WorldWideScience

Sample records for amorphization sputter rate

  1. Study of structural relaxation in amorphous alloys prepared by sputtering

    International Nuclear Information System (INIS)

    Habibi, S.; Banaee, N.; Majidy, S.

    2004-01-01

    Full text: We have prepared amorphous alloy of Al x Cu 1-x (with X= 93, 90, 80, 70, 30) using sputtering system. The rate of growth was 0.7 nm/sec. X-ray diffractometer was used to conform the amorphous nature of the prepared specimens. High temperature annealing can change amorphous to crystalline structure, while low temperature annealing may transform amorphous state to a more stable amorphous state via structural relaxation of the specimen and enhancing the properties of the alloys, such as mechanical ductility etc. Here we have annealed the alloys at temperatures 100, 150, 200, 250, 300 and 350 C for 1 hour. We observed that microhardness of the specimen increases with annealing and gets maximum value at 300 C. Our XRD experiments and also earlier Moessbauer studies show that while the average interatomic distances reduces due to annealing, structure remains amorphous

  2. Sputtering of amorphous carbon layers studied by laser induced fluorescence

    International Nuclear Information System (INIS)

    Pasch, E.

    1992-07-01

    In order to minimize the radiation losses, it is desirable to keep the plasmas in nuclear fusion devices free of high-Z-impurities. Therefore, the walls of TEXTOR and other tokamaks are covered with thin layers of amorphous carbon layers (a-C:H) or amorphous carbon/boron layers (a-C/B:H). The sputtering behaviour of these layers has been studied under bombardment by Ar + ions with energies of 1.5 keV and current densities of a few mA/cm 2 . Investigations of these coatings were carried out with the object to measure the velocity distribution of the sputtered atoms and the sputtered yields by laser induced fluorescence in the vacuum ultraviolet. (orig.)

  3. Krypton-85 storage in sputter-deposited amorphous metals

    International Nuclear Information System (INIS)

    Tingey, G.L.; McClanahan, E.D.; Lytle, J.M.; Gordon, N.R.; Knoll, R.W.

    1982-06-01

    After comparing options for storing radioactive krypton gas, the United States Department of Energy selected ion implantation of the gas into a sputter-deposited metal matrix as the reference process. This technique is being developed with pilot-scale testing and further characterization of the deposited product. The process involves implanting krypton atoms into a growing deposit during the sputtering process. An amorphous metal deposit of nominal composition Ni 0 81 La 0 09 Kr 0 10 has been selected for further studies because of the high krypton loading, high sputtering yield, relatively low cost of the metallic components, resistance to corrosion, and stability of the product. The krypton release from this amorphous metal is described as an activated diffusion process which increases linearly with the square root of time. Studies of krypton release rate as a function of temperature were completed and an activation energy for the diffusion of 70 kcal/mole obtained. From these data, we estimated that the krypton release during the first ten years would be 0.5% for a maximum temperature of 350 0 C. The actual release of the krypton during storage was projected to be lower by a factor of 10 7 with the maximum temperature only 220 0 C. Thermal analysis studies show two energy releases occurring with krypton-containing alloys: one associated with recrystallization of the amorphous alloy and a second associated with krypton release. The total energy release between 100 and 800 0 C was less than 50 cal/g. Estimates are given for the cost of operation of the ion implantation process for solidification of the krypton-85 from a 2000-tonne heavy metal/year reprocessing plant. The present value costs, in 1981 dollars including capital and operating costs and assuming a 30-year life, are about $26M for the lifetime of the plant. Annual energy consumption of the process was estimated to be 3.9 M kWh/year

  4. Thermal conductivity of sputtered amorphous Ge films

    International Nuclear Information System (INIS)

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka

    2014-01-01

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids

  5. Underlying role of mechanical rigidity and topological constraints in physical sputtering and reactive ion etching of amorphous materials

    Science.gov (United States)

    Bhattarai, Gyanendra; Dhungana, Shailesh; Nordell, Bradley J.; Caruso, Anthony N.; Paquette, Michelle M.; Lanford, William A.; King, Sean W.

    2018-05-01

    Analytical expressions describing ion-induced sputter or etch processes generally relate the sputter yield to the surface atomic binding energy (Usb) for the target material. While straightforward to measure for the crystalline elemental solids, Usb is more complicated to establish for amorphous and multielement materials due to composition-driven variations and incongruent sublimation. In this regard, we show that for amorphous multielement materials, the ion-driven yield can instead be better understood via a consideration of mechanical rigidity and network topology. We first demonstrate a direct relationship between Usb, bulk modulus, and ion sputter yield for the elements, and then subsequently prove our hypothesis for amorphous multielement compounds by demonstrating that the same relationships exist between the reactive ion etch (RIE) rate and nanoindentation Young's modulus for a series of a -Si Nx :H and a -Si OxCy :H thin films. The impact of network topology is further revealed via application of the Phillips-Thorpe theory of topological constraints, which directly relates the Young's modulus to the mean atomic coordination () for an amorphous solid. The combined analysis allows the trends and plateaus in the RIE rate to be ultimately reinterpreted in terms of the atomic structure of the target material through a consideration of . These findings establish the important underlying role of mechanical rigidity and network topology in ion-solid interactions and provide additional considerations for the design and optimization of radiation-hard materials in nuclear and outer space environments.

  6. Physical characterization of sputter-deposited amorphous tungsten oxynitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, O.R.; Moreno Tarango, A.J. [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Murphy, N.R. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base (WPAFB), Dayton, OH 45433 (United States); Phinney, L.C.; Hossain, K. [Amethyst Research Inc., 123 Case Circle, Ardmore, OK 73401 (United States); Ramana, C.V., E-mail: rvchintalapalle@utep.edu [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States)

    2015-12-01

    Tungsten oxynitride (W–O–N) thin films were deposited onto silicon (100) and quartz substrates using direct current (DC) sputtering. Composition variations in the W–O–N films were obtained by varying the nitrogen gas flow rate from 0 to 20 sccm, while keeping the total gas flow constant at 40 sccm using 20 sccm of argon with the balance comprised of oxygen. The resulting crystallinity, optical properties, and chemical composition of the DC sputtered W–O–N films were evaluated. All the W–O–N films measured were shown to be amorphous using X-ray diffraction. Spectrophotometry results indicate that the optical parameters, namely, the transmission magnitude and band gap (E{sub g}), are highly dependent on the nitrogen content in the reactive gas mixture. Within the W–O–N system, E{sub g} was able to be precisely tailored between 2.9 eV and 1.9 eV, corresponding to fully stoichiometric WO{sub 3} and highly nitrided W–O–N, respectively. Rutherford backscattering spectrometry (RBS) coupled with X-ray photoelectron spectroscopy (XPS) measurements indicate that the composition of the films varies from WO{sub 3} to W–O–N composite oxynitride films. - Highlights: • W–O–N films of ~ 100 nm thick were sputter-deposited by varying nitrogen gas flow rate. • Nitrogen incorporation into W-oxide is effective at or after 9 sccm flow rate of nitrogen. • The band gap significantly decreases from ~ 3.0 eV to ~ 2.1 eV with progressive increase in nitrogen content. • A composite oxide-semiconductor of W–O–N is proposed to explain the optical properties.

  7. Electronic sputtering by swift highly charged ions of nitrogen on amorphous carbon

    International Nuclear Information System (INIS)

    Caron, M.; Haranger, F.; Rothard, H.; Ban d'Etat, B.; Boduch, P.; Clouvas, A.; Potiriadis, C.; Neugebauer, R.; Jalowy, T.

    2001-01-01

    Electronic sputtering with heavy ions as a function of both electronic energy loss dE/dx and projectile charge state q was studied at the French heavy ion accelerator GANIL. Amorphous carbon (untreated, and sputter-cleaned and subsequently exposed to nitrogen) was irradiated with swift highly charged ions (Z=6-73, q=6-54, energy 6-13 MeV/u) in an ultrahigh vacuum scattering chamber. The fluence dependence of ion-induced electron yields allows to deduce a desorption cross-section σ which varies approximately as σ∼(dE/dx) 1.65 or σ∼q 3.3 for sputter-cleaned amorphous carbon exposed to nitrogen. This q dependence is close to the cubic charge dependence observed for the emission of H + secondary ions which are believed to be emitted from the very surface. However, the power law σ∼(dE/dx) 1.65 , related to the electronic energy loss gives the best empirical description. The dependence on dE/dx is close to a quadratic one thus rather pointing towards a thermal evaporation-like effect

  8. Magnetic and other properties and sputtering behavior of Co-base amorphous alloy films

    International Nuclear Information System (INIS)

    Hayashi, K.; Hayakawa, M.; Ochiai, Y.; Matsuda, H.; Ishikawa, W.; Iwasaki, Y.; Aso, K.

    1987-01-01

    Magnetic and other properties of Co-base amorphous alloy films prepared by sputtering are investigated. A detailed magnetic phase diagram with saturation magnetic flux density, crystallization temperature, and zero-magnetostrictive line on Co-Ta-Zr amorphous alloys were obtained, and the technical knowhow to make a film with well-reproducible characteristics by widely changing the sputtering conditions was related with these physical properties. Especially on alloy sputtering, a phenomenological model for elucidating a composition difference between film and target is presented. After these studies, the film characteristics of B/sub s/ = 12 kG, T/sub x/ = 450 0 C, chemical bondλ/sub s/chemical bond -8 , H/sub c/<10 mOe, and permeabilities of μ(1 MHz) = 7000, μ(100 MHz) = 2000 for the single film of 2 μm in thickness and of μ(1 MHz) = 4000, μ(100 MHz) = 800 for the insulator-sandwiched multilayered film of 10 μm are obtained, and these well-balanced values enable us to apply the materials for high-frequency recording head

  9. Tuning the optoelectronic properties of amorphous MoOx films by reactive sputtering

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; Fabrim, Zacarias Eduardo; Ahmadpour, Mehrad

    2015-01-01

    In this letter, we report on the effect of oxygen partial pressure and sputtering power on amorphous DC-sputtered MoOx films. We observe abrupt changes in the optoelectronic properties of the reported films by increasing the oxygen partial pressure from 1.00 ? 10?3 mbar to 1.37 ? 10?3 mbar during...... significantly the microstructure of the studied films. The presence of states within the band gap due to the lack of oxygen is the most probable mechanism for generat- ing a change in electrical conductivity as well as optical absorption in DC-sputtered MoOx. The large tuning range of the optoelectronic...... properties in these films holds strong promise for their implementation in optoelectronic devices....

  10. Multiple-target method for sputtering amorphous films for bubble-domain devices

    International Nuclear Information System (INIS)

    Burilla, C.T.; Bekebrede, W.R.; Smith, A.B.

    1976-01-01

    Previously, sputtered amorphous metal alloys for bubble applications have ordinarily been prepared by standard sputtering techniques using a single target electrode. The deposition of these alloys is reported using a multiple target rf technique in which a separate target is used for each element contained in the alloy. One of the main advantages of this multiple-target approach is that the film composition can be easily changed by simply varying the voltages applied to the elemental targets. In the apparatus, the centers of the targets are positioned on a 15 cm-radius circle. The platform holding the film substrate is on a 15 cm-long arm which can rotate about the center, thus bringing the sample successively under each target. The platform rotation rate is adjustable from 0 to 190 rpm. That this latter speed is sufficient to homogenize the alloys produced is demonstrated by measurements made of the uniaxial anisotropy constant in Gd 0 . 12 Co 0 . 59 Cu 0 . 29 films. The anisotropy is 6.0 x 10 5 ergs/cm 3 and independent of rotation rate above approximately 25 rpm, but it drops rapidly for slower rotation rates, reaching 1.8 x 10 5 ergs/cm 3 for 7 rpm. The film quality is equal to that of films made by conventional methods. Coercivities of a few oersteds in samples with stripe widths of 1 to 2 μm and magnetizations of 800 to 2800 G were observed

  11. Investigations of metal contacts to amorphous evaporated Ge films and amorphous sputtered Si films

    International Nuclear Information System (INIS)

    Hafiz, M.; Mgbenu, E.; Tove, P.A.; Norde, H.; Petersson, S.

    1976-02-01

    Amorphous Ge or Si films have been used as ohmic contacts to high-resistivity n-silicon radiation detectors. One interesting property of this contact is that it does not inject minority carriers even when the depletion region extends up to the contact thus generating an extracting field there. The function of this contact is not yet fully explored. One part problem is the role of the metal films used as external contacts to the amorphous film. In this report the function of different contacting metals, such as Au, Al, Cr are investigated by measuring the I-V-characteristics of sandwich structures with two metals on both sides of the amorphous evaporated (Ge) and sputtered (Si) film (of typical thickness 1000 A). It was found that while the symmetric structures Au-αGe-Au and Cr-αGe-Cr were low-resistive (leading to resistivity values of approximately 10 5 Ωcm for the αGe film), Al-αGe-Al structures showed much higher resistance and were also polarity dependent. The former feature was found also for unsymmetric structures, i.e. Cr-αGe-Au, Cr-αGe-Al. (Auth.)

  12. Co-sputtered amorphous Nb–Ta, Nb–Zr and Ta–Zr coatings for corrosion protection of cyclotron targets for [{sup 18}F] production

    Energy Technology Data Exchange (ETDEWEB)

    Skliarova, Hanna, E-mail: Hanna.Skliarova@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); University of Ferrara, Ferrara (Italy); Azzolini, Oscar, E-mail: Oscar.Azzolini@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); Johnson, Richard R., E-mail: richard.johnson@teambest.com [BEST Cyclotron Systems Inc., 8765 Ash Street Unit 7, Vancouver, BC V6P 6T3 (Canada); Palmieri, Vincenzo, E-mail: Vincenzo.Palmieri@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); University of Padua, Padua (Italy)

    2015-08-05

    Highlights: • Nb–Ta, Nb–Zr and Ta–Zr alloy films were deposited by co-sputtering. • Co-sputtered Nb–Zr and Nb–Ta alloy coatings had crystalline microstructures. • Diffusion barrier efficiency of Nb–Zr and Nb–Ta decreased with the increase of Nb %. • Co-sputtered Ta–Zr films with 30–73 at.% Ta were amorphous. • Sputtered amorphous Ta–Zr films showed superior diffusion barrier efficiency. - Abstract: Protective corrosion resistant coatings serve for decreasing the amount of ionic contaminants from Havar® entrance foils of the targets for [{sup 18}F] production. The corrosion damage of coated entrance foils is caused mainly by the diffusion of highly reactive products of water radiolysis through the protective film toward Havar® substrate. Since amorphous metal alloys (metallic glasses) are well-known to perform a high corrosion resistance, the glass forming ability, microstructure and diffusion barrier efficiency of binary alloys containing chemically inert Nb, Ta, Zr were investigated. Nb–Ta, Nb–Zr and Ta–Zr films of different alloy composition and ∼1.5 μm thickness were co-deposited by magnetron sputtering. Diffusion barrier efficiency tests used reactive aluminum underlayer and protons of acid solution and gallium atoms at elevated temperature as diffusing particles. Though co-sputtered Nb–Ta and Nb–Zr alloy films of different contents were crystalline, Ta–Zr alloy was found to form dense amorphous microstructures in a range of composition with 30–73% atomic Ta. The diffusion barrier efficiency of Nb–Zr and Nb–Ta alloy coatings decreased with increase of Nb content. The diffusion barrier efficiency of sputtered Ta–Zr alloy coatings increased with the transition from nanocrystalline columnar microstructure to amorphous for coatings with 30–73 at.% Ta.

  13. Influence of post-hydrogenation upon electrical, optical and structural properties of hydrogen-less sputter-deposited amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, S., E-mail: sebastian.gerke@uni-konstanz.de [Department of Physics, University of Konstanz, Konstanz, 78457 (Germany); Becker, H.-W.; Rogalla, D. [RUBION — Central Unit for Ion Beams and Radioisotopes, University of Bochum, Bochum, 44780 (Germany); Singer, F.; Brinkmann, N.; Fritz, S.; Hammud, A.; Keller, P.; Skorka, D.; Sommer, D. [Department of Physics, University of Konstanz, Konstanz, 78457 (Germany); Weiß, C. [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg (Germany); Flege, S. [Department of Materials Science, TU Darmstadt, Darmstadt 64287 (Germany); Hahn, G. [Department of Physics, University of Konstanz, Konstanz, 78457 (Germany); Job, R. [Department of Electrical Engineering and Computer Science, Münster University of Applied Sciences, Steinfurt 48565 (Germany); Terheiden, B. [Department of Physics, University of Konstanz, Konstanz, 78457 (Germany)

    2016-01-01

    Amorphous silicon (a-Si) is common in the production of technical devices and can be deposited by several techniques. In this study intrinsic and doped, hydrogen-less amorphous silicon films are RF magnetron sputter deposited and post-hydrogenated in a remote hydrogen plasma reactor at a temperature of 370 °C. Secondary ion mass spectrometry of a boron doped (p) a-Si layer shows that the concentration of dopants in the sputtered layer becomes the same as present in the sputter-target. Improved surface passivation of phosphorous doped 5 Ω cm, FZ, (n) c-Si can be achieved by post-hydrogenation yielding a minority carrier lifetime of ~ 360 μs finding an optimum for ~ 40 nm thin films, deposited at 325 °C. This relatively low minority carrier lifetime indicates high disorder of the hydrogen-less sputter deposited amorphous network. Post-hydrogenation leads to a decrease of the number of localized states within the band gap. Optical band gaps (Taucs gab as well as E{sub 04}) can be determined to ~ 1.88 eV after post-hydrogenation. High resolution transmission electron microscopy and optical Raman investigations show that the sputtered layers are amorphous and stay like this during post-hydrogenation. As a consequence of the missing hydrogen during deposition, sputtered a-Si forms a rough surface compared to CVD a-Si. Atomic force microscopy points out that the roughness decreases by up to 25% during post-hydrogenation. Nuclear resonant reaction analysis permits the investigation of hydrogen depth profiles and allows determining the diffusion coefficients of several post-hydrogenated samples from of a model developed within this work. A dependency of diffusion coefficients on the duration of post-hydrogenation indicates trapping diffusion as the main diffusion mechanism. Additional Fourier transform infrared spectroscopy measurements show that hardly any interstitial hydrogen exists in the post-hydrogenated a-Si layers. The results of this study open the way for

  14. Friction and wear measurements of sputtered MoS/sub x/ films amorphized by ion bombardment

    International Nuclear Information System (INIS)

    Mikkelsen, N.J.; Chevallier, J.; Soerensen, G.; Straede, C.A.

    1988-01-01

    The present study presents an experimental evidence for amorphization of rf sputtered MoS/sub x/ films by ion bombardment. Even at low doses (3 x 10 15 ions/cm 2 ) of 400 keV argon ions a complete amorphization was confirmed by x-ray diffraction analysis and transmission electron microscopy. As a result of the ion bombardment the film density increased 100% to almost the bulk value for MoS 2 . The friction coefficient for ion beam amorphized MoS/sub x/ was measured to be 0.04 in agreement with the values reported for crystalline films but disagreeing considerably with the friction coefficient of 0.4 previously reported for amorphous films

  15. Physical–chemical and biological behavior of an amorphous calcium phosphate thin film produced by RF-magnetron sputtering

    International Nuclear Information System (INIS)

    Santos, Euler A. dos; Moldovan, Simona; Mateescu, Mihaela; Faerber, Jacques; Acosta, Manuel; Pelletier, Hervé; Anselme, Karine; Werckmann, Jacques

    2012-01-01

    This work evaluates the thermal reactivity and the biological reactivity of an amorphous calcium phosphate thin film produced by radio frequency (RF) magnetron sputtering onto titanium substrates. The analyses showed that the sputtering conditions used in this work led to the deposition of an amorphous calcium phosphate. The thermal treatment of this amorphous coating in the presence of H 2 O and CO 2 promoted the formation of a carbonated HA crystalline coating with the entrance of CO 3 2− ions into the hydroxyl HA lattice. When immersed in culture medium, the amorphous and carbonated coatings exhibited a remarkable instability. The presence of proteins increased the dissolution process, which was confirmed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Moreover, the carbonated HA coating induced precipitation independently of the presence of proteins under dynamic conditions. Despite this surface instability, this reactive calcium phosphate significantly improved the cellular behavior. The cell proliferation was higher on the Ticp than on the calcium phosphate coatings, but the two coatings increased cellular spreading and stress fiber formation. In this sense, the presence of reactive calcium phosphate coatings can stimulate cellular behavior. - Highlights: ► Functionalization of Ti with reactive CaP thin film by RF-magnetron sputtering. ► De-hydroxylation facilitating the insertion of CO 3 2− into the HA lattice. ► High surface reactivity in the presence of culture medium. ► Cell behavior improved by the presence of reactive films.

  16. Characterization of oxide layers on amorphous Mg-based alloys by Auger electron spectroscopy with sputter depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Baunack, S.; Wolff, U. [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung Dresden, Postfach 270016, 01171, Dresden (Germany); Subba Rao, R.V. [Indira Ghandi Centre for Atomic Research, 603 102, Kalpakkam, Tamil Nadu (India)

    2003-04-01

    Amorphous ribbons of Mg-Y-TM-[Ag](TM: Cu, Ni), prepared by melt spinning, were subjected to electrochemical investigations. Oxide layers formed anodically under potentiostatic control in different electrolytes were investigated by AES and sputter depth profiling. Problems and specific features of characterization of the composition of oxide layers and amorphous ternary or quaternary Mg-based alloys have been investigated. In the alloys the Mg(KL{sub 23}L{sub 23}) peak exhibits a different shape compared to that in the pure element. Analysis of the peak of elastically scattered electrons proved the absence of plasmon loss features, characteristic of pure Mg, in the alloy. A different loss feature emerges in Mg(KL{sub 23}L{sub 23}) and Cu(L{sub 23}VV). The system Mg-Y-TM-[Ag] suffers preferential sputtering. Depletion of Mg and enrichment of TM and Y are found. This is attributed mainly to the preferential sputtering of Mg. Thickness and composition of the formed oxide layer depend on the electrochemical treatment. After removing the oxide by sputtering the concentration of the underlying alloy was found to be affected by the treatment. (orig.)

  17. Dependence of RF power on the content and configuration of hydrogen in amorphous hydrogenated silicon by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Imura, T; Ushita, K; Mogi, K; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering

    1981-06-01

    Infrared absorption spectra at stretching bands of Si-H were investigated in hydrogenated amorphous silicon fabricated by reactive sputtering in the atmosphere of Ar and H/sub 2/ (10 mole%) at various input rf powers in the range from 0.8 to 3.8 W/cm/sup 2/. Hydrogen content mainly due to the configuration of Si=H/sub 2/ in the film increased with the decreasing rf power, as the deposition rate was decreased. On the other hand, the quantity of the monohydride (Si-H) configuration depended less on the power. Attachment of hydrogen molecules onto the fresh and reactive surface of silicon deposited successively was proposed for possible process of hydrogen incusion into amorphous silicon resulting in Si=H/sub 2/ configuration. The photoconductivity increased as the input power became higher, when the deposition rate also increased linearly with the power.

  18. Multi-jump magnetic switching in ion-beam sputtered amorphous Co20Fe60B20 thin films

    International Nuclear Information System (INIS)

    Raju, M.; Chaudhary, Sujeet; Pandya, D. K.

    2013-01-01

    Unconventional multi-jump magnetization reversal and significant in-plane uniaxial magnetic anisotropy (UMA) in the ion-beam sputtered amorphous Co 20 Fe 60 B 20 (5–75 nm) thin films grown on Si/amorphous SiO 2 are reported. While such multi-jump behavior is observed in CoFeB(10 nm) film when the magnetic field is applied at 10°–20° away from the easy-axis, the same is observed in CoFeB(12.5 nm) film when the magnetic field is 45°–55° away from easy-axis. Unlike the previous reports of multi-jump switching in epitaxial films, their observance in the present case of amorphous CoFeB is remarkable. This multi-jump switching is found to disappear when the films are crystallized by annealing at 420 °C. The deposition geometry and the energy of the sputtered species appear to intrinsically induce a kind of bond orientation anisotropy in the films, which leads to the UMA in the as-grown amorphous CoFeB films. Exploitation of such multi-jump switching in amorphous CoFeB thin films could be of technological significance because of their applications in spintronic devices

  19. Induced anisotropy in amorphous Sm-Co sputtered films

    International Nuclear Information System (INIS)

    Chen, K.; Hegde, H.; Cadieu, F.J.

    1992-01-01

    The variation of the in-the-film-plane anisotropy constant, K u , with composition and the magnitude of the field, H s , applied in plane during the sputter deposition of amorphous Sm x Co 1-x , 0.08≤x≤0.40, thin films has been studied. We demonstrate here that with a large H s , 5.0 kOe, a well defined and large in-the-film-plane anisotropy can be obtained. An exceptionally high value of K u =3.3x10 6 erg/cm 3 has been obtained. For the loop measured along the in-plane hard direction, the opening of the loop was undetectable, and the loop along the easy axis was a perfect rectangle. For certain conditions, the anisotropy field measured perpendicular to the film plane when corrected for demagnetization (N d =4π) was the same as that for the in-plane measurements. It is concluded that surface induced short range ordering was the origin of the anisotropy observed in amorphous films deposited in a magnetic field. The formation mechanism is different from that of the short range ordering induced by field annealing

  20. Control of amorphous films properties in the case of combined sputtering of targets

    International Nuclear Information System (INIS)

    Okunev, V.D.; Yurov, A.G.

    1979-01-01

    A possibility of controlling amorphous film properties produced by combined sputtering of two targets: was investigated one of the targets was made of a basis material-polycrystalline CdGeAs 2 , the other one was made of a material of additives. As the additives the Ni,Co elements with low chemical activity and the Cu,Te additives with high chemical activity were used. Besides, to study the effect of deviation from amorphous CdGeAs 2 stoichiometry on film properties, the Gd,Ge,As additives were investigated. The various additives influence on electric conductivity of amorphous films has been studied. It is shown that approximately 1 at% Ni or Co contents results in reducing film specific resistance by 6 orders. Cu and Te introduction results in the change of the structure and type of amorphous layer conductivity. The conclusion has been drawn, that introduction of the elements with high chemical activity can be used as the method of producing films with new physicochemical properties

  1. Effect of hydrogen on the diode properties of reactively sputtered amorphous silicon Schottky barrier structures

    International Nuclear Information System (INIS)

    Morel, D.L.; Moustakas, T.D.

    1981-01-01

    The diode properties of reactively sputtered hydrogenated amorphous silicon Schottky barrier structures (a-SiH/sub x/ /Pt) have been investigated. We find a systematic relation between the changes in the open circuit voltage, the barrier height, and the diode quality factor. These results are accounted for by assuming that hydrogen incorporation into the amorphous silicon network removes states from the top of the valence band and sharpens the valence-band tail. Interfacial oxide layers play a significant role in the low hydrogen content, and low band-gap regime

  2. Optical characterisation of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Mellassi, K.; Chafik El Idrissi, M.; Chouiyakh, A.; Rjeb, A.; Barhdadi, A.

    2000-09-01

    The present work is devoted to the study of some optical properties of hydrogenated amorphous silicon (a-Si:H) thin films prepared by radio-frequency cathodic sputtering technique. It is essentially focused on investigating separately the effects of increasing partial hydrogen pressure during the deposition stage, and the effects of post deposition thermal annealing on the main optical parameters of the deposited layers (refraction index, optical gap Urbach energy, etc.). We show that low hydrogen pressures allow a saturation of the dangling bonds in the material, while high pressures lead to the creation of new defects. We also show that thermal annealing under moderate temperatures allows a good improvement of the structural quality of deposited films. (author)

  3. The effects of thermal annealing in structural and optical properties of RF sputtered amorphous silicon

    International Nuclear Information System (INIS)

    Abdul Fatah Awang Mat

    1988-01-01

    The effect of thermal annealing on structural and optical properties of amorphous silicon are studied on samples prepared by radio-frequency sputtering. The fundamental absorption edge of these films are investigated at room temperature and their respective parameters estimated. Annealing effect on optical properties is interpreted in terms of the removal of voids and a decrease of disorder. (author)

  4. Possibility for hole doping into amorphous InGaZnO4 films prepared by RF sputtering

    International Nuclear Information System (INIS)

    Kobayashi, Kenkichiro; Kohno, Yoshiumi; Tomita, Yasumasa; Maeda, Yasuhisa; Matsushima, Shigenori

    2011-01-01

    Amorphous InGaZnO 4 (IGZO) films codoped with Al and N atoms were prepared by sputtering of targets consisting of IGZO and AlN powders in Ar + O 2 atmospheres. No hole-conductivity is seen in films deposited at 2 x 10 -3 Torr, whereas hole-conductivity is found in films deposited at 2 x 10 -2 Torr at radio frequency powers of 60-80 W in 0.3-0.6% O 2 atmospheres. The amorphous p-type IGZO film has the resistivity of 210 Wcm, hole-density of 7.5 x 10 17 cm -3 , and mobility of 0.4 cm 2 /Vs. The rectification characteristic is obtained for a device constructed from Au, amorphous p-type IGZO, and amorphous n-type IGZO. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Direct-current substrate bias effects on amorphous silicon sputter-deposited films for thin film transistor fabrication

    International Nuclear Information System (INIS)

    Jun, Seung-Ik; Rack, Philip D.; McKnight, Timothy E.; Melechko, Anatoli V.; Simpson, Michael L.

    2005-01-01

    The effect that direct current (dc) substrate bias has on radio frequency-sputter-deposited amorphous silicon (a-Si) films has been investigated. The substrate bias produces a denser a-Si film with fewer defects compared to unbiased films. The reduced number of defects results in a higher resistivity because defect-mediated conduction paths are reduced. Thin film transistors (TFTs) that were completely sputter deposited were fabricated and characterized. The TFT with the biased a-Si film showed lower leakage (off-state) current, higher on/off current ratio, and higher transconductance (field effect mobility) than the TFT with the unbiased a-Si film

  6. Studi Disorder Lapisan Tipis Amorf Silikon Karbon (A-Sic:H Hasil Deposisi Metode Dc Sputtering

    Directory of Open Access Journals (Sweden)

    Rosari Saleh

    2002-08-01

    Full Text Available Disorder Study of Amorphous Silicon Carbon (a-SiC:H Films Deposited by DC Sputtering Method. Disorder amorphous network of amorphous silicon carbon (a-SiC:H films has been investigated for films prepared by dc sputtering method. The films were deposited using silicon target in argon and methane gas mixtures. The optical absorption coefficients have been performed by UV-VIS (ultra violet-visible reflectance and transmittance spectroscopy. Disorder parameter has been obtained from the optical absorption coefficient α (E using Tauc plot. Increasing methane flow rate has an effect on increasing Tauc gap and decreasing disorder parameter. The amorphous network of the films tends to be more disorder with increasing methane flow rate. The relation of disorder amorphous network with structural and compositional properties will be discussed.

  7. Growth of amorphous TeOx (2≤x≤3) thin film by radio frequency sputtering

    International Nuclear Information System (INIS)

    Dewan, Namrata; Gupta, Vinay; Sreenivas, K.; Katiyar, R. S.

    2007-01-01

    Thin films of Tellurium oxide TeO x over a wide range of x (2 to 3) were prepared by radio frequency diode sputtering at room temperature on corning glass and quartz substrate. The deposited films are amorphous in nature and IR spectroscopy reveals the formation of Te-O bond. X-ray photoelectron spectroscopy shows the variation in the stoichiometry of TeO x film from x=2 to 3 with an increase in oxygen percentage (25 to 100%) in processing sputtering gas composition. Raman spectroscopy depicts the formation of TeO 3 trigonal pyramid besides TeO 4 disphenoid in the amorphous TeO x film with increase in the value of x. The varying stoichiometry of TeO x thin film (x=2 to 3) was found to influence the optical, electrical, and elastic properties. The optical band gap of film increases from 3.8 to 4.2 eV with increasing x and is attributed to the decrease in density. The elastic constants (C 11 and C 44 ) of the deposited films are lower than the corresponding value reported for TeO 2 single crystal

  8. Effects of surface relief on the high-dose sputtering of amorphous silicon and graphite by Ar ions

    International Nuclear Information System (INIS)

    Shulga, V.I.

    2014-01-01

    The effects of ion-induced surface relief on high-dose sputtering of amorphous silicon and graphite targets have been studied using binary-collision computer simulation. The relief was modeled as a wavelike surface along two mutually perpendicular surface axes (a 3D hillock-and-valley relief). Most simulations were carried out for normally-incident 30-keV Ar ions. It was shown that the surface relief can both increase and decrease the sputtering yield compared to that for a flat surface. The results of simulations suggest that stabilization of the surface relief is possible even in the absence of any smoothing processes such as surface diffusion of atoms. Effects of a surface relief on the experimentally measurable angular and energy distributions of sputtered atoms are also considered. The fitting parameters of these distributions are shown to be non-monotonic functions of the relief aspect ratio. The angular distribution of atoms sputtered from a relief surface is modulated to a great extent by the shape of the relief. For a rough surface, azimuthal isotropy of the angular distribution of sputtered atoms was found, but at high bombarding energies only

  9. Influence of the microstructure on the corrosion behavior of magnetron sputter-quenched amorphous metallic alloys

    Science.gov (United States)

    Thakoor, A. P.; Khanna, S. K.; Williams, R. M.; Landel, R. F.

    1983-01-01

    The microstructure and corrosion behavior of magnetron sputter deposited amorphous metallic films of (Mo6ORu40)82B18 under varying sputtering atmospheres have been investigated. The microstructural details and topology of the films have been studied by scanning electron microscopy and correlated with the deposition conditions. By reducing the pressure of pure argon gas, the characteristic features of rough surface and columnar growth full of vertical voids can be converted into a mirror-smooth finish with very dense deposits. Films deposited in the presence of O2 or N2 exhibit columnar structure with vertical voids. Film deposited in pure argon at low pressure show remarkably high corrosion resistance due to the formation of a uniform passive surface layer. The influence of the microstructure and surface texture on the corrosion behavior is discussed.

  10. Structure and giant magnetoresistance of carbon-based amorphous films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Ma, L.; He, M.F.; Liu, Z.W.; Zeng, D.C.; Gu, Z.F.; Cheng, G.

    2014-01-01

    Pure amorphous carbon (a-C) and Co-doped Co x C 1−x films were prepared on n-Si(100) substrates by dc magnetron sputtering. In Co–C films, the nano-sized amorphous Co particles were homogeneously dispersed in the amorphous cross-linked carbon matrix. The structures of a-C and Co x C 1−x films were investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The results showed that the a-C films were diamond-like carbon (DLC) films. After doping cobalt into DLC film, the sp 3 -hybridized carbon content in DLC composite films almost had no change. The as-deposited Co x C 1−x granular films had larger value of magnetoresistance (MR) than the amorphous carbon film. A very high positive MR, up to 15.5% at magnetic field B = 0.8 T and x = 2.5 at.% was observed in a Co x C 1−x granular film with thickness of 80 nm at room temperature when the external magnetic field was perpendicular to the electric current and the film surface. With increase of the film thickness and Co-doped content, the MR decreased gradually. It remains a challenge to well explain the observed MR effect in the Co x C 1−x granular films. - Highlights: • The amorphous carbon films were diamond-like carbon films. • No carbide appearing, the Co–C composite films form a good metal/insulator system. • A high positive magnetoresistance, up to 15.5% at B = 0.8 T was observed in Co–C films

  11. Amorphous indium tin oxide films deposited on flexible substrates by facing target sputtering at room temperature

    International Nuclear Information System (INIS)

    Xiao, Yu; Gao, Fangyuan; Dong, Guobo; Guo, Tingting; Liu, Qirong; Ye, Di; Diao, Xungang

    2014-01-01

    Indium tin oxide (ITO) thin films were deposited on polyethylene terephthalate substrates using a DC facing target sputtering (DC-FTS) system at room temperature. The sputtering conditions including oxygen partial pressure and discharge current were varied from 0% to 4% and 0.5 A to 1.3 A, respectively. X-ray diffraction and scanning electron microscopy were used to study the structure and surface morphology of as-prepared films. All the films exhibited amorphous structures and smooth surfaces. The dependence of electrical and optical properties on various deposition parameters was investigated by a linear array four-point probe, Hall-effect measurements, and ultraviolet/visible spectrophotometry. A lowest sheet resistance of 17.4 Ω/square, a lowest resistivity of 3.61 × 10 −4 Ω cm, and an average relative transmittance over 88% in the visible range were obtained under the optimal deposition conditions. The relationship between the Hall mobility (μ) and carrier concentration (n) was interpreted by a functional relation of μ ∼ n −0.127 , which indicated that ionized donor scattering was the dominant electron scattering mechanism. It is also confirmed that the carrier concentration in ITO films prepared by the DC-FTS system is mainly controlled by the number of activated Sn donors rather than oxygen vacancies. - Highlights: • ITO thin films were grown on PET substrates by DC facing target sputtering system. • All the films were prepared at room temperature and exhibited amorphous structure. • Highly conductive and transparent ITO thin films were obtained. • The dominant ionized donor scattering mechanism was suggested

  12. Amorphous indium tin oxide films deposited on flexible substrates by facing target sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yu [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Gao, Fangyuan, E-mail: gaofangyuan@buaa.edu.cn [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Dong, Guobo; Guo, Tingting; Liu, Qirong [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Ye, Di [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100191 (China); Diao, Xungang [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)

    2014-04-01

    Indium tin oxide (ITO) thin films were deposited on polyethylene terephthalate substrates using a DC facing target sputtering (DC-FTS) system at room temperature. The sputtering conditions including oxygen partial pressure and discharge current were varied from 0% to 4% and 0.5 A to 1.3 A, respectively. X-ray diffraction and scanning electron microscopy were used to study the structure and surface morphology of as-prepared films. All the films exhibited amorphous structures and smooth surfaces. The dependence of electrical and optical properties on various deposition parameters was investigated by a linear array four-point probe, Hall-effect measurements, and ultraviolet/visible spectrophotometry. A lowest sheet resistance of 17.4 Ω/square, a lowest resistivity of 3.61 × 10{sup −4} Ω cm, and an average relative transmittance over 88% in the visible range were obtained under the optimal deposition conditions. The relationship between the Hall mobility (μ) and carrier concentration (n) was interpreted by a functional relation of μ ∼ n{sup −0.127}, which indicated that ionized donor scattering was the dominant electron scattering mechanism. It is also confirmed that the carrier concentration in ITO films prepared by the DC-FTS system is mainly controlled by the number of activated Sn donors rather than oxygen vacancies. - Highlights: • ITO thin films were grown on PET substrates by DC facing target sputtering system. • All the films were prepared at room temperature and exhibited amorphous structure. • Highly conductive and transparent ITO thin films were obtained. • The dominant ionized donor scattering mechanism was suggested.

  13. RF power dependent formation of amorphous MoO3-x nanorods by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Navas, I.; Vinodkumar, R.; Detty, A.P.; Mahadevan Pillai, V.P.

    2009-01-01

    Full text: The fabrication of nanorods has received increasing attention for their unique physical and chemical properties and a wide range of potential applications such as photonics and nanoelectronics Molybdenum oxide nanorods with high activity can be used in a wide variety of applications such as cathodes in rechargeable batteries, field emission devices, solid lubricants, superconductors thermoelectric materials, and electrochromic devices. In this paper, amorphous MoO 3-x nanorods can find excellent applications in electrochromic and gas sensing have been successfully prepared by varying the R F power in R F Magnetron Sputtering system without heating the substrate; other parameters which are optimised in our earlier studies. We have found that the optimum RF power for nanorod formation is 200W. At a moderate RF power (200W), sputtering redeposition takes places constructively which leads to formation of fine nanorods. Large RF power creates high energetic ion bombardment on the grains surfaces which can lead to re-nucleation, so the grains become smaller and columnar growth is interrupted. Beyond the RF power 200W, the etching effect of the plasma became more severe and damaged the surface of the nanorods. All the molybdenum oxide films prepared are amorphous; the XRD patterns exhibit no characteristic peak corresponds to MoO 3 . The amorphous nature is preferred for good electrochromic colouration The spectroscopic properties of the nanorods have been investigated systematically using atomic force microscopy, x-ray diffraction, micro-Raman, UV-visible and photoluminescence (PL) spectroscopy. The films exhibit two emission bands; a near band edge UV emission and a defect related deep level visible emission

  14. Amorphous ITO thin films prepared by DC sputtering for electrochromic applications

    International Nuclear Information System (INIS)

    Teixeira, V.; Cui, H.N.; Meng, L.J.; Fortunato, E.; Martins, R.

    2002-01-01

    Indium-Tin-Oxide (ITO) thin films were deposited on glass substrates using DC magnetron reactive sputtering at different bias voltages and substrate temperatures. Some improvements were obtained on film properties, microstructure and other physical characteristics for different conditions. Amorphous and polycrystalline films can be obtained for various deposition conditions. The transmission, absorption, spectral and diffuse reflection of ITO films were measured in some ranges of UV-Vis-NIR. The refractive index (n), Energy band gap E g and the surface roughness of the film were derived from the measured spectra data. The carrier density (n c ) and the carrier mobility (μ) of the film micro conductive properties were discussed. The films exhibited suitable optical transmittance and conductivity for electrochromic applications

  15. Determination of the sputter rate variation pattern of a silicon carbide target for radio frequency magnetron sputtering using optical transmission measurements

    International Nuclear Information System (INIS)

    Galvez de la Puente, G.; Guerra Torres, J.A.; Erlenbach, O.; Steidl, M.; Weingaertner, R.; De Zela, F.; Winnacker, A.

    2010-01-01

    We produce amorphous silicon carbide thin films (a-SiC) by radio frequency (rf) magnetron sputtering from SiC bulk target. We present the emission pattern of the rf magnetron with SiC target as a function of process parameters, like target sample distance, rf power, sputtering rate and process gas pressure. The emission pattern is determined by means of thickness distribution of the deposited a-SiC films obtained from optical transmission measurements using a slightly improved method of Swanepoel concerning the determination of construction of the envelopes in the interference pattern of the transmission spectra. A calibration curve is presented which allows the conversion of integrated transmission to film thickness. Holding constant a set of process parameters and only varying the target sample distance the emission pattern of the rf magnetron with SiC target was determined, which allowed us to predict the deposition rate distribution for a wide range of process parameters and target geometry. In addition, we have found that the transmission spectra of the a-SiC films change with time and saturate after approximately 10 days. Within this process no change in thickness is involved, so that the determination of thickness using transmission data is justified.

  16. Sputtering of molybdenum and tungsten nano rods and nodules irradiated with 150 eV argon ions

    International Nuclear Information System (INIS)

    Ghoniem, N.M.; Sehirlioglu, Alp; Neff, Anton L.; Allain, Jean-Paul; Williams, Brian; Sharghi-Moshtaghin, Reza

    2015-01-01

    Highlights: • The work was motivated by the idea of designing material surface architecture, using the CVD process, that can result in a reduction in the surface sputtering rate as compared to planar surfaces. • We present an experimental investigation of the effects of low energy (150 eV) Ar ions on surface sputtering, amorphization of near-surface layers, and the formation of surface ripples in Mo and W nano-rods and nano-nodules at room temperature. • We show that the sputtering rate decreases in all nano-architecture surfaces as compared to planar surfaces. • We discovered that energy deposition in the near surface layer in W leads to its amorphization at room temperature, to a depth of 5–10 nm. • We also show that surfaces of nano rods become rippled as a result of an ion-induced roughening instability. - Abstract: The influence of surface nano architecture on the sputtering and erosion of tungsten and molybdenum is discussed. We present an experimental investigation of the effects of low energy (150 eV) Ar ions on surface sputtering in Mo and W nano-rods and nano-nodules at room temperature. Measurements of the sputtering rate from Mo and W surfaces with nano architecture indicate that the surface topology plays an important role in the mechanism of surface erosion and restructuring. Chemical vapor deposition (CVD) is utilized as a material processing route to fabricate nano-architectures on the surfaces of W and Mo substrates. First, Re dendrites form as needles with cross-sections that have hexagonal symmetry, and are subsequently employed as scaffolding for further deposition of W and Mo to create nano rod surface architecture. The sputtering of surface atoms in these samples shows a marked dependence on their surface architecture. The sputtering rate is shown to decrease at normal ion incidence in all nano-architecture surfaces as compared to planar surfaces. Moreover, and unlike an increase in sputtering of planar crystalline surfaces, the

  17. Deposition Rates of High Power Impulse Magnetron Sputtering: Physics and Economics

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2009-11-22

    Deposition by high power impulse magnetron sputtering (HIPIMS) is considered by some as the new paradigm of advanced sputtering technology, yet this is met with skepticism by others for the reported lower deposition rates, if compared to rates of more conventional sputtering of equal average power. In this contribution, the underlying physical reasons for the rate changes are discussed, including (i) ion return to the target and self-sputtering, (ii) the less-than-linear increase of the sputtering yield with increasing ion energy, (iii) yield changes due to the shift of species responsible for sputtering, (iv) changes to due to greater film density, limited sticking, and self-sputtering on the substrate, (v) noticeable power losses in the switch module, (vi) changes of the magnetic balance and particle confinement of the magnetron due to self-fields at high current, and (vii) superposition of sputtering and sublimation/evaporation for selected materials. The situation is even more complicated for reactive systems where the target surface chemistry is a function of the reactive gas partial pressure and discharge conditions. While most of these factors imply a reduction of the normalized deposition rate, increased rates have been reported for certain conditions using hot targets and less poisoned targets. Finally, some points of economics and HIPIMS benefits considered.

  18. Deposition rates of high power impulse magnetron sputtering: Physics and economics

    International Nuclear Information System (INIS)

    Anders, Andre

    2010-01-01

    Deposition by high power impulse magnetron sputtering (HIPIMS) is considered by some as the new paradigm of advanced sputtering technology, yet this is met with skepticism by others for the reported lower deposition rates, if compared to rates of more conventional sputtering of equal average power. In this contribution, the underlying physical reasons for the rate changes are discussed, including (i) ion return to the target and self-sputtering, (ii) the less-than-linear increase in the sputtering yield with increasing ion energy, (iii) yield changes due to the shift of species responsible for sputtering, (iv) changes due to greater film density, limited sticking, and self-sputtering on the substrate, (v) noticeable power losses in the switch module, (vi) changes in the magnetic balance and particle confinement of the magnetron due to self-fields at high current, and (vii) superposition of sputtering and sublimation/evaporation for selected materials. The situation is even more complicated for reactive systems where the target surface chemistry is a function of the reactive gas partial pressure and discharge conditions. While most of these factors imply a reduction in the normalized deposition rate, increased rates have been reported for certain conditions using hot targets and less poisoned targets. Finally, some points of economics and HIPIMS benefits are considered.

  19. Fabrication of amorphous Si and C anode films via co-sputtering for an all-solid-state battery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.S. [Department of Materials Science and Engineering, Yonsei University Shinchondong, 262 Seongsanno, Seodaemoongu, Seoul 120-749 (Korea, Republic of); Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Lee, S.H. [Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Woo, S.P. [Department of Materials Science and Engineering, Yonsei University Shinchondong, 262 Seongsanno, Seodaemoongu, Seoul 120-749 (Korea, Republic of); Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Kim, H.S. [Department of Mechanical Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Yoon, Y.S., E-mail: benedicto@gachon.ac.kr [Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of)

    2014-08-01

    In this study, a combination of silicon and carbon as the anode material for an all-solid-state battery has been investigated to overcome their individual deficiencies. The capacity of silicon thin films with an input power of 60 W shows dramatic failure after 38 cycles due to serious volume expansion. In contrast, C thin films at 60 W show high stability of cyclic performance and capacity retention. The amorphous silicon and carbon composite reduced the volume expansion of silicon during long term cycles and enhanced the low specific capacity of the carbon. This resistance of the volume expansion might be expected from the cushion effect caused by the carbon, which was confirmed by scanning electron microscope images after a 100 cycle test. These results indicate that amorphous silicon and carbon composite thin films have a high possibility as the stable anode material for an all-solid-state battery. - Highlights: • Amorphous Si/C nanocomposite thin films have been prepared by co-sputtering. • Carbon can act as a cushion effect to prevent volume expansion of Si. • Amorphous Si/C nanocomposite thin films show structure stability at 100 cycles. • Capacity of the amorphous Si/C nanocomposite thin films was enhanced considerably.

  20. Thermal oxidation of reactively sputtered amorphous W80N20 films

    International Nuclear Information System (INIS)

    Vu, Q.T.; Pokela, P.J.; Garden, C.L.; Kolawa, E.; Raud, S.; Nicolet, M.

    1990-01-01

    The oxidation behavior of reactively sputtered amorphous tungsten nitride of composition W 80 N 20 was investigated in dry and wet oxidizing ambient in the temperature range of 450 degree C--575 degree C. A single WO 3 oxide phase is observed. The growth of the oxide follows a parabolic time dependence which is attributed to a process controlled by the diffusivity of the oxidant in the oxide. The oxidation process is thermally activated with an activation energy of 2.5±0.05 eV for dry ambient and 2.35±0.05 eV for wet ambient. The pre-exponential factor of the reaction constant for dry ambient is 1.1x10 21 A 2 /min; that for wet ambient is only about 10 times less and is equal to 1.3x10 20 A 2 /min

  1. Spectro-ellipsometric studies of sputtered amorphous Titanium dioxide thin films: simultaneous determination of refractive index, extinction coefficient, and void distribution

    CERN Document Server

    Lee, S I; Oh, S G

    1999-01-01

    Amorphous titanium dioxide thin films were deposited onto silicon substrates by using RF magnetron sputtering, and the index of refraction, the extinction coefficient, and the void distribution of these films were simultaneously determined from the analyses of there ellipsometric spectra. In particular, our novel strategy, which combines the merits of multi-sample fitting, the dual dispersion function, and grid search, was proven successful in determining optical constants over a wide energy range, including the energy region where the extinction coefficient was large. Moreover, we found that the void distribution was dependent on the deposition conditions, such as the sputtering power, the substrate temperature, and the substrate surface.

  2. Influence of plasma-generated negative oxygen ion impingement on magnetron sputtered amorphous SiO2 thin films during growth at low temperatures

    International Nuclear Information System (INIS)

    Macias-Montero, M.; Garcia-Garcia, F. J.; Alvarez, R.; Gil-Rostra, J.; Gonzalez, J. C.; Gonzalez-Elipe, A. R.; Palmero, A.; Cotrino, J.

    2012-01-01

    Growth of amorphous SiO 2 thin films deposited by reactive magnetron sputtering at low temperatures has been studied under different oxygen partial pressure conditions. Film microstructures varied from coalescent vertical column-like to homogeneous compact microstructures, possessing all similar refractive indexes. A discussion on the process responsible for the different microstructures is carried out focusing on the influence of (i) the surface shadowing mechanism, (ii) the positive ion impingement on the film, and (iii) the negative ion impingement. We conclude that only the trend followed by the latter and, in particular, the impingement of O - ions with kinetic energies between 20 and 200 eV, agrees with the resulting microstructural changes. Overall, it is also demonstrated that there are two main microstructuring regimes in the growth of amorphous SiO 2 thin films by magnetron sputtering at low temperatures, controlled by the amount of O 2 in the deposition reactor, which stem from the competition between surface shadowing and ion-induced adatom surface mobility.

  3. Effect of Si additions on thermal stability and the phase transition sequence of sputtered amorphous alumina thin films

    International Nuclear Information System (INIS)

    Bolvardi, H.; Baben, M. to; Nahif, F.; Music, D.; Schnabel, V.; Shaha, K. P.; Mráz, S.; Schneider, J. M.; Bednarcik, J.; Michalikova, J.

    2015-01-01

    Si-alloyed amorphous alumina coatings having a silicon concentration of 0 to 2.7 at. % were deposited by combinatorial reactive pulsed DC magnetron sputtering of Al and Al-Si (90-10 at. %) split segments in Ar/O 2 atmosphere. The effect of Si alloying on thermal stability of the as-deposited amorphous alumina thin films and the phase formation sequence was evaluated by using differential scanning calorimetry and X-ray diffraction. The thermal stability window of the amorphous phase containing 2.7 at. % of Si was increased by more than 100 °C compared to that of the unalloyed phase. A similar retarding effect of Si alloying was also observed for the α-Al 2 O 3 formation temperature, which increased by more than 120 °C. While for the latter retardation, the evidence for the presence of SiO 2 at the grain boundaries was presented previously, this obviously cannot explain the stability enhancement reported here for the amorphous phase. Based on density functional theory molecular dynamics simulations and synchrotron X-ray diffraction experiments for amorphous Al 2 O 3 with and without Si incorporation, we suggest that the experimentally identified enhanced thermal stability of amorphous alumina with addition of Si is due to the formation of shorter and stronger Si–O bonds as compared to Al–O bonds

  4. Effect of Si additions on thermal stability and the phase transition sequence of sputtered amorphous alumina thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bolvardi, H.; Baben, M. to; Nahif, F.; Music, D., E-mail: music@mch.rwth-aachen.de; Schnabel, V.; Shaha, K. P.; Mráz, S.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Bednarcik, J.; Michalikova, J. [Deutsches Elektronen Synchrotron DESY, FS-PE group, Notkestrasse 85, D-22607 Hamburg (Germany)

    2015-01-14

    Si-alloyed amorphous alumina coatings having a silicon concentration of 0 to 2.7 at. % were deposited by combinatorial reactive pulsed DC magnetron sputtering of Al and Al-Si (90-10 at. %) split segments in Ar/O{sub 2} atmosphere. The effect of Si alloying on thermal stability of the as-deposited amorphous alumina thin films and the phase formation sequence was evaluated by using differential scanning calorimetry and X-ray diffraction. The thermal stability window of the amorphous phase containing 2.7 at. % of Si was increased by more than 100 °C compared to that of the unalloyed phase. A similar retarding effect of Si alloying was also observed for the α-Al{sub 2}O{sub 3} formation temperature, which increased by more than 120 °C. While for the latter retardation, the evidence for the presence of SiO{sub 2} at the grain boundaries was presented previously, this obviously cannot explain the stability enhancement reported here for the amorphous phase. Based on density functional theory molecular dynamics simulations and synchrotron X-ray diffraction experiments for amorphous Al{sub 2}O{sub 3} with and without Si incorporation, we suggest that the experimentally identified enhanced thermal stability of amorphous alumina with addition of Si is due to the formation of shorter and stronger Si–O bonds as compared to Al–O bonds.

  5. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Science.gov (United States)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  6. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    International Nuclear Information System (INIS)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-01-01

    Highlights: • a-C:Ti nanocomposite coatings were prepared on 316L stainless steel by using R.F. magnetron sputtering method. • Properties of the nanocomposite coatings were analyzed with respect to titanium content. • Corrosion resistance, biocompatibility and hydrophobicity of nanocomposite coating were enhanced with increasing titanium content. • Coating with 2.33 at.% titanium showed superior tribological properties compared to other coatings. - Abstract: Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp"2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  7. Magnetron sputtered transparent conductive zinc-oxide stabilized amorphous indium oxide thin films on polyethylene terephthalate substrates at ambient temperature

    International Nuclear Information System (INIS)

    Yan, Y.; Zhang, X.-F.; Ding, Y.-T.

    2013-01-01

    Amorphous transparent conducting zinc-oxide stabilized indium oxide thin films, named amorphous indium zinc oxide (a-IZO), were deposited by direct current magnetron sputtering at ambient temperature on flexible polyethylene terephthalate substrates. It has been demonstrated that the electrical resistivity could attain as low as ∼ 5 × 10 −4 Ω cm, which was noticeably lower than amorphous indium tin oxide films prepared at the same condition, while the visible transmittance exceeded 84% with the refractive index of 1.85–2.00. In our experiments, introduction of oxygen gas appeared to be beneficial to the improvement of the transparency and electrical conductivity. Both free carrier absorption and indirect transition were observed and Burstein–Moss effect proved a-IZO to be a degenerated amorphous semiconductor. However, the linear relation between the optical band gap and the band tail width which usually observed in covalent amorphous semiconductor such as a-Si:H was not conserved. Besides, porosity could greatly determine the resistivity and optical constants for the thickness variation at this deposition condition. Furthermore, a broad photoluminescence peak around 510 nm was identified when more than 1.5 sccm oxygen was introduced. - Highlights: ► Highly conducting amorphous zinc-oxide stabilized indium oxide thin films were prepared. ► The films were fabricated on polyethylene terephthalate at ambient temperature. ► Introduction of oxygen can improve the transparency and electrical conductivity. ► The linear relation between optical band gap and band tail width was not conserved

  8. Effect of oxygen flow rate on ITO thin films deposited by facing targets sputtering

    International Nuclear Information System (INIS)

    Kim, Youn J.; Jin, Su B.; Kim, Sung I.; Choi, Yoon S.; Choi, In S.; Han, Jeon G.

    2010-01-01

    Tin-doped indium oxide (ITO) thin films were deposited on glass substrates at various oxygen flow rates using a planar magnetron sputtering system with facing targets. In this system, the strong internal magnets inside the target holders confine the plasma between the targets. High resolution transmission electron microscopy revealed a combination of amorphous and crystalline phases on the glass substrate. X-ray photoelectron spectroscopy suggested that the decrease in carrier concentration and increase in mobility were caused by a decrease in the concentration of Sn 4+ states. The electrical and optical properties of the ITO films were examined by Hall measurements and UV-visible spectroscopy, which showed a film resistivity and transmittance of 4.26 x l0 -4 Ω cm, and > 80% in the visible region, respectively.

  9. Comparison of the electrical and optical properties of direct current and radio frequency sputtered amorphous indium gallium zinc oxide films

    International Nuclear Information System (INIS)

    Yao, Jianke; Gong, Li; Xie, Lei; Zhang, Shengdong

    2013-01-01

    The electrical and optical properties of direct current and radio frequency (RF) sputtered amorphous indium gallium zinc oxide (a-IGZO) films are compared. It is found that the RF sputtered a-IGZO films have better stoichiometry (In:Ga:Zn:O = 1:1:1:2.5–3.0), lower electrical conductivity (σ < 8 S/cm), higher refractive index (n = 1.9–2.0) and larger band gap (E g = 3.02–3.29 eV), and show less shift of Fermi level (△ E F ∼ 0.26 eV) and increased concentration of electrons (△ N e ∼ 10 4 ) in the conduction band with the reduction concentration of oxygen vacancy (V O ). Although a-IGZO has intensively been studied for a semiconductor channel material of thin film transistors in next-generation flat panel displays, its fundamental material parameters have not been thoroughly reported. In this work, the work function (φ) of a-IGZO films is tested with the ultraviolet photoelectron spectroscopy. It is found that the φ of a-IGZO films is in the range of 4.0–5.0 eV depending on the V O . - Highlights: ► Amorphous InGaZnO 4 (a-IGZO) films were prepared with different sputtering modes. ► Electrical and optical properties of the different films were compared. ► Fermi level (△E F ) shift in a-IGZO films were tested by X-ray photoelectron spectroscopy. ► The relation of △E F with the properties of a-IGZO films were discussed. ► Work function was tested by ultraviolet photoelectron spectroscopy

  10. Study of some structural properties of hydrogenated amorphous silicon thin films prepared by radiofrequency cathodic sputtering

    International Nuclear Information System (INIS)

    Mellassi, K.; Chafik El Idrissi, M.; Barhdadi, A.

    2001-08-01

    In this work, we have used the grazing X-rays reflectometry technique to characterise hydrogenated amorphous silicon thin films deposited by radio-frequency cathodic sputtering. Relfectometry measurements are taken immediately after films deposition as well as after having naturally oxidised their surfaces during a more or less prolonged stay in the ambient. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears when the stay in the ambient is so long. (author)

  11. Amorphous Hafnium-Indium-Zinc Oxide Semiconductor Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (α-HfIZO thin film transistors (TFTs. Co-sputtering-processed α-HfIZO thin films have shown an amorphous phase in nature. We could modulate the In, Hf, and Zn components by changing the co-sputtering power. Additionally, the chemical composition of α-HfIZO had a significant effect on reliability, hysteresis, field-effect mobility (μFE, carrier concentration, and subthreshold swing (S of the device. Our results indicated that we could successfully and easily fabricate α-HfIZO TFTs with excellent performance by the co-sputtering process. Co-sputtering-processed α-HfIZO TFTs were fabricated with an on/off current ratio of ~106, higher mobility, and a subthreshold slope as steep as 0.55 V/dec.

  12. Effects of residual hydrogen in sputtering atmosphere on structures and properties of amorphous In-Ga-Zn-O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haochun; Ishikawa, Kyohei; Ide, Keisuke [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio, E-mail: kamiya.t.aa@m.titech.ac.jp [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ueda, Shigenori [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba-city, Ibaraki 305-0047 (Japan); Ohashi, Naoki [Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); National Institute for Materials Science, 1-2-1 Sengen, Tsukuba-city, Ibaraki 305-0047 (Japan); Kumomi, Hideya [Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2015-11-28

    We investigated the effects of residual hydrogen in sputtering atmosphere on subgap states and carrier transport in amorphous In-Ga-Zn-O (a-IGZO) using two sputtering systems with different base pressures of ∼10{sup −4} and 10{sup −7 }Pa (standard (STD) and ultrahigh vacuum (UHV) sputtering, respectively), which produce a-IGZO films with impurity hydrogen contents at the orders of 10{sup 20} and 10{sup 19 }cm{sup −3}, respectively. Several subgap states were observed by hard X-ray photoemission spectroscopy, i.e., peak-shape near-valence band maximum (near-VBM) states, shoulder-shape near-VBM states, peak-shape near-conduction band minimum (near-CBM) states, and step-wise near-CBM states. It was confirmed that the formation of these subgap states were affected strongly by the residual hydrogen (possibly H{sub 2}O). The step-wise near-CBM states were observed only in the STD films deposited without O{sub 2} gas flow and attributed to metallic In. Such step-wise near-CBM state was not detected in the other films including the UHV films even deposited without O{sub 2} flow, substantiating that the metallic In is segregated by the strong reduction effect of the hydrogen/H{sub 2}O. Similarly, the density of the near-VBM states was very high for the STD films deposited without O{sub 2}. These films had low film density and are consistent with a model that voids in the amorphous structure form a part of the near-VBM states. On the other hand, the UHV films had high film densities and much less near-VBM states, keeping the possibility that some of the near-VBM states, in particular, of the peak-shape ones, originate from –OH and weakly bonded oxygen. These results indicate that 2% of excess O{sub 2} flow is required for the STD sputtering to compensate the effects of the residual hydrogen/H{sub 2}O. The high-density near-VBM states and the metallic In segregation deteriorated the electron mobility to 0.4 cm{sup 2}/(V s)

  13. The influence of RF power on the electrical properties of sputtered amorphous In—Ga—Zn—O thin films and devices

    International Nuclear Information System (INIS)

    Shi Junfei; Dong Chengyuan; Wu Jie; Chen Yuting; Zhan Runze; Dai Wenjun

    2013-01-01

    The influence of radio frequency (RF) power on the properties of magnetron sputtered amorphous indium gallium zinc oxide (a-IGZO) thin films and the related thin-film transistor (TFT) devices is investigated comprehensively. A series of a-IGZO thin films prepared with magnetron sputtering at various RF powers are examined. The results prove that the deposition rate sensitively depends on RF power. In addition, the carrier concentration increases from 0.91 × 10 19 to 2.15 × 10 19 cm −3 with the RF power rising from 40 to 80 W, which may account for the corresponding decrease in the resistivity of the a-IGZO thin films. No evident impacts of RF power are observed on the surface roughness, crystalline nature and stoichiometry of the a-IGZO samples. On the other hand, optical transmittance is apparently influenced by RF power where the extracted optical band-gap value increases from 3.48 to 3.56 eV with RF power varying from 40 to 80 W, as is supposed to result from the carrier-induced band-filling effect. The rise in RF power can also affect the performance of a-IGZO TFTs, in particular by increasing the field-effect mobility clearly, which is assumed to be due to the alteration of the extended states in a-IGZO thin films. (semiconductor devices)

  14. Development of surface relief on polycrystalline metals due to sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Voitsenya, V.S. [IPP NSC KIPT, 61108 Kharkov (Ukraine); Balden, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Bardamid, A.F. [Taras Shevchenko National University, 01033 Kiev (Ukraine); Bondarenko, V.N. [IPP NSC KIPT, 61108 Kharkov (Ukraine); Davis, J.W., E-mail: jwdavis@starfire.utias.utoronto.ca [University of Toronto Institute for Aerospace Studies, 4925 Dufferin St., Toronto, ON, Canada M3H5T6 (Canada); Konovalov, V.G.; Ryzhkov, I.V.; Skoryk, O.O.; Solodovchenko, S.I. [IPP NSC KIPT, 61108 Kharkov (Ukraine); Zhang-jian, Zhou [University of Science and Technology Beijing, Beijing 100 083 (China)

    2013-05-01

    The characteristics of surface microrelief that appear in sputtering experiments with polycrystalline metals of various grain sizes have been studied. Specimens with grain sizes varying from 30–70 nm in the case of crystallized amorphous alloys, to 1–3 μm for technical tungsten grade and 10–100 μm for recrystallized tungsten were investigated. A model is proposed for the development of roughness on polycrystalline metals which is based on the dependence of sputtering rate on crystal orientation. The results of the modeling are in good agreement with experiments showing that the length scale of roughness is much larger than the grain size.

  15. Effect of N_2 flow rate on the properties of N doped TiO_2 films deposited by DC coupled RF magnetron sputtering

    International Nuclear Information System (INIS)

    Peng, Shou; Yang, Yong; Li, Gang; Jiang, Jiwen; Jin, Kewu; Yao, TingTing; Zhang, Kuanxiang; Cao, Xin; Wang, Yun; Xu, Genbao

    2016-01-01

    N doped TiO_2 films were deposited on glass substrates at room temperature using DC coupled RF magnetron sputtering with a TiO_2 ceramic target. The influences of N_2 flow rate on the deposition rate, crystal structure, chemical composition and band gap of the deposited films were investigated by Optical profiler, X-ray diffraction, X-ray photoelectron spectroscope and ultraviolet-visible spectrophotometer. The film growth rate gradually decreased with increasing N_2 flow rate. As N_2 flow rate increased, the crystallization of the films deteriorated, and the films tended to form amorphous structure. XPS analysis revealed that N dopant atoms were added at the substitutional sites into TiO_2 lattice structure. FE-SEM results showed that the grain size of the film decreased and the crystallinity degraded as N_2 flow rate increases. In addition, N doping caused an obvious red shift in the optical absorption edge. - Highlights: • N doped TiO_2 films were deposited by DC coupled RF magnetron reactive sputtering. • As N_2 flow rate increases, the crystallization of the deposited films degrades. • The higher N_2 flow rate is beneficial to form more substituted N in the film. • N doping causes an obvious red shift in the absorption wavelength.

  16. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Wang, Ke-Yao; Foster, Amy C

    2015-01-01

    We demonstrate optical parametric amplification operating at GHz-rates at telecommunications wavelengths using a hydrogenated amorphous silicon waveguide through the nonlinear optical process of four-wave mixing. We investigate how the parametric amplification scales with repetition rate. The ability to achieve amplification at GHz-repetition rates shows hydrogenated amorphous silicon’s potential for telecommunication applications and a GHz-rate optical parametric oscillator. (paper)

  17. Magnetoresistance in amorphous NdFeB/FeB compositionally modulated multilayers

    International Nuclear Information System (INIS)

    Peral, G.; Briones, F.; Vicent, J.L.

    1991-01-01

    Resistance measurements have been done in amorphous Nd 12 Fe 80 B 8 sputtered films and in amorphous sputtered Nd 26 Fe 68 B 6 /Fe 92 B 8 multilayers between 6 and 150 K with applied magnetic field parallel (LMR) and perpendicular (TMR) up to 7 T. The samples were grown by dc triode sputtering, with nominal unequal (2:1) layer thicknesses. The layered character of the samples have been tested by x-ray diffraction. Longitudinal magnetoresistance (LMR) is positive and transverse magnetoresistance (TMR) is negative. The magnetoresistance values are higher than in amorphous ferromagnets, and multilayering of these alloys produces much larger magnetoresistance values than either alloy alone and there is a strong dependence on the multilayer wavelength. The MR shows a weak temperature dependence in the temperature interval that was investigated

  18. Preparation and characterization of thick metastable sputter deposits

    International Nuclear Information System (INIS)

    Allen, R.P.; Dahlgren, S.D.; Merz, M.D.

    1975-01-01

    High-rate dc supported-discharge sputtering techniques were developed and used to prepare 0.1 mm to 5.0 mm-thick deposits of a variety of metastable materials including amorphous alloys representing more than 15 different rare-earth-transition metal systems and a wide range of compositions and deposition conditions. The ability to prepare thick, homogeneous deposits has made it possible for the first time to investigate the structure, properties, and annealing behavior of these unique sputtered alloys using neutron diffraction, ultrasonic, and other experimental techniques that are difficult or impractical for thin films. More importantly, these characterization studies show that the structure and properties of the massive sputter deposits are independent of thickness and can be reproduced from deposit to deposit. Other advantages and applications of this metastable materials preparation technique include the possibility of varying structure and properties by control of the deposition parameters and the ability to deposit even reactive alloys with a very low impurity content

  19. Time-dependent angular distribution of sputtered particles from amorphous targets

    International Nuclear Information System (INIS)

    Yamamura, Yasunori

    1990-01-01

    Using the time-evolution computer simulation code DYACAT, the time-dependent behavior of sputtering phenomena has been investigated. The DYACAT program is based on the binary collision approximation, and the cascade development in solids is followed time-evolutionally. The total sputtering yield, the angular distribution and the energy distribution of sputtered atoms are calculated as a function of time for 1 keV Ar→Cu, where the angle of incidence is the inverse surface normal. It is found that the angular distribution of the prompt collisional phase of the sputtering process shows an under-cosine and that the corresponding energy spectrum has a peak near 10 eV. The slow collisional phase of 1 keV Ar→Cu will start after 3x10 -14 s, and its angular distribution shows an over-cosine distribution. (orig.)

  20. Mixed hyperfine interaction in amorphous Fe-Zr sputtered films in external magnetic field - a 57Fe Moessbauer study

    International Nuclear Information System (INIS)

    Fries, S.M.; Crummenauer, J.; Wagner, H.-G.; Gonser, U.; Chien, C.L.

    1986-01-01

    Conventional 57 Fe-Moessbauer spectroscopy provides only information about the magnitude of the splitting QS in the case of electric quadrupole hyperfine interaction, but not on the sign of the main component of the electric field gradient (EFG) or the asymmetry parameter which are sensitive to the local environment of the 57 Fe nuclei. This kind of information is obtained by measurements in external magnetic fields. In the case of amorphous Fe-Zr sputtered films mixed hyperfine interaction leads to a clear change in the behaviour of the Zr-rich and the Fe-rich alloys, indicating the existence of magnetic clusters in the Fe-rich samples. (Auth.)

  1. Contributions of solar-wind induced potential sputtering to the lunar surface erosion rate and it's exosphere

    Science.gov (United States)

    Alnussirat, S. T.; Barghouty, A. F.; Edmunson, J. E.; Sabra, M. S.; Rickman, D. L.

    2018-04-01

    Sputtering of lunar regolith by solar-wind protons and heavy ions with kinetic energies of about 1 keV/amu is an important erosive process that affects the lunar surface and exosphere. It plays an important role in changing the chemical composition and thickness of the surface layer, and in introducing material into the exosphere. Kinetic sputtering is well modeled and understood, but understanding of mechanisms of potential sputtering has lagged behind. In this study we differentiate the contributions of potential sputtering from the standard (kinetic) sputtering in changing the chemical composition and erosion rate of the lunar surface. Also we study the contribution of potential sputtering in developing the lunar exosphere. Our results show that potential sputtering enhances the total characteristic sputtering erosion rate by about 44%, and reduces sputtering time scales by the same amount. Potential sputtering also introduces more material into the lunar exosphere.

  2. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  3. Cooling rate effects on structure of amorphous graphene

    International Nuclear Information System (INIS)

    Van Hoang, Vo

    2015-01-01

    Simple monatomic amorphous 2D models with Honeycomb structure are obtained from 2D simple monatomic liquids with Honeycomb interaction potential (Rechtsman et al., Phys. Rev. Lett. 95, 228301 (2005)) via molecular dynamics (MD) simulations. Models are observed by cooling from the melt at various cooling rates. Temperature dependence of thermodynamic and structural properties including total energy, mean ring size, mean coordination number is studied in order to show evolution of structure and thermodynamics upon cooling from the melt. Structural properties of the amorphous Honeycomb structures are studied via radial distribution function (RDF), coordination number and ring distributions together with 2D visualization of the atomic configurations. Amorphous Honeycomb structures contain a large amount of structural defects including new ones which have not been previously reported yet. Cooling rate dependence of structural properties of the obtained amorphous Honeycomb structures is analyzed. Although amorphous graphene has been proposed theoretically and/or recently obtained by the experiments, our understanding of structural properties of the system is still poor. Therefore, our simulations highlight the situation and give deeper understanding of structure and thermodynamics of the glassy state of this novel 2D material

  4. Heavy ion irradiation of crystalline water ice. Cosmic ray amorphisation cross-section and sputtering yield

    Science.gov (United States)

    Dartois, E.; Augé, B.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J. J.; Kamalou, O.; Lv, X. Y.; Rothard, H.; da Silveira, E. F.; Thomas, J. C.

    2015-04-01

    Context. Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. Aims: We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. Methods: We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). Results: The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. Conclusions: The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices. Experiments performed at the Grand Accélérateur National d'Ions Lourds (GANIL) Caen, France. Part of this work has been financed by the French INSU-CNRS programme "Physique et Chimie du Milieu Interstellaire" (PCMI) and the ANR IGLIAS.

  5. Modulation of optical and electrical properties of sputtering-derived amorphous InGaZnO thin films by oxygen partial pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.F. [School of Physics and Materials Science, Radiation Detection Materials and Devices Lab, Anhui University, Hefei 230601 (China); He, G., E-mail: hegang@ahu.edu.cn [School of Physics and Materials Science, Radiation Detection Materials and Devices Lab, Anhui University, Hefei 230601 (China); Liu, M., E-mail: mliu@issp.ac.cn [Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanostructure, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhang, J.W.; Deng, B.; Wang, P.H.; Zhang, M. [School of Physics and Materials Science, Radiation Detection Materials and Devices Lab, Anhui University, Hefei 230601 (China); Lv, J.G. [Department of Physics and Electronic Engineering, Hefei Normal University, Hefei 230061 (China); Sun, Z.Q. [School of Physics and Materials Science, Radiation Detection Materials and Devices Lab, Anhui University, Hefei 230601 (China)

    2014-12-05

    Highlights: • Sputtering-derived a-IGZO thin films were grown on Si and glass substrates in a mixed atmosphere of Ar and O{sub 2}. • XRD measurements have shown that the as-deposited thin films are all amorphous. • Blue shift in band gap and reduction in n with increasing the O{sub 2}/Ar flow ratio have been detected. • Reduction of oxygen vacancies is suggested to be the cause of the band gap and resistivity increase. - Abstract: Sputtering-derived amorphous InGaZnO (a-IGZO) thin films were grown on Si and glass substrates in a mixed ambient of Ar and O{sub 2} at fixed 0.5 Pa working pressure. The influence of O{sub 2}/Ar flow ratio on the optical and electrical properties of a-IGZO thin films has been systematically investigated by means of characterization from spectroscopic ellipsometry (SE), X-ray diffraction (XRD), scan electron microscopy (SEM), atomic force microscope (AFM), UV–vis spectroscopy, and electrical measurements. Results have shown that the band gap of the as-deposited IGZO films increases from 3.45 eV to 3.75 eV as the O{sub 2}/Ar flow ratio increases from 0% to 20%. Blue shift in band gap and reduction in reactive index with increasing the O{sub 2}/Ar flow ratio have been detected. Electrical measurements have indicated the increase in resistivity at higher O{sub 2}/Ar gas flow ratio. Related mechanics about the increase in band gap and resistivity have been discussed in detail.

  6. Crystallinity, etchability, electrical and mechanical properties of Ga doped amorphous indium tin oxide thin films deposited by direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Hyun-Jun; Song, Pung-Keun

    2014-01-01

    Indium tin oxide (ITO) and Ga-doped ITO (ITO:Ga) films were deposited on glass and polyimide (PI) substrates by direct current (DC) magnetron sputtering using different ITO:Ga targets (doped-Ga: 0, 0.1 and 2.9 wt.%). The films were deposited with a thickness of 50 nm and then post-annealed at various temperatures (room temperature-250 °C) in a vacuum chamber for 30 min. The amorphous ITO:Ga (0.1 wt.% Ga) films post-annealed at 220 °C exhibited relatively low resistivity (4.622x10 −4 Ω cm), indicating that the crystallinity of the ITO:Ga films decreased with increasing Ga content. In addition, the amorphous ITO:Ga films showed a better surface morphology, etchability and mechanical properties than the ITO films. - Highlights: • The Ga doped indium tin oxide (ITO) films crystallized at higher temperatures than the ITO films. • The amorphisation of ITO films increases with increasing Ga content. • Similar resistivity was observed between crystalline ITO and amorphous Ga doped ITO films. • Etching property of ITO film was improved with increasing Ga content

  7. Entrapment of krypton in sputter deposited metals: a storage medium for radioactive gases

    International Nuclear Information System (INIS)

    Tingey, G.L.; McClanahan, E.D.; Bayne, M.A.; Moss, R.W.

    1979-04-01

    Sputter deposition of metals with a negative substrate bias results in a deposit containing relatively large concentrations of the sputtering gas. This phenomenon has been applied as a technique for storage of the radioactive gas, 85 Kr, which is generated in nuclear fuels for power production. Alloys which sputter to yield an amorphous product have been shown to contain up to 12 atom % Kr [42 cm 3 of Kr(STP)/g of deposit; concentration equivalent to a gas at 4380 psi pressure]. Release from these metals occurs at so low a rate that extrapolation to long times yields a 85 Kr release at 300 0 C of about 0.06% in 100 years. A preliminary evaluation of the engineering feasibility and economics of the sputtering process indicates that 85 Kr can be effectively trapped in a solid matrix with currently available techniques on a scale required for handling DOE-generated waste or commercial reprocessed fuels and that the cost should not be a limiting factor

  8. Influence of deposition temperature and amorphous carbon on microstructure and oxidation resistance of magnetron sputtered nanocomposite Crsbnd C films

    Science.gov (United States)

    Nygren, Kristian; Andersson, Matilda; Högström, Jonas; Fredriksson, Wendy; Edström, Kristina; Nyholm, Leif; Jansson, Ulf

    2014-06-01

    It is known that mechanical and tribological properties of transition metal carbide films can be tailored by adding an amorphous carbon (a-C) phase, thus making them nanocomposites. This paper addresses deposition, microstructure, and for the first time oxidation resistance of magnetron sputtered nanocomposite Crsbnd C/a-C films with emphasis on studies of both phases. By varying the deposition temperature between 20 and 700 °C and alternating the film composition, it was possible to deposit amorphous, nanocomposite, and crystalline Crsbnd C films containing about 70% C and 30% Cr, or 40% C and 60% Cr. The films deposited at temperatures below 300 °C were X-ray amorphous and 500 °C was required to grow crystalline phases. Chronoamperometric polarization at +0.6 V vs. Ag/AgCl (sat. KCl) in hot 1 mM H2SO4 resulted in oxidation of Crsbnd C, yielding Cr2O3 and C, as well as oxidation of C. The oxidation resistance is shown to depend on the deposition temperature and the presence of the a-C phase. Physical characterization of film surfaces show that very thin C/Cr2O3/Crsbnd C layers develop on the present material, which can be used to improve the oxidation resistance of, e.g. stainless steel electrodes.

  9. Identification and roles of nonstoichiometric oxygen in amorphous Ta{sub 2}O{sub 5} thin films deposited by electron beam and sputtering processes

    Energy Technology Data Exchange (ETDEWEB)

    Mannequin, Cedric, E-mail: MANNEQUIN.Cedricromuald@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Tsuruoka, Tohru [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Hasegawa, Tsuyoshi [Department of Applied Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Aono, Masakazu [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2016-11-01

    Highlights: • A detail study of the composition and morphology of amorphous tantalum oxide films obtained by electron-beam evaporation and radio-frequency sputtering is carried out. • The mechanisms for moisture absorption by tantalum oxides are proposed. • Deposition-dependent high oxygen stoichiometry of the films is revealed. • Formations of dangling bonds, hydroxyls groups and bidendate water bridges are identified to support the moisture absorption. - Abstract: The morphology and composition of tantalum oxide (Ta{sub 2}O{sub 5}) thin films prepared by electron-beam (EB) evaporation and radio-frequency sputtering (SP) were investigated by grazing incidence X-ray diffraction (GIXRD), X-ray reflectometry (XRR), atomic force microscopy, Fourier transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). GIXRD revealed an amorphous nature for both films, and XRR showed that the density of the Ta{sub 2}O{sub 5}-EB films was lower than that of the Ta{sub 2}O{sub 5}-SP films; both films have lower density than the bulk value. A larger amount of molecular water and peroxo species were detected for the Ta{sub 2}O{sub 5}-EB films by FTIR performed in ambient atmosphere. XPS analyses performed in vacuum confirmed the presence of hydroxyl groups, but no trace of chemisorbed molecular water was detected. In addition, a higher oxygen nonstoichiometry (higher O/Ta ratio) was found for the EB films. From these results, we conclude that the oxygen nonstoichiometry of the EB film accounted for its lower density and higher amount of absorbed molecular water. The results also suggest the importance of understanding the dependence of the structural and chemical properties of thin amorphous oxide films on the deposition process.

  10. Effect of N{sub 2} flow rate on the properties of N doped TiO{sub 2} films deposited by DC coupled RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shou [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430000 (China); State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Yang, Yong, E-mail: 88087113@163.com [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Li, Gang; Jiang, Jiwen; Jin, Kewu; Yao, TingTing; Zhang, Kuanxiang [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Cao, Xin [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116000 (China); Wang, Yun; Xu, Genbao [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China)

    2016-09-05

    N doped TiO{sub 2} films were deposited on glass substrates at room temperature using DC coupled RF magnetron sputtering with a TiO{sub 2} ceramic target. The influences of N{sub 2} flow rate on the deposition rate, crystal structure, chemical composition and band gap of the deposited films were investigated by Optical profiler, X-ray diffraction, X-ray photoelectron spectroscope and ultraviolet-visible spectrophotometer. The film growth rate gradually decreased with increasing N{sub 2} flow rate. As N{sub 2} flow rate increased, the crystallization of the films deteriorated, and the films tended to form amorphous structure. XPS analysis revealed that N dopant atoms were added at the substitutional sites into TiO{sub 2} lattice structure. FE-SEM results showed that the grain size of the film decreased and the crystallinity degraded as N{sub 2} flow rate increases. In addition, N doping caused an obvious red shift in the optical absorption edge. - Highlights: • N doped TiO{sub 2} films were deposited by DC coupled RF magnetron reactive sputtering. • As N{sub 2} flow rate increases, the crystallization of the deposited films degrades. • The higher N{sub 2} flow rate is beneficial to form more substituted N in the film. • N doping causes an obvious red shift in the absorption wavelength.

  11. Investigation of the drastic change in the sputter rate of polymers at low ion fluence

    International Nuclear Information System (INIS)

    Zekonyte, J.; Zaporojtchenko, V.; Faupel, F.

    2005-01-01

    The polymer sputter rate dependence on ion fluence and ion chemistry (Ar, N 2 , O 2 ) at 1 keV energy was investigated using a quartz crystal microbalance (QCM) which allowed to do real time etch rate measurements and to study kinetics of sputtering. The obtained sputter rates differed drastically from polymer to polymer showing, that the chemical structure of polymer is an important factor in the polymer etch yield. A decrease in the sputter rate was observed up to ion fluence of 5 x 10 14 -5 x 10 15 cm -2 (depending on the polymer type and ion chemistry) followed by the saturation in the rate at prolonged ion bombardment. Polymer removal was accompanied by the formation of degradation products, cross-linking or branching, modification of the surface chemical structure, which was studied in situ using XPS. The dependence of the surface glass transition temperature, T gs on the ion fluence was studied using the method based on the embedding of metallic nanoparticles. The correlation between chemical yield data and ablation rate is discussed

  12. On the structural and optical properties of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Barhdadi, A.; Chafik El ldrissi, M.

    2002-08-01

    The present work is essentially focused on the study of optical and structural properties of hydrogenated amorphous silicon thin films (a-Si:H) prepared by radio-frequency cathodic sputtering. We examine separately the influence of hydrogen partial pressure during film deposition, and the effect of post-deposition thermal annealings on the main optical characteristics of the layers such as refraction index, optical gap and Urbach energy. Using the grazing X-rays reflectometry technique, thin film structural properties are examined immediately after films deposition as well as after surface oxidation or annealing. We show that low hydrogen pressures allow a saturation of dangling bonds in the layers, while high doses lead to the creation of new defects. We show also that thermal annealing under moderate temperatures improves the structural quality of the deposited layers. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears for a long time stay in the ambient. (author)

  13. Net sputtering rate due to hot ions in a Ne-Xe discharge gas bombarding an MgO layer

    International Nuclear Information System (INIS)

    Ho, S.; Tamakoshi, T.; Ikeda, M.; Mikami, Y.; Suzuki, K.

    2011-01-01

    An analytical method is developed for determining net sputtering rate for an MgO layer under hot ions with low energy ( h i , above a threshold energy of sputtering, E th,i , multiplied by a yield coefficient. The threshold energy of sputtering is determined from dissociation energy required to remove an atom from MgO surface multiplied by an energy-transfer coefficient. The re-deposition rate of the sputtered atoms is calculated by a diffusion simulation using a hybridized probabilistic and analytical method. These calculation methods are combined to analyze the net sputtering rate. Maximum net sputtering rate due to the hot neon ions increases above the partial pressure of 4% xenon as E h Ne becomes higher and decreases near the partial pressure of 20% xenon as ion flux of neon decreases. The dependence due to the hot neon ions on partial pressure and applied voltage agrees well with experimental results, but the dependence due to the hot xenon ions deviates considerably. This result shows that the net sputtering rate is dominated by the hot neon ions. Maximum E h Ne (E h Ne,max = 5.3 - 10.3 eV) is lower than E th,Ne (19.5 eV) for the MgO layer; therefore, weak sputtering due to the hot neon ions takes place. One hot neon ion sputters each magnesium and each oxygen atom on the surface and distorts around a vacancy. The ratio of the maximum net sputtering rate is approximately determined by number of the ions at E h i,max multiplied by an exponential factor of -E th,i /E h i,max .

  14. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    OpenAIRE

    Rafieian Boroujeni, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G.H.

    2015-01-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx

  15. Characteristics of indium zinc oxide films deposited using the facing targets sputtering method for OLEDs applications

    International Nuclear Information System (INIS)

    Rim, Y.S.; Kim, H.J.; Kim, K.H.

    2010-01-01

    The amorphous indium zinc oxide (IZO) thin films were deposited on polyethersulfone (PES) and glass substrates using the facing targets sputtering (FTS) system. The electrical, optical and structural properties of the IZO thin films deposited as functions of sputtering parameters on the glass and PES substrates. An optimal IZO deposition condition is fabricated for organic light-emitting device (OLED) based on glass and PES. The amorphous IZO anode-based OLEDs show superior current density and luminance characteristics.

  16. Temperature stable LiNbO3 surface acoustic wave device with diode sputtered amorphous TeO2 over-layer

    International Nuclear Information System (INIS)

    Dewan, Namrata; Tomar, Monika; Gupta, Vinay; Sreenivas, K.

    2005-01-01

    Amorphous TeO 2 thin film, sputtered in the O 2 +Ar(25%+75%) gas environment using a metallic tellurium target, has been identified as an attractive negative temperature coefficient of delay (TCD) material that can yield a temperature stable device when combined with a surface acoustic wave (SAW) device based on positive TCD material such as LiNbO 3 . The influence of amorphous TeO 2 over-layer on the SAW propagation characteristics (velocity and temperature coefficient of delay) of the SAW filters (36 and 70 MHz) based on 128 deg. rotated Y-cut X-propagating lithium niobate (128 deg. Y-X LiNbO 3 ) single crystal has been studied. It is found that 0.042 λ thick TeO 2 over-layer on a prefabricated SAW device operating at 36 MHz centre frequency, reduces the TCD of the device from 76 ppm deg. C -1 to almost zero (∼1.4 ppm deg. C -1 ) without deteriorating its efficiency and could be considered as a suitable alternative for temperature stable devices in comparison to conventional SiO 2 over-layer

  17. The effect of sputter-deposition conditions on the coercive force in amorphous rare-earth - transition-metal thin films

    International Nuclear Information System (INIS)

    Davies, C.F.; Somekh, R.E.; Evetts, J.E.; Storey, P.A.

    1988-01-01

    The origins of the coercive force in amorphous rare earth - transition metal films have been investigated, the results being discussed in terms of how the growth conditions of the sputter-deposited films determine the pinning features which cause the coercive force. The authors have studied the variation of coercive force with film thickness and developed a model which enables a local pinning force per unit area to be deduced. This suggests that it should be possible to increase the coercive force by breaking up the microstructure with a multi-layered structure. An increase in coercive force obtained by making such structures with tungsten is described. They also report on the reduction in coercive force obtained when the films are deposited in the presence of a perpendicular magnetic field

  18. Optical waveguiding in amorphous tellurium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Ranu; Gupta, Vinay; Dawar, A.L.; Sreenivas, K

    2003-11-24

    Optical waveguiding characteristics of amorphous TeO{sub 2-x} films deposited by reactive sputtering under different O{sub 2}:Ar gas mixtures are investigated on fused quartz and Corning glass substrates. Infra-red absorption band in the range 641-658 cm{sup -1} confirmed the formation of a Te-O bond, and a 20:80 O{sub 2}:Ar gas mixture ratio is found to be optimum for achieving highly uniform and transparent films at a high deposition rate. As grown amorphous films exhibited a large band gap (3.76 eV); a high refractive index value (2.042-2.052) with low dispersion over a wide wavelength range of 500-2000 nm. Optical waveguiding with low propagation loss of 0.26 dB/cm at 633 nm is observed on films subjected to a post-deposition annealing treatment at 200 deg. C. Packing density and etch rates have been determined and correlated with the lowering of optical propagation loss in the annealed films.

  19. Quantitative sputter profiling at surfaces and interfaces

    International Nuclear Information System (INIS)

    Kirschner, J.; Etzkorn, H.W.

    1981-01-01

    The key problem in quantitative sputter profiling, that of a sliding depth scale has been solved by combined Auger/X-ray microanalysis. By means of this technique and for the model system Ge/Si (amorphous) the following questions are treated quantitatively: shape of the sputter profiles when sputtering through an interface and origin of their asymmetry; precise location of the interface plane on the depth profile; broadening effects due to limited depth of information and their correction; origin and amount of bombardment induced broadening for different primary ions and energies; depth dependence of the broadening, and basic limits to depth resolution. Comparisons are made to recent theoretical calculations based on recoil mixing in the collision cascade and very good agreement is found

  20. Preparation of boron-nitrogen films by sputtering

    International Nuclear Information System (INIS)

    Klose, S.; Winde, B.

    1980-01-01

    Hard boron-nitrogen films adherent to various substrates can be prepared by sputtering. IR investigations suggest the existence of cubic boron nitride in certain layers. Transmission electron microscope studies have shown a quasi-amorphous structure irregularly incorporating crystallites of zinc blende structure of some nm in diameter

  1. Impurity incorporation, deposition kinetics, and microstructural evolution in sputtered Ta films

    Science.gov (United States)

    Whitacre, Jay Fredric

    There is an increasing need to control the microstructure in thin sputtered Ta films for application as high-temperature coatings or diffusion barriers in microelectronic interconnect structures. To this end, the relationship between impurity incorporation, deposition kinetics, and microstructural evolution was examined for room-temperature low growth rate DC magnetron sputtered Ta films. Impurity levels present during deposition were controlled by pumping the chamber to various base pressures before growth. Ar pressures ranging from 2 to 20 mTorr were used to create contrasting kinetic environments in the sputter gas. This affected both the distribution of adatom kinetic energies at the substrate as well as the rate of impurity desorption from the chamber walls: at higher Ar pressures adatoms has lower kinetic energies, and there was an increase in impurity concentration. X-ray diffraction, high-resolution transmission electron microscopy (HREM), transmission electron diffraction (TED), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and x-ray photoelectron. spectroscopy (XPS) were used to examine film crystallography, microstructure, and composition. A novel laboratory-based in-situ x-ray diffractometer was constructed. This new set-up allowed for the direct observation of microstructural evolution during growth. Films deposited at increasingly higher Ar pressures displayed a systematic decrease in grain size and degree of texturing, while surface morphology was found to vary from a nearly flat surface to a rough surface with several length scales of organization. In-situ x-ray results showed that the rate of texture evolution was found to be much higher in films grown using lower Ar pressures. These effects were studied in films less than 200 A thick using high resolution x-ray diffraction in conjunction with a synchrotron light source (SSRL B.L. 7-2). Films grown using higher Ar pressures (above 10 mTorr) with a pre-growth base

  2. Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance

    International Nuclear Information System (INIS)

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki

    2015-01-01

    This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O 2 , H 2 O, and N 2 O as the reactive gases. Experimental results show that the electrical properties of the N 2 O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for the performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N 2 O introduction into the deposition process, where the field mobility reach to 30.8 cm 2 V –1 s –1 , which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT

  3. Strong strain rate effect on the plasticity of amorphous silica nanowires

    International Nuclear Information System (INIS)

    Yue, Yonghai; Zheng, Kun

    2014-01-01

    With electron-beam (e-beam) off, in-situ tensile experiments on amorphous silica nanowires (NWs) were performed inside a transmission electron microscope (TEM). By controlling the loading rates, the strain rate can be adjusted accurately in a wide range. The result shows a strong strain rate effect on the plasticity of amorphous silica NWs. At lower strain rate, the intrinsic brittle materials exhibit a pronounced elongation higher than 100% to failure with obvious necking near ambient temperature. At the strain rate higher than 5.23 × 10 −3 /s, the elongation of the NW decreased dramatically, and a brittle fracture feature behavior was revealed. This ductile feature of the amorphous silica NWs has been further confirmed with the in-situ experiments under optical microscopy while the effect of e-beam irradiation could be eliminated.

  4. Growth of amorphous Zn–Sn–O thin films by RF sputtering for buffer layers of CuInSe2 and SnS solar cells

    International Nuclear Information System (INIS)

    Chang, Shao-Wei; Ishikawa, Kaoru; Sugiyama, Mutsumi

    2015-01-01

    We propose using amorphous Zn–Sn–O (α-ZTO) deposited by RF sputtering as an alternative n-type buffer layer for Cu(In,Ga)Se 2 and SnS solar cells. The order of the carrier density, n, is increased from the order of 10 15 to 10 17 cm −1 as the Sn/(Sn + Zn) atomic ratio increases from 0.29 to 0.40. On the other hand, the order of n decreased from 10 17 to 10 11 cm −1 as the oxygen partial pressure increased from 0 to 10%. Further, for the α-ZTO film with the Sn/(Sn + Zn) atomic ratio at 0.38 and the oxygen partial pressure at 0%, valence band discontinuities of α-ZTO/CuInSe 2 and α-ZTO/SnS were determined using photoelectron yield spectroscopy measurements. The band discontinuities of each of these interfaces form a spike structure in the conduction band offset, which enables a high-performance solar cell to be obtained. - Highlights: • We propose using amorphous Zn–Sn–O as a n-type layer for Cu(In,Ga)Se 2 and SnS solar cells. • The carrier density was controlled by total and/or oxygen partial pressure during sputtering. • Valence band discontinuities of Zn–Sn–O/CuInSe 2 and Zn–Sn–O/SnS were determined. • The conduction band discontinuities of each of these interfaces form a spike structure

  5. Origin of temperature-induced low friction of sputtered Si-containing amorphous carbon coatings

    International Nuclear Information System (INIS)

    Jantschner, O.; Field, S.K.; Holec, D.; Fian, A.; Music, D.; Schneider, J.M.; Zorn, K.; Mitterer, C.

    2015-01-01

    This work reports on a tribological study of magnetron-sputtered silicon-containing amorphous carbon thin films vs. their alumina counterparts. Temperature cycling during ball-on-disk tests in humid air revealed a decrease in the coefficient of friction from 0.3 to <0.02 beyond 240 ± 15 °C. Systematic variation of the environment confirmed oxygen to be responsible for the low friction. X-ray photoelectron spectroscopy of the wear tracks indicates oxidation of Si-C bonds and formation of Si-O-C bonds, followed by further oxidation to SiO 2 above 450 °C. Ab initio molecular dynamics simulations of gas interactions with the a-C surface revealed dissociation of O 2 and the formation of oxides. Additional density functional theory calculations of Si incorporation into a graphene layer, resembling the surface of the film, showed preferential attraction of gaseous species (H, O, -OH, H 2 O), to Si-sites as compared to C-sites. Hence, the temperature- and atmosphere-induced changes in friction coefficient can be understood based on correlative X-ray photoelectron spectroscopy and ab initio data: the formation of Si-O-C bonds stemming from a reaction of the as-deposited coating with atmosphere in the tribological contact is observed by theory and experiment

  6. Amorphous-crystalline transition in thermoelectric NbO2

    International Nuclear Information System (INIS)

    Music, Denis; Chen, Yen-Ting; Bliem, Pascal; Geyer, Richard W

    2015-01-01

    Density functional theory was employed to design enhanced amorphous NbO 2 thermoelectrics. The covalent-ionic nature of Nb–O bonding is identical in amorphous NbO 2 and its crystalline counterpart. However, the Anderson localisation occurs in amorphous NbO 2 , which may affect the transport properties. We calculate a multifold increase in the absolute Seebeck coefficient for the amorphous state. These predictions were critically appraised by measuring the Seebeck coefficient of sputtered amorphous and crystalline NbO 2 thin films with the identical short-range order. The first-order phase transition occurs at approximately 550 °C, but amorphous NbO 2 possesses enhanced transport properties at all temperatures. Amorphous NbO 2 , reaching  −173 μV K −1 , exhibits up to a 29% larger absolute Seebeck coefficient value, thereby validating the predictions. (paper)

  7. DC sputter deposition of amorphous indium-gallium-zinc-oxide (a-IGZO) films with H2O introduction

    International Nuclear Information System (INIS)

    Aoi, Takafumi; Oka, Nobuto; Sato, Yasushi; Hayashi, Ryo; Kumomi, Hideya; Shigesato, Yuzo

    2010-01-01

    Amorphous indium-gallium-zinc-oxide (a-IGZO) films were deposited by dc magnetron sputtering with H 2 O introduction and how the H 2 O partial pressure (P H 2 O ) during the deposition affects the electrical properties of the films was investigated in detail. Resistivity of the a-IGZO films increased dramatically to over 2 x 10 5 Ωcm with increasing P H 2 O to 2.7 x 10 -2 Pa while the hydrogen concentration in the films increased to 2.0 x 10 21 cm -3 . TFTs using a-IGZO channels deposited under P H 2 O at 1.6-8.6 x 10 -2 Pa exhibited a field-effect mobility of 1.4-3.0 cm 2 /Vs, subthreshold swing of 1.0-1.6 V/decade and on-off current ratio of 3.9 x 10 7 -1.0 x 10 8 .

  8. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    NARCIS (Netherlands)

    Rafieian Boroujeni, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G.H.

    2015-01-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to

  9. Computer simulation of radiation-induced nanostructure formation in amorphous materials

    International Nuclear Information System (INIS)

    Li, K.-D.; Perez-Bergquist, Alejandro; Wang, Lumin

    2009-01-01

    In this study, 3D simulations based on a theoretical model were developed to investigate radiation-induced nanostructure formation in amorphous materials. Model variables include vacancy production and recombination rates, ion sputtering effects, and redeposition of sputtered atoms. In addition, a phase field model was developed to predict vacancy diffusion as a function of free energies of mixing and interfacial energies. The distribution profile of the vacancy production rate along the depth of an irradiated matrix was considered as a near Gaussian approximation according to Monte-Carlo TRIM code calculations. Dynamic processes responsible for nanostructure evolution were simulated by updating the vacancy concentration profile over time. Simulated morphologies include cellular nanoholes, nanowalls, nanovoids, and nanofibers, with the resultant morphology dependant upon the incident ion species and ion fluence. These simulated morphologies are consistent with experimental observations achieved under comparable experimental conditions. Our model provides a distinct numerical approach to accurately predicting morphological results for ion-irradiation-induced nanostructures.

  10. Investigation of plasma dynamics during the growth of amorphous titanium dioxide thin films

    Science.gov (United States)

    Kim, Jin-Soo; Jee, Hyeok; Yu, Young-Hun; Seo, Hye-Won

    2018-06-01

    We have grown amorphous titanium dioxide thin films by reactive DC sputtering method using a different argon/oxygen partial pressure at a room temperature. The plasma dynamics of the process, reactive and sputtered gas particles was investigated via optical emission spectroscopy. We then studied the correlations between the plasma states and the structural/optical properties of the films. The growth rate and morphology of the titanium dioxide thin films turned out to be contingent with the population and the energy profile of Ar, O, and TiO plasma. In particular, the films grown under energetic TiO plasma have shown a direct band-to-band transition with an optical energy band gap up to ∼4.2 eV.

  11. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    OpenAIRE

    Rafieian, Damon; Ogieglo, Wojciech; Savenije, T.J.; Lammertink, Rob G H

    2015-01-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx), obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, ...

  12. Effects of gas flow rate on the structure and elemental composition of tin oxide thin films deposited by RF sputtering

    Science.gov (United States)

    Al-Mansoori, Muntaser; Al-Shaibani, Sahar; Al-Jaeedi, Ahlam; Lee, Jisung; Choi, Daniel; Hasoon, Falah S.

    2017-12-01

    Photovoltaic technology is one of the key answers for a better sustainable future. An important layer in the structure of common photovoltaic cells is the transparent conductive oxide. A widely applied transparent conductive oxide is tin oxide (SnO2). The advantage of using tin oxide comes from its high stability and low cost in processing. In our study, we investigate effects of working gas flow rate and oxygen content in radio frequency (RF)-sputtering system on the growth of intrinsic SnO2 (i-SnO2) layers. X-ray diffraction results showed that amorphous-like with nano-crystallite structure, and the surface roughness varied from 1.715 to 3.936 nm. X-Ray photoelectron spectroscopy analysis showed different types of point defects, such as tin interstitials and oxygen vacancies, in deposited i-SnO2 films.

  13. Effects of gas flow rate on the structure and elemental composition of tin oxide thin films deposited by RF sputtering

    Directory of Open Access Journals (Sweden)

    Muntaser Al-Mansoori

    2017-12-01

    Full Text Available Photovoltaic technology is one of the key answers for a better sustainable future. An important layer in the structure of common photovoltaic cells is the transparent conductive oxide. A widely applied transparent conductive oxide is tin oxide (SnO2. The advantage of using tin oxide comes from its high stability and low cost in processing. In our study, we investigate effects of working gas flow rate and oxygen content in radio frequency (RF-sputtering system on the growth of intrinsic SnO2 (i-SnO2 layers. X-ray diffraction results showed that amorphous-like with nano-crystallite structure, and the surface roughness varied from 1.715 to 3.936 nm. X-Ray photoelectron spectroscopy analysis showed different types of point defects, such as tin interstitials and oxygen vacancies, in deposited i-SnO2 films.

  14. The enhancement of the interdiffusion in Si/Ge amorphous artificial multilayers by additions of B and Au

    International Nuclear Information System (INIS)

    Park, B.; Spaepen, F.; Poate, J.M.; Jacobson, D.C.

    1990-01-01

    Amorphous Si/amorphous Ge artificial multilayers were prepared by ion beam sputtering. Boron or gold impurities were introduced into the Si/Ge multilayers by ion implantation or during the sputtering deposition. Diffusion coefficients were determined by measuring the decrease in the intensity of the first order X-ray diffraction peak resulting from the composition modulation. It was found that the interdiffusion of Si and Ge in their amorphous phase can be enhanced by doping. The enhancement factor is independent of the degree of structural relaxation, as observed by the decrease of diffusivity with annealing time, of the amorphous phase. A model is proposed that describes this behavior in terms of electronic effects, introduced by the dopants, on the pre-existing structural defects governing diffusion

  15. Syntheses and characterization of TiC/a:C composite coatings using pulsed closed field unbalanced magnetron sputtering (P-CFUBMS)

    International Nuclear Information System (INIS)

    Lin, J.; Moore, J.J.; Mishra, B.; Pinkas, M.; Sproul, W.D.

    2008-01-01

    TiC/a:C nanocomposite coatings were prepared by reactively sputtering titanium and graphite targets in pure argon atmosphere using a pulsed closed field unbalanced magnetron sputtering (P-CFUBMS) system. The microstructure of TiC/a:C coatings consisting of nanocrystalline TiC dispersed in an amorphous matrix of free carbon was investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The effects of coating compositions on the structure and properties of TiC/a:C coatings were investigated. In the present study, TiC/a:C coatings exhibit high hardness (24-29 GPa), low coefficient of friction (0.24-0.25) and low wear rate (less than 2.5 x 10 -7 mm 3 N -1 m -1 ) when the carbon concentration is in the range of 55-66 at.%. Further increase of the carbon content beyond 70 at.% significantly decreased the volume fraction of TiC nanocrystalline and formed a large amount of free amorphous carbon in the coatings. The excessive amorphous carbon phases resulted in a decrease in the coating hardness and the sliding friction coefficient, e.g. a low COF of 0.15 was obtained when the carbon concentration reached 80.5 at.%. However, the decreased hardness will lead to an increase in the wear rate in these high carbon content TiC/a:C coatings

  16. Deposition of amorphous carbon films using Ar and/or N{sub 2} magnetron sputter with ring permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Haruhisa, E-mail: rdhkino@ipc.shizuoka.ac.jp; Kubota, Masaya; Ohno, Genji

    2012-11-15

    Magnetron sputter with a rotating ring permanent magnet using Ar and/or N{sub 2} gases were first used to form amorphous carbon (a-C and a-CN{sub x}) films on p-Si wafers set on a grounded lower electrode. The a-C film was hard while the a-CN{sub x} films were soft. These films include a little O and H atoms unintentionally. Optical band gap, refractive index, Fourier transform infrared spectroscopy absorption spectra, hardness and field emission threshold electric field were significantly different between a-C and a-CN{sub x} films. The optical band gap of the a-C film was 0.7 eV while those of a-CN{sub x} films were almost constant at about 1.25 eV. The low field emission threshold electric field of 13 V/{mu}m was obtained in hard a-C film.

  17. The rf-power dependences of the deposition rate, the hardness and the corrosion-resistance of the chromium nitride film deposited by using a dual ion beam sputtering system

    International Nuclear Information System (INIS)

    Lim, Jongmin; Lee, Chongmu

    2006-01-01

    The hexavalent chromium used in chromium plating is so toxic that it is very hazardous to human body and possibly causes cancer in humans. Therefore, it is indispensable to develop an alternative deposition technique. Dependences of the deposition rate, the phases, the hardness, the surface roughness and the corrosion-resistance of CrN x deposited on the high speed steel substrate by using a dual ion beam sputtering system on the rf-power were investigated to see the feasibility of sputtering as an alternative technique for chromium plating. The dual ion beam sputtering system used in this study was designed in such a way as the primary argon ion beam and the secondary nitrogen ion beam are injected toward the target and the substrate, respectively so that the chromium atoms at the chromium target surface may not nearly react with nitrogen atoms. The hardness and the surface roughness were measured by a micro-Vicker's hardness tester and an atomic force microscope (AFM), respectively. X-ray diffraction analyses were performed to identify phases in the films. The deposition rate of CrN x depends more strongly upon the rf-power for argon ion beam than that for nitrogen ion beam. The hardness of the CrN x film is highest when the volume percent of the Cr 2 N phase in the film is highest. Amorphous films are obtained when the rf-power for nitrogen ion beam is much higher than that for argon ion beam. The CrN x film deposited by using the sputtering technique under the optimal condition provides corrosion-resistance comparable to that of the electroplated chromium

  18. Heteroepitaxial Ge-on-Si by DC magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Martin Steglich

    2013-07-01

    Full Text Available The growth of Ge on Si(100 by DC Magnetron Sputtering at various temperatures is studied by Spectroscopic Ellipsometry and Transmission Electron Microscopy. Smooth heteroepitaxial Ge films are prepared at relatively low temperatures of 380°C. Typical Stransky-Krastanov growth is observed at 410°C. At lower temperatures (320°C, films are essentially amorphous with isolated nanocrystallites at the Si-Ge interface. A minor oxygen contamination at the interface, developing after ex-situ oxide removal, is not seen to hinder epitaxy. Compensation of dislocation-induced acceptors in Ge by sputtering from n-doped targets is proposed.

  19. Sputter deposition of wear-resistant coatings within the system Zr-B-N

    Energy Technology Data Exchange (ETDEWEB)

    Mitterer, C; Uebleis, A; Ebner, R [Inst. fuer Metallkunde und Werkstoffpruefung, Montanuniv., Leoben (Austria)

    1991-07-07

    Wear-resistant coatings of zirconium boride and zirconium boron nitride were deposited on steel and molybdenum substrates employing non-reactive as well as reactive d.c. magnetron sputtering using zirconium diboride targets. The characterization of the coatings was done by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results are discussed in connection with measured mechanical coating properties such as microhardness and adhesion. The optical properties of the coatings were determined using a CIE-L{sup *}a{sup *}b{sup *} colorimeter and specialized corrosion and abrasion tests. Non-reactive sputtering using ZrB{sub 2} targets results in the formation of coatings with a columnar structure and predominantly (001)-orientated ZrB{sub 2} crystals. Coatings deposited at low nitrogen flow rates exhibit very fine-grained or even fracture amorphous structures with a hexagonal Zr-B-N phase derived from the ZrB{sub 2} lattice. A further increase of the nitrogen flow leads to an amorphous film growth. The maximum Vickers microhardness of the coatings was found to be approximately 2300 HV 0.02. Zr-B and Zr-B-N coatings offer a wide range of interesting colours as well as good corrosion and wear resistance. (orig.).

  20. One-dimensional analysis of the rate of plasma-assisted sputter deposition

    International Nuclear Information System (INIS)

    Palmero, A.; Rudolph, H.; Habraken, F. H. P. M.

    2007-01-01

    In this article a recently developed model [A. Palmero, H. Rudolph, and F. H. P. M. Habraken, Appl. Phys. Lett. 89, 211501 (2006)] is applied to analyze the transport of sputtered material from the cathode toward the growing film when using a plasma-assisted sputtering deposition technique. The argon pressure dependence of the deposition rate of aluminum, silicon, vanadium, chromium, germanium, tantalum, and tungsten under several different experimental conditions has been analyzed by fitting experimental results from the literature to the above-mentioned theory. Good fits are obtained. Three quantities are deduced from the fit: the temperature of the cathode and of the growing film, and the value of the effective cross section for thermalization due to elastic scattering of a sputtered particle on background gas atoms. The values derived from the fits for the growing film and cathode temperature are very similar to those experimentally determined and reported in the literature. The effective cross sections have been found to be approximately the corresponding geometrical cross section divided by the average number of collisions required for the thermalization, implying that the real and effective thermalization lengths have a similar value. Finally, the values of the throw distance appearing in the Keller-Simmons model, as well as its dependence on the deposition conditions have been understood invoking the values of the cathode and film temperature, as well as of the value of the effective cross section. The analysis shows the overall validity of this model for the transport of sputtered particles in sputter deposition

  1. Bonding structure and morphology of chromium oxide films grown by pulsed-DC reactive magnetron sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gago, R., E-mail: rgago@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Vinnichenko, M. [Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, D-01277 Dresden (Germany); Hübner, R. [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden (Germany); Redondo-Cubero, A. [Departamento de Física Aplicada and Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain)

    2016-07-05

    Chromium oxide (CrO{sub x}) thin films were grown by pulsed-DC reactive magnetron sputter deposition in an Ar/O{sub 2} discharge as a function of the O{sub 2} fraction in the gas mixture (ƒ) and for substrate temperatures, T{sub s}, up to 450 °C. The samples were analysed by Rutherford backscattering spectrometry (RBS), spectroscopic ellipsometry (SE), atomic force microscopy (AFM), scanning (SEM) and transmission (TEM) electron microscopy, X-ray diffraction (XRD), and X-ray absorption near-edge structure (XANES). On unheated substrates, by increasing ƒ the growth rate is higher and the O/Cr ratio (x) rises from ∼2 up to ∼2.5. Inversely, by increasing T{sub s} the atomic incorporation rate drops and x falls to ∼1.8. XRD shows that samples grown on unheated substrates are amorphous and that nanocrystalline Cr{sub 2}O{sub 3} (x = 1.5) is formed by increasing T{sub s}. In amorphous CrO{sub x}, XANES reveals the presence of multiple Cr environments that indicate the growth of mixed-valence oxides, with progressive promotion of hexavalent states with ƒ. XANES data also confirms the formation of single-phase nanocrystalline Cr{sub 2}O{sub 3} at elevated T{sub s}. These structural changes also reflect on the optical and morphological properties of the films. - Highlights: • XANES of CrO{sub x} thin films grown by pulsed-DC reactive magnetron sputtering. • Identification of mixed-valence amorphous CrO{sub x} oxides on unheated substrates. • Promotion of amorphous chromic acid (Cr{sup VI}) by increasing O{sub 2} partial pressure. • Production of single-phase Cr{sub 2}O{sub 3} films by increasing substrate temperature. • Correlation of bonding structure with morphological and optical properties.

  2. Pure and Nb2O5-doped TiO2 amorphous thin films grown by dc magnetron sputtering at room temperature: Surface and photo-induced hydrophilic conversion studies

    International Nuclear Information System (INIS)

    Suchea, M.; Christoulakis, S.; Tudose, I.V.; Vernardou, D.; Lygeraki, M.I.; Anastasiadis, S.H.; Kitsopoulos, T.; Kiriakidis, G.

    2007-01-01

    Photo-induced hydrophilicity of titanium dioxide makes this material one of the most suitable for various coating applications in antifogging mirrors and self-cleaning glasses. The field of functional titanium dioxide coatings is expanding rapidly not only in applications for glass but also in applications for polymer, metal and ceramic materials. The high hydrophilic surface of TiO 2 is interesting for understanding also the basic photon-related surface science of titanium dioxide. In doing so, it is inevitably necessary to understand the relationship between the photoreaction and the surface properties. In this work, photo-induced hydrophilic conversion was evaluated on amorphous pure and niobium oxide-doped titanium dioxide thin films on Corning 1737F glass grown by dc magnetron sputtering technique at room temperature. This study is focused on the influence of the Ar:O ratio during sputtering plasma deposition on thin film surface morphology and subsequent photo-induced hydrophilic conversion results. Structural characterization carried out by X-ray diffraction and atomic force microscopy (AFM) has shown that our films are amorphous and extremely smooth with a surface roughness bellow 1 nm. Contact angle measurements were performed on as-deposited and during/after 10 min UV exposure. We present evidence that the photo-induced hydrophilic conversion of film surface is directly correlated with surface morphology and can be controlled by growth conditions

  3. Surface characterization of amorphous and crystallized Fe 80B 20

    Science.gov (United States)

    Huntley, D. R.; Overbury, S. H.; Zehner, D. M.; Budai, J. D.; Brower, W. E.

    1986-11-01

    Recent studies of catalysis by amorphous metals have prompted an interest in their surface properties. We have utilized Auger electron spectroscopy, X-ray photoelectron spectroscopy and low energy alkali ion scattering to study the surface composition, electronic properties and topography of amorphous and crystallized Fe 80B 20 ribbons. The majorresults are that the surface stoichiometry is approximately that of the bulk, unaltered by segregation. Bulk crystallization results in the diffusion of impurities to the surface, but does not change the Fe/B ratio. A small shift in the B1s core level binding energy was observed on crystalline, annealed surfaces relative to amorphous or sputtered surfaces, but no shifts were observed in the iron core level energies. A weak feature due to the B2p levels was observed in the valence band spectra from sputtered surfaces. The surfaces exhibit atomic scale roughness which is not altered by bulk crystallization. Finally, there were no observable differences in the structure, composition or electronic properties between the two sides of the ribbons.

  4. Application of high rate magnetron sputtering to the fabrication of A-15 compounds

    International Nuclear Information System (INIS)

    Kampwirth, R.T.; Hafstrom, J.W.; Wu, C.T.

    1976-01-01

    High quality Nb 3 Sn films have been fabricated using a recently developed magnetron sputtering process capable of deposition rates approaching 1 μm/min. at sputtering voltages less than 500 V and power levels of about 5 KW. Low sputtering voltages allow more complete thermalization at lower pressures of the material condensing on the substrate which can improve long range order. Transition temperatures of up to 18.3 0 K, J/sub c/(O)'s of 15 x 10 6 A/cm 2 and Hc 2 as high as 240 kOe have been achieved in 1-3 μm films deposited from a Nb 3 Sn reacted powder target with substrate temperatures between 600 and 800 0 C. The films exhibit smooth surfaces and, generally, a [200] preferred orientation. The growth of the film is columnar in nature. The sputtering parameters, substrate material and temperature will be related to film structure T/sub c/ and J/sub c/(H,T) and the Nb/Sn ratio as determined by Rutherford backscattering

  5. Influence of carbon chemical bonding on the tribological behavior of sputtered nanocomposite TiBC/a-C coatings

    International Nuclear Information System (INIS)

    Abad, M.D.; Sanchez-Lopez, J.C.; Brizuela, M.; Garcia-Luis, A.; Shtansky, D.V.

    2010-01-01

    The tribological performance of nanocomposite coatings containing Ti-B-C phases and amorphous carbon (a-C) are studied. The coatings are deposited by a sputtering process from a sintered TiB 2 :TiC target and graphite, using pulsed direct current and radio frequency sources. By varying the sputtering power ratio, the amorphous carbon content of the coatings can be tuned, as observed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The crystalline component consists of very disordered crystals with a mixture of TiB 2 /TiC or TiB x C y phases. A slight increase in crystalline order is detected with the incorporation of carbon in the coatings that is attributed to the formation of a ternary TiB x C y phase. An estimation of the carbon present in the form of carbide (TiB x C y or TiC) and amorphous (a-C) is performed using fitting analysis of the C 1s XPS peak. The film hardness (22 to 31 GPa) correlates with the fraction of the TiB x C y phase that exists in the coatings. The tribological properties were measured by a pin-on-disk tribometer in ambient conditions, using 6 mm tungsten carbide balls at 1 N. The friction coefficients and the wear rates show similar behavior, exhibiting an optimum when the fraction of C atoms in the amorphous phase is near 50%. This composition enables significant improvement of the friction coefficients and wear rates (μ ∼ 0.1; k -6 mm 3 /Nm), while maintaining a good value of hardness (24.6 GPa). Establishing the correlation between the lubricant properties and the fraction of a-C is very useful for purposes of tailoring the protective character of these nanocomposite coatings to engineering applications.

  6. Effect of crystallization rate of initial alloy on magnetic properties of amorphous tape

    International Nuclear Information System (INIS)

    Roshchin, V.E.; Gribanov, V.P.; Shcherbakov, D.G.; Gun'kin, V.E.

    1994-01-01

    An investigation is made into mechanism and character of cooling rate effect when castings crytallizing on magnetic properties of rapidly quenched amorphous tape of Fe 78 B 12 Si 9 Ni 1 alloy. The increase of cooling rate and holding at heat for superheated melt is shown to result in a rise of Curie point of amorphous tape

  7. Indium zinc oxide films deposited on PET by LF magnetron sputtering

    International Nuclear Information System (INIS)

    Kim, Eun Lyoung; Jung, Sang Kooun; Sohn, Sang Ho; Park, Duck Kyu

    2007-01-01

    Indium zinc oxide (IZO) has attracted much attention recently for use in transparent oxide films compared with the ITO film. We carried out the deposition of IZO on a polyethylene terapthalate (PET) substrate at room temperature by a low-frequency (LF) magnetron sputtering system. These films have amorphous structures with excellent electrical stability, surface uniformity and high optical transmittance. The effects of LF applied voltage and O 2 flow rate were investigated. The electrical and optical properties were studied. At optimal deposition conditions, thin films of IZO with a sheet resistance of 32 Ω/sq and an optical transmittance of over 80% in the visible spectrum range were achieved. The IZO thin films fabricated by this method do not require substrate heating during the film preparation of any additional post-deposition annealing treatment. The experimental results show that films with good qualities of surface morphology, transmittance and electrical conduction can be grown by the LF magnetron sputtering method on PET which is recommendable

  8. Structural investigation of ZnO:Al films deposited on the Si substrates by radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Chen, Y.Y.; Yang, J.R.; Cheng, S.L.; Shiojiri, M.

    2013-01-01

    ZnO:Al films 400 nm thick were prepared on (100) Si substrates by magnetron sputtering. Energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM) revealed that in the initial stage of the deposition, an amorphous silicon oxide layer about 4 nm thick formed from damage to the Si substrate due to sputtered particle bombardment and the incorporation of Si atoms with oxygen. Subsequently, a crystalline Si (Zn) layer about 30 nm thick grew on the silicon oxide layer by co-deposition of Si atoms sputtered away from the substrate with Zn atoms from the target. Finally, a ZnO:Al film with columnar grains was deposited on the Si (Zn) layer. The sputtered particle bombardment greatly influenced the structure of the object films. The (0001) lattice fringes of the ZnO:Al film were observed in high-resolution TEM images, and the forbidden 0001 reflection spots in electron diffraction patterns were attributed to double diffraction. Therefore, the appearance of the forbidden reflection did not imply any ordering of Al atoms and/or O vacancies in the ZnO:Al film. - Highlights: • ZnO:Al films were deposited on (100) Si substrate using magnetron sputtering. • An amorphous silicon oxide layer with a thickness of 4 nm was formed on Si substrate. • Crystalline Si (Zn) layer about 30 nm thick grew on amorphous silicon oxide layer. • ZnO:Al film comprising columnar grains was deposited on the Si(Zn) layer. • Lattice image of the ZnO:Al film has been interpreted

  9. Modification of the electronic properties of As2Se3 films by erbium using ion-plasma sputtering method

    International Nuclear Information System (INIS)

    Prikhodko, O.Yu.; Sarsembinov, Sh.Sh.; Ryaguzov, A.P.; Maksimova, S.Ya.; Chuprynin, A.S.

    2003-01-01

    At present one of the vital problems of semiconductor materials studies is production of new light emitting materials for fiber optics, namely for light-emitting diode, emitting at room temperature in the range of minimum absorption of quartz optic fiber. It is well-known that heterostructures based on amorphous semiconductors, containing large concentrations of rare-earth elements have such properties. The method of ion-plasma co-sputtering (IPCM) of the original and doping materials allows us to obtain amorphous semiconductor films with large impurity concentration. This method was used to produce amorphous films of chalcogenide vitreous semiconductors (ChVS), doped with impurities of different chemical nature. But the capability of IPCM for ChVS doping with rare-earth elements has not been studied well yet. Therefore it is interesting to obtain amorphous films of arsenic selenide doped with erbium using IPCM and study its electronic properties. The films were produced using high frequency (13.56 MHz) ion-plasma co-sputtering of combined target of vitreous As 2 Se 3 and a metal. The sputtering of the target was conducted in argon atmosphere. Er concentration in the films varied between 0 and 4 atomic percent. Amorphism of the structure of the obtained films was monitored using X-ray diffraction methods. Electrical and optical properties of Er-doped As 2 Se 3 films and the charge carrier transportation processes were studied. It was determined that doped films significantly differ from the pure ones in the values of main electronic parameters: conductivity, energy activation of conductivity, optical band-gap, drift mobility of electrons and holes and mobility activation energy. Note that common rules of change of electronic parameters of As 2 Se 3 films affected by Er doping agree with the rules, established during modification of As 2 Se 3 films with dopes of transition metals with incomplete 3d-shell (Fe, Ni). Analysis of the obtained results showed that doing

  10. Photoemission studies of amorphous silicon induced by P + ion implantation

    Science.gov (United States)

    Petö, G.; Kanski, J.

    1995-12-01

    An amorphous Si layer was formed on a Si (1 0 0) surface by P + implantation at 80 keV. This layer was investigated by means of photoelectron spectroscopy. The resulting spectra are different from earlier spectra on amorphous Si prepared by e-gun evaporation or cathode sputtering. The differences consist of a decreased intensity in the spectral region corresponding to p-states, and appearace of new states at higher binding energy. Qualitativity similar results have been reported for Sb implanted amorphous Ge and the modification seems to be due to the changed short range order.

  11. Fabrication of electrocatalytic Ta nanoparticles by reactive sputtering and ion soft landing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Moser, Trevor; Engelhard, Mark; Browning, Nigel D.; Laskin, Julia

    2016-11-07

    About 40 years ago, it was shown that tungsten carbide exhibits similar catalytic behavior to Pt for certain commercially relevant reactions, thereby suggesting the possibility of cheaper and earth-abundant substitutes for costly and rare precious metal catalysts. In this work, reactive magnetron sputtering of Ta in the presence of three model hydrocarbons (2-butanol, heptane, and m-xylene) combined with gas aggregation and ion soft landing was employed to prepare organic-inorganic hybrid nanoparticles (NPs) on surfaces for evaluation of catalytic activity and durability. The electro-catalytic behavior of the NPs supported on glassy carbon was evaluated in acidic aqueous solution by cyclic voltammetry. The Ta-heptane and Ta-xylene NPs were revealed to be active and robust toward promotion of the oxygen reduction reaction, an important process occurring at the cathode in fuel cells. In comparison, pure Ta and Ta-butanol NPs were essentially unreactive. Characterization techniques including atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were applied to probe how different sputtering conditions such as the flow rates of gases, sputtering current, and aggregation length affect the properties of the NPs. AFM images reveal the focused size of the NPs as well as their preferential binding along the step edges of graphite surfaces. In comparison, TEM images of the same NPs on carbon grids show that they bind randomly to the surface with some agglomeration but little coalescence. The TEM images also reveal morphologies with crystalline cores surrounded by amorphous regions for NPs formed in the presence of 2-butanol and heptane. In contrast, NPs formed in the presence of m-xylene are amorphous throughout. XPS spectra indicate that while the percentage of Ta, C, and O in the NPs varies depending on the sputtering conditions and hydrocarbon employed, the electron binding energies of the elements are similar

  12. Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors

    Science.gov (United States)

    Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D.

    2015-10-01

    Two kinds of gold substrates are used to produce surface-enhanced Raman scattering (SERS) of amorphous silica obtained via the sol-gel route using tetraethoxysilane Si(OC2H5)4 (TEOS) solution. The first substrate consists of a gold nanometric film elaborated on a glass slide by sputter deposition, controlling the desired gold thickness and sputtering current intensity. The second substrate consists of an array of micrometer-sized gold inverted pyramidal pits able to confine surface plasmon (SP) enhancing electric field, which results in a distribution of electromagnetic energy inside the cavities. These substrates are optically characterized to observe SPR with, respectively, extinction and reflectance spectrometries. Once coated with thin layers of amorphous silica (SiO2) gel, these samples show Raman amplification of amorphous SiO2 bands. This enhancement can occur in SERS sensors using amorphous SiO2 gel as shells, spacers, protective coatings, or waveguides, and represents particularly a potential interest in the field of Raman distributed sensors, which use the amorphous SiO2 core of optical fibers as a transducer to make temperature measurements.

  13. Characterization of amorphous silicon films by Rutherford backscattering spectrometry. [1. 5-MeV Ho/sup +/

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, K; Imura, T; Iwami, M; Hiraki, A [Osaka Univ., Suita (Japan). Dept. of Electrical Engineering; Satou, M [Government Industrial Research Inst., Osaka, Ikeda (Japan); Fujimoto, F [Tokyo Univ. (Japan). Coll. of General Education; Hamakawa, Y [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science; Minomura, S [Tokyo Univ. (Japan). Inst. for Solid State Physics; Tanaka, K [Electrotechnical Lab., Tanashi, Tokyo (Japan)

    1980-01-01

    Rutherford backscattering spectrometry (RBS) was applied to the characterization of amorphous silicon films prepared by glow discharge in silane, tetrode- and diode-sputterings of silicon target in ambient argon or hydrogen diluted by argon. This method was able to detect at least 5 at.% hydrogen atoms in amorphous silicon through the change of stopping power. Hydrogen content in films made by glow discharge at the substrate temperature 25/sup 0/C to 300/sup 0/C and at 2 torr of silane gas varied from 50% to 20%. A strong trend was found for oxygen to dissolve into films: Films produced by diode sputtering in argon gas with higher pressure than 3 x 10/sup -2/ torr absorbed oxygen. The potential and fitness of the RBS method for the characterization of amorphous silicon films are emphasized and demonstrated.

  14. Electrical resistivity of amorphous Fesub(1-x) Bsub(x) alloys

    International Nuclear Information System (INIS)

    Paja, A.; Stobiecki, T.

    1984-07-01

    The concentration dependence of the electrical resistivity of amorphous Fesub(1-x) Bsub(x) alloys has been studied over a broad composition range. The measurements for RF sputtered films made in the liquid helium temperature have been analyzed in the framework of the diffraction model. The calculated results are in good agreement with the experimental data in the range of concentration 0.12< x <0.37 where samples are amorphous and have a metallic character. (author)

  15. Study on applicability of highly corrosion-resistant amorphous coating techniques to components of reprocessing plant

    International Nuclear Information System (INIS)

    Ebata, Makoto; Okuyama, Gen; Chiba, Shigeru; Matsunaga, Tsunebumi

    1991-01-01

    In view of the growing need for prolongation of lives of reprocessing plant installations, we recently investigated the applicability of highly corrosion-resistant amorphous coating techniques to such plant components as to be subjected to a badly corrosive environment created by high temperatures, boiling nitric acid (HNO 3 ), etc. As the result, giving a preference to the Ta-based amorphous alloys exhibiting high corrosion-resistance in HNO 3 solutions, we made specimens of stainless steel plates coated with the above amorphous alloys through the sputtering process thereof. To our satisfaction, these specimens successfully passed various HNO 3 corrosion tests as described later on. Ta-based amorphous films give cathodic protection to 310 Nb stainless steel plates, and that with extremely low corrosion rates of themselves as protecting agents. For these reasons, we are confident that there will be no practical problems at all, in case we adopt stainless steel plates partially coated with such amorphous alloys for use in a nitric-acid environment. In this paper, we explain the comparative tests for various amorphous alloys with different compositions, referring also to the thus-selected Ta-based amorphous alloy along with several kinds of corrosion tests specially arranged for the same alloy. (author)

  16. Characterization of Ta–Si–N coatings prepared using direct current magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Lin, Kun-Yi; Wang, Hsiu-Hui; Cheng, Yu-Ru

    2014-06-01

    Ta–Si–N coatings were prepared using reactive direct current magnetron co-sputtering on silicon substrates. When the sputtering powers and N{sub 2} flow ratio were varied, Ta–Si–N coatings exhibited various chemical compositions and crystalline characteristics. The high-Si-content Ta–Si–N coatings exhibited an amorphous phase in the as-deposited states, whereas the low-Si-content coatings exhibited a face-centered cubic phase or an amorphous phase depending on the N content. This study evaluated the application of amorphous Ta–Si–N coatings, such as the protective coatings on glass molding dies, in high-temperature and oxygen-containing atmospheres for longed operation durations. To explore the oxidation resistance and mechanical properties of the Ta–Si–N coatings, annealing treatments were conducted in a 1%O{sub 2}–99%Ar atmosphere at 600 °C for 4–100 h. The material characteristics and oxidation behavior of the annealed Ta–Si–N coatings were examined using atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and a nanoindentation tester. The Si oxidized preferentially in the Ta–Si–N coatings. The in-diffusion of oxygen during 600 °C annealing was restricted by the formation of an amorphous oxide scale consisting of Si and O.

  17. Geometric considerations in magnetron sputtering

    International Nuclear Information System (INIS)

    Thornton, J.A.

    1982-01-01

    The recent development of high performance magnetron type discharge sources has greatly enhaced the range of coating applications where sputtering is a viable deposition process. Magnetron sources can provide high current densities and sputtering rates, even at low pressures. They have much reduced substrate heating rates and can be scaled to large sizes. Magnetron sputter coating apparatuses can have a variety of geometric and plasma configurations. The target geometry affects the emission directions of both the sputtered atoms and the energetic ions which are neutralized and reflected at the cathode. This fact, coupled with the long mean free particle paths which are prevalent at low pressures, can make the coating properties very dependent on the apparatus geometry. This paper reviews the physics of magnetron operation and discusses the influences of apparatus geometry on the use of magnetrons for rf sputtering and reactive sputtering, as well as on the microstructure and internal stresses in sputtered metallic coatings. (author) [pt

  18. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Bakoglidis, Konstantinos D.; Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars

    2015-01-01

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN x ) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN x films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N 2 /Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V s , was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V s  ≥ 60 V, V s  ≥ 100 V, and V s  = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V s for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V s , while CN x films deposited by MFMS showed residual stresses up to −4.2 GPa. Nanoindentation showed a significant

  19. Amorphous germanium as an electron or hole blocking contact on high-purity germanium detectors

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.

    1976-10-01

    Experiments were performed in an attempt to make thin n + contacts on high-purity germanium by the solid phase/sup 1)/ epitaxial regrowth of arsenic doped amorphous germanium. After cleaning the crystal surface with argon sputtering and trying many combinations of layers, it was not found possible to induce recrystallization below 400 0 C. However, it was found that simple thermally evaporated amorphous Ge made fairly good electron or hole blocking contacts. Excellent spectrometers have been made with amorphous Ge replacing the n + contact. As presently produced, the amorphous Ge contact diodes show a large variation in high-voltage leakage current

  20. Simple model of surface roughness for binary collision sputtering simulations

    Science.gov (United States)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-02-01

    It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.

  1. Nitrided FeB amorphous thin films for magneto mechanical systems

    International Nuclear Information System (INIS)

    Fernandez-Martinez, I.; Martin-Gonzalez, M.S.; Gonzalez-Arrabal, R.; Alvarez-Sanchez, R.; Briones, F.; Costa-Kraemer, J.L.

    2008-01-01

    The structural, magnetic and magnetoelastic properties of Fe-B-N amorphous films, sputtered from a Fe 80 B 20 target, in a mixture of argon and nitrogen gas, are studied for different nitrogen partial pressures. Nitrogen incorporates into the film preserving the amorphous structure, and modifying magnetic properties. The amount of nitrogen that incorporates into the amorphous structure is found to scale linearly with the nitrogen partial pressure during film growth. The structure, magnetization, field evolution, magnetic anisotropy and magnetostrictive behaviour are determined for films with different nitrogen content. An ∼20% increase of both the saturation magnetization and the magnetostriction constant values is found for moderate (∼8%) nitrogen content when compared to those for pure Fe 80 B 20 amorphous films. These improved properties, together with the still low coercivity of the amorphous films offer great potential for their use in magnetostrictive micro and nano magneto mechanical actuator devices

  2. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaopu, E-mail: xl6ba@virginia.edu; Ma, Chung T.; Poon, S. Joseph, E-mail: sjp9x@virginia.edu [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Devaraj, Arun [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Spurgeon, Steven R.; Comes, Ryan B. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  3. Grain size stabilization of tetragonal phase of zirconia in sputtered Zr-O cermet films

    International Nuclear Information System (INIS)

    Hadavi, M. S.; Keshmiri, H.; Kompany, A.; Zhang, Q. C.

    2005-01-01

    In this research, thin films of Zr/ZrO 2 composites were deposited by reactive magnetron sputtering technique on Si and fused Silica substrates, and their structures were investigated by x-ray diffraction method. During the deposition of the cermet layers, a Zr metallic target was sputtered in a gas mixture of Ar and O 2 . By controlling of O 2 flow rate, the different metal volume fractions in the cermet layers were achieved. The optical response of the samples was studied using spectroscopy methods. Also the effect of vacuum annealing on the structures and the optical properties were studies. x-ray diffraction results indicated that the prepared samples were amorphous and vacuum annealing induced crystallization in the cermet films. This research also show that without doping, the tetragonal phase of Zirconia can be stabilized at a temperature lower than the normal transition temperature. This is g rain size stabilization a nd relates to the small size of the crystallizes. In order to study the electron diffraction in the selected area patterns, the samples were analysed by a high-resolution transmission microscope. The selected area patterns results showed that all of the as prepared samples were amorphous showing evidence of very small Zr crystallites immersed in a dielectric medium. The Sad results are in close agreement with those obtained by x-ray diffraction analysis

  4. Grain size stabilization of tetragonal phase of zirconia in sputtered Zr- O cermet films

    Directory of Open Access Journals (Sweden)

    M. S. Hadavi

    2005-06-01

    Full Text Available  In this research, thin films of Zr/ZrO2 composites were deposited by reactive magnetron sputtering technique on Si and fused Silica substrates, and their structures were investigated by XRD method. During the deposition of the cermet layers, a Zr metallic target was sputtered in a gas mixture of Ar and O2. By controlling of O2 flow rate, the different metal volume fractions in the cermet layers were achieved. The optical response of the samples was studied using spectroscopy methods. Also the effect of vacuum annealing on the structures and the optical properties were studied. XRD results indicated that the prepared samples were amorphous and vacuum annealing induced crystallization in the cermet films. This research also showed that without doping, the tetragonal phase of zirconia can be stabilized at a temperature lower than the normal transition temperature. This is “grain size stabilization” and relates to the small size of the crystallites. In order to study the electron diffraction in the selected area patterns (SAD, the samples were analyzed by a high-resolution transmission microscope. The SAD results showed that all of the as prepared samples were amorphous showing evidence of very small Zr crystallites immersed in a dielectric medium.The SAD results are in close agreement with those obtained by XRD analysis.

  5. INFLUENCE OF THE COOLING RATE AND THE BLEND RATIO ON THE PHYSICAL STABILTIY OF CO-AMORPHOUS NAPROXEN/INDOMETHACIN

    DEFF Research Database (Denmark)

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian

    2016-01-01

    Co-amorphisation represents a promising approach to increase the physical stability and dissolution rate of amorphous active pharmaceutical ingredients (APIs) as an alternative to polymer glass solutions. For amorphous and co-amorphous systems, it is reported that the preparation method and the b......Co-amorphisation represents a promising approach to increase the physical stability and dissolution rate of amorphous active pharmaceutical ingredients (APIs) as an alternative to polymer glass solutions. For amorphous and co-amorphous systems, it is reported that the preparation method...... and the blend ratio play major roles with regard to the resulting physical stability. Therefore, in the present study, co-amorphous naproxen-indomethacin (NAP/IND) was prepared by melt-quenching at three different cooling rates and at ten different NAP/IND blend ratios. The samples were analyzed using XRPD...... and FTIR, both directly after preparation and during storage to investigate their physical stabilities. All cooling methods led to fully amorphous samples, but with significantly different physical stabilities. Samples prepared by fast cooling had a higher degree of crystallinity after 300 d of storage...

  6. Stabilization of iron and molybdenum amorphous state with interstitials under high rates of cooling

    International Nuclear Information System (INIS)

    Barmin, Yu.V.; Vavilova, V.V.; Verevkin, A.G.; Gertsen, A.T.; Kovneristyj, Yu.K.; Kotyurgin, E.A.; Mirkin, B.V.; Palij, N.A.

    1993-01-01

    Amorphous solidification of iron and molybdenum is investigated in thin films and on surface laser irradiated on air at 10 12 and 10 8 /Ks cooling rates correspondingly. Amorphous solidification occurs during ion plasma spraying in thin films of 50 nm at saturation of carbon and oxygen atoms in the ratio of C:0=2.3, but amorphous state is absent at room temperature. Metastable fcc phase, among bcc, is formed by crystallization

  7. Dielectric properties of DC reactive magnetron sputtered Al2O3 thin films

    International Nuclear Information System (INIS)

    Prasanna, S.; Mohan Rao, G.; Jayakumar, S.; Kannan, M.D.; Ganesan, V.

    2012-01-01

    Alumina (Al 2 O 3 ) thin films were sputter deposited over well-cleaned glass and Si substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 °C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al 2 O 3 -Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed. - Highlights: ► Al 2 O 3 thin films were deposited by DC reactive magnetron sputtering. ► The films were found to be amorphous up to annealing temperature of 550 C. ► An increase in rms roughness of the films was observed with annealing. ► Al-Al 2 O 3 -Al thin film capacitors were fabricated and dielectric constant was 7.5. ► The activation energy decreased with increase in frequency.

  8. Advanced TiC/a-C : H nanocomposite coatings deposited by magnetron sputtering

    NARCIS (Netherlands)

    Pei, Y.T.; Galvan, D.; Hosson, J.Th.M. De; Strondl, C.

    2006-01-01

    TiC/a-C:H nanocomposite coatings have been deposited by magnetron Sputtering. They consist of 2-5 nm TiC nanocrystallites embedded in the amorphous hydrocarbon (a-C:H) matrix. A transition from a Columnar to a glassy microstructure has been observed in the nanocomposite coatings with increasing

  9. Alloying process of sputter-deposited Ti/Ni multilayer thin films

    International Nuclear Information System (INIS)

    Cho, H.; Kim, H.Y.; Miyazaki, S.

    2006-01-01

    Alloying process of a Ti/Ni multilayer thin film was investigated in detail by differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The Ti/Ni multilayer thin film was prepared by depositing Ti and Ni layers alternately on a SiO 2 /Si substrate. The number of each metal layer was 100, and the total thickness was 3 μm. The alloy composition was determined as Ti-51 at.%Ni by electron probe micro analysis (EPMA). The DSC curve exhibited three exothermic peaks at 621, 680 and 701 K during heating the as-sputtered multilayer thin film. In order to investigate the alloying process, XRD and TEM observation was carried out for the specimens heated up to various temperatures with the heating rate same as the DSC measurement. The XRD profile of the as-sputtered film revealed only diffraction peaks of Ti and Ni. But reaction layers of 3 nm in thickness were observed at the interfaces of Ti and Ni layers in cross-sectional TEM images. The reaction layer was confirmed as an amorphous phase by the nano beam diffraction analysis. The XRD profiles exhibited that the intensity of Ti diffraction peak decreased in the specimen heat-treated above 600 K. The peak from Ni became broad and shifted to lower diffraction angle. The amorphous layer thickened up to 6 nm in the specimen heated up to 640 K. The diffraction peak corresponding to Ti-Ni B2 phase appeared and the peak from Ni disappeared for the specimen heated up to 675 K. The Ti-Ni B2 crystallized from the amorphous reaction layer. After further heating above the third exothermic peak, the intensity of the peak from the Ti-Ni B2 phase increased, the peak from Ti disappeared and the peaks corresponding to Ti 2 Ni appeared. The Ti 2 Ni phase was formed by the reaction of the Ti-Ni B2 and Ti

  10. Temperature-dependent interface characteristic of silicon wafer bonding based on an amorphous germanium layer deposited by DC-magnetron sputtering

    Science.gov (United States)

    Ke, Shaoying; Lin, Shaoming; Ye, Yujie; Mao, Danfeng; Huang, Wei; Xu, Jianfang; Li, Cheng; Chen, Songyan

    2018-03-01

    We report a near-bubble-free low-temperature silicon (Si) wafer bonding with a thin amorphous Ge (a-Ge) intermediate layer. The DC-magnetron-sputtered a-Ge film on Si is demonstrated to be extremely flat (RMS = 0.28 nm) and hydrophilic (contact angle = 3°). The effect of the post-annealing temperature on the surface morphology and crystallinity of a-Ge film at the bonded interface is systematically identified. The relationship among the bubble density, annealing temperature, and crystallinity of a-Ge film is also clearly clarified. The crystallization of a-Ge film firstly appears at the bubble region. More interesting feature is that the crystallization starts from the center of the bubbles and sprawls to the bubble edge gradually. The H2 by-product is finally absorbed by intermediate Ge layer with crystalline phase after post annealing. Moreover, the whole a-Ge film out of the bubble totally crystallizes when the annealing time increases. This Ge integration at the bubble region leads to the decrease of the bubble density, which in turn increases the bonding strength.

  11. Hysteresis behaviour of silver sputtered in different plasma atmospheres at constant flow rates

    International Nuclear Information System (INIS)

    Rizk, A.; Makar, L.N.; Rizk, N.S.; Shinoda, R.

    1990-01-01

    The effects of ion bombardment on sputtering behaviour of pure silver targets in inert and active gas atmospheres were investigated, using a dc planar magnetron sputtering system. The obtained current-voltage characteristics showed the formation of hysteresis loops without noticeable sharp transitions. Redeposited layers of silver nitride or silver oxide on the target surface when using nitrogen or oxygen in the glow discharge, residual ionization when using dry argon atmosphere were considered the main reasons for the occurrence of these loops. The results indicate that films of AgN x and AgO x can be deposited with controlled x in the range 0 ≤ x ≤ 1 using voltage control at constant gas flow rates. (author)

  12. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. T., E-mail: li48@llnl.gov; Bayu Aji, L. B.; Heo, T. W.; Kucheyev, S. O.; Campbell, G. H. [Materials Science Division, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94551 (United States); Santala, M. K. [Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, 204 Rogers Hall, Corvallis, Oregon 97331 (United States)

    2016-05-30

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar{sup +} ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. The propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  13. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    International Nuclear Information System (INIS)

    Li, T. T.; Bayu Aji, L. B.; Heo, T. W.; Kucheyev, S. O.; Campbell, G. H.; Santala, M. K.

    2016-01-01

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar"+ ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. The propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  14. Gold removal rate by ion sputtering as a function of ion-beam voltage and raster size using Auger electron spectroscopy. Final report

    International Nuclear Information System (INIS)

    Boehning, C.W.

    1983-01-01

    Gold removal rate was measured as a function of ion beam voltage and raster size using Auger electron spectroscopy (AES). Three different gold thicknesses were developed as standards. Two sputter rate calibration curves were generated by which gold sputter rate could be determined for variations in ion beam voltage or raster size

  15. Modeling and analysis of surface roughness effects on sputtering, reflection, and sputtered particle transport

    International Nuclear Information System (INIS)

    Brooks, J.N.; Ruzic, D.N.

    1990-01-01

    The microstructure of the redeposited surface in tokamaks may affect sputtering and reflection properties and subsequent particle transport. This subject has been studied numerically using coupled models/codes for near-surface plasma particle kinetic transport (WBC code) and rough surface sputtering (fractal-TRIM). The coupled codes provide an overall Monte Carlo calculation of the sputtering cascade resulting from an initial flux of hydrogen ions. Beryllium, carbon, and tungsten surfaces are analyzed for typical high recycling, oblique magnetic field, divertor conditions. Significant variations in computed sputtering rates are found with surface roughness. Beryllium exhibits high D-T and self-sputtering coefficients for the plasma regime studied (T e = 30-75 eV). Carbon and tungsten sputtering is significantly lower. 9 refs., 6 figs., 1 tab

  16. Crystallization characteristics of amorphous alloys of FeZr

    International Nuclear Information System (INIS)

    Rozhan, M. Idrus; Grundy, P.J.

    1993-01-01

    The crystallization characteristics of sputter-deposited amorphous alloys of Fe 100-x Zr x prepared at zirconium concentrations between 9 and 89 at.% was investigated. The transformation of the alloys from the amorphous to the crystalline state has been examined by thermal analysis, electrical resistance and X-ray diffraction. The crystallization temperatures were determined by differential scanning calorimetry (DSC) and electrical resistance as a function of temperature. The final phases were determined by X-ray diffraction. The activation energies were calculated from the Kissinger plots and the heats of crystallization were calculated and correlations between the thermal analysis and the resistance results are presented

  17. PECVD deposition of device-quality intrinsic amorphous silicon at high growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Carabe, J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Gandia, J J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Gutierrez, M T [Inst. de Energias Renovables, CIEMAT, Madrid (Spain)

    1993-11-01

    The combined influence of RF-power density (RFP) and silane flow-rate ([Phi]) on the deposition rate of plasma-enhanced chemical vapour deposition (PECVD) intrinsic amorphous silicon has been investigated. The correlation of the results obtained from the characterisation of the material with the silane deposition efficiency, as deduced from mass spectrometry, has led to an interpretation allowing to deposit intrinsic amorphous-silicon films having an optical gap of 1.87 eV and a photoconductive ratio (ratio of ambient-temperature conductivities under 1 sun AM1 and in dark) of 6 orders of magnitude at growth rates up to 10 A/s, without any structural modification of the PECVD system used. Such results are considered of high relevance regarding industrial competitiveness. (orig.)

  18. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bakoglidis, Konstantinos D., E-mail: konba@ifm.liu.se; Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2015-09-15

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN{sub x}) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN{sub x} films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N{sub 2}/Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V{sub s}, was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V{sub s} ≥ 60 V, V{sub s} ≥ 100 V, and V{sub s} = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V{sub s} for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V{sub s}, while CN{sub x} films deposited by MFMS showed residual stresses up to −4.2

  19. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films.

  20. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lisco, F.; Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G.; Losurdo, M.; Walls, J.M.

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films

  1. High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system

    Science.gov (United States)

    Sproul, William D.; Rudnik, Paul J.; Graham, Michael E.; Rohde, Suzanne L.

    1990-01-01

    Attention is given to an opposed cathode sputtering system constructed with the ability to coat parts with a size up to 15 cm in diameter and 30 cm in length. Initial trials with this system revealed very low substrate bias currents. When the AlNiCo magnets in the two opposed cathodes were arranged in a mirrored configuration, the plasma density at the substrate was low, and the substrate bias current density was less than 1 mA/sq cm. If the magnets were arranged in a closed-field configuration where the field lines from one set of magnets were coupled with the other set, the substrate bias current density was as high as 5.7 mA/sq cm when NdFeB magnets were used. In the closed-field configuration, the substrate bias current density was related to the magnetic field strength between the two cathodes and to the sputtering pressure. Hard well-adhered TiN coatings were reactively sputtered in the opposed cathode system in the closed-field configuration, but the mirrored configuration produced films with poor adhesion because of etching problems and low plasma density at the substrate.

  2. Characterization of hydrogenated amorphous silicon. Some behaviors of hydrogen and impurities studied by film characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Imura, Takeshi; Kubota, Kazuyoshi; Ushita, Katsumi; Hiraki, Akio

    1980-06-01

    Rutherford backscattering spectrometry and infrared absorption measurement were applied to determine composition in hydrogenated amorphous silicon fabricated either by glow discharge in SiH/sub 4/ plus H/sub 2/ or by reactive sputtering in Ar containing H/sub 2/ in a tetrode or diode sputtering apparatus. The atomic density of Si, the content and depth distribution of H, and the amount of impurities such as Ar were studied for the films deposited under several conditions of substrate temperature and gas pressure and constitution. Some difference was clarified between glow-discharge and sputter deposited films.

  3. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    Science.gov (United States)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  4. Sputter-deposited Mg-Al-O thin films: linking molecular dynamics simulations to experiments

    International Nuclear Information System (INIS)

    Georgieva, V; Bogaerts, A; Saraiva, M; Depla, D; Jehanathan, N; Lebelev, O I

    2009-01-01

    Using a molecular dynamics model the crystallinity of Mg x Al y O z thin films with a variation in the stoichiometry of the thin film is studied at operating conditions similar to the experimental operating conditions of a dual magnetron sputter deposition system. The films are deposited on a crystalline or amorphous substrate. The Mg metal content in the film ranged from 100% (i.e. MgO film) to 0% (i.e. Al 2 O 3 film). The radial distribution function and density of the films are calculated. The results are compared with x-ray diffraction and transmission electron microscopy analyses of experimentally deposited thin films by the dual magnetron reactive sputtering process. Both simulation and experimental results show that the structure of the Mg-Al-O film varies from crystalline to amorphous when the Mg concentration decreases. It seems that the crystalline Mg-Al-O films have a MgO structure with Al atoms in between.

  5. Effects of oxygen contents on the electrochromic properties of tungsten oxide films prepared by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Lu, H.-H.

    2008-01-01

    The electrochromism have been extensively investigated due to their potential applications such as smart window of architecture and automobile glazing to save energy and modulate the transmittance of light and solar radiation. The objective of this study is to investigate the effects of sputtering conditions on the microstructure and electrochromic properties of tungsten oxide films prepared by dc reactive magnetron sputtering. Experimental results showed that the deposition rate of WO 3-y films decreased with increasing oxygen flow rate. XRD and Raman spectra analysis suggests that the WO 3-y films deposited at various oxygen flow rates are poor crystallinity or amorphous. The transmission change between colored and bleached states at a wavelength of 550 nm was 61.4% as the oxygen content was 60%. The coloration efficiency slightly increases with increasing oxygen flow rate in the low oxygen content region and reaching a maximum value of 38.94 cm 2 /C at 60% oxygen content. In addition, the films deposited at 60% oxygen content showed a good reversibility. The effects of lithium ions intercalated on the transmission of WO 3-y films were also discussed

  6. Piezoresistive pressure sensor using low-temperature aluminium induced crystallization of sputter-deposited amorphous silicon film

    International Nuclear Information System (INIS)

    Tiwari, Ruchi; Chandra, Sudhir

    2013-01-01

    In the present work, we have investigated the piezoresistive properties of silicon films prepared by the radio frequency magnetron sputtering technique, followed by the aluminium induced crystallization (AIC) process. Orientation and grain size of the polysilicon films were studied by x-ray diffraction analysis and found to be in the range 30–50 nm. Annealing of the Al–Si stack on an oxidized silicon substrate was performed in air ambient at 300–550 °C, resulting in layer exchange and transformation from amorphous to polysilicon phase. Van der Pauw and Hall measurement techniques were used to investigate the sheet resistance and carrier mobility of the resulting polycrystalline silicon film. The effect of Al thickness on the sheet resistance and mobility was also studied in the present work. A piezoresistive pressure sensor was fabricated on an oxidized silicon substrate in a Wheatstone bridge configuration, comprising of four piezoresistors made of polysilicon film obtained by the AIC process. The diaphragm was formed by the bulk-micromachining of silicon substrate. The response of the pressure sensor with applied negative pressure in 10–95 kPa range was studied. The gauge factor was estimated to be 5 and 18 for differently located piezoresistors on the diaphragm. The sensitivity of the pressure sensor was measured to be ∼ 30 mV MPa −1 , when the Wheatstone bridge was biased at 1 V input voltage. (paper)

  7. Composition and crystal structure of N doped TiO2 film deposited at different O2 flow rate by direct current sputtering.

    Science.gov (United States)

    Ding, Wanyu; Ju, Dongying; Chai, Weiping

    2011-06-01

    N doped Ti02 films were deposited by direct current pulse magnetron sputtering system at room temperature. The influence of 02 flow rate on the crystal structure of deposited films was studied by Stylus profilometer, X-ray photoelectron spectroscopy, and X-ray diffractometer. The results indicate that the 02 flow rate strongly controls the growth behavior and crystal structure of N doped Ti02 film. It is found that N element mainly exists as substitutional doped state and the chemical stiochiometry is near to TiO1.68±0.06N0.11±0.01 for all film samples. N doped Ti02 film deposited with 2 sccm (standard-state cubic centimeter per minute) 02 flow rate is amorphous structure with high growth rate, which contains both anatase phase and rutile phase crystal nucleuses. In this case, the film displays the mix-phase of anatase and rutile after annealing treatment. While N doped Ti02 film deposited with 12 cm(3)/min 02 flow rate displays anatase phase before and after annealing treatment. And it should be noticed that no TiN phase appears for all samples before and after annealing treatment. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  8. Effects of the composition of sputtering target on the stability of InGaZnO thin film transistor

    International Nuclear Information System (INIS)

    Huh, Jun-Young; Jeon, Jae-Hong; Choe, Hee-Hwan; Lee, Kang-Woong; Seo, Jong-Huyn; Ryu, Min-Ki; Park, Sang-Hee Ko; Hwang, Chi-Sun; Cheong, Woo-Seok

    2011-01-01

    In this study, we investigated the electrical characteristics and the stability of amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) from the viewpoint of active layer composition. Active layers of TFTs were deposited by r.f. sputtering. Two kinds of sputtering targets, which have different compositional ratios of In:Ga:Zn, were used to make variations in the active layer composition. All the fabricated IGZO TFTs showed more excellent characteristics than conventional amorphous silicon TFTs. However, in accordance with the Ga content, IGZO TFTs showed somewhat different electrical characteristics in values such as the threshold voltage and the field effect mobility. The device stability was also dependent on the Ga content, but had trade-off relation with the electrical characteristics.

  9. Room temperature deposition of amorphous p-type CuFeO2 and ...

    Indian Academy of Sciences (India)

    fabrication of CuFeO2/n-Si heterojunction by RF sputtering method. TAO ZHU1 ... Transparent conducting amorphous p-type CuFeO2 (CFO) thin film was prepared by radio-frequency ... Delafossite oxides CuMO2 (M is trivalent cation, such as.

  10. Sputtering. [as deposition technique in mechanical engineering

    Science.gov (United States)

    Spalvins, T.

    1976-01-01

    This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.

  11. Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbon-Nitrogen for Oxygen Reduction: Discerning and Refactoring Chaotic Bonds

    DEFF Research Database (Denmark)

    Zhang, Caihong; Zhang, Wei; Wang, Dong

    2017-01-01

    Mild annealing enables inactive nitrogen (N)-doped amorphous carbon (a-C) films abundant with chaotic bonds prepared by magnetron sputtering to become effective for the oxygen reduction reaction (ORR) by virtue of generating pyridinic N. The rhythmic variation of ORR activity elaborates well...... on the subtle evolution of the amorphous C−N bonds conferred by spectroscopic analysis....

  12. High photoconductive hydrogenated silicon by reactive sputtering in helium containing atmosphere

    International Nuclear Information System (INIS)

    Ohbiki, Tohru; Imura, Takeshi; Hiraki, Akio

    1982-01-01

    Mixed phase of amorphous and microcrystalline silicon-hydrogen alloys has been fabricated by reactive sputtering in He containing H 2 of which mole fraction is less than about 5 mole%. The degree of the crystallization, evaluated by electron microscopy and optical absorption spectroscopy, becomes high as the amount of H 2 in the atmosphere increases. The conductivity in dark and photoconductivity increase as the partial pressure of H 2 increases (form 0 to 1 mole%) and also as the pressure during sputtering increases. This increase in conductivity and photoconductivity is supposed to be related to the development of microcrystals. The highest photoconductivity is observed at the H 2 mole fraction of about 1 mole%. This film contains a small amount of microcrystals and show the photoconductivity higher by 2 orders of magnitude than that in a film sputter-deposited in Ar and H 2 atmosphere in the same apparatus. (author)

  13. Highly flexible indium zinc oxide electrode grown on PET substrate by cost efficient roll-to-roll sputtering process

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki; Jeong, Soon-Wook; Cho, Woon-Jo

    2010-01-01

    We have investigated the characteristics of flexible indium zinc oxide (IZO) electrode grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll (RTR) sputtering system for use in flexible optoelectronics. It was found that both electrical and optical properties of the flexible IZO electrode were critically dependent on the DC power and Ar/O 2 flow ratio during the roll-to-roll sputtering process. At optimized conditions (constant working pressure of 3 mTorr, Ar/O 2 flow ratio of Ar at only 30 sccm, DC power 800 W and rolling speed at 0.1 cm/s) the flexible IZO electrode exhibits a sheet resistance of 17.25 Ω/sq and an optical transmittance of 89.45% at 550 nm wavelength. Due to the low PET substrate temperature, which is effectively maintained by cooling drum system, all IZO electrodes showed an amorphous structure regardless of the DC power and Ar/O 2 flow ratio. Furthermore, the IZO electrodes grown at optimized condition exhibited superior flexibility than the conventional amorphous ITO electrodes due to its stable amorphous structure. This indicates that the RTR sputter grown IZO electrode is a promising flexible electrode that can substitute for the conventional ITO electrode, due to its low resistance, high transparency, superior flexibility and fast preparation by the RTR process.

  14. Influence of the Preparation Method, DC and RF Sputtering, on theProperties of Thin Film

    International Nuclear Information System (INIS)

    Tri-Mardji-Atmono; Widdi-Usada; Agus-Purwadi; Yunanto; Edi-Suharyadi

    2000-01-01

    The research on the influence of preparation method DC- and RF Sputteringon the properties of Fe-thin films has been done. The measurement with EDAXshows. that the Fe-content of RF-sputtered film increased with the increasingof self-bias voltage in the range of 850 - 1000 V. The observation ofmicrostructure using SEM shows a more homogeneity of thin film and smallergrain size with the increasing of the self-bias voltage. On the other hand,thin films with inhomogeneity of the structure were produced by DC-Sputteringprocess, indicated by the non continuity and the spread of theglow-discharge. Based on the investigation with X-ray diffraction, thin filmprepared by RF-Sputtering was amorphous, while the film produced by theDC-Sputtering is known as crystal structure. Preparation using DC-voltageshows continual sputtering-process at the voltage of 3000 V betweenelectrode. (author)

  15. Simple model of surface roughness for binary collision sputtering simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Sloan J. [Institute of Solid-State Electronics, TU Wien, Floragasse 7, A-1040 Wien (Austria); Hobler, Gerhard, E-mail: gerhard.hobler@tuwien.ac.at [Institute of Solid-State Electronics, TU Wien, Floragasse 7, A-1040 Wien (Austria); Maciążek, Dawid; Postawa, Zbigniew [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30348 Kraków (Poland)

    2017-02-15

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  16. Simple model of surface roughness for binary collision sputtering simulations

    International Nuclear Information System (INIS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-01-01

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  17. Effect of sputtering power on structure and properties of Bi film deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Liao Guo; He Zhibing; Xu Hua; Li Jun; Chen Taihua; Chen Jiajun

    2012-01-01

    Bi film was fabricated at different sputtering powers by DC magnetron sputtering. The deposition rate of Bi film as the function of sputtering power was studied. The surface topography of Bi film was observed by SEM, and the growth mode of Bi film was investigated. The crystal structure was analyzed by XRD. The grain size and stress of Bi film were calculated. The SEM images show that all the films are columnar growth. The average grain size firstly increases as the sputtering power increases, then decreases at 60 W. The film becomes loose with the increase of sputtering power, while, the film gets compact when the sputtering power becomes from 45 to 60 W. The XRD results show that films are polycrystalline of hexagonal. And the stress transforms from the tensile stress to compressive stress as the sputtering power increases. (authors)

  18. On angle resolved RF magnetron sputtering of Ge-Sb-Te thin films

    Czech Academy of Sciences Publication Activity Database

    Gutwirth, J.; Wágner, T.; Bezdička, Petr; Hrdlička, M.; Vlček, Milan; Frumar, M.

    2009-01-01

    Roč. 355, 37-42 (2009), s. 1935-1938 ISSN 0022-3093 R&D Projects: GA MŠk LC523; GA ČR GA203/06/1368 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : amorphous semiconductors * films and coatings * sputtering Subject RIV: CA - Inorganic Chemistry Impact factor: 1.252, year: 2009

  19. Sputtering and reflection of self-bombardment of tungsten material

    International Nuclear Information System (INIS)

    Niu, Guo-jian; Li, Xiao-chun; Xu, Qian; Yang, Zhong-shi; Luo, Guang-nan

    2015-01-01

    In present research, the sputtering and reflection yield of self-bombardment of tungsten are investigated with the aid of molecular dynamics simulations. The source of sputtered and reflected atoms is detected by traced the original locations of sputtered and reflected atoms. Results show that for the reflected atoms no specific region exists which means cluster atoms are randomly reflected. But almost all of sputtered atoms are from a conical region under the landing point of cluster. So we can determine the sputtering yield by study the dimension of the sputtering region. Molecular dynamics shows the depth and radius of the conical are power functions of impacting energy. The effects of cluster size and temperature of target on sputtering and reflection rate are also preformed in present study. Both sputtering and reflection yield are proportion to cluster size in present cluster size, i.e. 66–2647 atoms. Higher target temperature can increase sputtering yield and deduce sputtering threshold energy, but little effect on reflection rate

  20. Sputtering and reflection of self-bombardment of tungsten material

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Guo-jian [University of Science and Technology of China, Hefei (China); Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Li, Xiao-chun; Xu, Qian; Yang, Zhong-shi [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Luo, Guang-nan, E-mail: gnluo@ipp.ac.cn [University of Science and Technology of China, Hefei (China); Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Hefei Center for Physical Science and Technology, Hefei (China); Hefei Science Center of CAS, Hefei (China)

    2015-04-15

    In present research, the sputtering and reflection yield of self-bombardment of tungsten are investigated with the aid of molecular dynamics simulations. The source of sputtered and reflected atoms is detected by traced the original locations of sputtered and reflected atoms. Results show that for the reflected atoms no specific region exists which means cluster atoms are randomly reflected. But almost all of sputtered atoms are from a conical region under the landing point of cluster. So we can determine the sputtering yield by study the dimension of the sputtering region. Molecular dynamics shows the depth and radius of the conical are power functions of impacting energy. The effects of cluster size and temperature of target on sputtering and reflection rate are also preformed in present study. Both sputtering and reflection yield are proportion to cluster size in present cluster size, i.e. 66–2647 atoms. Higher target temperature can increase sputtering yield and deduce sputtering threshold energy, but little effect on reflection rate.

  1. Effect of borohydride addition rate on chemically prepared amorphous Fe-B particles

    International Nuclear Information System (INIS)

    Koch, C.B.; Morup, S.; Linderoth, S.

    1991-01-01

    Amorphous Fe-B alloys can be prepared by reacting aqueous solutions of Fe salts and NaBH 4 . In this paper the effect of the addition rate of the NaBH 4 solution to the FeSO 4 solution on the precipitate is investigated. The chemical composition of the amorphous alloys formed varies between Fe 79 B 21 and Fe 68 B 32 . The hyperfine parameters of the alloys, derived from Mossbauer spectra, show a decrease from 29 to 25 T of the magnetic hyperfine field and an increase from 0.19 to 0.28 mms -1 of the isomer shift with increasing NaBH 4 addition rate. The results suggest that alloys with different structures but identical composition may be produced by chemical reduction

  2. Thermal conductivities of thin, sputtered optical films

    International Nuclear Information System (INIS)

    Henager, C.H. Jr.; Pawlewicz, W.T.

    1991-05-01

    The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO 2 /Si 3 N 4 ) n and Al(Al 2 O 3 /AIN) n . Sputtered films of more conventional materials like SiO 2 , Al 2 O 3 , Ta 2 O 5 , Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented

  3. High photoconductive hydrogenated silicon by reactive sputtering in helium containing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ohbiki, Tohru; Imura, Takeshi; Hiraki, Akio

    1982-08-01

    Mixed phase of amorphous and microcrystalline silicon-hydrogen alloys has been fabricated by reactive sputtering in He containing H/sub 2/ of which mole fraction is less than about 5 mole%. The degree of the crystallization, evaluated by electron microscopy and optical absorption spectroscopy, becomes high as the amount of H/sub 2/ in the atmosphere increases. The conductivity in dark and photoconductivity increase as the partial pressure of H/sub 2/ increases (form 0 to 1 mole%) and also as the pressure during sputtering increases. This increase in conductivity and photoconductivity is supposed to be related to the development of microcrystals. The highest photoconductivity is observed at the H/sub 2/ mole fraction of about 1 mole%. This film contains a small amount of microcrystals and show the photoconductivity higher by 2 orders of magnitude than that in a film sputter-deposited in Ar and H/sub 2/ atmosphere in the same apparatus.

  4. Novel magnetic controlled plasma sputtering method

    International Nuclear Information System (INIS)

    Axelevich, A.; Rabinovich, E.; Golan, G.

    1996-01-01

    A novel method to improve thin film vacuum sputtering is presented. This method is capable of controlling the sputtering plasma via an external set of magnets, in a similar fashion to the tetrode sputtering method. The main advantage of the Magnetic Controlled Plasma Sputtering (MCPS) is its ability to independently control all deposition parameters without any interference or cross-talk. Deposition rate, using the MCPS, is found to be almost twice the rate of triode and tetrode sputtering techniques. Experimental results using the MCPS to deposit Ni layers are described. It was demonstrated that using the MCPS method the ion beam intensity at the target is a result of the interaction of a homogeneous external magnetic field and the controlling magnetic fields. The MCPS method was therefore found to be beneficial for the production of pure stoichiometric thin solid films with high reproducibility. This method could be used for the production of compound thin films as well. (authors)

  5. Dependence of energy per molecule on sputtering yields with reactive gas cluster ions

    International Nuclear Information System (INIS)

    Toyoda, Noriaki; Yamada, Isao

    2010-01-01

    Gas cluster ions show dense energy deposition on a target surface, which result in the enhancement of chemical reactions. In reactive sputtering with gas cluster ions, the energy per atom or molecule plays an important role. In this study, the average cluster size (N, the number of atoms or molecules in a cluster ion) was controlled; thereby the dependences of the energy per molecule on the sputtering yields of carbon by CO 2 cluster ions and that of Si by SF 6 /Ar mixed gas cluster ions were investigated. Large CO 2 cluster ions with energy per molecule of 1 eV showed high reactive sputtering yield of an amorphous carbon film. However, these ions did not cause the formation of large craters on a graphite surface. It is possible to achieve very low damage etching by controlling the energy per molecule of reactive cluster ions. Further, in the case of SF 6 /Ar mixed cluster ions, it was found that reactive sputtering was enhanced when a small amount of SF 6 gas (∼10%) was mixed with Ar. The reactive sputtering yield of Si by one SF 6 molecule linearly increased with the energy per molecule.

  6. High power pulsed magnetron sputtering: A method to increase deposition rate

    International Nuclear Information System (INIS)

    Raman, Priya; McLain, Jake; Ruzic, David N; Shchelkanov, Ivan A.

    2015-01-01

    High power pulsed magnetron sputtering (HPPMS) is a state-of-the-art physical vapor deposition technique with several industrial applications. One of the main disadvantages of this process is its low deposition rate. In this work, the authors report a new magnetic field configuration, which produces deposition rates twice that of conventional magnetron's dipole magnetic field configuration. Three different magnet pack configurations are discussed in this paper, and an optimized magnet pack configuration for HPPMS that leads to a higher deposition rate and nearly full-face target erosion is presented. The discussed magnetic field produced by a specially designed magnet assembly is of the same size as the conventional magnet assembly and requires no external fields. Comparison of deposition rates with different power supplies and the electron trapping efficiency in complex magnetic field arrangements are discussed

  7. Magnetic field effects on coating deposition rate and surface morphology coatings using magnetron sputtering

    International Nuclear Information System (INIS)

    Yang, Yu-Sen; Huang, Wesley

    2010-01-01

    Chromium nitride coatings exhibit superior hardness, excellent wear and oxidation resistance, and are widely applied in the die and mold industries. The aim of this study was to investigate magnetic field effects on the deposition rate and surface morphology of chromium nitride coatings deposited by magnetron sputtering. Four types of magnetic field configurations, including the magnetron sputtering system, SNSN, SNNN, and intermediate magnetron modification, are discussed in this paper. SKD11 cold work die steel and a silicon (100) chip were used as substrates in the chromium nitride depositions. The process parameters, such as target current, substrate bias, and the distance between the substrate and target, are at fixed conditions, except for the magnetic arrangement type. The experimental results showed that the deposition rates of the four types of magnetic field configurations were 1.06, 1.38, 1.67 and 1.26 µm h −1 , respectively. In these cases, the SNNN type performs more than 58% faster than the unbalanced magnetron configuration does for the deposition rate. The surface morphology of chromium nitride films was also examined by SEM and is discussed in this paper

  8. Depth of origin of atoms sputtered from crystalline targets

    International Nuclear Information System (INIS)

    Shapiro, M.H.; Trovato, E.; Tombrello, T.A.

    2001-01-01

    Recently, V.I. Shulga and W. Eckstein (Nucl. Instr. and Meth. B 145 (1998) 492) investigated the depth of origin of atoms sputtered from random elemental targets using the Monte Carlo code TRIM.SP and the lattice code OKSANA. They found that the mean depth of origin is proportional to N -0.86 , where N is the atomic density; and that the most probable escape depth is ∼λ 0 /2, where λ 0 is the mean atomic distance. Since earlier molecular dynamics simulations with small crystalline elemental targets typically produced a most probable escape depth of zero (i.e., most sputtered atoms came from the topmost layer of the target), we have carried out new molecular dynamics simulations of sputtered atom escape depths with much larger crystalline targets. Our new results, which include the bcc targets Cs, Rb and W, as well as the fcc targets Cu and Au predict that the majority of sputtered atoms come from the first atomic layer for the bcc(1 0 0), bcc(1 1 1), fcc(1 0 0) and fcc(1 1 1) targets studied. For the high-atomic density targets Cu, Au and W, the mean depth of origin of sputtered atoms typically is less than 0.25λ 0 . For the low-atomic density targets Cs and Rb, the mean depth of origin of sputtered atoms is considerably larger, and depends strongly on the crystal orientation. We show that the discrepancy between the single-crystal and amorphous target depth of origin values can be resolved by applying a simple correction to the single-crystal results

  9. The Influence of Pressure on the Intrinsic Dissolution Rate of Amorphous Indomethacin

    Directory of Open Access Journals (Sweden)

    Korbinian Löbmann

    2014-08-01

    Full Text Available New drug candidates increasingly tend to be poorly water soluble. One approach to increase their solubility is to convert the crystalline form of a drug into the amorphous form. Intrinsic dissolution testing is an efficient standard method to determine the intrinsic dissolution rate (IDR of a drug and to test the potential dissolution advantage of the amorphous form. However, neither the United States Pharmacopeia (USP nor the European Pharmacopeia (Ph.Eur state specific limitations for the compression pressure in order to obtain compacts for the IDR determination. In this study, the influence of different compression pressures on the IDR was determined from powder compacts of amorphous (ball-milling indomethacin (IND, a glass solution of IND and poly(vinylpyrrolidone (PVP and crystalline IND. Solid state properties were analyzed with X-ray powder diffraction (XRPD and the final compacts were visually observed to study the effects of compaction pressure on their surface properties. It was found that there is no significant correlation between IDR and compression pressure for crystalline IND and IND–PVP. This was in line with the observation of similar surface properties of the compacts. However, compression pressure had an impact on the IDR of pure amorphous IND compacts. Above a critical compression pressure, amorphous particles sintered to form a single compact with dissolution properties similar to quench-cooled disc and crystalline IND compacts. In such a case, the apparent dissolution advantage of the amorphous form might be underestimated. It is thus suggested that for a reasonable interpretation of the IDR, surface properties of the different analyzed samples should be investigated and for amorphous samples the IDR should be measured also as a function of the compression pressure used to prepare the solid sample for IDR testing.

  10. Study of magnetic properties and relaxation in amorphous Fe73.9Nb3.1Cu0.9Si13.2B8.9 thin films produced by ion beam sputtering

    International Nuclear Information System (INIS)

    Celegato, F.; Coiesson, M.; Magni, A.; Tiberto, P.; Vinai, F.; Kane, S. N.; Modak, S. S.; Gupta, A.; Sharma, P.

    2007-01-01

    Amorphous Fe 73.9 Nb 3.1 Cu 0.9 Si 13.2 B 8.9 thin films have been produced by ion beam sputtering with two different beam energies (500 and 1000 eV). Magnetic measurements indicate that the samples display a uniaxial magnetic anisotropy, especially for samples prepared with the lower beam energy. Magnetization relaxation has been measured on both films with an alternating gradient force magnetometer and magneto-optical Kerr effect. Magnetization relaxation occurs on time scales of tens of seconds and can be described with a single stretched exponential function. Relaxation intensity turns out to be higher when measured along the easy magnetization axis

  11. Visible and infrared photoluminescence from erbium-doped silicon nanocrystals produced by rf sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cerqueira, M.F.; Alpuim, P. [Departamento de Fisica, Universidade do Minho, Braga (Portugal); Losurdo, M. [Plasma Chemistry Research Center, CNR, Bari (Italy); Monteiro, T.; Soares, M.J.; Peres, M. [Departamento de Fisica, Universidade de Aveiro, Aveiro (Portugal); Stepikova, M. [Institute for Physics of Microstructures RAS, 603600 Nizhnij Novgorod GSP-105 (Russian Federation)

    2007-06-15

    Erbium-doped low-dimensional Si films with different microstructures were deposited by reactive magnetron sputtering on glass substrates by varying the hydrogen flow rate during deposition. Amorphous, micro- and nanocrystalline samples, consisting of Si nanocrystalls embedded in silicon-based matrices with different structures, were achieved with optical properties in the visible and IR depending on nanocrystalline fraction and matrix structure and chemical composition. Structural characterization was performed by X-ray diffraction in the grazing incidence geometry and Raman spectroscopy. The chemical composition was studied using RBS/ERD techniques. Spectroscopic ellipsometry was combined with the previous techniques to further resolve the film microstructure and composition. In particular, the distribution along the film thickness of the volume fractions of nanocrystalline/amorphous silicon and SiO{sub x} phases has been obtained. In this contribution we discuss visible and infrared photoluminescence as a function of sample microstructure and of the oxygen/hydrogen concentration ratio present in the matrix. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Impact of deposition rate on the structural and magnetic properties of sputtered Ni/Cu multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Karpuz, Ali [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Dept. of Physics; Colmekci, Salih; Kockar, Hakan; Kuru, Hilal; Uckun, Mehmet [Balikesir Univ. (Turkey). Dept. of Physics

    2018-04-01

    The structural and corresponding magnetic properties of Ni/Cu films sputtered at low and high deposition rates were investigated as there is a limited number of related studies in this field. 5[Ni(10 nm)/Cu(30 nm)] multilayer thin films were deposited using two DC sputtering sources at low (0.02 nm/s) and high (0.10 nm/s) deposition rates of Ni layers. A face centered cubic phase was detected for both films. The surface of the film sputtered at the low deposition rate has a lot of micro-grains distributed uniformly and with sizes from 0.1 to 0.4 μm. Also, it has a vertical acicular morphology. At high deposition rate, the number of micro-grains considerably decreased, and some of their sizes increased up to 1 μm. The surface of the Ni/Cu multilayer deposited at the low rate has a relatively more grainy and rugged structure, whereas the surface of the film deposited at the high rate has a relatively larger lateral size of surface grains with a relatively fine morphology. Saturation magnetisation, M{sub s}, values were 90 and 138 emu/cm{sup 3} for deposition rates of 0.02 and 0.10 nm/s, respectively. Remanence, M{sub r}, values were also found to be 48 and 71 emu/cm{sup 3} for the low and high deposition rates, respectively. The coercivity, H{sub c}, values were 46 and 65 Oe for the low and high Ni deposition rates, respectively. The changes in the film surfaces provoked the changes in the H{sub c} values. The M{sub s}, M{sub r}, and H{sub c} values of the 5[Ni(10 nm)/Cu(30 nm)] films can be adjusted considering the surface morphologies and film contents caused by the different Ni deposition rates.

  13. In situ crystallization of sputter-deposited TiNi by ion irradiation

    International Nuclear Information System (INIS)

    Ikenaga, Noriaki; Kishi, Yoichi; Yajima, Zenjiro; Sakudo, Noriyuki

    2013-01-01

    Highlights: ► We developed a sputtering deposition process equipped with an ion irradiation system. ► Ion irradiation enables crystallization at lower substrate temperature. ► Ion fluence has an effective range for low-temperature crystallization. ► Crystallized films made on polyimide by the process show the shape memory effect. -- Abstract: TiNi is well known as a typical shape-memory alloy, and the shape-memory property appears only when the structure is crystalline. Until recently, the material has been formed as amorphous film by single-target sputtering deposition at first and then crystallized by being annealed at high temperature over 500 °C. Therefore, it has been difficult to make crystalline TiNi film directly on a substrate of polymer-based material because of the low heat resistance of substrate. In order to realize an actuator from the crystallized TiNi film on polymer substrates, the substrate temperature should be kept below 200 °C throughout the whole process. In our previous studies we have found that deposited film can be crystallized at very low temperature without annealing but with simultaneous irradiation of Ar ions during sputter-deposition. And we have also demonstrated the shape-memory effect with the TiNi film made by the new process. In order to investigate what parameters of the process contribute to the low-temperature crystallization, we have focused to the ion fluence of the ion irradiation. Resultantly, it was found that the transition from amorphous structure to crystal one has a threshold range of ion fluence

  14. Amorphous silicon/crystalline silicon heterojunctions for nuclear radiation detector applications

    International Nuclear Information System (INIS)

    Walton, J.T.; Hong, W.S.; Luke, P.N.; Wang, N.W.; Ziemba, F.P.

    1996-10-01

    Results on characterization of electrical properties of amorphous Si films for the 3 different growth methods (RF sputtering, PECVD [plasma enhanced], LPCVD [low pressure]) are reported. Performance of these a-Si films as heterojunctions on high resistivity p-type and n- type crystalline Si is examined by measuring the noise, leakage current, and the alpha particle response of 5mm dia detector structures. It is demonstrated that heterojunction detectors formed by RF sputtered films and PECVD films are comparable in performance with conventional surface barrier detectors. Results indicate that the a-Si/c-Si heterojunctions have the potential to greatly simplify detector fabrication. Directions for future avenues of nuclear particle detector development are indicated

  15. Amorphous silicon/crystalline silicon heterojunctions for nuclear radiation detector applications

    International Nuclear Information System (INIS)

    Walton, J.T.; Hong, W.S.; Luke, P.N.; Wang, N.W.; Ziemba, F.P.

    1996-01-01

    Results on the characterization of the electrical properties of amorphous silicon films for the three different growth methods, RF sputtering, PECVD, and LPCVD are reported. The performance of these a-Si films as heterojunctions on high resistivity p-type and n-type crystalline silicon is examined by measuring the noise, leakage current and the alpha particle response of 5 mm diameter detector structures. It is demonstrated that heterojunction detectors formed by RF sputtered films and PECVD films are comparable in performance with conventional surface barrier detectors. The results indicate that the a-Si/c-Si heterojunctions have the potential to greatly simplify detector fabrication. Directions for future avenues of nuclear particle detector development are indicated

  16. Electrochromism and local order in amorphous WO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, H R; Beyeler, H U

    1977-06-01

    WO/sub 3/ films prepared under different conditions (evaporation, reactive sputtering and spraying of aqueous solutions of metatungstic acid) differ by orders of magnitude in their electrochromic sensitivity. Diffuse X-ray studies show the evaporated and sputtered films to be amorphous and to consists of a disordered network of corner sharing WO/sub 6/ octahedra. Sprayed films have different degrees of crystallinity depending on spraying conditions. From differential scanning calorimetry we conclude that the crystal water present in most films strongly affects the local order of the corner sharing octahedra. We find that crystal water not only provides a high ionic conductivity which is conditional for a fast electrochromic reaction but also stabilises electrocatalytically active surface sites for fast hydrogen or Li exchange with the adjacent electrolyte.

  17. Study of the ion sputter-machining, 1

    International Nuclear Information System (INIS)

    Miyamoto, Iwao; Taniguchi, Norio

    1979-01-01

    A lattice disordering of the surface of single crystal silicon due to ion bombardment of Ar + was investigated by the high energy electron diffraction method, with the incident angle of 1.7 0 and 2.8 0 . By this measuring system, the degree of disorders of the sputter-machined surface layer of Si single crystal in the depth of 50 A and 30 A has been determined, under the working conditions of the ion energy ranging from 0.2 keV to 1.5 keV and the incident angle of ion ranging from 0 0 to 75 0 . Moreover, the recovery of lattice disorder of sputter-machined surface layer of Si single crystal by means of the isochronal thermal annealing has been also confirmed by the same method. From the above experiments, the following conclusions are obtained. (1) The layers of sputter-machined surface of Si single crystal workpiece are highly disordered like amorphous, under the working conditions of ion energy ranging from 0.2 keV to 1.5 keV for the vertical ion incident angle. (2) Under the working conditions of ion incident angle larger than 60 0 , using the ion beam with a lower energy under 300 eV, the surface of the workpiece is not disordered. Therefore, a sputter-machined surface of Si single crystal with highly ordered structure can be obtained under this working condition. (3) The recovery of disorder of sputter-machined surface is completed by the heat-treatment of workpiece under isochronal annealing for 1 hour at 800 0 C. However, it is not clear whether this recovery of lattice point or the dispersion of interstitially located argon atoms from the surface to the outside. (author)

  18. Low hydrogen containing amorphous carbon films - Growth and electrochemical properties as lithium battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, V.; Masarapu, Charan; Wei, Bingqing [Department of Mechanical Engineering, University of Delaware, 130 Academy Street, Newark, DE 19716 (United States); Karabacak, Tansel [Department of Applied Science, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States); Teki, Ranganath [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2010-04-02

    Amorphous carbon films were deposited successfully on Cu foils by DC magnetron sputtering technique. Electrochemical performance of the film as lithium battery anode was evaluated across Li metal at 0.2 C rate in a non-aqueous electrolyte. The discharge curves showed unusually low irreversible capacity in the first cycle with a reversible capacity of {proportional_to}810 mAh g{sup -1}, which is at least 2 times higher than that of graphitic carbon. For the first time we report here an amorphous carbon showing such a high reversibility in the first cycle, which is very much limited to the graphitic carbon. The deposited films were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and step profilometer for the structural and surface properties. The hydrogen content of the synthesized films was studied using residual gas analysis (RGA). The low hydrogen content and the low specific surface area of the synthesized amorphous carbon film are considered responsible for such a high first cycle columbic efficiency. The growth mechanism and the reasons for enhanced electrochemical performance of the carbon films are discussed. (author)

  19. Low hydrogen containing amorphous carbon films-Growth and electrochemical properties as lithium battery anodes

    Science.gov (United States)

    Subramanian, V.; Karabacak, Tansel; Masarapu, Charan; Teki, Ranganath; Lu, Toh-Ming; Wei, Bingqing

    Amorphous carbon films were deposited successfully on Cu foils by DC magnetron sputtering technique. Electrochemical performance of the film as lithium battery anode was evaluated across Li metal at 0.2 C rate in a non-aqueous electrolyte. The discharge curves showed unusually low irreversible capacity in the first cycle with a reversible capacity of ∼810 mAh g -1, which is at least 2 times higher than that of graphitic carbon. For the first time we report here an amorphous carbon showing such a high reversibility in the first cycle, which is very much limited to the graphitic carbon. The deposited films were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and step profilometer for the structural and surface properties. The hydrogen content of the synthesized films was studied using residual gas analysis (RGA). The low hydrogen content and the low specific surface area of the synthesized amorphous carbon film are considered responsible for such a high first cycle columbic efficiency. The growth mechanism and the reasons for enhanced electrochemical performance of the carbon films are discussed.

  20. Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films

    Science.gov (United States)

    Reyes, R.; Legnani, C.; Ribeiro Pinto, P. M.; Cremona, M.; de Araújo, P. J. G.; Achete, C. A.

    2003-06-01

    White-blue electroluminescent emission with a voltage bias less than 10 V was achieved in rf sputter-deposited amorphous carbon nitride (a-CN) and amorphous silicon carbon nitride (a-SiCN) thin-film-based devices. The heterojunction structures of these devices consist of: Indium tin oxide (ITO), used as a transparent anode; amorphous carbon film as an emission layer, and aluminum as a cathode. The thickness of the carbon films was about 250 Å. In all of the produced diodes, a stable visible emission peaked around 475 nm is observed at room temperature and the emission intensity increases with the current density. For an applied voltage of 14 V, the luminance was about 3 mCd/m2. The electroluminescent properties of the two devices are discussed and compared.

  1. Dielectric properties of DC reactive magnetron sputtered Al{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Prasanna, S. [Thin Film Center, Department of Physics, PSG College of Technology, Coimbatore, 641 004 (India); Mohan Rao, G. [Department of Instrumentation, Indian Institute of Science (IISc), Bangalore, 560 012 (India); Jayakumar, S., E-mail: s_jayakumar_99@yahoo.com [Thin Film Center, Department of Physics, PSG College of Technology, Coimbatore, 641 004 (India); Kannan, M.D. [Thin Film Center, Department of Physics, PSG College of Technology, Coimbatore, 641 004 (India); Ganesan, V. [Low Temperature Lab, UGC-DAE Consortium for Scientific Research (CSR), Indore, 452 017 (India)

    2012-01-31

    Alumina (Al{sub 2}O{sub 3}) thin films were sputter deposited over well-cleaned glass and Si < 100 > substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 Degree-Sign C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al{sub 2}O{sub 3}-Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed. - Highlights: Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} thin films were deposited by DC reactive magnetron sputtering. Black-Right-Pointing-Pointer The films were found to be amorphous up to annealing temperature of 550 C. Black-Right-Pointing-Pointer An increase in rms roughness of the films was observed with annealing. Black-Right-Pointing-Pointer Al-Al{sub 2}O{sub 3}-Al thin film capacitors were fabricated and dielectric constant was 7.5. Black-Right-Pointing-Pointer The activation energy decreased with increase in frequency.

  2. Self-sputtering runaway in high power impulse magnetron sputtering: The role of secondary electrons and multiply charged metal ions

    International Nuclear Information System (INIS)

    Anders, Andre

    2008-01-01

    Self-sputtering runaway in high power impulse magnetron sputtering is closely related to the appearance of multiply charged ions. This conclusion is based on the properties of potential emission of secondary electrons and energy balance considerations. The effect is especially strong for materials whose sputtering yield is marginally greater than unity. The absolute deposition rate increases ∼Q 1/2 , whereas the rate normalized to the average power decreases ∼Q -1/2 , with Q being the mean ion charge state number

  3. Effect of microstructure on mechanical and tribological properties of TiAlSiN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.L. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); College of Engineering, Hunan Agricultural University/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128 (China); Li, Y.G.; Wu, B. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Lei, M.K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-12-31

    TiAlSiN nanocomposite coatings were deposited in a closed field unbalanced magnetron sputtering system by reactive sputtering from Ti{sub 0.475}Al{sub 0.475}Si{sub 0.05} targets using modulated pulsed power magnetron sputtering (MPPMS) under a floating substrate bias. The ratio of the nitrogen flow rate to the total gas flow rate (f{sub N{sub 2}}) was varied from 0 to 40%. The application of MPPMS as sputtering sources was aimed at generating a high ionization degree of the sputtered material and a high plasma density by using a pulsed high power approach. When f{sub N{sub 2}} = 0%, an amorphous-like structure Ti{sub 0.479}Al{sub 0.454}Si{sub 0.066} coating was deposited with a hardness of 10 GPa. When nitrogen was added, an optimized nanocomposite structure of nc-TiAlN/a-Si{sub 3}N{sub 4} formed in the TiAlSiN coating deposited at f{sub N{sub 2}} = 10%, in which 5–10 nm TiAlN nanocrystallites were embedded in a 2–3 nm thick amorphous Si{sub 3}N{sub 4} matrix. As the f{sub N{sub 2}} was increased up to 40%, the elementary composition of the coatings remained almost the same, but the grain size of nanocrystallites approached to 10–20 nm and the AlN phase gradually precipitated. A maximum hardness (H) of 33.2 GPa, a hardness to the elastic modulus (E) ratio of 0.081 and an H{sup 3}/E*{sup 2} ratio of 0.19 GPa were found in the coating deposited at f{sub N{sub 2}} = 10%. The friction coefficient of the TiAlSiN coatings was around 0.8–0.9 as sliding against a Si{sub 3}N{sub 4} counterpart under a normal load of 0.5 N. A wear rate of 2.0 × 10{sup −5} mm{sup 3} N{sup −1} m{sup −1} was measured in the TiAlSiN coatings deposited at f{sub N{sub 2}} = 20–40%. As only a low residual stress is found in the TiAlSiN coatings, we consider the complete phase separation is responsible for the enhanced mechanical and tribological properties of the nc-TiAlN/a-Si{sub 3}N{sub 4} nanocomposite coatings. - Highlights: • TiAlSiN nanocomposite coatings were prepared by

  4. Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon.

    Science.gov (United States)

    Xin, Yunchang; Jiang, Jiang; Huo, Kaifu; Tang, Guoyi; Tian, Xiubo; Chu, Paul K

    2009-06-01

    The fast degradation rates in the physiological environment constitute the main limitation for the applications of surgical magnesium alloys as biodegradable hard-tissue implants. In this work, a stable and dense hydrogenated amorphous silicon coating (a-Si:H) with desirable bioactivity is deposited on AZ91 magnesium alloy using magnetron sputtering deposition. Raman spectroscopy and Fourier transform infrared spectroscopy reveal that the coating is mainly composed of hydrogenated amorphous silicon. The hardness of the coated alloy is enhanced significantly and the coating is quite hydrophilic as well. Potentiodynamic polarization results show that the corrosion resistance of the coated alloy is enhanced dramatically. In addition, the deterioration process of the coating in simulated body fluids is systematically investigated by open circuit potential evolution and electrochemical impedance spectroscopy. The cytocompatibility of the coated Mg is evaluated for the first time using hFOB1.19 cells and favorable biocompatibility is observed. 2008 Wiley Periodicals, Inc.

  5. RF Magnetron Sputtering Coating Of Hydroxyapatite On Alkali Solution Treated Titanate Nanorods

    Directory of Open Access Journals (Sweden)

    Lee K.

    2015-06-01

    Full Text Available Hydroxyapatite (HA is a material with outstanding biocompatibility. It is chemically similar to natural bone tissue, and has therefore been favored for use as a coating material for dental and orthopedic implants. In this study, RF magnetron sputtering was applied for HA coating. And Alkali treatment was performed in a 5 M NaOH solution at 60°C. The coated HA thin film was heat-treated at a range of temperatures from 300 to 600°C. The morphological characterization and crystal structures of the coated specimens were then obtained via FE-SEM, XRD, and FT-IR. The amorphous thin film obtained on hydrothermally treated nanorods transformed into a crystalline thin film after the heat treatment. The change in the phase transformation, with an enhanced crystallinity, showed a reduced wettability. The hydrothermally treated nanorods with an amorphous thin film, on the other hand, showed an outstanding wettability. The HA thin film perpendicularly coated the nanorods in the upper and inner parts via RF magnetron sputtering, and the FT-IR results confirmed that the molecular bonding of the coated film had an HA structure.

  6. Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111)

    CERN Document Server

    Li, T Q; Tsuji, Y; Ohsawa, T; Komiyama, H

    2002-01-01

    The initial growth and texture formation mechanism of titanium nitride (TiN) films were investigated by depositing TiN films on (111) silicon substrates by using reactive magnetron sputtering of a Ti metallic target under a N sub 2 /Ar atmosphere, and then analyzing the films in detail by using transmission electron microscopy (TEM) and x-ray diffraction (XRD). Two power sources for the sputtering, dc and rf, were compared. At the initial growth stage, a continuous amorphous film containing randomly oriented nuclei was observed when the film thickness was about 3 nm. The nuclei grew and formed a polycrystalline layer when the film thickness was about 6 nm. As the film grew further, its orientation changed depending on the deposition conditions. For dc sputtering, the appearance of (111) or (200)-preferred orientations depended on the N sub 2 partial pressure, and the intensity of the preferred orientation increased with increasing film thickness. For rf sputtering, however, when the film thickness was small (...

  7. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Damon Rafieian

    2015-09-01

    Full Text Available We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx<2, obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, whereas stoichiometric films formed anatase. This route therefore presents a formation route for rutile films via lower (<500 °C temperature pathways. The dynamics of the annealing process were followed by in situ ellipsometry, showing the optical properties transformation. The final crystal structures were identified by XRD. The anatase film obtained by this deposition method displayed high carriers mobility as measured by time-resolved microwave conductance. This also confirms the high photocatalytic activity of the anatase films.

  8. Reactive dual magnetron sputtering for large area application

    International Nuclear Information System (INIS)

    Struempfel, J.

    2002-01-01

    Production lines for large area coating demand high productivity of reactive magnetron sputtering processes. Increased dynamic deposition rates for oxides and nitrides were already obtained by using of highly powered magnetrons in combination with advanced sputter techniques. However, besides high deposition rates the uniformity of such coatings has to be carefully considered. First the basics of reactive sputtering processes and dual magnetron sputtering are summarized. Different methods for process stabilization and control are commonly used for reactive sputtering. The Plasma Emission Monitor (PE M) offers the prerequisite for fast acting process control derived from the in-situ intensity measurements of a spectral line of the sputtered target material. Combined by multiple Plasma Emission Monitor control loops segmented gas manifolds are able to provide excellent thin film uniformity at high deposition rates. The Dual Magnetron allows a broad range of processing by different power supply modes. Medium frequency, DC and pulsed DC power supplies can be used for high quality layers. Whereas the large area coating of highly isolating layers like TiO 2 or SiO 2 is dominated by MF sputtering best results for coating with transparent conductive oxides are obtained by dual DC powering of the dual magnetron arrangement. (Author)

  9. Methods of amorphization and investigation of the amorphous state

    OpenAIRE

    EINFALT, TOMAŽ; PLANINŠEK, ODON; HROVAT, KLEMEN

    2013-01-01

    The amorphous form of pharmaceutical materials represents the most energetic solid state of a material. It provides advantages in terms of dissolution rate and bioavailability. This review presents the methods of solid-state amorphization described in literature (supercooling of liquids, milling, lyophilization, spray drying, dehydration of crystalline hydrates), with the emphasis on milling. Furthermore, we describe how amorphous state of pharmaceuticals differ depending on method of prepara...

  10. Effect of temperature during ion sputtering on the surface segregation rate of antimony in an iron-antimony alloy at higher temperatures

    International Nuclear Information System (INIS)

    Oku, M.; Hirokawa, K.; Kimura, H.; Suzuki, S.

    1986-01-01

    The surface segregation of antimony in an iron-0.23 at% antimony alloy was studied by XPS. The segregation rate in the temperature range between 800 and 900 K depends on the temperature during sputtering with argon ion of kinetic energy of 1 keV. The sputtering at room temperature or 473 K gives higher values of the segregation rate than those at 673 K. Both cases give the activation energy of 170 kJmol -1 for the surface segregation rate. The segregation of antimony is not observed after the sample is heated at 1000 K. (author)

  11. On the structure and surface chemical composition of indium-tin oxide films prepared by long-throw magnetron sputtering

    International Nuclear Information System (INIS)

    Chuang, M.J.; Huang, H.F.; Wen, C.H.; Chu, A.K.

    2010-01-01

    Structures and surface chemical composition of indium tin oxide (ITO) thin films prepared by long-throw radio-frequency magnetron sputtering technique have been investigated. The ITO films were deposited on glass substrates using a 20 cm target-to-substrate distance in a pure argon sputtering environment. X-ray diffraction results showed that an increase in substrate temperature resulted in ITO structure evolution from amorphous to polycrystalline. Field-emission scanning electron microscopy micrographs suggested that the ITO films were free of bombardment of energetic particles since the microstructures of the films exhibited a smaller grain size and no sub-grain boundary could be observed. The surface composition of the ITO films was characterized by X-ray photoelectron spectroscopy (XPS). Oxygen atoms in both amorphous and crystalline ITO structures were observed from O 1 s XPS spectra. However, the peak of the oxygen atoms in amorphous ITO phase could only be found in samples prepared at low substrate temperatures. Its relative peak area decreased drastically when substrate temperatures were larger than 200 o C. In addition, a composition analysis from the XPS results revealed that the films deposited at low substrate temperatures contained high concentration of oxygen at the film surfaces. The oxygen-rich surfaces can be attributed to hydrolysis reactions of indium oxides, especially when large amount of the amorphous ITO were developed near the film surfaces.

  12. Ambient-temperature fabrication of microporous carbon terminated with graphene walls by sputtering process for hydrogen storage applications

    International Nuclear Information System (INIS)

    Banerjee, Arghya Narayan; Joo, Sang Woo; Min, Bong-Ki

    2013-01-01

    A very thin amorphous carbon film (10–30 nm), has been bombarded with sputtered Cr nanoparticles, resulting in inelastic collision between the nanoparticles and the nuclei of the C-atoms causing atom displacement and re-arrangement into graphene layers. The process occurs at ambient temperature. Fabrication of graphitic microporous carbon terminated with few-to-multilayer graphene walls has been verified by Raman spectroscopy and scanning transmission electron microscopy. High resolution transmission electron micrographs reveal that the formation of graphene layers is highly sensitive to the sputtering parameters. With a gradual increase in the sputtering voltage/current density/time from 3.5 kV/40 mA–cm −2 /1.0 min to 5.0 kV/70 mA–cm −2 /3.0 min the graphitic domains are found to transform from semi-graphitized layers to well-defined, highly ordered, larger-area graphene walls within the microporous network. The mechanism of this graphitic microporous carbon formation is assumed to be due to two simultaneous processes: in one hand, the sputtering plasma, containing energetic ions and sub-atomic particles, act as dry-etchant to activate the a:C film to transform it into microporous carbon, whereas on the other hand, the charged metal nanoparticle/ion bombardment under sputtering resulted in the inelastic collision between the nanoparticles/ions and the nuclei of the C atoms followed by atom displacement (and displacement cascade) and re-arrangement into ordered structure to form graphitic domains within the microporous carbon network. H 2 storage experiment of the samples depicts excellent hydrogen storage properties. This simple, cost-effective, complementary-metal-oxide-semiconductor-compatible, single-step process of metal-graphene hybrid nanomaterial formation may find interesting applications in the field of optoelectronics and biotechnology. Additionally, this method can be adopted easily for the incorporation of transition metals into graphene and

  13. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates

    International Nuclear Information System (INIS)

    Tseng, Kun-San; Lo, Yu-Lung

    2013-01-01

    The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target–substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target–substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target–substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target–substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target–substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.

  14. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates

    Science.gov (United States)

    Tseng, Kun-San; Lo, Yu-Lung

    2013-11-01

    The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target-substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target-substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target-substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target-substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target-substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.

  15. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Kun-San [Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lo, Yu-Lung, E-mail: loyl@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan (China)

    2013-11-15

    The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target–substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target–substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target–substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target–substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target–substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.

  16. Sputtered carbon as a corrosion barrier for x-ray detector windows

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, Joseph; Pei, Lei; Davis, Robert C., E-mail: davis@byu.edu; Vanfleet, Richard R. [Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602 (United States); Liddiard, Steven; Harker, Mallorie; Abbott, Jonathan [Moxtek, Inc., 452 W 1260 N, Orem, Utah 84057 (United States)

    2016-09-15

    Sputtered amorphous carbon thin films were explored as corrosion resistant coatings on aluminum thin films to be incorporated into x-ray detector windows. The requirements for this application include high corrosion resistance, low intrinsic stress, high strains at failure, and high x-ray transmission. Low temperature sputtering was used because of its compatibility with the rest of the window fabrication process. Corrosion resistance was tested by exposure of carbon coated and uncoated Al thin films to humidity. Substrate curvature and bulge testing measurements were used to determine intrinsic stress and ultimate strain at failure. The composition and bonding of the carbon films were further characterized by electron energy loss spectroscopy, Raman spectroscopy, and carbon, hydrogen, and nitrogen elemental analyses. Samples had low compressive stress (down to.08 GPa), a high strain at failure (3%), and a low fraction of sp{sup 3} carbon–carbon bonds (less than 5%). The high breaking strain and excellent x-ray transmission of these sputtered carbon films indicate that they will work well as corrosion barriers in this application.

  17. Structural studies of amorphous Mo-Ge alloys using synchrotron radiation

    International Nuclear Information System (INIS)

    Kortright, J.B.

    1984-06-01

    Structural changes in sputtered amorphous Mo-Ge alloy films with composition varying from a-Ge to about 70 at. % Mo have been studied with several x-ray techniques. Results of individual techniques are presented and discussed in separate chapters. The complementary nature of information obtained from EXAFS and scattering for these materials is discussed in a separate chapter. A concluding chapter summarizes the results and structural changes with composition

  18. Composition and optical properties tunability of hydrogenated silicon carbonitride thin films deposited by reactive magnetron sputtering

    Science.gov (United States)

    Bachar, A.; Bousquet, A.; Mehdi, H.; Monier, G.; Robert-Goumet, C.; Thomas, L.; Belmahi, M.; Goullet, A.; Sauvage, T.; Tomasella, E.

    2018-06-01

    Radiofrequency reactive magnetron sputtering was used to deposit hydrogenated amorphous silicon carbonitride (a-SiCxNy:H) at 400 °C by sputtering a silicon target under CH4 and N2 reactive gas mixture. Rutherford backscattering spectrometry revealed that the change of reactive gases flow rate (the ratio R = FN2/(FN2+FCH4)) induced a smooth chemical composition tunability from a silicon carbide-like film for R = 0 to a silicon nitride-like one at R = 1 with a large area of silicon carbonitrides between the two regions. The deconvolution of Fourier Transform InfraRed and X-ray photoelectron spectroscopy spectrum highlighted a shift of the chemical environment of the deposited films corresponding to the changes seen by RBS. The consequence of these observations is that a control of refractive index in the range of [1.9-2.5] at λ = 633 nm and optical bandgap in the range [2 eV-3.8 eV] have been obtained which induces that these coatings can be used as antireflective coatings in silicon photovoltaic cells.

  19. Novel texturing method for sputtered zinc oxide films prepared at high deposition rate from ceramic tube targets

    Directory of Open Access Journals (Sweden)

    Hüpkes J.

    2011-10-01

    Full Text Available Sputtered and wet-chemically texture etched zinc oxide (ZnO films on glass substrates are regularly applied as transparent front contact in silicon based thin film solar cells. In this study, chemical wet etching in diluted hydrofluoric acid (HF and subsequently in diluted hydrochloric acid (HCl on aluminum doped zinc oxide (ZnO:Al films deposited by magnetron sputtering from ceramic tube targets at high discharge power (~10 kW/m target length is investigated. Films with thickness of around 800 nm were etched in diluted HCl acid and HF acid to achieve rough surface textures. It is found that the etching of the films in both etchants leads to different surface textures. A two steps etching process, which is especially favorable for films prepared at high deposition rate, was systematically studied. By etching first in diluted hydrofluoric acid (HF and subsequently in diluted hydrochloric acid (HCl these films are furnished with a surface texture which is characterized by craters with typical diameter of around 500 − 1000 nm. The resulting surface structure is comparable to etched films sputtered at low deposition rate, which had been demonstrated to be able to achieve high efficiencies in silicon thin film solar cells.

  20. Magnetic and transport properties of amorphous Ce-Al alloy

    Science.gov (United States)

    Amakai, Yusuke; Murayama, Shigeyuki; Momono, Naoki; Takano, Hideaki; Kuwai, Tomohiko

    2018-05-01

    Amorphous (a-)Ce50Al50 has been prepared by DC high-rate sputter method. The structure of the obtained sample has been confirmed to have an amorphous structure because there are no Bragg peaks in the X-ray diffraction measurement and have a clear exothermic peak by the differential scanning calorimetry measurement. We have measured the resistivity ρ, magnetic susceptibility χ, specific heat Cp and thermoelectric power S for a-Ce50Al50. The temperature dependence of ρ exhibits a small temperature dependence less than 10% in the whole temperature region. χ follows a Curie-Weiss behavior in the high-temperature region of T>90 K. The effective paramagnetic moment peff, estimated from C is 2.18 μB/Ce-atom. The low-temperature Cp/T increases rapidly with decreasing temperature and tends to a saturation. S(T) exhibits negative values in a wide temperature region. A minimum of S appear at around 60 K, and S decreases linearly with decreasing temperature down to 10 K. The low-temperature S is almost 0 μV/K down to 2 K. From these results, we have pointed out that present a-Ce50Al50 would be an incoherent Kondo material.

  1. Chemical sputtering of graphite by H+ ions

    International Nuclear Information System (INIS)

    Busharov, N.P.; Gorbatov, E.A.; Gusev, V.M.; Guseva, M.I.; Martynenko, Y.V.

    1976-01-01

    In a study of the sputtering coefficient S for the sputtering of graphite by 10-keV H + ions as a function of the graphite temperature during the bombardment, it is found that at T> or =750degreeC the coefficient S is independent of the target temperature and has an anomalously high value, S=0.085 atom/ion. The high rate of sputtering of graphite by atomic hydrogen ions is shown to be due to chemical sputtering of the graphite, resulting primarily in the formation of CH 4 molecules. At T=1100degreeC, S falls off by a factor of about 3. A model for the chemical sputtering of graphite is proposed

  2. Visible-light active thin-film WO3 photocatalyst with controlled high-rate deposition by low-damage reactive-gas-flow sputtering

    Directory of Open Access Journals (Sweden)

    Nobuto Oka

    2015-10-01

    Full Text Available A process based on reactive gas flow sputtering (GFS for depositing visible-light active photocatalytic WO3 films at high deposition rates and with high film quality was successfully demonstrated. The deposition rate for this process was over 10 times higher than that achieved by the conventional sputtering process and the process was highly stable. Furthermore, Pt nanoparticle-loaded WO3 films deposited by the GFS process exhibited much higher photocatalytic activity than those deposited by conventional sputtering, where the photocatalytic activity was evaluated by the extent of decomposition of CH3CHO under visible light irradiation. The decomposition time for 60 ppm of CH3CHO was 7.5 times more rapid on the films deposited by the GFS process than on the films deposited by the conventional process. During GFS deposition, there are no high-energy particles bombarding the growing film surface, whereas the bombardment of the surface with high-energy particles is a key feature of conventional sputtering. Hence, the WO3 films deposited by GFS should be of higher quality, with fewer structural defects, which would lead to a decrease in the number of centers for electron-hole recombination and to the efficient use of photogenerated holes for the decomposition of CH3CHO.

  3. Formation and structure of V-Zr amorphous alloy thin films

    KAUST Repository

    King, Daniel J M

    2015-01-01

    Although the equilibrium phase diagram predicts that alloys in the central part of the V-Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V-Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to the first and second nearest neighbours in the system.

  4. Microstructure of thin film platinum electrodes on yttrium stabilized zirconia prepared by sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Toghan, Arafat, E-mail: arafat.toghan@pci.uni-hannover.de [Institute of Physical Chemistry and Electrochemistry, Leibniz University of Hannover, Callinstrasse 3-3a, D-30167 Hannover (Germany); Khodari, M. [Chemistry Department, Faculty of Science, South Valley University, Qena, 83523 (Egypt); Steinbach, F.; Imbihl, R. [Institute of Physical Chemistry and Electrochemistry, Leibniz University of Hannover, Callinstrasse 3-3a, D-30167 Hannover (Germany)

    2011-09-01

    (111) oriented thin film Pt electrodes were prepared on single crystals of yttrium-stabilized zirconia (YSZ) by sputter deposition of platinum. The electrodes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and by profilometry. SEM images of the as-sputtered platinum film show a compact amorphous Pt film covering uniformly the substrate. Upon annealing at 1123 K, gaps and pores at the interface develop leading to a partial dewetting of the Pt film. Increasing the annealing temperature to 1373 K transforms the polycrystalline Pt film into single crystalline grains exhibiting a (111) orientation towards the substrate.

  5. Understanding deposition rate loss in high power impulse magnetron sputtering: I. Ionization-driven electric fields

    International Nuclear Information System (INIS)

    Brenning, N; Huo, C; Raadu, M A; Lundin, D; Helmersson, U; Vitelaru, C; Stancu, G D; Minea, T

    2012-01-01

    The lower deposition rate for high power impulse magnetron sputtering (HiPIMS) compared with direct current magnetron sputtering for the same average power is often reported as a drawback. The often invoked reason is back-attraction of ionized sputtered material to the target due to a substantial negative potential profile, sometimes called an extended presheath, from the location of ionization toward the cathode. Recent studies in HiPIMS devices, using floating-emitting and swept-Langmuir probes, show that such extended potential profiles do exist, and that the electric fields E z directed toward the target can be strong enough to seriously reduce ion transport to the substrate. However, they also show that the potential drops involved can vary by up to an order of magnitude from case to case. There is a clear need to understand the underlying mechanisms and identify the key discharge variables that can be used for minimizing the back-attraction. We here present a combined theoretical and experimental analysis of the problem of electric fields E z in the ionization region part of HiPIMS discharges, and their effect on the transport of ionized sputtered material. In particular, we have investigated the possibility of a ‘sweet spot’ in parameter space in which the back-attraction of ionized sputtered material is low. It is concluded that a sweet spot might possibly exist for some carefully optimized discharges, but probably in a rather narrow window of parameters. As a measure of how far a discharge is from such a window, a Townsend product Π Townsend is proposed. A parametric analysis of Π Townsend shows that the search for a sweet spot is complicated by the fact that contradictory demands appear for several of the externally controllable parameters such as high/low working gas pressure, short/long pulse length, high/low pulse power and high/low magnetic field strength. (paper)

  6. Effect of heating rates of crystallization behaviour of amorphous Fe/sub 83/01/B/sub 17/ alloy

    International Nuclear Information System (INIS)

    Ashfaq, A.; Shamim, A.

    1993-01-01

    The electric resistivity of amorphous Fe/sub 83/01/B/sub 17/ alloy has been measured to study its crystallization behaviour from room temperature to about 900 K at the constant heating rates of 40, 60 and 80 K/hr. The crystallization temperature was observed to increase with the increase of heating g rate. However amorphous to crystalline path of RT-curve between the maximum and the minimum decreases with heating rate. The Resistivity Temperature (RT) curves exhibit different steps which are shown to correspond to the phase change stages of the alloy. The slope of the rt-curve after the previous step increases with the rise in heating rate and finally passes through a board peak and then rises again. From the peak shift dta of first crystallization stage activation energy was calculated by applying various peak shift equations. The values so obtained were in good agreement with those obtained with DSC measurement for (FeM)/sub 83/01/B/sub 17/ amorphous alloys where M=Mo, Ni, Cr, and V. (author)

  7. Effects of argon flow rate on electrical properties of amorphous indium gallium zinc oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, A.K.; Wu, G.M., E-mail: wu@mail.cgu.edu.tw

    2016-04-30

    In this report, amorphous indium gallium zinc oxide (a-IGZO) thin films were deposited on glass substrates using different argon flow rates (AFRs). The impact on the electrical properties of the a-IGZO thin-film transistors with various AFRs during film growth has been carefully investigated. The AFR varied 20–60 sccm while the oxygen flow rate was maintained at 1 sccm. All a-IGZO films achieved transmittance higher than 80% in the wavelength range of 350–1000 nm, and it increased slightly with increasing AFR in the higher wavelength region. The rise in partial pressure due to increased AFR could affect the performance, in particular by increasing the current on/off ratio, and changes in electron mobility, sub-threshold swing voltage and threshold voltage. The optimal results were attained at AFR of 50 sccm. The field effect mobility, sub-threshold swing, ratio of on-current to the off-current, interfacial trap density and threshold voltage are 27.7 cm{sup 2}/V·s, 0.11 V/dec, 2.9 × 10{sup 8}, 1.1 × 10{sup 12} cm{sup −2} eV{sup −1} and 0.84 V, respectively. In addition, good electrical properties were achieved using dielectric SiO{sub 2} prepared by simple, low-cost electron beam evaporator system. - Highlights: • IGZO thin films RF-sputtered on glass substrates under various Ar to oxygen flow rates • The electrical performances and thin film quality of a-IGZO TFT were characterized. • High mobility 27.7 cm{sup 2}/V·s and very small sub-threshold voltage 0.11 V/decade obtained. • Simple and low cost electron-beam deposited SiO{sub 2} used as gate dielectric. • Ohmic behavior of source–drain with channel material has been achieved.

  8. Effects of argon flow rate on electrical properties of amorphous indium gallium zinc oxide thin-film transistors

    International Nuclear Information System (INIS)

    Sahoo, A.K.; Wu, G.M.

    2016-01-01

    In this report, amorphous indium gallium zinc oxide (a-IGZO) thin films were deposited on glass substrates using different argon flow rates (AFRs). The impact on the electrical properties of the a-IGZO thin-film transistors with various AFRs during film growth has been carefully investigated. The AFR varied 20–60 sccm while the oxygen flow rate was maintained at 1 sccm. All a-IGZO films achieved transmittance higher than 80% in the wavelength range of 350–1000 nm, and it increased slightly with increasing AFR in the higher wavelength region. The rise in partial pressure due to increased AFR could affect the performance, in particular by increasing the current on/off ratio, and changes in electron mobility, sub-threshold swing voltage and threshold voltage. The optimal results were attained at AFR of 50 sccm. The field effect mobility, sub-threshold swing, ratio of on-current to the off-current, interfacial trap density and threshold voltage are 27.7 cm"2/V·s, 0.11 V/dec, 2.9 × 10"8, 1.1 × 10"1"2 cm"−"2 eV"−"1 and 0.84 V, respectively. In addition, good electrical properties were achieved using dielectric SiO_2 prepared by simple, low-cost electron beam evaporator system. - Highlights: • IGZO thin films RF-sputtered on glass substrates under various Ar to oxygen flow rates • The electrical performances and thin film quality of a-IGZO TFT were characterized. • High mobility 27.7 cm"2/V·s and very small sub-threshold voltage 0.11 V/decade obtained. • Simple and low cost electron-beam deposited SiO_2 used as gate dielectric. • Ohmic behavior of source–drain with channel material has been achieved.

  9. Study on the Deposition Rate Depending on Substrate Position by Using Ion Beam Sputtering Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yonggi; Kim, Bomsok; Lee, Jaesang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ion beams have been used for over thirty years to modify materials in manufacturing of integrated circuits, and improving the corrosion properties of surfaces. Recently, the requirements for ion beam processes are becoming especially challenging in the following areas : ultra shallow junction formation for LSI fabrication, low damage high rate ion beam sputtering and smoothing, high quality functional surface treatment for electrical and optical properties. Ion beam sputtering is an attractive technology for the deposition of thin film coatings onto a broad variety of polymer, Si-wafer, lightweight substrates. Demand for the decoration metal is increasing. In addition, lightweight of parts is important, because of energy issues in the industries. Although a lot of researches have been done with conventional PVD methods for the deposition of metal or ceramic films on the surface of the polymer, there are still adhesion problems.

  10. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Kalkan, B. [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 20015 (United States); Edwards, T. G.; Sen, S. [Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616 (United States); Raoux, S. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2013-08-28

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  11. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Science.gov (United States)

    Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.

    2013-08-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  12. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    International Nuclear Information System (INIS)

    Kalkan, B.; Edwards, T. G.; Sen, S.; Raoux, S.

    2013-01-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression

  13. Sputtering and mixing of supported nanoparticles

    International Nuclear Information System (INIS)

    Jiménez-Sáez, J.C.; Pérez-Martín, A.M.C.; Jiménez-Rodríguez, J.J.

    2013-01-01

    Sputtering and mixing of Co nanoparticles supported in Cu(0 0 1) under 1-keV argon bombardment are studied using molecular-dynamics simulations. Particles of different initial size have been considered. The cluster height decreases exponentially with increasing fluence. In nanoparticles, sputtering yield is significantly enhanced compared to bulk. In fact, the value of this magnitude depends on the cluster height. A theoretical model for sputtering is introduced with acceptable results compared to those obtained by simulation. Discrepancies happen mainly for very small particles. Mixing rate at the interface is quantified; and besides, the influence of border effects for clusters of different initial size is assessed. Mixing rate and border length–surface area ratio for the initial interface show a proportionality relation. The phenomenon of ion-induced burrowing of metallic nanoparticles is analysed

  14. Low-temperature sputtering of crystalline TiO2 films

    International Nuclear Information System (INIS)

    Musil, J.; Herman, D.; Sicha, J.

    2006-01-01

    This article reports on the investigation of reactive magnetron sputtering of transparent, crystalline titanium dioxide films. The aim of this investigation is to determine a minimum substrate surface temperature T surf necessary to form crystalline TiO 2 films with anatase structure. Films were prepared by dc pulsed reactive magnetron sputtering using a dual magnetron operating in bipolar mode and equipped with Ti(99.5) and ceramic Ti 5 O 9 targets. The films were deposited on unheated glass substrates and their structure was characterized by x-ray diffraction and surface morphology by atomic force microscopy. Special attention is devoted to the measurement of T surf using thermostrips pasted to the glass substrate. It was found that (1) T surf is considerably higher (approximately by 100 deg. C or more) than the substrate temperature T s measured by the thermocouple incorporated into the substrate holder and (2) T surf strongly depends on the substrate-to-target distance d s-t , the magnetron target power loading, and the thermal conductivity of the target and its cooling. The main result of this study is the finding that (1) the crystallization of sputtered TiO 2 films depends not only on T surf but also on the total pressure p T of sputtering gas (Ar+O 2 ), partial pressure of oxygen p O 2 , the film deposition rate a D , and the film thickness h (2) crystalline TiO 2 films with well developed anatase structure can be formed at T surf =160 deg. C and low values of a D ≅5 nm/min (3) the crystalline structure of TiO 2 film gradually changes from (i) anatase through (ii) anatase+rutile mixture, and (iii) pure rutile to x-ray amorphous structure at T surf =160 deg. C and p T =0.75 Pa when p O 2 decreases and a D increases above 5 nm/min, and (4) crystallinity of the TiO 2 films decreases with decreasing h and T surf . Interrelationships between the structure of TiO 2 film, its roughness, T surf , and a D are discussed in detail. Trends of next development are

  15. Molecular dynamics of nanodroplet impact: The effect of the projectile’s molecular mass on sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Fernan [Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, SW7 2A7 (United Kingdom); Gamero-Castaño, Manuel, E-mail: mgameroc@uci.edu [Department of Mechanical and Aerospace Engineering, University of California, Irvine, California, 92697 (United States)

    2016-06-15

    The impact of electrosprayed nanodroplets on ceramics at several km/s alters the atomic order of the target, causing sputtering, surface amorphization and cratering. The molecular mass of the projectile is known to have a strong effect on the impact phenomenology, and this article aims to rationalize this dependency using molecular dynamics. To achieve this goal, the article models the impact of four projectiles with molecular masses between 45 and 391 amu, and identical diameters and kinetic energies, 10 nm and 63 keV, striking a silicon target. In agreement with experiments, the simulations show that the number of sputtered atoms strongly increases with molecular mass. This is due to the increasing intensity of collision cascades with molecular mass: when the fixed kinetic energy of the projectile is distributed among fewer, more massive molecules, their collisions with the target produce knock-on atoms with higher energies, which in turn generate more energetic and larger numbers of secondary and tertiary knock-on atoms. The more energetic collision cascades intensify both knock-on sputtering and, upon thermalization, thermal sputtering. Besides enhancing sputtering, heavier molecules also increase the fraction of the projectile’s energy that is transferred to the target, as well as the fraction of this energy that is dissipated.

  16. Molecular dynamics of nanodroplet impact: The effect of the projectile’s molecular mass on sputtering

    International Nuclear Information System (INIS)

    Saiz, Fernan; Gamero-Castaño, Manuel

    2016-01-01

    The impact of electrosprayed nanodroplets on ceramics at several km/s alters the atomic order of the target, causing sputtering, surface amorphization and cratering. The molecular mass of the projectile is known to have a strong effect on the impact phenomenology, and this article aims to rationalize this dependency using molecular dynamics. To achieve this goal, the article models the impact of four projectiles with molecular masses between 45 and 391 amu, and identical diameters and kinetic energies, 10 nm and 63 keV, striking a silicon target. In agreement with experiments, the simulations show that the number of sputtered atoms strongly increases with molecular mass. This is due to the increasing intensity of collision cascades with molecular mass: when the fixed kinetic energy of the projectile is distributed among fewer, more massive molecules, their collisions with the target produce knock-on atoms with higher energies, which in turn generate more energetic and larger numbers of secondary and tertiary knock-on atoms. The more energetic collision cascades intensify both knock-on sputtering and, upon thermalization, thermal sputtering. Besides enhancing sputtering, heavier molecules also increase the fraction of the projectile’s energy that is transferred to the target, as well as the fraction of this energy that is dissipated.

  17. Magnetospheric ion sputtering and water ice grain size at Europa

    Science.gov (United States)

    Cassidy, T. A.; Paranicas, C. P.; Shirley, J. H.; Dalton, J. B., III; Teolis, B. D.; Johnson, R. E.; Kamp, L.; Hendrix, A. R.

    2013-03-01

    We present the first calculation of Europa's sputtering (ion erosion) rate as a function of position on Europa's surface. We find a global sputtering rate of 2×1027 H2O s-1, some of which leaves the surface in the form of O2 and H2. The calculated O2 production rate is 1×1026 O2 s-1, H2 production is twice that value. The total sputtering rate (including all species) peaks at the trailing hemisphere apex and decreases to about 1/3rd of the peak value at the leading hemisphere apex. O2 and H2 sputtering, by contrast, is confined almost entirely to the trailing hemisphere. Most sputtering is done by energetic sulfur ions (100s of keV to MeV), but most of the O2 and H2 production is done by cold oxygen ions (temperature ∼ 100 eV, total energy ∼ 500 eV). As a part of the sputtering rate calculation we compared experimental sputtering yields with analytic estimates. We found that the experimental data are well approximated by the expressions of Famá et al. for ions with energies less than 100 keV (Famá, M., Shi, J., Baragiola, R.A., 2008. Sputtering of ice by low-energy ions. Surf. Sci. 602, 156-161), while the expressions from Johnson et al. fit the data best at higher energies (Johnson, R.E., Burger, M.H., Cassidy, T.A., Leblanc, F., Marconi, M., Smyth, W.H., 2009. Composition and Detection of Europa's Sputter-Induced Atmosphere, in: Pappalardo, R.T., McKinnon, W.B., Khurana, K.K. (Eds.), Europa. University of Arizona Press, Tucson.). We compare the calculated sputtering rate with estimates of water ice regolith grain size as estimated from Galileo Near-Infrared Mapping Spectrometer (NIMS) data, and find that they are strongly correlated as previously suggested by Clark et al. (Clark, R.N., Fanale, F.P., Zent, A.P., 1983. Frost grain size metamorphism: Implications for remote sensing of planetary surfaces. Icarus 56, 233-245.). The mechanism responsible for the sputtering rate/grain size link is uncertain. We also report a surface composition estimate using

  18. Electrical, optical and etching properties of Zn-Sn-O thin films deposited by combinatorial sputtering

    International Nuclear Information System (INIS)

    Kim, J. S.; Park, J. K.; Baik, Y. J.; Kim, W. M.; Jeong, J.; Seong, T. Y.

    2012-01-01

    Zn-Sn-O (ZTO) films are known to be able to form an amorphous phase, which provides a smooth surface morphology as well as etched side wall, when deposited by using the conventional sputtering technique and, therefore, to have a potential to be applied as transparent thin film transistors. In this study, ZTO thin films were prepared by using combined sputtering of ZnO and SnO 2 targets, and the dependences of their electrical and optical properties on the composition and the deposition parameters were examined. The Sn content in the films was varied in the range of 35 ∼ 85 at .%. The deposition was carried out at room temperature, 150 and 300 .deg. C, and the oxygen content in sputtering gas was varied from 0 to 1 vol.%. Sn-rich films had better electrical properties, but showed large oxygen deficiency when deposited at low oxygen partial pressures. ZTO films with Sn contents lower than 55 at.% had good optical transmission, but the electrical properties were poor due to very low carrier concentrations. A high Hall mobility of larger than 10 cm 2 /Vs could be obtained in the carrier density range 10 17 ∼ 10 20 cm -3 , and the etching rate was measurable for films with Sn content up to 70 at.% when using a dilute HCl solution, indicating a good possibility of utilizing ZTO films for device applications.

  19. Characteristics of RuO2-SnO2 nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors

    International Nuclear Information System (INIS)

    Kim, Han-Ki; Choi, Sun-Hee; Yoon, Young Soo; Chang, Sung-Yong; Ok, Young-Woo; Seong, Tae-Yeon

    2005-01-01

    The characteristics of RuO 2 -SnO 2 nanocrystalline-embedded amorphous electrode, grown by DC reactive sputtering, was investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM), and transmission electron diffraction (TED) examination results showed that Sn and Ru metal cosputtered electrode in O 2 /Ar ambient have RuO 2 -SnO 2 nanocrystallines in an amorphous oxide matrix. It is shown that the cyclic voltammorgram (CV) result of the RuO 2 -SnO 2 nanocrystalline-embedded amorphous film in 0.5 M H 2 SO 4 liquid electrolyte is similar to a bulk-type supercapacitor behavior with a specific capacitance of 62.2 mF/cm 2 μm. This suggests that the RuO 2 -SnO 2 nanocrystalline-embedded amorphous film can be employed in hybrid all-solid state energy storage devises as an electrode of supercapacitor

  20. Effects of the Buffer Layers on the Adhesion and Antimicrobial Properties of the Amorphous ZrAlNiCuSi Films

    Science.gov (United States)

    Chiang, Pai-Tsung; Chen, Guo-Ju; Jian, Sheng-Rui; Shih, Yung-Hui

    2011-06-01

    To extend the practical applications of the bulk metallic glasses (BMGs), the preparation of the metallic glass coatings on various substrates becomes an important research issue. Among the interfacial properties of the coatings, the adhesion between films and substrates is the most crucial. In this study, amorphous Zr61Al7.5Ni10Cu17.5Si4 (ZrAlNiCuSi) thin films were deposited on SUS304 stainless steel at various sputtering powers by DC sputtering. According to the scratch tests, the introduction of the Cr and Ti buffer layers effectively improves the adhesion between the amorphous thin films and substrate without changing the surface properties, such as roughness and morphology. The antimicrobial results show that the biological activities of these microbes, except Acinetobacter baumannii, are effectively suppressed during the test period.

  1. Experimental and analytical study of the sputtering phenomena

    International Nuclear Information System (INIS)

    Howard, P.A.

    1976-03-01

    One form of the sputtering phenomena, the heat-transfer process that occurs when an initially hot vertical surface is cooled by a falling liquid film, was examined from a new experimental approach. The sputtering front is the lowest wetted position on the vertical surface and is characterized by a short region of intense nucleate boiling. The sputtering front progresses downward at nearly a constant rate, the surface below the sputtering front being dry and almost adiabatic. This heat-transfer process is of interest in the analysis of some of the performance aspects of emergency core-cooling systems of light-water reactors. An experimental apparatus was constructed to examine the heat-transfer characteristics of a sputtering front. In the present study, a heat source of sufficient intensity was located immediately below the sputtering front, which prevented its downward progress, thus permitting detailed measurements of steady-state surface temperatures throughout a sputtering front. Experimental evidence showed the sputtering front to correspond to a critical heat-flux (CHF) phenomenon. Data were obtained with water flow rates of 350-1600 lb/sub m//hr-ft and subcoolings of 40-140 0 F on a 3 / 8 -in. solid copper rod at 1 atm. A two-dimensional analytical model was developed to describe a stationary sputtering front where the wet-dry interface corresponds to a CHF phenomena and the dry zone is adiabatic. This model is nonlinear because of the temperature dependence of the heat-transfer coefficient in the wetted region and has yielded good agreement with data. A simplified one-dimensional approximation was developed which adequately describes these data. Finally, by means of a coordinate transformation and additional simplifying assumptions, this analysis was extended to analyze moving sputtering fronts, and reasonably good agreement with reported data was shown

  2. Diffusion of Gold and Platinum in Amorphous Silicon

    CERN Multimedia

    Voss, T L

    2002-01-01

    By means of radiotracer experiments the diffusion of Au and Pt in radio-frequency-sputtered amorphous silicon (a-Si) was investigated. Specimens of a-Si with homogeneous doping concentrations of Au or Pt in the range 0$\\, - \\,$1,7~at.\\% were produced by co-sputtering of Si and Au or Pt, respectively. An additional tiny concentration of radioactive $^{195}$Au or $^{188}$Pt, about 10~at.ppm, was implanted at ISOLDE. The resulting Gaussian distribution of the implanted atoms served as a probe for measuring diffusion coefficients at various doping concentrations. It was found that for a given doping concentration the diffusion coefficients show Arrhenius-type temperature dependences, where the diffusion enthalpy and the pre-exponential factor depend on the doping concentration. From these results it was concluded that in a-Si Au and Pt undergo direct, interstitial-like diffusion that is retarded by temporary trapping of the radiotracer atoms at vacancy-type defects with different binding enthalpies. In the case o...

  3. Effect of argon ion sputtering of surface on hydrogen permeation through vanadium

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Namba, Takashi; Yoneoka, Toshiaki; Kanno, Masayoshi; Shida, Koji.

    1983-01-01

    In order to measure the hydrogen permeation rate through V with atomically cleaned surface, an Ar ion sputtering apparatus has been installed in the hydrogen permeability measuring system. The permeation rate of the initial specimen was found to be increased by about one order of magnitude after Ar ion sputtering of its upstream side surface. Repeating of such a sputter-cleaning was not so much effective in increasing the steady state permeation rate as the initial sputtering was, but it accelerated the transient response rate by a factor of 2 or 3. The transient response rate was also accelerated by the increase of hydrogen pressure, but this effect tended to be diminished by the sputter-cleaning of specimen surface. The surface impurity layer on the downstream side of specimen was also inferred to act as a diffusion barrier affecting the steady state permeation rate. The present value of activation energy for hydrogen permeation through V at temperatures below 873K was the smallest one ever obtained, showing that the surface effect was minimized in the present study on account of the surface sputter-cleaning in addition to the ultra high vacuum system. (author)

  4. Characteristics of a-IGZO/ITO hybrid layer deposited by magnetron sputtering.

    Science.gov (United States)

    Bang, Joon-Ho; Park, Hee-Woo; Cho, Sang-Hyun; Song, Pung-Keun

    2012-04-01

    Transparent a-IGZO (In-Ga-Zn-O) films have been actively studied for use in the fabrication of high-quality TFTs. In this study, a-IGZO films and a-IGZO/ITO double layers were deposited by DC magnetron sputtering under various oxygen flow rates. The a-IGZO films showed an amorphous structure up to 500 degrees C. The deposition rate of these films decreased with an increase in the amount of oxygen gas. The amount of indium atoms in the film was confirmed to be 11.4% higher than the target. The resistivity of double layer follows the rules for parallel DC circuits The maximum Hall mobility of the a-IGZO/ITO double layers was found to be 37.42 cm2/V x N s. The electrical properties of the double layers were strongly dependent on their thickness ratio. The IGZO/ITO double layer was subjected to compressive stress, while the ITO/IGZO double layer was subjected to tensile stress. The bending tolerance was found to depend on the a-IGZO thickness.

  5. Thermal oxidation of Zr–Cu–Al–Ni amorphous metal thin films

    International Nuclear Information System (INIS)

    Oleksak, R.P.; Hostetler, E.B.; Flynn, B.T.; McGlone, J.M.; Landau, N.P.; Wager, J.F.; Stickle, W.F.; Herman, G.S.

    2015-01-01

    The initial stages of thermal oxidation for Zr–Cu–Al–Ni amorphous metal thin films were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The as-deposited films had oxygen incorporated during sputter deposition, which helped to stabilize the amorphous phase. After annealing in air at 300 °C for short times (5 min) this oxygen was found to segregate to the surface or buried interface. Annealing at 300 °C for longer times leads to significant composition variation in both vertical and lateral directions, and formation of a surface oxide layer that consists primarily of Zr and Al oxides. Surface oxide formation was initially limited by back-diffusion of Cu and Ni ( 30 min). The oxidation properties are largely consistent with previous observations of Zr–Cu–Al–Ni metallic glasses, however some discrepancies were observed which could be explained by the unique sample geometry of the amorphous metal thin films. - Highlights: • Thermal oxidation of amorphous Zr–Cu–Al–Ni thin films was investigated. • Significant short-range inhomogeneities were observed in the amorphous films. • An accumulation of Cu and Ni occurs at the oxide/metal interface. • Diffusion of Zr was found to limit oxide film growth.

  6. Low-energy excitations in amorphous films of silicon and germanium

    International Nuclear Information System (INIS)

    Liu, X.; Pohl, R.O.

    1998-01-01

    We present measurements of internal friction and shear modulus of amorphous Si (a-Si) and amorphous Ge (a-Ge) films on double-paddle oscillators at 5500 Hz from 0.5 K up to room temperature. The temperature- independent plateau in internal friction below 10 K, which is common to all amorphous solids, also exists in these films. However, its magnitude is smaller than found for all other amorphous solids studied to date. Furthermore, it depends critically on the deposition methods. For a-Si films, it decreases in the sequence of electron-beam evaporation, sputtering, self-ion implantation, and hot-wire chemical-vapor deposition (HWCVD). Annealing can also reduce the internal friction of the amorphous films considerably. Hydrogenated a-Si with 1 at.% H prepared by HWCVD leads to an internal friction more than two orders of magnitude smaller than observed for all other amorphous solids. The internal friction increases after the hydrogen is removed by effusion. Our results are compared with earlier measurements on a-Si and a-Ge films, none of which had the sensitivity achieved here. The variability of the low-energy tunneling states in the a-Si and a-Ge films may be a consequence of the tetrahedrally bonded covalent continuous random network. The perfection of this network, however, depends critically on the preparation conditions, with hydrogen incorporation playing a particularly important role. copyright 1998 The American Physical Society

  7. Nanostructure transition in Cr–C–N coatings deposited by pulsed closed field unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Wu, Z.L.; Lin, J.; Moore, J.J.; Lei, M.K.

    2012-01-01

    Cr–C–N coatings with different compositions, i.e. (C + N)/Cr atomic ratios (x) of 0.81–2.77, were deposited using pulsed closed field unbalanced magnetron sputtering by varying the chromium and graphite target powers, the pulse configuration and the ratio of the nitrogen flow rate to the total gas flow rate. Three kinds of nanostructures were identified in the Cr–C–N coatings dependent on the x values: a nano-columnar structure of hexagonal closed-packed (hcp) Cr 2 (C,N) and face-centered cubic (fcc) Cr(C,N) at x = 0.81 and 1.03 respectively, a nanocomposite structure consisting of nanocrystalline Cr(C,N) embedded in an amorphous C(N) matrix at x = 1.26 and 1.78, and a Cr-containing amorphous C(N) structure at x = 2.77. A maximum hardness of 31.0 GPa and a high H/E ratio of 1.0 have been achieved in the nc-Cr(C,N)/a-C(N) nanocomposite structure at x = 1.26, whereas the coating with a Cr-containing amorphous C(N) structure had a minimum hardness of 10.9 GPa and a low H/E ratio of 0.08 at x = 2.77. The incorporation of carbon into the Cr–N coatings led to a phase transition from hcp-Cr 2 (C,N) to fcc-Cr(C,N) by the dissolution into the nanocrystallites, and promoted the amorphization of Cr–C–N coatings with the precipitation of amorphous C(N). It was found that a high x value over 1.0 in the Cr–C–N coatings is the composition threshold to the nanostructure transition. - Highlights: ► Nanostructure transition of Cr–C–N coatings depended on (C + N)/Cr atomic ratio. ► A nano-columnar structure formed at atomic ratio less than 1.0. ► A nc-Cr(C,N)/a-C(N) nanocomposite structure formed at atomic ratio of 1.0–2.7. ► A Cr-containing amorphous C(N) structure formed at atomic ratio more than 2.7. ► Maximum hardness of 31.0 GPa was for nanocomposite coatings at atomic ratio of 1.26.

  8. Advanced TiC/a-C: H nanocomposite coatings deposited by magnetron sputtering

    OpenAIRE

    Pei, Y.T.; Galvan, D.; Hosson, J.Th.M. De; Strondl, C.

    2006-01-01

    TiC/a-C:H nanocomposite coatings have been deposited by magnetron Sputtering. They consist of 2-5 nm TiC nanocrystallites embedded in the amorphous hydrocarbon (a-C:H) matrix. A transition from a Columnar to a glassy microstructure has been observed in the nanocomposite coatings with increasing substrate bias or carbon content. Micro-cracks induced by nanoindentation or wear tests readily propagate through the column boundaries whereas the coatings without a columnar inicrostructure exhibit s...

  9. Ripples and ripples: from sandy deserts to ion-sputtered surfaces

    International Nuclear Information System (INIS)

    Aste, T; Valbusa, U

    2005-01-01

    We study the morphological evolution of surfaces during ion sputtering and we compare their dynamical corrugation with aeolian ripple formation in sandy deserts. We show that, although the two phenomena are physically different, they must obey similar geometrical constraints and therefore they can be described within the same theoretical framework. The present theory distinguishes between atoms that stay bounded in the bulk and others that are mobile on the surface. We describe the excavation mechanisms, the adsorption and the surface mobility by means of a continuous equation derived from the study of dune formation on sand. We explore the spontaneous development of ordered nanostructures and explain the different dynamical behaviours experimentally observed in metals or in semiconductors or in amorphous systems. We also show that this novel approach can describe the occurrence of rotation in the ripple direction and the formation of other kinds of self-organized patterns induced by changes in the sputtering incidence angle

  10. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  11. Arc generation from sputtering plasma-dielectric inclusion interactions

    International Nuclear Information System (INIS)

    Wickersham, C.E. Jr.; Poole, J.E.; Fan, J.S.

    2002-01-01

    Arcing during sputter deposition and etching is a significant cause of particle defect generation during device fabrication. In this article we report on the effect of aluminum oxide inclusion size, shape, and orientation on the propensity for arcing during sputtering of aluminum targets. The size, shape, and orientation of a dielectric inclusion plays a major role in determining the propensity for arcing and macroparticle emission. In previous studies we found that there is a critical inclusion size required for arcing to occur. In this article we used high-speed videos, electric arc detection, and measurements of particle defect density on wafers to study the effect of Al 2 O 3 inclusion size, shape, and orientation on arc rate, intensity, and silicon wafer particle defect density. We found that the cross-sectional area of the inclusion exposed to the sputtering plasma is the critical parameter that determines the arc rate and rate of macroparticle emission. Analysis of the arc rate, particle defect density, and the intensity of the optical emission from the arcing plasma indicates that the critical aluminum oxide inclusion area for arcing is 0.22±0.1 mm2 when the sputtering plasma sheath dark-space λ d , is 0.51 mm. Inclusions with areas greater than this critical value readily induce arcing and macroparticle ejection during sputtering. Inclusions below this critical size do not cause arcing or macroparticle ejection. When the inclusion major axis is longer than 2λ d and lies perpendicular to the sputter erosion track tangent, the arcing activity increases significantly over the case where the inclusion major axis lies parallel to the erosion track tangent

  12. Ion-induced sputtering

    International Nuclear Information System (INIS)

    Yamamura, Yasumichi; Shimizu, Ryuichi; Shimizu, Hazime; Ito, Noriaki.

    1983-01-01

    The research on ion-induced sputtering has been continued for a long time, since a hundred or more years ago. However, it was only in 1969 by Sigmund that the sputtering phenomena were theoretically arranged into the present form. The reason why the importance of sputtering phenomena have been given a new look recently is the application over wide range. This paper is a review centering around the mechanism of causing sputtering and its characteristics. Sputtering is such a phenomenon that the atoms in the vicinity of a solid surface are emitted into vacuum by receiving a part of ion energy, or in other words, it is a kind of irradiation damage in the vicinity of a solid surface. In this meaning, it can be considered that the sputtering based on the ions located on the clean surface of a single element metal is simple, and has already been basically understood. On the contrary, the phenomena can not be considered to be fully understood in the case of alloys and compounds, because these surface conditions under irradiation are not always clear due to segregation and others. In the paper, the physical of sputtering, single element sputtering, the sputtering in alloys and compounds, and the behaviour of emitted particles are explained. Finally, some recent topics of the sputtering measurement by laser resonant excitation, the sputtering by electron excitation, chemical sputtering, and the sputtering in nuclear fusion reactors are described. (Wakatsuki, Y.)

  13. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Li Haixia; Cheng Fangyi; Zhu Zhiqiang; Bai Hongmei; Tao Zhanliang; Chen Jun

    2011-01-01

    Research highlights: → Amorphous Si thin films have been deposited on copper foam substrate by radio-frequency (rf) magnetron sputtering. → The as-prepared Si/Cu films with interconnected 3-dimensional structure are employed as anode materials of rechargeable lithium-ion batteries, showing that the electrode properties are greatly affected by the deposition temperature. → The film electrode deposited at an optimum temperature of 300 deg. C delivers a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. → The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm 2 /s. → The combination of rf magnetron sputtering and cooper foam substrate is an efficient route to prepare amorphous Si films with high capacity and cyclability due to the efficient ionic diffusion and interface contact with a good conductive current collector. - Abstract: Amorphous Si thin films, which have been deposited on copper foam by radio-frequency (rf) magnetron sputtering, are employed as anode materials of rechargeable lithium-ion batteries. The morphologies and structures of the as-prepared Si thin films are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Electrochemical performance of lithium-ion batteries with the as-prepared Si films as the anode materials is investigated by cyclic voltammetry and charge-discharge measurements. The results show that the electrode properties of the prepared amorphous Si films are greatly affected by the deposition temperature. The film electrode deposited at an optimum temperature of 300 deg. C can deliver a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm

  14. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Serra, R., E-mail: ricardo.serra@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Oliveira, V. [ICEMS-Instituto de Ciência e Engenharia de Materiais e Superfícies, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Oliveira, J.C. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Kubart, T. [The Ångström Laboratory, Solid State Electronics, P.O. Box 534, SE-751 21 Uppsala (Sweden); Vilar, R. [Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Instituto Superior Técnico, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal)

    2015-03-15

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm{sup 2}. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under

  15. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    International Nuclear Information System (INIS)

    Serra, R.; Oliveira, V.; Oliveira, J.C.; Kubart, T.; Vilar, R.; Cavaleiro, A.

    2015-01-01

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm 2 . Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different

  16. Structural and optical properties of amorphous oxygenated iron boron nitride thin films produced by reactive co-sputtering

    International Nuclear Information System (INIS)

    Essafti, A.; Abouelaoualim, A.; Fierro, J.L.G.; Ech-chamikh, E.

    2009-01-01

    Amorphous oxygenated iron boron nitride (a-FeBN:O) thin films were prepared by reactive radio-frequency (RF) sputtering, from hexagonal boron nitride chips placed on iron target, under a total pressure of a gas mixture of argon and oxygen maintained at 1 Pa. The films were deposited onto silicon and glass substrates, at room temperature. The power of the generator RF was varied from 150 to 350 W. The chemical and structural analyses were investigated using X-ray photoelectron spectroscopy (XPS), energy dispersive of X-ray and X-ray reflectometry (XRR). The optical properties of the films were obtained from the optical transmittance and reflectance measurements in the ultraviolet-visible-near infrared wavelengths range. XPS reveals the presence of boron, nitrogen, iron and oxygen atoms and also the formation of different chemical bonds such as Fe-O, B-N, B-O and the ternary BNO phase. This latter phase is predominant in the deposited films as observed in the B 1s and N 1s core level spectra. As the RF power increases, the contribution of N-B bonds in the as-deposited films decreases. The XRR results show that the mass density of a-FeBN:O thin films increases from 2.6 to 4.12 g/cm 3 with increasing the RF power from 150 to 350 W. This behavior is more important for films deposited at RF power higher than 150 W, and has been associated with the enhancement of iron atoms in the film structure. The optical band gap decreases from 3.74 to 3.12 eV with increasing the RF power from 150 to 350 W.

  17. Deposition and characterization of sputtered hexaboride coatings

    International Nuclear Information System (INIS)

    Waldhauser, W.

    1996-06-01

    Hexaborides of the rare-earth elements ReB 6 are potential materials for cathode applications since they combine properties such as low work function, good electrical conductivity, high melting point as well as low volatility at high temperatures. Due to their high hardness and colorations ranging from blue to purple these compounds are also considered for applications to coatings for decoration of consumer products. At present, either rods of sintered LaB 6 or single LaB 6 crystals are indirectly heated to induce emission. In this workboride coatings were deposited onto various substrates employing non-reactive magnetron sputtering from LaB 6 , CeB 6 , SmB 6 and YB 6 targets. Coatings deposited were examined using scanning electron microscopy, X-ray diffraction, electron probe microanalysis. Vickers microhardness, colorimeter and spectroscopic ellipsometry measurements. Electron emission characteristics of the coatings were studied by the thermionic emission and the contact potential method. After optimization of the sputtering parameters fine-columnar or partially amorphous films with atomic ratios of boron to metal in the order of 5 to 7.5 were obtained. The tendency to form the corresponding hexaboride phase decreases from LaB 6 , CeB 6 and SmB 6 to YB 6 . The work function was measured to be in the range of 2.6 to 3.3 eV. Vickers microhardness values lie between 1500 and 2000 HVO.01. LaB 6 coatings showed the most pronounced visual color impression corresponding to dark violet. The results obtained indicate that sputtered hexaboride films are well suited for decorative and thermionic applications. (author)

  18. Two-dimensional X-ray diffraction and transmission electron microscopy study on the effect of magnetron sputtering atmosphere on GaN/SiC interface and gallium nitride thin film crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Huaxiang, E-mail: shenhuaxiang@gmail.com [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Zhu, Guo-Zhen; Botton, Gianluigi A. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Kitai, Adrian [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2015-03-21

    The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality (0002) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by (0002) oriented wurtzite GaN and (111) oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H{sub 2} into Ar and/or N{sub 2} during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H{sub 2} into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted (33{sup ¯}02) orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H{sub 2} into N{sub 2} due to the complex reaction between H{sub 2} and N{sub 2}.

  19. Sputtered catalysts

    International Nuclear Information System (INIS)

    Tyerman, W.J.R.

    1978-01-01

    A method is described for preparing a supported catalyst by a sputtering process. A material that is catalytic, or which is a component of a catalytic system, is sputtered on to the surface of refractory oxide particles that are compatible with the sputtered material and the sputtered particles are consolidated into aggregate form. The oxide particles before sputtering should have a diameter in the range 1000A to 50μ and a porosity less than 0.4 ml/g, and may comprise MgO, Al 2 O 3 or SiO 2 or mixtures of these oxides, including hydraulic cement. The particles may possess catalytic activity by themselves or in combination with the catalytic material deposited on them. Sputtering may be effected epitaxially and consolidation may be effected by compaction pelleting, extrusion or spray drying of a slurry. Examples of the use of such catalysts are given. (U.K.)

  20. A transmission electron microscopy and X-ray photoelectron spectroscopy study of annealing induced γ-phase nucleation, clustering, and interfacial dynamics in reactively sputtered amorphous alumina thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. K. Nanda, E-mail: aknk27@yahoo.com; Subramanian, B. [ECMS Division, Central Electro Chemical Research Institute, Karaikudi (India); Prasanna, S. [Department of Physics, PSG College of Technology, Coimbatore (India); Jayakumar, S. [Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore (India); Rao, G. Mohan [Department of Instrumentation, Indian Institute of Science, Bangalore (India)

    2015-03-28

    Pure α-Al{sub 2}O{sub 3} exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al{sub 2}O{sub 3} thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling γ-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of ≈0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-γ transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source.

  1. A transmission electron microscopy and X-ray photoelectron spectroscopy study of annealing induced γ-phase nucleation, clustering, and interfacial dynamics in reactively sputtered amorphous alumina thin films

    Science.gov (United States)

    Kumar, A. K. Nanda; Prasanna, S.; Subramanian, B.; Jayakumar, S.; Rao, G. Mohan

    2015-03-01

    Pure α-Al2O3 exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al2O3 thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling γ-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of ≈0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-γ transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source.

  2. A transmission electron microscopy and X-ray photoelectron spectroscopy study of annealing induced γ-phase nucleation, clustering, and interfacial dynamics in reactively sputtered amorphous alumina thin films

    International Nuclear Information System (INIS)

    Kumar, A. K. Nanda; Subramanian, B.; Prasanna, S.; Jayakumar, S.; Rao, G. Mohan

    2015-01-01

    Pure α-Al 2 O 3 exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al 2 O 3 thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling γ-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of ≈0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-γ transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source

  3. Co-sputtered optical films

    Energy Technology Data Exchange (ETDEWEB)

    Misiano, C; Simonetti, E [Selenia S.p.A., Rome (Italy)

    1977-06-01

    The co-sputtering of two dielectric materials with indices of refraction as widely different as possible has been investigated with the aim of obtaining both homogeneous films with an intermediate index of refraction and inhomogeneous films with predetermined profiles. An rf sputtering module is described which has been especially designed, with two separate cathodes and two independent tunable rf generators. The substrates are placed on a circular anode rotating underneath the two cathodes. So far mainly CeO/sub 2/, TiO2 and SiO/sub 2/ targets have been used. The deposition rate from each cathode and the total film thickness are determined by means of two quartz thickness monitors, sputtering compatible. Values obtained for the refractive index and optical thickness are reported, as well as repeatability, mechanical and chemical characteristics, reliability and high power optical radiation resistance. Finally, results obtained on optical components of practical interest are discussed.

  4. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    International Nuclear Information System (INIS)

    Hofmann, S.; Han, Y.S.; Wang, J.Y.

    2017-01-01

    Highlights: • Interfacial depth resolution from MRI model depends on sputtering rate differences. • Depth resolution critically depends on the dominance of roughness or atomic mixing. • True (depth scale) and apparent (time scale) depth resolutions are different. • Average sputtering rate approximately yields true from apparent depth resolution. • Profiles by SIMS and XPS are different but similar to surface concentrations. - Abstract: The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16–84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16–84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  5. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [Max Planck Institute for Intelligent Systems (formerly MPI for Metals Research), Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Han, Y.S. [Department of Physics, Shantou University, 243 Daxue Road, Shantou, 515063 Guangdong (China); Wang, J.Y., E-mail: wangjy@stu.edu.cn [Department of Physics, Shantou University, 243 Daxue Road, Shantou, 515063 Guangdong (China)

    2017-07-15

    Highlights: • Interfacial depth resolution from MRI model depends on sputtering rate differences. • Depth resolution critically depends on the dominance of roughness or atomic mixing. • True (depth scale) and apparent (time scale) depth resolutions are different. • Average sputtering rate approximately yields true from apparent depth resolution. • Profiles by SIMS and XPS are different but similar to surface concentrations. - Abstract: The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16–84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16–84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  6. Decorative black TiCxOy film fabricated by DC magnetron sputtering without importing oxygen reactive gas

    Science.gov (United States)

    Ono, Katsushi; Wakabayashi, Masao; Tsukakoshi, Yukio; Abe, Yoshiyuki

    2016-02-01

    Decorative black TiCxOy films were fabricated by dc (direct current) magnetron sputtering without importing the oxygen reactive gas into the sputtering chamber. Using a ceramic target of titanium oxycarbide (TiC1.59O0.31), the oxygen content in the films could be easily controlled by adjustment of total sputtering gas pressure without remarkable change of the carbon content. The films deposited at 2.0 and 4.0 Pa, those are higher pressure when compared with that in conventional magnetron sputtering, showed an attractive black color. In particular, the film at 4.0 Pa had the composition of TiC1.03O1.10, exhibited the L* of 41.5, a* of 0.2 and b* of 0.6 in CIELAB color space. These values were smaller than those in the TiC0.29O1.38 films (L* of 45.8, a* of 1.2 and b* of 1.2) fabricated by conventional reactive sputtering method from the same target under the conditions of gas pressure of 0.3 Pa and optimized oxygen reactive gas concentration of 2.5 vol.% in sputtering gas. Analysis of XRD and XPS revealed that the black film deposited at 4.0 Pa was the amorphous film composed of TiC, TiO and C. The adhesion property and the heat resisting property were enough for decorative uses. This sputtering process has an industrial advantage that the decorative black coating with color uniformity in large area can be easily obtained by plain operation because of unnecessary of the oxygen reactive gas importing which is difficult to be controlled uniformly in the sputtering chamber.

  7. Pseudocapacitance of amorphous TiO2@nitrogen doped graphene composite for high rate lithium storage

    International Nuclear Information System (INIS)

    Li, Sheng; Xue, Pan; Lai, Chao; Qiu, Jingxia; Ling, Min; Zhang, Shanqing

    2015-01-01

    The high rate applications such as electric vehicles of the traditional lithium ion batteries (LIBs) are commonly limited by their insufficient electron conductivity and slow mass transport of lithium ions in bulk electrode materials. In order to address these issues, in this work, a simple and up-scalable wet-mechanochemical (wet-ball milling) route has been developed for fabrication of amorphous porous TiO 2 @nitrogen doped graphene (TiO 2 @N-G) nanocomposites. The amorphous phase, unique porous structure of TiO 2 and the surface defects from nitrogen doping to graphene planes have incurred surface controlled reactions, contributing pseudocapacitance to the total capacity of the battery. It plays a dominant role in producing outstanding high rate electrochemical performance, e.g., 182.7 mAh/g (at 3.36 A/g) after 100 cycles. The design and synthesis of electrode materials with enhanced conductivity and surface pseudocapacitance can be a promising way for high rate LIBs.

  8. Helium-Charged La-Ni-Al Thin Films Deposited by Magnetron Sputtering

    International Nuclear Information System (INIS)

    Shi Liqun; Chen Deming; Xu Shilin; Liu Chaozhu; Hao Wanli; Zhou Zhuyin

    2005-01-01

    An advanced implantation of low energy helium-4 atoms during the La-Ni-Al film growth by adopting magnetron sputtering with Ar/He mixture gases is discussed. Both proton backscattering spectroscopy (PBS) and elastic recoil detection (ERD) analyses were adopted to measure helium concentration of the films and distribution in the near-surface region. Helium atoms with a high concentration incorporate evenly in deposited film. The introduction of the helium with no extra irradiation damage is expected by choosing suitable deposition conditions. It was found that amorphous and crystalline LaNi 5 -type structures can be achieved when sputtered with pure Ar and Ar/He mixture gases at room temperature, respectively. Thermal desorption experiments proposes that a part of hydrogen atoms are bound to trapped helium at crystal and releases together with helium. Only a small fraction of helium is released from the helium-vacancy clusters in lower temperature range and most of helium is released from small size helium bubbles in the high temperature range

  9. Thermal evolution of nanocrystalline co-sputtered Ni–Zr alloy films: Structural, magnetic and MD simulation studies

    International Nuclear Information System (INIS)

    Bhattacharya, Debarati; Rao, T.V. Chandrasekhar; Bhushan, K.G.; Ali, Kawsar; Debnath, A.; Singh, S.; Arya, A.; Bhattacharya, S.; Basu, S.

    2015-01-01

    Monophasic and homogeneous Ni 10 Zr 7 nanocrystalline alloy films were successfully grown at room temperature by co-sputtering in an indigenously developed three-gun DC/RF magnetron sputtering unit. The films could be produced with long-range crystallographic and chemical order in the alloy, thus overcoming the widely acknowledged inherent proclivity of the glass forming Ni–Zr couple towards amorphization. Crystallinity of these alloys is a desirable feature with regard to improved efficacy in applications such as hydrogen storage, catalytic activity and nuclear reactor engineering, to name a few. Thermal stability of this crystalline phase, being vital for transition to viable applications, was investigated through systematic annealing of the alloy films at 473 K, 673 K and 923 K for various durations. While the films were stable at 473 K, the effect of annealing at 673 K was to create segregation into nanocrystalline Ni (superparamagnetic) and amorphous Ni + Zr (non-magnetic) phases. Detailed analyses of the physical and magnetic structures before and after annealing were performed through several techniques effectual in analyzing stratified configurations and the findings were all consistent with each other. Polarized neutron and X-ray reflectometry, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectroscopy and X-ray photoelectron spectroscopy were used to gauge phase separation at nanometer length scales. SQUID based magnetometry was used to investigate macroscopic magnetic properties. Simulated annealing performed on this system using molecular dynamic calculations corroborated well with the experimental results. This study provides a thorough understanding of the creation and thermal evolution of a crystalline Ni–Zr alloy. - Highlights: • Nanocrystalline Ni 10 Zr 7 alloy thin films deposited successfully by co-sputtering. • Creation of a crystalline alloy in a binary system with a tendency to amorphize. • Quantitative

  10. Thermal evolution of nanocrystalline co-sputtered Ni–Zr alloy films: Structural, magnetic and MD simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debarati, E-mail: debarati@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rao, T.V. Chandrasekhar; Bhushan, K.G. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ali, Kawsar [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Debnath, A. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Arya, A. [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bhattacharya, S. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Basu, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-11-15

    Monophasic and homogeneous Ni{sub 10}Zr{sub 7} nanocrystalline alloy films were successfully grown at room temperature by co-sputtering in an indigenously developed three-gun DC/RF magnetron sputtering unit. The films could be produced with long-range crystallographic and chemical order in the alloy, thus overcoming the widely acknowledged inherent proclivity of the glass forming Ni–Zr couple towards amorphization. Crystallinity of these alloys is a desirable feature with regard to improved efficacy in applications such as hydrogen storage, catalytic activity and nuclear reactor engineering, to name a few. Thermal stability of this crystalline phase, being vital for transition to viable applications, was investigated through systematic annealing of the alloy films at 473 K, 673 K and 923 K for various durations. While the films were stable at 473 K, the effect of annealing at 673 K was to create segregation into nanocrystalline Ni (superparamagnetic) and amorphous Ni + Zr (non-magnetic) phases. Detailed analyses of the physical and magnetic structures before and after annealing were performed through several techniques effectual in analyzing stratified configurations and the findings were all consistent with each other. Polarized neutron and X-ray reflectometry, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectroscopy and X-ray photoelectron spectroscopy were used to gauge phase separation at nanometer length scales. SQUID based magnetometry was used to investigate macroscopic magnetic properties. Simulated annealing performed on this system using molecular dynamic calculations corroborated well with the experimental results. This study provides a thorough understanding of the creation and thermal evolution of a crystalline Ni–Zr alloy. - Highlights: • Nanocrystalline Ni{sub 10}Zr{sub 7} alloy thin films deposited successfully by co-sputtering. • Creation of a crystalline alloy in a binary system with a tendency to amorphize.

  11. Charge storage characteristics and tunneling mechanism of amorphous Ge-doped HfO{sub x} films

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, X.Y.; Zhang, S.Y.; Zhang, T.; Wang, R.X.; Li, L.T.; Zhang, Y. [Southwest University, School of Physical Science and Technology, Chongqing (China); Dai, J.Y. [The Hong Kong Polytechnic University, Department of Applied Physics, Hong Kong (China)

    2016-09-15

    Amorphous Ge-doped HfO{sub x} films have been deposited on p-Si(100) substrates by means of RF magnetron sputtering. Microstructural investigations reveal the partial oxidation of doped Ge atoms in the amorphous HfO{sub x} matrix and the existence of HfSiO{sub x} interfacial layer. Capacitance-voltage hysteresis of the Ag-/Ge-doped HfO{sub x}/Si/Ag memory capacitor exhibits a memory window of 3.15 V which can maintain for >5 x 10{sup 4} cycles. Current-voltage characteristics reveal that Poole-Frenkel tunneling is responsible for electron transport in the Ge-doped HfO{sub x} film. (orig.)

  12. Arc generation from sputtering plasma-dielectric inclusion interactions

    CERN Document Server

    Wickersham, C E J; Fan, J S

    2002-01-01

    Arcing during sputter deposition and etching is a significant cause of particle defect generation during device fabrication. In this article we report on the effect of aluminum oxide inclusion size, shape, and orientation on the propensity for arcing during sputtering of aluminum targets. The size, shape, and orientation of a dielectric inclusion plays a major role in determining the propensity for arcing and macroparticle emission. In previous studies we found that there is a critical inclusion size required for arcing to occur. In this article we used high-speed videos, electric arc detection, and measurements of particle defect density on wafers to study the effect of Al sub 2 O sub 3 inclusion size, shape, and orientation on arc rate, intensity, and silicon wafer particle defect density. We found that the cross-sectional area of the inclusion exposed to the sputtering plasma is the critical parameter that determines the arc rate and rate of macroparticle emission. Analysis of the arc rate, particle defect...

  13. Magnetostrictive thin films prepared by RF sputtering

    International Nuclear Information System (INIS)

    Carabias, I.; Martinez, A.; Garcia, M.A.; Pina, E.; Gonzalez, J.M.; Hernando, A.; Crespo, P.

    2005-01-01

    Fe 80 B 20 thin films have been prepared by ion beam sputtering magnetron on room temperature. The films were fabricated on different substrates to compare the different magnetic and structural properties. In particular the growth of films on flexible substrates (PDMS, Kapton) has been studied to allow a simple integration of the system in miniaturized magnetostrictive devices. X-ray diffraction patterns indicate that films are mainly amorphous although the presence of some Fe nanoparticles cannot be ruled out. The coercive field of thin films ranges between 15 and 35 Oe, depending on substrate. Magnetostriction measurements indicate the strong dependence of the saturation magnetostriction with the substrate. Samples on flexible substrates exhibit a better performance than samples deposited onto glass substrates

  14. PREPARATION AND MAGNETIC-PROPERTIES OF AMORPHOUS FE1-XBX (15-LESS-THAN-OR-EQUAL-TO X LESS-THAN-40 ATMOSPHERIC PERCENT) ALLOY PARTICLES

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, S.

    1992-01-01

    Amorphous Fe1-xBx alloy particles have been prepared in aqueous solutions by reduction of Fe2+ ions to the metallic state by the use of NaBH4. It is demonstrated, that by changing the pH of the aqueous metal ion solution the amount of boron incorporated in the alloy particles can be varied between...... 15 and 28 at.%. Fe-57 Mossbauer spectra have been obtained at 10, 80 and 295 K. The hyperfine parameters for amorphous particles have been found to be similar to those found for ribbons and films prepared by the liquid-quench and sputtering techniques, respectively, though with a tendency...... for the magnetic hyperfine fields for the chemically prepared and sputter prepared alloys to deviate slightly from those for melt-spun samples. The magnetic hyperfine fields decrease linearly as a function of T3/2....

  15. Atomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films

    CERN Document Server

    Mantovan, R.; Mokhles Gerami, A.; Mølholt, T. E.; Wiemer, C.; Longo, M.; Gunnlaugsson, H. P.; Johnston, K.; Masenda, H.; Naidoo, D.; Ncube, M.; Bharuth-Ram, K.; Fanciulli, M.; Gislason, H. P.; Langouche, G.; Ólafsson, S.; Weyer, G.

    The underlying mechanism driving the structural amorphous-to-crystalline transition in Group VI chalcogenides is still a matter of debate even in the simplest GeTe system. We exploit the extreme sensitivity of 57Fe emission Mössbauer spectroscopy, following dilute implantation of 57Mn (T½ = 1.5 min) at ISOLDE/CERN, to study the electronic charge distribution in the immediate vicinity  of the 57Fe probe substituting Ge (FeGe), and to interrogate the local environment of FeGe over the amorphous-crystalline phase transition in GeTe thin films. Our results show that the local structure  of as-sputtered amorphous GeTe is a combination of tetrahedral and defect-octahedral sites. The main effect of the crystallization is the conversion from tetrahedral to defect-free octahedral sites.  We discover that only the tetrahedral fraction in amorphous GeTe participates to the change of the FeGe-Te chemical bond...

  16. Colors and the evolution of amorphous galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.

    1987-01-01

    UBVRI and H-alpha photometric observations are presented for 16 amorphous galaxies and a comparison sample of Magellanic irregular (Im) and Sc spiral galaxies. These data are analyzed in terms of star-formation rates and histories in amorphous galaxies. Amorphous galaxies have mean global colors and star-formation rates per unit area that are similar to those in giant Im systems, despite differences in spatial distributions of star-forming centers in these two galactic structural classes. Amorphous galaxies differ from giant Im systems in having somewhat wider scatter in relationships between B - V and U - B colors, and between U - B and L(H-alpha)/L(B). This scatter is interpreted as resulting from rapid variations in star-formation rates during the recent past, which could be a natural consequence of the concentration of star-forming activity into centrally located, supergiant young stellar complexes in many amorphous galaxies. While the unusual spatial distribution and intensity of star formation in some amorphous galaxies is due to interactions with other galaxies, several amorphous galaxies are relatively isolated and thus the processes must be internal. The ultimate evolutionary fate of rapidly evolving amorphous galaxies remains unknown. 77 references

  17. Properties of Erbium Doped Hydrogenated Amorphous Carbon Layers Fabricated by Sputtering and Plasma Assisted Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2008-01-01

    Full Text Available We report about properties of carbon layers doped with Er3+ ions fabricated by Plasma Assisted Chemical Vapor Deposition (PACVD and by sputtering on silicon or glass substrates. The structure of the samples was characterized by X-ray diffraction and their composition was determined by Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The Absorbance spectrum was taken in the spectral range from 400 nm to 600 nm. Photoluminescence spectra were obtained using two types of Ar laser (λex=514.5 nm, lex=488 nm and also using a semiconductor laser (λex=980 nm. Samples fabricated by magnetron sputtering exhibited typical emission at 1530 nm when pumped at 514.5 nm. 

  18. Isotope puzzle in sputtering

    International Nuclear Information System (INIS)

    Zheng Liping

    1998-01-01

    Mechanisms affecting multicomponent material sputtering are complex. Isotope sputtering is the simplest in the multicomponent materials sputtering. Although only mass effect plays a dominant role in the isotope sputtering, there is still an isotope puzzle in sputtering by ion bombardment. The major arguments are as follows: (1) At the zero fluence, is the isotope enrichment ejection-angle-independent or ejection-angle-dependent? (2) Is the isotope angular effect the primary or the secondary sputter effect? (3) How to understand the action of momentum asymmetry in collision cascade on the isotope sputtering?

  19. Mechanical Properties And Microstructure Of AlN/SiCN Nanocomposite Coatings Prepared By R.F.-Reactive Sputtering Method

    Directory of Open Access Journals (Sweden)

    Nakafushi Y.

    2015-06-01

    Full Text Available FIn this work, AlN/SiCN composite coatings were deposited by r.f.-reactive sputtering method using a facing target-type sputtering (FTS apparatus with composite targets consisting of Al plate and SiC chips in a gaseous mixture of Ar and N2, and investigated their mechanical properties and microstructure. The indentation hardness (HIT of AlN/SiCN coatings prepared from composite targets consisting of 8 ~32 chips of SiC and Al plate showed the maximum value of about 29~32 GPa at a proper nitrogen gas flow rate. X-ray diffraction (XRD patterns for the AlN/SiCN composite coatings indicated the presence of the only peeks of hexagonal (B4 structured AlN phase. AlN coatings clarified the columnar structure of the cross sectional view TEM observation. On the other hand, microstructure of AlN/SiCN composite coatings changed from columnar to equiaxed structure with increasing SiCN content. HR-TEM observation clarified that the composite coatings consisted of very fine equiaxial grains of B4 structured AlN phase and amorphous phase.

  20. Stoichiometric carbon nitride synthesized by ion beam sputtering and post nitrogen ion implantation

    International Nuclear Information System (INIS)

    Valizadeh, R.; Colligon, J.S.; Katardiev, I.V.; Faunce, C.A.; Donnelly, S.E.

    1998-01-01

    Full text: Carbon nitride films have been deposited on Si (100) by ion beam sputtering a vitreous graphite target with nitrogen and argon ions with and without concurrent N2 ion bombardment at room temperature. The sputtering beam energy was 1000 eV and the assisted beam energy was 300 eV with ion / atom arrival ratio ranging from 0.5 to 5. The carbon nitride films were deposited both as single layer directly on silicon substrate and as multilayer between two layers of stoichiometric amorphous silicon nitride and polycrystalline titanium nitride. The deposited films were implanted ex-situ with 30 keV nitrogen ions with various doses ranging from 1E17 to 4E17 ions.cm -2 and 2 GeV xenon ion with a dose of 1E12 ions.cm -2 . The nitrogen concentration of the films was measured with Rutherford Backscattering (RBS), Secondary Neutral Mass Spectrometry (SNMS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The nitrogen concentration for as deposited sample was 34 at% and stoichiometric carbon nitride C 3 N 4 was achieved by post nitrogen implantation of the multi-layered films. Post bombardment of single layer carbon nitride films lead to reduction in the total nitrogen concentration. Carbon K edge structure obtained from PEELS analysis suggested that the amorphous C 3 N 4 matrix was predominantly sp 2 bonded. This was confirmed by Fourier Transforrn Infra-Red Spectroscopy (FTIR) analysis of the single CN layer which showed the nitrogen was mostly bonded with carbon in nitrile (C≡N) and imine (C=N) groups. The microstructure of the film was determined by Transmission Electron Microscopy (TEM) which indicated that the films were amorphous

  1. The comparison of the optical spectra of carbon coatings prepared by magnetron sputtering and microwave plasma enhanced chemical vapor deposition measured by the photothermal deflection spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Pham, T.T.; Varga, Marián; Kromka, Alexander; Mao, H.B.

    2015-01-01

    Roč. 7, č. 4 (2015), s. 321-324 ISSN 2164-6627 R&D Projects: GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * amorphous carbon * magnetron sputtering * CVD * optical spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. Structure and superconducting properties of Nb-Zr alloy films made by a high-rate sputtering

    International Nuclear Information System (INIS)

    Sekine, Hisashi; Inoue, Kiyoshi; Tachikawa, Kyoji

    1978-01-01

    Superconducting Nb-Zr alloy films have been prepared by a continuous high-rate sputtering on tantalum substrates. A deposition rate of 330 nm/min has been attained. The compositional profile in the Nb-Zr film is quite uniform and the film has nearly the same composition as that of the target. The films deposited in a pure argon atmosphere show a columnar structure grown perpendicular to the substrate. The grain size strongly depends on the substrate temperature. The phase transformations in the Nb-Zr film become more apparent and the structure becomes closer to the equilibrium state as the film is deposited in higher atmosphere pressures and/or at lower target voltages. The superconducting transition temperature T sub(c) of the films is about the same as that of bulk samples. The dependence of T sub(c) on the substrate temperature is explainable on the phase transformations in the film. Critical current density J sub(c) and its anisotropy is closely related to the grain structure of the film. Grain boundaries seem to act as the most predominant flux pinning centers in the films. Effects of oxygen in the sputtering atmosphere on the structure and superconducting properties of the Nb-Zr films have been also investigated. Oxygen significantly decreases the grain size of the film. Oxygen increases J sub(c) but decreases T sub(c) of the film. (auth.)

  3. Anti-biofouling function of amorphous nano-Ta2O5 coating for VO2-based intelligent windows

    Science.gov (United States)

    Li, Jinhua; Guo, Geyong; Wang, Jiaxing; Zhou, Huaijuan; Shen, Hao; Yeung, Kelvin W. K.

    2017-04-01

    From environmental and health perspectives, the acquisition of a surface anti-biofouling property holds important significance for the usability of VO2 intelligent windows. Herein, we firstly deposited amorphous Ta2O5 nanoparticles on VO2 film by the magnetron sputtering method. It was found that the amorphous nano-Ta2O5 coating possessed a favorable anti-biofouling capability against Pseudomonas aeruginosa as an environmental microorganism model, behind which lay the mechanism that the amorphous nano-Ta2O5 could interrupt the microbial membrane electron transport chain and significantly elevate the intracellular reactive oxygen species (ROS) level. A plausible relationship was established between the anti-biofouling activity and physicochemical nature of amorphous Ta2O5 nanoparticles from the perspective of defect chemistry. ROS-induced oxidative damage gave rise to microbial viability loss. In addition, the amorphous nano-Ta2O5 coating can endow VO2 with favorable cytocompatibility with human skin fibroblasts. This study may provide new insights into understanding the anti-biofouling and antimicrobial actions of amorphous transition metal oxide nanoparticles, which is conducive to expanding their potential applications in environmental fields.

  4. Nickel-induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J A; Arce, R D; Buitrago, R H [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Budini, N; Rinaldi, P, E-mail: jschmidt@intec.unl.edu.a [FIQ - UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2009-05-01

    The nickel-induced crystallization of hydrogenated amorphous silicon (a-Si:H) is used to obtain large grained polycrystalline silicon thin films on glass substrates. a-Si:H is deposited by plasma enhanced chemical vapour deposition at 200 deg. C, preparing intrinsic and slightly p-doped samples. Each sample was divided in several pieces, over which increasing Ni concentrations were sputtered. Two crystallization methods are compared, conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization was followed by optical microscopy and scanning electron microscopy observations, X-ray diffraction, and reflectance measurements in the UV region. The large grain sizes obtained - larger than 100{mu}m for the samples crystallized by CFA - are very encouraging for the preparation of low-cost thin film polycrystalline silicon solar cells.

  5. Amorphization kinetics of Zr3Fe under electron irradiation

    International Nuclear Information System (INIS)

    Motta, A.T.; Howe, L.M.; Okamoto, P.R.

    1992-10-01

    0.9 MeV electron irradiations were performed at 28--220 K in a high-voltage electron microscope (HVEM). By measuring onset, spread and final size of the amorphous region, factoring in the Guassian distribution of the beam, a kinetic description of the amorphization in terms of dose, dose rate and temperature was obtained. The critical temperature for amorphization by electron irradiation was found to be ∼220 K, compared to 570--625 K for 40 Ar ion irradiation. Also, the dose-to-amorphization increased exponentially with temperature. Results indicated that the rate of growth of the amorphous region under the electron beam decreased with increasing temperature and the does-to-amorphization decreased with increasing dose rate. The size of the amorphous region saturated after a region dose, the final size decreasing with increasing temperature, and it was argued that this is related to the existence of a critical dose rate, which increased with temperature, below which no amorphization occurred. The above observations can be understood in the framework of the kinetics of damage accumulation under irradiation

  6. Sputtering in a glow discharge ion source - pressure dependence: theory and experiment

    International Nuclear Information System (INIS)

    Mason, R.S.; Pichilingi, Melanie

    1994-01-01

    A simplified theoretical expression has been developed for a glow discharge to show how the average cathode erosion rate (expressed as the number of atoms per ion of the total bombarding flux) varies with primary sputter yield, pressure, 'diffusion length' and sputtered atom 'stopping' cross section. An inverse pressure dependence is predicted which correlates well with experiment in the 2 and He, tend to converge. It is suggested that this could be due to a change in the mechanism to self-sputtering. Under constant conditions, the erosion rates of different cathode materials still correlate quite well with the differences in their primary sputter yields. (author)

  7. Electric and Magnetic Properties of Sputter Deposited BiFeO3 Films

    Directory of Open Access Journals (Sweden)

    N. Siadou

    2013-01-01

    Full Text Available Polycrystalline BiFeO3 films have been magnetron sputter deposited at room temperature and subsequently heat-treated ex situ at temperatures between 400 and 700°C. The deposition was done in pure Ar atmosphere, as the use of oxygen-argon mixture was found to lead to nonstoichiometric films due to resputtering effects. At a target-to-substrate distance d=2′′ the BiFeO3 structure can be obtained in larger range process gas pressures (2–7 mTorr but the films do not show a specific texture. At d=6′′ codeposition from BiFeO3 and Bi2O3 has been used. Films sputtered at low rate tend to grow with the (001 texture of the pseudo-cubic BiFeO3 structure. As the film structure does not depend on epitaxy similar results are obtained on different substrates. A result of the volatility of Bi, Bi rich oxide phases occur after heat treatment at high temperatures. A Bi2SiO5 impurity phase forms on the substrate side, and does not affect the properties of the main phase. Despite the deposition on amorphous silicon oxide substrate weak ferromagnetism phenomena and displaced loops have been observed at low temperatures showing that their origin is not strain. Ba, La, Ca, and Sr doping suppress the formation of impurity phases and leakage currents.

  8. Solar system sputtering

    Science.gov (United States)

    Tombrello, T. A.

    1982-01-01

    The sites and materials involved in solar system sputtering of planetary surfaces are reviewed, together with existing models for the processes of sputtering. Attention is given to the interaction of the solar wind with planetary atmospheres in terms of the role played by the solar wind in affecting the He-4 budget in the Venus atmosphere, and the erosion and differentiation of the Mars atmosphere by solar wind sputtering. The study is extended to the production of isotopic fractionation and anomalies in interplanetary grains by irradiation, and to erosion effects on planetary satellites with frozen volatile surfaces, such as with Io, Europa, and Ganymede. Further measurements are recommended of the molecular form of the ejected material, the yields and energy spectra of the sputtered products, the iosotopic fractionation sputtering causes, and the possibility of electronic sputtering enhancement with materials such as silicates.

  9. Fluence-dependent sputtering yield of micro-architectured materials

    Energy Technology Data Exchange (ETDEWEB)

    Matthes, Christopher S.R.; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu; Li, Gary Z.; Matlock, Taylor S.; Goebel, Dan M.; Dodson, Chris A.; Wirz, Richard E.

    2017-06-15

    Highlights: • Sputtering yield is shown to be transient and heavily dependent on surface architecture. • Fabricated nano- and Microstructures cause geometric re-trapping of sputtered material, which leads to a self-healing mechanism. • Initially, the sputtering yield of micro-architectured Mo is approximately 1/2 the value as that of a planar surface. • The study demonstrates that the sputtering yield is a dynamic property, dependent on the surface structure of a material. • A developed phenomenological model mathematically describes the transient behavior of the sputtering yield as a function of plasma fluence. - Abstract: We present an experimental examination of the relationship between the surface morphology of Mo and its instantaneous sputtering rate as function of low-energy plasma ion fluence. We quantify the dynamic evolution of nano/micro features of surfaces with built-in architecture, and the corresponding variation in the sputtering yield. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed, and re-growth of surface layers is confirmed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. A variety of material characterization techniques are used to show that the sputtering yield is not a fundamental property, but that it is quantitatively related to the initial surface architecture and to its subsequent evolution. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is roughly 1/2 of the corresponding value for flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22 ± 5%, converging to 0.4 ± 5% at high fluence. The sputtering yield exhibits a transient behavior as function of the integrated ion fluence, reaching a steady-state value that is independent of initial surface conditions. A phenomenological model is proposed to explain the observed transient sputtering phenomenon, and to

  10. Stress impedance effects in flexible amorphous FeCoSiB magnetoelastic films

    International Nuclear Information System (INIS)

    Zhang Wanli; Peng Bin; Su Ding; Tang Rujun; Jiang Hongchuan

    2008-01-01

    Amorphous FeCoSiB films were deposited on the flexible polyimide substrates (Kapton type (VN)) by DC magnetron sputtering. Stress impedance (SI) effects of the flexible amorphous FeCoSiB magnetoelastic films were investigated in details. The results show that a large stress impedance effect can be observed in the flexible amorphous FeCoSiB magnetoelastic films. And the results also show a bias magnetic field plays an important role in the stress impedance of FeCoSiB films. Applied a bias magnetic field during depositing can induce obvious in-plane anisotropy in the FeCoSiB films, and a larger SI effect can be obtained with a stronger anisotropy in FeCoSiB films. Argon pressure has a significant effect on the SI effect of the FeCoSiB films. The SI of the FeCoSiB films reaches a maximum of 7.6% at argon pressure of 1.5 Pa, which can be explained by the change of residual stress in FeCoSiB films

  11. Properties of Ce-doped ITO films deposited on polymer substrate by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Kang, Y.M.; Kwon, S.H.; Choi, J.H.; Cho, Y.J.; Song, P.K.

    2010-01-01

    Ce-doped indium tin oxide (ITO:Ce) films were deposited on flexible polyimide substrates by DC magnetron sputtering using ITO targets containing various CeO 2 contents (CeO 2 : 0, 0.5, 3.0, 4.0, 6.0 wt.%) at room temperature and post-annealed at 200 o C. The crystallinity of the ITO films decreased with increasing Ce content, and it led to a decrease in surface roughness. In addition, a relatively small change in resistance in dynamic stress mode was obtained for ITO:Ce films even after the annealing at high temperature (200 o C). The minimum resistivity of the amorphous ITO:Ce films was 3.96 x 10 -4 Ωcm, which was deposited using a 3.0 wt.% CeO 2 doped ITO target. The amorphous ITO:Ce films not only have comparable electrical properties to the polycrystalline films but also have a crystallization temperature > 200 o C. In addition, the amorphous ITO:Ce film showed stable mechanical properties in the bended state.

  12. Improvement of InN layers deposited on Si(111) by RF sputtering using a low-growth-rate InN buffer layer

    International Nuclear Information System (INIS)

    Valdueza-Felip, S.; Ibáñez, J.; Monroy, E.; González-Herráez, M.; Artús, L.; Naranjo, F.B.

    2012-01-01

    We investigate the influence of a low-growth-rate InN buffer layer on structural and optical properties of wurtzite nanocrystalline InN films deposited on Si(111) substrates by reactive radio-frequency sputtering. The deposition conditions of the InN buffer layer were optimized in terms of morphological and structural quality, leading to films with surface root-mean-square roughness of ∼ 1 nm under low-growth-rate conditions (60 nm/h). The use of the developed InN buffer layer improves the crystalline quality of the subsequent InN thick films deposited at high growth rate (180 nm/h), as confirmed by the narrowing of X-ray diffraction peaks and the increase of the average grain size of the layers. This improvement of the structural quality is further confirmed by Raman scattering spectroscopy measurements. Room temperature PL emission peaking at ∼ 1.58 eV is observed for InN samples grown with the developed buffer layer. The crystal and optical quality obtained for InN films grown on Si(111) using the low-growth-rate InN buffer layer become comparable to high-quality InN films deposited directly on GaN templates by RF sputtering. - Highlights: ► Improved RF-sputtered InN films on Si(111) using a low-growth-rate InN buffer layer. ► Enhanced structural quality confirmed by X-ray diffraction and Raman measurements. ► Room-temperature photoluminescence emission at 1.58 eV. ► InN films deposited with buffer layer on Si comparable to InN LAYERS on GaN templates.

  13. Improvement of InN layers deposited on Si(111) by RF sputtering using a low-growth-rate InN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Valdueza-Felip, S., E-mail: sirona.valdueza@depeca.uah.es [Electronics Dept., Polytechnic School, University of Alcala, Madrid-Barcelona Road, km 33.6, 28871 Alcala de Henares, Madrid (Spain); Ibanez, J. [Institut de Ciencies de la Terra Jaume Almera, Consejo Superior de Investigaciones Cientificas (CSIC), c/Lluis Sole Sabaris s/n, 08028 Barcelona (Spain); Monroy, E. [CEA-Grenoble, INAC/SP2M/NPSC, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Gonzalez-Herraez, M. [Electronics Dept., Polytechnic School, University of Alcala, Madrid-Barcelona Road, km 33.6, 28871 Alcala de Henares, Madrid (Spain); Artus, L. [Institut de Ciencies de la Terra Jaume Almera, Consejo Superior de Investigaciones Cientificas (CSIC), c/Lluis Sole Sabaris s/n, 08028 Barcelona (Spain); Naranjo, F.B. [Electronics Dept., Polytechnic School, University of Alcala, Madrid-Barcelona Road, km 33.6, 28871 Alcala de Henares, Madrid (Spain)

    2012-01-31

    We investigate the influence of a low-growth-rate InN buffer layer on structural and optical properties of wurtzite nanocrystalline InN films deposited on Si(111) substrates by reactive radio-frequency sputtering. The deposition conditions of the InN buffer layer were optimized in terms of morphological and structural quality, leading to films with surface root-mean-square roughness of {approx} 1 nm under low-growth-rate conditions (60 nm/h). The use of the developed InN buffer layer improves the crystalline quality of the subsequent InN thick films deposited at high growth rate (180 nm/h), as confirmed by the narrowing of X-ray diffraction peaks and the increase of the average grain size of the layers. This improvement of the structural quality is further confirmed by Raman scattering spectroscopy measurements. Room temperature PL emission peaking at {approx} 1.58 eV is observed for InN samples grown with the developed buffer layer. The crystal and optical quality obtained for InN films grown on Si(111) using the low-growth-rate InN buffer layer become comparable to high-quality InN films deposited directly on GaN templates by RF sputtering. - Highlights: Black-Right-Pointing-Pointer Improved RF-sputtered InN films on Si(111) using a low-growth-rate InN buffer layer. Black-Right-Pointing-Pointer Enhanced structural quality confirmed by X-ray diffraction and Raman measurements. Black-Right-Pointing-Pointer Room-temperature photoluminescence emission at 1.58 eV. Black-Right-Pointing-Pointer InN films deposited with buffer layer on Si comparable to InN LAYERS on GaN templates.

  14. Sputtering of silicon and glass substrates with polyatomic molecular ion beams generated from ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Mitsuaki, E-mail: m-takeuchi@kuee.kyoto-u.ac.jp; Hoshide, Yuki; Ryuto, Hiromichi; Takaoka, Gikan H. [Photonics and Electronics Science and Engineering Center, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2016-03-15

    The effect of irradiating 1-ethyl-3-methylimidazolium positive (EMIM{sup +}) or dicyanamide negative (DCA{sup –}) ion beams using an ionic liquid ion source was characterized concerning its sputtering properties for single crystalline Si(100) and nonalkaline borosilicate glass substrates. The irradiation of the DCA{sup –} ion beam onto the Si substrate at an acceleration voltage of 4 and 6 kV exhibited detectable sputtered depths greater than a couple of nanometers with an ion fluence of only 1 × 10{sup 15} ions/cm{sup 2}, while the EMIM{sup +} ion beam produced the same depths with an ion fluence 5 × 10{sup 15} ions/cm{sup 2}. The irradiation of a 4 kV DCA{sup –} ion beam at a fluence of 1 × 10{sup 16} ions/cm{sup 2} also yields large etching depths in Si substrates, corresponding to a sputtering yield of Si/DCA{sup – }= 10, and exhibits a smoothed surface roughness of 0.05 nm. The interaction between DCA{sup –} and Si likely causes a chemical reaction that relates to the high sputtering yield and forms an amorphous C-N capping layer that results in the smooth surface. Moreover, sputtering damage by the DCA{sup –} irradiation, which was estimated by Rutherford backscattering spectroscopy with the channeling technique, was minimal compared to Ar{sup +} irradiation at the same condition. In contrast, the glass substrates exhibited no apparent change in surface roughnesses when sputtered by the DCA{sup –} irradiation compared to the unirradiated glass substrates.

  15. Effect of thermal treatments and Co concentration on the structural and luminescent properties of sputtered TiO{sub 2}:Co films

    Energy Technology Data Exchange (ETDEWEB)

    Carmona-Rodriguez, J. [Instituto Tecnologico Superior de Poza Rica, Luis Donaldo Colosio, S/N Col. Arroyo del Maiz, 93230 Poza Rica, Veracruz (Mexico); Rodriguez-Melgarejo, F.; Hernandez-Landaverde, M.A.; Urbina-Alvarez, J.E.; Marquez-Marin, J.; Zuniga-Romero, C.; Jimenez-Sandoval, S. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro, A.P. 1-798, 76001 Queretaro, Qro. (Mexico); Vargas, S.; Estevez, M. [Centro de Fisica Aplicada y Tecnologia Avanzada, UNAM, Campus Juriquilla, 76230 Queretaro, Qro. (Mexico); Rodriguez, R. [Centro de Fisica Aplicada y Tecnologia Avanzada, UNAM, Campus Juriquilla, 76230 Queretaro, Qro. (Mexico); Division de Ciencias de la Salud, UVM, Campus Queretaro, Juriquilla, Queretaro, Qro. (Mexico)

    2012-11-15

    Thin films of Co-doped titania were grown at room temperature by rf reactive co-sputtering. A post-growth annealing procedure was carried out at 300, 450, and 750 C in an inert argon atmosphere. The samples were studied using X-ray diffraction, micro Raman, UV-Vis, and photoluminescence (PL) spectroscopies. The properties of the films were analyzed as a function of the Co concentration and the annealing temperature. The as-grown films were amorphous; however, after a thermal annealing procedure the samples presented a Co-concentration-dependent transition to the anatase phase. In particular, the samples annealed at 300 C showed a strong and broad PL signal that was quenched after exposure to an Ar{sup +} laser beam ({lambda} = 488.0 nm) focused through a microscope objective. The emission properties of the films have been ascribed to defects arising during the amorphous-anatase structural phase transition. It was also shown that the intensity and quenching rate of the PL depended upon the Co concentration and the annealing temperature. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Amorphization kinetics of Zr3Fe under electron irradiation

    International Nuclear Information System (INIS)

    Motta, A.T.; Howe, L.M.; Okamoto, P.R.

    1994-11-01

    Previous investigations using 40 Ar ion bombardments have revealed that Zr 3 Fe, which has an orthorhombic crystal structure, undergoes an irradiation-induced transformation from the crystalline to the amorphous state. In the present investigation, 0.9 MeV electron irradiations were performed at 28 - 220 K in a high-voltage electron microscope (HVEM). By measuring the onset, spread and final size of the amorphous region, factoring in the Gaussian distribution of the beam, a kinetic description of the amorphization in terms of dose, dose rate and temperature was obtained. The critical temperature for amorphization by electron irradiation was found to be ∼ 220 K, compared with 570 - 625 K for 40 Ar ion irradiation. Also, the dose-to-amorphization increased exponentially with temperature. Results indicated that the rate of growth of the amorphous region under the electron beam decreased with increasing temperature and the dose-to-amorphization decreased with increasing dose rate. The size of the amorphous region saturated after a given dose, the final size decreasing with increasing temperature, and it is argued that this is related to the existence of a critical dose rate, which increases with temperature, and below which no amorphization occurs. (author). 26 refs., 6 figs

  17. Films deposited from reactive sputtering of aluminum acetylacetonate under low energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Battaglin, Felipe Augusto Darriba; Prado, Eduardo Silva; Cruz, Nilson Cristino da; Rangel, Elidiane Cipriano, E-mail: elidiane@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Caseli, Luciano [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil). Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas; Silva, Tiago Fiorini da; Tabacniks, Manfredo Harri [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Films were deposited from aluminum acetylacetonate (Al(acac)3 ) using a methodology involving reactive sputtering and low energy ion bombardment. The plasma was generated by the application of radiofrequency power to the powder containing electrode and simultaneously, negative pulses were supplied to the electrode where the substrates were attached. It was investigated the effect of the duty cycle of the pulses (Δ) on the properties of the coatings. Association of ion bombardment to the deposition process increased film thickness, structure reticulation and organic content. Ions from the deposition environment were implanted at the film-air interface or underneath it. Morphology and topography were altered depending on Δ. Considering the enhancement of Δ, it affected the flux of ions reaching the depositing interface and then the deposition rate, H content, crosslinking degree and surface microstructure. Alumina groups were detected in the infrared spectra, whereas the precipitation of amorphous alumina was confirmed by X-ray diffraction. (author)

  18. Characteristics of RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Ki [Core Technology Laboratory, Samsung SDI, 575 Shin-dong, Youngtong-Gu, Suwon, Gyeonggi-Do 442-391 (Korea, Republic of)]. E-mail: hanki1031.kim@samsung.com; Choi, Sun-Hee [Nano Materials Research Center, Korea Institute of Science and Technology (KIST), PO Box 131 Choengryang, Seoul 130-650 (Korea, Republic of); Yoon, Young Soo [Department of Advanced Fusion Technology (DAFT), Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Chang, Sung-Yong [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of); Ok, Young-Woo [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of); Seong, Tae-Yeon [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of)

    2005-03-22

    The characteristics of RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous electrode, grown by DC reactive sputtering, was investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM), and transmission electron diffraction (TED) examination results showed that Sn and Ru metal cosputtered electrode in O{sub 2}/Ar ambient have RuO{sub 2}-SnO{sub 2} nanocrystallines in an amorphous oxide matrix. It is shown that the cyclic voltammorgram (CV) result of the RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous film in 0.5 M H{sub 2}SO{sub 4} liquid electrolyte is similar to a bulk-type supercapacitor behavior with a specific capacitance of 62.2 mF/cm{sup 2} {mu}m. This suggests that the RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous film can be employed in hybrid all-solid state energy storage devises as an electrode of supercapacitor.

  19. Study on helium-charged titanium films deposited by DC-magnetron sputtering

    International Nuclear Information System (INIS)

    Shi Liqun; Jin Qinhua; Liu Chaozhuo; Xu Shilin; Zhou Zhuying

    2005-01-01

    Helium trapping in the Ti films deposited by DC magnetron sputtering with a He/Ar mixture was studied. He atoms with a surprisingly high concentration (He/Ti atomic ratio is as high as 56%) incorporate evenly in deposited film. The trapped amount of He can be controlled by the helium partial amount. The introduction of the helium with no extra damage (or very low damage) can be realized by choosing suitable deposition conditions. It was also found that because of the formation of nanophase Ti film a relative high He flux for bubble formation is needed and the amount of the retaining He in sputtering Ti films is much higher than that in the coarse-grain Ti films. The nanophase Ti film can accommodate larger concentration of trapped sites to He, which results in a high density and small size of the He bubbles. With increasing He irradiation flux, the grain size of Ti film decreases and the lattice spacing and width of the X-ray diffraction peak increase due to the He introduction, and the film tends to amorphous phase. (authors)

  20. Sputter-Deposited Indium–Tin Oxide Thin Films for Acetaldehyde Gas Sensing

    Directory of Open Access Journals (Sweden)

    Umut Cindemir

    2016-04-01

    Full Text Available Reactive dual-target DC magnetron sputtering was used to prepare In–Sn oxide thin films with a wide range of compositions. The films were subjected to annealing post-treatment at 400 °C or 500 °C for different periods of time. Compositional and structural characterizations were performed by X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Rutherford backscattering and scanning electron microscopy. Films were investigated for gas sensing at 200 °C by measuring their resistance response upon exposure to acetaldehyde mixed with synthetic air. We found that the relative indium-to-tin content was very important and that measurable sensor responses could be recorded at acetaldehyde concentrations down to 200 ppb, with small resistance drift between repeated exposures, for both crystalline SnO2-like films and for amorphous films consisting of about equal amounts of In and Sn. We also demonstrated that it is not possible to prepare crystalline sensors with intermediate indium-to-tin compositions by sputter deposition and post-annealing up to 500 °C.

  1. Ion source with radiofrequency mass filter for sputtering purposes

    International Nuclear Information System (INIS)

    Sielanko, J.; Sowa, M.

    1990-01-01

    The Kaufman ion source with radiofrequency mass filter is described. The construction as well as operating characteristics of ion source are presented. The arrangement is suitable for range distribution measurements of implanted layers, where the sputtering rate has to be constant over the wide range of sputtering time. 4 figs., 17 refs. (author)

  2. Non-isothermal kinetics of phase transformations in magnetron sputtered alumina films with metastable structure

    International Nuclear Information System (INIS)

    Zuzjaková, Š.; Zeman, P.; Kos, Š.

    2013-01-01

    Highlights: • Non-isothermal kinetics of phase transformations in alumina films was investigated. • The structure of alumina films affects kinetics of the transformation processes. • Kinetic triplets of all transformation processes were determined. • The KAS, FWO, FR and IKP methods for determination of E a and A were used. • The Málek method for determination of the kinetic model was used. - Abstract: The paper reports on non-isothermal kinetics of transformation processes in magnetron sputtered alumina thin films with an amorphous and γ-phase structure leading ultimately to the formation of the thermodynamically stable α-Al 2 O 3 phase. Phase transformation sequences in the alumina films were investigated using differential scanning calorimetry (DSC) at four different heating rates (10, 20, 30, 40 °C/min). Three isoconversional methods (Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR) method) as well as the invariant kinetic parameters (IKP) method were used to determine the activation energies for transformation processes. Moreover, the pre-exponential factors were determined using the IKP method. The kinetic models of the transformation processes were determined using the Málek method. It was found that the as-deposited structure of alumina films affects kinetics of the transformation processes. The film with the amorphous as-deposited structure heated at 40 °C/min transforms to the crystalline γ phase at a temperature of ∼930 °C (E a,IKP = 463 ± 10 kJ/mol) and subsequently to the crystalline α phase at a temperature of ∼1200 °C (E a,IKP = 589 ± 10 kJ/mol). The film with the crystalline γ-phase structure heated at 40 °C/min is thermally stable up to ∼1100 °C and transforms to the crystalline α phase (E a,IKP = 511 ± 16 kJ/mol) at a temperature of ∼1195 °C. The empirical two-parameter Šesták–Berggren kinetic model was found to be the most adequate one to describe all transformation processes

  3. Mechanical and tribological properties of coatings sputtered from SiC target in the presence of CH.sub.4./sub. gas

    Czech Academy of Sciences Publication Activity Database

    Kulykovskyy, Valeriy; Vorlíček, Vladimír; Čtvrtlík, Radim; Boháč, Petr; Suchánek, J.; Bláhová, O.; Jastrabík, Lubomír

    2011-01-01

    Roč. 205, č. 11 (2011), s. 3372-3376 ISSN 0257-8972 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : amorphous SiC films * sputtering * hardness * coefficient of friction * Raman spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.867, year: 2011

  4. Amorphous Carbon Gold Nanocomposite Thin Films: Structural and Spectro-ellipsometric Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montiel-Gonzalez, Z., E-mail: zeuzmontiel@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Mendoza-Galvan, A. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Queretaro, 76010 Queretaro, Queretaro (Mexico); Rodriguez-Fernandez, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510, Mexico D.F (Mexico)

    2011-07-01

    Spectroscopic Ellipsometry was used to determine the optical and structural properties of amorphous carbon:gold nanocomposite thin films deposited by dc magnetron co-sputtering at different deposition power. The incorporation of gold as small particles distributed in the amorphous carbon matrix was confirmed by X-ray Diffraction, Rutherford Backscattering measurements and High Resolution Transmission Electron Microscopy. Based on these results, an optical model for the films was developed using the Maxwell-Garnett effective medium with the Drude-Lorentz model representing the optical response of gold and the Tauc-Lorentz model for the amorphous carbon. The gold volume fraction and particle size obtained from the fitting processes were comparable to those from the physical characterization. The analysis of the ellipsometric spectra for all the samples showed strong changes in the optical properties of the carbon films as a consequence of the gold incorporation. These changes were correlated to the structural modification observed by Raman Spectroscopy, which indicated a clustering of the sp{sup 2} phase with a subsequent decrease in the optical gap. Finally, measurements of Reflection and Transmission Spectroscopy were carried out and Transmission Electron Microscopy images were obtained in order to support the ellipsometric model results.

  5. Turnover of texture in low rate sputter-deposited nanocrystalline molybdenum films

    International Nuclear Information System (INIS)

    Druesedau, T.P.; Klabunde, F.; Loehmann, M.; Hempel, T.; Blaesing, J.

    1997-01-01

    The crystallite size and orientation in molybdenum films prepared by magnetron sputtering at a low rate of typical 1 (angstrom)s and a pressure of 0.45 Pa was investigated by X-ray diffraction and texture analysis. The surface topography was studied using atomic force microscopy. Increasing the film thickness from 20 nm to 3 microm, the films show a turnover from a (110) fiber texture to a (211) mosaic-like texture. In the early state of growth (20 nm thickness) the development of dome-like structures on the surface is observed. The number of these structures increases with film thickness, whereas their size is weakly influenced. The effect of texture turnover is reduced by increasing the deposition rate by a factor of six, and it is absent for samples mounted above the center of the magnetron source. The effect of texture turnover is related to the bombardment of the films with high energetic argon neutrals resulting from backscattering at the target under oblique angle and causing resputtering. Due to the narrow angular distribution of the reflected argon, bombardment of the substrate plane is inhomogeneous and only significant for regions close to the erosion zone of the magnetron

  6. Spectroellipsometric detection of silicon substrate damage caused by radiofrequency sputtering of niobium oxide

    Science.gov (United States)

    Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós

    2017-11-01

    Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.

  7. High-rate deposition of high-quality Sn-doped In2O3 films by reactive magnetron sputtering using alloy targets

    International Nuclear Information System (INIS)

    Oka, Nobuto; Kawase, Yukari; Shigesato, Yuzo

    2012-01-01

    Sn-doped In 2 O 3 (ITO) films were deposited on heated (200 °C) fused silica glass substrates by reactive DC sputtering with mid-frequency pulsing (50 kHz) and a plasma control unit combined with a feedback system of the optical emission intensity for the atomic O* line at 777 nm. A planar In–Sn alloy target was connected to the switching unit, which was operated in the unipolar pulse mode. The power density on the target was maintained at 4.4 W cm −2 during deposition. The feedback system precisely controlled the oxidation of the target surface in “the transition region.” The ITO film with lowest resistivity (3.1 × 10 −4 Ω cm) was obtained with a deposition rate of 310 nm min −1 and transmittance in the visible region of approximately 80%. The deposition rate was about 6 times higher than that of ITO films deposited by conventional sputtering using an oxide target.

  8. Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost-efficient roll-to-roll sputtering for flexible organic photovoltaics

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki

    2010-01-01

    The authors describe the preparation and characteristics of flexible indium zinc oxide (IZO)-Ag-IZO multilayer electrodes grown on flexible polyethersulfone (PES) substrates using a roll-to-roll sputtering system for use in flexible organic photovoltaics. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ε/square, optical transmittance of 87.4%, and figure of merit value of 42.03x10 -3 Ω -1 on the PES substrate. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the roll-to-roll sputter grown single ITO electrode due to the existence of a ductile Ag layer between the IZO layers and stable amorphous structure of the IZO film. Furthermore, the flexible organic solar cells (OSCs) fabricated on the roll-to-roll sputter grown IZO-Ag-IZO electrode showed higher power efficiency (3.51%) than the OSCs fabricated on the roll-to-roll sputter grown single ITO electrode (2.67%).

  9. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    Science.gov (United States)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  10. Sputtering gases and pressure effects on the microstructure, magnetic properties and recording performance of TbFeCo films

    International Nuclear Information System (INIS)

    Murakami, Motoyoshi; Birukawa, Masahiro

    2008-01-01

    The MsHc value is considered to be a key factor in high-density recording, and controlling the microstructure on the magnetic underlayer was found to be an effective way of increasing the MsHc of the amorphous TbFeCo magneto-optical (MO) medium. In this paper, we investigate the TbFeCo film's magnetic properties and the effects on the microcolumnar structure, which depends on the sputtering conditions of using various sputtering gases including Ar, Kr, and Xe, and the recording characteristics of TbFeCo memory layers. With heavy sputtering gases such as Kr or Xe, the columnar structure can be prepared in a TbFeCo film at a pressure lower than 1.0 Pa. The columnar structure of a recording layer can be effectively formed thanks to the effects of the magnetic underlayer, which has a fine surface even in the sputtering process in which Xe gas is used. The above applies to the sputtering process in which Ar gas is used. Also, when Xe gas is used in the sputtering process, coercivity Hc is increased through the formation of a well-segregated microcolumnar structure built on domain wall pinning sites, and we obtain a large MsHc and a high squareness ratio of the Kerr-hysteresis loop. Our results indicate that processing a TbFeCo film with heavy sputtering gases is suitable for tiny mark stability because the temperature gradient of Hc is increased. The objective of the low-pressure sputtering process using Xe gas to produce the columnar structure is to achieve ultra-high-density recording with tiny mark stability in the TbFeCo medium. This has been confirmed with magnetic force microscope (MFM) images of stable tiny marks recorded on TbFeCo film

  11. Residual stress change by thermal annealing in amorphous Sm-Fe-B thin films

    International Nuclear Information System (INIS)

    Na, S.M.; Suh, S.J.; Kim, H.J.; Lim, S.H.

    2002-01-01

    The change in the residual stress and its effect on mechanical bending and magnetic properties of sputtered amorphous Sm-Fe-B thin films are investigated as a function of annealing temperature. Two stress components of intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film are used to explain the stress state in as-deposited thin films, and the annealing temperature dependence of residual stress, mechanical bending and magnetic properties

  12. Effects of deposition and annealing atmospheres on phase transition of tungsten oxide films grown by ultra-high-vacuum reactive sputtering

    International Nuclear Information System (INIS)

    Ghen, G.S.; Liao, W.L.; Chen, S.T.; Su, W.C.; Lin, C.K.

    2005-01-01

    A series of oxygen-contained tungsten films were grown on Si(100) substrates without intentional heating by ultra-high-vacuum reactive magnetron sputtering at a constant argon pressure (P Ar ) of 1.33 x 10 -1 Pa mixed with a wide range of O 2 partial pressures (P O ) from 1.33 x 10 -4 to 4 x 10 -1 Pa, equivalent to P O -to-P Ar ratios (P O/Ar ) from 1 x 10 -3 to 3. The effect of varying P O/Ar on phase evolution was evaluated by annealing the films in a controlled atmosphere (argon or oxygen) at 500 or 700 deg. C for 1 h. Grazing incident X-ray diffraction and transmission electron microscopy, together with the data of electrical resistivity and deposition rate, reveal that gradually increasing P O/Ar induces a sequence of phase transitions from nanocrystalline β-W(O) (P O/Ar ≤ 0.1), amorphous WO 2 (P O/Ar = 0.6) to amorphous WO 3 (P O/Ar ≥ 2). When annealed in argon atmosphere, the amorphous WO 2 and WO 3 exhibit a very different magnitude of crystallization temperature (T c ) and can be transformed, respectively, into monoclinic WO 2 (T c = 500 deg. C) and tetragonal WO 3 (T c = 700 deg. C). However, the oxidizing atmosphere plays a role to accelerate significantly the crystallization of the amorphous WO 2 into a completely different phase (monoclinic WO 3 ) at a significantly reduced T c of 500 deg. C

  13. Overcoming challenges to the formation of high-quality polycrystalline TiO{sub 2}:Ta transparent conducting films by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Neubert, M.; Cornelius, S.; Fiedler, J. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Gebel, T.; Liepack, H. [DTF Technology GmbH, 01108 Dresden (Germany); Kolitsch, A. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); HZDR Innovation GmbH, 01328 Dresden (Germany); Vinnichenko, M. [Fraunhofer-Institut für Keramische Technologien und Systeme, 01277 Dresden (Germany)

    2013-08-28

    The work is focused on understanding the physical processes responsible for the modification of the structure, electrical and optical properties of polycrystalline TiO{sub 2}:Ta films formed by annealing of initially amorphous films grown by direct current magnetron sputtering of electrically conductive ceramic targets. It is shown that fine tuning of the oxygen content during deposition of amorphous TiO{sub 2}:Ta films is critical to achieving low resistivity and high optical transmittance after annealing. Increasing the total pressure during magnetron sputter deposition is shown to decrease the sensitivity of the annealed films to the oxygen flow variation during deposition of the initially amorphous layers. Polycrystalline anatase TiO{sub 2}:Ta films of low electrical resistivity (ρ{sub H} = 1.5 × 10{sup −3}Ω cm), high free electron mobility (μ{sub H} = 8 cm{sup 2}/Vs), and low extinction (k{sub 550nm} = 0.006) are obtained in this way at a total pressure of 2 Pa. The dependence of the polycrystalline film electrical properties on the oxygen content is discussed in terms of Ta dopant electrical activation/deactivation taking into account the formation of compensating defects at different oxygen pressures. The temperature-dependent transport of the polycrystalline anatase TiO{sub 2}:Ta films is investigated showing the dominant role of the optical phonon scattering in the case of films with an optimum Ti/O ratio.

  14. Intrinsic photocatalytic assessment of reactively sputtered TiO₂ films.

    Science.gov (United States)

    Rafieian, Damon; Driessen, Rick T; Ogieglo, Wojciech; Lammertink, Rob G H

    2015-04-29

    Thin TiO2 films were prepared by DC magnetron reactive sputtering at different oxygen partial pressures. Depending on the oxygen partial pressure during sputtering, a transition from metallic Ti to TiO2 was identified by spectroscopic ellipsometry. The crystalline nature of the film developed during a subsequent annealing step, resulting in thin anatase TiO2 layers, displaying photocatalytic activity. The intrinsic photocatalytic activity of the catalysts was evaluated for the degradation of methylene blue (MB) using a microfluidic reactor. A numerical model was employed to extract the intrinsic reaction rate constants. High conversion rates (90% degradation within 20 s residence time) were observed within these microreactors because of the efficient mass transport and light distribution. To evaluate the intrinsic reaction kinetics, we argue that mass transport has to be accounted for. The obtained surface reaction rate constants demonstrate very high reactivity for the sputtered TiO2 films. Only for the thinnest film, 9 nm, slightly lower kinetics were observed.

  15. A study of the diffusion mechanisms in amorphous metallic alloys: diffusion and diffusion under high pressure in an amorphous NiZr alloy; Contribution a l`etude des mecanismes de transport dans les materiaux metalliques amorphes: diffusion et diffusion sous pression dans NiZr amorphe

    Energy Technology Data Exchange (ETDEWEB)

    Grandjean, A.

    1996-03-01

    The aim of this work is a better understanding of the diffusion mechanism in amorphous metallic alloys. Then interdiffusion and hafnium diffusion in amorphous NiZr alloy have been studied. Samples used are made by sputtering co-deposition under vacuum and are well relaxed before the diffusion measurements. The time evolution of resistivity during annealing due to the decay of a composition modulated film has been measured and from this change in resistivity interdiffusion coefficients have been determined. Dependence of Hf diffusion on temperature and pressure has been studied using (SIMS). In this two cases, the diffusion process obeys an Arrhenius law and gives an activation energy of 1.33 eV for interdiffusion, and 0.76 eV for Hf diffusion. An effect of pressure on Hf diffusion has been found leading to an activation volume of 8.5 angstrom{sup 3}. Thanks to these results, two approaches of the diffusion mechanisms in these systems have been proposed. The first comes from a comparison with the diffusion mechanisms in crystalline metals, that is to say by point defects. The second is an hypothesis of collective motions in these non crystalline alloys. (author).

  16. Preparation and comparison of a-C:H coatings using reactive sputter techniques

    Energy Technology Data Exchange (ETDEWEB)

    Keunecke, M., E-mail: martin.keunecke@ist.fraunhofer.d [Fraunhofer Institute for Surface Engineering and Thin Films (IST), Braunschweig (Germany); Weigel, K.; Bewilogua, K. [Fraunhofer Institute for Surface Engineering and Thin Films (IST), Braunschweig (Germany); Cremer, R.; Fuss, H.-G. [CemeCon AG, Wuerselen (Germany)

    2009-12-31

    Amorphous hydrogenated carbon (a-C:H) coatings are widely used in several industrial applications. These coatings commonly will be prepared by plasma activated chemical vapor deposition (PACVD). The main method used to prepare a-C:H coating in industrial scale is based on a glow discharge in a hydrocarbon gas like acetylene or methane using a substrate electrode powered with medium frequency (m.f. - some 10 to 300 kHz). Some aims of further development are adhesion improvement, increase of hardness and high coating quality on complex geometries. A relatively new and promising technique to fulfil these requirements is the deposition of a-C:H coatings by a reactive d.c. magnetron sputter deposition from a graphite target with acetylene as reactive gas. An advancement of this technique is the deposition in a pulsed magnetron sputter process. Using these three mentioned techniques a-C:H coatings were prepared in the same deposition machine. For adhesion improvement different interlayer systems were applied. The effect of different substrate bias voltages (d.c. and d.c. pulse) was investigated. By applying the magnetron sputter technique in the d.c. pulse mode, plastic hardness values up to 40 GPa could be reached. Besides hardness other mechanical properties like resistance against abrasive wear were measured and compared. Cross sectional SEM images showed the growth structure of the coatings.

  17. Optimizing electrical conductivity and optical transparency of IZO thin film deposited by radio frequency (RF) magnetron sputtering

    Science.gov (United States)

    Zhang, Lei

    Transparent conducting oxide (TCO) thin films of In2O3, SnO2, ZnO, and their mixtures have been extensively used in optoelectronic applications such as transparent electrodes in solar photovoltaic devices. In this project I deposited amorphous indium-zinc oxide (IZO) thin films by radio frequency (RF) magnetron sputtering from a In2O3-10 wt.% ZnO sintered ceramic target to optimize the RF power, argon gas flowing rate, and the thickness of film to reach the maximum conductivity and transparency in visible spectrum. The results indicated optimized conductivity and transparency of IZO thin film is closer to ITO's conductivity and transparency, and is even better when the film was deposited with one specific tilted angle. National Science Foundation (NSF) MRSEC program at University of Nebraska Lincoln, and was hosted by Professor Jeff Shields lab.

  18. Determination of hydrogen concentration in amorphous silicon films by nuclear elastic scattering (NES) of 100 MeV 3He2+

    International Nuclear Information System (INIS)

    Iwami, M.; Imura, T.; Hiraki, A.

    1981-01-01

    Nuclear elastic scattering (NES) of 100 MeV 3 He 2+ ions was used to determine the amount of hydrogen atoms in hydrogenated amorphous silicon film fabricated by reactive sputtering. The total amount of hydrogen in this film was determined to be (1.12 +- 0.1) x 10 22 cm -3 within the accuracy of approximately 10%. (author)

  19. Modelling of low energy ion sputtering from oxide surfaces

    International Nuclear Information System (INIS)

    Kubart, T; Nyberg, T; Berg, S

    2010-01-01

    The main aim of this work is to present a way to estimate the values of surface binding energy for oxides. This is done by fitting results from the binary collisions approximation code Tridyn with data from the reactive sputtering processing curves, as well as the elemental composition obtained from x-ray photoelectron spectroscopy (XPS). Oxide targets of Al, Ti, V, Nb and Ta are studied. The obtained surface binding energies are then used to predict the partial sputtering yields. Anomalously high sputtering yield is observed for the TiO 2 target. This is attributed to the high sputtering yield of Ti lower oxides. Such an effect is not observed for the other studied metals. XPS measurement of the oxide targets confirms the formation of suboxides during ion bombardment as well as an oxygen deficient surface in the steady state. These effects are confirmed from the processing curves from the oxide targets showing an elevated sputtering rate in pure argon.

  20. Features of copper coatings growth at high-rate deposition using magnetron sputtering systems with a liquid metal target

    Czech Academy of Sciences Publication Activity Database

    Bleykher, G.A.; Borduleva, A.O.; Yuryeva, A.V.; Krivobokov, V.P.; Lančok, Ján; Bulíř, Jiří; Drahokoupil, Jan; Klimša, Ladislav; Kopeček, Jaromír; Fekete, Ladislav; Čtvrtlík, Radim; Tomáštík, Jan

    2017-01-01

    Roč. 324, Sep (2017), s. 111-120 ISSN 0257-8972 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : magnetron sputtering * evaporation * high-rate coating deposition * coating properties * Cu coatings Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.589, year: 2016

  1. High-throughput identification of higher-κ dielectrics from an amorphous N2-doped HfO2–TiO2 library

    International Nuclear Information System (INIS)

    Chang, K.-S.; Lu, W.-C.; Wu, C.-Y.; Feng, H.-C.

    2014-01-01

    Highlights: • Amorphous N 2 -doped HfO 2 –TiO 2 libraries were fabricated using sputtering. • Structure and quality of the dielectric and interfacial layers were investigated. • κ (54), J L < 10 −6 A/cm 2 , and equivalent oxide thickness (1 nm) were identified. - Abstract: High-throughput sputtering was used to fabricate high-quality, amorphous, thin HfO 2 –TiO 2 and N 2 -doped HfO 2 –TiO 2 (HfON–TiON) gate dielectric libraries. Electron probe energy dispersive spectroscopy was used to investigate the structures, compositions, and qualities of the dielectric and interfacial layers of these libraries to determine their electrical properties. A κ value of approximately 54, a leakage current density <10 −6 A/cm 2 , and an equivalent oxide thickness of approximately 1 nm were identified in an HfON–TiON library within a composition range of 68–80 at.% Ti. This library exhibits promise for application in highly advanced metal–oxide–semiconductor (higher-κ) gate stacks

  2. Confirmation of the Dominant Defect Mechanism in Amorphous In-Zn-O Through the Application of In Situ Brouwer Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moffitt, Stephanie L. [Materials Science and Engineering Department, Northwestern University, Evanston Illinois 60208; Adler, Alexander U. [Materials Science and Engineering Department, Northwestern University, Evanston Illinois 60208; Gennett, Thomas [National Renewable Energy Laboratory, Golden Colorado 80401; Ginley, David S. [National Renewable Energy Laboratory, Golden Colorado 80401; Perkins, John D. [National Renewable Energy Laboratory, Golden Colorado 80401; Mason, Thomas O. [Materials Science and Engineering Department, Northwestern University, Evanston Illinois 60208; Zhou, X. -D.

    2015-04-08

    The dominant point defect mechanism of amorphous (a-) indium zinc oxide (IZO) was probed through in situ electrical characterization of sputtered a-IZO thin films in response to changes in oxygen partial pressure (pO2) at 300 degrees C. The results yielded a power law dependence of conductivity (s) versus pOinline image of ~-1/6. This experimental method, known as Brouwer analysis, confirms doubly-charged oxygen vacancies as the dominant defect species in a-IZO. The success of this study suggests that Brouwer analysis is a viable method for studying the defect mechanisms of amorphous oxides.

  3. Evaluation of target power supplies for krypton storage in sputter-deposited metals

    International Nuclear Information System (INIS)

    Greenwell, E.N.; McClanahan, E.D.; Moss, R.W.

    1986-04-01

    Implantation of 85 Kr in a growing sputtered metal deposit has been studied for the containment of 85 Kr recovered from the reprocessing of spent nuclear fuel. PNL, as part of DOE's research program for 85 Kr storage, has developed krypton trapping storage devices (KTSDs) in a range of sizes for ''cold'' and radioactive testing. The KTSD is a stainless steel canister that contains a sputtering target for depositing an amorphous rare-earth transition metal on the inner wall and simultaneously implanting low-energy krypton ions in the growing deposit. This report covers the design requirements for the target power supply and the description, testing and evaluation of three basic designs. The designs chosen for evaluation were: (1) a standard commercial power supply with an external PNL-designed current interrupter, (2) a commercially manufactured power supply with an integral series-type interrupter, and (3) a commercially manufactured power supply with an integral shunt-type interrupter. The units were compared on the basis of performance, reliability, and life-cycle cost. 8 refs., 9 figs., 2 tabs

  4. Reduction of residual gas in a sputtering system by auxiliary sputter of rare-earth metal

    International Nuclear Information System (INIS)

    Li Dejie

    2002-01-01

    In film deposition by sputtering, the oxidation and nitrification of the sputtered material lead to degradation of film quality, particularly with respect to metal sulfide films. We propose to use auxiliary sputtering as a method to produce a fresh film of rare-earth metal, usually dysprosium (Dy), that absorbs the active gases in a sputtering system, greatly reducing the background pressure and protecting the film from oxidation and nitrification effectively. The influence of the auxiliary sputtering power consumption, sputtering time, and medium gas pressure on the background pressure in the vacuum chamber is investigated in detail. If the auxiliary sputtering power exceeds 120 W and the sputtering time is more than 4 min, the background pressure is only one fourth of the ultimate pressure pumped by an oil diffusion pump. The absorption activity of the sputtered Dy film continues at least an hour after completion of the auxiliary sputter. Applied to film deposition of Ti and ZnS, this technique has been proven to be effective. For the Ti film, the total content of N and O is reduced from 45% to 20% when the auxiliary sputtering power of Dy is 120 W, and the sputtering time is 20 min. In the case of ZnS, the content of O is reduced from 8% to 2%

  5. Optical and electrical properties of polycrystalline and amorphous Al-Ti thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Borca, C. N.; Rechendorff, Kristian

    2016-01-01

    The structural, optical, and transport properties of sputter-deposited Al-Ti thin films have been investigated as a function of Ti alloying with a concentration ranging from 2% to 46%. The optical reflectivity of Al-Ti films at visible and near-infrared wavelengths decreases with increasing Ti...... content. Xray absorption fine structure measurements reveal that the atomic ordering around Ti atoms increases with increasing Ti content up to 20% and then decreases as a result of a transition from a polycrystalline to amorphous structure. The transport properties of the Al-Ti films are influenced...... by electron scattering at the grain boundaries in the case of polycrystalline films and static defects, such as antisite effects and vacancies in the case of the amorphous alloys. The combination of Ti having a real refractive index (n) comparable with the extinction coefficient (k) and Al with n much smaller...

  6. Implantation of xenon in amorphous carbon and silicon for brachytherapy application

    International Nuclear Information System (INIS)

    Marques, F.C.; Barbieri, P.F.; Viana, G.A.; Silva, D.S. da

    2013-01-01

    We report a procedure to implant high dose of xenon atoms (Xe) in amorphous carbon, a-C, and amorphous silicon, a-Si, for application in brachytherapy seeds. An ion beam assisted deposition (IBAD) system was used for the deposition of the films, where one ion gun was used for sputtering a carbon (or silicon) target, while the other ion gun was used to simultaneously bombard the growing film with a beam of xenon ion Xe + in the 0–300 eV range. Xe atoms were implanted into the film with concentration up to 5.5 at.%, obtained with Xe bombardment energy in the 50–150 eV range. X-ray absorption spectroscopy was used to investigate the local arrangement of the implanted Xe atoms through the Xe L III absorption edge (4.75 keV). It was observed that Xe atoms tend to agglomerate in nanoclusters in a-C and are dispersed in a-Si.

  7. Refining stability and dissolution rate of amorphous drug formulations

    DEFF Research Database (Denmark)

    Grohganz, Holger; Priemel, Petra A; Löbmann, Korbinian

    2014-01-01

    Introduction: Poor aqueous solubility of active pharmaceutical ingredients (APIs) is one of the main challenges in the development of new small molecular drugs. Additionally, the proportion of poorly soluble drugs among new chemical entities is increasing. The transfer of a crystalline drug to its...... and on the interaction of APIs with small molecular compounds rather than polymers. Finally, in situ formation of an amorphous form might be an option to avoid storage problems altogether. Expert opinion: The diversity of poorly soluble APIs formulated in an amorphous drug delivery system will require different...... approaches for their stabilisation. Thus, increased focus on emerging techniques can be expected and a rational approach to decide the correct formulation is needed....

  8. Present status of amorphous In–Ga–Zn–O thin-film transistors

    Science.gov (United States)

    Kamiya, Toshio; Nomura, Kenji; Hosono, Hideo

    2010-01-01

    The present status and recent research results on amorphous oxide semiconductors (AOSs) and their thin-film transistors (TFTs) are reviewed. AOSs represented by amorphous In–Ga–Zn–O (a-IGZO) are expected to be the channel material of TFTs in next-generation flat-panel displays because a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays, large and fast liquid crystal and three-dimensional (3D) displays, which cannot be satisfied using conventional silicon and organic TFTs. The major insights of this review are summarized as follows. (i) Most device issues, such as uniformity, long-term stability against bias stress and TFT performance, are solved for a-IGZO TFTs. (ii) A sixth-generation (6G) process is demonstrated for 32″ and 37″ displays. (iii) An 8G sputtering apparatus and a sputtering target have been developed. (iv) The important effect of deep subgap states on illumination instability is revealed. (v) Illumination instability under negative bias has been intensively studied, and some mechanisms are proposed. (vi) Degradation mechanisms are classified into back-channel effects, the creation of traps at an interface and in the gate insulator, and the creation of donor states in annealed a-IGZO TFTs by the Joule heating; the creation of bulk defects should also be considered in the case of unannealed a-IGZO TFTs. (vii) Dense passivation layers improve the stability and photoresponse and are necessary for practical applications. (viii) Sufficient knowledge of electronic structures and electron transport in a-IGZO has been accumulated to construct device simulation models. PMID:27877346

  9. Present status of amorphous In-Ga-Zn-O thin-film transistors

    International Nuclear Information System (INIS)

    Kamiya, Toshio; Hosono, Hideo; Nomura, Kenji

    2010-01-01

    The present status and recent research results on amorphous oxide semiconductors (AOSs) and their thin-film transistors (TFTs) are reviewed. AOSs represented by amorphous In-Ga-Zn-O (a-IGZO) are expected to be the channel material of TFTs in next-generation flat-panel displays because a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays, large and fast liquid crystal and three-dimensional (3D) displays, which cannot be satisfied using conventional silicon and organic TFTs. The major insights of this review are summarized as follows. (i) Most device issues, such as uniformity, long-term stability against bias stress and TFT performance, are solved for a-IGZO TFTs. (ii) A sixth-generation (6G) process is demonstrated for 32'' and 37'' displays. (iii) An 8G sputtering apparatus and a sputtering target have been developed. (iv) The important effect of deep subgap states on illumination instability is revealed. (v) Illumination instability under negative bias has been intensively studied, and some mechanisms are proposed. (vi) Degradation mechanisms are classified into back-channel effects, the creation of traps at an interface and in the gate insulator, and the creation of donor states in annealed a-IGZO TFTs by the Joule heating; the creation of bulk defects should also be considered in the case of unannealed a-IGZO TFTs. (vii) Dense passivation layers improve the stability and photoresponse and are necessary for practical applications. (viii) Sufficient knowledge of electronic structures and electron transport in a-IGZO has been accumulated to construct device simulation models. (topical review)

  10. Present status of amorphous In-Ga-Zn-O thin-film transistors.

    Science.gov (United States)

    Kamiya, Toshio; Nomura, Kenji; Hosono, Hideo

    2010-08-01

    The present status and recent research results on amorphous oxide semiconductors (AOSs) and their thin-film transistors (TFTs) are reviewed. AOSs represented by amorphous In-Ga-Zn-O (a-IGZO) are expected to be the channel material of TFTs in next-generation flat-panel displays because a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays, large and fast liquid crystal and three-dimensional (3D) displays, which cannot be satisfied using conventional silicon and organic TFTs. The major insights of this review are summarized as follows. (i) Most device issues, such as uniformity, long-term stability against bias stress and TFT performance, are solved for a-IGZO TFTs. (ii) A sixth-generation (6G) process is demonstrated for 32″ and 37″ displays. (iii) An 8G sputtering apparatus and a sputtering target have been developed. (iv) The important effect of deep subgap states on illumination instability is revealed. (v) Illumination instability under negative bias has been intensively studied, and some mechanisms are proposed. (vi) Degradation mechanisms are classified into back-channel effects, the creation of traps at an interface and in the gate insulator, and the creation of donor states in annealed a-IGZO TFTs by the Joule heating; the creation of bulk defects should also be considered in the case of unannealed a-IGZO TFTs. (vii) Dense passivation layers improve the stability and photoresponse and are necessary for practical applications. (viii) Sufficient knowledge of electronic structures and electron transport in a-IGZO has been accumulated to construct device simulation models.

  11. Present status of amorphous In–Ga–Zn–O thin-film transistors

    Directory of Open Access Journals (Sweden)

    Toshio Kamiya, Kenji Nomura and Hideo Hosono

    2010-01-01

    Full Text Available The present status and recent research results on amorphous oxide semiconductors (AOSs and their thin-film transistors (TFTs are reviewed. AOSs represented by amorphous In–Ga–Zn–O (a-IGZO are expected to be the channel material of TFTs in next-generation flat-panel displays because a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays, large and fast liquid crystal and three-dimensional (3D displays, which cannot be satisfied using conventional silicon and organic TFTs. The major insights of this review are summarized as follows. (i Most device issues, such as uniformity, long-term stability against bias stress and TFT performance, are solved for a-IGZO TFTs. (ii A sixth-generation (6G process is demonstrated for 32'' and 37'' displays. (iii An 8G sputtering apparatus and a sputtering target have been developed. (iv The important effect of deep subgap states on illumination instability is revealed. (v Illumination instability under negative bias has been intensively studied, and some mechanisms are proposed. (vi Degradation mechanisms are classified into back-channel effects, the creation of traps at an interface and in the gate insulator, and the creation of donor states in annealed a-IGZO TFTs by the Joule heating; the creation of bulk defects should also be considered in the case of unannealed a-IGZO TFTs. (vii Dense passivation layers improve the stability and photoresponse and are necessary for practical applications. (viii Sufficient knowledge of electronic structures and electron transport in a-IGZO has been accumulated to construct device simulation models.

  12. Sputtering of water ice

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.; Schou, J.; Shi, M.; Bahr, D.A.; Atteberrry, C.L.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from the decay of H(2p) atoms sputtered by heavy ion impact, but not bulk ice luminescence. Radiolyzed ice does not sputter under 3.7 eV laser irradiation

  13. Electronic sputtering

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1989-01-01

    Electronic sputtering covers a range of phenomena from electron and photon stimulated desorption from multilayers to fast heavy ion-induced desorption (sputtering) of biomolecules. In this talk the author attempted. Therefore, to connect the detailed studies of argon ejection from solid argon by MeV ions and keV electrons to the sputtering of low temperatures molecular ices by MeV ions then to biomolecule ejection from organic solids. These are related via changing (dE/dx) e , molecular size, and transport processes occurring in materials. In this regard three distinct regions of (dE/dx) e have been identified. Since the talk this picture has been made explicit using a simple spike model for individual impulsive events in which spike interactions are combined linearly. Since that time also the molecular dynamics programs (at Virginia and Uppsala) have quantified both single atom and dimer processes in solid Ar and the momentum transport in large biomolecule sputtering. 5 refs

  14. Reactive sputter deposition

    CERN Document Server

    Mahieu, Stijn

    2008-01-01

    In this valuable work, all aspects of the reactive magnetron sputtering process, from the discharge up to the resulting thin film growth, are described in detail, allowing the reader to understand the complete process. Hence, this book gives necessary information for those who want to start with reactive magnetron sputtering, understand and investigate the technique, control their sputtering process and tune their existing process, obtaining the desired thin films.

  15. Enhanced saturation of sputtered amorphous SiN film frameworks using He- and Ne-Penning effects

    Science.gov (United States)

    Sugimoto, Iwao; Nakano, Satoko; Kuwano, Hiroki

    1994-06-01

    Optical emission spectroscopy reveals that helium and neon gases enhance the nitridation reactivity of the nitrogen plasma by Penning effects during magnetron sputtering of the silicon target. These excited nitrogen plasmas promote the saturation of frameworks of the resultant silicon nitride films. X-ray photoelectron spectroscopy, electron spin resonance, and x-ray diffraction analyses provide insight into the structure of these films, and thermal desorption mass spectroscopy reveals the behavior of volatile species in these films.

  16. Small grain size zirconium-based coatings deposited by magnetron sputtering at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, O., E-mail: omar.jimenez.udg@gmail.com [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Audronis, M.; Leyland, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Flores, M.; Rodriguez, E. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Kanakis, K.; Matthews, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-09-30

    Hard, partly amorphous, ZrTiB(N) coatings were deposited by Physical Vapour Deposition (PVD) onto (111) silicon wafers at low substrate temperatures of 85 and 110 °C using Closed Field Unbalanced Magnetron Sputtering. A segmented rectangular sputter target composed of three pieces (Zr/TiB{sub 2}/Zr) was used as the source of evaporation of coating components. Two different substrate biases (i.e. floating potential and − 50 V) and N{sub 2} reactive-gas flow rates of 2, 4 and 6 sccm were employed as the main deposition parameter variables. The chemical composition, structure, morphology and mechanical properties were investigated using a variety of analytical techniques such as Glow-Discharge Optical Emission Spectroscopy, cross-sectional Scanning Electron Microscopy (SEM), Glancing Angle X-ray Diffraction (GAXRD) and nanoindentation. With other parameters fixed, coating properties were found to be dependent on the substrate negative bias and nitrogen flow rate. Linear scan profiles and SEM imaging revealed that all coatings were smooth, dense and featureless (in fracture cross section) with no apparent columnar morphology or macro-defects. GAXRD structural analysis revealed that mostly metallic phases were formed for coatings containing no nitrogen, whereas a solid solution (Zr,Ti)N single phase nitride was found in most of the reactively deposited coatings — exhibiting a very small grain size due to nitrogen and boron grain refinement effects. Hardness values from as low as 8.6 GPa up to a maximum of 25.9 GPa are related mainly to solid solution strengthening effects. The measured elastic moduli correlated with the trends in hardness behaviour; values in the range of 120–200 GPa were observed depending on the selected deposition parameters. Also, high H/E values (> 0.1) were achieved with several of the coatings.

  17. Effects of structure and oxygen flow rate on the photo-response of amorphous IGZO-based photodetector devices

    Science.gov (United States)

    Jang, Jun Tae; Ko, Daehyun; Choi, Sungju; Kang, Hara; Kim, Jae-Young; Yu, Hye Ri; Ahn, Geumho; Jung, Haesun; Rhee, Jihyun; Lee, Heesung; Choi, Sung-Jin; Kim, Dong Myong; Kim, Dae Hwan

    2018-02-01

    In this study, we investigated how the structure and oxygen flow rate (OFR) during the sputter-deposition affects the photo-responses of amorphous indium-gallium-zinc-oxide (a-IGZO)-based photodetector devices. As the result of comparing three types of device structures with one another, which are a global Schottky diode, local Schottky diode, and thin-film transistor (TFT), the IGZO TFT with the gate pulse technique suppressing the persistent photoconductivity (PPC) is the most promising photodetector in terms of a high photo-sensitivity and uniform sensing characteristic. In order to analyze the IGZO TFT-based photodetectors more quantitatively, the time-evolution of sub-gap density-of-states (DOS) was directly observed under photo-illumination and consecutively during the PPC-compensating period with applying the gate pulse. It shows that the increased ionized oxygen vacancy (VO2+) defects under photo-illumination was fully recovered by the positive gate pulse and even overcompensated by additional electron trapping. Based on experimentally extracted sub-gap DOS, the origin on PPC was successfully decomposed into the hole trapping and the VO ionization. Although the VO ionization is enhanced in lower OFR (O-poor) device, the PPC becomes more severe in high OFR (O-rich) device because the hole trapping dominates the PPC in IGZO TFT under photo-illumination rather than the VO ionization and more abundant holes are trapped into gate insulator and/or interface in O-rich TFTs. Similarly, the electron trapping during the PPC-compensating period with applying the positive gate pulse becomes more prominent in O-rich TFTs. It is attributed to more hole/electron traps in the gate insulator and/or interface, which is associated with oxygen interstitials, or originates from the ion bombardment-related lower quality gate oxide in O-rich devices.

  18. Amorphous Ge quantum dots embedded in SiO2 formed by low energy ion implantation

    International Nuclear Information System (INIS)

    Zhao, J. P.; Huang, D. X.; Jacobson, A. J.; Chen, Z. Y.; Makarenkov, B.; Chu, W. K.; Bahrim, B.; Rabalais, J. W.

    2008-01-01

    Under ultrahigh vacuum conditions, extremely small Ge nanodots embedded in SiO 2 , i.e., Ge-SiO 2 quantum dot composites, have been formed by ion implantation of 74 Ge + isotope into (0001) Z-cut quartz at a low kinetic energy of 9 keV using varying implantation temperatures. Transmission electron microscopy (TEM) images and micro-Raman scattering show that amorphous Ge nanodots are formed at all temperatures. The formation of amorphous Ge nanodots is different from reported crystalline Ge nanodot formation by high energy ion implantation followed by a necessary high temperature annealing process. At room temperature, a confined spatial distribution of the amorphous Ge nanodots can be obtained. Ge inward diffusion was found to be significantly enhanced by a synergetic effect of high implantation temperature and preferential sputtering of surface oxygen, which induced a much wider and deeper Ge nanodot distribution at elevated implantation temperature. The bimodal size distribution that is often observed in high energy implantation was not observed in the present study. Cross-sectional TEM observation and the depth profile of Ge atoms in SiO 2 obtained from x-ray photoelectron spectra revealed a critical Ge concentration for observable amorphous nanodot formation. The mechanism of formation of amorphous Ge nanodots and the change in spatial distribution with implantation temperature are discussed

  19. Effects of oxygen partial pressure on structural and gasochromic properties of sputtered VOx thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Wei-Luen [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China); Lu, Yang-Ming [Department of Electrical Engineering, National University of Tainan, Tainan 70005, Taiwan (China); Lu, Ying-Rui [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China); Program for Science and Technology of Accelerator Light Source, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Chen, Chi-Liang [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Dong, Chung-Li, E-mail: dong.cl@nsrrc.org.tw [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China); Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Chen, Jeng-Lung; Chan, Ting-Shan; Lee, Jyh-Fu; Pao, Chih-Wen [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China); Hwang, Weng-Sing [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2013-10-01

    VOx films were deposited by radio-frequency reactive magnetron sputtering from a vanadium target in an Ar–O{sub 2} gas mixture and pure O{sub 2}. For the films deposited in the gas mixture, the Ar flow rate was controlled at 20 sccm and the oxygen flow rate was controlled at 1, 3, and 5 sccm, respectively. A thin (∼ 5 nm) Pt layer was deposited on the VOx thin films as a hydrogen catalyst. The long-range structural order, short-range atom arrangement, and gasochromic properties of the deposited films were studied. The grazing incidence X-ray diffraction (GIXRD) results indicate that the deposited films are amorphous. Lamellar structures were found at oxygen flow rates of 3 sccm and above. The X-ray absorption spectroscopy (XAS) results show that the short-range atom arrangement of the lamellar VOx thin films is similar to that of crystal V{sub 2}O{sub 5}. The GIXRD and XAS results show that the film obtained with the gas mixture and at an oxygen flow rate of 1 sccm did not significantly change after exposure to hydrogen, whereas the other films exhibited decreased interlayer distance, oxidation state, and crystallinity. The color of the films changed from light or deep yellow to gray. The results suggest that the gasochromic properties of the VOx thin films are related to the V{sub 2}O{sub 5}-like atom arrangement and the interlayer distance of the lamellar structure. The films deposited with an oxygen flow rate of 3 sccm and above can be applied to H{sub 2} gas sensors. - Highlights: • Sputtered VOx film capped by Pt have potential for application in hydrogen sensor. • We present the X-ray absorption spectroscopy study of the gasochromic VOx films. • Correlation of gasochromism and electronic structure of VOx film were studied. • Correlation of gasochromism and atomic structure were investigated.

  20. Fundamental aspects of cathodic sputtering

    International Nuclear Information System (INIS)

    Harman, R.

    1979-01-01

    The main fundamental aspects and problems of cathodic sputtering used mainly for thin film deposition and sputter etching are discussed. Among many types of known sputtering techniques the radiofrequency /RF/ diode sputtering is the most universal one and is used for deposition of metals, alloys, metallic compounds, semiconductors and insulators. It seems that nowadays the largest number of working sputtering systems is of diode type. Sometimes also the dc or rf triode sputtering systems are used. The problems in these processes are practically equivalent and comparable with the problems in the diode method and therefore our discussion will be, in most cases applicable for both, the diode and triode methods

  1. Comparative analysis of electrophysical properties of ceramic tantalum pentoxide coatings, deposited by electron beam evaporation and magnetron sputtering methods

    Science.gov (United States)

    Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.

    2014-12-01

    Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes

  2. High-rate sputter deposition of NiAl on sapphire fibers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, K.; Martinez, C.; Cremer, R.; Neuschuetz, D. [Lehrstuhl fuer Theoretische Huettenkunde, RWTH Aachen, Aachen (Germany)

    2002-07-01

    Once the fiber-matrix bonding has been optimized to meet the different requirements during fabrication and operation of the later composite component, sapphire fiber reinforced NiAl will be a potential candidate to substitute conventional superalloys as structural material for gas turbine blades. To improve the composite fabrication process, a direct deposition of the intermetallic matrix material onto hBN coated sapphire fibers prior to the consolidation of the fiber-matrix composite is proposed. It is believed that this will simplify the fabrication process and prevent pore formation during the diffusion bonding. In addition, the fiber volume fraction can be quite easily adjusted by varying the NiAl coating thickness. For this, a high-rate deposition of NiAl is in any case necessary. It has been achieved by a pulsed DC magnetron sputtering of combined Al-Ni targets with the fibers rotating between the two facing cathodes. The obtained nickel aluminide coatings were analyzed as to structure and composition by means of X-ray (GIXRD) as well as electron diffraction (RHEED) and X-ray photoelectron spectroscopy (XPS), respectively. The morphology of the NiAl coatings was examined by SEM. (orig.)

  3. Me-Si-C (Me= Nb, Ti or Zr) : Nanocomposite and Amorphous Thin Films

    OpenAIRE

    Tengstrand, Olof

    2012-01-01

    This thesis investigates thin films of the transition metal carbide systems Ti-Si-C, Nb-Si-C, and Zr-Si-C, deposited at a low substrate temperature (350 °C) with dc magnetron sputtering in an Ar discharge. Both the electrical and mechanical properties of these systems are highly affected by their structure. For Nb-Si-C, both the ternary Nb-Si-C and the binary Nb-C are studied. I show pure NbC films to consist of crystalline NbC grains embedded in a matrix of amorphous carbon. The best combina...

  4. Electrical and optical properties of amorphous indium zinc oxide films

    International Nuclear Information System (INIS)

    Ito, N.; Sato, Y.; Song, P.K.; Kaijio, A.; Inoue, K.; Shigesato, Y.

    2006-01-01

    Valence electron control and electron transport mechanisms on the amorphous indium zinc oxide (IZO) films were investigated. The amorphous IZO films were deposited by dc magnetron sputtering using an oxide ceramic IZO target (89.3 wt.% In 2 O 3 and 10.7 wt.% ZnO). N-type impurity dopings, such as Sn, Al or F, could not lead to the increase in carrier density in the IZO. Whereas, H 2 introduction into the IZO deposition process was confirmed to be effective to increase carrier density. By 30% H 2 introduction into the deposition process, carrier density increased from 3.08 x 10 2 to 7.65 x 10 2 cm -3 , which must be originated in generations of oxygen vacancies or interstitial Zn 2+ ions. Decrease in the transmittance in the near infrared region and increase in the optical band gap were observed with the H 2 introduction, which corresponded to the increase in carrier density. The lowest resistivity of 3.39 x 10 -4 Ω cm was obtained by 10% H 2 introduction without substrate heating during the deposition

  5. Preparation of tris(8-hydroxyquinolinato)aluminum thin films by sputtering deposition using powder and pressed powder targets

    Science.gov (United States)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Tanaka, Rei; Suda, Yoshiaki

    2017-06-01

    Tris(8-hydroxyquinolinato)aluminum (Alq3) thin films, for use in organic electroluminescence displays, were prepared by a sputtering deposition method using powder and pressed powder targets. Experimental results suggest that Alq3 thin films can be prepared using powder and pressed powder targets, although the films were amorphous. The surface color of the target after deposition became dark brown, and the Fourier transform infrared spectroscopy spectrum changed when using a pressed powder target. The deposition rate of the film using a powder target was higher than that using a pressed powder target. That may be because the electron and ion densities of the plasma generated using the powder target are higher than those when using pressed powder targets under the same deposition conditions. The properties of a thin film prepared using a powder target were almost the same as those of a film prepared using a pressed powder target.

  6. Structure of the short-range atomic order of WO3 amorphous films

    International Nuclear Information System (INIS)

    Olevskij, S.S.; Sergeev, M.S.; Tolstikhina, A.L.; Avilov, A.S.; Shkornyakov, S.M.; Semiletov, S.A.

    1984-01-01

    To study the causes of electrochromism manifestation in thin tungsten oxide films, the structure of WO 3 amorphous films has been investigated. The films were obtained by three different methods: by W(CO) 6 tungsten carbonyl pyrolysis, by high-frequency ion-plasma sputtering of a target prepared by WO 3 powder sintering, and by WO 3 powder thermal evaporation. Monocrystalline wafers of silicon and sodium chloride were used as substrates. The structure of short-range order in WO 3 amorphous films varies versus, the method of preparation in compliance with the type of polyhedral elements, (WO 6 , WO 5 ) and with the character of their packing (contacts via edges or vertices). Manifestation of electroc ro mism in WO 3 films prepared by varions methods and having different structure of short-range order is supposed to be realized through various mechanisms. One cannot exclude a potential simultaneous effect of the two coloration mechanisms

  7. Control of wettability of hydrogenated amorphous carbon thin films by laser-assisted micro- and nanostructuring

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Kohler, Robert; Torge, Maika; Trouillet, Vanessa; Danneil, Friederike; Stueber, Michael

    2011-01-01

    A flexible and rapid surface functionalization of amorphous carbon films shows a great potential for various application fields such as biological surfaces and tribological systems. For this purpose, the combination of thin film deposition and subsequent laser material processing was investigated. Amorphous carbon layers doped with hydrogen were deposited on silicon wafers by reactive direct-current magnetron sputtering. Films with three different hydrogen contents were synthesized. Subsequent to the thin film deposition process, UV laser material processing at wavelengths of 193 nm or 248 nm was performed with respect to chemical surface modification and surface structuring on micro- and nanometer scale. Depending on structure size and laser-induced chemical surface modification the adjustment of the surface energy and wetting behaviour in a broad range from hydrophobic to hydrophilic was possible. The chemical modification and the ablation mechanisms near the ablation threshold were strongly influenced by the hydrogen content in amorphous carbon thin films. Structural and chemical information of the as-deposited and modified films was obtained by Raman spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements.

  8. Morphology and kinetics of crystals growth in amorphous films of Cr2O3, deposited by laser ablation

    Science.gov (United States)

    Bagmut, Aleksandr

    2018-06-01

    An electron microscopic investigation was performed on the structure and kinetics of the crystallization of amorphous Cr2O3 films, deposited by pulsed laser sputtering of chromium target in an oxygen atmosphere. The crystallization was initiated by the action of an electron beam on an amorphous film in the column of a transmission electron microscope. The kinetic curves were plotted on the basis of a frame-by-frame analysis of the video recorded during the crystallization of the film. It was found that the amorphous phase - crystal phase transition in Cr2O3 films occurs as a layer polymorphic crystallization and is characterized by the values of the dimensionless relative length unit δ0 ≈ 2000-3100. The action of the electron beam initiates the formation of crystals of two basic morphological forms: disk-shaped and sickle-shaped. Growth of a disk-shaped crystals is characterized by a constant rate v and the quadratic dependence of the fraction of the crystalline phase x on the time t. Sickle-shaped crystal at an initial stage, as it grows, becomes as ring-shaped and disk-shaped crystal. The growth of a sickle-shaped crystal is characterized by normal and tangential velocity components, which depend on the time as ∼√t and as ∼1/√t respectively The end point of the arc at the interface between the amorphous and crystalline phases as the crystal grows describes a curve, which is similar to the Fermat helix. For sickle-shaped, as well as for disk-shaped crystals, the degree of crystallinity x ∼ t2.

  9. A study of the diffusion mechanisms in amorphous metallic alloys: diffusion and diffusion under high pressure in an amorphous NiZr alloy

    International Nuclear Information System (INIS)

    Grandjean, A.

    1996-01-01

    The aim of this work is a better understanding of the diffusion mechanism in amorphous metallic alloys. Then interdiffusion and hafnium diffusion in amorphous NiZr alloy have been studied. Samples used are made by sputtering co-deposition under vacuum and are well relaxed before the diffusion measurements. The time evolution of resistivity during annealing due to the decay of a composition modulated film has been measured and from this change in resistivity interdiffusion coefficients have been determined. Dependence of Hf diffusion on temperature and pressure has been studied using (SIMS). In this two cases, the diffusion process obeys an Arrhenius law and gives an activation energy of 1.33 eV for interdiffusion, and 0.76 eV for Hf diffusion. An effect of pressure on Hf diffusion has been found leading to an activation volume of 8.5 angstrom 3 . Thanks to these results, two approaches of the diffusion mechanisms in these systems have been proposed. The first comes from a comparison with the diffusion mechanisms in crystalline metals, that is to say by point defects. The second is an hypothesis of collective motions in these non crystalline alloys. (author)

  10. Properties of tungsten films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Ahn, K.Y.; Ting, C.Y.; Brodsky, S.B.; Fryer, P.M.; Davari, B.; Angillelo, J.; Herd, S.R.; Licata, T.

    1986-01-01

    High-rate magnetron sputtering is a relatively simple process to produce tungsten films with good electrical and mechanical properties, and it offers good uniformity, reproducibility, process flexibility, and high throughput. The purity of the sputtered films is affected by the target purity (cold-pressed 99.95%, chemical vapor deposited 99.99% and cast 99.999%), base pressure, deposition rate, and substrate bias. Typical resistivity in films of 2000 to 3000A thickness deposited on Si, poly-Si, and SiO/sub 2/ ranges from 10 to 12 μΩ-cm, and this may be compared with 6 and 11 μΩ-cm by high-temperature evaporation and chemical vapor deposition, respectively. The presence of biaxial stress caused by substrate scanning was determined by x-ray technique. The sputtered films exhibit high compressive stress when deposited at low Ar pressure. It decreases with increasing pressure, and eventually changes sign to become tensile, and increases further with increasing pressure. Effects of processing parameters on films properties, and a comparison of film properties prepared by evaporation and chemical vapor deposition are discussed

  11. Thin films of amorphous nitrogenated carbon a-CN{sub x}: Electron transfer and surface reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Tamiasso-Martinhon, P.; Cachet, H.; Debiemme-Chouvy, C.; Deslouis, C. [Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques, CNRS, UPR15-LISE, 4 Place Jussieu, Paris F-75005 (France)

    2008-08-01

    The electrochemical behaviour of thin films of nitrogenated amorphous carbon a-CN{sub x} is similar to that of boron-doped diamond, with a wide potential window in aqueous media. They are elaborated by cathodic sputtering of a graphite target in an Ar-N{sub 2} active plasma for varying nitrogen contents, determined by XPS (0.06 {<=} x {<=} 0.39). Their electrochemical reactivity is sensitive to the surface state. The present study reports on the influence of electrochemical pre treatment on the electronic transfer rate of a fast redox system ferri-ferrocyanide, by focusing on the direction of the potential excursion. On the other hand, the role of both the pH and the potential on the interfacial capacitance in the presence of Na{sub 2}SO{sub 4} without redox species is documented. The results show up the sensitivity of the film surface to the electrochemical conditions. (author)

  12. Serial co-sputtering. Development of a versatile coating technology and its characterization using the example of rate enhancement of metal oxides by co-doping; Serielles Co-Sputtern. Entwicklung einer flexiblen Beschichtungstechnologie und deren Charakterisierung am Beispiel der Ratenerhoehung von Metalloxiden durch Co-Dotierung

    Energy Technology Data Exchange (ETDEWEB)

    Austgen, Michael

    2011-09-19

    Focus of this work is the design and characterization of a versatile coating system based on magnetron sputter deposition. This technology consists of a rotary target (primary target) that will be sputtered at one position and also can be coated at a different position with a secondary material by another sputter process. This simultaneous operation and the serial order of two sputter processes is the serial co-sputter process. A highly elaborated gas separation allows the operation of the primary sputter process in a reactive gas atmosphere whereas the secondary process can be driven in a non-reactive atmosphere. Compared to conventional co-sputtering the gas separation enables a stable operation of the secondary sputter process even if reactive gas is added to the primary sputter process. To develop an understanding of the process dynamics of serial co-sputtering the rate enhancement of metal oxides by co-doping with heavy atoms has been investigated first. If heavy elements are added to the target material the collision cascades can be reflected back towards the target surface by a more efficient momentum transfer and therefore increase the sputtering rate. The addition of heavy atoms can be achieved by serial co-sputtering. In the secondary sputter process the heavy element will be sputter deposited onto the rotary target. When entering the erosion zone of the primary sputter process the heavy atoms will be partially sputtered away and partially recoil implanted beneath the target surface. The later will contribute to the sputter yield amplification effect described above. In this work the sputter yield amplification effect has been investigated for the metal oxides Al{sub 2}O{sub 3} and TiO{sub 2} by co-doping of a aluminum and titanium rotary target with the heavy element tungsten (Z=74) and bismuth (Z=83). The primary process variables are the O{sub 2}-gas flow which determines the working point of the primary sputtering process, the rotation speed of the

  13. Intrinsic Resistance Switching in Amorphous Silicon Suboxides: The Role of Columnar Microstructure.

    Science.gov (United States)

    Munde, M S; Mehonic, A; Ng, W H; Buckwell, M; Montesi, L; Bosman, M; Shluger, A L; Kenyon, A J

    2017-08-24

    We studied intrinsic resistance switching behaviour in sputter-deposited amorphous silicon suboxide (a-SiO x ) films with varying degrees of roughness at the oxide-electrode interface. By combining electrical probing measurements, atomic force microscopy (AFM), and scanning transmission electron microscopy (STEM), we observe that devices with rougher oxide-electrode interfaces exhibit lower electroforming voltages and more reliable switching behaviour. We show that rougher interfaces are consistent with enhanced columnar microstructure in the oxide layer. Our results suggest that columnar microstructure in the oxide will be a key factor to consider for the optimization of future SiOx-based resistance random access memory.

  14. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    Science.gov (United States)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  15. A comparative study on NbOx films reactively sputtered from sintered and cold gas sprayed targets

    Science.gov (United States)

    Lorenz, Roland; O'Sullivan, Michael; Fian, Alexander; Sprenger, Dietmar; Lang, Bernhard; Mitterer, Christian

    2018-04-01

    The aim of this work is to evaluate novel cold gas sprayed Nb targets in a reactive sputter deposition process of thin films with respect to the widely used sintered Nb targets. With the exception of a higher target discharge voltage of ∼100 V for the cold gas sprayed targets and the thus higher film growth rate compared to sintered targets, NbOx films with comparable microstructure and properties were obtained for both target variants. The amorphous films with thicknesses between 2.9 and 4.9 μm present an optical shift from dark and non-transparent towards transparent properties, as the oxygen partial pressure increases. X-ray photoelectron spectroscopy confirms the occurrence of the Nb5+ oxidation state for the highest oxygen partial pressure, while Nb4+ is additionally present at lower oxygen partial pressure settings. With a maximal transparency of ∼80% and a refractive index of ∼2.5, the transparent films show characteristics similar to Nb2O5.

  16. Combinatorial study of WInZnO films deposited by rf magnetron co-sputtering

    International Nuclear Information System (INIS)

    Oh, Byeong-Yun; Park, Jae-Cheol; Lee, Young-Jun; Cha, Sang-Jun; Kim, Joo-Hyung; Kim, Kwang-Young; Kim, Tae-Won; Heo, Gi-Seok

    2011-01-01

    The compositional dependence of co-sputtered tungsten indium zinc oxide (WInZnO) film properties was first investigated by means of a combinatorial technique. Indium zinc oxide (IZO) and WO 3 targets were used with different target power. W composition ratio [W/(In+Zn+W)] was varied between 3 and 30 at% and film thickness was reduced as the sample position moved toward WO 3 target. Furthermore, the optical bandgap energy increased gradually, which might be affected by the reduction in film thickness. All the WInZnO films showed an amorphous phase regardless of the W/(In+Zn+W) ratio. As the W/(In+Zn+W) ratio in WInZnO films increased, the carrier concentration was restricted, causing the increase in electrical resistivity. W cations worked as oxygen binders in determining the electronic properties, resulting in suppressing the formation of oxygen vacancies. Consequentially, W metal cations were effectively incorporated into the WInZnO films as a suppressor against the oxygen vacancies and the carrier generation by employing the combinatorial technique. - Graphical abstract: The film thickness and the sheet resistance (R s ) with respect to the sample position of WInZnO films, which is compositionally graded by rf power for each target, are exhibited. Highlights: → The compositional dependence of co-sputtered WInZnO film properties is first investigated. → W cations work as oxygen binders in determining the electronic properties. → All the WInZnO films show an amorphous phase regardless of the W/(In+Zn+W) ratio. → W metal cations are effectively incorporated into the WInZnO films by the combinatorial technique.

  17. Morphology control of tungsten nanorods grown by glancing angle RF magnetron sputtering under variable argon pressure and flow rate

    International Nuclear Information System (INIS)

    Khedir, Khedir R.; Kannarpady, Ganesh K.; Ishihara, Hidetaka; Woo, Justin; Ryerson, Charles; Biris, Alexandru S.

    2010-01-01

    Morphologically novel tungsten nanorods (WNRs) with the co-existence of two crystalline phases, α-W (thermodynamically stable) and β-W, were fabricated by glancing angle RF magnetron sputtering technique under various Ar pressures and flow rates. For these nanorods, a significant variation in their morphology and surface roughness was observed. These structures could be useful in a wide range of applications such as field emission, robust superhydrophobic coatings, energy, and medicine.

  18. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoqiang, E-mail: lxq_suse@sina.com [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China); Hao, Junying, E-mail: jyhao@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Xie, Yuntao [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-08-30

    Highlights: • Evolution of nanostructure and properties of the polymeric amorphous carbon films were firstly studied. • Si doping enhanced polymerization of the hydrocarbon chains and Al doping resulted in increase in the ordered carbon clusters of polymeric amorphous carbon films. • Soft polymeric amorphous carbon films exhibited an unconventional frictional behaviors with a superior wear resistance. • The mechanical and vacuum tribological properties of the polymeric amorphous carbon films were significantly improved by Si and Al co-doping. - Abstract: Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  19. Influence of the deposition-induced stress on the magnetic properties of magnetostrictive amorphous (Fe80Co20)80B20 multilayers with orthogonal anisotropy

    International Nuclear Information System (INIS)

    Gonzalez-Guerrero, Miguel; Prieto, Jose Luis; Sanchez, Pedro; Aroca, Claudio

    2007-01-01

    In this work, we experimentally justify that the control of the mechanical stress induced during the deposition of sputtered amorphous magnetostrictive (Fe 80 Co 20 ) 80 B 20 allows a custom design of its magnetic properties. FeCoB multilayers have been sputtered on thermal oxide Si substrates with different buffer materials. The crystalline quality and the thermomechanical properties of the buffer layer influence both the coercive and the anisotropy field. Those buffer layers with both high rigidity and poor thermal conductivity do not allow the dissipation of energy of the incoming sputtered material. Therefore, the mechanical stresses related to the deposition process cannot be released, leading to magnetic layers with high easy-axis coercive field and low anisotropy field. This shows that the mechanical stresses accumulated during deposition are a key parameter for the control of coercivity

  20. Determination of hydrogen concentration in amorphous silicon films by nuclear elastic scattering (NES) of 100 MeV /sup 3/He/sup 2 +/

    Energy Technology Data Exchange (ETDEWEB)

    Iwami, M; Imura, T; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering; Itahashi, T [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Fukuda, T [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Tanaka, M [Kobe Tokiwa Junior Coll., Nagata (Japan)

    1981-06-01

    Nuclear elastic scattering (NES) of 100 MeV /sup 3/He/sup 2 +/ ions was used to determine the amount of hydrogen atoms in hydrogenated amorphous silicon film fabricated by reactive sputtering. The total amount of hydrogen in this film was determined to be (1.12 +- 0.1) x 10/sup 22/ cm/sup -3/ within the accuracy of approximately 10%.

  1. Amorphous tantala and its relationship with the molten state

    Science.gov (United States)

    Alderman, O. L. G.; Benmore, C. J.; Neuefeind, J.; Coillet, E.; Mermet, A.; Martinez, V.; Tamalonis, A.; Weber, R.

    2018-04-01

    The structure factors of molten T a2O5 and N b2O5 have been measured by high-energy x-ray and pulsed neutron diffraction. These are compared to transmission-mode x-ray diffraction through a self-supported 15-μm ion-beam sputtered amorphous tantala film. Atomistic models derived from the diffraction data by means of empirical potential structure refinement reveal that tantala and niobia liquids are very close to isomorphous, as confirmed by measurement of a molten mixture, T a0.8N b1.2O5 . Nonetheless, peak Nb-O bond lengths are about 1 % shorter than those for Ta-O, at temperatures, T*=T /Tmelt , scaled to the melting points. Mean coordination numbers are nM O≃5.6 (1 ) ,nO M≃2.23 (4 ) in the liquid state, and nTaO≃6.6 (2 ) ,nOTa≃2.63 (8 ) in the solid. The liquids are built from five- and six-fold M -O polyhedra which connect principally by corner sharing, with a minority of edge sharing; a-T a2O5 on the other hand has a local structure more akin to the crystalline polymorphs, built primarily from six- and seven-fold polyhedra, with a larger degree of edge sharing. The structural differences between liquid and amorphous T a2O5 , coupled with observations of increasing peak bond lengths upon cooling, are consistent with the interpretation that the amorphous film reaches a supercooled liquidlike metastable equilibrium during deposition. In other words, the amorphous film shares a common progenitor state with a hypothetical glass quenched from a fragile melt. In addition, we show that recent classical interatomic potentials do not fully reproduce the diffraction data, and infer that inclusion of attractive (non-Coulombic) Ta-Ta interactions is important, particularly for obtaining the correct degree of edge sharing, coordination numbers, and densities. Nanoscale inhomogeneity of the amorphous film is confirmed by the observation of small-angle x-ray scattering.

  2. Effects of pre-sputtered Al interlayer on the atomic layer deposition of Al{sub 2}O{sub 3} films on Mg–10Li–0.5Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P.C.; Cheng, T.C. [Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Lin, H.C., E-mail: hclinntu@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Chen, M.J., E-mail: mjchen@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Lin, K.M. [Department of Materials Science and Engineering, Feng Chia University, Taichung, Taiwan (China); Yeh, M.T. [Amli Materials Technology Co. Ltd., New Taipei, Taiwan (China)

    2013-04-01

    In this study, a dual-layer of Al/Al{sub 2}O{sub 3} films was deposited on the Mg–10Li–0.5Zn substrate using both techniques of magnetron sputtering and atomic layer deposition (ALD). The pre-sputtered Al interlayer has a crystalline structure and the ALD-Al{sub 2}O{sub 3} film is amorphous. The Al interlayer could effectively obstruct the diffusion out of Li atoms from the Mg–10Li–0.5Zn substrate during the deposition of ALD-Al{sub 2}O{sub 3} film. The Mg–10Li–0.5Zn specimen with a dual-layer of Al/Al{sub 2}O{sub 3} films exhibits a much better corrosion resistance than those specimens with a single layer of sputtered Al or ALD-Al{sub 2}O{sub 3}.

  3. Deposition of indium tin oxide films on acrylic substrates by radiofrequency magnetron sputtering

    International Nuclear Information System (INIS)

    Chiou, B.S.; Hsieh, S.T.; Wu, W.F.

    1994-01-01

    Indium tin oxide (ITO) films were deposited onto acrylic substrates by rf magnetron sputtering. Low substrate temperature (< 80 C) and low rf power (< 28 W) were maintained during sputtering to prevent acrylic substrate deformation. The influence of sputtering parameters, such as rf power, target-to-substrate distance, and chamber pressure, on the film deposition rate, the electrical properties, as well as the optical properties of the deposited films was investigated. Both the refractive index and the extinction coefficient were derived. The high reflection at wavelengths greater than 3 μm made these sputtered ITO films applicable to infrared mirrors

  4. Photoexcitation-induced processes in amorphous semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [School of Engineering and Logistics, Charles Darwin University, Darwin, NT 0909 (Australia)]. E-mail: jai.singh@cdu.edu.au

    2005-07-30

    Theories for the mechanism of photo-induced processes of photodarkening (PD), volume expansion (VE) in amorphous chalcogenides are presented. Rates of spontaneous emission of photons by radiative recombination of excitons in amorphous semiconductors are also calculated and applied to study the excitonic photoluminescence in a-Si:H. Results are compared with previous theories.

  5. Photoexcitation-induced processes in amorphous semiconductors

    International Nuclear Information System (INIS)

    Singh, Jai

    2005-01-01

    Theories for the mechanism of photo-induced processes of photodarkening (PD), volume expansion (VE) in amorphous chalcogenides are presented. Rates of spontaneous emission of photons by radiative recombination of excitons in amorphous semiconductors are also calculated and applied to study the excitonic photoluminescence in a-Si:H. Results are compared with previous theories

  6. Magnetic properties of amorphous Gd0.67Y0.33

    International Nuclear Information System (INIS)

    Loudghiri, E.; Roky, K.; Hassini, A.; Belayachi, A.; Lassri, H.

    2004-01-01

    Amorphous Gd 0.67 Y 0.33 thin film has been prepared by RF sputtering and its magnetic properties have been studied. The magnetization measurements show that the M(T) curves present a maximum at low temperature and that the magnetic saturation is difficult to obtain even for fields up to 150 kOe for M(H) isotherms. This behavior can be attributed to the competing exchange interactions and the random magnetic anisotropy. The thermomagnetization curve is found to obey the Bloch law; the spin wave stiffness constant and the distance between nearest magnetic atoms were calculated from the experimental results. From an analysis of the approach to saturation magnetization, some fundamental parameters have been extracted

  7. Electrical and Magnetic Properties of Binary Amorphous Transition Metal Alloys.

    Science.gov (United States)

    Liou, Sy-Hwang

    The electrical, superconductive and magnetic properties of several binary transition metal amorphous and metastable crystalline alloys, Fe(,x)Ti(,100-x) (30 (LESSTHEQ) x (LESSTHEQ) 100), Fe(,x)Zr(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 93), Fe(,x)Hf(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 100), Fe(,x)Nb(,100 -x) (22 (LESSTHEQ) x (LESSTHEQ) 85), Ni(,x)Nb(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 80), Cu(,x)Nb(,100-x) (10 (LESSTHEQ) x (LESSTHEQ) 90) were studied over a wide composition range. Films were made using a magnetron sputtering system, and the structure of the films was investigated by energy dispersive x-ray diffraction. The composition region of each amorphous alloys system was determined and found in good agreement with a model proposed by Egami and Waseda. The magnetic properties and hyperfine interactions in the films were investigated using a conventional Mossbauer spectrometer and a ('57)Co in Rh matrix source. In all Fe-early transition metal binary alloys systems, Fe does not retain its moment in the low iron concentration region and the result is that the critical concentration for magnetic order (x(,c)) is much larger than anticipated from percolation considerations. A direct comparison between crystalline alloys and their amorphous counterparts of the same composition illustrate no clear correlation between crystalline and amorphous states. Pronounced discontinuities in the magnetic properties with variation in Fe content of all Fe-early transition metal alloys at phase boundaries separating amorphous and crystalline states have been observed. This is caused by the differences in the atomic arrangement and the electronic structure between crystalline and amorphous solids. The temperature dependence of resistivity, (rho)(T), of several binary amorphous alloys of Fe-TM (where TM = Ti, Zr, Hf, Nb etc.) has been studied from 2K to 300K. The Fe-poor (x x(,c)) samples have distinctive differences in (rho)(T) at low temperature (below 30K). All the magnetic samples

  8. Transparent Ga and Zn co-doped In2O3 electrode prepared by co-sputtering of Ga:In2O3 and Zn:In2O3 targets at room temperature

    International Nuclear Information System (INIS)

    Jeong, Jin-A; Kim, Han-Ki

    2011-01-01

    This study examined the characteristics of Ga:In 2 O 3 (IGO) co-sputtered Zn:In 2 O 3 (IZO) films prepared by dual target direct current (DC) magnetron sputtering at room temperature in a pure Ar atmosphere for transparent electrodes in IGZO-based TFTs. Electrical, optical, structural and surface properties of Ga and Zn co-doped In 2 O 3 (IGZO) electrodes were investigated as a function of IGO and IZO target DC power during the co-sputtering process. Unlike semiconducting InGaZnO 4 films, which were widely used as a channel layer in the oxide TFTs, the co-sputtered IGZO films showed a high transmittance (91.84%) and low resistivity (4.1 x 10 -4 Ω cm) at optimized DC power of the IGO and IZO targets, due to low atomic percent of Ga and Zn elements. Furthermore, the IGO co-sputtered IZO films showed a very smooth and featureless surface and an amorphous structure regardless of the IGO and IZO DC power due to the room temperature sputtering process. This indicates that co-sputtered IGZO films are a promising S/D electrode in the IGZO-based TFTs due to their low resistivity, high transmittance and same elements with channel InGaZnO 4 layer.

  9. Fracture toughness and sliding properties of magnetron sputtered CrBC and CrBCN coatings

    Science.gov (United States)

    Wang, Qianzhi; Zhou, Fei; Ma, Qiang; Callisti, Mauro; Polcar, Tomas; Yan, Jiwang

    2018-06-01

    CrBC and CrBCN coatings with low and high B contents were deposited on 316L steel and Si wafers using an unbalanced magnetron sputtering system. Mechanical properties including hardness (H), elastic modulus (E) and fracture toughness (KIc) as well as residual stresses (σ) were quantified. A clear correlation between structural, mechanical and tribological properties of coatings was found. In particular, structural analyses indicated that N incorporation in CrBC coatings with high B content caused a significant structural evolution of the nanocomposite structure (crystalline grains embedded into an amorphous matrix) from nc-CrB2/(a-CrBx, a-BCx) to nc-CrN/(a-BCx, a-BN). As a result, the hardness of CrBC coating with high B content decreased from 23.4 to 16.3 GPa but the fracture toughness was enhanced. Consequently, less cracks initiated on CrBCN coatings during tribological tests, which combined with the shielding effect of a-BN on wear debris, led to a low friction coefficient and wear rate.

  10. Chemical and microstructural characterization of rf-sputtered BaTiO{sub 3} nano-capacitors with Ni electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Reck, James N., E-mail: j.n.reck@gmail.com [Missouri University of Science and Technology, Department of Materials Science and Engineering, Rolla, MO 65409 (United States); Cortez, Rebecca [Union College, Department of Mechanical Engineering, Schenectady, NY 12308 (United States); Xie, S. [Northwestern University, Department of Materials Science and Engineering, Evanston, IL 60208 (United States); Zhang Ming; O' Keefe, Matthew; Dogan, Fatih [Missouri University of Science and Technology, Department of Materials Science and Engineering, Rolla, MO 65409 (United States)

    2012-05-15

    Chemical and microstructural evaluation techniques have been used to characterize sputter deposited 100-150 nm thick BaTiO{sub 3} nano-capacitors with 30 nm thick Ni electrodes fabricated on Si/SiO{sub 2} wafers. More than 99% of devices had resistance > 20 M{Omega}. Electrodes were found to have a roughness, R{sub a}, of about 0.66 {+-} 0.04 nm, and the BaTiO{sub 3} had a R{sub a} value of 1.3 {+-} 0.12 nm. Characterization of the BaTiO{sub 3} film chemistry with X-ray Photoelectron Spectroscopy (XPS) showed the films had excess oxygen and Ba:Ti ratios ranging from 0.78 to 1.1, depending on sputtering conditions. X-ray diffraction showed a broad peak between approximately 20 Degree-Sign and 35 Degree-Sign 2{theta}, indicating the films were either amorphous or contained grain sizes less than 5 nm. Focused ion beam images confirmed the presence of smooth, conformal films, with no visible signs of macro-defects such as pin-holes, cracks, or pores. High resolution transmission electron microscopy (TEM) and electron diffraction patterns confirmed the presence of a nearly amorphous film with limited short range order. No correlation was found between the chemical and microstructural studies with the dielectric permittivity (280-1000), loss (0.02-0.09), and/or resistivity (8.7 Multiplication-Sign 10{sup 10}-1.5 Multiplication-Sign 10{sup 12} {Omega} cm) values.

  11. Carbon Back Sputter Modeling for Hall Thruster Testing

    Science.gov (United States)

    Gilland, James H.; Williams, George J.; Burt, Jonathan M.; Yim, John T.

    2016-01-01

    In support of wear testing for the Hall Effect Rocket with Magnetic Shielding (HERMeS) program, the back sputter from a Hall effect thruster plume has been modeled for the NASA Glenn Research Centers Vacuum Facility 5. The predicted wear at a near-worst case condition of 600 V, 12.5 kW was found to be on the order of 3 4 mkhour in a fully carbon-lined chamber. A more detailed numerical monte carlo code was also modified to estimate back sputter for a detailed facility and pumping configuration. This code demonstrated similar back sputter rate distributions, but is not yet accurately modeling the magnitudes. The modeling has been benchmarked to recent HERMeS wear testing, using multiple microbalance measurements. These recent measurements have yielded values, on the order of 1.5- 2 microns/khour.

  12. Hydrogenated amorphous silicon thin film anode for proton conducting batteries

    Science.gov (United States)

    Meng, Tiejun; Young, Kwo; Beglau, David; Yan, Shuli; Zeng, Peng; Cheng, Mark Ming-Cheng

    2016-01-01

    Hydrogenated amorphous Si (a-Si:H) thin films deposited by chemical vapor deposition were used as anode in a non-conventional nickel metal hydride battery using a proton-conducting ionic liquid based non-aqueous electrolyte instead of alkaline solution for the first time, which showed a high specific discharge capacity of 1418 mAh g-1 for the 38th cycle and retained 707 mAh g-1 after 500 cycles. A maximum discharge capacity of 3635 mAh g-1 was obtained at a lower discharge rate, 510 mA g-1. This electrochemical discharge capacity is equivalent to about 3.8 hydrogen atoms stored in each silicon atom. Cyclic voltammogram showed an improved stability 300 mV below the hydrogen evolution potential. Both Raman spectroscopy and Fourier transform infrared spectroscopy studies showed no difference to the pre-existing covalent Si-H bond after electrochemical cycling and charging, indicating a non-covalent nature of the Si-H bonding contributing to the reversible hydrogen storage of the current material. Another a-Si:H thin film was prepared by an rf-sputtering deposition followed by an ex-situ hydrogenation, which showed a discharge capacity of 2377 mAh g-1.

  13. Crystalline to amorphous transformation in silicon

    International Nuclear Information System (INIS)

    Cheruvu, S.M.

    1982-09-01

    In the present investigation, an attempt was made to understand the fundamental mechanism of crystalline-to-amorphous transformation in arsenic implanted silicon using high resolution electron microscopy. A comparison of the gradual disappearance of simulated lattice fringes with increasing Frenkel pair concentration with the experimental observation of sharp interfaces between crystalline and amorphous regions was carried out leading to the conclusion that when the defect concentration reaches a critical value, the crystal does relax to an amorphous state. Optical diffraction experiments using atomic models also supported this hypothesis. Both crystalline and amorphous zones were found to co-exist with sharp interfaces at the atomic level. Growth of the amorphous fraction depends on the temperature, dose rate and the mass of the implanted ion. Preliminary results of high energy electron irradiation experiments at 1.2 MeV also suggested that clustering of point defects occurs near room temperature. An observation in a high resolution image of a small amorphous zone centered at the core of a dislocation is presented as evidence that the nucleation of an amorphous phase is heterogeneous in nature involving clustering or segregation of point defects near existing defects

  14. High-rate deposition of Ta-doped SnO2 films by reactive magnetron sputtering using a Sn–Ta metal-sintered target

    International Nuclear Information System (INIS)

    Muto, Y.; Nakatomi, S.; Oka, N.; Iwabuchi, Y.; Kotsubo, H.; Shigesato, Y.

    2012-01-01

    Ta-doped SnO 2 films were deposited on glass substrate (either unheated or heated at 200 °C) by reactive magnetron sputtering with a Sn–Ta metal-sintered target using a plasma control unit (PCU) and mid-frequency (mf, 50 kHz) unipolar pulsing. The PCU feedback system precisely controlled the flow of the reactive and sputtering gases (O 2 and Ar, respectively) by monitoring either discharge impedance or the plasma emission of the atomic O* line at 777 nm. The planar target was connected to the switching unit, which was operated in unipolar pulse mode. Power density on the target was maintained at 4.4 W cm −2 during deposition. The lowest obtained resistivity for the films deposited on heated substrate was 6.4 × 10 −3 Ωcm, where the deposition rate was 250 nm min −1 .

  15. Semi-empirical formulas for sputtering yield

    International Nuclear Information System (INIS)

    Yamamura, Yasumichi

    1994-01-01

    When charged particles, electrons, light and so on are irradiated on solid surfaces, the materials are lost from the surfaces, and this phenomenon is called sputtering. In order to understand sputtering phenomenon, the bond energy of atoms on surfaces, the energy given to the vicinity of surfaces and the process of converting the given energy to the energy for releasing atoms must be known. The theories of sputtering and the semi-empirical formulas for evaluating the dependence of sputtering yield on incident energy are explained. The mechanisms of sputtering are that due to collision cascade in the case of heavy ion incidence and that due to surface atom recoil in the case of light ion incidence. The formulas for the sputtering yield of low energy heavy ion sputtering, high energy light ion sputtering and the general case between these extreme cases, and the Matsunami formula are shown. At the stage of the publication of Atomic Data and Nuclear Data Tables in 1984, the data up to 1983 were collected, and about 30 papers published thereafter were added. The experimental data for low Z materials, for example Be, B and C and light ion sputtering data were reported. The combination of ions and target atoms in the collected sputtering data is shown. The new semi-empirical formula by slightly adjusting the Matsunami formula was decided. (K.I.)

