sn Alloy Powders Production

    Science.gov (United States)

    Orhan, Gökhan; Güzey Gezgin, Gizem

    2011-08-01

    In this article, the electrodeposition process of Cu-Sn alloy powders from tripolyphosphate (TPP)-based electrolytes was investigated as a function of deposition parameters. The effects of deposition parameters such as current density, electrolyte composition (Cu/Sn mole ratio), mechanical stirring speed, and temperature on the Cu content of alloy powder and cathodic current efficiency were evaluated using the response surface methodology (RSM). The empirical models developed in terms of deposition parameters were found to be statistically adequate to describe the process responses. The study revealed that as far as the copper content was concerned in the alloyed powders, all parameters selected had positive correlations. However, a high stirring speed and low current density led to a greater current efficiency. The morphology and chemical composition of the electrodeposited Cu-Sn alloy powders were investigated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and inductively coupled plasma (ICP) analysis. An SEM analysis showed that the powder morphology was affected considerably by the cathodic current density and stirring speed.

  19. In vitro metal ion release and biocompatibility of amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy with/without gelatin coating

    Energy Technology Data Exchange (ETDEWEB)

    Chan, W.Y., E-mail: chan.wing.yue@sgh.com.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore); Department of Plastic, Reconstructive and Aesthetic Surgery, Singapore General Hospital (Singapore); Chian, K.S.; Tan, M.J. [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore)

    2013-12-01

    Amorphous zinc-rich Mg–Zn–Ca alloys have exhibited good tissue compatibility and low hydrogen evolution in vivo. However, suboptimal cell–surface interaction on magnesium alloy surface observed in vitro could lead to reduced integration with host tissue for regenerative purpose. This study aims to improve cell–surface interaction of amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy by coating a gelatin layer by electrospinning. Coated/uncoated alloys were immersed and extracted for 3 days under different CO{sub 2}. The immersion results showed that pH and metal ion release in the alloy extracts were affected by gelatin coating and CO{sub 2}, suggesting their roles in alloy biocorrosion and a mechanism has been proposed for the alloy–CO{sub 2} system with/without coating. Cytotoxicity results are evident that gelatin-coated alloy with 2-day crosslinking not only exhibited no indirect cytotoxicity, but also supported attachment of L929 and MG63 cell lines around/on the alloy with high viability. Therefore, amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy coated with gelatin by electrospinning technique provides a useful method to improve alloy biocompatibility. - Highlights: • Electrospinning is a new method to coat amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy with gelatin. • Gelatin-coated alloy has differential effect on pH and ion release at various CO{sub 2}. • L929 cell proliferation correlates with Mg{sup 2+} level in alloy extracts. • Biomimetic gelatin coating significantly improves cell–surface interaction.

  20. A new dental powder from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons

    International Nuclear Information System (INIS)

    A new non-gamma-two dental powder has been developed from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons. The amalgam made from this powder exhibits excellent properties for dental filling. The nanocrystalline microstructure was found for the first time in as-spun and heat treated Ag(27-28)Sn(9-32) Cu alloy ribbons, using X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy. As-spun ribbons exhibited a multi-phase microstructure with preferred existence of β (Ag4Sn) phase formed during rapid solidification (RS) due to supersaturating of copper (Cu) atoms and homogenous nanostructure with subgrain size of about (40-50) nm, which seems to be developed during RS process and can be caused by eutectic reaction of the Ag3Sn/Ag4Sn-Cu3Sn system. In heat treated ribbons the clustering of Cu atoms was always favored and stable in an ageing temperature and time interval determined by Cu content. The heat treatment led to essential changes of subgrain morphology, resulted in the appearance of large-angle boundaries with fine Cu3Sn precipitates and forming typical recrystallization twins. Such a microstructure variation in melt-spun ribbons could eventually yield enhanced technological, clinical and physical properties of the dental products, controlled by the ADA Specification N deg 1 and reported before. Thus, using the rapid solidification technique a new non-gamma-two dental material of high quality, nanocrystalline ribbon powder, can be produced. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd