WorldWideScience

Sample records for amoco sulfur recovery process

  1. Large-plant sulfur recovery processes stress efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Goar, B.G.; Nasato, E. (Goar, Allison Associates Inc., Tyler, TX (United States))

    1994-05-23

    Natural-gas processing in the future will encounter significantly more raw sour gas, i.e., gas containing 15--20 mol % H[sub 2]S or greater. Deciding whether to make the significant investment to build a sour-gas treating and sulfur-recovery plant involves many considerations. An operator selecting the optimum gas treating, sulfur recovery, and tail-gas cleanup processes must choose each carefully because each upstream step can affect design and operation of subsequent downstream steps. Reviewed here are current gas treating and sulfur-recovery processes in use today. For this purpose, plants that process sour gas and recover 50 long tons/day (ltd) or more of sulfur will be considered. Sample plants employing major technologies are listed in a table. Such other sulfur recovery, removal processes as Lo-Cat, SulFerox, Stretford, Iron Sponge, SulfaTreat, and Sulfa-Scrub are available to industry. But these processes are normally considered only when the total sulfur to be handled is 15--20 ltd or less. Additionally, many are troublesome to operate and have relatively high operating costs.

  2. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    Energy Technology Data Exchange (ETDEWEB)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2002-04-01

    This first quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf{sup SM} (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. In a previous reporting period tests were done to determine the effect of hydrocarbons such as n-hexane on catalyst performance with and without H{sub 2}S present. The experiments showed that hexane oxidation is suppressed when H{sub 2}S is present. Hexane represents the most reactive of the C1 to C6 series of alkanes. Since hexane exhibits low reactivity under H{sub 2}S oxidation conditions, and more importantly, does not

  3. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Dalrymple

    2004-06-01

    This final report describes the objectives, technical approach, results and conclusions for a project funded by the U.S. Department of Energy to test a hybrid sulfur recovery process for natural gas upgrading. The process concept is a configuration of CrystaTech, Inc.'s CrystaSulf{reg_sign} process which utilizes a direct oxidation catalyst upstream of the absorber tower to oxidize a portion of the inlet hydrogen sulfide (H{sub 2}S) to sulfur dioxide (SO{sub 2}) and elemental sulfur. This hybrid configuration of CrystaSulf has been named CrystaSulf-DO and represents a low-cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day and more. This hybrid process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both onshore and offshore applications. CrystaSulf is a nonaqueous sulfur recovery process that removes H{sub 2}S from gas streams and converts it to elemental sulfur. In CrystaSulf, H{sub 2}S in the inlet gas is reacted with SO{sub 2} to make elemental sulfur according to the liquid phase Claus reaction: 2H{sub 2}S + SO{sub 2} {yields} 2H{sub 2}O + 3S. The SO{sub 2} for the reaction can be supplied from external sources by purchasing liquid SO{sub 2} and injecting it into the CrystaSulf solution, or produced internally by converting a portion of the inlet gas H{sub 2}S to SO{sub 2} or by burning a portion of the sulfur produced to make SO{sub 2}. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, the needed SO{sub 2} is produced by placing a bed of direct oxidation catalyst in the inlet gas stream to oxidize

  4. Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H.C. [North Carolina State Univ., Raleigh, NC (United States); Williams, R.B. [Carneigie Mellon Univ., Pittsburgh, PA (United States)

    1995-09-01

    The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

  5. Sulfur recovery further improved

    Energy Technology Data Exchange (ETDEWEB)

    Borsboom, J.; Grinsven, M. van; Warners, A. van [Jacobs Nederland B.V., (Netherlands); Nisselrooy, P. van [Gastec N.V., (Netherlands)

    2002-04-01

    The original 100-year-old Claus process for producing sulfur from hydrogen sulfide in acid gas is described together with improvements which have been made over the years. The most recent modification, EUROCLAUS, achieves sulfur recoveries of 99-99.9 per cent. Five commercial units are being designed.

  6. Commercial Application of the RAR Sulfur Recovery and Tail Gas Treating Process

    Institute of Scientific and Technical Information of China (English)

    Guo Hong; Zhang Songping

    2003-01-01

    The 40kt/a sulfur recovery unit for tail gas treating applying the reduction-absorption-recycling (RAR) technology is aimed at regeneration of the rich amine solution and recovery of sulfur to operate in tandem with the 1.2Mt/a diesel hydrofining unit. The process unit calibration data have revealed that the recovery of total sulfur reaches 99.86%, which is 6.65 percentage points higher than that before application of the RAR technology. The SO2 content in vented tail gas is 0.27 t/d, which is much less than the latest emission standard prescribed by the State. The factors that can affect the unit operation have been analyzed and corresponding measures have been suggested including the necessity to improve the control over the reaction temperature in the tail gas hydrogenation unit.

  7. Desulfurisation and sulfur recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.; Finn, A.; Scott, L. [Costain Oil, Gas and Process Ltd (United Kingdom)

    2001-09-01

    This article highlights technical issues associated with different sulphur recovery processes in the hydrocarbon processing industry. Details are given of the Stretford process developed by British Gas for the removal of low concentrations of hydrogen sulphide from natural gas and other hydrocarbon gases; the SulFerox process developed by Shell and Dow for removing moderate amounts of sulphur from contaminated gases using a proprietary iron salt for extracting the sulphur; solvent systems for removing moderately high concentrations of hydrogen sulphide in sour gas or liquid petroleum gases (LPG); the simple Claus process involving the partial combustion of hydrogen sulphide forming sulphur dioxide which reacts with hydrogen sulphide to form sulphur; and enhanced Claus processes. Sour water stripping processes for hydrogen sulphide contaminated water from hydrocarbon processing, tail gas treatment of Claus plant offgases, and hydrotreating are also discussed.

  8. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  9. Recovery of high purity sulfuric acid from the waste acid in toluene nitration process by rectification.

    Science.gov (United States)

    Song, Kai; Meng, Qingqiang; Shu, Fan; Ye, Zhengfang

    2013-01-01

    Waste sulfuric acid is a byproduct generated from numerous industrial chemical processes. It is essential to remove the impurities and recover the sulfuric acid from the waste acid. In this study the rectification method was introduced to recover high purity sulfuric acid from the waste acid generated in toluene nitration process by using rectification column. The waste acid quality before and after rectification were evaluated using UV-Vis spectroscopy, GC/MS, HPLC and other physical and chemical analysis. It was shown that five nitro aromatic compounds in the waste acid were substantially removed and high purity sulfuric acid was also recovered in the rectification process at the same time. The COD was removed by 94% and the chrominance was reduced from 1000° to 1°. The recovered sulfuric acid with the concentration reaching 98.2 wt% had a comparable quality with commercial sulfuric acid and could be recycled back into the toluene nitration process, which could avoid waste of resources and reduce the environmental impact and pollution.

  10. Improvement on Technology of WSA Sulfur Recovery Process%WSA制酸工艺技术改造

    Institute of Scientific and Technical Information of China (English)

    苗澍; 金淼

    2011-01-01

    丹麦托普索WSA湿法制酸工艺可以有效地利用各种生产过程中产生的含硫酸性气体直接制酸,得到商品级浓硫酸,具有适用范围广、工艺流程简单、硫回收效率高、操作成本低、经济效益好等特点。介绍了唐山佳华煤化工有限公司WSA硫回收工艺的原理、生产运行情况及改造措施。%The Topsoe WSA wet-process acid production process of Denmark may utilize effectively sulfur-containing acid gases from various production processes to manufacture acid directly,and obtain the commercial-grade concentrated sulfuric acid.The technology has the characteristics of large scope of application,simple process flowsheet,high sulfur recovery,low operation cost and good economic benefit.To introduce the principle,producton run and renovation measures of the WSA sulfur recovery process of Tangshan Jiahua Coking and Chemical Co.,Ltd.

  11. Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

  12. 硫磺回收工艺技术进展%Progress in the techniques of sulfur recovery processes

    Institute of Scientific and Technical Information of China (English)

    张文革; 黄丽月; 李军

    2011-01-01

    China has actualized more strict control to environment pollution, with the issuance of 《 Integrated emission standard of air pollutants》. And,there are many sulfur recovery plants constructed. By reviewing the present status of domestic sulfur recovery plants, some sulfur recovery techniques used in different industries were introduced and evaluated,Claus process was discussed emphatically.%随着《大气污染物综合排放标准》的发布与实施,中国对环境污染的控制日益严格,相关行业纷纷建设硫磺回收装置.作者结合国内硫磺回收装置的工艺技术和产能现状,介绍了不同行业的硫磺回收工艺技术,着重讨论了克劳斯法硫磺回收工艺技术,为硫磺回收装置的改建和扩建提供了参考.

  13. Ion flotation application for rare earths recovery from the products of apatite processing with sulfuric acid

    International Nuclear Information System (INIS)

    The possibility was proved experimentally of ion flotation applicability for REE recovery from phosphogypsum leaching solutions and extractional phosphoric acid. On treating leaching solutions with dialkylphosphoric acids a solid sublate was formed whose extraction degree was as high as 95 %. Treatment of extractional phosphoric acid with alkyl sulfates resulted in twice as high as high REE concentration in foam product that in the residue. 17 refs

  14. Sulfur Recovery from Acid Gas Using the Claus Process and High Temperature Air Combustion (HiTAC Technology

    Directory of Open Access Journals (Sweden)

    Mohamed Sassi

    2008-01-01

    Full Text Available Sulfur-bearing compounds are very detrimental to the environment and to industrial process equipment. They are often obtained or formed as a by-product of separation and thermal processing of fuels containing sulfur, such as coal, crude oil and natural gas. The two sulfur compounds, which need special attention, are: hydrogen sulfide (H2S and sulfur dioxide (SO2. H2S is a highly corrosive gas with a foul smell. SO2 is a toxic gas responsible for acid rain formation and equipment corrosion. Various methods of reducing pollutants containing sulfur are described in this paper, with a focus on the modified Claus process, enhanced by the use of High Temperature Air Combustion (HiTAC technology in the Claus furnace. The Claus process has been known and used in the industry for over 100 years. It involves thermal oxidation of hydrogen sulfide and its reaction with sulfur dioxide to form sulfur and water vapor. This process is equilibrium-limited and usually achieves efficiencies in the range of 94-97%, which have been regarded as acceptable in the past years. Nowadays strict air pollution regulations regarding hydrogen sulfide and sulfur dioxide emissions call for nearly 100% efficiency, which can only be achieved with process modifications. High temperature air combustion technology or otherwise called flameless (or colorless combustion is proposed here for application in Claus furnaces, especially those employing lean acid gas streams, which cannot be burned without the use of auxiliary fuel or oxygen enrichment under standard conditions. With the use of HiTAC it has been shown, however, that fuel-lean, Low Calorific Value (LCV fuels can be burned with very uniform thermal fields without the need for fuel enrichment or oxygen addition. The uniform temperature distribution favors clean and efficient burning with an additional advantage of significant reduction of NOx, CO and hydrocarbon emission.

  15. Amoco Cadiz oil spill

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, A.J.

    1978-05-01

    This report gives a preliminary account of the events surrounding the wreck of the Amoco Cadiz on the Brittany coast in March, which caused the most massive oil pollution on record. The sequence of events is outlined. Also reported are details of clean-up of beaches as well as appearance and biological effects of oil. Further studies which will continue for years include: population dynamics (species of Littorina); feeding, reproduction, settlement of Spirorbis sp; surveillance of echinoderm and crustacean populations; changes in growth and development of species of red algae; changes in concentrations of bacteria, meiofauna, chlorophyll and organic material. There are indications of problems likely to arise in: sheltered areas (sediments, salt marsh vegetation); sandy shores; upper shore vegetation (higher plants, lichens); algae (temporary loss of algal cover); intertidal macrofauna; seabirds (mortality); economy (fishing, tourism, seaweed used for fertilizer).

  16. 基于Aspen Plus的克劳斯硫回收过程模拟%Analog of ClausSulfur Recovery Process Based on Aspen Plus

    Institute of Scientific and Technical Information of China (English)

    林发现; 丁玲; 陈延林; 李繁荣; 师慧灵; 邹隐文

    2011-01-01

    Adopting Aspen Plus process analog calculation software,process flow for Claus sulfur recovery was simulated,simulated data was good coincident with the data demarcated by analog software used specially for sulfur recovery;on that basis,author has studied the influence of Claus key data on process flow by use of Aspen Plus modular analysis function,its conclusion was coincident with practical production process;result indicates that it has optimizing role for both design calculation and production operation based on the Claus sulfur recovery process analog.%采用Aspen P lus工艺模拟计算软件模拟了克劳斯硫回收工艺过程,模拟数据与硫回收专用模拟软件的标定数据吻合较好;在此基础上,利用Aspen P lus模块化分析功能,研究了克劳斯工艺的关键数据对工艺过程的影响,其结论与实际生产过程相符合;结果表明,基于Aspen P lus的克劳斯硫回收过程模拟,对设计计算和生产操作均具有优化作用。

  17. 煤化工项目硫回收工艺技术分析%Analysis of Sulfur Recovery Processes in Coal-chemical Projects

    Institute of Scientific and Technical Information of China (English)

    张明成; 蒋保林

    2011-01-01

    介绍了煤化工装置硫回收的特点,评述煤化工装置三类常用的硫回收工艺,并对这三类工艺进行对比。结果表明,目前中国煤化工领域硫回收装置主要采用的是克劳斯的延伸工艺。%In the paper,the sulfur recovery characteristics of coal-chemical plant were introduced.Three kings of commonly used sulfur recovery processes were reviewed and compared also.The result showed that the extension of claus process was widely used in coal-chemical industry.

  18. Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Appendices to the final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The final report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten Island, the Proctor and Gamble and the Arthur Kill sites for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. This appendix to the final report provides supplemental material supporting the evaluations.

  19. Synthesis and development of processes for the recovery of sulfur from acid gases. Part 1, Development of a high-temperature process for removal of H{sub 2}S from coal gas using limestone -- thermodynamic and kinetic considerations; Part 2, Development of a zero-emissions process for recovery of sulfur from acid gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Towler, G.P.; Lynn, S.

    1993-05-01

    Limestone can be used more effectively as a sorbent for H{sub 2}S in high-temperature gas-cleaning applications if it is prevented from undergoing calcination. Sorption of H{sub 2}S by limestone is impeded by sintering of the product CaS layer. Sintering of CaS is catalyzed by CO{sub 2}, but is not affected by N{sub 2} or H{sub 2}. The kinetics of CaS sintering was determined for the temperature range 750--900{degrees}C. When hydrogen sulfide is heated above 600{degrees}C in the presence of carbon dioxide elemental sulfur is formed. The rate-limiting step of elemental sulfur formation is thermal decomposition of H{sub 2}S. Part of the hydrogen thereby produced reacts with CO{sub 2}, forming CO via the water-gas-shift reaction. The equilibrium of H{sub 2}S decomposition is therefore shifted to favor the formation of elemental sulfur. The main byproduct is COS, formed by a reaction between CO{sub 2} and H{sub 2}S that is analogous to the water-gas-shift reaction. Smaller amounts of SO{sub 2} and CS{sub 2} also form. Molybdenum disulfide is a strong catalyst for H{sub 2}S decomposition in the presence of CO{sub 2}. A process for recovery of sulfur from H{sub 2}S using this chemistry is as follows: Hydrogen sulfide is heated in a high-temperature reactor in the presence of CO{sub 2} and a suitable catalyst. The primary products of the overall reaction are S{sub 2}, CO, H{sub 2} and H{sub 2}O. Rapid quenching of the reaction mixture to roughly 600{degrees}C prevents loss Of S{sub 2} during cooling. Carbonyl sulfide is removed from the product gas by hydrolysis back to CO{sub 2} and H{sub 2}S. Unreacted CO{sub 2} and H{sub 2}S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H{sub 2} and CO, which recovers the hydrogen value from the H{sub 2}S. This process is economically favorable compared to the existing sulfur-recovery technology and allows emissions of sulfur-containing gases to be controlled to very low levels.

  20. Tail Gas Treatment Process for Sulfur Recovery%硫回收尾气处理工艺分析与选择

    Institute of Scientific and Technical Information of China (English)

    杨瑞华

    2012-01-01

    The development and philosophy of the tail gas treatment process for sulfur recovery was briefed, and some commonly used domestic tail gas treatment processes were introduced, namely, SOCT process, super Claus process, RAR process, SSR process and the ammonia process. The three schemes of the ammonia process were introduced in detail, and comparisons and benefit analysis were made on the last two schemes. The technical data concerning some domestic tail gas treatment processes were analyzed, and the comparison between various processes showed that the ammonia process had the advantages of less investment, less operation cost and less land demand, in case there is an existing boiler flue gas ammonia desulphurization device.%简述了硫回收尾气处理工艺的发展概况和技术进展,介绍了国内应用较多的几种尾气处理工艺:SCOT工艺、超级Claus工艺、RAR工艺、SSR工艺和氨法工艺;并对氨法工艺的3种方案进行了详细对比分析;通过对比可知,在有锅炉烟气氨法脱硫装置作依托的前提下,氨法工艺的方案三具有投资省、操作费用低、占地面积小的优势.

  1. CPS 硫磺回收工艺在塔中某处理厂的应用%The CPS Application of Sulfur Recovery Process in A Tazhong Area Plant

    Institute of Scientific and Technical Information of China (English)

    曹强

    2014-01-01

    塔中某处理厂硫磺回收采用分流法低温克劳斯工艺,通过一级常规克劳斯和三级低温克劳斯反应完成单质硫的回收和尾气的处理,保证硫收率达到99.25%以上及尾气排放合格。文中对装置的工艺特点进行简单介绍,并对生产过程中遇到的问题与应对措施进行分析和说明,充分证明了CPS硫磺回收工艺非常适合该处理厂的实际情况。%Some plant in Tazhong area using diversion method at low temperature to recovery sulfur , with Claus process, through conventional Claus I and low temperature Claus Ⅲreaction finished processing the sulfur recovery and tail gas, ensure the sulfur recovery rate reached more than 99.25% and the exhaust emissions qualified.A brief introduction on the process features of this device , and the problems encountered in the production process and the countermeasures were analyzed and explained fully proved that the actual situation of CPS sulfur recovery process was very suiTable for the processing plant.

  2. BYSR硫黄回收工艺在促进剂M酸性废气处理中的应用%Application of BYSR Sulfur Recovery Process in the Acidic Was tGe as Treatment of Accelerator M Production

    Institute of Scientific and Technical Information of China (English)

    邢维宝; 于海山; 李兵兵; 洪学斌; 吴刚

    2013-01-01

    介绍BYSR硫黄回收工艺的技术特点、工艺流程及其在促进剂M酸性废气处理中的应用。结果表明:BYSR硫黄回收工艺的二级克劳斯工艺,总硫回收率为95.0%~97.0%,二级克劳斯工艺+低温克劳斯工艺,总硫回收率为99.0%~99.5%;尾气中二氧化硫排放量达到国标要求;回收硫黄的纯度不小于99.90%;装置的工艺适应性和针对性更高,操作弹性大,有助于降低促进剂生产企业的投资和运营成本。%In this paper, the technical characteristics and process flow of BYSR sulfur recovery process are introduced, and the application in the acidic waste gas treatment of accelerator M production is presented. The total sulfur recovery of the enhanced Claus process based on BYSR is 95.0%~97.0%. The total sulfur recovery of the enhanced Claus process plus low temperature reactor is 99.0%~99.5%. The sulfur dioxide content in tail gas meets the requirement of the national standard. The purity of recovered sulfur reaches 99.90%. The process has good adaptability and lfexibility, which can reduce the investment and operating costs of accelerator producers.

  3. Research progress of application of CLAUS process in sulfur recovery%克劳斯工艺在硫回收中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    王利波; 董利刚; 王君华; 樊文娟

    2015-01-01

    CLAUS process is an industrial method for conversion of H2S to sulfur. The advantages of applying liquid sulfur to complete H2S conversion lies in the ability to use the soluble H2S existed liquid sulfur,and that the CLAUS process and super-CLAUS process's high-efficiency catalyst can be used. This paper made overview to the research progress of CLAUS reaction in liquid sulfur,and described different detection experiments and their relevant conclusions.%克劳斯工艺是将硫化氢转变为硫磺的工业方法,应用液硫完成H2S的转换优势在于能够利用液硫中溶解的H2S,且可以应用克劳斯工艺和超克劳斯工艺的高效催化剂.文中概述了液硫中的克劳斯反应研究进展,阐述了不同的检测实验及其相关结论.

  4. Uranium recovery process

    International Nuclear Information System (INIS)

    A process of recovering uranium from an aqueous medium containing both it and sulfuric acid which comprises contacting the medium with an anion exchange resin having tertiary amine groups, said resin being the product of (a) the reaction of polyethyleneimine and a dihaloalkane and (b) the subsequent reductive alkylation of the product of (a)

  5. Sulfur formation and recovery in a thiosulfateoxidizing bioreactor

    NARCIS (Netherlands)

    Gonzalez-Sanchez, A.; Meulepas, R.J.W.; Revah, S.

    2008-01-01

    This work describes the design and Performance of a thiosulfate-oxidizing bioreactor that allowed high elemental sulfur production and recovery efficiency. The reactor system, referred to as a Supernatant-Recycling Settler Bioreactor (SRSB), consisted of a cylindrical upflow reactor and a separate a

  6. 50万 t/a 甲醇配套硫回收装置工艺优化与应用%Process Optimization and Application of Sulfur Recovery Unit of 500 000 t/a Methanol Plant

    Institute of Scientific and Technical Information of China (English)

    杜霞

    2016-01-01

    With regard to the issues often occurred during operation of sulfur recovery unit of the methanol plant: hard air supply, large condensate con-sumption, big system resistance, pipelines prone to plug etc, through studies and analysis on process theory and equipment, the causes to affect efficient and low consumption operation of the sulfur recovery unit were found out, process revamping measures were formulated, the revamping results show that the cycle of unit operation has been increased to over one year from one month , the comprehensive availability to 95% from 60%, the unit load to 110%from 80% and sulfur output to 11 t/h from 6 t/h.%针对甲醇配套硫回收装置在运行中经常出现的配风困难、冷凝液消耗大、系统阻力大、输送管道易堵塞等多项问题,从工艺理论和设备上进行研究分析,查找到了影响装置高效、低耗运行的原因,制定了工艺改造的措施,改造结果表明:装置的运行周期由原来的1个月提至1年以上,综合运行率由原来的60%提至95%,装置负荷由原来的80%提至110%,硫磺产量由原来的6 t/h提至11 t/h。

  7. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  8. Development of enhanced sulfur rejection processes

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Richardson, P.E.

    1996-03-01

    Research at Virginia Tech led to the development of two complementary concepts for improving the removal of inorganic sulfur from many eastern U.S. coals. These concepts are referred to as Electrochemically Enhanced Sulfur Rejection (EESR) and Polymer Enhanced Sulfur Rejection (PESR) processes. The EESR process uses electrochemical techniques to suppress the formation of hydrophobic oxidation products believed to be responsible for the floatability of coal pyrite. The PESR process uses polymeric reagents that react with pyrite and convert floatable middlings, i.e., composite particles composed of pyrite with coal inclusions, into hydrophilic particles. These new pyritic-sulfur rejection processes do not require significant modifications to existing coal preparation facilities, thereby enhancing their adoptability by the coal industry. It is believed that these processes can be used simultaneously to maximize the rejection of both well-liberated pyrite and composite coal-pyrite particles. The project was initiated on October 1, 1992 and all technical work has been completed. This report is based on the research carried out under Tasks 2-7 described in the project proposal. These tasks include Characterization, Electrochemical Studies, In Situ Monitoring of Reagent Adsorption on Pyrite, Bench Scale Testing of the EESR Process, Bench Scale Testing of the PESR Process, and Modeling and Simulation.

  9. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  10. Sulfuric acid recovery from rare earth sulphate solutions by diffusion dialysis

    Institute of Scientific and Technical Information of China (English)

    TANG Jian-jun; ZHOU Kang-gen; ZHANG Qi-xiu

    2006-01-01

    Sulfuric acid recovery from rare earth sulphate solutions by diffusion dialysis was studied. The mass transfer model of diffusion dialysis was established, the comparison between the experimental results and mathematical results was carried out, and the numerical analysis on the effects of operational parameters was studied. The results indicate that the derived mathematical model shows good quantitative relation between sulphuric acid recovery ratio and operational parameters, and the mathematical results agree with the experimental results well. The numerical analysis results indicate that it is appropriate to keep the ratio of water and feed flow rates, processing capacity per membrane area and recovery ratio of sulphuric acid to be 1, 20 L/(m2·d) and 0.7-0.8,respectively.

  11. PROCESS ANALYSIS AND OPTIMIZATION OF AMMONIA BURNING IN A SULFUR RECOVERY UNIT%硫磺回收装置烧氨过程分析及条件优化

    Institute of Scientific and Technical Information of China (English)

    马恒亮; 唐战胜; 耿庆光

    2012-01-01

    对中国石化洛阳分公司硫磺回收装置在烧氨过程中遇到的问题进行分析,结合实际操作情况,提出烧氨条件优化方案.结果表明,适当提高风气比、提高酸性气进炉温度、调节燃烧气氨的负荷和优化仪表控制方案后,一、二级反应器的入口和床层间的温差均增大,系统压力基本维持在0.038MPa左右,急冷水中NH3-N质量浓度控制在300 mg/L左右,取得了较好的综合效益.%After a period of operation and analysis, the process conditions of ammonia burning at the sulfur recovery unit of SINOPEC Luoyang Branch Company were optimized. Results showed that by increasing the air/feed gas volume ratio and the inlet temperature of sour gas to furnace, adjusting the volume fraction of ammonia in sour gas and optimizing instrumentation and control, the temperature difference of reactor inlet and bed layer increased to ensure fully reactions; the system pressure was maintained at 0. 038 MPa and the NH3-N content in quench water was around 300 mg/L. Good economic, environmental and social benefits were obtained.

  12. Sulfur by-product formation in the Stretford process. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Trofe, T.W.; DeBerry, D.W.

    1993-09-01

    Liquid redox sulfur recovery processes remove H2S from sour gas streams and produce elemental sulfur for sale or disposal. The Stretford Process is one of the oldest commercial liquid redox processes and it is based on a vanadium and anthraquinone redox system. Improvements in the operability and reliability of the Stretford process would be beneficial to the process user. The report presents results of research focused on developing an understanding of the process parameters and factors that impact sulfur by-product formation (e.g., sodium thiosulfate and sodium sulfate) in the Stretford process. The information in the report can help current Stretford plant process users better understand the operations of their plants, especially with regards to sulfur by-product formation and control strategies.

  13. Gas recovery process

    International Nuclear Information System (INIS)

    In order to decontaminate a gas stream containing radioactive krypton, a preliminary step of removing oxygen and oxides of nitrogen by catalytic reaction with hydrogen is performed. The gas stream is then passed serially through a drier, a carbon dioxide adsorber and a xenon adsorber to remove sequentially water, CO2 and xenon therefrom. The gas exiting the xenon adsorber is passed to a krypton recovery plant wherein krypton is concentrated to a first level in a primary distillation column by contact with a reflux liquid in a packed section of the column. The liquid and vapour collecting at the bottom of the column is passed to a separator in which the liquid is separated from the vapour. The liquid is partially evaporated in a vessel to increase concentration thereof and is brought to a concentration of approximately 90 mole % or greater in a second distillation column thereby enabling efficient storage of a radioactive krypton product. (author)

  14. The mechanism of action of titania catalysts in sulfur recovery

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D.; Dowling, N.I.; Huang, M.

    2010-01-15

    The mechanism recovering sulfur from hydrocarbons using titania catalysts in a commercial titanium oxide (TiO{sub 2}) Claus process was investigated. Titania (Ti{sup 3+}) was obtained by hydrogen sulfide (H{sub 2}S) treatment at 320 degrees C for 1 hour. The presence of Ti{sup 3+} increases carbon disulphide (CS{sub 2}) hydrolysis as well as the CS{sub 2} conversion activities at the first converter condition. The catalytic behaviour of titania in the Claus process was described. The high CS{sub 2} activity of titania at first and second converted conditions was described along with its ability to promote conversion via either hydrolysis or reaction with sulphur dioxide (SO{sub 2}). The surface sulfate on titania is more active at first converter condition, but the slow turnover of sulfate back to thiosulfates at low temperature inhibits the Claus reaction and the carbon disulphide conversion at the third converter condition. Comparing alumina and titania for carbon disulphide conversion, titania gives a better conversion over time, although during the first 6 hours of the process alumina appears to provide the better conversion. 12 figs.

  15. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao, E-mail: zhoutao@csu.edu.cn; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-15

    Highlights: • Selective precipitation and solvent extraction were adopted. • Nickel, cobalt and lithium were selectively precipitated. • Co-D2EHPA was employed as high-efficiency extraction reagent for manganese. • High recovery percentages could be achieved for all metal values. - Abstract: Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe–Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC{sub 2}O{sub 4}⋅2H{sub 2}O and Li{sub 2}CO{sub 3} using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.

  16. Ultrasound effects on zinc recovery from EAF dust by sulfuric acid leaching

    Science.gov (United States)

    Brunelli, K.; Dabalà, M.

    2015-04-01

    In this work, an ultrasound-assisted leaching process was studied for the recovery of zinc from electric arc furnace (EAF) dust, in which zinc was mainly present in the form of franklinite (60%). Hydrometallurgy is emerging as a preferred process for the recovery of a variety of metals, and the use of ultrasound could offer advantages over the conventional leaching process, especially for the dissolution of franklinite. Franklinite is a refractory phase that is difficult to leach and represents the main obstacle in conventional hydrometallurgy processing. Atmospheric leaching with different sulfuric acid concentrations (0.2-2.0 M) at two temperatures (323 and 353 K) was performed. The tests were conducted using both conventional and ultrasound-assisted leaching. After the leaching tests, the solid residues were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques, whereas the leach liquor was analyzed by inductively coupled plasma spectroscopy (ICP). The use of ultrasound facilitated the dissolution of franklinite at low acid concentrations and resulted in a greater zinc recovery under all of the investigated operating conditions.

  17. Vanadium recovery process

    International Nuclear Information System (INIS)

    A process for recovering vanadium values from carbonaceous type vanadium ores, and vanadium scrap, such as vanadium contaminated spent catalyst, is disclosed which comprises roasting the vanadium containing material in air at a temperature less than about 6000C to produce a material substantially devoid of organic matter, subjecting said roasted material to a further oxidizing roast in an oxygen atmosphere at a temperature of at least about 8000C for a period sufficient to convert substantially all of the vanadium to the soluble form, leaching the calcine with a suitable dilute mineral acid or water at a pH of neutral to about 2 to recover vanadium values, precipitating vanadium values as iron vanadate from the leach solution with a soluble iron compound at a pH from neutral to about 1, and recovering ferrovanadium from the iron vanadate by a reduction vacuum smelting operation. The conversion of vanadium in the ore to the soluble form by the oxidizing roast is accomplished without the addition of an alkaline salt during calcining

  18. Sulfur Isotopic Characteristics of Coal in China and Sulfur Isotopic Fractionation during Coal—burning Process

    Institute of Scientific and Technical Information of China (English)

    洪业汤; 张鸿斌; 等

    1993-01-01

    The determined results of the sulfur contents and isotopic composition of coal samples from major coal mines in 15 provinces and regions of China show that the coal mined in the north of China is characterized by higher 34S and lower sulfur content, but that in the south of China has lower 34S and higher sulfur content.During the coal-burning process in both indrstrial and daily use of coal as fuel the released sulfur dioxide is always enriched in lighter sulfur isotope relative to the corresponding coal;the particles are always enriched in heavier sulfur isotope.The discussion on the environmental geochemical significance of the above-mentioned results also has been made.

  19. Gasoline from natural gas by sulfur processing

    Energy Technology Data Exchange (ETDEWEB)

    Erekson, E.J.; Miao, F.Q. [Institute of Gas Technology, Des Plaines, IL (United States)

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  20. Development of once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    without concentration process depending on the acid concentration they need. It is reasonable to assume that nearly all the recovered sulfur is reportedly consumed after first converted to sulfuric acid, which is the leading sulfur end-use in all forms. Ot-HyS could meet the additionally rising sulfuric acid demand by feeding severely increasing sulfur surplus. Flowsheet for the sulfur combustion and SCHRS (Sulfur Combustion Heat Recovery System) including Rankine cycle, developed by referring to the existing facilities under some assumptions, was simulated using Aspen Plus with an ideal Henry model and STEAMNBS model. Other part of the flowsheet, modified from the SRNL's work, was simulated using Aspen Plus with OLI-MSE model. Acid concentration of sulfuric acid product was set to be 75 wt% and SDE was treated as a black box under the reasonable assumptions including a cell potential of 0.6 V versus current density of 500 mA/cm2, which is a development performance target of the SRNL. As the results, it was demonstrated that net thermal efficiency of Ot-HyS is 47.1 % (based on LHV) and 55.7 % (based on HHV) assuming 33.3 % thermal-to-electric conversion efficiency of nuclear power plant. Hydrogen produced through the energy-efficient Ot-HyS would be used as off-peak electricity storage, to relieve the burden of load-following and help to expand applications of nuclear energy, which is regarded as a 'sustainable development' technology. Further detailed economic feasibility study could help to show the feasibility of Ot-HyS

  1. 某硫精矿焙烧-氰化回收金试验研究%Study on the gold recovery from sulfur concentrates by roasting-cyanidation gold leaching process

    Institute of Scientific and Technical Information of China (English)

    邓莉莉

    2015-01-01

    某硫精矿中含铁42.3%、有效硫47.34%、金0.72 g/t,对其进行了焙烧—氰化浸金试验研究。其结果表明:在750℃下焙烧2 h,获得含铁61.42%、金品位1.04 g/t的焙砂;在硝酸铅添加量为300 g/t条件下,对该焙砂进行氰化浸金时,浸渣金品位可降低至0.33 g/t,金浸出率可达68.27%。%Roasting-cyanidation gold leaching process is carried out toward a sulfur concentrate with iron grade of 42. 3%,effective sulfur 47. 34% and gold 0. 72 g/t. The result is that:roasting with the temperature of 750℃ for two hours obtains calcine with 61 . 42 % iron and 1 . 04 g/t gold; The gold grade of cyanide slag can be reduced to 0. 33 g/t and gold leaching rate can reach 68. 27 %,when the cyanide leaching of gold from the calcine with 300 g/t lead nitrate added.

  2. Uranium, Cesium, and Mercury Leaching and Recovery from Cemented Radioactive Wastes in Sulfuric Acid and Iodide Media

    Directory of Open Access Journals (Sweden)

    Nicolas Reynier

    2015-11-01

    Full Text Available The Canadian Nuclear Laboratories (CNL is developing a long-term management strategy for its existing inventory of solid radioactive cemented wastes, which contain uranium, mercury, fission products, and a number of minor elements. The composition of the cemented radioactive waste poses significant impediments to the extraction and recovery of uranium using conventional technology. The goal of this research was to develop an innovative method for uranium, mercury and cesium recovery from surrogate radioactive cemented waste (SRCW. Leaching using sulfuric acid and saline media significantly improves the solubilization of the key elements from the SRCW. Increasing the NaCl concentration from 0.5 to 4 M increases the mercury solubilization from 82% to 96%. The sodium chloride forms a soluble mercury complex when mercury is present as HgO or metallic mercury but not with HgS that is found in 60 °C cured SRCW. Several leaching experiments were done using a sulfuric acid solution with KI to leach SRCW cured at 60 °C and/or aged for 30 months. Solubilization yields are above 97% for Cs and 98% for U and Hg. Leaching using sulfuric acid and KI improves the solubilization of Hg by oxidation of Hg0, as well as HgS, and form a mercury tetraiodide complex. Hg and Cs were selectively removed from the leachate prior to uranium recovery. It was found that U recovery from sulfuric leachate in iodide media using the resin Lewatit TP260 is very efficient. Considering these results, a process including effluent recirculation was applied. Improvements of solubilization due to the recycling of chemical reagents were observed during effluent recirculation.

  3. Sulfur Flow Analysis for New Generation Steel Manufacturing Process

    Institute of Scientific and Technical Information of China (English)

    HU Chang-qing; ZHANG Chun-xia; HAN Xiao-wei; YIN Rui-yu

    2008-01-01

    Sulfur flow for new generation steel manufacturing process is analyzed by the method of material flow analysis,and measures for SO2 emission reduction are put forward as assessment and target intervention of the results.The results of sulfur flow analysis indicate that 90% of sulfur comes from fuels.Sulfur finally discharges from the steel manufacturing route in various steps,and the main point is BF and BOF slag desulfurization.In sintering process,the sulfur is removed by gasification,and sintering process is the main source of SO2 emission.The sulfur content of coke oven gas (COG) is an important factor affecting SO2 emission.Therefore,SO2 emission reduction should be started from the optimization and integration of steel manufacturing route,sulfur burden should be reduced through energy saving and consumption reduction,and the sulfur content of fuel should be controlled.At the same time,BF and BOF slag desulfurization should be optimized further and coke oven gas and sintering exhausted gas desulfurization should be adopted for SO2 emission reduction and reuse of resource,to achieve harmonic coordination of economic,social,and environmental effects for sustainable development.

  4. Amoco-US Environmental Protection Agency, pollution prevention project, Yorktown, Virginia: Project peer review. Report of the Peer Review Committee of the Amoco/EPA Pollution Prevention Project at the Yorktown, Virginia refinery

    International Nuclear Information System (INIS)

    The Amoco/EPA Pollution Prevention Project involved a number of representatives from federal and Virginia regulatory agencies, and Amoco's refining business. Participants believed that the Project could benefit from a broader perspective than these organizations along might provide. The Project Work Group selected an independent Peer Review Process which was conducted by Resource for the Future (RFF), a Washington DC think tank. A group of technical, policy and environmental experts from diverse backgrounds served as Peer Review members. The Peer Review Committee met on three occasions to discuss (1) the Project Work Plan (2) sampling data and interpretation and (3) project conclusions and recommendations. The focus of the meeting was on the general scope and content of the project

  5. A microencapsulation process of liquid mercury by sulfur polymer

    OpenAIRE

    López-Delgado, Aurora; Guerrero, A; López Gómez, Félix Antonio; Pérez, Carlos; Alguacil, Francisco José

    2012-01-01

    Under the European LIFE Program a microencapsulation process was developed for liquid mercury using Sulfur Polymer Stabilization/Solidification (SPSS) technology, obtaining a stable concrete-like sulfur matrix that allows the immobilization of mercury for long-term storage. The process description and characterization of the materials obtained were detailed in Part I. The present document, Part II, reports the results of different tests carried out to determine the durability of H...

  6. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur. Fifth quarterly technical progress report, December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  7. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur. Sixth quarterly technical progress report, January - March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  8. The Fate of Sulfur in Late-Stage Magmatic Processes: Insights From Quadruple Sulfur Isotopes

    Science.gov (United States)

    Keller, N. S.; Ono, S.; Shaw, A. M.

    2009-05-01

    Multiple sulfur isotopes (32S, 33S, 34S and 36S) have recently been shown to be useful tracers of fluid-rock interaction in seafloor hydrothermal systems [1]. Here we present the application of multiple sulfur isotopes to subaerial volcanoes with the aim of unraveling the various processes fractionating sulfur in the upper volcanic system. We take advantage of the fact that the ascent of volcanic gases through a hydrothermal system causes complex isotopic fractionation between the quaduple sulfur isotopes. δ34S is thought to trace the source of sulfur as well as magma degassing; at equilibrium, δ33S follows a mass-dependent fractionation relationship such that two phases in equilibrium with each other have equal Δ33S values (Δ33S ≡ ln(δ33S+1) - 0.515×ln(δ34S+1)). Disequilibrium Δ33S values can indicate isotope mixing and other fluid-rock interactions. The ultimate aim of this study is to assess the use of quadruple sulfur isotopes to obtain quantitative information on the sulfur cycle at convergent plate margins. The sulfur mass balance at convergent margins is poorly constrained, partly because late-stage processes are challenging to quantify and lead to large uncertainties in the global output fluxes. Quadruple sulfur isotopes provide a powerful tool to untangle the convoluted history of volcanic systems. Here we report the first quadruple sulfur isotopic values for H2S, SO2 and native sulfur from arc volcanoes. Fumarolic gases (˜100°C) and sulfur sublimates were collected from Poas and Turrialba, two actively degassing volcanoes in Costa Rica. The gases were bubbled in situ through chemical traps to separate H2S from SO2: H2S was reacted to form ZnS, and SO2 to form BaSO4. Sulfur was chemically extracted from the solid phases and precipitated as Ag2S, which was fluorinated to SF6 and analysed by IRMS. Poas and Turrialba have H2S/SO2 ˜1 and 0.01, respectively. δ34SH2S and δ34SSO2 are similar to gases measured at other arcs [2], - 7.9‰ and 0.6

  9. Discussion on Stable Operation Factors in Claus Sulfur Recovery%克劳斯硫回收稳定运行因素探讨

    Institute of Scientific and Technical Information of China (English)

    刘婷婷

    2016-01-01

    With the rapid growth of the national economy, our coal chemical industry has been rapid developed. Meanwhile, in order to make emissions meet the national environmental protection requirements, sulfur recovery process also continues to develop and progress. At present, the main technology is the claus process sulfur recovery. This method is usually used to treat the acid gas containing 15% ~17% hydrogen sulfide. By analyzing Claus sulfur recovery works and process, process control was discussed to improve the sulfur recovery rate and reduce SO2 emissions.%随着我国国民经济的快速增长,我国的煤化工领域也得到了高速发展。同时为了使尾气排放达到国家环保要求,硫回收工艺也在不断的发展进步。目前国内硫回收的主要技术是克劳斯法,此法通常处理含硫化氢为15%~100%的酸性气。本文通过克劳斯硫回收的工作原理、工艺流程,探讨了如何通过工艺控制,进而达到提高硫磺回收率、降低SO2排放的目的。

  10. CLAUS与ZZ-PRO工艺相结合优化硫磺回收工艺%Optimization of sulfur recovery process by combining CLAUS and ZZ-PRO processes

    Institute of Scientific and Technical Information of China (English)

    周姜维

    2015-01-01

    This paper described technical features of CLAUS and ZZ-PRO processes,analyzed the process reason causing So2 in tail gas out of limit in application of CLAUS process,and based on the specific application example,analyzed that the combination of these two processes can realize up-to-standard emission.%文中阐述了CLAUS和ZZ-PRO硫磺回收工艺的技术特点,分析CLAUS工艺中尾气出现SO2超标的工艺原因,结合具体的应用实例,分析了2种工艺相结合可以实现装置的达标排放。

  11. Low-quality natural gas sulfur removal/recovery

    Energy Technology Data Exchange (ETDEWEB)

    K. Amo; R.W. Baker; V.D. Helm; T. Hofmann; K.A. Lokhandwala; I. Pinnau; M.B. Ringer; T.T. Su; L. Toy; J.G. Wijmans

    1998-01-29

    A significant fraction of U.S. natural gas reserves are subquality due to the presence of acid gases and nitrogen; 13% of existing reserves (19 trillion cubic feed) may be contaminated with hydrogen sulfide. For natural gas to be useful as fuel and feedstock, this hydrogen sulfide has to be removed to the pipeline specification of 4 ppm. The technology used to achieve these specifications has been amine, or similar chemical or physical solvent, absorption. Although mature and widely used in the gas industry, absorption processes are capital and energy-intensive and require constant supervision for proper operation. This makes these processes unsuitable for treating gas at low throughput, in remote locations, or with a high concentration of acid gases. The U.S. Department of Energy, recognizes that exploitation of smaller, more sub-quality resources will be necessary to meet demand as the large gas fields in the U.S. are depleted. In response to this need, Membrane Technology and Research, Inc. (MTR) has developed membranes and a membrane process for removing hydrogen sulfide from natural gas. During this project, high-performance polymeric thin-film composite membranes were brought from the research stage to field testing. The membranes have hydrogen sulfide/methane selectivities in the range 35 to 60, depending on the feed conditions, and have been scaled up to commercial-scale production. A large number of spiral-wound modules were manufactured, tested and optimized during this project, which culminated in a field test at a Shell facility in East Texas. The short field test showed that membrane module performance on an actual natural gas stream was close to that observed in the laboratory tests with cleaner streams. An extensive technical and economic analysis was performed to determine the best applications for the membrane process. Two areas were identified: the low-flow-rate, high-hydrogen-sulfide-content region and the high-flow-rate, high

  12. Low-quality natural gas sulfur removal/recovery: Task 2. Topical report, September 30, 1992--August 29, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Cook, W.J.; Neyman, M.; Brown, W. [Acrion Technologies, Inc., Cleveland, OH (United States); Klint, B.W.; Kuehn, L.; O`Connell, J.; Paskall, H.; Dale, P. [Bovar, Inc., Calgary, Alberta (Canada)

    1993-08-01

    The primary purpose of this Task 2 Report is to present conceptual designs developed to treat a large portion of proven domestic natural gas reserves which are low quality. The conceptual designs separate hydrogen sulfide and large amounts of carbon dioxide (>20%) from methane, convert hydrogen sulfide to elemental sulfur, produce a substantial portion of the carbon dioxide as EOR or food grade CO{sub 2}, and vent residual CO{sub 2} virtually free of contaminating sulfur containing compounds. A secondary purpose of this Task 2 Report is to review existing gas treatment technology and identify existing commercial technologies currently used to treat large volumes of low quality natural gas with high acid content. Section II of this report defines low quality gas and describes the motivation for seeking technology to develop low quality gas reserves. The target low quality gas to be treated with the proposed technology is identified, and barriers to the production of this gas are reviewed. Section III provides a description of the Controlled Freeze Zone (CFG)-CNG technologies, their features, and perceived advantages. The three conceptual process designs prepared under Task 2 are presented in Section IV along with the design basis and process economics. Section V presents an overview of existing gas treatment technologies, organized into acid gas removal technology and sulfur recovery technology.

  13. Advances in computational modeling of catalytic systems used in Claus sulfur recovery

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D.; Lo, J. [Alberta Sulphur Research Ltd., Calgary, AB (Canada). Center for Applied Catalysis and Industrial Sulfur Chemistry

    2010-01-15

    This poster session discussed advances in computation modeling of catalytic systems used in Claus sulfur recovery, focusing on the hydrogen sulphide (H{sub 2}S) and sulphur dioxide (S{sub O}2) absorption of non-alumina Claus active metal oxides, such as titanium oxide and vanadium oxide. These metal oxides were chosen because they promote carbon disulphide (CS{sub 2}) conversion and have a potential use in olefin chemistry. The redox process of H{sub 2}S dissociation on vanadium pentoxide (V{sub 2}O{sub 2}) can take place in single-site reaction or multiple site reactions. Both mechanisms lead to the production of V{sub 2}O{sub 4}S, water (H{sub 2}O) and other species. The overall process of forming VO{sub 4}S is neutral, but kinetics is a controlling factor. The surface sulfidation to form V{sub 2}O{sub 3}S{sub 2} requires a small energy cost but possesses a huge reaction barrier. The formation of H{sub 2}S{sub 2} is energetically favorable. The silica (SiO{sub 2})-supported V{sub 2}O{sub 2} catalyst was described. A proposed mechanism of H{sub 2}S conversion to H{sub 2}O and V=S group was presented along with another reaction route in which the dissociative absorption of H{sub 2}S takes place on O-bridges instead of V=O. Two vanadia catalysts were compared: V{sub 2}O{sub 5} and V{sub 2}O{sub 5}/SiO{sub 2}. 7 figs.

  14. Sulfur recovery from low H{sub 2}S content acid gas using catalytic partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D.; Dowling, N.I.; Huang, M.

    2010-01-15

    The poster presentation discussed a new strategy for recovering sulfur from low hydrogen-sulphide-content acid gas using catalytic partial oxidation. In a new technology for dealing with BTX-contaminated lean acid gas, a catalytic reactor replaces the burner-furnace stage to achieve BTX conversion greater than 95 percent and control the hydrogen sulfide/sulfur dioxide ratio. The product gas is then sent to the Claus catalytic converters. The best catalysts for this process are alumina-supported Co-Mo and y-alumina. This process was compared with SELECTOX, another process that deals with poor acid gas with BTX conversion better than 95 percent. Catalytic oxidation can deal with a higher BTX feed content than SELECTOX, but the running temperature is higher. Both processes produce acceptable sulfur quality. To improve this process, the quality of the sulfur produced and the lifetime of the catalyst need to be increased, and an economic way to increase the heat to reach the running temperature needs to be found. The partial oxidation (POX) of CH{sub 4} solves both of these problems. The catalytic POX of acid gas is combined with the POX of fuel gas in the pre-heating zone. This process has the advantage that the burner-furnace stage of the Claus process can be replaced by a stream containing H{sub 2}S/SO{sub 2}=2; the reaction is performed at its adiabatic temperature requiring only a small amount of fuel gas; the presence of H{sub 2} and CO produced by the POX of fuel gas improves the quality of sulfur; the catalyst remains active for about 30 hours; and the process can tolerate high BTX content. 6 tabs., 2 figs.

  15. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  16. Trace recovery of uranium and rare earth contained in phosphates by liquid-liquid extraction in sulfuric attack liquor

    International Nuclear Information System (INIS)

    Uranium and rare earths can be recovered in sedimentary phosphates during the wet processing of the ore by sulfuric acid giving raw phosphoric acid at 30 per cent of P2O5. Practically all the uranium contained and only part of rare earths are put into solution in this treatment. Separation of these elements in the phosphoric solution is obtained by liquid-liquid extraction with alkylphosphoric acids and especially with their mono and di esters. Partition isotherms are determined and counter-current tests are effected. Uranium and rare earths reextraction from these solvents can be simultaneous or separate with aqueous solutions alkaline or containing HF or by antisynergism. Pros and cons of each reextraction process are discussed. In conclusion HDEHP or OPPA are recommended because of availability, stability and hydrodynamic, OPPA less selective with rare earths allows the recovery with uranium of ceric earths, yttrium and yttric earths

  17. Uranium recovery from wet process phosphoric acid

    International Nuclear Information System (INIS)

    In the field of metallurgy, specifically processes for recovering uranium from wet process phosphoric acid solution derived from the acidulation of uraniferous phosphate ores, problems of imbalance of ion exchange agents, contamination of recycled phosphoric acid with process organics and oxidizing agents, and loss and contamination of uranium product, are solved by removing organics from the raffinate after ion exchange conversion of uranium to uranous form and recovery thereof by ion exchange, and returning organics to the circuit to balance mono and disubstituted ester ion exchange agents; then oxidatively stripping uranium from the agent using hydrogen peroxide; then after ion exchange recovery of uranyl and scrubbing, stripping with sodium carbonate and acidifying the strip solution and using some of it for the scrubbing; regenerating the sodium loaded agent and recycling it to the uranous recovery step. Economic recovery of uranium as a by-product of phosphate fertilizer production is effected. (author)

  18. Effects of the ``Amoco Cadiz'' oil spill on zooplankton

    Science.gov (United States)

    Samain, J. F.; Moal, J.; Coum, A.; Le Coz, J. R.; Daniel, J. Y.

    1980-03-01

    A survey of zooplankton physiology on the northern coast of Brittany (France) was carried out over a one-year period by comparing two estuarine areas, one oil-polluted area (Aber Benoit) following the oil spill by the tanker “Amoco Cadiz” and one non-oil-polluted area (Rade de Brest). A new approach to an ecological survey was made by describing trophic relationships using analysis of digestive enzyme equipment (amylase and trypsin) of zooplankton organisms, mesoplankton populations and some selected species. These measurements allowed determination of (a) groups of populations with homogeneous trophic and faunistic characteristics and (b) groups of species with homogeneous trophic characteristics. The study of the appearance of these groups over a one-year period revealed the succession of populations and their adaptation to the environment on the basis of biochemical analysis. These phenomena observed in the compared areas showed marked differences in the most polluted areas during the productive spring period. Specific treatment of the data using unusual correlations between digestive enzymes is discussed in terms of the immediate effect on the whole population and on a copepod ( Anomalocera patersoni) living in the upper 10 cm.

  19. Cost effective sulfur recovery solutions for Canada's greener environment

    Energy Technology Data Exchange (ETDEWEB)

    Chow, T.K.T.; Gebur, J.; Wong, V.; Lawrence, C. [Fluor Canada Ltd., Calgary, AB (Canada)

    2004-07-01

    This paper described key advanced technologies for cost effective conversion and recovery of hydrogen sulphide (H{sub 2}S) from gas streams to elemental sulphur. Regulations in Canada stipulate that new oil processing plants achieve sulphur recovery in the range of 98.5 to 99.7 per cent. It is expected that these standards will become more stringent in the future. Operators of sour gas plants must implement continuous improvement programs to reduce emissions. In particular, operators of grandfathered sour gas plants must take measures to enhance sulphur recovery beyond minimum requirements. The paper described cost effective technologies to handle contaminants such as ammonia, benzene, toluene, and xylene (BTX) and cyanides. The most widely used sulphur recovery process in the industry is the modified 3-stage Claus process which requires an acid gas stream rich in H{sub 2}S. The maximum recovery is about 97 per cent at best. This paper presented other processes that can be used exclusively or concurrently with others to meet the requirements of individual facilities. The three key sulphur technologies are: (1) ammonia destruction for the sour water stripper offgas processed in sulphur plants, (2) oxygen enrichment for processing capacity expansion of sulphur plants, and (3) hydrogenation/amine type of Claus Tail Gas Treating for sulphur recovery efficiency enhancement. The advantages and disadvantages of each advanced technology was described along with the short and long term economic implications of implementing them. 9 refs.

  20. Benzene vapor recovery and processing

    International Nuclear Information System (INIS)

    The National Emissions Standards for Hazardous Air Pollutants, or NESHAPs, have provided a powerful motivation for interest in, and attention to, benzene vapor emissions in recent times. Benzene and its related aromatics are volatile organic compounds (VOCs), which marks them for surveillance as potential contributors to air pollution. In addition, benzene is a suspected carcinogen, which applies a special urgency to its control. The regulations governing the control of benzene emissions were issued as Title 40, Code of Federal Regulations, Part 61, subpart Y (Storage Vessels); subpart BB (Transfer Operations); and subpart FF (Waste Operations). These regulations specify very particular emission reduction guidelines for various generating sources. The problem in the hydrocarbon processing industry is to identify significant sources of benzene vapors in plants, and then to collect and process these vapors in an environmentally acceptable manner. This paper discusses various methods for collecting benzene fumes in these facilities

  1. Effect of Additive on Sulfur-fixation Process of Sulfur-fixation Agent

    Institute of Scientific and Technical Information of China (English)

    XIE Jun-lin; QIU Jian-rong; ZHAO Gai-ju; LOU Jin-ping; HAN Chun-hua

    2003-01-01

    The crystallization behavior of desulfurization product is directly related to its high-temperatureresistant ability. Effects of the additive on the sulfur-fixation efficiency of the Ba-sulfur-fixation agent and also on the crystallization behavior of the sulfur-fixation product were studied when CaCO3 and BaCO3 were used as the desulfurization agent and MgO and SrCO3 used as the assistant sulfur-fixation agent. The result shows that increase of sulfur-fixation capability for the additive is not owe to their directly react to form sulfate or interact with CaCO3 and BaCO3 to form composite mineral heat-resistant in high temperature, but owe to their activation to sulfur-fixation reaction of the sulfur-fixation agent.

  2. A Development of Ceramics Cylinder Type Sulfuric Acid Decomposer for Thermo-Chemical Iodine-Sulfur Process Pilot Plant

    Science.gov (United States)

    Minatsuki, Isao; Fukui, Hiroshi; Ishino, Kazuo

    The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO2 gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9m in height, 1.0m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder (slurry

  3. Utilization of by-product sulfur in Kraft pulping process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Liu, S. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Chung, K.H. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre

    2004-07-01

    This presentation describes how sulfur derived from heavy oil processing can be used by the pulp and paper industry to increase yield, accelerate delignification and shorten the cooking time in the kraft pulping process. The liquor used in the kraft pulping process is a solution of sodium sulfide and sodium hydroxide. The reaction kinetics of delignification in the cooking process was examined and a new method was proposed. The 3 key kinetic steps in the new method include: (1) adsorption of hydroxide and hydrosulfide ions on the fiber wall, (2) chemical reaction on the solid surface to produce degraded lignin products, and (3) desorption of degradation products from the solid surface. The surface reaction is the most important step in the delignification process. A newly developed kinetic model based on the proposed mechanism can be used to accurately predict the pulping behaviour under a variety of conditions.

  4. Recovery of transuranics from process residues

    International Nuclear Information System (INIS)

    Process residues are generated at both the Rocky Flats Plant (RFP) and the Savannah River Plant (SRP) during aqueous chemical and pyrochemical operations. Frequently, process operations will result in either impure products or produce residues sufficiently contaminated with transuranics to be nondiscardable as waste. Purification and recovery flowsheets for process residues have been developed to generate solutions compatible with subsequent Purex operations and either solid or liquid waste suitable for disposal. The ''scrub alloy'' and the ''anode heel alloy'' are examples of materials generated at RFP which have been processed at SRP using the developed recovery flowsheets. Examples of process residues being generated at SRP for which flowsheets are under development include LECO crucibles and alpha-contaminated hydraulic oil

  5. Process and system for removing sulfur from sulfur-containing gaseous streams

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Arunabha (Aurora, IL); Meyer, Howard S. (Hoffman Estates, IL); Lynn, Scott (Pleasant Hill, CA); Leppin, Dennis (Chicago, IL); Wangerow, James R. (Medinah, IL)

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  6. ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Weber

    1999-05-01

    Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO{sub 2}-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO{sub 2}-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing

  7. Improved Recovery Boiler Performance Through Control of Combustion, Sulfur, and Alkali Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Larry L.

    2008-06-09

    This project involved the following objectives: 1. Determine black liquor drying and devolatilization elemental and total mass release rates and yields. 2. Develop a public domain physical/chemical kinetic model of black liquor drop combustion, including new information on drying and devolatilization. 3. Determine mechanisms and rates of sulfur scavenging in recover boilers. 4. Develop non-ideal, public-domain thermochemistry models for alkali salts appropriate for recovery boilers 5. Develop data and a one-dimensional model of a char bed in a recovery boiler. 6. Implement all of the above in comprehensive combustion code and validate effects on boiler performance. 7. Perform gasification modeling in support of INEL and commercial customers. The major accomplishments of this project corresponding to these objectives are as follows: 1. Original data for black liquor and biomass data demonstrate dependencies of particle reactions on particle size, liquor type, gas temperature, and gas composition. A comprehensive particle submodel and corresponding data developed during this project predicts particle drying (including both free and chemisorbed moisture), devolatilization, heterogeneous char oxidation, char-smelt reactions, and smelt oxidation. Data and model predictions agree, without adjustment of parameters, within their respective errors. The work performed under these tasks substantially exceeded the original objectives. 2. A separate model for sulfur scavenging and fume formation in a recovery boiler demonstrated strong dependence on both in-boiler mixing and chemistry. In particular, accurate fume particle size predictions, as determined from both laboratory and field measurements, depend on gas mixing effects in the boilers that lead to substantial particle agglomeration. Sulfur scavenging was quantitatively predicted while particle size required one empirical mixing factor to match data. 3. Condensed-phase thermochemistry algorithms were developed for salt

  8. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe; Richard McMillan

    2002-02-04

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NO{sub x} control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two First Energy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents

  9. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe; Richard McMillan

    2002-03-04

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NOX control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the

  10. Claus工艺硫磺回收装置优化改造%Optimization for operation of Claus sulfur recovery unit

    Institute of Scientific and Technical Information of China (English)

    刘怀军; 王高兴

    2015-01-01

    This paper provides an overview of modification for sulfur recovery unit to reduce energy consumption with the help of CRC two-stage Claus process designed by Jiangsu Chengyi. The improvement of liquid sulfur sealing and replacement of abundant industry wind from blower have received good results in operation.%结合江苏晟宜设计CRC两段法超优Claus回收工艺对二期硫回收装置运行中出现问题进行改造优化,以达到节能降耗目的;特别利用管网富余工业风代替鼓风机及液硫封设计缺陷的改造,取得了很好运行效果.

  11. Biological sulfuric acid transformation: Reactor design and process optimization.

    Science.gov (United States)

    Stucki, G; Hanselmann, K W; Hürzeler, R A

    1993-02-01

    As an alternative to the current disposal technologies for waste sulfuric acid, a new combination of recycling processes was developed. The strong acid (H(2)SO(4)) is biologically converted with the weak acid (CH(3)COOH) into two volatile weak acids (H(2)S, H(2)CO(3)) by sulfate-reducing bacteria. The transformation is possible without prior neutralization of the sulfuric acid. The microbially mediated transformation can be followed by physiochemical processes for the further conversion of the H(2)S.The reduction of sulfate to H(2)S is carried out under carbon-limited conditions at pH 7.5 to 8.5. A fixed-bed biofilm column reactor is used in conjunction with a separate gas-stripping column which was installed in the recycle stream. Sulfate, total sulfide, and the carbon substrate (in most cases acetate) were determined quantitatively. H(2)S and CO(2) are continually removed by stripping with N(2). Optimal removal is achieved under pH conditions which are adjusted to values below the pK(a)-values of the acids. The H(2)S concentration in the stripped gas was 2% to 8% (v/v) if H(2)SO(4) and CH(3)COOH are fed to the recycle stream just before the stripping column.Microbiol conversion rates of 65 g of sulfate reduced per liter of bioreactor volume per day are achieved and bacterial conversion efficiencies for sulfate of more than 95% can be maintained if the concentration of undissociated H(2)S is kept below 40 to 50 mg/L. Porous glass spheres, lava beads, and polyurethane pellets are useful matrices for the attachment of the bacterial biomass. Theoretical aspects and the dependence of the overall conversion performance on selected process parameters are illustrated in the Appendix to this article. PMID:18609554

  12. Processing of spent nickelcatalyst for fat recovery

    Directory of Open Access Journals (Sweden)

    NASIR Mohammad Ibraim

    2001-01-01

    Full Text Available Spent nickel catalyst (SNC has the potential of insulting the quality of the environment in a number of ways. Its disposal has a pollution effect. Optimum recovery of fat from SNC, could save the environment and reduce the oil loss. Hexane has been the solvent of choice for oil extraction. Alternative solvents considered to have been safer have been evaluated. Hexane, isopropanol, ethanol and heptane were examined using soxhlet extraction. While hexane is more efficient in oil recovery from SNC, isopropanol proved to be very good in clear separation of oil from waste material and also provides high solvent recovery compared to other solvents. Isopropanol extraction with chill separation of miscella into lower oil-rich phase, and an upper, solvent-rich recyclable phase save mush energy of vaporization for distilling. An aqueous extraction process with immiscible solvent assisted was tested. Solvent like hexane added to SNC, and water added later with continuous stirring. The mixture was stirred for about 30 minutes, prior to centrifugation. Aqueous process extracted less amount of oil compared to solvent extraction.

  13. Sulfur plant start-up

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Hank; Grigson, Susan [Ortloff Engineers Ltd. (United States)

    2002-02-01

    The authors discuss an Ortloff sulfur plant design concept using the Claus reaction that differs from accepted 'industry practice': cold reactor bed start-up. The process is designed to eliminate catalyst sulfation, heat damage and furnace overheating in sulfur recovery units. (UK)

  14. Abnormal development of Dentalium due to the Amoco Cadiz oil spill

    NARCIS (Netherlands)

    Koster, A.SJ.; Biggelaar, J.A.M. van den

    1980-01-01

    A comparison was made between the development of Dentalium eggs, spawned by animals, collected before and after the Amoco Cadiz oil spill. Development of eggs from animals collected before the oil spill was significantly better than development of eggs from animals collected after the oil spill. It

  15. Pyrolysis processing for solid waste resource recovery

    Science.gov (United States)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  16. Thermal processes for heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A.K.; Sarathi, P.S.

    1993-11-01

    This status report summarizes the project BE11B (Thermal Processes for Heavy Oil Recovery) research activities conducted in FY93 and completes milestone 7 of this project. A major portion of project research during FY93 was concentrated on modeling and reservoir studies to determine the applicability of steam injection oil recovery techniques in Texas Gulf Coast heavy oil reservoirs. In addition, an in-depth evaluation of a steamflood predictive model developed by Mobil Exploration and Production Co. (Mobil E&P) was performed. Details of these two studies are presented. A topical report (NIPER-675) assessing the NIPER Thermal EOR Research Program over the past 10 years was also written during this fiscal year and delivered to DOE. Results of the Gulf Coast heavy oil reservoir simulation studies indicated that though these reservoirs can be successfully steamflooded and could recover more than 50% of oil-in-place, steamflooding may not be economical at current heavy oil prices. Assessment of Mobil E&P`s steamflood predictive model capabilities indicate that the model in its present form gives reasonably good predictions of California steam projects, but fails to predict adequately the performance of non-California steam projects.

  17. A novel process for low-sulfur biodiesel production from scum waste.

    Science.gov (United States)

    Ma, Huan; Addy, Min M; Anderson, Erik; Liu, Weiwei; Liu, Yuhuan; Nie, Yong; Chen, Paul; Cheng, Beijiu; Lei, Hanwu; Ruan, Roger

    2016-08-01

    Scum is an oil-rich waste from the wastewater treatment plants with a high-sulfur level. In this work, a novel process was developed to convert scum to high quality and low sulfur content biodiesel. A combination of solvent extraction and acid washing as pretreatment was developed to lower the sulfur content in the scum feedstock and hence improve biodiesel conversion yield and quality. Glycerin esterification was then employed to convert free fatty acids to glycerides. Moreover, a new distillation process integrating the traditional reflux distillation and adsorptive desulfurization was developed to further remove sulfur from the crude biodiesel. As a result, 70% of the filtered and dried scum was converted to biodiesel with sulfur content lower than 15ppm. The fatty acid methyl ester profiles showed that the refined biodiesel from the new process exhibited a higher quality and better properties than that from traditional process reported in previous studies.

  18. A novel process for low-sulfur biodiesel production from scum waste.

    Science.gov (United States)

    Ma, Huan; Addy, Min M; Anderson, Erik; Liu, Weiwei; Liu, Yuhuan; Nie, Yong; Chen, Paul; Cheng, Beijiu; Lei, Hanwu; Ruan, Roger

    2016-08-01

    Scum is an oil-rich waste from the wastewater treatment plants with a high-sulfur level. In this work, a novel process was developed to convert scum to high quality and low sulfur content biodiesel. A combination of solvent extraction and acid washing as pretreatment was developed to lower the sulfur content in the scum feedstock and hence improve biodiesel conversion yield and quality. Glycerin esterification was then employed to convert free fatty acids to glycerides. Moreover, a new distillation process integrating the traditional reflux distillation and adsorptive desulfurization was developed to further remove sulfur from the crude biodiesel. As a result, 70% of the filtered and dried scum was converted to biodiesel with sulfur content lower than 15ppm. The fatty acid methyl ester profiles showed that the refined biodiesel from the new process exhibited a higher quality and better properties than that from traditional process reported in previous studies. PMID:27241535

  19. Uranium recovery from wet process phosphoric acid

    International Nuclear Information System (INIS)

    Improvement in the process for recovering uranium from wetprocess phosphoric acid solution derived from the acidulation of uraniferous phosphate ores by the use of two ion exchange liquidliquid solvent extraction circuits in which in the first circuit (A) the uranium is reduced to the uranous form; (B) the uranous uranium is recovered by liquid-liquid solvent extraction using a mixture of mono- and di-(Alkyl-phenyl) esters of orthophosphoric acid as the ion exchange agent; and (C) the uranium oxidatively stripped from the agent with phosphoric acid containing an oxidizing agent to convert uranous to uranyl ions, and in the second circuit (D) recovering the uranyl uranium from the strip solution by liquid-liquid solvent extraction using di(2ethylhexyl)phosphoric acid in the presence of trioctylphosphine oxide as a synergist; (E) scrubbing the uranium loaded agent with water; (F) stripping the loaded agent with ammonium carbonate, and (G) calcining the formed ammonium uranyl carbonate to uranium oxide, the improvement comprising: (1) removing the organics from the raffinate of step (B) before recycling the raffinate to the wet-process plant, and returning the recovered organics to the circuit to substantially maintain the required balance between the mono and disubstituted esters; (2) using hydogren peroxide as the oxidizing agent in step (C); (3) using an alkali metal carbonate as the stripping agent in step (F) following by acidification of the strip solution with sulfuric acid; (4) using some of the acidified strip solution as the scrubbing agent in step (E) to remove phosphorus and other impurities; and (5) regenerating the alkali metal loaded agent from step (F) before recycling it to the second circuit

  20. A Survey of Novel Processes to Produce Ultra Low Sulfur Gasoline

    Institute of Scientific and Technical Information of China (English)

    Xu Yun; Long Jun; Shao Xinjun

    2003-01-01

    The restriction on sulfur level in gasoline has been increasingly tightened. The U.S.Tier Ⅱ regulation requires a reduction from average 340ppm to 30ppm from 2004 to 2008. Recently significant progress has been made in effective high sulfur removal, such as post treatment of FCC gasoline by selective hydrotreating, S Zorb sulfur removal technology, OATS process etc. The sulfur content of FCC gasoline can be deceased to less than 10ppm. With regard to gasoline pool composition in China, it is very important to look for effective desulfurization processes that are simple, straightforward, with less hydrogen consumption. Post-treatment of FCC gasoline is a preferred option. From the point of view of comprehensive utilization, alkylation, polymerization, isomerisation etc. can be added to desulfurization process to meet the requirement of ultra low sulfur, premium.

  1. SUMMARY REPORT: SULFUR OXIDES CONTROL TECHNOLOGY SERIES: FLUE GAS DESULFURIZATION - SPRAY DRYER PROCESS

    Science.gov (United States)

    Described spray dryer flue gas desulfurization (FGD), which is a throwaway process in which sulfur dioxide (SO2) is removed from flue gas by an atomized lime slurry [Ca(OH)2]. he hot flue gas dries the droplets to form a dry waste product, while the absorbent reacts with sulfur d...

  2. Development and Implementation of a Novel Sulfur Removal Process from H2S Containing Wastewaters.

    Science.gov (United States)

    Daigger, Glen T; Hodgkinson, Andrew; Aquilina, Simon; Fries, M Kim

    2015-07-01

    A novel process for removing sulfur from wastewater containing dissolved sulfide has been developed and implemented in a membrane bioreactor (MBR) process treating anaerobically pretreated industrial (pulp and paper) wastewater at the Gippsland Water Factory. Controlled oxygen addition to the first bioreactor zone (constituting 27.7% of the total bioreactor volume) to create oxygen-limiting conditions, followed by oxygen-sufficient conditions in the remaining zones of the bioreactor, provide the necessary conditions. Dissolved sulfide is oxidized to elemental sulfur in the first zone, and the accumulated sulfur is retained in the bioreactor mixed liquor suspended solids (MLSS) in the remaining zones. Accumulated sulfur is removed from the process in the waste activated sludge (WAS). Oxidation of dissolved sulfide to elemental sulfur reduces the associated process oxygen requirement by 75% compared to oxidation to sulfate. Microscopic examinations confirm that biological accumulation of elemental sulfur occurs. Process performance was analyzed during a nearly 2-year commissioning and optimization period. Addition of air in proportion to the process influent dissolved sulfide loading proved the most effective process control approach, followed by the maintenance of dissolved oxygen concentrations of 1.0 and 1.5 mg/L in the two downstream bioreactor zones. Sufficient oxygen is added for the stoichiometric conversion of dissolved sulfide to elemental sulfur. Enhanced biological phosphorus removal also occurred under these conditions, thereby simplifying supplemental phosphorus addition. These operating conditions also appear to lead to low and stable capillary suction time values for the MBR mixed liquor. PMID:26163497

  3. Sulfur retention by ash during coal combustion. Part II. A model of the process

    Directory of Open Access Journals (Sweden)

    BRANIMIR JOVANCICEVIC

    2003-03-01

    Full Text Available An overall model for sulfur self-retention in ash during coal particle combustion is developed in this paper. It is assumed that sulfur retention during char combustion occurs due to the reaction between SO2 and CaO in the form of uniformly distributed non-porous grains. Parametric analysis shows that the process of sulfur self-retention is limited by solid difussion through the non-porous product layer formed on the CaO grains and that the most important coal characteristics which influence sulfur self-retention are coal rank, content of sulfur forms, molar Ca/S ratio and particle radius. A comparison with the experimentally obtained values in a FB reactor showed that the model can adequately predict the kinetics of the process, the levels of the obtained values of the SSR efficiencies, as well as the influence of temperature and coal particle size.

  4. Progress and Application for Off-gas treatment Technology of SCOT Sulfur Recovery%SCOT硫回收尾气处理技术进展及应用

    Institute of Scientific and Technical Information of China (English)

    汪家铭; 林鸿伟

    2012-01-01

    SCOT ( Shell Claus Off-gas Treatment) sulfur recovery off-gas treatment technology was an off-gas purification process by which the number of the constructed plants having been built presently in the world was the maximal. Author has introduced the basic principle and process flow of the SCOT technology: has compared the technical characteristic of the low temperature SCOT, super-class SCOT, low sulfur SCOT with the conventional SCOT; has briefly described the technical progress of the SCOT process; has looked ahead its application prospect in China.%SCOT(Sell claus Off-gas Treating)硫回收尾气处理技术是目前世界上装置建设数量最多的尾气净化工艺。介绍了SCOT技术的基本原理和工艺流程;对比了低温SCOT、超级SCOT、低硫SCOT与常规SCOT的技术特点;简述了SCOT工艺的技术进展;展望了其在国内的应用前景。

  5. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12

    PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

  6. Bio-reduction of elemental sulfur to increase the gold recovery from enargite

    NARCIS (Netherlands)

    Hol, A.; Weijden, van der R.D.; Weert, van G.; Kondos, P.; Buisman, C.J.N.

    2012-01-01

    The mineral enargite can be of interest to the mining industry as a copper and precious metal source. The mineral has a refractory character towards oxidation, which is attributed to the formation of elemental sulfur that seals off the mineral surface. In this study it was investigated whether eleme

  7. Processing of spent nickelcatalyst for fat recovery

    OpenAIRE

    NASIR Mohammad Ibraim

    2001-01-01

    Spent nickel catalyst (SNC) has the potential of insulting the quality of the environment in a number of ways. Its disposal has a pollution effect. Optimum recovery of fat from SNC, could save the environment and reduce the oil loss. Hexane has been the solvent of choice for oil extraction. Alternative solvents considered to have been safer have been evaluated. Hexane, isopropanol, ethanol and heptane were examined using soxhlet extraction. While hexane is more efficient in oil recovery from ...

  8. Modified dry limestone process for control of sulfur dioxide emissions

    Science.gov (United States)

    Shale, Correll C.; Cross, William G.

    1976-08-24

    A method and apparatus for removing sulfur oxides from flue gas comprise cooling and conditioning the hot flue gas to increase the degree of water vapor saturation prior to passage through a bed of substantially dry carbonate chips or lumps, e.g., crushed limestone. The reaction products form as a thick layer of sulfites and sulfates on the surface of the chips which is easily removed by agitation to restore the reactive surface of the chips.

  9. SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe; Richard McMillan

    2002-07-03

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley Authority, and Dravo Lime, Inc. Sulfuric acid controls are becoming of increasing interest to power generators with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NO{sub x} control on many coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project previously tested the effectiveness of furnace injection of four different calcium-and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents were tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide byproduct slurry produced from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization system. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for

  10. Sulfur technology update: selected research topics from the ASRL core research program

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P. D.; Dowling, N. I.; Marriott, R.A.; Primak, A.; Davis, P.M. [Alberta Sulphur Research Ltd (Canada)

    2011-07-01

    This conference presentation is a combined effort by Alberta Sulfur Research, Ltd (ASRL) and the University of Calgary; it focuses on sulfur production technology and the ongoing research behind it. This presentation deals mainly with the use of sulfur in the oil sand industry, sulfur recovery in Claus systems, and sulfur management issues. Sulfur formation, mainly in the form of hydrogen sulfide, and the use of liquid sulfur in bitumen coking in the petrochemical industries were discussed first. This was later followed by an illustration of how sulfur recovery efficiency is greatly enhanced by catalytic tail gas incineration and improved liquid sulfur degassing technologies. A comparative scheme between the current process and the new research in utilizing sulfur in nickel metal production was also presented, showing how the new research results in less waste. In conclusion, the effects of polymeric sulfur on the strength of the solid were discussed, showing a linear relationship between the two parameters.

  11. Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Steudel, R. [Technische Univ. Berlin (Germany). Inst. fuer Anorganische und Analytische Chemie

    1996-04-01

    A detailed reaction mechanism is proposed for the formation of crystalline elemental sulfur from aqueous sulfide by oxidation with transition-metal ions like V{sup 5}, Fe{sup 3}, Cu{sup 2}, etc. The first step is the formation of HS{center_dot} radicals by one-electron oxidation of HS{sup {minus}} ions. These radicals exist at pH values near 7 mainly as S{center_dot}{sup {minus}}. Their spontaneous decay results in the formation of the disulfide ion S{sub 2}{sup 2{minus}}. The further oxidation of disulfide either by S{center_dot}{sup {minus}} radicals or by the transition-metal ions yields higher polysulfide ions from which the homocyclic sulfur molecules S{sub 6}, S{sub 7}, and S{sub 8} are formed. In water these hydrophobic molecules form clusters which grow to droplets of liquid sulfur (sulfur sol). Depending on the composition of the aqueous phase, crystallization of the liquid sulfur as either {alpha}- or {beta}-S{sub 8} is rapid or delayed. Surfactants delay this solidification, while certain cations promote it. All these reactions are proposed to take place in desulfurization plants working by the Stretford, Sulfolin, Lo-Cat, SulFerox, or Bio-SR processes. In addition, the sulfur produced from sulfide by oxidizing sulfur bacteria is formed by the same mechanism, which now explains many observations made previously (including the formation of the byproducts thiosulfate, polythionates, and sulfate).

  12. APPLICATION OF ORGANIC SULFUR COMPOUNDS FOR PETROLEUM REFINING PROCESSES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of sulfur compound PTMP and metal naphthenates on the conversion of the atmospheric residue to light oil and on the coke formation were investigated by carrying out thermal decomposition in a tubular type reactor. When 100 μg/g of PTMP was added to residue, gas oil yield increased, but the effect was not significant. However, the coke deposition in the reactor was reduced by the addition of PTMP. When 100 μg/g of ferric naphthenate was added, the significant effect was observed on the gas oil increase. However, the coke deposition was enhanced with the increase of gas oil yield by the addition of ferric naphthenate. Both of the increase in gas oil yield and the reduction of coke formation were observed when PTMP (1000 μg/g) and ferric naphthenate (100 μg/g) were simultaneously used. By the addition of the organic sulfur compound, the formation of the coke produced by the recombination of hydrocarbon redicals yielded by thermal decomposition was suppressed. The advantage of this method is that the construction of new equipment is not required and it enables the increase in the light oil fraction of residual oil by using the existing units.

  13. Toluene destruction in the Claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab

    2014-10-22

    The presence of aromatics such as benzene, toluene, and xylene (BTX) as contaminants in the H2S gas stream entering Claus sulfur recovery units has a detrimental effect on catalytic reactors, where BTX forms soot particles and clogs and deactivates the catalysts. BTX oxidation, before they enter catalyst beds, can solve this problem. A theoretical investigation is presented on toluene oxidation by SO2. Density functional theory is used to study toluene radical (benzyl, o-methylphenyl, m-methylphenyl, and p-methylphenyl)-SO2 interactions. The mechanism begins with SO2 addition on the radical through one of the O atoms rather than the S atom. This exothermic reaction involves energy barriers of 4.8-6.1 kJ/mol for different toluene radicals. Thereafter, O-S bond scission takes place to release SO. The reaction rate constants are evaluated to facilitate process simulations. Among four toluene radicals, the resonantly stabilized benzyl radical exhibited lowest SO2 addition rate. A remarkable similarity between toluene oxidation by O2 and by SO2 is observed.

  14. Effects of sulfurous acid on anodic process of gold electrode in thiourea solution

    Institute of Scientific and Technical Information of China (English)

    龙怀中; 舒万艮

    2003-01-01

    The electrochemistry behaviors of gold electrode in thiourea solution were studied by using electrochemical techniques, such as potentiodynamic, voltammogram and current step. A catalytical electrochemical-reduction mechanism was proposed to identify the anodic oxidation of gold in the thiourea solution. The results indicate that the decomposition of thiourea occurs when the electrode potential is higher than 640 mV. The addition of sulfurous acid presents a very positive effect on the anodic process of gold electrode. The anodic oxidation rate of gold is 5 times faster than that without sulfurous acid. The passivity of gold electrode is attributed to the accumulation of elemental sulfur on the surface of gold. The sulfurous acid reacts with the oxidation product ((SC(NH)NH2 )2 ) of thiourea, which can decrease the decomposition of thiourea and improves its stability.

  15. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  16. Rubber recovery from centrifuged natural rubber latex residue using sulfuric acid

    Directory of Open Access Journals (Sweden)

    Wirach Taweepreda

    2013-04-01

    Full Text Available Waste latex sludge from centrifuged residue, which is a null by-product of concentrated latex manufacturing, wasdigested to retrieve the rubber by using sulfuric acid. It was found that the acid concentration and digestion time have aneffect on the amount and purity of the retrieved rubber. Sulfuric acid at concentrations of more than 10% by weight with adigestion time of 48 hours completely digested waste latex sludge and gave rubber 10% by weight. The quality of the retrievedrubber was examined for Mooney viscosity (MV, plasticity retention index, nitrogen content, and ash content. The averagemolecular weight of the retrieved rubber, using gel permeation chromatography, was lower than that of normal natural rubber(NR which corresponds with the MV and initial plasticity (Po. The molecular structure from Fourier transform infraredspectroscopy (FT-IR indicated that the retrieved rubber surface is wet composed with hydroxyl functional ended group.The residue solution was evaporated and crystallized. The structure of crystals was determined using power X-ray diffractometer.

  17. From street to home : Community work in recovery process

    OpenAIRE

    Dodoo Nyamekyeh, Henry

    2011-01-01

    ABSTRACT: Henry Dodoo Nyamekyeh. From street to home (Community work in recovery process) Järvenpää, Autumn 2010, P. 53, 2 appendices. Language: English, Autumn 2010. Diaconia University of Applied Sciences, Diak-south, Järvenpää Unit, Degree Program in Social Services (DSS). Recovery is often defined as returning to a stable baseline or level of functioning. However many people, have experienced recovery as a transformative process in which the ―old self‖ is gradually let go off and ―new...

  18. Complex processing of rubber waste through energy recovery

    OpenAIRE

    2015-01-01

    This article deals with the applied energy recovery solutions for complex processing of rubber waste for energy recovery. It deals specifically with the solution that could maximize possible use of all rubber waste and does not create no additional waste that disposal would be expensive and dangerous for the environment. The project is economically viable and energy self-sufficient. The outputs of the process could replace natural gas and crude oil products. The other part of the pro...

  19. PROGRESS IN CATALYST AND PROCESS DEVELOPMENT FOR LOW SULFUR AND LOW AROMATICS DIESEL PRODUCTION

    Institute of Scientific and Technical Information of China (English)

    ZHOUYong; HANChong-ren

    2003-01-01

    The article includes three parts:①The development and performance of FH-DS catalyst for deep and ultra -deep distillate HDS;②The single stage HDS/HDA hydrotreating process for the production of low sulfur and low aromatics diesels from straight run and coker AGO by using highly active base metal catalyst at moderate pressure;③A two-stage aromatics saturation system utilizing noble metal catalyst in the second stage developed for production of low sulfur and low aromatics diesel from LCO.FDA catalyst developed by FRIPP has high activity for aromatics saturation together with high tolerance for sulfur and nitrogen in the feed.The process is effective in reducing density and increasing cetane number.

  20. Digital-image Based Numerical Simulation on Failure Process of High-sulfur Coal

    Directory of Open Access Journals (Sweden)

    Ye Junjian

    2013-01-01

    Full Text Available Crushing of high-sulfur coal was important for physical desulfurization, but there were little research on crushing mechanism. This paper combined digital image processing technology and rock failure process analysis system RFPA2D to simulate the failure process of high-sulfur coal in Pu'an of Guizhou under uniaxial compression, and discussed the influence of horizontal restraint, existence and different geometric distribution of pyrite particle on mechanical performance and failure process of high-sulfur coal. The numerical results indicated that without horizontal restraint the compressive strength of high-sulfur coal was lower and monomial dissociation of pyrite particle was more sufficient than that with horizontal restraint. The compressive strength of coal containing pyrite particle was larger than that of pure coal and there was stress concentration in upper and lower pyrite particle during failure process. When pyrite particle distributed in the middle position of a coal sample, the compressive strength was higher than that of the other three positions, but monomial dissociation of pyrite particle was more sufficient than that of the other three positions, and this was beneficial to the following desulfurization operation. The study had certain reference value for crushing mechanism, crushing process design, selection of breaking equipment and energy saving and consumption reduction.

  1. Recovery of plutonium by pyroredox processing

    International Nuclear Information System (INIS)

    Using pyrochemical oxidation and reduction, we have developed a process to recover the plutonium in impure scrap with less than 95% plutonium. This plutonium metal was further purified by pyrochemical electrorefining. During development of the procedures, depleted electrorefining anodes were processed, and over 80% of the plutonium was recovered as high-purity metal in one electrorefining cycle. Over 40 kg of plutonium has been recovered from 55 kg of impure anodes with our procedures. 6 refs., 7 figs., 4 tabs

  2. Associated rhenium recovery in molybdenite concentrates processing

    International Nuclear Information System (INIS)

    Salf of quaternary ammonium bases and different amines are used for rhenium extraction from solutions of wet dust and gas collection (WDC). Sorption processes of extraction and separation of rhenium and molybdenum are widely used when processing WDC solutions. Good results of technology of rhenium extraction were achieved due to directed synthesis of new low-base ionites, able to sorb rhenium selectively from molybdenum-containing solutions

  3. Stability of Spreading Processes with General Transmission and Recovery Times

    CERN Document Server

    Ogura, Masaki

    2016-01-01

    Although viral spreading processes taking place in networks are commonly analyzed using Markovian models in which both the transmission times and the recovery times follow exponential distributions, empirical studies show that, in most real scenarios, the distribution of these times are far from exponential. To overcome this limitation, we first introduce a generalized spreading model that allows for transmission and recovery times to follow arbitrary distributions within an arbitrary accuracy. In this context, we derive conditions for the generalized spreading process to converge towards the disease-free equilibrium (in other words, to eradicate the viral spread) without relying on mean-field approximations. Based on our results, we illustrate how the particular shape of the transmission/recovery distribution heavily influences the boundary of the stability region of the spread, as well as the decay rate inside this region. Therefore, modeling non-exponential transmission/recovery times observed in realistic...

  4. Laboratory simulated slipstream testing of novel sulfur removal processes for gasification application

    International Nuclear Information System (INIS)

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is investigating an Early Entrance Coproduction Plant (EECP) concept to evaluate integrated electrical power generation and methanol production from coal and other carbonaceous feedstocks. Research, development and testing (RD and T) that is currently being conducted under the project is evaluating cost effective process systems for removing contaminants, particularly sulfur species, from the generated gas which contains mainly synthesis gas (syngas), CO2 and steam at concentrations acceptable for the methanol synthesis catalyst. The RD and T includes laboratory testing followed by bench-scale and field testing at the SG Solutions Gasification Plant located in West Terre Haute, Indiana. Actual synthesis gas produced by the plant was utilized at system pressure and temperature for bench-scale field testing. ConocoPhillips Company (COP) developed a sulfur removal technology based on a novel, regenerable sorbent - S Zorb trademark - to remove sulfur contaminants from gasoline at high temperatures. The sorbent was evaluated for its sulfur removal performance from the generated syngas especially in the presence of other components such as water and CO2 which often cause sorbent performance to decline over time. This publication also evaluates the performance of a regenerable activated carbon system developed by Nucon International, Inc. in polishing industrial gas stream by removing sulfur species to parts-per-billion (ppb) levels. (author)

  5. Pyrometallurgical processes for recovery of actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  6. Pyrometallurgical processes for recovery of actinide elements

    International Nuclear Information System (INIS)

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository

  7. Equipment and obtention process of phosphorus-32 starting from sulfur-32

    International Nuclear Information System (INIS)

    In the National Institute of Nuclear Research, it is the Radioisotopes Production plant, which covers in the area of the medicine 70% approximately of the national market and it exports to some countries of Latin America (Technetium-99, iodine-131, Sm-153 among other). At the moment the plant has modern facilities and certified with the ISO-9001-2000 standard, this, gives trust to the clients as for the quality of its products. Besides the production of radioisotopes dedicated for the medical area, the work of the plant tends to be more enlarged every time, producing new radioisotopes not only but with medical purposes but also industrial and agricultural ones, such it is the case of the production of Phosphorus-32 (32P) that has applications with medical, industrial and in the agriculture purposes. The investigation studies from the prime matter (sulfur-32), sulfur purification, sulfur irradiation in the nuclear reactor and the obtaining process of 32P in a prototype, its took us to design and to build the obtaining process from 32P to more high level, which is presented in this work. To be able to select the obtaining method of 32 P that is presented it was necessary to study the methods that have been developed in the world, later on it was selected the way that is presented. In that way the physical and chemical properties of the sulfur were studied which is used as prime matter, the interest nuclear reaction was also studied to carry out the production of 32P by means of the realization of mathematical calculations of irradiation of the sulfur in TRIGA Mark lll nuclear reactor. Once the sulfur is irradiated, it is necessary to carry out the radiochemical separation of the 32P produced from the sulfur, for this, it was necessary to carry out experimental tests of this separation, later on it was developed a prototype where it was carried out this separation and finally it was developed the final equipment of production of 32P mainly composed of three systems

  8. Using Mars's Sulfur Cycle to Constrain the Duration and Timing of Fluvial Processes

    Science.gov (United States)

    Blaney, D. L.

    2002-01-01

    Sulfur exists in high abundances at diverse locations on Mars. This work uses knowledge of the Martian sulfate system to discriminate between leading hypotheses and discusses the implications for duration and timing of fluvial processes. Additional information is contained in the original extended abstract.

  9. Business Process Based Database Recovery and Experimental Results

    Directory of Open Access Journals (Sweden)

    Pinaki Mitra

    2011-12-01

    Full Text Available In this research paper we have explained and presented the results of a novel database recovery method. Taking into account that most data servers today are becoming increasingly autonomic and business process oriented, there is a need to develop a new model where it is possible to do a database recovery based on the occurrence of a business process rather than non intuitive data like time, log file name/location or system change number. The advantage of this recovery model is that the user will no longer be required to remember non intuitive data like timestamp up to which the data has to be restored, log file name/location or system change number. Moreover the database server has built in intelligence to identify transaction behaviour, study the pattern among these batches and then storing recovery information specific to these business process to be used later for recovery. Another advantage is that the down time needed for restoring the database is reduced drastically since the trial and error approach followed by conventional data servers in the absence of accurate recovery information is eliminated. We have also simulated the Idea using JAVA API’s and Apache Derby and presented the experimental results for reference..

  10. Cultural points of resistance to the 12-Step recovery process.

    Science.gov (United States)

    Smith, D E; Buxton, M E; Bilal, R; Seymour, R B

    1993-01-01

    This article addresses some of the key issues in developing culturally relevant approaches to drug abuse treatment and recovery, using the HAFC/Glide African-American Extended Family Program as a positive example of effective cultural adaptability within recovery. Cultural points of resistance to the recovery process are also addressed, including the perception that 12-Step fellowships are exclusive and confused with religion, confusion over surrender versus powerlessness, and concerns about low self-esteem, dysfunctional family structure, communication difficulties, and institutionalized and internalized racism. The authors also focus on professional resistance in other countries, where different treatment approaches and philosophies block the acceptance of a recovery concept in general and the 12-Step process in particular. In explicating these issues, addiction is presented as a multicultural problem in need of multicultural solutions. The challenge is to adapt the process of recovery to all cultures and races, to counter stereotypes on all sides, and to eliminate the perception that recovery only works for addicts from the White mainstream. PMID:8483054

  11. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates

    Directory of Open Access Journals (Sweden)

    Rawlings Douglas E

    2005-05-01

    Full Text Available Abstract Microorganisms are used in large-scale heap or tank aeration processes for the commercial extraction of a variety of metals from their ores or concentrates. These include copper, cobalt, gold and, in the past, uranium. The metal solubilization processes are considered to be largely chemical with the microorganisms providing the chemicals and the space (exopolysaccharide layer where the mineral dissolution reactions occur. Temperatures at which these processes are carried out can vary from ambient to 80°C and the types of organisms present depends to a large extent on the process temperature used. Irrespective of the operation temperature, biomining microbes have several characteristics in common. One shared characteristic is their ability to produce the ferric iron and sulfuric acid required to degrade the mineral and facilitate metal recovery. Other characteristics are their ability to grow autotrophically, their acid-tolerance and their inherent metal resistance or ability to acquire metal resistance. Although the microorganisms that drive the process have the above properties in common, biomining microbes usually occur in consortia in which cross-feeding may occur such that a combination of microbes including some with heterotrophic tendencies may contribute to the efficiency of the process. The remarkable adaptability of these organisms is assisted by several of the processes being continuous-flow systems that enable the continual selection of microorganisms that are more efficient at mineral degradation. Adaptability is also assisted by the processes being open and non-sterile thereby permitting new organisms to enter. This openness allows for the possibility of new genes that improve cell fitness to be selected from the horizontal gene pool. Characteristics that biomining microorganisms have in common and examples of their remarkable adaptability are described.

  12. Conceptual process synthesis for recovery of natural products from plants

    DEFF Research Database (Denmark)

    Malwade, Chandrakant R.; Qu, Haiyan; Rong, Ben-Guang;

    2013-01-01

    A systematic method of conceptual process synthesis for recovery of natural products from their biological sources is presented. This methodology divides the task into two major subtasks namely, isolation of target compound from a chemically complex solid matrix of biological source (crude extract......) and purification of target compound(s) from the crude extract. Process analytical technology (PAT) is used in each step to understand the nature of material systems and separation characteristics of each separation method. In the present work, this methodology is applied to generate process flow sheet for recovery...

  13. Diffusion kinetics of metal recovery biosorption processes

    International Nuclear Information System (INIS)

    The uptake of heavy metals and radionuclides by alginate beads was studied to determine kinetic and mass transport parameters of this biosorption process. The kinetics of cadmium and uranyl ion uptake by calcium alginate were assessed using a mathematical expression derived for evaluation of hyperbolic type biosorption isotherms. Removal efficiencies were evaluated under varying solution conditions of initial solute concentration, pH, temperature and the presence of selected cations. The maximum rate of sorption was found to be 241.7 and 978.8 mg/L/min for uranium and cadmium, respectively. Based upon Fick's Second Law, a quantitative description of the mass transfer mechanism for these biosorption processes was developed, and diffusion coefficients determined for the sorption of UO2+2 and Cd2+ by calcium alginate gel beads

  14. Measurements of plutonium residues from recovery processes

    International Nuclear Information System (INIS)

    Conventional methods of nondestructive assay (NDA) have accurately assayed the plutonium content of many forms of relatively pure and homogeneous bulk items. However, physical and chemical heterogeneities and the high and variable impurity levels of many categories of processing scrap bias the conventional NDA results. The materials also present a significant challenge to the assignment of reference values to process materials for purposes of evaluating the NDA methods. A recent study using impure, heterogeneous, pyrochemical residues from americium molten salt extraction (MSE) has been aimed at evaluating NDA assay methods based on conventional gamma-ray and neutron measurement techniques and enhanced with analyses designed to address the problems of heterogeneities and impurities. The study included a significant effort to obtain reference values for the MSE spent salts used in the study. Two of the improved NDA techniques, suitable for in-line assay of plutonium in bulk, show promise for timely in-process assays for one of the most difficult pyrochemical residues generated as well as for other impure heterogeneous scrap categories. 12 refs., 4 figs., 5 tabs

  15. A chemical cleaning process with Cerium (IV)-sulfuric acid

    International Nuclear Information System (INIS)

    A chemical cleaning process with a high decontamination factor (DF) is requested for decommissioning. Usually, the process should be qualified with the features, such as the feasibility of treating large or complicated form waste, the minimization of secondary waste. Therefore, a powerful technique of redox decontamination process with Ce+4/Ce+3 has been studied at INER. First, the redox of cerium ion with electrolytic method was developed. Two kinds of home-made electrolyzer were used. One is with an ion-exchange membrane, and the other one is with a ceramic separator. Second, factors influencing the decontamination efficiency, such as the concentration of Ce+4, regeneration current density, temperature, acidity of solution were all studied experimentally, and the optimum conditions were specified too. Third, the liquid waste recycling and treatment were developed with electrodialysis and ion-exchange absorption methods. Finally, the hot test was proceeded with the contaminated metals from DCR of nuclear facility. (author)

  16. Research on Recovery of Sulfur From Hydroxyl Iron Oxide Desulfurizer%脱硫剂羟基氧化铁中硫磺的回收研究

    Institute of Scientific and Technical Information of China (English)

    吕诗淇; 赖君玲; 罗根祥

    2015-01-01

    以四氯乙烯为溶剂,采用溶剂法从脱硫剂羟基氧化铁中回收硫磺。考察了浸取温度、浸取时间、液-固比和溶剂重复使用等因素对硫磺回收率的影响,并对羟基氧化铁和产物硫磺进行了 XRD 表征。结果表明:在羟基氧化铁20 g、浸取温度为80℃、浸取时间60 min、液-固比8:1的条件下,硫磺的回收率为97.5%;XRD表征结果证实了该产物为硫磺。%Sulfur was recovered from hydroxyl iron oxide desulfurizer containing 25.0% sulfur by solvent method in tetrachloroethylene solvent. The influence of reaction temperature,reaction time,liquid-solid ratio and reusing times of organic solution on sulfur recovery was investigated. The hydroxyl iron oxide desulfurizer and the product were characterized by X-ray diffraction (XRD) technology. The results show that, when the liquid-solid ratio of tetrachloroethylene to desulfurizer hydroxyl iron oxide containing 25.0% sulfur is 8:1, leaching temperature is 80 ℃, leaching time is 60 min, hydroxyl iron oxide is 20 g, the recovery of sulfur can be over 97.5%. The XRD characterization result has proved that recovered product is sulfur.

  17. Experimental research of sulfur mineral recovery from a certain separated zinc tailings%某选锌尾矿回收硫矿物试验研究

    Institute of Scientific and Technical Information of China (English)

    杨俊彦; 叶雪均; 秦华伟

    2013-01-01

    To recycle sulfur mineral from a certain separated zinc tailings,in view of high content of pyrrhotite in tailings,the experiments separately involving magnetic separation after flotation as well as flotation after magnetic separation were conducted.Both two schemes consisted of a roughing,a scavenging,three concentration and sulfuric acid activation.Through the closed-circuit experiment involving magnetic separation after flotation,sulphur concentrate with sulfur grade of 35.08% and sulfur recovery rate of 93.65% was obtained.Through the closed-circuit experiment involving flotation after magnetic separation,sulphur concentrate with sulfur grade of 33.92% and sulfur recovery rate of 92.15% was obtained.The contrast results showed that the scheme involving magnetic separation after flotation was superior.%为回收某尾矿中的硫矿物,针对尾矿中磁黄铁矿含量高的特点,分别进行了先浮后磁流程和先磁后浮流程试验.2个方案均采用一粗一扫三精流程和硫酸活化,通过先浮后磁闭路试验,得到了综合硫精矿硫品位为35.08%,硫回收率为93.65%的试验结果;通过先磁后浮闭路试验,得到了综合硫精矿硫品位为33.92%,硫回收率为92.15%的试验结果.通过试验证明,先浮后磁方案较佳.

  18. Electrochemical Investigation of The Catalytical Processes During Sulfuric Acid Production

    DEFF Research Database (Denmark)

    Bjerrum, Niels; Petrushina, Irina; Berg, Rolf W.

    1995-01-01

    The electrochemical behavior of molten K2S2O7 and its mixtures with V2O5 [2–20 mole percent (m/o) V2O5] was studiedat 440°C in argon, by using cyclic voltammetry on a gold electrode. The effect of the addition of sulfate and lithium ions onthe electrochemical processes in the molten potassium...

  19. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  20. World sulfur production: Petroleum derived as of January 1, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Data are presented on world sulfur production by company within each country. The table lists the source of the sulfur (refinery gases, natural gas, acid gas, sour gas, oil sands, associated gas, or resid asphalt), the type of process used to recovery the sulfur, plant design capacity, and production. Processes include Claus, chlorination, Scot, Sulfinol, Sulfreen, modified Claus, bed absorption, MDEA-LoCat, Selectox, Parsons, SNEA, Comprimo, Uhde, Stretford, and Wellman-Lord.

  1. Modeling of a Large-Scale High Temperature Regenerative Sulfur Removal Process

    DEFF Research Database (Denmark)

    Konttinen, Jukka T.; Johnsson, Jan Erik

    1999-01-01

    -up. Steady-state kinetic reactor models are needed for reactor sizing, and dynamic models can be used for process control design and operator training. The regenerative sulfur removal process to be studied in this paper consists of two side-by-side fluidized bed reactors operating at temperatures of 400......Regenerable mixed metal oxide sorbents are prime candidates for the removal of hydrogen sulfide from hot gasifier gas in the simplified integrated gasification combined cycle (IGCC) process. As part of the regenerative sulfur removal process development, reactor models are needed for scale......-650°C and at elevated pressure. In this paper, hydrodynamic modeling equations for dense fluidized bed and freeboard are applied for the prediction of the performance of a large-scale regeneration reactor. These equations can partly explain the differences in modeling results observed with a simpler...

  2. The GA sulfur-iodine water-splitting process - A status report

    Science.gov (United States)

    Besenbruch, G. E.; Chiger, H. D.; Mccorkle, K. H.; Norman, J. H.; Rode, J. S.; Schuster, J. R.; Trester, P. W.

    1981-01-01

    The development of a sulfur-iodine thermal water splitting cycle is described. The process features a 50% thermal efficiency, plus all liquid and gas handling. Basic chemical investigations comprised the development of multitemperature and multistage sulfuric acid boost reactors, defining the phase behavior of the HI/I2/H2O/H3PO4 mixtures, and development of a decomposition process for hydrogen iodide in the liquid phase. Initial process engineering studies have led to a 47% efficiency, improvements of 2% projected, followed by coupling high-temperature solar concentrators to the splitting processes to reduce power requirements. Conceptual flowsheets developed from bench models are provided; materials investigations have concentrated on candidates which can withstand corrosive mixtures at temperatures up to 400 deg K, with Hastelloy C-276 exhibiting the best properties for containment and heat exchange to I2.

  3. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process for decentralized wastewater treatment.

    Science.gov (United States)

    Krayzelova, Lucie; Lynn, Thomas J; Banihani, Qais; Bartacek, Jan; Jenicek, Pavel; Ergas, Sarina J

    2014-09-15

    Nitrogen discharges from decentralized wastewater treatment (DWT) systems contribute to surface and groundwater contamination. However, the high variability in loading rates, long idle periods and lack of regular maintenance presents a challenge for biological nitrogen removal in DWT. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process was developed that combines nitrate (NO3(-)) adsorption to scrap tire chips with sulfur-oxidizing denitrification. This allows the tire chips to adsorb NO3(-) when the influent loading exceeds the denitrification capacity of the biofilm and release it when NO3(-) loading rates are low (e.g. at night). Three waste products, scrap tire chips, elemental sulfur pellets and crushed oyster shells, were used as a medium in adsorption, leaching, microcosm and up-flow packed bed bioreactor studies of NO3(-) removal from synthetic nitrified DWT wastewater. Adsorption isotherms showed that scrap tire chips have an adsorption capacity of 0.66 g NO3(-)-N kg(-1) of scrap tires. Leaching and microcosm studies showed that scrap tires leach bioavailable organic carbon that can support mixotrophic metabolism, resulting in lower effluent SO4(2-) concentrations than sulfur oxidizing denitrification alone. In column studies, the T-SHAD process achieved high NO3(-)-N removal efficiencies under steady state (90%), variable flow (89%) and variable concentration (94%) conditions.

  4. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process for decentralized wastewater treatment.