  16. Development of an inductively coupled impulse sputtering source for coating deposition

    Science.gov (United States)

    Loch, Daniel Alexander Llewellyn

    In recent years, highly ionised pulsed plasma processes have had a great impact on improving the coating performance of various applications, such as for cutting tools and ITO coatings, allowing for a longer service life and improved defect densities. These improvements stem from the higher ionisation degree of the sputtered material in these processes and with this the possibility of controlling the flux of sputtered material, allowing the regulation of the hardness and density of coatings and the ability to sputter onto complex contoured substrates. The development of Inductively Coupled Impulse Sputtering (ICIS) is aimed at the potential of utilising the advantages of highly ionised plasma for the sputtering of ferromagnetic material. In traditional magnetron based sputter processes ferromagnetic materials would shunt the magnetic field of the magnetron, thus reducing the sputter yield and ionisation efficiency. By generating the plasma within a high power pulsed radio frequency (RF) driven coil in front of the cathode, it is possible to remove the need for a magnetron by applying a high voltage pulsed direct current to the cathode attracting argon ions from the plasma to initiate sputtering. This is the first time that ICIS technology has been deployed in a sputter coating system. To study the characteristics of ICIS, current and voltage waveforms have been measured to examine the effect of increasing RF-power. Plasma analysis has been conducted by optical emission spectroscopy to investigate the excitation mechanisms and the emission intensity. These are correlated to the set RF-power by modelling assumptions based on electron collisions. Mass spectroscopy is used to measure the plasma potential and ion energy distribution function. Pure copper, titanium and nickel coatings have been deposited on silicon with high aspect ratio via to measure the deposition rate and characterise the microstructure. For titanium and nickel the emission modelling results are in

  17. Control of composition and crystallinity in hydroxyapatite films deposited by electron cyclotron resonance plasma sputtering

    Science.gov (United States)

    Akazawa, Housei; Ueno, Yuko

    2014-01-01

    Hydroxyapatite (HAp) films were deposited by electron cyclotron resonance plasma sputtering under a simultaneous flow of H2O vapor gas. Crystallization during sputter-deposition at elevated temperatures and solid-phase crystallization of amorphous films were compared in terms of film properties. When HAp films were deposited with Ar sputtering gas at temperatures above 460 °C, CaO byproducts precipitated with HAp crystallites. Using Xe instead of Ar resolved the compositional problem, yielding a single HAp phase. Preferentially c-axis-oriented HAp films were obtained at substrate temperatures between 460 and 500 °C and H2O pressures higher than 1×10-2 Pa. The absorption signal of the asymmetric stretching mode of the PO43- unit (ν3) in the Fourier-transform infrared absorption (FT-IR) spectra was the narrowest for films as-crystallized during deposition with Xe, but widest for solid-phase crystallized films. While the symmetric stretching mode of PO43- (ν1) is theoretically IR-inactive, this signal emerged in the FT-IR spectra of solid-phase crystallized films, but was absent for as-crystallized films, indicating superior crystallinity for the latter. The Raman scattering signal corresponding to ν1 PO43- sensitively reflected this crystallinity. The surface hardness of as-crystallized films evaluated by a pencil hardness test was higher than that of solid-phase crystallized films.

  18. The statistics of sputtering

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1993-01-01

    The MARLOWE program was used to study the statistics of sputtering on the example of 1- to 100-keV Au atoms normally incident on static (001) and (111) Au crystals. The yield of sputtered atoms was examined as a function of the impact point of the incident particles (''ions'') on the target surfaces. There were variations on two scales. The effects of the axial and planar channeling of the ions could be traced, the details depending on the orientation of the target and the energies of the ions. Locally, the sputtering yield was very sensitive to the impact point, small changes in position often producing large changes yield. Results indicate strongly that the sputtering yield is a random (''chaotic'') function of the impact point

  19. Pulsed dc self-sustained magnetron sputtering

    International Nuclear Information System (INIS)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-01-01

    rates were observed for both dc and pulsed dc self-sustained sputtering processes. The pulse characteristics of the voltage and current of the magnetron source during pulsed dc-SSS operation are shown. The presented results illustrate that a stable pulsed dc-SSS process can be obtained at a pulsing frequency in the range of 60-90 kHz and duty factor of 80%-90%

  20. Formation and stability of sputtered clusters

    International Nuclear Information System (INIS)

    Andersen, H.H.

    1989-01-01

    Current theory for the formation of sputtered clusters states that either atoms are sputtered individually and aggregate after having left the surface or they are sputtered as complete clusters. There is no totally sharp boundary between the two interpretations, but experimental evidence is mainly thought to favour the latter model. Both theories demand a criterion for the stability of the clusters. In computer simulations of sputtering, the idea has been to use the same interaction potential as in the lattice computations to judge the stability. More qualitatively, simple geometrical shapes have also been looked for. It is found here, that evidence for 'magic numbers' and electron parity effects in clusters have existed in the sputtering literature for a long time, making more sophisticated stability criteria necessary. The breakdown of originally sputtered metastable clusters into stable clusters gives strong support to the 'sputtered as clusters' hypothesis. (author)

  1. Magnetic and structural properties of ion beam sputtered Fe–Zr–Nb–B–Cu thin films

    International Nuclear Information System (INIS)

    Modak, S.S.; Kane, S.N.; Gupta, A.; Mazaleyrat, F.; LoBue, M.; Coisson, M.; Celegato, F.; Tiberto, P.; Vinai, F.

    2012-01-01

    Magnetic and structural properties of Fe–Zr–Nb–B–Cu thin films, prepared by ion beam sputtering on silicon substrates by using a target made up of amorphous ribbons of nominal composition Fe 84 Zr 3.5 Nb 3.5 B 8 Cu 1 , are reported. As-deposited thin film samples exhibit an in-plane uniaxial anisotropy, which can be ascribed to the preparation technique and the coupling of quenched-in internal stresses. Structural measurements indicate no significant variation of the grain size with thickness and with the annealing temperature. Increase in surface irregularities with annealing temperature and oxidation results in aggregates that would act as pinning centers, affecting the magnetic properties leading to magnetic hardening of the specimens. The role of the magnetic anisotropy is thoroughly discussed with the help of magnetic and ferromagnetic resonance measurements. - Highlights: ►Ion beam sputtered Fe–Zr–Nb–B–Cu thin films of different thickness are prepared. ►Films exhibit in-plane uniaxial anisotropy, which reduces with thermal treatments. ►Increased surface roughness leads to wall pinning, increasing the coercive field.

  2. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    International Nuclear Information System (INIS)

    Drera, G.; Mozzati, M.C.; Colombi, P.; Salvinelli, G.; Pagliara, S.; Visentin, D.; Sangaletti, L.

    2015-01-01

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al 2 O 3 substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al 2 O 3 substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions

  3. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Drera, G. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Mozzati, M.C. [CNISM, Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia (Italy); Colombi, P. [CSMT Gestione s.c.a.r.l, Via Branze 45, 25123 Brescia (Italy); Salvinelli, G.; Pagliara, S.; Visentin, D. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Sangaletti, L., E-mail: sangalet@dmf.unicatt.it [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy)

    2015-09-01

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al{sub 2}O{sub 3} substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al{sub 2}O{sub 3} substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions.

  4. Epitaxial growth of rhenium with sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seongshik [National Institute of Standards and Technology, Boulder, CO 80305 (United States) and Department of Physics, University of Illinois, Urbana, IL 61801 (United States)]. E-mail: soh@boulder.nist.gov; Hite, Dustin A. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Cicak, K. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Osborn, Kevin D. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Simmonds, Raymond W. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); McDermott, Robert [University of California, Santa Barbara, CA 93106 (United States); Cooper, Ken B. [University of California, Santa Barbara, CA 93106 (United States); Steffen, Matthias [University of California, Santa Barbara, CA 93106 (United States); Martinis, John M. [University of California, Santa Barbara, CA 93106 (United States); Pappas, David P. [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2006-02-21

    We have grown epitaxial Rhenium (Re) (0001) films on {alpha}-Al{sub 2}O{sub 3} (0001) substrates using sputter deposition in an ultra high vacuum system. We find that better epitaxy is achieved with DC rather than with RF sputtering. With DC sputtering, epitaxy is obtained with the substrate temperatures above 700 deg. C and deposition rates below 0.1 nm/s. The epitaxial Re films are typically composed of terraced hexagonal islands with screw dislocations, and island size gets larger with high temperature post-deposition annealing. The growth starts in a three dimensional mode but transforms into two dimensional mode as the film gets thicker. With a thin ({approx}2 nm) seed layer deposited at room temperature and annealed at a high temperature, the initial three dimensional growth can be suppressed. This results in larger islands when a thick film is grown at 850 deg. C on the seed layer. We also find that when a room temperature deposited Re film is annealed to higher temperatures, epitaxial features start to show up above {approx}600 deg. C, but the film tends to be disordered.

  5. Differential ion beam sputtering of segregated phases in aluminum casting alloys

    International Nuclear Information System (INIS)

    Nguyen, Chuong L.; Wirtz, Tom; Fleming, Yves; Metson, James B.

    2013-01-01

    Highlights: ► Novel combination of SIMS and SPM for accurate 3D chemical mapping. ► Different removal rates of metallurgical phases by ion beam. ► Faster oxidation rate of silicon vs. aluminum at room temperature in vacuum. - Abstract: Differential sputtering of materials is an important phenomenon in materials science with many implications. One of the practical applications of this phenomenon is the modification of the interface between a substrate and coating during sputter coating of materials. Aluminum casting alloys, as common materials in many applications, are suitable candidates to investigate this phenomenon due to their phase separated microstructures. Changes at the sample surface under ion bombardment can be characterized by a range of complimentary techniques. The novel SIMS–SPM instrument used here enables a thorough investigation into the evolution of topography and composition caused by ion beam sputtering. For the alloy examined in this work, the aluminum regions are removed faster than the silicon particles. The faster oxidation rate of silicon compared to aluminum in the exposed surface can also be deduced from this study.

  6. MoOx thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors

    Science.gov (United States)

    Liu, Can; Li, Zhengcao; Zhang, Zhengjun

    2013-12-01

    In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoOx films (2 ⩽ x ⩽ 2.3) deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li2SO4. The MoOx (x ≈ 2.3) film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm-2 measured at 5 mV s-1), best rate capability and excellent stability at potentials below -0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO2 nanocrystals and amorphous MoOx (2.3 < x ⩽ 3). A mechanism combining Mo(IV) oxidation/reduction on the hydrated MoO2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process.

  7. MoOx thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors

    Directory of Open Access Journals (Sweden)

    Can Liu

    2013-11-01

    Full Text Available In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoOx films (2 ≤ x ≤ 2.3 deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li2SO4. The MoOx (x ≈ 2.3 film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm−2 measured at 5 mV s−1, best rate capability and excellent stability at potentials below −0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO2 nanocrystals and amorphous MoOx (2.3 < x ≤ 3. A mechanism combining Mo(IV oxidation/reduction on the hydrated MoO2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process.

  8. Transport theory of sputtering I: Depth of origin of sputtered atoms

    International Nuclear Information System (INIS)

    Zhang, Z.L.

    1999-01-01

    Sputter theory employing a sum of two power cross sections has been implemented. Compared with the well known Lindhard power cross section (V∝r -1/m ), a sum of two such cross sections can give a much better approximation to the Born-Mayer scattering in the low energy region (m ∼ 0.1). By using both one and two power cross sections, we have solved the linear transport equations describing the sputtering problem asymptotically. As usual, electronic stopping is ignored in the analysis. It has further been proved that Falcone's theory of the atom ejection process contradicts transport theory. The Andersen-Sigmund relation for partial sputtering yield ratios between two elements in an arbitrary multicomponent target has been derived by both methods. The energy deposited in the target surface layers has been computed for a few typical ion-target combinations. The numerical curves show that both theories generate almost the same results (error <10%) for m=3D0.2. It is also shown that, if the sputtering yield equals the corresponding one in Sigmund's theory, the depth of origin of sputtered atoms must be shorter than in Sigmund's theory for 0.25 m ≥ 3D 0. The former even may be only about one half of the latter as long as m=3D0. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Mechanical properties of amorphous and polycrystalline multilayer systems

    International Nuclear Information System (INIS)

    Barzen, I.; Edinger, M.; Scherer, J.; Ulrich, S.; Jung, K.; Ehrhardt, H.

    1993-01-01

    Amorphous and polycrystalline multilayer structures containing materials with metallic (Cr, Cr 3 C 2 ), ionic (Al 2 O 3 ) and covalent (SiC) bonding have been prepared by magnetron sputtering and ion plating in a dual-source apparatus. Up to 1000 layers have been deposited with a constant total thickness of 2.3 μm. Below a single-layer thickness of 10-30 nm the mechanical properties stress and hardness show strong variations. On one hand it is possible that below a certain thickness the mechanical properties of a single layer change. On the other hand electrical resistance and electron spin density measurements indicate that electronic effects may be involved. An attempt is made to explain the observed correlations by transport mechanisms of the electrons, by saturation of dangling bonds with delocalized electrons and by changes in the electronic band structure. (orig.)

  10. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  11. Emerging trends in the stabilization of amorphous drugs.

    Science.gov (United States)

    Laitinen, Riikka; Löbmann, Korbinian; Strachan, Clare J; Grohganz, Holger; Rades, Thomas

    2013-08-30

    The number of active pharmaceutical substances having high therapeutic potential but low water solubility is constantly increasing, making it difficult to formulate these compounds as oral dosage forms. The solubility and dissolution rate, and thus potentially the bioavailability, of these poorly water-soluble drugs can be increased by the formation of stabilized amorphous forms. Currently, formulation as solid polymer dispersions is the preferred method to enhance drug dissolution and to stabilize the amorphous form of a drug. The purpose of this review is to highlight emerging alternative methods to amorphous polymer dispersions for stabilizing the amorphous form of drugs. First, an overview of the properties and stabilization mechanisms of amorphous forms is provided. Subsequently, formulation approaches such as the preparation of co-amorphous small-molecule mixtures and the use of mesoporous silicon and silica-based carriers are presented as potential means to increase the stability of amorphous pharmaceuticals. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Sputter deposition of BSCCO films from a hollow cathode

    International Nuclear Information System (INIS)

    Lanagan, M.T.; Kampwirth, R.T.; Doyle, K.; Kowalski, S.; Miller, D.; Gray, K.E.

    1991-01-01

    High-T c superconducting thin films were deposited onto MgO single crystal substrates from a hollow cathode onto ceramic targets with the nominal composition of Bi 2 Sr 2 CaCu 2 O x . Films similar in composition to those used for the targets were deposited on MgO substrates by rf sputtering. The effects of sputtering time, rf power, and post-annealing on film microstructure and properties were studied in detail. Substrate temperature was found to have a significant influence on the film characteristics. Initial results show that deposition rates from a hollow cathode are an order of magnitude higher than those of a planar magnetron source at equivalent power levels. Large deposition rates allow for the coating of long lengths of wire

  13. Analysis and simulation of phase transformation kinetics of zeolite A from amorphous phases

    CERN Document Server

    Marui, Y; Uchida, H; Takiyama, H

    2003-01-01

    Experiments on transformation rates of zeolite A from amorphous phases at different feed rates to alter the particle size of the amorphous phases were carried out to analyze the kinetics of the transformation, and were analyzed by performing simulation of the transformation. A clear dependence of the induction time for nucleation of zeolite A crystals on the surface area of the amorphous phase was recognized, indicating that the nucleation of zeolite A was heterogeneous and the nucleation rate was almost proportional to the size of the amorphous particles. From the simulation, the mechanism of the transformation was found to be heterogeneous nucleation of zeolite A crystals on the surface of amorphous particles followed by solution mediated phase transformation, and the transformation kinetics were well reproduced at different feed rates. (author)

  14. Transparent conducting thin films by co-sputtering of ZnO-ITO targets

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Paz; Antony, Aldrin; Roldan, Ruben; Nos, Oriol; Frigeri, Paolo Antonio; Asensi, Jose Miguel; Bertomeu, Joan [Grup d' Energia Solar, Universitat de Barcelona (Spain)

    2010-04-15

    Transparent and conductive Zn-In-Sn-O (ZITO) amorphous thin films have been deposited at room temperature by the rf magnetron co-sputtering of ITO and ZnO targets. Co-sputtering gives the possibility to deposit multicomponent oxide thin films with different compositions by varying the power to one of the targets. In order to make ZITO films with different Zn content, a constant rf power of 50 W was used for the ITO target, where as the rf power to ZnO target was varied from 25 W to 150 W. The as deposited films showed an increase in Zn content ratio from 17 to 67% as the power to ZnO target was increased from 25 to 150 W. The structural, electrical and optical properties of the as deposited films are reported. The films showed an average transmittance over 80% in the visible wavelength range. The electrical resistivity and optical band gap of the ZITO films were found to depend on the Zn content in the film. The ZITO films deposited at room temperature with lower Zn content ratios showed better optical transmission and electrical properties compared to ITO film. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Room-Temperature-Synthesized High-Mobility Transparent Amorphous CdO-Ga2O3 Alloys with Widely Tunable Electronic Bands.

    Science.gov (United States)

    Liu, Chao Ping; Ho, Chun Yuen; Dos Reis, Roberto; Foo, Yishu; Guo, Peng Fei; Zapien, Juan Antonio; Walukiewicz, Wladek; Yu, Kin Man

    2018-02-28

    In this work, we have synthesized Cd 1-x Ga x O 1+δ alloy thin films at room temperature over the entire composition range by radio frequency magnetron sputtering. We found that alloy films with high Ga contents of x > 0.3 are amorphous. Amorphous Cd 1-x Ga x O 1+δ alloys in the composition range of 0.3 < x < 0.5 exhibit a high electron mobility of 10-20 cm 2 V -1 s -1 with a resistivity in the range of 10 -2 to high 10 -4 Ω cm range. The resistivity of the amorphous alloys can also be controlled over 5 orders of magnitude from 7 × 10 -4 to 77 Ω cm by controlling the oxygen stoichiometry. Over the entire composition range, these crystalline and amorphous alloys have a large tunable intrinsic band gap range of 2.2-4.8 eV as well as a conduction band minimum range of 5.8-4.5 eV below the vacuum level. Our results suggest that amorphous Cd 1-x Ga x O 1+δ alloy films with 0.3 < x < 0.4 have favorable optoelectronic properties as transparent conductors on flexible and/or organic substrates, whereas the band edges and electrical conductivity of films with 0.3 < x < 0.7 can be manipulated for transparent thin-film transistors as well as electron transport layers.

  16. High-power sputtering employed for film deposition

    International Nuclear Information System (INIS)

    Shapovalov, V I

    2017-01-01

    The features of high-power magnetron sputtering employed for the films’ deposition are reviewed. The main physical phenomena accompanying high-power sputtering including ion-electron emission, gas rarefaction, ionization of sputtered atoms, self-sputtering, ion sound waves and the impact of the target heating are described. (paper)

  17. Deposition and characterization of sputtered hexaboride coatings; Abscheidung und Charakterisierung aufgestaeubter Hexaboridschichten

    Energy Technology Data Exchange (ETDEWEB)

    Waldhauser, W

    1996-06-01

    Hexaborides of the rare-earth elements ReB{sub 6} are potential materials for cathode applications since they combine properties such as low work function, good electrical conductivity, high melting point as well as low volatility at high temperatures. Due to their high hardness and colorations ranging from blue to purple these compounds are also considered for applications to coatings for decoration of consumer products. At present, either rods of sintered LaB{sub 6} or single LaB{sub 6} crystals are indirectly heated to induce emission. In this workboride coatings were deposited onto various substrates employing non-reactive magnetron sputtering from LaB{sub 6}, CeB{sub 6}, SmB{sub 6} and YB{sub 6} targets. Coatings deposited were examined using scanning electron microscopy, X-ray diffraction, electron probe microanalysis. Vickers microhardness, colorimeter and spectroscopic ellipsometry measurements. Electron emission characteristics of the coatings were studied by the thermionic emission and the contact potential method. After optimization of the sputtering parameters fine-columnar or partially amorphous films with atomic ratios of boron to metal in the order of 5 to 7.5 were obtained. The tendency to form the corresponding hexaboride phase decreases from LaB{sub 6}, CeB{sub 6} and SmB{sub 6} to YB{sub 6}. The work function was measured to be in the range of 2.6 to 3.3 eV. Vickers microhardness values lie between 1500 and 2000 HVO.01. LaB{sub 6} coatings showed the most pronounced visual color impression corresponding to dark violet. The results obtained indicate that sputtered hexaboride films are well suited for decorative and thermionic applications. (author)

  18. Laser fluorescence spectroscopy of sputtered uranium atoms

    International Nuclear Information System (INIS)

    Wright, R.B.; Pellin, M.J.; Gruen, D.M.; Young, C.E.

    1979-01-01

    Laser induced fluorescence (LIF) spectroscopy was used to study the sputtering of 99.8% 238 U metal foil when bombarded by normally incident 500 to 3000 eV Ne + , Ar + , Kr + , and O 2 + . A three-level atom model of the LIF processes is developed to interpret the observed fluorescent emission from the sputtered species. The model shows that close attention must be paid to the conditions under which the experiment is carried out as well as to the details of the collision cascade theory of sputtering. Rigorous analysis shows that when properly applied, LIF can be used to investigate the predictions of sputtering theory as regards energy distributions of sputtered particles and for the determination of sputtering yields. The possibility that thermal emission may occur during sputtering can also be tested using the proposed model. It is shown that the velocity distribution (either the number density or flux density distribution, depending upon the experimental conditions) of the sputtered particles can be determined using the LIF technique and that this information can be used to obtain a description of the basic sputtering mechanisms. These matters are discussed using the U-atom fluorescence measurements as a basis. The relative sputtering yields for various incident ions on uranium were also measured for the first time using the LIF technique. A surprisingly high fraction of the sputtered uranium atoms were found to occupy the low lying metastable energy levels of U(I). The population of the sputtered metastable atoms were found approximately to obey a Boltzman distribution with an effective temperature of 920 +- 100 0 K. 41 references

  19. The Effect of Thermal Annealing on the Optical Properties of a-SiC:H Films Produced by DC Sputtering Methods: I. Graphite Target Case.

    Directory of Open Access Journals (Sweden)

    Lusitra Munisa

    2003-04-01

    Full Text Available A study of the annealing effect on optical properties and disorder of hydrogenated amorphous silicon carbon (a-SiC:H films was undertaken. The films were prepared by sputtering technique using graphite target and silicon wafer in argon and hydrogen gas mixture, and then characterized by uv-vis (ultra violet-visible spectroscopy before and after annealing. Index of refraction n and absorption coefficient α of films have been determined from measurements of transmittance. The optical gap show small variation with annealing temperature, increasing with increasing annealing temperature up to 500 °C. An increase of annealing temperature leads to reduced film density and the amorphous network disorder. The experimental results are discussed in terms of deposition condition and compared to other experimental results.

  20. An in situ XPS study of growth of ITO on amorphous hydrogenated Si: Initial stages of heterojunction formation upon processing of ITO/a-Si:H based solar cell structures

    Energy Technology Data Exchange (ETDEWEB)

    Diplas, Spyros; Thoegersen, Annett; Ulyashin, Alexander [SINTEF Materials and Chemistry, Oslo (Norway); Romanyuk, Andriy [University of Basel, Basel (Switzerland)

    2015-01-01

    In this work we studied the interface growth upon deposition of indium-tin oxide (ITO) on amorphous hydrogenated Si (a-Si:H)/crystalline Si (c-Si) structures. The analysis methods used were X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) in combination with in situ film growth with magnetron sputtering. The analysis was complemented with transmission electron microscopy (TEM) of the deposited films. The sputtering equipment was attached to the XPS spectrometer and hence early stage film growth was observed without breaking the vacuum. It was shown that during early deposition stages ITO is reduced by a-Si:H. The reduction is accompanied with formation of metallic In and Sn at the interface. Formation of Sn is more enhanced on a-Si substrates whilst formation of In is more dominant on c-Si substrates. The reduction effect is less intense for amorphous hydrogenated Si as compared to crystalline Si and this is attributed to stronger presence of dangling bonds in the latter than the former. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    Energy Technology Data Exchange (ETDEWEB)

    Hänninen, Tuomas, E-mail: tuoha@ifm.liu.se; Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans [Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-581 83 (Sweden)

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  2. Computer simulation of sputtering of graphite target in magnetron sputtering device with two zones of erosion

    Directory of Open Access Journals (Sweden)

    Bogdanov R.V.

    2015-03-01

    Full Text Available A computer simulation program for discharge in a magnetron sputtering device with two erosion zones was developed. Basic laws of the graphite target sputtering process and transport of sputtered material to the substrate were taken into account in the Monte Carlo code. The results of computer simulation for radial distributions of density and energy flux of carbon atoms on the substrate (at different values of discharge current and pressure of the working gas confirmed the possibility of obtaining qualitative homogeneous films using this magnetron sputtering device. Also the discharge modes were determined for this magnetron sputtering device, in which it was possible to obtain such energy and density of carbon atoms fluxes, which were suitable for deposition of carbon films containing carbon nanotubes and other nanoparticles.

  3. Sputtering of water ice

    DEFF Research Database (Denmark)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from...

  4. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    Science.gov (United States)

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  5. Simulation experiments and solar wind sputtering

    International Nuclear Information System (INIS)

    Griffith, J.E.; Papanastassiou, D.A.; Russell, W.A.; Tombrello, T.A.; Weller, R.A.

    1978-01-01

    In order to isolate the role played by solar wind sputtering from other lunar surface phenomena a number of simulation experiments were performed, including isotope abundance measurements of Ca sputtered from terrestrial fluorite and plagioclase by 50-keV and 130-keV 14 N beams, measurement of the energy distribution of U atoms sputtered with 80-keV 40 Ar, and measurement of the fraction of sputtered U atoms which stick on the surfaces used to collect these atoms. 10 references

  6. Thermal conductivity of nitride films of Ti, Cr, and W deposited by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Jagannadham, Kasichainula

    2015-01-01

    Nitride films of Ti, Cr, and W were deposited using reactive magnetron sputtering from metal targets in argon and nitrogen plasma. TiN films with (200) orientation were achieved on silicon (100) at the substrate temperature of 500 and 600 °C. The films were polycrystalline at lower temperature. An amorphous interface layer was observed between the TiN film and Si wafer deposited at 600 °C. TiN film deposited at 600 °C showed the nitrogen to Ti ratio to be near unity, but films deposited at lower temperature were nitrogen deficient. CrN film with (200) orientation and good stoichiometry was achieved at 600 °C on Si(111) wafer but the film deposited at 500 °C showed cubic CrN and hexagonal Cr 2 N phases with smaller grain size and amorphous back ground in the x-ray diffraction pattern. An amorphous interface layer was not observed in the cubic CrN film on Si(111) deposited at 600 °C. Nitride film of tungsten deposited at 600 °C on Si(100) wafer was nitrogen deficient, contained both cubic W 2 N and hexagonal WN phases with smaller grain size. Nitride films of tungsten deposited at 500 °C were nonstoichiometric and contained cubic W 2 N and unreacted W phases. There was no amorphous phase formed along the interface for the tungsten nitride film deposited at 600 °C on the Si wafer. Thermal conductivity and interface thermal conductance of all the nitride films of Ti, Cr, and W were determined by transient thermoreflectance technique. The thermal conductivity of the films as function of deposition temperature, microstructure, nitrogen stoichiometry and amorphous interaction layer at the interface was determined. Tungsten nitride film containing both cubic and hexagonal phases was found to exhibit much higher thermal conductivity and interface thermal conductance. The amorphous interface layer was found to reduce effective thermal conductivity of TiN and CrN films

  7. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    Science.gov (United States)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  8. Highly effective field-effect mobility amorphous InGaZnO TFT mediated by directional silver nanowire arrays.

    Science.gov (United States)

    Liu, Hung-Chuan; Lai, Yi-Chun; Lai, Chih-Chung; Wu, Bing-Shu; Zan, Hsiao-Wen; Yu, Peichen; Chueh, Yu-Lun; Tsai, Chuang-Chuang

    2015-01-14

    In this work, we demonstrate sputtered amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a record high effective field-effect mobility of 174 cm(2)/V s by incorporating silver nanowire (AgNW) arrays to channel electron transport. Compared to the reference counterpart without nanowires, the over 5-fold enhancement in the effective field-effect mobility exhibits clear dependence on the orientation as well as the surface coverage ratio of silver nanowires. Detailed material and device analyses reveal that during the room-temperature IGZO sputtering indium and oxygen diffuse into the nanowire matrix while the nanowire morphology and good contact between IGZO and nanowires are maintained. The unchanged morphology and good interfacial contact lead to high mobility and air-ambient-stable characteristics up to 3 months. Neither hysteresis nor degraded bias stress reliability is observed. The proposed AgNW-mediated a-IGZO TFTs are promising for development of large-scale, flexible, transparent electronics.

  9. Microstructure and mechanical properties of Ti–B–C–N–Si nanocomposite films deposited by unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jaeho; An, Eunsol; Park, In-Wook; Nam, Dae-Geun [Korea Institute of Industrial Technology (KITECH), Busan, 618-230 (Korea, Republic of); Jo, Ilguk; Lin, Jianliang; Moore, John J. [Advanced Coatings and Surface Engineering Laboratory (ACSEL), Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401 (United States); Ho Kim, Kwang; Park, Ikmin [School of Materials Science and Engineering, Pusan National University, Busan, 609-735 (Korea, Republic of)

    2013-11-15

    Quinary Ti–B–C–N–Si nanocomposite thin films were deposited on AISI 304 stainless steel substrates by d.c. unbalanced magnetron sputtering from a TiB{sub 2}–TiC compound target and a pure Si target. The relationship between microstructure and mechanical properties of the films was investigated in terms of the nanosized crystallites/amorphous system. The synthesized Ti–B–C–N–Si films were characterized using x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, and high resolution transmission electron microscopy. The results showed that the Ti–B–C–N–Si films were nanocomposites composed of nanosized TiB{sub 2}, TiC, and TiSi{sub 2} crystallites (2-3 nm in size) embedded in an amorphous matrix. The addition of Si to the Ti–B–C–N film led to precipitation of nanosized crystalline TiSi{sub 2} and percolation of amorphous SiC phases. The Ti–B–C–N–Si films with up to 7 at. % Si content presented high hardness (≥35 GPa), H/E (≥0.0095), and W{sub e} (>50%) with compressive residual stress (∼0.5 GPa). A systematic investigation on the microstructure and mechanical properties of Ti–B–C–N–Si films containing different Si contents is reported.

  10. High-rate reactive magnetron sputtering of zirconia films for laser optics applications

    International Nuclear Information System (INIS)

    Juskevicius, K.; Subacius, A.; Drazdys, R.; Juskenas, R.; Audronis, M.; Matthews, A.; Leyland, A.

    2014-01-01

    ZrO 2 exhibits low optical absorption in the near-UV range and is one of the highest laser-induced damage threshold (LIDT) materials; it is, therefore, very attractive for laser optics applications. This paper reports explorations of reactive sputtering technology for deposition of ZrO 2 films with low extinction coefficient k values in the UV spectrum region at low substrate temperature. A high deposition rate (64 % of the pure metal rate) process is obtained by employing active feedback reactive gas control which creates a stable and repeatable deposition processes in the transition region. Substrate heating at 200 C was found to have no significant effect on the optical ZrO 2 film properties. The addition of nitrogen to a closed-loop controlled process was found to have mostly negative effects in terms of deposition rate and optical properties. Open-loop O 2 gas-regulated ZrO 2 film deposition is slow and requires elevated (200 C) substrate temperature or post-deposition annealing to reduce absorption losses. Refractive indices of the films were distributed in the range n = 2.05-2.20 at 1,000 nm and extinction coefficients were in the range k = 0.6 x 10 -4 and 4.8 x 10 -3 at 350 nm. X-ray diffraction analysis showed crystalline ZrO 2 films consisted of monoclinic + tetragonal phases when produced in Ar/O 2 atmosphere and monoclinic + rhombohedral or a single rhombohedral phase when produced in Ar/O 2 + N 2 . Optical and physical properties of the ZrO 2 layers produced in this study are suitable for high-power laser applications in the near-UV range. (orig.)

  11. Production and characterization of Si-N films obtained by r.f. magnetron sputtering

    International Nuclear Information System (INIS)

    Oliveira, A.; Cavaleiro, A.; Vieira, M.T.

    1993-01-01

    Si-N films were deposited by sputtering from an Si 3 N 4 target with different deposition pressures and negative substrate bias. The films were amorphous and showed a ''featureless'' morphology. A high oxygen content was detected in unbiased films. For these films the Si/N ratio was very high compared with the target composition, whereas for biased films the opposite was observed. Si-N films presented cohesive failures for loads as high as 21 N and adhesive failure at 45 N when they were analysed by scratch test. Very high hardness (45 GPa) was obtained, particularly for biased films. Unbiased films were softer, which is attributed to the formation of silicon oxide and/or to a lower compressive stress level. (orig.)

  12. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin films have been investigated as protective coatings for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å h-l. Etching in liquids...... with pH values in the range from pH 2 to 11 have generally given etch rates below 0.04 Å h-l. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex situ...... annealing O2 in the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallization lines are hard to cover. Sputtered tantalum oxide...

  13. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin-films have been investigated as protective coating for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å/h. Etching in liquids with p......H values in the range from pH 2-11 have generally given etch rates below 0.04 Å/h. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex-situ annealing in O2...... the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallisation lines are hard to cover. Sputtered tantalum oxide exhibits high...

  14. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    The implantation and sputtering mechanisms which are relevant to ion bombardment of surfaces are described. These are: collision, thermal, electronic and photon-induced sputtering. 135 refs.; 36 figs.; 9 tabs

  15. Simultaneous study of sputtering and secondary ion emission of binary Fe-based alloys

    International Nuclear Information System (INIS)

    Riadel, M.M.; Nenadovic, T.; Perovic, B.

    1976-01-01

    The sputtering and secondary ion emission of binary Fe-based alloys of simple phase diagrams have been studied simultaneously. A series FeNi and FeCr alloys in the concentration range of 0-100% have been bombarded by 4 keV Kr + ions in a secondary ion mass spectrometer. The composition of the secondary ions has been analysed and also a fraction of the sputtered material has been collected and analysed by electron microprobe. The surface topography of the etched samples has been studied by scanning electron microscope. The relative sputtering coefficients of the metals have been determined, and the preferential sputtering of the alloying component of lower S have been proved. The etching pictures of samples are in correlation with the sputtering rates. Also the degree of secondary ionization has been calculated from the simultaneously measured ion emission and sputtering data. α + shows the change in the concentration range of the melting point minimum. This fact emphasizes the connection between the physico-chemical properties of alloys and their secondary emission process. From the dependence of the emitted homo- and hetero-cluster ions, conclusions could be shown concerning the production mechanism of small metallic aggregates

  16. Substrate temperature dependent structural, optical and electrical properties of amorphous InGaZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.F.; He, G., E-mail: ganghe01@issp.ac.cn; Gao, J.; Zhang, J.W.; Xiao, D.Q.; Jin, P.; Deng, B.

    2015-05-25

    Highlights: • Amorphous IGZO films are obtained by sputtering at various substrate temperatures. • Higher substrate temperatures lead to lower band gaps and high refractive index. • High temperature results in lower resistivity and larger charge carrier content. • Increased oxygen vacancies attributes to the reduced band gap. • Increased In content in IGZO films leads to the improved electrical properties. - Abstract: The effects of substrate temperature (T{sub s}) on the electrical and optical properties of amorphous InGaZnO thin films deposited by sputtering have been investigated. As T{sub s} increased from RT to 400 °C, all the films remained amorphous, the transmission in the visible region increased from 92.8% to 93.54%, and the band gap decreased from 3.42 eV to 3.31 eV. Based on Cauchy–Urbach model, the optical properties of all samples were analyzed by spectroscope ellipsometry (SE) and increase in refractive index has been detected with the increase in T{sub s}. Results of Hall measurement showed that substrate temperature have remarkable influence on the resistivity (ρ), carrier concentration (n), and carrier mobility (μ) of IGZO films. As T{sub s} increased from RT to 400 °C, ρ decreased from 46.6 to 0.24 Ω cm, and then increased to 1.11 Ω cm at T{sub s} of 400 °C, and n increase from 5.67 × 10{sup 15} to 7.33 × 10{sup 18} cm{sup −3}. Investigation of X-ray photoelectron spectroscopy (XPS) indicated that as T{sub s} increased, an O 1s component representing the oxygen vacancies increased in amount and that the intensity ratio of In/Ga increased but that of Zn/Ga decreased. The analysis suggests that the increase of oxygen vacancies could explain the increase in n and reduction in ρ and that the compositional change could explain the change of E{sub g}.

  17. Amorphization and Frictional Processes in Smectite-Quartz Gouge Mixtures Sheared from Sub-seismic to Seismic Slip Rates

    Science.gov (United States)

    Aretusini, S.; Mittempergher, S.; Spagnuolo, E.; Di Toro, G.; Gualtieri, A.; Plümper, O.

    2015-12-01

    Slipping zones in shallow sections of megathrusts and large landslides are often made of smectite and quartz gouge mixtures. Experiments aimed at investigating the frictional processes operating at high slip rates (>1 m/s) may unravel the mechanics of these natural phenomena. Here we present a new dataset obtained with two rotary shear apparatus (ROSA, Padua University; SHIVA, INGV-Rome). Experiments were performed at room humidity and temperature on four mixtures of smectite (Ca-Montmorillonite) and quartz with 68, 50, 25, 0 wt% of smectite. The gouges were slid for 3 m at normal stress of 5 MPa and slip rate V from 300 µm/s to 1.5 m/s. Temperature during the experiments was monitored with four thermocouples and modeled with COMSOL Multiphysics. In smectite-rich mixtures, the friction coefficient µ evolved with slip according to three slip rate regimes: in regime 1 (V0.3 m/s) µ had strong slip-weakening behavior. Instead, in quartz-rich mixtures the gouge had a monotonic slip-weakening behavior, independently of V. Temperature modelling showed that the fraction of work rate converted into heat decreased with increasing smectite content and slip rate. Quantitative X-ray powder diffraction (Rietveld method) indicates that the production of amorphous material from smectite breakdown increased with frictional work but was independent of work rate. Scanning Electron Microscopy investigation evidenced strain localization and presence of dehydrated clays for V≥0.3 m/s; instead, for V<0.3 m/s, strain was distributed and the gouge layer pervasively foliated. In conclusion, amorphization of the sheared gouges was not responsible of the measured frictional weakening. Instead, slip-weakening was concomitant to strain localization and possible vaporization of water adsorbed on smectite grain surfaces.

  18. Low-Damage Sputter Deposition on Graphene

    Science.gov (United States)

    Chen, Ching-Tzu; Casu, Emanuele; Gajek, Marcin; Raoux, Simone

    2013-03-01

    Despite its versatility and prevalence in the microelectronics industry, sputter deposition has seen very limited applications for graphene-based electronics. We have systematically investigated the sputtering induced graphene defects and identified the reflected high-energy neutrals of the sputtering gas as the primary cause of damage. In this talk, we introduce a novel sputtering technique that is shown to dramatically reduce bombardment of the fast neutrals and improve the structural integrity of the underlying graphene layer. We also demonstrate that sputter deposition and in-situ oxidation of 1 nm Al film at elevated temperatures yields homogeneous, fully covered oxide films with r.m.s. roughness much less than 1 monolayer, which shows the potential of using such technique for gate oxides, tunnel barriers, and multilayer fabrication in a wide range of graphene devices.

  19. Plasma ``anti-assistance'' and ``self-assistance'' to high power impulse magnetron sputtering

    Science.gov (United States)

    Anders, André; Yushkov, Georgy Yu.

    2009-04-01

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contraproductive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.

  20. Plasma 'anti-assistance' and 'self-assistance' to high power impulse magnetron sputtering

    International Nuclear Information System (INIS)

    Anders, Andre; Yushkov, Georgy Yu.

    2009-01-01

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contraproductive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering

  1. The crystallization and properties of sputter deposited lithium niobite

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Joshua C.; Brooks Tellekamp, M.; Alan Doolittle, W., E-mail: alan.doolittle@ece.gatech.edu

    2016-06-30

    Sputter deposition of the thin film memristor material, lithium niobite (LiNbO{sub 2}) is performed by co-deposition from a lithium oxide (Li{sub 2}O) and a niobium target. Crystalline films that are textured about the (101) orientation are produced under room temperature conditions. This material displays memristive hysteresis and exhibits XPS spectra similar to MBE and bulk grown LiNbO{sub 2}. Various deposition parameters were investigated resulting in variations in the deposition rate, film crystallinity, oxygen to niobium ratio, and mean niobium oxidation state. The results of this study allow for the routine production of large area LiNbO{sub 2} films at low substrate temperature useful in hybrid-integration of memristor, optical, and energy storage applications. - Highlights: • Room temperature sputter deposition of crystalline lithium niobite (LiNbO{sub 2}) • Contrast with previous high temperature corrosive growth methods • Analysis of sputter deposition parameters on the chemical and physical properties of the deposited material.

  2. The crystallization and properties of sputter deposited lithium niobite

    International Nuclear Information System (INIS)

    Shank, Joshua C.; Brooks Tellekamp, M.; Alan Doolittle, W.

    2016-01-01

    Sputter deposition of the thin film memristor material, lithium niobite (LiNbO_2) is performed by co-deposition from a lithium oxide (Li_2O) and a niobium target. Crystalline films that are textured about the (101) orientation are produced under room temperature conditions. This material displays memristive hysteresis and exhibits XPS spectra similar to MBE and bulk grown LiNbO_2. Various deposition parameters were investigated resulting in variations in the deposition rate, film crystallinity, oxygen to niobium ratio, and mean niobium oxidation state. The results of this study allow for the routine production of large area LiNbO_2 films at low substrate temperature useful in hybrid-integration of memristor, optical, and energy storage applications. - Highlights: • Room temperature sputter deposition of crystalline lithium niobite (LiNbO_2) • Contrast with previous high temperature corrosive growth methods • Analysis of sputter deposition parameters on the chemical and physical properties of the deposited material

  3. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  4. Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Jephias Gwamuri

    2016-01-01

    Full Text Available The opportunity for substantial efficiency enhancements of thin film hydrogenated amorphous silicon (a-Si:H solar photovoltaic (PV cells using plasmonic absorbers requires ultra-thin transparent conducting oxide top electrodes with low resistivity and high transmittances in the visible range of the electromagnetic spectrum. Fabricating ultra-thin indium tin oxide (ITO films (sub-50 nm using conventional methods has presented a number of challenges; however, a novel method involving chemical shaving of thicker (greater than 80 nm RF sputter deposited high-quality ITO films has been demonstrated. This study investigates the effect of oxygen concentration on the etch rates of RF sputter deposited ITO films to provide a detailed understanding of the interaction of all critical experimental parameters to help create even thinner layers to allow for more finely tune plasmonic resonances. ITO films were deposited on silicon substrates with a 98-nm, thermally grown oxide using RF magnetron sputtering with oxygen concentrations of 0, 0.4 and 1.0 sccm and annealed at 300 °C air ambient. Then the films were etched using a combination of water and hydrochloric and nitric acids for 1, 3, 5 and 8 min at room temperature. In-between each etching process cycle, the films were characterized by X-ray diffraction, atomic force microscopy, Raman Spectroscopy, 4-point probe (electrical conductivity, and variable angle spectroscopic ellipsometry. All the films were polycrystalline in nature and highly oriented along the (222 reflection. Ultra-thin ITO films with record low resistivity values (as low as 5.83 × 10−4 Ω·cm were obtained and high optical transparency is exhibited in the 300–1000 nm wavelength region for all the ITO films. The etch rate, preferred crystal lattice growth plane, d-spacing and lattice distortion were also observed to be highly dependent on the nature of growth environment for RF sputter deposited ITO films. The structural, electrical

  5. Studies on ion scattering and sputtering processes relevant to ion beam sputter deposition of multicomponent thin films

    International Nuclear Information System (INIS)

    Auciello, O.; Ameen, M.S.; Kingon, A.I.

    1989-01-01

    Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom ass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering Kr + or Xe + ions is preferable to the most commonly used Ar + ions, since the undesirable phenomena mentioned above are minimized for the first two ions. These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition. 10 refs., 5 figs

  6. Structural, chemical and nanomechanical investigations of SiC/polymeric a-C:H films deposited by reactive RF unbalanced magnetron sputtering

    Science.gov (United States)

    Tomastik, C.; Lackner, J. M.; Pauschitz, A.; Roy, M.

    2016-03-01

    Amorphous carbon (or diamond-like carbon, DLC) films have shown a number of important properties usable for a wide range of applications for very thin coatings with low friction and good wear resistance. DLC films alloyed with (semi-)metals show some improved properties and can be deposited by various methods. Among those, the widely used magnetron sputtering of carbon targets is known to increase the number of defects in the films. Therefore, in this paper an alternative approach of depositing silicon-carbide-containing polymeric hydrogenated DLC films using unbalanced magnetron sputtering was investigated. The influence of the C2H2 precursor concentration in the deposition chamber on the chemical and structural properties of the deposited films was investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and elastic recoil detection analysis. Roughness, mechanical properties and scratch response of the films were evaluated with the help of atomic force microscopy and nanoindentation. The Raman spectra revealed a strong correlation of the film structure with the C2H2 concentration during deposition. A higher C2H2 flow rate results in an increase in SiC content and decrease in hydrogen content in the film. This in turn increases hardness and elastic modulus and decreases the ratio H/E and H3/E2. The highest scratch resistance is exhibited by the film with the highest hardness, and the film having the highest overall sp3 bond content shows the highest elastic recovery during scratching.

  7. Pumping behavior of sputter ion pumps

    International Nuclear Information System (INIS)

    Chou, T.S.; McCafferty, D.

    The ultrahigh vacuum requirements of ISABELLE is obtained by distributed pumping stations. Each pumping station consists of 1000 l/s titanium sublimation pump for active gases (N 2 , H 2 , O 2 , CO, etc.), and a 20 l/s sputter ion pump for inert gases (methane, noble gases like He, etc.). The combination of the alarming production rate of methane from titanium sublimation pumps (TSP) and the decreasing pumping speed of sputter ion pumps (SIP) in the ultrahigh vacuum region (UHV) leads us to investigate this problem. In this paper, we first describe the essential physics and chemistry of the SIP in a very clean condition, followed by a discussion of our measuring techniques. Finally measured methane, argon and helium pumping speeds are presented for three different ion pumps in the range of 10 -6 to 10 -11 Torr. The virtues of the best pump are also discussed

  8. Thermoelectric effects of amorphous Ga-Sn-O thin film

    Science.gov (United States)

    Matsuda, Tokiyoshi; Uenuma, Mutsunori; Kimura, Mutsumi

    2017-07-01

    The thermoelectric effects of an amorphous Ga-Sn-O (a-GTO) thin film have been evaluated as a physical parameter of a novel oxide semiconductor. Currently, a-GTO thin films are greatly desired not only because they do not contain rare metals and are therefore free from problems on the exhaustion of resources and the increase in cost but also because their initial characteristics and performance stabilities are excellent when they are used in thin-film transistors. In this study, an a-GTO thin film was deposited on a quartz substrate by RF magnetron sputtering and postannealing was performed in air at 350 °C for 1 h using an annealing furnace. The Seebeck coefficient and electrical conductivity of the a-GTO thin film were -137 µV/K and 31.8 S/cm at room temperature, and -183 µV/K and 43.8 S/cm at 397 K, respectively, and as a result, the power factor was 1.47 µW/(cm·K2) at 397 K; these values were roughly as high as those of amorphous In-Ga-Zn-O (a-IGZO) thin films. Therefore, a-GTO thin films will be a candidate material for thermoelectric devices fabricated in a large area at a low cost by controlling the carrier mobility, carrier density, device structures, and so forth.

  9. Development of p-type amorphous Cu{sub 1−x}B{sub x}O{sub 2−δ} thin films and fabrication of pn hetero junction

    Energy Technology Data Exchange (ETDEWEB)

    Sanal, K.C., E-mail: sanalcusat@gmail.com [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kerala 682022 (India); Inter University Center for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala 682022 (India); Center for Advanced Materials, Cochin University of Science and Technology, Kerala 682022 (India); Jayaraj, M.K., E-mail: mkj@cusat.ac.in [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kerala 682022 (India); Center for Advanced Materials, Cochin University of Science and Technology, Kerala 682022 (India)

    2014-07-01

    Highlights: • Growth of p-type semiconducting amorphous Cu{sub 1−x}B{sub x}O{sub 2−δ} thin films by co-sputtering. • Atomic percentage of Cu{sub 1−x}B{sub x}O{sub 2−δ} thin films from the XPS analysis. • Variation of bandgap with boron concentration in Cu{sub 1−x}B{sub x}O{sub 2−δ} thin films. • Demonstration of p–n hetero junctions fabricated in the structure n-Si/p-Cu{sub 1−x}B{sub x}O{sub 2−δ}/Au. - Abstract: Transparent conducting amorphous p type Cu{sub 1−x}B{sub x}O{sub 2−δ} thin films were grown by RF magnetron co-sputtering at room temperature, using copper and boron targets in oxygen atmosphere. The structural, electrical as well as optical properties were studied. Composition of the films was analyzed by XPS. Amorphous structure of as deposited films was confirmed by GXRD. Surface morphology of the films was analyzed by AFM studies. p-Type nature and concentration of carriers were investigated by Hall effect measurement. Band gap of the films was found to increase with the atomic content of boron in the film. A p–n hetero junction using p-type Cu{sub 1−x}B{sub x}O{sub 2−δ} and n-type silicon was fabricated in the structure n-Si/p-Cu{sub 1−x}B{sub x}O{sub 2−δ}/Au which showed rectifying behavior. As deposited amorphous Cu{sub 1−x}B{sub x}O{sub 2−δ} thin films with lower carrier concentration can be used as a channel layer for thin film transistors.

  10. Investigation of inhomogeneous deformation in band amorphous alloys at constant heating rate

    Science.gov (United States)

    Fedorov, Victor; Berezner, Arseniy; Pluzhnikova, Tatiana; Beskrovnyi, Anatolyi

    2017-11-01

    The present paper contains investigations of the creep process in the cobalt-based amorphous metallic alloy within the temperature range from 300 up to 1023 K. In all the curves of deformation there were observed jumps and dying oscillations. It is noted that the creep of the sample ribbons is unstable and results in the thinning of ribbons with tightening and crimping. There is suggested the mechanism of inhomogeneous deformation, which takes place in course of the process of creep under intermittent heating. For the evaluation of amorphism in the treated samples there have been carried out neutron-graphical and X-ray diffraction investigations, as well as thermal analysis.

  11. Process parameter impact on properties of sputtered large-area Mo bilayers for CIGS thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Badgujar, Amol C.; Dhage, Sanjay R., E-mail: dhage@arci.res.in; Joshi, Shrikant V.

    2015-08-31

    Copper indium gallium selenide (CIGS) has emerged as a promising candidate for thin film solar cells, with efficiencies approaching those of silicon-based solar cells. To achieve optimum performance in CIGS solar cells, uniform, conductive, stress-free, well-adherent, reflective, crystalline molybdenum (Mo) thin films with preferred orientation (110) are desirable as a back contact on large area glass substrates. The present study focuses on cylindrical rotating DC magnetron sputtered bilayer Mo thin films on 300 mm × 300 mm soda lime glass (SLG) substrates. Key sputtering variables, namely power and Ar gas flow rates, were optimized to achieve best structural, electrical and optical properties. The Mo films were comprehensively characterized and found to possess high degree of thickness uniformity over large area. Best crystallinity, reflectance and sheet resistance was obtained at high sputtering powers and low argon gas flow rates, while mechanical properties like adhesion and residual stress were found to be best at low sputtering power and high argon gas flow rate, thereby indicating a need to arrive at a suitable trade-off during processing. - Highlights: • Sputtering of bilayer molybdenum thin films on soda lime glass • Large area deposition using rotating cylindrical direct current magnetron • Trade of sputter process parameters power and pressure • High uniformity of thickness and best electrical properties obtained • Suitable mechanical and optical properties of molybdenum are achieved for CIGS application.

  12. High-stability transparent amorphous oxide TFT with a silicon-doped back-channel layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung-Rae; Park, Jea-Gun [Hanyang University, Seoul (Korea, Republic of)

    2014-10-15

    We significantly reduced various electrical instabilities of amorphous indium gallium zinc oxide thin-film transistors (TFTs) by using the co-deposition of silicon on an a-IGZO back channel. This process showed improved stability of the threshold voltage (V{sub th}) under high temperature and humidity and negative gate-bias illumination stress (NBIS) without any reduction of IDS. The enhanced stability was achieved with silicon, which has higher metal-oxide bonding strengths than gallium does. Additionally, SiO{sub x} distributed on the a-IGZO surface reduced the adsorption and the desorption of H{sub 2}O and O{sub 2}. This process is applicable to the TFT manufacturing process with a variable sputtering target.

  13. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  14. Argonne inverted sputter source

    International Nuclear Information System (INIS)

    Yntema, J.L.; Billquist, P.J.

    1983-01-01

    The emittance of the inverted sputter source with immersion lenses was measured to be about 5π mm mrad MeV/sup 1/2/ at the 75% level over a wide range of beam intensities. The use of the source in experiments with radioactive sputter targets and hydrogen loaded targets is described. Self contamination of the source is discussed

  15. Columnar structure of reactively sputtered aluminium nitride films

    International Nuclear Information System (INIS)

    Chen Chisan; Hwang Binghwai; Lu Hongyang; Hsu Tzuchien

    2002-01-01

    Columnar structure of thin aluminium nitride (AlN) films is examined by x-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The films were deposited on SiO 2 /Si(100) substrate using radiofrequency reactive sputtering method. Strong [0001] preferred orientation is observed by XRD and confirmed by selected area diffraction pattern of TEM. Columnar grains of ∼50-100 nm inclined at an angle of ∼10 deg. to the substrate normal are observed by SEM. As revealed by TEM, each columnar grain is composed of nano-grains of the order of 10 nm and no faceting is observed in the nano-grains and columns. The [0001] preferred orientation results as columnar grains are oriented at various azimuthal angles with their c-axes perpendicular to the substrate surface. A slight tilt of a few tenths of a degree between adjacent nano-grains within a column is also observed. The random azimuthal orientation of columnar grains and small tilt between nano-grains in the films are accommodated by the amorphous phase present in the grain boundaries

  16. Data compilation of angular distributions of sputtered atoms

    International Nuclear Information System (INIS)

    Yamamura, Yasunori; Takiguchi, Takashi; Tawara, Hiro.

    1990-01-01

    Sputtering on a surface is generally caused by the collision cascade developed near the surface. The process is in principle the same as that causing radiation damage in the bulk of solids. Sputtering has long been regarded as an undesirable dirty effect which destroys the cathodes and grids in gas discharge tubes or ion sources and contaminates plasma and the surrounding walls. However, sputtering is used today for many applications such as sputter ion sources, mass spectrometers and the deposition of thin films. Plasma contamination and the surface erosion of first walls due to sputtering are still the major problems in fusion research. The angular distribution of the particles sputtered from solid surfaces can possibly provide the detailed information on the collision cascade in the interior of targets. This report presents a compilation of the angular distribution of sputtered atoms at normal incidence and oblique incidence in the various combinations of incident ions and target atoms. The angular distribution of sputtered atoms from monatomic solids at normal incidence and oblique incidence, and the compilation of the data on the angular distribution of sputtered atoms are reported. (K.I.)

  17. Dwell time dependent morphological transition and sputtering yield of ion sputtered Sn

    International Nuclear Information System (INIS)

    Qian, H X; Zeng, X R; Zhou, W

    2010-01-01

    Self-organized nano-scale patterns may appear on a wide variety of materials irradiated with an ion beam. Good manipulation of these structures is important for application in nanostructure fabrication. In this paper, dwell time has been demonstrated to be able to control the ripple formation and sputtering yield on Sn surface. Ripples with a wavelength of 1.7 μm were observed for a dwell time in the range 3-20 μs, whereas much finer ripples with a wavelength of 540 nm and a different orientation were observed for a shorter dwell time in the range 0.1-2 μs. The sputtering yield increases with dwell time significantly. The results provide a new basis for further steps in the theoretical description of morphology evolution during ion beam sputtering.

  18. AlN/Al dual protective coatings on NdFeB by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Li Jinlong; Mao Shoudong; Sun Kefei [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Li Xiaomin [Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050 (China); Song Zhenlun [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)], E-mail: songzhenlun@nimte.ac.cn

    2009-11-15

    AlN/Al dual protective coatings were prepared on NdFeB by DC magnetron sputtering in a home-made industrial apparatus. Comparing with Al coating, AlN/Al coatings have a denser structure of an outmost AlN amorphous layer following an inner Al columnar crystal layer. The coatings and NdFeB substrate combine well, and moreover, there is occurrence of metallurgy bonding in the interface layer. Both Al and AlN/Al coatings have a good protective ability to NdFeB. Especially, the corrosion resistance of AlN/Al coated NdFeB is improved largely. AlN/Al and Al protective coatings not only do not deteriorate the magnetic properties of NdFeB, but contribute to their slight increase.

  19. AlN/Al dual protective coatings on NdFeB by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Li Jinlong; Mao Shoudong; Sun Kefei; Li Xiaomin; Song Zhenlun

    2009-01-01

    AlN/Al dual protective coatings were prepared on NdFeB by DC magnetron sputtering in a home-made industrial apparatus. Comparing with Al coating, AlN/Al coatings have a denser structure of an outmost AlN amorphous layer following an inner Al columnar crystal layer. The coatings and NdFeB substrate combine well, and moreover, there is occurrence of metallurgy bonding in the interface layer. Both Al and AlN/Al coatings have a good protective ability to NdFeB. Especially, the corrosion resistance of AlN/Al coated NdFeB is improved largely. AlN/Al and Al protective coatings not only do not deteriorate the magnetic properties of NdFeB, but contribute to their slight increase.

  20. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    International Nuclear Information System (INIS)

    Almaguer-Flores, Argelia; Silva-Bermudez, Phaedra; Galicia, Rey; Rodil, Sandra E.

    2015-01-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO 2 and ZrO 2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO 2 > ZrO 2 ) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO 2 , which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO 2 and ZrO 2 coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO 2 and a-ZrO 2 than on their c-oxide counterpart. • E. coli adhesion on a-TiO 2 was lower than on the c-TiO 2

  1. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  2. Sputtering effect of low-energy ions on biological target: The analysis of sputtering product of urea and capsaicin

    International Nuclear Information System (INIS)

    Zhang, Lili; Xu, Xue; Wu, Yuejin

    2013-01-01

    Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. Recent years, ion implantation was successfully applied to biological research based on the fragments sputtering and form open paths in cell structure caused by ion sputtering. In this study, we focused on urea and chilli pepper pericarp samples implanted with N + and Ar + ions. To investigate the sputtering effect, we designed a collecting unit containing a disk sample and a glass pipe. The urea content and capsaicin content recovered from glass pipes were adopted to represent the sputtering product. The result of urea showed that the sputtering effect is positively correlated with the ion energy and dose, also affected by the ion type. The result of capsaicin was different from that of urea at 20 keV and possibly due to biological complex composition and structure. Therefore the sputtering yield depended on both the parameters of incident ions and the state of target materials. The sputtering yield of urea was also simulated by computational method achieved through the TRIM program. The trajectories of primary and recoiled atoms were calculated on the basis of the binary collision approximation using Monte Carlo method. The experimental results were much higher than the calculated results. The possible explanation is that in the physical model the target were assumed as a disordered lattice and independent atoms, which is much less complicated than that of the biological models

  3. Combined optical emission and resonant absorption diagnostics of an Ar-O{sub 2}-Ce-reactive magnetron sputtering discharge

    Energy Technology Data Exchange (ETDEWEB)

    El Mel, A.A. [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Institut des Matériaux Jean Rouxel, Université de Nantes, CNRS, 2 rue de la Houssinière B.P. 32229, Nantes Cedex 3 44322 (France); Ershov, S. [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Britun, N., E-mail: nikolay.britun@umons.ac.be [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Ricard, A. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, Toulouse Cedex 9 F-31062 (France); Konstantinidis, S. [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Snyders, R. [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Materia Nova Research Center, Parc Initialis, Avenue Copernic 1, Mons B-7000 (Belgium)

    2015-01-01

    We report the results on combined optical characterization of Ar-O{sub 2}-Ce magnetron sputtering discharges by optical emission and resonant absorption spectroscopy. In this study, a DC magnetron sputtering system equipped with a movable planar magnetron source with a Ce target is used. The intensities of Ar, O, and Ce emission lines, as well as the absolute densities of Ar metastable and Ce ground state atoms are analyzed as a function of the distance from the magnetron target, applied DC power, O{sub 2} content, etc. The absolute number density of the Ar{sup m} is found to decrease exponentially as a function of the target-to-substrate distance. The rate of this decrease is dependent on the sputtering regime, which should be due to the different collisional quenching rates of Ar{sup m} by O{sub 2} molecules at different oxygen contents. Quantitatively, the absolute number density of Ar{sup m} is found to be equal to ≈ 3 × 10{sup 8} cm{sup −3} in the metallic, and ≈ 5 × 10{sup 7} cm{sup −3} in the oxidized regime of sputtering, whereas Ce ground state densities at the similar conditions are found to be few times lower. The absolute densities of species are consistent with the corresponding deposition rates, which decrease sharply during the transition from metallic to poisoned sputtering regime. - Highlights: • Optical emission and resonant absorption spectroscopy are employed to study Ar-O{sub 2}-Ce magnetron sputtering discharges. • The density of argon metastables is found to decrease exponentially when increasing the target-to-substrate distance. • The collision-quenching rates of Ar{sup m} by O{sub 2} molecules at different oxygen contents is demonstrated. • The deposition rates of cerium and cerium oxide thin films decrease sharply during the transition from the metallic to the poisoned sputtering regime.

  4. Oxidation and Tribological Behavior of Ti-B-C-N-Si Nanocomposite Films Deposited by Pulsed Unbalanced Magnetron Sputtering.

    Science.gov (United States)

    Jang, Jaeho; Heo, Sungbo; Kim, Wang Ryeol; Kim, Jun-Ho; Nam, Dae-Geun; Kim, Kwang Ho; Park, Ikmin; Park, In-Wook

    2018-03-01

    Quinary Ti-B-C-N-Si nanocomposite films were deposited onto AISI 304 substrates using a pulsed d.c. magnetron sputtering system. The quinary Ti-B-C-N-Si (5 at.%) film showed excellent tribological and wear properties compared with those of the Ti-B-C-N films. The steady friction coefficient of 0.151 and a wear rate of 2 × 10-6 mm3N-1m-1 were measured for the Ti-B-C-N-Si films. The oxidation behavior of Ti-B-C-N-Si nanocomposite films was systematically investigated using X-ray diffraction (XRD), and thermal analyzer with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It is concluded that the addition of Si into the Ti-B-C-N film improved the tribological properties and oxidation resistance of the Ti-B-C-N-Si films. The improvements are due to the formation of an amorphous SiOx phase, which plays a major role in the self-lubricant tribo-layers and oxidation barrier on the film surface or in the grain boundaries, respectively.

  5. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)

    2015-05-01

    Cadmium sulphide (CdS) thin films were deposited by two different processes, chemical bath deposition (CBD), and pulsed DC magnetron sputtering (PDCMS) on fluorine doped-tin oxide coated glass to assess the potential advantages of the pulsed DC magnetron sputtering process. The structural, optical and morphological properties of films obtained by CBD and PDCMS were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, spectroscopic ellipsometry and UV-Vis spectrophotometry. The as-grown films were studied and comparisons were drawn between their morphology, uniformity, crystallinity, and the deposition rate of the process. The highest crystallinity is observed for sputtered CdS thin films. The absorption in the visible wavelength increased for PDCMS CdS thin films, due to the higher density of the films. The band gap measured for the as-grown CBD-CdS is 2.38 eV compared to 2.34 eV for PDCMS-CdS, confirming the higher density of the sputtered thin film. The higher deposition rate for PDCMS is a significant advantage of this technique which has potential use for high rate and low cost manufacturing. - Highlights: • Pulsed DC magnetron sputtering (PDCMS) of CdS films • Chemical bath deposition of CdS films • Comparison between CdS thin films deposited by chemical bath and PDCMS techniques • High deposition rate deposition for PDCMS deposition • Uniform, pinhole free CdS thin films.

  6. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lisco, F.; Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G.; Losurdo, M.; Walls, J.M.

    2015-01-01

    Cadmium sulphide (CdS) thin films were deposited by two different processes, chemical bath deposition (CBD), and pulsed DC magnetron sputtering (PDCMS) on fluorine doped-tin oxide coated glass to assess the potential advantages of the pulsed DC magnetron sputtering process. The structural, optical and morphological properties of films obtained by CBD and PDCMS were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, spectroscopic ellipsometry and UV-Vis spectrophotometry. The as-grown films were studied and comparisons were drawn between their morphology, uniformity, crystallinity, and the deposition rate of the process. The highest crystallinity is observed for sputtered CdS thin films. The absorption in the visible wavelength increased for PDCMS CdS thin films, due to the higher density of the films. The band gap measured for the as-grown CBD-CdS is 2.38 eV compared to 2.34 eV for PDCMS-CdS, confirming the higher density of the sputtered thin film. The higher deposition rate for PDCMS is a significant advantage of this technique which has potential use for high rate and low cost manufacturing. - Highlights: • Pulsed DC magnetron sputtering (PDCMS) of CdS films • Chemical bath deposition of CdS films • Comparison between CdS thin films deposited by chemical bath and PDCMS techniques • High deposition rate deposition for PDCMS deposition • Uniform, pinhole free CdS thin films

  7. Achievement report for fiscal 1991 on Sunshine Program-entrusted research and development. Research and development of amorphous silicon solar cells (Research on amorphous silicon interface); 1991 nendo amorphous silicon taiyo denchi no kenkyu kaihatsu seika hokokusho. Amorphous silicon no kaimen no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    The amorphous solar cell interface has been under study for the enhancement of efficiency and reliability in amorphous solar cells, and this is the compilation of the results achieved in fiscal 1991. In the effort to enhance delta-doped amorphous silicon solar cell efficiency, an amorphous Si solar cell is built using a ZnO film as the transparent conductive film. As the result, an a-Si solar cell with a conversion efficiency of 11.5% is obtained. In the research on the suppression of photodegradation in a-Si, from the viewpoint that a reduction in the amount of hydrogen contained excessively in the film will be effective in decelerating photodegradation, a photoexcited hydrogen radical treatment method is newly proposed, and basic studies are conducted on it. As the result, it is found that an a-Si film processed by a 20-second hydrogen treatment at a substrate temperature of 460 degrees C exhibits a lower photodegradation rate than an ordinary a-Si film. In the research on the deposition of amorphous Si film, a VHF frequency is used instead of 13.56MHz for plasma, and an amorphous Si film is deposited efficiently at a lower voltage at which ions cause less damage. (NEDO)

  8. Ion beam and dual ion beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1994-11-01

    Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All

  9. Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1995-02-01

    Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals

  10. Structure and optical properties of aSiAl and aSiAlHx magnetron sputtered thin films

    Directory of Open Access Journals (Sweden)

    Annett Thøgersen

    2016-03-01

    Full Text Available Thin films of homogeneous mixture of amorphous silicon and aluminum were produced with magnetron sputtering using 2-phase Al–Si targets. The films exhibited variable compositions, with and without the presence of hydrogen, aSi1−xAlx and aSi1−xAlxHy. The structure and optical properties of the films were investigated using transmission electron microscopy, X-ray photoelectron spectroscopy, UV-VisNIR spectrometry, ellipsometry, and atomistic modeling. We studied the effect of alloying aSi with Al (within the range 0–25 at. % on the optical band gap, refractive index, transmission, and absorption. Alloying aSi with Al resulted in a non-transparent film with a low band gap (1 eV. Variations of the Al and hydrogen content allowed for tuning of the optoelectronic properties. The films are stable up to a temperature of 300 °C. At this temperature, we observed Al induced crystallization of the amorphous silicon and the presence of large Al particles in a crystalline Si matrix.

  11. Study of Au- production in a plasma-sputter type negative ion source

    International Nuclear Information System (INIS)

    Okabe, Yushirou.

    1991-10-01

    A negative ion source of plasma-sputter type has been constructed for the purpose of studying physical processes which take place in the ion source. Negative ions of gold are produced on the gold target which is immersed in an argon discharge plasma and biased negatively with respect to the plasma. The work function of the target surface was lowered by the deposition of Cs on the target. An in-situ method has been developed to determine the work function of the target surface in the ion source under discharge conditions. The observed minimum work function of a cesiated gold surface in an argon plasma was 1.3 eV, when the negative ion production rate took the maximum value. The production rate increased monotonically and saturated when the surface work function was reduced from 1.9 eV to 1.3 eV. The dependence of Au - production rate on the incident ion energy and on the number of the incident ion was studied. From the experimental results, it is shown that the sputtering process is an important physical process for the negative ion production in the plasma-sputter type negative ion source. The energy distribution function was also measured. When the bias voltage was smaller than 280 V, the high energy component in the distribution decreased as the target voltage was decreased. Therefore, the energy spread ΔE, of the observed negative ion energy distribution also decreased. This tendency is also seen in the energy spectrum of Cu atoms sputtered in normal direction by Ar + ions. (J.P.N.)

  12. Computer simulation of sputtering: A review

    International Nuclear Information System (INIS)

    Robinson, M.T.; Hou, M.

    1992-08-01

    In 1986, H. H. Andersen reviewed attempts to understand sputtering by computer simulation and identified several areas where further research was needed: potential energy functions for molecular dynamics (MD) modelling; the role of inelastic effects on sputtering, especially near the target surface; the modelling of surface binding in models based on the binary collision approximation (BCA); aspects of cluster emission in MD models; and angular distributions of sputtered particles. To these may be added kinetic energy distributions of sputtered particles and the relationships between MD and BCA models, as well as the development of intermediate models. Many of these topics are discussed. Recent advances in BCA modelling include the explicit evaluation of the time in strict BCA codes and the development of intermediate codes able to simulate certain many-particle problems realistically. Developments in MD modelling include the wide-spread use of many-body potentials in sputtering calculations, inclusion of realistic electron excitation and electron-phonon interactions, and several studies of cluster ion impacts on solid surfaces

  13. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, N.K., E-mail: nora.sousa@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Calderon, S. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Carvalho, I. [GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); CEB—Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga (Portugal); Henriques, M. [CEB—Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Carvalho, S. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal)

    2016-07-30

    Highlights: • Amorphous carbon (a-C), Ag/a-C and Ag coatings were deposited by magnetron sputtering. • a-C/Ag coating shows antibacterial activity against S. epidermidis. • The formation of nano-galvanic couples in a-C/Ag enhances the Ag{sup +} ionization rate. • The Ag{sup +} ionization occurs along with Ag nanoparticles agglomeration in 0.9% NaCl. - Abstract: Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag{sup +} due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  14. Heavy particle transport in sputtering systems

    Science.gov (United States)

    Trieschmann, Jan

    2015-09-01

    This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.

  15. Sputtering on cobalt with noble gas ions

    International Nuclear Information System (INIS)

    Sarholt-Kristensen, L.; Johansen, A.; Johnson, E.

    1983-01-01

    Single crystals of cobalt have been bombarded with 80 keV Ar + ions and with 80 keV and 200 keV Xe + ions in the [0001] direction of the hcp phase and the [111] direction of the fcc phase. The sputtering yield has been measured as function of target temperature (20 0 C-500 0 C), showing a reduction in sputtering yield for 80 keV Ar + ions and 200 keV Xe + ions, when the crystal structure changes from hcp to fcc. In contrast to this, bombardment with 80 keV Xe + ions results in an increase in sputtering yield as the phase transition is passed. Sputtering yields for [111] nickel are in agreement with the sputtering yields for fcc cobalt indicating normal behaviour of the fcc cobalt phase. The higher sputtering yield of [0001] cobalt for certain combinations of ion mass and energy may then be ascribed to disorder induced partly by martensitic phase transformation, partly by radiation damage. (orig.)

  16. Analysis of NdFeB thin films prepared by facing target sputtering

    International Nuclear Information System (INIS)

    Shivalingappa, L.; Mohan, S.; Ghantasala, M.K.; Sood, D.K.

    1999-01-01

    In this paper, we present the details of our work on the deposition and characterization of NdFeB thin films. These films were prepared using facing target sputtering technique. The silicon(100) substrates were maintained at a substrate temperature of 400 to 600 deg C during deposition. Film structure, composition and magnetic properties are analyzed using Rutherford Backscattering Spectroscopy (RBS) and X-ray Diffraction (XRD) techniques. Films deposited below 400 deg C were x-ray amorphous, while the onset of crystallinity was observed with the films deposited at 500 deg C. Typical film composition was Nd:Fe:B = 2.2:12.5:2. Film composition appear to be a function of deposition conditions. Oxygen has been found to be the main impurity in the films. Oxygen content in the film reduced as the substrate temperature is increased

  17. Electrical resistivity of sputtered molybdenum films

    International Nuclear Information System (INIS)

    Nagano, J.

    1980-01-01

    The electrical resistivity of r.f. sputtered molybdenum films of thickness 5-150 nm deposited on oxidized silicon substrates was resolved into the three electron scattering components: isotropic background scattering, scattering at grain boundaries and scattering at surfaces. It was concluded that the isotropic background scattering is almost equal to that of bulk molybdenum and is not influenced by sputtering and annealing conditions. When the film thickness is sufficient that surface scattering can be ignored, the decrease in film resistivity after annealing is caused by the decrease in scattering at the grain boundaries for zero bias sputtered films, and is caused by an increase of the grain diameter for r.f. bias sputtered films. (Auth.)

  18. Formation of the prebiotic molecule NH2CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations.

    Science.gov (United States)

    Song, Lei; Kästner, Johannes

    2016-10-26

    Investigating how formamide forms in the interstellar medium is a hot topic in astrochemistry, which can contribute to our understanding of the origin of life on Earth. We have constructed a QM/MM model to simulate the hydrogenation of isocyanic acid on amorphous solid water surfaces to form formamide. The binding energy of HNCO on the ASW surface varies significantly between different binding sites, we found values between ∼0 and 100 kJ mol -1 . The barrier for the hydrogenation reaction is almost independent of the binding energy, though. We calculated tunneling rate constants of H + HNCO → NH 2 CO at temperatures down to 103 K combining QM/MM with instanton theory. Tunneling dominates the reaction at such low temperatures. The tunneling reaction is hardly accelerated by the amorphous solid water surface compared to the gas phase for this system, even though the activation energy of the surface reaction is lower than the one of the gas-phase reaction. Both the height and width of the barrier affect the tunneling rate in practice. Strong kinetic isotope effects were observed by comparing to rate constants of D + HNCO → NHDCO. At 103 K we found a KIE of 231 on the surface and 146 in the gas phase. Furthermore, we investigated the gas-phase reaction NH 2 + H 2 CO → NH 2 CHO + H and found it unlikely to occur at cryogenic temperatures. The data of our tunneling rate constants are expected to significantly influence astrochemical models.

  19. Structure adhesion and corrosion resistance study of tungsten bisulfide doped with titanium deposited by DC magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    De La Roche, J. [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al aeropuerto, Campus La Nubia, Manizales (Colombia); González, J.M. [Laboratorio de Recubrimientos Duros y Aplicaciones Industriales – RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia); Restrepo-Parra, E., E-mail: erestrepop@unal.edu.co [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al aeropuerto, Campus La Nubia, Manizales (Colombia); Sequeda, F. [Laboratorio de Recubrimientos Duros y Aplicaciones Industriales – RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia); Alleh, V.; Scharf, T.W. [The University of North Texas, Department of Materials Science and Engineering, Denton, TX 76203 (United States)

    2014-11-30

    Highlights: • Ti-doped WS{sub 2} films were grown via the magnetron co-sputtering technique. • At a high Ti percentage, the crystalline structure of WS{sub 2} coatings tends to be amorphous. • As the Ti percentage increases in WS{sub 2} coatings, nanocomposites tend to form. • Ti-doped WS{sub 2} films have elastic behavior compared with the plastic response of pure WS{sub 2} films. • A high Ti percentage increases the corrosion resistance of WS{sub 2} films. - Abstract: Titanium-doped tungsten bisulfide thin films (WS{sub 2}-Ti) were grown using a DC magnetron co-sputtering technique on AISI 304 stainless steel and silicon substrates. The films were produced by varying the Ti cathode power from 0 to 25 W. Using energy dispersive spectroscopy (EDS), the concentration of Ti in the WS{sub 2} was determined, and a maximum of 10% was obtained for the sample grown at 25 W. Moreover, the S/W ratio was calculated and determined to increase as a function of the Ti cathode power. According to transmission electron microscopy (TEM) results, at high titanium concentrations (greater than 6%), nanocomposite formation was observed, with nanocrystals of Ti embedded in an amorphous matrix of WS{sub 2}. Using the scratch test, the coatings’ adhesion was analyzed, and it was observed that as the Ti percentage was increased, the critical load (Lc) also increased. Furthermore, the failure type changed from plastic to elastic. Finally, the corrosion resistance was evaluated using the electrochemical impedance spectroscopy (EIS) technique, and it was observed that at high Ti concentrations, the corrosion resistance was improved, as Ti facilitates coating densification and generates a protective layer.

  20. Distribution of electrode elements near contacts and junction layers in amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Imura, T; Hiraki, A; Okamoto, H

    1982-01-01

    Auger electron spectroscopy with the ion sputter-etching technique and secondary ion mass spectroscopy have been utilized to investigate the depth distribution of Sn and In electrode elements in amorphous silicon layers of the photovoltaic device. The comparison of the depth profiles with the cell performances has indicated that the presence of the reduced state of In in both the p and i-layers affects the solar cell performance, but that of Sn does not. It was also shown that layered structure of In-Sn oxide (ITO)/SnO2 effectively prevents the diffusion of In and achieves high cell performances, having the thickness of the SnO2 layer about 200 A. 8 references.

  1. Enhanced stability of thin film transistors with double-stacked amorphous IWO/IWO:N channel layer

    Science.gov (United States)

    Lin, Dong; Pi, Shubin; Yang, Jianwen; Tiwari, Nidhi; Ren, Jinhua; Zhang, Qun; Liu, Po-Tsun; Shieh, Han-Ping

    2018-06-01

    In this work, bottom-gate top-contact thin film transistors with double-stacked amorphous IWO/IWO:N channel layer were fabricated. Herein, amorphous IWO and N-doped IWO were deposited as front and back channel layers, respectively, by radio-frequency magnetron sputtering. The electrical characteristics of the bi-layer-channel thin film transistors (TFTs) were examined and compared with those of single-layer-channel (i.e., amorphous IWO or IWO:N) TFTs. It was demonstrated to exhibit a high mobility of 27.2 cm2 V‑1 s‑1 and an on/off current ratio of 107. Compared to the single peers, bi-layer a-IWO/IWO:N TFTs showed smaller hysteresis and higher stability under negative bias stress and negative bias temperature stress. The enhanced performance could be attributed to its unique double-stacked channel configuration, which successfully combined the merits of the TFTs with IWO and IWO:N channels. The underlying IWO thin film provided percolation paths for electron transport, meanwhile, the top IWO:N layer reduced the bulk trap densities. In addition, the IWO channel/gate insulator interface had reduced defects, and IWO:N back channel surface was insensitive to the ambient atmosphere. Overall, the proposed bi-layer a-IWO/IWO:N TFTs show potential for practical applications due to its possibly long-term serviceability.

  2. Physical sputtering of metallic systems by charged-particle impact

    International Nuclear Information System (INIS)

    Lam, N.Q.

    1989-12-01

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs

  3. Effect of radiation-induced amorphization on smectite dissolution.

    Science.gov (United States)

    Fourdrin, C; Allard, T; Monnet, I; Menguy, N; Benedetti, M; Calas, G

    2010-04-01

    Effects of radiation-induced amorphization of smectite were investigated using artificial irradiation. Beams of 925 MeV Xenon ions with radiation dose reaching 73 MGy were used to simulate the effects generated by alpha recoil nuclei or fission products in the context of high level nuclear waste repository. Amorphization was controlled by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. An important coalescence of the smectite sheets was observed which lead to a loss of interparticle porosity. The amorphization is revealed by a loss of long-range structure and accompanied by dehydroxylation. The dissolution rate far-from-equilibrium shows that the amount of silica in solution is two times larger in the amorphous sample than in the reference clay, a value which may be enhanced by orders of magnitude when considering the relative surface area of the samples. Irradiation-induced amorphization thus facilitates dissolution of the clay-derived material. This has to be taken into account for the safety assessment of high level nuclear waste repository, particularly in a scenario of leakage of the waste package which would deliver alpha emitters able to amorphize smectite after a limited period of time.

  4. Radiation amorphization of materials

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Chernyaeva, T.P.

    1993-01-01

    The results of experimental and theoretical research on radiation amorphization are presented in this analytical review. Mechanism and driving forces of radiation amorphization are described, kinetic and thermodynamic conditions of amorphization are formulated. Compositional criteria of radiation amorphization are presented, that allow to predict irradiation behaviour of materials, their tendency to radiation amorphization. Mechanism of transition from crystalline state to amorphous state are considered depending on dose, temperature, structure of primary radiation damage and flux level. (author). 134 refs., 4 tab., 25 fig

  5. Determining the sputter yields of molybdenum in low-index crystal planes via electron backscattered diffraction, focused ion beam and atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.S., E-mail: 160184@mail.csc.com.tw [New Materials Research and Development Department, China Steel Corporation, 1 Chung Kang Road, Hsiao Kang, Kaohsiung 812, Taiwan, ROC (China); Chiu, C.H.; Hong, I.T.; Tung, H.C. [New Materials Research and Development Department, China Steel Corporation, 1 Chung Kang Road, Hsiao Kang, Kaohsiung 812, Taiwan, ROC (China); Chien, F.S.-S. [Department of Physics, Tunghai University, 1727, Sec. 4, Xitun Dist., Taiwan Boulevard, Taichung 407, Taiwan, ROC (China)

    2013-09-15

    Previous literature has used several monocrystalline sputtering targets with various crystalline planes, respectively, to investigate the variations of the sputter yield of materials in different crystalline orientations. This study presents a method to measure the sputtered yields of Mo for the three low-index planes (100), (110), and (111), through using an easily made polycrystalline target. The procedure was firstly to use electron backscattered diffraction to identify the grain positions of the three crystalline planes, and then use a focused ion beam to perform the micro-milling of each identified grain, and finally the sputter yields were calculated from the removed volumes, which were measured by atomic force microscope. Experimental results showed that the sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}, coincidental with the ranking of their planar atomic packing densities. The concept of transparency of ion in the crystalline substance was applied to elucidate these results. In addition, the result of (110) orientation exhibiting higher sputter yield is helpful for us to develop a Mo target with a higher deposition rate for use in industry. By changing the deformation process from straight rolling to cross rolling, the (110) texture intensity of the Mo target was significantly improved, and thus enhanced the deposition rate. - Highlights: • We used EBSD, FIB and AFM to measure the sputter yields of Mo in low-index planes. • The sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}. • The transparency of ion was used to elucidate the differences in the sputter yield. • We improved the sputter rate of polycrystalline Mo target by adjusting its texture.

  6. Sputter crater formation in the case of microsecond pulsed glow discharge in a Grimm-type source. Comparison of direct current and radio frequency modes

    Science.gov (United States)

    Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen

    2012-10-01

    Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.

  7. Growth and surface morphology of ion-beam sputtered Ti-Ni thin films

    International Nuclear Information System (INIS)

    Rao, Ambati Pulla; Sunandana, C.S.

    2008-01-01

    Titanium-nickel thin films have been deposited on float glass substrates by ion beam sputtering in 100% pure argon atmosphere. Sputtering is predominant at energy region of incident ions, 1000 eV to 100 keV. The as-deposited films were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). In this paper we attempted to study the surface morphology and elemental composition through AFM and XPS, respectively. Core level as well as valence band spectra of ion-beam sputtered Ti-Ni thin films at various Ar gas rates (5, 7 and 12 sccm) show that the thin film deposited at 3 sccm possess two distinct peaks at binding energies 458.55 eV and 464.36 eV mainly due to TiO 2 . Upon increasing Ar rate oxidation of Ti-Ni is reduced and the Ti-2p peaks begin approaching those of pure elemental Ti. Here Ti-2p peaks are observed at binding energy positions of 454.7 eV and 460.5 eV. AFM results show that the average grain size and roughness decrease, upon increasing Ar gas rate, from 2.90 μm to 0.096 μm and from 16.285 nm to 1.169 nm, respectively

  8. Comparative studies on damages to organic layer during the deposition of ITO films by various sputtering methods

    Science.gov (United States)

    Lei, Hao; Wang, Meihan; Hoshi, Yoichi; Uchida, Takayuki; Kobayashi, Shinichi; Sawada, Yutaka

    2013-11-01

    Aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) was respectively bombarded and irradiated by Ar ions, oxygen ions, electron beam and ultraviolet light to confirm damages during the sputter-deposition of transparent conductive oxide (TCO) on organic layer. The degree of damage was evaluated by the photoluminescence (PL) spectra of BAlq. The results confirmed the oxygen ions led to a larger damage and were thought to play the double roles of bombardment to organic layer and reaction with organic layer as well. The comparative studies on PL spectra of BAlq after the deposition of TCO films by various sputtering systems, such as conventional magnetron sputtering (MS), low voltage sputtering (LVS) and kinetic-energy-control-deposition (KECD) system, facing target sputtering (FTS) were performed. Relative to MS, LVS and KECD system, FTS can completely suppress the bombardment of the secondary electrons and oxygen negative ions, and keep a higher deposition rate simultaneously, thus it is a good solution to attain a low-damage sputter-deposition.

  9. Comparative studies on damages to organic layer during the deposition of ITO films by various sputtering methods

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Hao, E-mail: haolei@imr.ac.cn [State Key Laboratory for Corrosion and Protection, Division of Surface Engineering of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Meihan [College of Mechanical Engineering, Shenyang University, Shenyang 110044 (China); Hoshi, Yoichi; Uchida, Takayuki; Kobayashi, Shinichi; Sawada, Yutaka [Center for Hyper Media Research, Tokyo Polytechnic University, 1583 Iiyama, Atsugi, Kanagawa 243-0297 (Japan)

    2013-11-15

    Aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) was respectively bombarded and irradiated by Ar ions, oxygen ions, electron beam and ultraviolet light to confirm damages during the sputter-deposition of transparent conductive oxide (TCO) on organic layer. The degree of damage was evaluated by the photoluminescence (PL) spectra of BAlq. The results confirmed the oxygen ions led to a larger damage and were thought to play the double roles of bombardment to organic layer and reaction with organic layer as well. The comparative studies on PL spectra of BAlq after the deposition of TCO films by various sputtering systems, such as conventional magnetron sputtering (MS), low voltage sputtering (LVS) and kinetic-energy-control-deposition (KECD) system, facing target sputtering (FTS) were performed. Relative to MS, LVS and KECD system, FTS can completely suppress the bombardment of the secondary electrons and oxygen negative ions, and keep a higher deposition rate simultaneously, thus it is a good solution to attain a low-damage sputter-deposition.

  10. Enhancement of Ti-containing hydrogenated carbon (Ti-C:H) films by high-power plasma-sputtering

    International Nuclear Information System (INIS)

    Gwo, Jyh; Chu, Chun-Lin; Tsai, Ming-Jui; Lee, Shyong

    2012-01-01

    Ti-containing amorphous hydrogenated carbon (Ti-C:H) thin films were deposited on stainless steel SS304 substrates by high-power pulsed magnetron sputtering (HPPMS) in an atmosphere of mixed Ar and C 2 H 2 gases using titanium metal as the cathodic material. The multilayer structure of the deposited film had a Ti-TiC-DLC gradient to improve adhesion and reduce residual stress. This study investigates the effects of substrate bias and target-to-substrate distance on the mechanical properties of Ti-C:H films. Film properties, including composition, morphology, microstructure, mechanical, and tribology, were examined by glow discharge spectroscopy (GDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and a nanoindenter and a pin-on-disk tribometer. Experiments revealed impressive results.

  11. Enhancement of Ti-containing hydrogenated carbon (Tisbnd C:H) films by high-power plasma-sputtering

    Science.gov (United States)

    Gwo, Jyh; Chu, Chun-Lin; Tsai, Ming-Jui; Lee, Shyong

    2012-02-01

    Ti-containing amorphous hydrogenated carbon (Tisbnd C:H) thin films were deposited on stainless steel SS304 substrates by high-power pulsed magnetron sputtering (HPPMS) in an atmosphere of mixed Ar and C2H2 gases using titanium metal as the cathodic material. The multilayer structure of the deposited film had a Tisbnd TiCsbnd DLC gradient to improve adhesion and reduce residual stress. This study investigates the effects of substrate bias and target-to-substrate distance on the mechanical properties of Tisbnd C:H films. Film properties, including composition, morphology, microstructure, mechanical, and tribology, were examined by glow discharge spectroscopy (GDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and a nanoindenter and a pin-on-disk tribometer. Experiments revealed impressive results.

  12. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Chiba, Kiyoshi; Takahashi, Toshiyuki; Kageyama, Takashi; Oda, Hironori

    2005-01-01

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H 2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (140 nm)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  13. Coherent electron-correlation compatible with random atom stacking in amorphous Ce-Ru alloys

    International Nuclear Information System (INIS)

    Homma, Yoshiya; Sumiyama, Kenji; Yamauchi, Hiroshi; Suzuki, Kenji

    1997-01-01

    The amorphous Ce-Ru alloys produced by the sputtering technique show the following distinct behaviors at low temperatures. The electronic specific heat coefficient rapidly increases below 5 K for Ce-19 and 42 at.%Ru alloys with decreasing temperature, T, (a heavy fermion behavior). The electrical resistivity displays -logT dependence at T > 40 K (an incoherent or impurity Kondo effect). Is slightly decreases at T < 30 K for Ce-19 and 42 at.%Ru alloys (a coherent Kondo effect), while it abruptly decreases at 2.5 K for 82 at.%Ru (a superconducting phenomenon). These coherent states may originate from the strong mixing and correlation of 4f-electrons and conduction-electrons even in the random alloy system. (author)

  14. Sputtering properties of tungsten 'fuzzy' surfaces

    International Nuclear Information System (INIS)

    Nishijima, D.; Baldwin, M.J.; Doerner, R.P.; Yu, J.H.

    2011-01-01

    Sputtering yields of He-induced W 'fuzzy' surfaces bombarded by Ar have been measured in the linear divertor plasma simulator PISCES-B. It is found that the sputtering yield of a fuzzy surface, Y fuzzy , decreases with increasing fuzzy layer thickness, L, and saturates at ∼10% of that of a smooth surface, Y smooth , at L > 1 μm. The reduction in the sputtering yield is suspected to be due mainly to the porous structure of fuzz, since the ratio, Y fuzzy /Y smooth follows (1 - p fuzz ), where p fuzz is the fuzz porosity. Further, Y fuzzy /Y smooth is observed to increase with incident ion energy, E i . This may be explained by an energy dependent change in the angular distribution of sputtered W atoms, since at lower E i , the angular distribution is observed to become more butterfly-shaped. That is, a larger fraction of sputtered W atoms can line-of-sight deposit/stick onto neighboring fuzz nanostructures for lower E i butterfly distributions, resulting in lower ratio of Y fuzzy /Y smooth .

  15. In vitro corrosion and biocompatibility screening of sputtered Ti{sub 40}Cu{sub 36}Pd{sub 14}Zr{sub 10} thin film metallic glasses on steels

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, B., E-mail: subramanianb3@gmail.com

    2015-02-01

    The growth of multi-component thin film metallic glasses (TFMGs) of Ti{sub 40}Cu{sub 36}Pd{sub 14}Zr{sub 10} (at.%) alloys fabricated using magnetron sputtering on bioimplantable 316L stainless steel substrates has been investigated. The vapor–solid quenching during sputtering enables the amorphous phases to be formed. The amorphous films consist of a single glassy phase, as evidenced by a broad hump and no detectable crystalline peaks as observed from XRD and selective area electron diffraction (SAED) patterns. The average surface roughness (Ra) of the coated film as observed from AFM was 0.3 nm. Nanohardness of about 7.7 GPa and Young's modulus of 110 GPa were measured from nanoindentation analysis. The potentiodynamic polarization and impedance measurements showed that coated stainless steel substrates have higher corrosion resistance compared to uncoated SS substrate in simulated body fluid (SBF) solution. The cytotoxicity studies using L929 fibroblast cells showed that these coatings were non-cytotoxic in nature. The interactions between the coated surface and bacteria were investigated by agar diffusion method, solution suspension and wet interfacial contact methods. - Highlights: • Ti-based TFMG coated specimen showed superior corrosion resistance. • Ti-based TFMG coated SS 316L specimen was non-cytotoxic in nature. • Antimicrobial activity of Ti-based TFMG was noticed.

  16. Dependence of Au- production upon the target work function in a plasma-sputter-type negative ion source

    International Nuclear Information System (INIS)

    Okabe, Yushirou; Sasao, Mamiko; Fujita, Junji; Yamaoka, Hitoshi; Wada, Motoi.

    1991-01-01

    A method to measure the work function of the target surface in a plasma-sputter-type negative ion source has been developed. The method can determine the work function by measuring the photoelectric current induced by two lasers (He-Ne, Ar + laser). The dependence of Au - production upon the work function of the target surface in the ion source was studied using this method. The time variation of the target work function and Au - production rate were measured during the cesium coverage decrease due to the plasma ion sputtering. The observed minimum work function of a cesiated gold surface in an Ar plasma was 1.3 eV. At the same time, the negative ion production rate (Au - current/target current) took the maximum value. The negative ion production rate indicated the same dependence on the incident ion energy as that of the sputtering rate when the work function was constant. (author)

  17. Effect of nitrogen incorporation on the structural, optical and dielectric properties of reactive sputter grown ITO films

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, M.; Stroescu, H. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Marin, A., E-mail: alexmarin@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Osiceanu, P. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Anastasescu, M., E-mail: manastasescu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Stoica, M.; Nicolescu, M.; Duta, M.; Preda, S. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Aperathitis, E.; Pantazis, A.; Kampylafka, V. [FORTH-IESL, Crete (Greece); Modreanu, M. [Tyndall National Institute, University College Cork, Cork (Ireland); Zaharescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2014-09-15

    Highlights: • Graded optical model for ITON films is presented. • ITON thin films retain an amorphous structure even after RTA at 500 °C in N{sub 2} ambient. • The lowest resistivity was 2 × 10{sup −3} Ω cm for films deposited in 75%N{sub 2} and RTA at 500 °C. • Films deposited in 75% N{sub 2} and RTA at 500 °C have degenerate semiconductor behavior. • Chemical composition before and after RTA has been analyzed by XPS depth profiling. - Abstract: The changes in the optical, microstructural and electrical properties, following the nitrogen incorporation into indium tin oxide thin films are investigated. The films are formed by r.f. sputtering from an indium-tin-oxide (80% In{sub 2}O{sub 3}–20% SnO{sub 2}) target in a mixture of Ar and N{sub 2} plasma (75% N{sub 2}–25% Ar and 100% N{sub 2} respectively) on fused silica glass substrate. The impact of rapid thermal annealing (up to 500 °C, in N{sub 2} ambient) on the properties of indium tin oxynitride (ITON) thin films is also reported. The UV–vis–NIR ellipsometry (SE) characterization of ITON films was performed assuming several realistic approaches based on various oscillator models, using a chemical composition gradient depth profiling, in agreement with the X-ray photoelectron spectroscopy measurements. The Hall measurements show that the ITON films prepared by r.f. sputtering in 75% N{sub 2} and annealed at 500 °C behave as degenerate semiconductors. X-ray diffraction analysis proved that ITON thin films retain an amorphous structure even after RTA at 500 °C in N{sub 2} ambient and atomic force microscopy showed the formation of continuous and smooth ITON thin films, with a morphology consisting in quasispherical nanometric particles.

  18. Heterojunction Diodes and Solar Cells Fabricated by Sputtering of GaAs on Single Crystalline Si

    Directory of Open Access Journals (Sweden)

    Santiago Silvestre

    2015-04-01

    Full Text Available This work reports fabrication details of heterojunction diodes and solar cells obtained by sputter deposition of amorphous GaAs on p-doped single crystalline Si. The effects of two additional process steps were investigated: A hydrofluoric acid (HF etching treatment of the Si substrate prior to the GaAs sputter deposition and a subsequent annealing treatment of the complete layered system. A transmission electron microscopy (TEM exploration of the interface reveals the formation of a few nanometer thick SiO2 interface layer and some crystallinity degree of the GaAs layer close to the interface. It was shown that an additional HF etching treatment of the Si substrate improves the short circuit current and degrades the open circuit voltage of the solar cells. Furthermore, an additional thermal annealing step was performed on some selected samples before and after the deposition of an indium tin oxide (ITO film on top of the a-GaAs layer. It was found that the occurrence of surface related defects is reduced in case of a heat treatment performed after the deposition of the ITO layer, which also results in a reduction of the dark saturation current density and resistive losses.

  19. Structural and mechanical properties of ZrSiN thin films prepared by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Freitas, F.G.R.; Conceicao, A.G.S.; Vitoria, E.R.; Carvalho, R.G.; Tentardini, E.K.; Hübler, R.; Soares, G.

    2014-01-01

    Zirconium silicon nitride (ZrSiN) thin films were deposited by reactive magnetron sputtering in order to verify the silicon influence on coating morphology and mechanical properties. The Si/(Zr+Si) ratio was adjusted between 0 to 14.5% just modifying the power applied on the silicon target. Only peaks associated to ZrN crystalline structure were observed in XRD analysis, since Si_3N_4 phase was amorphous. All samples have (111) preferred orientation, but there is a peak intensity reduction and a broadening increase for the sample with the highest Si/(Zr+Si) ratio (14.5%), demonstrating a considerable loss of crystallinity or grain size reduction (about 8 nm calculated by Scherrer). It was also observed that the texture coefficient for (200) increases with silicon addition. Chemical composition and thickness of the coatings were determined by RBS analysis. No significant changes in nano hardness with increasing Si content were found. The thin film morphology observed by SEM presents columnar and non columnar characteristics. The set of results suggests that Si addition is restricting the columnar growth of ZrN thin films. This conclusion is justified by the fact that Si contributes to increase the ZrN grains nucleation during the sputtering process. (author)

  20. Emerging trends in the stabilization of amorphous drugs

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Strachan, Clare J.

    2013-01-01

    The number of active pharmaceutical substances having high therapeutic potential but low water solubility is constantly increasing, making it difficult to formulate these compounds as oral dosage forms. The solubility and dissolution rate, and thus potentially the bioavailability, of these poorly...... water-soluble drugs can be increased by the formation of stabilized amorphous forms. Currently, formulation as solid polymer dispersions is the preferred method to enhance drug dissolution and to stabilize the amorphous form of a drug. The purpose of this review is to highlight emerging alternative...... of mesoporous silicon and silica-based carriers are presented as potential means to increase the stability of amorphous pharmaceuticals....

  1. Formation of large clusters during sputtering of silver

    International Nuclear Information System (INIS)

    Staudt, C.; Heinrich, R.; Wucher, A.

    2000-01-01

    We have studied the formation of polyatomic clusters during sputtering of metal surfaces by keV ion bombardment. Both positively charged (secondary cluster ions) and neutral clusters have been detected in a time-of-flight mass spectrometer under otherwise identical experimental conditions, the sputtered neutrals being post-ionized by single photon absorption using a pulsed 157 nm VUV laser beam. Due to the high achievable laser intensity, the photoionization of all clusters could be saturated, thus enabling a quantitative determination of the respective partial sputtering yields. We find that the relative yield distributions of sputtered clusters are strongly correlated with the total sputtering yield in a way that higher yields lead to higher abundances of large clusters. By using heavy projectile ions (Xe + ) in connection with bombarding energies up to 15 keV, we have been able to detect sputtered neutral silver clusters containing up to about 60 atoms. For cluster sizes above 40 atoms, doubly charged species are shown to be produced in the photoionization process with non-negligible efficiency. From a direct comparison of secondary neutral and ion yields, the ionization probability of sputtered clusters is determined as a function of the cluster size. It is demonstrated that even the largest silver clusters are still predominantly sputtered as neutrals

  2. Sputtering calculations with the discrete ordinated method

    International Nuclear Information System (INIS)

    Hoffman, T.J.; Dodds, H.L. Jr.; Robinson, M.T.; Holmes, D.K.

    1977-01-01

    The purpose of this work is to investigate the applicability of the discrete ordinates (S/sub N/) method to light ion sputtering problems. In particular, the neutral particle discrete ordinates computer code, ANISN, was used to calculate sputtering yields. No modifications to this code were necessary to treat charged particle transport. However, a cross section processing code was written for the generation of multigroup cross sections; these cross sections include a modification to the total macroscopic cross section to account for electronic interactions and small-scattering-angle elastic interactions. The discrete ordinates approach enables calculation of the sputtering yield as functions of incident energy and angle and of many related quantities such as ion reflection coefficients, angular and energy distributions of sputtering particles, the behavior of beams penetrating thin foils, etc. The results of several sputtering problems as calculated with ANISN are presented

  3. Niobium and zirconium telluride thin films prepared by sputtering

    International Nuclear Information System (INIS)

    Kassem, M.; Pailharey, D.; Mathey, Y.

    2000-01-01

    A versatile procedure of sputter deposition, well adapted for getting a large of Te/M ratios (with M = Zr or Nb), has led to the synthesis of several highly anisotropic zirconium and niobium poly tellurides in thin film form. Upon tuning the two key parameters of the process, i.e., the Te percentage in the target and the substrate temperature during the deposition, preparation of systems ranging from ZrTe 0 .72 to ZrTe 6 .7, on the one hand, and from NbTe 1 .28 to NbTe 7 .84, on the other, has been achieved. Besides their amorphous or crystalline (with or without preferential orientations) behavior and their relationship to known structural types, the most striking feature of these films is their large departure from the stoichiometry of the bulk Mte x reference compounds. This peculiarity, together with the possible changes of composition under annealing, are described and interpreted in terms of variable of Te and M atoms trapped or intercalated within the parent structures. (author)

  4. High-induction nanocrystalline soft magnetic Fe{sub X}Ti{sub Y}B{sub Z} films prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Sheftel, Elena N.; Tedzhetov, Valentin A.; Harin, Eugene V.; Usmanova, Galina Sh. [A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Moscow (Russian Federation); Kiryukhantsev-Korneev, Filipp V. [National University of Science and Technology ' ' MISIS' ' , Moscow (Russian Federation)

    2016-12-15

    To design films with the Fe/TiB{sub 2} nanocomposite structure, which are characterized by high saturation induction B{sub s}, the phase and structural states and static magnetic properties of Fe-TiB{sub 2} films prepared by magnetron sputtering and subjected to subsequent annealing have been studied. According to X-ray diffraction data, either amorphous or nanocrystalline single-phase structure (an α-Fe(Ti,B) supersaturated solid solution with a bcc crystal lattice) is formed in the as-sputtered films. Depending on the film composition, the grain size of the α-Fe(Ti,B) phase varies from 45.6 to 6.5 nm; grains are characterized by high microstrain (0.21-4.96%). The annealing at 200-500 C leads to a decrease in the lattice parameter of the α-Fe(Ti,B) phase, i.e. to its depletion of titanium and boron and to the formation of two-phase α-Fe + Fe{sub 3}B structure after annealing at 500 C. The annealing at 200-500 C almost does not affect the grain size and microstrain of the bcc α-Fe-based phase. The amorphous state of the films is stable up to 500 C. All studied films are ferromagnets; the saturation induction B{sub s}(0.95-2.13 T) and coercive field H{sub c} (0.4-5 kA/m) of the films were determined. Correlations between the B{sub s} and H{sub c} magnitudes and the chemical composition of the films, their phase and structural states and magnetic structure are discussed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Comparative study of the characteristics of Ni films deposited on SiO2/Si(100) by oblique-angle sputtering and conventional sputtering

    International Nuclear Information System (INIS)

    Yu Mingpeng; Qiu Hong; Chen Xiaobai; Wu Ping; Tian Yue

    2008-01-01

    Ni films were deposited on SiO 2 /Si(100) substrates at 300 K and 573 K by oblique-angle sputtering and conventional sputtering. The films deposited at 300 K mainly have a [110] crystalline orientation in the growing direction whereas those deposited at 573 K grow with a [111] crystalline orientation in the growing direction. The film prepared only at 300 K by oblique-angle sputtering grows with a weakly preferential orientation along the incidence direction of the sputtered Ni atoms. All the films grow with thin columnar grains perpendicular to the substrate surface. The grain size of the films sputter-deposited obliquely is larger than that of the films sputter-deposited conventionally. The grain size of the Ni film does not change markedly with the deposition temperature. The film deposited at 573 K by oblique-angle sputtering has the highest saturation magnetization. For the conventional sputtering, the coercivity of the Ni film deposited at 573 K is larger than that of the film deposited at 300 K. However, for the oblique-angle sputtering, the coercivity of the Ni film is independent of the deposition temperature. All the Ni films exhibit an isotropic magnetization characteristic in the film plane

  6. Transport theory of sputtering I: Depth of origin of sputtered atoms

    International Nuclear Information System (INIS)

    Zhang, Zhu Lin

    1999-01-01

    Sputter theory employing a sum of two power cross sections has been implemented. Compared with the well known Lindhard power cross section (V∝r -1/m ), a sum of two such cross sections can give a much better approximation to the Born-Mayer scattering in the low energy region (m ∼ 0.1). By using both one and two power cross sections, we have solved the linear transport equations describing the sputtering problem asymptotically. As usual, electronic stopping is ignored in the analysis. It has further been proved that Falcone's theory of the atom ejection process contradicts transport theory. The Andersen-Sigmund relation for partial sputtering yield ratios between two elements in an arbitrary multicomponent target has been derived by both methods. The energy deposited in the target surface layers has been computed for a few typical ion-target combinations. The numerical curves show that both theories generate almost the same results (error m≥0. The former even may be only about one half of the latter as long as m=0

  7. RF magnetron-sputtered coatings deposited from biphasic calcium phosphate targets for biomedical implant applications

    Directory of Open Access Journals (Sweden)

    K.A. Prosolov

    2017-09-01

    Full Text Available Bioactive calcium phosphate coatings were deposited by radio-frequency magnetron sputtering from biphasic targets of hydroxyapatite and tricalcium phosphate, sintered at different mass % ratios. According to Raman scattering and X-ray diffraction data, the deposited hydroxyapatite coatings have a disordered structure. High-temperature treatment of the coatings in air leads to a transformation of the quasi-amorphous structure into a crystalline one. A correlation has been observed between the increase in the Ca content in the coatings and a subsequent decrease in Ca in the biphasic targets after a series of deposition processes. It was proposed that the addition of tricalcium phosphate to the targets would led to a finer coating's surface topography with the average size of 78 nm for the structural elements.

  8. Effects of crystallization on structural and dielectric properties of thin amorphous films of (1 - x)BaTiO3-xSrTiO3 (x=0-0.5, 1.0)

    Science.gov (United States)

    Kawano, H.; Morii, K.; Nakayama, Y.

    1993-05-01

    The possibilities for fabricating solid solutions of (Ba1-x,Srx)TiO3 (x≤0.5,1.0) by crystallization of amorphous films and for improving their dielectric properties by adjusting the Sr content were investigated. Thin amorphous films were prepared from powder targets consisting of mixtures of BaTiO3 and SrTiO3 by sputtering with a neutralized Ar-ion beam. The amorphous films crystallized into (Ba1-x, Srx)TiO3 solid solutions with a cubic perovskite-type structure after annealing in air at 923 K for more than 1 h. The Debye-type dielectric relaxation was observed for the amorphous films, whereas the crystallized films showed paraelectric behavior. The relative dielectric constants were of the order of 20 for the amorphous samples, but increased greatly after crystallization to about 60-200, depending on the composition; a larger increase in the dielectric constant was observed in the higher Sr content films, in the range x≤0.5, which could be correlated with an increase in the grain size of the crystallites. The crystallization processes responsible for the difference in the grain size are discussed based on the microstructural observations.

  9. Sputtering induced surface composition changes in copper-palladium alloys

    International Nuclear Information System (INIS)

    Sundararaman, M.; Sharma, S.K.; Kumar, L.; Krishnan, R.

    1981-01-01

    It has been observed that, in general, surface composition is different from bulk composition in multicomponent materials as a result of ion beam sputtering. This compositional difference arises from factors like preferential sputtering, radiation induced concentration gradients and the knock-in effect. In the present work, changes in the surface composition of copper-palladium alloys, brought about by argon ion sputtering, have been studied using Auger electron spectroscopy. Argon ion energy has been varied from 500 eV to 5 keV. Enrichment of palladium has been observed in the sputter-altered layer. The palladium enrichment at the surface has been found to be higher for 500 eV argon ion sputtering compared with argon ion sputtering at higher energies. Above 500 eV, the surface composition has been observed to remain the same irrespective of the sputter ion energy for each alloy composition. The bulk composition ratio of palladium to copper has been found to be linearly related to the sputter altered surface composition ratio of palladium to copper. These results are discussed on the basis of recent theories of alloy sputtering. (orig.)

  10. Effect of Si addition on the structure and corrosion behavior of NbN thin films deposited by unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, L. [Universidad Nacional de Colombia, Departamento de Ingenieria Mecanica y Mecatronica, Facultad de Ingenieria, Bogota (Colombia); University of Southern California, Department of Chemical Engineering and Materials Science, Los Angeles, CA (United States); Olaya, J.J. [Universidad Nacional de Colombia, Departamento de Ingenieria Mecanica y Mecatronica, Facultad de Ingenieria, Bogota (Colombia); Rodil, S.E. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, Mexico, D. F. (Mexico)

    2016-02-15

    In this work, nanostructured Nb{sub x}Si{sub y}N{sub z} thin films were deposited onto stainless steel AISI 304 substrates by co-sputtering a Nb target with Si additions while using unbalanced magnetron sputtering. The microstructure was analyzed by X-ray diffraction, and the chemical composition was identified by X-ray photoelectron spectroscopy. The hardness was measured by nanoindentation, and the corrosion resistance was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy using a 3 wt% NaCl solution. The addition of Si in the NbN thin films changed the microstructure from a crystalline to an amorphous phase. The chemical analysis showed the presence of both Si{sub 3}N{sub 4} and NbN phases. The hardness decreased from 20 GPa (NbN) to 15 GPa for the film with the highest Si concentration (28.6 at.%). Nevertheless, the corrosion properties were significantly improved as the Si concentration increased; the polarization resistance after 168 h of immersion was two orders of magnitude larger in comparison with the substrate. (orig.)

  11. Effect of Si addition on the structure and corrosion behavior of NbN thin films deposited by unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Velasco, L.; Olaya, J.J.; Rodil, S.E.

    2016-01-01

    In this work, nanostructured Nb x Si y N z thin films were deposited onto stainless steel AISI 304 substrates by co-sputtering a Nb target with Si additions while using unbalanced magnetron sputtering. The microstructure was analyzed by X-ray diffraction, and the chemical composition was identified by X-ray photoelectron spectroscopy. The hardness was measured by nanoindentation, and the corrosion resistance was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy using a 3 wt% NaCl solution. The addition of Si in the NbN thin films changed the microstructure from a crystalline to an amorphous phase. The chemical analysis showed the presence of both Si 3 N 4 and NbN phases. The hardness decreased from 20 GPa (NbN) to 15 GPa for the film with the highest Si concentration (28.6 at.%). Nevertheless, the corrosion properties were significantly improved as the Si concentration increased; the polarization resistance after 168 h of immersion was two orders of magnitude larger in comparison with the substrate. (orig.)

  12. Gas barrier properties of titanium oxynitride films deposited on polyethylene terephthalate substrates by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.-C. [Department of Materials Science and Engineering, National ChungHsin University, 250, Kuo-Kung Road, 40227 Taichung, Taiwan (China); Chang, L.-S. [Department of Materials Science and Engineering, National ChungHsin University, 250, Kuo-Kung Road, 40227 Taichung, Taiwan (China)], E-mail: lschang@dragon.nchu.edu.tw; Lin, H.C. [Department of Materials Science and Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, 106 Taipei, Taiwan (China)

    2008-03-30

    Titanium oxynitride (TiN{sub x}O{sub y}) films were deposited on polyethylene terephthalate (PET) substrates by means of a reactive radio frequency (RF) magnetron sputtering system in which the power density and substrate bias were the varied parameters. Experimental results show that the deposited TiN{sub x}O{sub y} films exhibited an amorphous or a columnar structure with fine crystalline dependent on power density. The deposition rate increases significantly in conjunction as the power density increases from 2 W/cm{sup 2} to 7 W/cm{sup 2}. The maximum deposition rate occurs, as the substrate bias is -40 V at a certain power densities chosen in this study. The film's roughness slightly decreases with increasing substrate bias. The TiN{sub x}O{sub y} films deposited at power densities above 4 W/cm{sup 2} show a steady Ti:N:O ratio of about 1:1:0.8. The water vapor and oxygen transmission rates of the TiN{sub x}O{sub y} films reach values as low as 0.98 g/m{sup 2}-day-atm and 0.60 cm{sup 3}/m{sup 2}-day-atm which are about 6 and 47 times lower than those of the uncoated PET substrate, respectively. These transmission rates are comparable to those of DLC, carbon-based and Al{sub 2}O{sub 3} barrier films. Therefore, TiN{sub x}O{sub y} films are potential candidates to be used as a gas permeation barrier for PET substrate.

  13. On the processing-structure-property relationship of ITO layers deposited on crystalline and amorphous Si

    International Nuclear Information System (INIS)

    Diplas, S.; Ulyashin, A.; Maknys, K.; Gunnaes, A.E.; Jorgensen, S.; Wright, D.; Watts, J.F.; Olsen, A.; Finstad, T.G.

    2007-01-01

    Indium-tin-oxide (ITO) antireflection coatings were deposited on crystalline Si (c-Si), amorphous hydrogenated Si (a-Si:H) and glass substrates at room temperature (RT), 160 deg. C and 230 deg. C by magnetron sputtering. The films were characterised using atomic force microscopy, transmission electron microscopy, angle resolved X-ray photoelectron spectroscopy, combined with resistance and transmittance measurements. The conductivity and refractive index as well as the morphology of the ITO films showed a significant dependence on the processing conditions. The films deposited on the two different Si substrates at higher temperatures have rougher surfaces compared to the RT ones due to the development of crystallinity and growth of columnar grains

  14. MD simulation of cluster formation during sputtering

    International Nuclear Information System (INIS)

    Muramoto, T.; Okai, M.; Yamashita, Y.; Yorizane, K.; Yamamura, Y.

    2001-01-01

    The cluster ejection due to cluster impact on a solid surface is studied through molecular dynamics (MD) simulations. Simulations are performed for Cu cluster impacts on the Cu(1 1 1) surface for cluster energy 100 eV/atom, and for clusters of 6, 13, 28 and 55 atoms. Interatomic interactions are described by the AMLJ-EAM potential. The vibration energy spectrum is independent of the incident cluster size and energy. This comes from the fact that sputtered clusters become stable through the successive fragmentation of nascent large sputtered clusters. The vibration energy spectra for large sputtered clusters have a peak, whose energy corresponds to the melting temperature of Cu. The exponent of the power-law fit of the abundance distribution and the total sputtering yield for the cluster impacts are higher than that for the monatomic ion impacts with the same total energy, where the exponent δ is given by Y n ∝n δ and Y n is the yield of sputtered n-atom cluster. The exponent δ follows a unified function of the total sputtering yield, which is a monotonic increase function, and it is nearly equal to δ ∼ -3 for larger yield

  15. Measurements of beryllium sputtering yields at JET

    Science.gov (United States)

    Jet-Efda Contributors Stamp, M. F.; Krieger, K.; Brezinsek, S.

    2011-08-01

    The lifetime of the beryllium first wall in ITER will depend on erosion and redeposition processes. The physical sputtering yields for beryllium (both deuterium on beryllium (Be) and Be on Be) are of crucial importance since they drive the erosion process. Literature values of experimental sputtering yields show an order of magnitude variation so predictive modelling of ITER wall lifetimes has large uncertainty. We have reviewed the old beryllium yield experiments on JET and used current beryllium atomic data to produce revised beryllium sputtering yields. These experimental measurements have been compared with a simple physical sputtering model based on TRIM.SP beryllium yield data. Fair agreement is seen for beryllium yields from a clean beryllium limiter. However the yield on a beryllium divertor tile (with C/Be co-deposits) shows poor agreement at low electron temperatures indicating that the effect of the higher sputtering threshold for beryllium carbide is important.

  16. Optical properties of tungsten oxide thin films by non-reactive sputtering

    International Nuclear Information System (INIS)

    Acosta, M.; Gonzalez, D.; Riech, I.

    2008-01-01

    Tungsten oxide thin films were grown on glass substrates by RF sputtering at room temperature using a tungsten trioxide target for several values of the Argon pressure (PAr). The structural and morphological properties of these films were studied using X-ray diffraction and Atomic Force Microscopy. The as-deposited films were amorphous irrespective of the Argon pressure, and crystallized in a mixture of hexagonal and monoclinic phases after annealing at a temperature of 3500 C in air. Surface-Roughness increased by an order of magnitude (from 1 nm to 20 nm) after thermal treatment. The Argon pressure, however, had a strong influence on the optical properties of the films. Three different regions are clearly identified: deep blue films for PAr 40 mTorr with high transmittance values. We suggest that the observed changes in optical properties are due to an increasing number of Oxygen vacancies as the growth Argon pressure decreases. (Full text)

  17. FY1995 study to create the high density magnetic recording devices by using an ultra clean sputtering process; 1995 nendo choseijo sputter process ni yoru chokomitsudo jiki kiroku device no sosei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    It is important to control microstructure of thin film magnetic devices such as recording heads and media, in order to induce excellent magnetic properties. Since the impurities in the sputtering atmosphere is easily thought to affect strongly on the initial film growth, we will develop the highly purified sputtering atmosphere to establish a fabrication technology of ultra thin metallic films with desirable microstructure. A specialized multi-sputtering system which has extremely clean atmosphere (impurity level: 1/10000 compared to conventional systems) were realized by (a) decreasing out-gassing rate from vacuum chamber, pumping system, cathode, robot, etc. and (b) using ultra-clean processing gas. The base pressure was 8 x 10{sup -12} Torr (XHV) and the build-up rate was less than 1 x 10{sup -8} Torrl/sec. From the correlation between the microstructure and magnetic properties of a part of spin-valve GMR films, the guiding principle for the microstructural design were clarified to induce the exchange coupling effectively at the ferro/antiferromagnetic interface and to enhance the GMR effect at the magnetic/non-magnetic interface. The mechanism of' Cr segregation on the grain boundaries was clarified, in thin film media deposited under ultra clean sputtering process. The material specification of the magnetic ultra thin film media for high density recording with low media noise were designed from view of the thermal agitation. (NEDO)

  18. Theory of amorphous ices.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  19. Secondary growth mechanism of SiGe islands deposited on a mixed-phase microcrystalline Si by ion beam co-sputtering.

    Science.gov (United States)

    Ke, S Y; Yang, J; Qiu, F; Wang, Z Q; Wang, C; Yang, Y

    2015-11-06

    We discuss the SiGe island co-sputtering deposition on a microcrystalline silicon (μc-Si) buffer layer and the secondary island growth based on this pre-SiGe island layer. The growth phenomenon of SiGe islands on crystalline silicon (c-Si) is also investigated for comparison. The pre-SiGe layer grown on μc-Si exhibits a mixed-phase structure, including SiGe islands and amorphous SiGe (a-SiGe) alloy, while the layer deposited on c-Si shows a single-phase island structure. The preferential growth and Ostwald ripening growth are shown to be the secondary growth mechanism of SiGe islands on μc-Si and c-Si, respectively. This difference may result from the effect of amorphous phase Si (AP-Si) in μc-Si on the island growth. In addition, the Si-Ge intermixing behavior of the secondary-grown islands on μc-Si is interpreted by constructing the model of lateral atomic migration, while this behavior on c-Si is ascribed to traditional uphill atomic diffusion. It is found that the aspect ratios of the preferential-grown super islands are higher than those of the Ostwald-ripening ones. The lower lateral growth rate of super islands due to the lower surface energy of AP-Si on the μc-Si buffer layer for the non-wetting of Ge at 700 °C and the stronger Si-Ge intermixing effect at 730 °C may be responsible for this aspect ratio difference.

  20. The influence of pressure on the intrinsic dissolution rate of amorphous indomethacin

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Flouda, Konstantina; Qiu, Danwen

    2014-01-01

    of different compression pressures on the IDR was determined from powder compacts of amorphous (ball-milling) indomethacin (IND), a glass solution of IND and poly(vinylpyrrolidone) (PVP) and crystalline IND. Solid state properties were analyzed with X-ray powder diffraction (XRPD) and the final compacts were...... and to test the potential dissolution advantage of the amorphous form. However, neither the United States Pharmacopeia (USP) nor the European Pharmacopeia (Ph.Eur) state specific limitations for the compression pressure in order to obtain compacts for the IDR determination. In this study, the influence...... visually observed to study the effects of compaction pressure on their surface properties. It was found that there is no significant correlation between IDR and compression pressure for crystalline IND and IND-PVP. This was in line with the observation of similar surface properties of the compacts. However...

  1. An introduction to closed field sputtering (CFS) equipment

    International Nuclear Information System (INIS)

    Sugden, G.B.

    1979-01-01

    Ways have been sought to develop the vacuum sputtering process to reduce the source material temperature and to increase the deposition rate. A new industrial plating method superior to vacuum evaporation and electroplating has emerged. In this 'closed field sputtering' processes an electric field is applied between a coaxial anode and cathode and a magnetic field applied orthogonally to the electric field. Providing the flux density of the magnetic field is above a critical value no electrons flow to the anode but move along the magnetic lines around the cathode, enclosed in the magnetic field. A high density electron cloud with high ionization probability is therefore maintained. Low temperature sputtering can be attained due to very low energy loss of electrons at the anode. A pressure of about (2-5) x 10(-4) torr is used. High power can be applied to the equipment without producing much heat. It enables a large number of plastic parts to be coated with almost any nonmagnetic metal and alloys of metals on a commercial basis. It is also possible to produce coatings of oxides. nitrides and carbides of metals. The method of operation and a description of the equipment are given. Applications include car exteriors, household appliances, furniture toys and the electronics industry. (UK)

  2. Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples.

    Science.gov (United States)

    Shete, Ganesh; Puri, Vibha; Kumar, Lokesh; Bansal, Arvind K

    2010-06-01

    Atorvastatin calcium (ATC), an anti-lipid BCS class II drug, is marketed in crystalline and amorphous solid forms. The objective of this study was to perform solid state characterization of commercial crystalline and amorphous ATC drug samples available in the Indian market. Six samples each of crystalline and amorphous ATC were characterized using X-ray powder diffractometry (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis, Karl Fisher titrimetry, microscopy (hot stage microscopy, scanning electron microscopy), contact angle, and intrinsic dissolution rate (IDR). All crystalline ATC samples were found to be stable form I, however one sample possessed polymorphic impurity, evidenced in XRPD and DSC analysis. Amongst the amorphous ATC samples, XRPD demonstrated five samples to be amorphous 'form 27', while, one matched amorphous 'form 23'. Thermal behavior of amorphous ATC samples was compared to amorphous ATC generated by melt quenching in DSC. ATC was found to be an excellent glass former with T(g)/T(m) of 0.95. Residual crystallinity was detected in two of the amorphous samples by complementary use of conventional and modulated DSC techniques. The wettability and IDR of all amorphous samples was found to be higher than the crystalline samples. In conclusion, commercial ATC samples exhibited diverse solid state behavior that can impact the performance and stability of the dosage forms.

  3. Laser sputtering. Pt. 1

    International Nuclear Information System (INIS)

    Kelly, R.; Cuomo, J.J.; Leary, P.A.; Rothenburg, J.E.; Braren, B.E.; Aliotta, C.F.

    1985-01-01

    Irradiation, i.e. bombardment, with 193 nm laser pulses having an energy fluence of 2.5 J/cm 2 and a duration of proportional12 ns leads to rapid sputtering with Au, Al 2 O 3 , MgO, MgO.Al 2 O 3 , SiO 2 , glass, and LaB 6 , relatively slow sputtering with MgF 2 and diamond, and mainly thermal-stress cracking with W. Scanning electron microscopy (SEM) suggests that the mechanism for the sputtering of Au in either vacuum or air is one based on the hydrodynamics of molten Au, while an SEM-derived surface temperature estimate confirms that thermal sputtering (which might have been expected) is not possible. SEM with W shows that the near total lack of material removal is due to the thermal-stress cracking not leading to completed exfoliation, together with the surface temperature being too low for either hydrodynamical or thermal processes. Corresponding SEM with Al 2 O 3 shows, in the case of specimens bombarded in vacuum, topography of such a type that all mechanisms except electronic ones can be ruled out. The topography of Al 2 O 3 or other oxides bombarded in air through a mask is somewhat different, showing craters as for vacuum bombardments but ones which have a cone-like pattern on the bottom. (orig.)

  4. Sputtered molybdenum thin films and the application in CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, D.; Zhu, H., E-mail: hongbing1982@hotmail.com; Liang, X.; Zhang, C.; Li, Z.; Xu, Y.; Chen, J.; Zhang, L.; Mai, Y., E-mail: yaohuamai@hbu.edu.cn

    2016-01-30

    Graphical abstract: - Highlights: • Mo thin films are prepared by magnetron sputtering. • The dynamic deposition rate increases with the increasing discharge power. • The surface structure of Mo films varies with discharge power and working pressure. • High efficiency CIGS thin film solar cell of 15.2% has been obtained. - Abstract: Molybdenum (Mo) thin films are prepared by magnetron sputtering with different discharge powers and working pressures for the application in Cu(In, Ga)Se{sub 2} (CIGS) thin film solar cells as back electrodes. Properties of these Mo thin films are systematically investigated. It is found that the dynamic deposition rate increases with the increasing discharge power while decreases