    Science.gov (United States)

    Krayzelova, Lucie; Lynn, Thomas J; Banihani, Qais; Bartacek, Jan; Jenicek, Pavel; Ergas, Sarina J

    2014-09-15

    Nitrogen discharges from decentralized wastewater treatment (DWT) systems contribute to surface and groundwater contamination. However, the high variability in loading rates, long idle periods and lack of regular maintenance presents a challenge for biological nitrogen removal in DWT. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process was developed that combines nitrate (NO3(-)) adsorption to scrap tire chips with sulfur-oxidizing denitrification. This allows the tire chips to adsorb NO3(-) when the influent loading exceeds the denitrification capacity of the biofilm and release it when NO3(-) loading rates are low (e.g. at night). Three waste products, scrap tire chips, elemental sulfur pellets and crushed oyster shells, were used as a medium in adsorption, leaching, microcosm and up-flow packed bed bioreactor studies of NO3(-) removal from synthetic nitrified DWT wastewater. Adsorption isotherms showed that scrap tire chips have an adsorption capacity of 0.66 g NO3(-)-N kg(-1) of scrap tires. Leaching and microcosm studies showed that scrap tires leach bioavailable organic carbon that can support mixotrophic metabolism, resulting in lower effluent SO4(2-) concentrations than sulfur oxidizing denitrification alone. In column studies, the T-SHAD process achieved high NO3(-)-N removal efficiencies under steady state (90%), variable flow (89%) and variable concentration (94%) conditions. PMID:24922353

  5. Process modelling and heat management of the solar hybrid sulfur cycle

    OpenAIRE

    Guerra Niehoff, Alejandro; Bayer Botero, Nicolas; Acharya, Anirudh; Thomey, Dennis; Roeb, Martin; Sattler, Christian; Pitz-Paal, Robert

    2015-01-01

    Thermochemical cycles for water splitting are considered as a promising example of emission-free routes for large-scale hydrogen production e with potentially higher efficiencies and lower costs compared to low temperature electrolysis of water. The hybrid esulfur cycle was chosen as one of the most promising cycles from the ‘sulfur family’ of processes. A process model has been established to study the main parameters influencing efficiency with specific attention paid to dynamic effects whe...

  6. Sulfur behaviour on stainless steel melting by single-slag process

    International Nuclear Information System (INIS)

    A consideration is given to desulfurizing process during melting stainless steel type 08-12Kh18N10T according to a single-slag variant of melting technology. Wastes of abrasive metal machining and worn-out equipment from chemical plants are shown to be highly contaminated with sulfur and cannot be remelted by the above-mentioned process. A new variant of two-slag melting technology was successfully tested. 4 refs

  7. Illness Insight and Recovery: How Important is Illness Insight in Peoples’ Recovery Process?

    DEFF Research Database (Denmark)

    Korsbek, Lisa

    2013-01-01

    Topic: This account reflects on the topic of illness insight and recovery. Purpose: The purpose of the account is to clarify our understanding about the importance of illness insight in peoples’ recovery process, especially when relating the question of illness insight to the question of identity....... Sources Used:The writing is based on research literature related to illness insight and on personal recovery experiences.Conclusions and Implications for Practice: It is helpful to consider the integration of the issue of illness insight when addressing the questions and consequences of diagnosis......, and to assist individuals to work through the false analogy between illness and identity while supporting the transformation from patient to person. It is also necessary for clinicians to develop a clear understanding of peoples’ actual needs and gain more knowledge about peoples’ own views and experiences...

  8. SSHT Process-a Low Cost Solution for Low Sulfur and Low Aromatics Diesel

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaodong; Nie Hong; Shi Yulin; Shi Yahua; Li Dadong

    2003-01-01

    The need for cleaner fuels has resulted in a continuing worldwide trend to reduce diesel sulfur and aromatics. There are many approaches to reducing sulfur and aromatics in diesel. Most of them have a common drawback of high cost because of adopting two stages of hydrotreating and using noble-metal catalyst, especially for reducing aromatics. The attempt to resolve this issue has led to the recent development of the Single Stage Hydrotreating (SSHT) process by Research Institute of Petroleum Processing (RIPP), SINOPEC.The SSHT process is a single-stage hydrotreating technology for producing low sulfur and low aromatics diesel. The process uses one or two non-noble-metal catalysts system and operates at moderate pressure. When revamping an existing unit to meet low aromatics diesel specification, the only thing to do is to add a reactor or replace the existing reactor, In pilot plant tests, the SSHT technology has successfully treated SRGO (Straight Run Gas Oil), LCO (Light Cycle Oil) or the blend of them. It is shown that by using the SSHT process diesel with sulfur of 30 ppm and aromatics of 15 m% can be produced from Middle-East SRGO and diesel with aromatics content of 25 m% can be produced from cracked feed, such as FCC-LCO. High diesel yield and cetane number gain (from cracked feed stocks) give the SSHT technology a performance advantage compared to conventional hydrocracking and hydrotreating processes.The lower investment and operating cost is another advantage. The first commercial application of the SSHT technology has been in operation since September 2001.

  9. Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for lithium-sulfur batteries

    Science.gov (United States)

    Gomez, Iñaki; Mecerreyes, David; Blazquez, J. Alberto; Leonet, Olatz; Ben Youcef, Hicham; Li, Chunmei; Gómez-Cámer, Juan Luis; Bundarchuk, Oleksandr; Rodriguez-Martinez, Lide

    2016-10-01

    Lithium-Sulfur (Li-S) battery technology is one of the promising candidates for next generation energy storage systems. Many studies have focused on the cathode materials to improve the cell performance. In this work we present a series of poly (S-DVB) copolymers synthesised by inverse vulcanization of sulfur with divinylbenzene (DVB). The poly (S-DVB) cathode shows excellent cycling performances at C/2 and C/4 current rates, respectively. It was demonstrated poly (S-DVB) copolymer containing 20% DVB did not influence the electrochemical performance of the sulfur material, compared to elemental sulfur as high specific capacities over ∼700 mAh g-1 at 500 cycles were achieved at C/4 current rate, comparable to conventional carbon-based S cathodes. However, the use of copolymer network is assumed to act firstly as sulfur reservoir and secondly as mechanical stabilizer, enhancing significantly the cycling lifetime. The Li-poly (S-DVB) cell demonstrated an extremely low degradation rate of 0.04% per cycle achieving over 1600 cycles at C/2 current rate.

  10. Analysis of Failure of Steam Return Line for Liquid Sulfur Pump in Sulfur Recovery Unit%硫黄回收装置液硫泵蒸汽回流管失效分析

    Institute of Scientific and Technical Information of China (English)

    陈勇

    2012-01-01

    The steam return line for liquid sulfur pump in the sulfur recovery unit fractured many times. The fractures were located in the welded joints, and the cracks originated from weld and promulgated circumferentially to the base metal of elbow. The length of cracking was as long as haft circumference. The fractured elbow of steam retum line was analyzed by macro testing, composition analysis, metallographic analysis and energy dispersion spectrum (EDS). The corrosion mechanisms and testing results were studied based upon process conditions. It is concluded from analysis that the main culprits of fracture of the steam return line are poor welding quality, un - uniform metallographic structure and unsatisfactory heat treatment, which resulted in high residue stress in welds and stress corrosion cracking (SCC) in polythionic acid environment. It is recommended to use new materials, reduce SSC, control welding quality and eliminate welding defects.%摘要:硫黄回收装置液硫输送泵的蒸汽回流管多次发生开裂,开裂位置均为焊接接头部位,裂纹起源于焊缝焊趾,沿环向扩展,最终扩展至弯头母材,开裂长度达半周以上;外弯处焊缝错边量约1mm,内弯处存在整圈1.5mm高的未熔合。文章对液硫输送泵蒸汽回流管的开裂弯头进行了宏观检验、成分分析、金相检验和能谱分析,并结合工艺条件、对腐蚀机理和检测结果进行了失效分析,通过分析得出蒸汽回流管开裂主要是由于焊接质量不高、金相组织不均匀和热处理不好等原因导致焊接结构存在高残余应力,这些残余应力在连多硫酸环境下发生应力腐蚀开裂所至;提出了更换材质减少应力腐蚀开裂和控制焊接成型质量避免焊接缺陷的建议。

  11. Phosphorus recovery from sewage sludge ash through an electrodialytic process

    DEFF Research Database (Denmark)

    Guedes, Paula; Couto, Nazare; Ottosen, Lisbeth M.;

    2014-01-01

    The electrodialytic separation process (ED) was applied to sewage sludge ash (SSA) aiming at phosphorus (P) recovery. As the SSA may have high heavy metals contents, their removal was also assessed. Two SSA were sampled, one immediately after incineration (SA) and the other from an open deposit (SB...

  12. Washing processes for plutonium recovery from solid wastes

    International Nuclear Information System (INIS)

    The recovery of plutonium from primary wastes by means of washing processes has been investigated and demonstrated on a laboratory scale. For both ecological as well as economic reasons it is reasonable to recover plutonium from these wastes. It can be concluded that with the correct coordination of washing procedures with waste composition, the bulk of plutonium can be recovered with very little expenditure

  13. Exergy Analysis of the Process of Thermal Decomposition of Phosphogypsum to Lime and Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Lubka Atanasova

    2002-09-01

    Full Text Available The wet process phosphoric acid is produced by decomposition of phosphate raw materials with sulfuric acid. This gives a large amount of waste product - phosphogypsum. The thermochemical decomposition of phosphogypsum to lime and sulfur dioxide provides possibilities to utilize its main components CaO and S and, at the same time, to solve some ecological problems. The main problem arising with this method is that it needs a large consumption of primary energy carrier - natural gas. The aim of the present work is to study the process with the exergy method and find new effective methods and technological schemes to reduce energy consumption. It is suggested to decompose phosphogypsum using the products from the incomplete combustion of the natural gas with oxygen enriched air and using a preliminarily prepared reducing gas mixture.

  14. ASPEN Plus Simulation of CO2 Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    Charles W. White III

    2003-09-30

    ASPEN Plus simulations have been created for a CO{sub 2} capture process based on adsorption by monoethanolamine (MEA). Three separate simulations were developed, one each for the flue gas scrubbing, recovery, and purification sections of the process. Although intended to work together, each simulation can be used and executed independently. The simulations were designed as template simulations to be added as a component to other more complex simulations. Applications involving simple cycle or hybrid power production processes were targeted. The default block parameters were developed based on a feed stream of raw flue gas of approximately 14 volume percent CO{sub 2} with a 90% recovery of the CO{sub 2} as liquid. This report presents detailed descriptions of the process sections as well as technical documentation for the ASPEN simulations including the design basis, models employed, key assumptions, design parameters, convergence algorithms, and calculated outputs.

  15. Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes

    Directory of Open Access Journals (Sweden)

    Gil S.

    2015-09-01

    Full Text Available Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.

  16. Lunar sulfur

    Science.gov (United States)

    Kuck, David L.

    Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.

  17. On the optimal design of the disassembly and recovery processes

    International Nuclear Information System (INIS)

    This paper tackles the problem of the optimal design of the recovery processes of the end-of-life (EOL) electric and electronic products, with a special focus on the disassembly issues. The objective is to recover as much ecological and economic value as possible, and to reduce the overall produced quantities of waste. In this context, a medium-range tactical problem is defined and a novel two-phased algorithm is presented for a remanufacturing-driven reverse supply chain. In the first phase, we propose a multicriteria/goal-programming analysis for the identification and the optimal selection of the most 'desirable' subassemblies and components to be disassembled for recovery, from a set of different types of EOL products. In the second phase, a multi-product, multi-period mixed-integer linear programming (MILP) model is presented, which addresses the optimization of the recovery processes, while taking into account explicitly the lead times of the disassembly and recovery processes. Moreover, a simulation-based solution approach is proposed for capturing the uncertainties in reverse logistics. The overall approach leads to an easy-to-use methodology that could support effectively middle level management decisions. Finally, the applicability of the developed methodology is illustrated by its application on a specific case study

  18. Efficiency of the sulfur-iodine thermochemical water splitting process for hydrogen production based on ADS

    International Nuclear Information System (INIS)

    The current hydrogel production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur-iodine (S-I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Software based on Chemical Process Simulation (CPS) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model before different values of initial reactant's flow is analyzed. (Author)

  19. Environmental quality and energy conservation in coal conversion processes. [Overall minimization of energy required for sulfur pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, G.L.; Hill, A.H.; Fleming, D.K.

    1979-01-01

    In general, controlling emissions from a coal conversion process is an energy consuming process. In this paper, a parametric assessment of energy requirements for sulfur management in a coal gasification process to produce substitute natural gas is presented. The results of this assessment suggest that the least energy intensive sulfur management practice to utilize in coal gasification plants using low sulfur coal (< 3.5%) is an H/sub 2/S selective removal process providing a Claus plant feed-stream containing 10% or less H/sub 2/S with tail gas from the Claus plant being incinerated in the coal-fired boiler and the additional SO/sub 2/ removed in the flue gas desulfurization (FGD) system. For high sulfur coals (> 3.5%), energy consumptions for all combinations were similar for a given FGD SO/sub 2/ removal specification. As the SO/sub 2/ specification increases for the FGD system, the total energy required for sulfur management also increases. Finally, contrary to expectations, the total energy requirements for sulfur management decrease with increasing sulfur content of the feed coal indicating that the energy requiements of the H/sub 2/S removal process dominates. The total energy requirements for the two Claus plant tail gas treatment processes are similar. Incineration in the boiler is slightly more energy efficient. For low sulfur coals (< 3.5%) the total energy requirements decreased rapidly as the level of H/sub 2/S selective acid-gas removal process decreased from 30% to 10%. For high sulfur coals (> 3.5%) the total energy requirements were similar for all levels of H/sub 2/S in the Claus plant feed gas with a possible minimum in energy requirements for the 15% H/sub 2/S cases.

  20. Process sensitivity studies of the Westinghouse sulfur cycle for hydrogen generation

    Science.gov (United States)

    Carty, R. H.; Cox, K. E.; Funk, J. E.; Soliman, M. A.; Conger, W. L.; Brecher, L. E.; Spewock, S.

    1976-01-01

    The effect of variations of acid concentration, pressure, and temperature on the thermal process efficiency of the Westinghouse sulfur cycle was examined using the HYDRGN program. Modifications to the original program were made to duplicate the process flowsheet and take into account combined cycle heat-to-work efficiencies for electrochemical work requirements, aqueous solutions, and heat-of-mixing effects. A total of 125 process variations were considered (acid concentration: 50-90 w/o; pressure: 15-750 psia; temperature: 922K - 1366K). The methods of analysis, results, and conclusions are presented.

  1. Influence of Sulfur Species on Current Efficiency in the Aluminum Smelting Process

    Science.gov (United States)

    Meirbekova, Rauan; Haarberg, Geir Martin; Thonstad, Jomar; Saevarsdottir, Gudrun

    2016-04-01

    Anode impurities are the major source of sulfur in aluminum electrolysis. Sulfur in anodes is mainly found as organic compounds. Alumina also introduces small quantities of sulfur, typically in the form of sulfates. The scarcity and cost of low-sulfur raw materials and the possibility of sulfur removal from the cell by means of flue gas may make high-sulfur content anodes a viable option. However, some anode impurities are known to affect current efficiency in aluminum production and caution must be exercised. The effect of increased sulfur content in the aluminum electrolysis electrolyte must be studied. This paper explores the effect of increased sulfur concentration in the electrolyte on current efficiency in a laboratory cell. Sodium sulfate was added to the electrolyte as a source of sulfur at regular time intervals to maintain a constant sulfur concentration. Current efficiency decreased by 1.1 pct per each 100 mg/kg (ppm) increase in sulfur concentration in the electrolyte.

  2. Diamond Processing by Focused Ion Beam - Surface Damage and Recovery

    CERN Document Server

    Bayn, Igal; Cytermann, Catherine; Meyler, Boris; Richter, Vladimir; Salzman, Joseph; Kalish, Rafi

    2011-01-01

    The Nitrogen Vacancy color center (NV-) in diamond is of great interest for novel photonic applications. Diamond nano-photonic structures are often implemented using Focused-Ion-Beam (FIB) processing, leaving a damaged surface which has a detrimental effect on the color center luminescence. The FIB processing effect on single crystal diamond surfaces and their photonic properties is studied by Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and photoluminescence (PL). Exposing the processed surface to hydrogen plasma, followed by chemical etching, drastically decreases implanted Ga concentration, resulting in a recovery of the NV- photo-emission and in a significant increase of the NV-/NV0 ratio.

  3. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent.

    Science.gov (United States)

    Sahinkaya, Erkan; Kilic, Adem; Duygulu, Bahadir

    2014-09-01

    Sulfur-based autotrophic denitrification of nitrified activated sludge process effluent was studied in pilot and full scale column bioreactors. Three identical pilot scale column bioreactors packed with varying sulfur/lime-stone ratios (1/1-3/1) were setup in a local wastewater treatment plant and the performances were compared under varying loading conditions for long-term operation. Complete denitrification was obtained in all pilot bioreactors even at nitrate loading of 10 mg NO3(-)-N/(L.h). When the temperature decreased to 10 °C during the winter time at loading of 18 mg NO3(-)-N/(L.h), denitrification efficiency decreased to 60-70% and the bioreactor with S/L ratio of 1/1 gave slightly better performance. A full scale sulfur-based autotrophic denitrification process with a S/L ratio of 1/1 was set up for the denitrification of an activated sludge process effluent with a flow rate of 40 m(3)/d. Almost complete denitrification was attained with a nitrate loading rate of 6.25 mg NO3(-)-N/(L.h). PMID:24862952

  4. A Robust Text Processing Technique Applied to Lexical Error Recovery

    CERN Document Server

    Ingels, P

    1999-01-01

    This thesis addresses automatic lexical error recovery and tokenization of corrupt text input. We propose a technique that can automatically correct misspellings, segmentation errors and real-word errors in a unified framework that uses both a model of language production and a model of the typing behavior, and which makes tokenization part of the recovery process. The typing process is modeled as a noisy channel where Hidden Markov Models are used to model the channel characteristics. Weak statistical language models are used to predict what sentences are likely to be transmitted through the channel. These components are held together in the Token Passing framework which provides the desired tight coupling between orthographic pattern matching and linguistic expectation. The system, CTR (Connected Text Recognition), has been tested on two corpora derived from two different applications, a natural language dialogue system and a transcription typing scenario. Experiments show that CTR can automatically correct...

  5. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part II: Durability of materials

    OpenAIRE

    López-Delgado, A.; Guerrero, A; López, F. A.; Pérez, C.; Alguacil, F. J.

    2012-01-01

    Under the European LIFE Program a microencapsulation process was developed for liquid mercury using Sulfur Polymer Stabilization/Solidification (SPSS) technology, obtaining a stable concrete-like sulfur matrix that allows the immobilization of mercury for long-term storage. The process description and characterization of the materials obtained were detailed in Part I. The present document, Part II, reports the results of different tests carried out to determine the durability of Hg-S concrete...

  6. Phosphorus recovery from sewage sludge by an electrokinetic process

    OpenAIRE

    Ribeiro, A. B.; Couto, N.; Mateus, E.P.; Guedes, P; Ottosen, Lisbeth M.

    2012-01-01

    As population keeps growing, it becomes important to guarantee the supply of staple foods, being necessary to assure good level of nutrients in the soil. Phosphorus (P) is a macronutrient indispensable for plants growth and a non-renewable resource, as phosphorites are estimated to be able to supply P for the next ca. 80 years. Additionally, the quality of this raw material has deteriorated due to contamination, which has increased processing costs of mineral P fertilizers. The recovery of nu...

  7. Supporting technology for enhanced oil recovery - EOR thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

  8. A Fractional Order Recovery SIR Model from a Stochastic Process.

    Science.gov (United States)

    Angstmann, C N; Henry, B I; McGann, A V

    2016-03-01

    Over the past several decades, there has been a proliferation of epidemiological models with ordinary derivatives replaced by fractional derivatives in an ad hoc manner. These models may be mathematically interesting, but their relevance is uncertain. Here we develop an SIR model for an epidemic, including vital dynamics, from an underlying stochastic process. We show how fractional differential operators arise naturally in these models whenever the recovery time from the disease is power-law distributed. This can provide a model for a chronic disease process where individuals who are infected for a long time are unlikely to recover. The fractional order recovery model is shown to be consistent with the Kermack-McKendrick age-structured SIR model, and it reduces to the Hethcote-Tudor integral equation SIR model. The derivation from a stochastic process is extended to discrete time, providing a stable numerical method for solving the model equations. We have carried out simulations of the fractional order recovery model showing convergence to equilibrium states. The number of infecteds in the endemic equilibrium state increases as the fractional order of the derivative tends to zero. PMID:26940822

  9. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    Science.gov (United States)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low

  10. A bench scale hydrogen production test by the thermochemical water-splitting iodine-sulfur process

    International Nuclear Information System (INIS)

    The iodine-sulfur process which utilize nuclear energy has attracted a great deal of interest for economy, environmental conservation and massive production. The IS process should have unique features whereby all chemicals except hydrogen and oxygen circulate through the process. This enables continuous and closed-cycle operations. In order to achieve the operation, process control methods and its automation to maintain the process in a stable state are indispensable. A fundamental concept of the methods was developed, which was installed with automatization in a bench scaled experimental facility made of glass. To demonstrate usefulness of the method, a long-term hydrogen production test was performed. In consequence, stable hydrogen production for 1 weak was successfully accomplished. The production rate of hydrogen was 31NL/h, and the production ratio of oxygen to hydrogen agrees to 0.5:1. This result shows that the water splitting took place stably by effective performance of the control method. (author)

  11. LS-981多功能硫磺回收催化剂的研制与工业应用%PREPARATION AND COMMERCIAL APPLICATION OF LS-981 MULTIFUNCTION CATALYST FOR SULFUR RECOVERY

    Institute of Scientific and Technical Information of China (English)

    许金山; 刘爱华; 刘剑利; 达建文

    2011-01-01

    The development and commercial application of LS-981 catalyst,a new multifunction sulfur recovery catalyst,were introduced. LS-981 catalyst possessed high Claus reaction activity, high CS2 hydrolysis activity,good oxygen removal activity and excellent structure stability. LS-981 catalyst was applied in the 4 kt/a sulfur recovery unit of SINOPEC Shengli Petrochemical Complex successfully. The application results showed that LS-981 catalyst could process hydrocarbon containing sour gas,the total sulfur conversion over LS-981 catalyst was more than 96% ,CS2 hydrolysis rate was over 90% and the operation cycle of the unit was prolonged.%介绍了新型多功能硫磺回收催化剂LS-981的研发和工业应用结果.该催化剂具有较高的Claus反应活性、有机硫水解活性、理想的脱氧性能及良好的结构稳定性.在中国石化胜利石化总厂4 kt/a硫磺回收装置上的工业应用结果表明,LS-981催化剂对于过程气复杂,特别是含烃类较高的酸性气具有良好的适应性,可提高装置的总硫回收率,延长运转周期,装置总硫转化率达到96%以上,有机硫水解率达到90%以上.

  12. Correlation of capacity fading processes and electrochemical impedance spectra in lithium/sulfur cells

    Science.gov (United States)

    Risse, Sebastian; Cañas, Natalia A.; Wagner, Norbert; Härk, Eneli; Ballauff, Matthias; Friedrich, K. Andreas

    2016-08-01

    The capacity fading of lithium/sulfur (Li/S) cells is one major challenge that has to be overcome for a successful commercialization of this electrochemical storage system. Therefore it is essential to detect the major fading mechanisms for further improvements of this system. In this work, the processes leading to fading are analyzed in terms of a linear four state model and correlated to the distribution of relaxation times calculated with a modified Levenberg-Marquardt algorithm. Additionally, the Warburg impedance and the solution resistance are also obtained by the same algorithm. The detailed analysis of intermediate states during the first cycle gives the distinction between relaxation processes at the sulfur cathode and at the lithium anode. The influence of the polysulfides on the impedance parameters was evaluated using symmetric cells; this yields a good correlation with the results obtained from the first discharge/charge experiment. A fast and a slow capacity fading process are observed for the charge and the discharge during 50 cycles. The fast fading process can be assigned to Faradaic reactions at the lithium anode.

  13. Sulfuric acid on Europa and the radiolytic sulfur cycle

    Science.gov (United States)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  14. Cogeneration and Heat Recovery in the Industrial Process

    Directory of Open Access Journals (Sweden)

    Vujasinović, E.

    2007-11-01

    Full Text Available Related to energy requirements for non-cellulose i. e. polyester production as an energy-intensive process, potential saving options are proposed. From the process data, it is evident that unit operations need electric and thermal energy in significant amounts. At the same time, improved energy management could be realized by applying a combined heat and power system (CHP instead of the usually used process with separate heat and power production. In addition, the boiler flue gases with a sufficiently high outlet temperature could be used for combustion air preheating.Considering industrial process data, a calculation and comparison between the primary energy demand for conventional, CHP system and flue-gas heat recovery is presented. Comparison between separate heat and electricity production i.e. the conventional system with an overall efficiency of 55.6 % and CHP with efficiency of 85 %, shows an absolute efficiency increase of 29.4 %. Using an air preheater for combustion air temperature increasing saves 5.6 % of the fuel and at the same time diminishes thermal pollution because the exhaust flue-gas temperature becomes 77.3 °C instead of 204 °C. Conclusively, cogeneration and flue-gas heat recovery presentsfuel savings, which also implies economic and environmental benefits.

  15. Global warming potential of the sulfur-iodine process using life cycle assessment methodology

    International Nuclear Information System (INIS)

    A life cycle assessment (LCA) of one proposed method of hydrogen production - thermochemical water-splitting using the sulfur-iodine cycle couple with a very high-temperature nuclear reactor - is presented in this paper. Thermochemical water-splitting theoretically offers a higher overall efficiency than high-temperature electrolysis of water because heat from the nuclear reactor is provided directly to the hydrogen generation process, instead of using the intermediate step of generating electricity. The primary heat source for the S-I cycle is an advanced nuclear reactor operating at temperatures corresponding to those required by the sulfur-iodine process. This LCA examines the environmental impact of the combined advanced nuclear and hydrogen generation plants and focuses on quantifying the emissions of carbon dioxide per kilogram of hydrogen produced. The results are presented in terms of global warming potential (GWP). The GWP of the system is 2500 g carbon dioxide-equivalent (CO2-eq) per kilogram of hydrogen produced. The GWP of this process is approximately one-sixth of that for hydrogen production by steam reforming of natural gas, and is comparable to producing hydrogen from wind- or hydro-electric conventional electrolysis. (author)

  16. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  17. Influence of sulfur physical properties in Claus unit operation

    Energy Technology Data Exchange (ETDEWEB)

    Larraz Mora, R.; Arvelo Alvarez, R. [Chemical Engineering Dept., Univ. of la Laguna, Tenerife (Spain)

    2002-09-01

    The Claus process is an efficient way of removing H{sub 2}S from acid gas streams and it has been widely practiced in industries such as natural gas processing, oil refining and metal smelting. Increasingly strict pollution control regulations require maximum sulfur recovery and high stream factor from the Claus units in order to minimize sulfur-containing effluents. As has been widely reported Claus unit's damages mainly occur during start up and shutdown. These operations involve scheduled warm-up and cool-down of the unit, usually burning refinery fuel-gas, which if not properly made can produce severe pipe and equipment plugging as well as catalyst deactivation. Sulfur products remaining in the unit during a shutdown period can produce dramatic unit corrosion episodes diminishing sulfur recovery unit stream factor. In the present paper some guidelines are given based on sulfur physical properties singularities which help to improve start-up/shut-down procedures. (orig.)

  18. Phosphorus recovery from sewage sludge by an electrokinetic process

    DEFF Research Database (Denmark)

    Ribeiro, A.B.; Couto, N.; Mateus, E.P.;

    to supply P for the next ca. 80 years. Additionally, the quality of this raw material has deteriorated due to contamination, which has increased processing costs of mineral P fertilizers. The recovery of nutrients, like P, from secondary resources urges. Waste streams as sewage sludge (SS) and sewage sludge...... ash (SSA) may contain contaminants or unwanted elements regarding specific applications, but they also contain secondary resources of high value (e.g. elements with fertilizer value). The incineration of SS is an highly used technique, namely in the Northern part of Europe. With SS incineration...

  19. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    Science.gov (United States)

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  20. UF.sub.6 -Recovery process utilizing desublimation

    Science.gov (United States)

    Eby, Robert S.; Stephenson, Michael J.; Andrews, Deborah H.; Hamilton, Thomas H.

    1985-01-01

    The invention is a UF.sub.6 -recovery process of the kind in which a stream of substantially pure gaseous UF.sub.6 is directed through an externally chilled desublimer to convert the UF.sub.6 directly to an annular solid ring adhering to the interior wall of the desublimer. After accumulation of a desired amount of solid UF.sub.6, the desublimer is heated to liquefy the solid. Subsequently, the liquid is recovered from the desublimer. It has been found that during the heating operation the desublimer is subjected to excessive mechanical stresses. In addition, it has been found that the incorporation of a very small percentage of relatively noncondensable, nonreactive gas (e.g., nitrogen) in the UF.sub.6 input to the desublimer effects significant decreases in the stresses generated during the subsequent melting operation. This modification to the process provides valuable advantages in terms of reduced hazard, lower operating costs for the desublimer, and increased service life for the desublimer and its auxiliaries. The new process is especially suitable for the recovery of enriched UF.sub.6 from high-speed UF.sub.6 gas-centrifuge cascades.

  1. UF/sub 6/-recovery process utilizing desublimation

    Science.gov (United States)

    Eby, R.S.; Stephenson, M.J.; Andrews, D.H.; Hamilton, T.H.

    1983-12-21

    The invention is a UF/sub 6/-recovery process of the kind in which a stream of substantially pure gaseous UF/sub 6/ is directed through an externally chilled desublimer to convert the UF/sub 6/ directly to an annular solid ring adhering to the interior wall of the desublimer. After accumulation of a desired amount of solid UF/sub 6/, the desublimer is heated to liquefy the solid. Subsequently, the liquid is recovered from the desublimer. It has been found that during the heating operation the desublimer is subjected to excessive mechanical stresses. In addition, it has been found that the incorporation of a very small percentage of relatively noncondensable, nonreactive gas (e.g., nitrogen) in the UF/sub 6/ input to the desublimer effects significant decreases in the stresses generated during the subsequent melting operation. This modification to the process provides valuable advantages in terms of reduced hazard, lower operating costs for the desublimer, and increased service life for the desublimer and its auxiliaries. The new process is especially suitable for the recovery of enriched UF/sub 6/ from high-speed UF/sub 6/ gas-centrifuge cascades.

  2. Process Optimization for Valuable Metal Recovery from Dental Amalgam Residues

    Directory of Open Access Journals (Sweden)

    C.M. Parra–Mesa

    2009-07-01

    Full Text Available In this paper, the methodology used for optimizing leaching in a semi pilot plant is presented. This leaching process was applied to recover value metals from dental amalgam residues. 23 factorial design was used to characterize the process during the first stage and in the second one, a central compound rotational design was used for modeling copper percentage dissolved, a function of the nitric acid concentration, leaching time and temperature. This model explained the 81% of the response variability, which is considered satisfactory given the complexity of the process kinetics and, furthermore, it allowed the definition of the operation conditions for better copper recovery, which this was of 99.15%, at a temperature of 55°C, a concentration of 30% by weight and a time of 26 hours.

  3. Study and make sulfur dioxide treatment equipment for degradation process of fine silicate zircon ore by sulfuric acid

    International Nuclear Information System (INIS)

    The against absorbent method was researched by research group to solve the above issue. This method was carried out by adsorbent lime-milk agent on the buffer of porous material with diameter D=9 cm and height H=1.2 m. The main parameters were gained: absorbent effect reached 98% with lime-milk concentration of 14% in water, against air flow speed of 0.7 m/s and lime-milk output of 0.45 liter/minute. Base on the above main researched parameter, the SO2 treatment equipment system by sulfuric acid was worked out with the scale of 0.5 ton/batch/day; absorbent tower diameter D=0.47 m, buffer height H=3.5 m and expenditure of 33.2 kg CaO/ton of zircon silicate. (author)

  4. Improved oil recovery process for heavy oil: a review

    Energy Technology Data Exchange (ETDEWEB)

    Barillas, J.L.M.; Dutra Junior, T.V.; Mata, W. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica], E-mail: jennys@eq.ufrn.br

    2008-01-15

    Petroleum is one of the main sources of energy in the world, occupying the first place of the Brazilian energy matrix. Therefore, technologies that involve the development and application of techniques capable of increasing the profitability of oil fields are important and require more thorough studies. In Brazil, self-sufficiency has been already reached in oil production, however it is necessary that improved oil recovery technologies be continually studied to maintain the current production or to increase it. Rio Grande do Norte (a Brazilian State) comprises many heavy oil reserves and the exploration activities in the Brazilian Basins of Campos, Santos and Espirito Santo have led to the discovery of large amounts of heavy oils. It is possible to increase heavy oil recovery in some of these reservoirs with the help of improved oil recovery processes, thus enhancing oil field productivity and profitability. Until recently, heavy oil reserves did not attract much interest. The lowest oil profitability, the low price of the oil barrel in the international market, the difficulties involved in its extraction and its refining, and the large amount of light and medium oils to be explored could not justify the investments. Maturity of light and medium oil fields and the significant increase in oil price placed that source of energy under a new perspective. In Brazil, the confirmed reserves constitute 2.9 billion barrels approximately, 26% of the total reserves, and the production should reach 450 thousand barrels daily or 25% of the total production predicted for 2010 (ANP, 'Agencia Nacional do Petroleo' - Brazilian Petroleum National Agency, 2006). To improve the capacity of drainage of the heavy oils and to increase its recovery, different thermal methods have been developed. Those more used involve steam in the process, because they are more efficient than other processes such as 'in situ' combustion or water injection. The steam is used with the

  5. Phosphorus recovery from sewage sludge by an electrokinetic process

    DEFF Research Database (Denmark)

    Ribeiro, A.B.; Couto, N.; Mateus, E.P.;

    As population keeps growing, it becomes important to guarantee the supply of staple foods, being necessary to assure good level of nutrients in the soil. Phosphorus (P) is a macronutrient indispensable for plants growth and a non-renewable resource, as phosphorites are estimated to be able...... to supply P for the next ca. 80 years. Additionaly, the quality of this raw material has deteriorated due to contamination, which has increased processing costs of mineral P fertilizers. The recovery of nutrients, like P, from secondary resources urges. Sewage sludge (SS) and sewage sludge ash (SSA) from...... waste water treatment plants (WWTP) may contain contaminants or unwanted elements regarding specific applications, but they also contain secondary resources of high value. Using these ash as a P resource, while removing the contaminants, seems a sustainable option. The electrokinetic (EK) process can...

  6. Recovery processes and dynamics in single and interdependent networks

    Science.gov (United States)

    Majdandzic, Antonio

    Systems composed of dynamical networks --- such as the human body with its biological networks or the global economic network consisting of regional clusters --- often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread, and recovery. Here we develop a model for such systems and find phase diagrams for single and interacting networks. By investigating networks with a small number of nodes, where finite-size effects are pronounced, we describe the spontaneous recovery phenomenon present in these systems. In the case of interacting networks the phase diagram is very rich and becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions, and two forbidden transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyze an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model.

  7. Screening of microorganisms for microbial enhanced oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Yonebayashi, H. [Japan National Oil Corp., Tokyo (Japan); Yoshida, S. [Japan Food Research Laboratiories, Tokyo (Japan). Div. of Microbiology; Ono, K. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    The objective of this study is to screen effective microorganisms for the Microbial Enhanced Oil Recovery process (or simply as MEOR). Samples of drilling cuttings, formation water, and soil were collected from domestic drilling sites and oil fields. Moreover, samples of activated-sludge and compost were collected from domestic sewage treatment facility and food treatment facility. At first, microorganisms in samples were investigated by incubation with different media; then they were isolated. By two stage-screening based on metabolizing ability, 4 strains (Bacillus licheniformis TRC-18-2-a, Enterobacter cloacae TRC-322, Bacillus subtilis TRC-4118, and Bacillus subtilis TRC-4126) were isolated as effective microorganisms for oil recovery. B. licheniformis TRC-18-2-a is a multifunctional microorganism possessing excellent surfactant productivity, and in addition it has gas, acid and polymer productivities. E. cloacae TRC-332 has gas and acid producing abilities. B. subtilis TRC-4118 and TRC-4126 are effective biosurfactant producers, and they reduce the interfacial tension to 0.04 and 0.12 dyne/cm, respectively. (author)

  8. Characterization of phenolic constituents inhibiting the formation of sulfur-containing volatiles produced during garlic processing.

    Science.gov (United States)

    Li, Wen-Qing; Zhou, Hua; Zhou, Mei-Yun; Hu, Xing-Peng; Ou, Shi-Yi; Yan, Ri-An; Liao, Xiao-Jian; Huang, Xue-Song; Fu, Liang

    2015-01-28

    Garlic (Allium sativum L.), which is a widely distributed plant, is globally used as both spice and food. This study identified five novel phenolic compounds, namely, 8-(3-methyl-(E)-1-butenyl)diosmetin, 8-(3-methyl-(E)-1-butenyl)chrysin, 6-(3-methyl-(E)-1-butenyl)chrysin, and Alliumones A and B, along with nine known compounds 6-14 from the ethanol extract of garlic. The structures of these five novel phenolic compounds were established via extensive 1D- and 2D-nuclear magnetic resonance spectroscopy experiments. The effects of the phenolic compounds isolated from garlic on the enzymatical or nonenzymatical formation of sulfur-containing compounds produced during garlic processing were examined. Compound 12 significantly reduced the thermal decomposition of alliin, whereas compound 4 exhibited the highest percentage of alliinase inhibition activity (36.6%). PMID:25579175

  9. Sulfur barrier for use with in situ processes for treating formations

    Science.gov (United States)

    Vinegar, Harold J.; Christensen, Del Scot

    2009-12-15

    Methods for forming a barrier around at least a portion of a treatment area in a subsurface formation are described herein. Sulfur may be introduced into one or more wellbores located inside a perimeter of a treatment area in the formation having a permeability of at least 0.1 darcy. At least some of the sulfur is allowed to move towards portions of the formation cooler than the melting point of sulfur to solidify the sulfur in the formation to form the barrier.

  10. Problems Encountered and Countermeasure Adopted During Processing of Shengli High-sulfur and High-acidity Crude

    Institute of Scientific and Technical Information of China (English)

    Hu Zhenghai

    2007-01-01

    The centralized processing of high-sulfur and high-acidity crude has contributed to improvement of the overall economic benefits of the oil refining enterprise,but has also resulted in crude emulsification,severe corrosion of process units and environmental protection issues.The long-cycle,safe and smooth operation of process units were guaranteed after selection of optimal processing routes and adoption of a series of technical measures.

  11. 40kt/a硫回收联合装置烧氨实践%Practice of burning ammonia in a 800 b/d sulfur recovery unit

    Institute of Scientific and Technical Information of China (English)

    耿庆光; 李步; 黄占修

    2011-01-01

    The new sulfur recovery unit in SINOPEC Luoyang Company was designed to burn 0.5% 1.5% ammonia in sour gas. Due to the insufficient capacity of ammonia refining unit, 15% of ammonia in sour gas had to be burned for more than one year, thus balancing the ammonia gas produced by the new 11 t/h sour water stripper. The operation shows that the unit is reliable in design and has no plugging. The catalyst activity is normally maintained and sulfur quality and tail gas emission meet the specifications. Good operating experience has been accumulated.%中国石油化工股份有限公司洛阳分公司新建40 kt/a硫回收联合装置原设计酸性气中烧氨比例为0.5%~1.5%,因氨精制系统不匹配,进行了一年多的烧氨,烧氨比例达到15%,平衡了新建11t/h污水汽提装置产生的全部氨气.运行结果表明装置设计可靠,系统无堵塞,催化剂活性正常,硫黄质量正常,尾气排放达标,并积累了一定的生产操作经验.

  12. Linking Food Webs and Biogeochemical Processes in Wetlands: Insights From Sulfur Isotopes

    Science.gov (United States)

    Stricker, C. A.; Guntenspergen, G. R.; Rye, R. O.

    2005-05-01

    To better understand the transfer of nutrients into prairie wetland food webs we have investigated the cycling of S (via S isotope systematics and geochemistry) in a prairie wetland landscape by characterizing sources (ground water, interstitial water, surface water) and processes in a small catchment comprised of four wetlands in eastern South Dakota. We focused on S to derive process information that is not generally available from carbon isotopes alone. The wetlands chosen for study spanned a considerable range in SO4 concentration (0.1-13.6 mM), which corresponded with landscape position. Ground water δ34SSO4 values remained relatively constant (mean = -13.2 per mil) through time. However, δ34SSO4 values of wetland surface waters ranged from -2.9 to -30.0 per mil (CDT) and were negatively correlated with SO4 concentrations (pOdonata: Anax sp.) consumers were significantly related to surface water δ34SSO4 values (p<0.05) suggesting that food web components were responding to changes in the isotopic composition of the S source. Both primary and secondary consumer δ34S signatures differed between wetlands (ANOVA, p<0.05). These data illustrate the complexity of S cycling in prairie wetlands and the influence of wetland hydrologic and biogeochemical processes on prairie wetland food webs. Additionally, this work has demonstrated that sulfur isotopes can provide unique source and process information that cannot be derived from traditional carbon and nitrogen isotope studies.

  13. Sulfur Mustard

    Science.gov (United States)

    ... Matters What's New A - Z Index Facts About Sulfur Mustard What sulfur mustard is Sulfur mustard is a type of ... it is in liquid or solid form. Where sulfur mustard is found and how it is used ...

  14. Sulfide-oxidizing bacteria establishment in an innovative microaerobic reactor with an internal silicone membrane for sulfur recovery from wastewater.

    Science.gov (United States)

    Valdés, F; Camiloti, P R; Rodriguez, R P; Delforno, T P; Carrillo-Reyes, J; Zaiat, M; Jeison, D

    2016-06-01

    A novel bioreactor, employing a silicone membrane for microaeration, was studied for partial sulfide oxidation to elemental sulfur. The objective of this study was to assess the feasibility of using an internal silicone membrane reactor (ISMR) to treat dissolved sulfide and to characterize its microbial community. The ISMR is an effective system to eliminate sulfide produced in anaerobic reactors. Sulfide removal efficiencies reached 96 % in a combined anaerobic/microaerobic reactor and significant sulfate production did not occur. The oxygen transfer was strongly influenced by air pressure and flow. Pyrosequencing analysis indicated various sulfide-oxidizing bacteria (SOB) affiliated to the species Acidithiobacillus thiooxidans, Sulfuricurvum kujiense and Pseudomonas stutzeri attached to the membrane and also indicated similarity between the biomass deposited on the membrane wall and the biomass drawn from the material support, supported the establishment of SOB in an anaerobic sludge under microaerobic conditions. Furthermore, these results showed that the reactor configuration can develop SOB under microaerobic conditions and can improve and reestablish the sulfide conversion to elemental sulfur. PMID:27003697

  15. 硫回收超级克劳斯尾气管段烧红原因分析与处理%Analysis and Treatment on Red-Hot Exhaust Pipe in Super Claus Sulfur Recovery Unit

    Institute of Scientific and Technical Information of China (English)

    郭志强

    2013-01-01

    分析硫回收装置开车阶段入焚烧炉尾气管段烧红的原因,并提出相应的处理措施。%Analyze the causes of red-hot exhaust pipe of the incinerator during operation of the sulfur recovery unit , and propose the appropriate measures .

  16. Experimental Study on Treatment of High-concentrated Sulfur Wastewater by Process of Depositing Natrojarosite and Its Environmental Significance

    Institute of Scientific and Technical Information of China (English)

    MA Shengfeng; WANG Changqiu; LU Anhuai; GUO Yanjun; HE Hongliao

    2007-01-01

    High-concentrated sulfur wastewater with sodium and COD (chemical oxygen demand) up to 26000 mg/L from a chemical plant, Jiangsu Province of China has been treated by deposition of natrojarosite in lab. The results indicated that the COD of the wastewater was decreased sharply from 26000 mg/L to 1001 mg/L, with removal rate of COD up to 96% by twice precipitations of natrojarosite and twice oxidation of H2O2. The treated sulfur wastewater reached the requirement of subsequent biochemical treatment to water quality. The optimal operational parameters should be controlled on provided an experimental basis for pretreatment of high-concentrated sulfur wastewater and proposed a new mineralogical method on treatment of other wastewaters. Depositing process ofjarosite and its analogs should be able to be used to treat wastewater from mine and other industries to remove S, Fe and other toxic and harmful elements, such as As, Cr, Hg, Pb, etc. in the water.

  17. Neurofunctional Reward Processing Changes in Cocaine Dependence During Recovery.

    Science.gov (United States)

    Balodis, Iris M; Kober, Hedy; Worhunsky, Patrick D; Stevens, Michael C; Pearlson, Godfrey D; Carroll, Kathleen M; Potenza, Marc N

    2016-07-01

    Although reward processing appears altered in addiction, few studies track neurofunctional changes following treatment or relate these to measures of reduced drug use. The current study examined neurofunctional alterations in reward processing in cocaine dependence (CD) pretreatment and posttreatment to determine whether these changes relate to clinically meaningful outcome indicators. Treatment-seeking CD outpatients (N=29) underwent functional magnetic resonance imaging while performing a monetary incentive delay task (MIDT) pretreatment and posttreatment. The MIDT parses anticipatory from outcome phases of reward/loss processing. Abstinence indicators (negative urines, days abstinent from cocaine during follow-up) were collected throughout treatment and up to 1 year later. Healthy control (HC) participants (N=28) were also scanned twice with the MIDT. Relative to pretreatment, at posttreatment CD participants demonstrated increased anticipatory reward activity in the midbrain, thalamus, and precuneus (pFWEcocaine abstinence during the 1-year follow-up. Ventral striatal (VS) activity during loss anticipation correlated negatively with negative urine screens. HC group test-retest results showed decreased ventromedial prefrontal cortex activity during winning outcomes. CD-HC group-by-time differences revealed increased left inferior frontal gyrus activity in the CD group during anticipatory phases at posttreatment. In CD participants, increased posttreatment activity in dopamine-innervated regions suggests lowered thresholds in anticipatory signaling for non-drug rewards. Midbrain and VS responses may represent biomarkers associated with CD abstinence. Abstinence-related neurobiological changes occur in similar regions implicated during active use and may possibly be used to track progress during short- and long-term recovery. PMID:26792441

  18. Processing of spent nickel catalyst for fat recovery

    Directory of Open Access Journals (Sweden)

    Ibrahim Nasir, Mohammad

    2002-06-01

    Full Text Available Spent nickel catalyst (SNC have the potential of insulting the quality of the environment in a number of ways. The disposal of SNC will have a pollution effect. Optimum recovery of fat from SNC , could save the environment and reduce the oil loss. Hexane has been the solvent of choice for oil extraction. Alternative solvents that are considered safer have been evaluated. Hexane, isopropanol, ethanol, and heptane were examined using soxhlet extraction. While hexane was more efficient in oil recovery from SNC, isopropanol proved to be very good, to clarifying separation of oil from waste material and also provide high solvent recovery compared to other solvents. Isopropanol extraction with chill provided separation of miscella into two phases: lower oil–rich and an upper solvent – rich. It saved much energy of vaporization for distilling. An aqueous extraction process with immiscible solvent assisted was tested. Solvent like hexane added to SNC, and water added later with continuous stirring. The mixture was stirred for about 30 minutes, prior to centrifugation. Aqueous process extracted less amount of oil compared to solvent extraction.El catalizador agotado de níquel (SNC tiene el potencial de dañar la calidad del medio ambiente de diversas formas. El depósito de SNC tendrá un efecto de polución. La recuperación óptima de la grasa a partir del SCN, podría conservar el medio ambiente y reducir la pérdida de aceite. El hexano ha sido el disolvente elegido para la extracción del aceite. También se han evaluado disolventes alternativos que son considerados seguros. Se han examinado hexano, isopropanol, etanol y heptano usando extracción con soxhlet. Mientras que el hexano fue el mas eficaz en la recuperación del aceite, el isopropanol demostró ser muy bueno para aclarar la separación del aceite a partir de la materia residual y también proporcionó una alta recuperación del disolvente en comparación con los otros

  19. Estimated discard limits for plutonium-238 recovery processing in the plutonium processing building

    Energy Technology Data Exchange (ETDEWEB)

    Luthy, D.F.; Bond, W.H.

    1975-03-26

    This manual is intended as a basis for plutonium-238 recovery costs and as a guide for removal of plutonium-bearing wastes from the gloveboxes to be safely and economically discarded. Waste materials contaminated with plutonium-238 are generated from in-house production, analytical, process development, recovery and receipts from off-site. The contaminated materials include paper, rags, alpha-box gloves, piping, valves, filters, etc. General categories for all types of plutonium waste have been established by the ERDA and are reflected in this manual. There are numerous processes used in plutonium recovery, such as dissolution, ultrasonic cleaning, ion exchange, etc. One or more of these processes are needed to extract the plutonium-238 from waste materials, purify it and convert it to an oxide acceptable for reuse. This manual is presented in two parts: Part I gives a breakdown and brief explanation of the direct costs for plutonium-238 I recovery, derived from budget data. Direct costs include direct labor (operating personnel), operational materials and supplies, health physics direct labor, calorimetry labor, analytical labor, and engineering direct labor (total costs for Method I). Budgeted costs for labor and material were used in the derivation of discard limits. The data presented is then used to calculate the cost per hour for recovery, as it applies to the three different methods of calculating discard limits referred to, in this manual, as Method I (calculation stated above), Method II and Method III. The cost for Method II is derived by adding to the cost of Method I, payroll related expenses. Method III is then calculated by adding over-head expenses to the total cost of Method II.

  20. USING THE SULFUR POLYMER STABILIZATION SOLIDIFICATION PROCESS TO TREAT RESIDUAL MERCURY WASTES FROM GOLD MINING OPERATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    BOWERMAN,B.ADAMS,J.KALB,P.WAN,R.Y.LEVIER,M.

    2003-02-24

    Large quantities of mercury are generated as a by-product during the processing of gold ore following mining operations. Newmont Mining Corporation (NMC), which operates some of the world's largest gold mines, sought a method to permanently ''retire'' its mercury by-products, thereby avoiding potential environmental liability. Sulfur Polymer Stabilization-Solidification (SPSS) is an innovative technology developed at Brookhaven National Laboratory (BNL) for treatment of mercury and mercury contaminated materials, such as soil, sludge and debris. BNL conducted a treatability study to determine the potential applicability of SPSS for treatment of Newmont mercury, and the treated product passed the U.S. Environmental Protection Agency (EPA) test for toxicity. The SPSS process has been shown to be effective on radioactive and nonradioactive mercury and mercury-contaminated materials with a pilot-scale batch system capable of producing 0.03 m{sup 3} (1 ft{sup 3}) per batch. Engineering scale-up issues are discussed and material property tests addressing these issues are described.

  1. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning.

    Science.gov (United States)

    Tsakiridis, P E; Oustadakis, P; Katsiapi, A; Agatzini-Leonardou, S

    2010-07-15

    The characterization and the agitation leaching of electric arc furnace dust (EAFD) by diluted sulphuric acid have been studied in Part I, as a separate article. The aim of the present research work (Part II) is the development of a purification process of the leach liquor for the recovery of high-purity zinc by electrowinning. The proposed hydrometallurgical process consists of the following four (4) unit operations: (1) Removal of iron as easily filterable crystalline basic sulphate salt of the jarosite type, at atmospheric pressure, by chemical precipitation at pH: 3.5 and 95 degrees C. (2) Zinc solvent extraction by Cyanex 272 at pH: 3.5, T: 40 degrees C, with 25% extractant concentration. (3) Stripping of the loaded organic phase by zinc spent electrolyte (62.5 g/L Zn(2+)) at T: 40 degrees C with diluted H(2)SO(4) (3 mol/L). (4) Zinc electrowinning from sulphate solutions (at 38 degrees C) using Al as cathode and Pb as anode. The acidity of the electrolyte was fixed at 180 g/L H(2)SO(4), while the current density was kept constant at 500 A/m(2).

  2. Study on thorium recovery from bastnaesite treatment process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yongqi; XU Yang; HUANG Xiaowei; LONG Zhiqi; CUI Dali; HU Feng

    2012-01-01

    Thorium (Th) stripping behavior from HEH/EHP (2-(ethylhexyl) phosphoric acid mono-2-ethylhexyl ester) with H2SO4,HCl and HNO3 were investigaated.The results indicated that H2SO4 was the most effective stripping reagent compared with HCl and HNO3.Selecting H2SO4 as the stripping reagent,the effect of phase ratio,acidity,H2SO4 amount,HEH/EHP concentration and Th loading in HEH/EHP on Th stripping were systematically investigated.As a result,the optimum stripping conditions of Th(Ⅳ) were obtained as the concentration of H2SO4 solution was 3.50 mol/L,phase ratio was 4∶1.Low HEH/EHP concentration was benefit for Th stripping.Based on the results,pilot test for new Bastnaesite treatment process was carried out and the recovery of Ce,F and Th were more than 99%,98% and 95% separately.

  3. Supporting technology for enhanced oil recovery for thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  4. Development of novel processes for Cu concentrates without producing sulfuric acid; Hiryusan hasseigata no atarashii doshigen shori gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Awakura, Y.; Hirato, T. [Kyoto University, Kyoto (Japan)

    1997-02-01

    Studies are conducted to develop a new wet method for copper concentrates to replace the conventional dry smelting method for the settlement of problems involving the processing of impurities for environmental protection. A specimen of pyrites polycrystals is subjected to leaching at 80 {degree}C in a strongly acidic cupric solution. Findings are that the element sulfur generated in this process does not impede leaching and only approximately 4% of the sulfur is oxidized into sulfur ions; that the presence of more than 2g/liter of bromide ions produced during bromine-aid leaching of gold changes the structure of sulfur for the inhibition of leaching; that circulation of a bromine-containing leaching liquid is not desired since even a small amount of approximately 0.02mol/liter inhibits the leaching rate. Controlled potential electrolysis is performed for the anode in an acid solution containing CuCl, NaCl, and NaBr, for the observation of oxidation/reduction potentials predicted by Nernst`s equation. It is then disclosed that bromine is more effective than chlorine in gold leaching and that the solution potential during leaching agent regeneration enables the monitoring of solution constitution. 2 refs.

  5. EFFICIENT RECOVERY OF BIOETHANOL USING NOVEL PERVAPORATION-DEPHLEGMATION PROCESS

    Science.gov (United States)

    Bioethanol is the most important liquid fuel made in the U.S. from domestically produced renewable resources. Traditional production of bioethanol involves batch fermation of biomass followed by ethanol recovery from the fermentation broths using distillation. The distillation st...

  6. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part I: Characterization of materials

    OpenAIRE

    López-Delgado, A.; López, F. A.; Alguacil, F. J.; Padilla, I; Guerrero, A

    2012-01-01

    European Directives consider mercury a priority hazardous substance due to its adverse effects on human health and the environment. In response to environmental concerns, a microencapsulation process has been developed within the European LIFE program as a long-term storage option for mercury. This process leads to the obtainment of a stable concrete-like sulfur matrix that allows the immobilization of mercury. The final product, in the form of a solid block containing up to 30 % Hg, exhibits...

  7. Studies of Uranium Recovery from Tunisian Wet Process Phosphoric Acid

    OpenAIRE

    Naima Khleifia; Ahmed Hannachi; Noureddine Abbes

    2013-01-01

    The growing worldwide energy demand associated with several inter related complex environmental as well as economical issues are driving the increase of the share of uranium in energy mix. Subsequently, over the last few years, the interest for uranium extraction and recovery from unconventional resources has gained considerable importance. Phosphate rock has been the most suitable alternative source for the uranium recovery because of its uranium content. Solvent extraction has been found to...

  8. Identification of existing waste heat recovery and process improvement technologies

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  9. Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes.

    Science.gov (United States)

    Flores-Alsina, Xavier; Solon, Kimberly; Kazadi Mbamba, Christian; Tait, Stephan; Gernaey, Krist V; Jeppsson, Ulf; Batstone, Damien J

    2016-05-15

    This paper proposes a series of extensions to functionally upgrade the IWA Anaerobic Digestion Model No. 1 (ADM1) to allow for plant-wide phosphorus (P) simulation. The close interplay between the P, sulfur (S) and iron (Fe) cycles requires a substantial (and unavoidable) increase in model complexity due to the involved three-phase physico-chemical and biological transformations. The ADM1 version, implemented in the plant-wide context provided by the Benchmark Simulation Model No. 2 (BSM2), is used as the basic platform (A0). Three different model extensions (A1, A2, A3) are implemented, simulated and evaluated. The first extension (A1) considers P transformations by accounting for the kinetic decay of polyphosphates (XPP) and potential uptake of volatile fatty acids (VFA) to produce polyhydroxyalkanoates (XPHA) by phosphorus accumulating organisms (XPAO). Two variant extensions (A2,1/A2,2) describe biological production of sulfides (SIS) by means of sulfate reducing bacteria (XSRB) utilising hydrogen only (autolithotrophically) or hydrogen plus organic acids (heterorganotrophically) as electron sources, respectively. These two approaches also consider a potential hydrogen sulfide ( [Formula: see text] inhibition effect and stripping to the gas phase ( [Formula: see text] ). The third extension (A3) accounts for chemical iron (III) ( [Formula: see text] ) reduction to iron (II) ( [Formula: see text] ) using hydrogen ( [Formula: see text] ) and sulfides (SIS) as electron donors. A set of pre/post interfaces between the Activated Sludge Model No. 2d (ASM2d) and ADM1 are furthermore proposed in order to allow for plant-wide (model-based) analysis and study of the interactions between the water and sludge lines. Simulation (A1 - A3) results show that the ratio between soluble/particulate P compounds strongly depends on the pH and cationic load, which determines the capacity to form (or not) precipitation products. Implementations A1 and A2,1/A2,2 lead to a reduction in

  10. Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes.

    Science.gov (United States)

    Flores-Alsina, Xavier; Solon, Kimberly; Kazadi Mbamba, Christian; Tait, Stephan; Gernaey, Krist V; Jeppsson, Ulf; Batstone, Damien J

    2016-05-15

    This paper proposes a series of extensions to functionally upgrade the IWA Anaerobic Digestion Model No. 1 (ADM1) to allow for plant-wide phosphorus (P) simulation. The close interplay between the P, sulfur (S) and iron (Fe) cycles requires a substantial (and unavoidable) increase in model complexity due to the involved three-phase physico-chemical and biological transformations. The ADM1 version, implemented in the plant-wide context provided by the Benchmark Simulation Model No. 2 (BSM2), is used as the basic platform (A0). Three different model extensions (A1, A2, A3) are implemented, simulated and evaluated. The first extension (A1) considers P transformations by accounting for the kinetic decay of polyphosphates (XPP) and potential uptake of volatile fatty acids (VFA) to produce polyhydroxyalkanoates (XPHA) by phosphorus accumulating organisms (XPAO). Two variant extensions (A2,1/A2,2) describe biological production of sulfides (SIS) by means of sulfate reducing bacteria (XSRB) utilising hydrogen only (autolithotrophically) or hydrogen plus organic acids (heterorganotrophically) as electron sources, respectively. These two approaches also consider a potential hydrogen sulfide ( [Formula: see text] inhibition effect and stripping to the gas phase ( [Formula: see text] ). The third extension (A3) accounts for chemical iron (III) ( [Formula: see text] ) reduction to iron (II) ( [Formula: see text] ) using hydrogen ( [Formula: see text] ) and sulfides (SIS) as electron donors. A set of pre/post interfaces between the Activated Sludge Model No. 2d (ASM2d) and ADM1 are furthermore proposed in order to allow for plant-wide (model-based) analysis and study of the interactions between the water and sludge lines. Simulation (A1 - A3) results show that the ratio between soluble/particulate P compounds strongly depends on the pH and cationic load, which determines the capacity to form (or not) precipitation products. Implementations A1 and A2,1/A2,2 lead to a reduction in

  11. THE APPLICATION OF REVERSE FLOCCULATION METHOD IN HIGH SULFUR COAL DESULFURIZATION

    Institute of Scientific and Technical Information of China (English)

    王力; 陈鹏; 张素清

    1999-01-01

    The reverse flocculation method for removing pyritic sulfur from high sulfur coals has been conceptually developed and investigated. The tentative tests on China high sulfur coals have shown that this advanced physical separation technique can be very efficient in coal desulfurization, provided the process parameters are properly optimized. Under the circumstances of acquiring high coal recovery, the total sulfur rejection with four kinds of coal samples normally falls in the range 5?% to 71% by one-step reverse flocculation, and within the range 40% to 59% by one-step normal flocculation process.

  12. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.

    Science.gov (United States)

    Sahinkaya, Erkan; Dursun, Nesrin; Kilic, Adem; Demirel, Sevgi; Uyanik, Sinan; Cinar, Ozer

    2011-12-15

    A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+). Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO(3)-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO(3)-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO(2)-N reduction rate was around three times lower than the reduction rate of NO(3)-N, which led to NO(2)-N accumulation at high loadings.

  13. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.

    Science.gov (United States)

    Chen, Xiangping; Zhou, Tao

    2014-11-01

    In this paper, a hydrometallurgical process has been proposed to recover valuable metals from spent lithium-ion batteries in citric acid media. Leaching efficiencies as high as 97%, 95%, 94%, and 99% of Ni, Co, Mn, and Li were achieved under the optimal leaching experimental conditions of citric acid concentration of 2 mol L(-1), leaching temperature of 80 °C, leaching time of 90 min, liquid-solid ratio of 30 ml g(-1), and 2 vol. % H2O2. For the metals recovery process, nickel and cobalt were selectively precipitated by dimethylglyoxime reagent and ammonium oxalate sequentially. Then manganese was extracted by Na-D2EHPA and the manganese-loaded D2EHPA was stripped with sulfuric acid. The manganese was recovered as MnSO4 in aqueous phase and D2EHPA could be reused after saponification. Finally, lithium was precipitated by 0.5 mol L(-1) sodium phosphate. Under their optimal conditions, the recovery percentages of Ni, Co, Mn, and Li can reach 98%, 97%, 98%, and 89%, respectively. This is a relatively simple route in which all metal values could be effectively leached and recovered in citric acid media.

  14. Bangkit: The Processes of Recovery from First Episode Psychosis in Java.

    Science.gov (United States)

    Subandi, M A

    2015-12-01

    There is a growing literature on recovery from schizophrenia. Most studies, however, focused on outcome, with insufficient attention paid to the process of recovery. The aim of this study was to explore the process of recovery from first episode psychotic illness in a Javanese cultural setting. An ethnographic method was applied where researcher conducted a field work and followed seven participants in their natural setting. This study identified three phases of recovery process in the context of Javanese culture: Bangkit, gaining insight; Usaha, struggling to achieve recovery; and Rukun, harmonious integration with family and community integration. Recovery entails regaining insight, followed by simultaneous inward and outward efforts that reconstitute one's inner and outer world, respectively. Participants also expressed their recovery in terms of a movement through physical space, from confinement in their own home to the wider spaces shared with family and community. Movements in physical space parallel movements in social space, where participants accomplish a social recovery. The Javanese phase of recovery found in this study is comparable to the phase of recovery identified by previous literatures in the Western context.

  15. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products.

    Science.gov (United States)

    Sun, Zhi; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y

    2015-07-01

    In recent years, recovery of metals from electronic waste within the European Union has become increasingly important due to potential supply risk of strategic raw material and environmental concerns. Electronic waste, especially a mixture of end-of-life electronic products from a variety of sources, is of inherently high complexity in composition, phase, and physiochemical properties. In this research, a closed-loop hydrometallurgical process was developed to recover valuable metals, i.e., copper and precious metals, from an industrially processed information and communication technology waste. A two-stage leaching design of this process was adopted in order to selectively extract copper and enrich precious metals. It was found that the recovery efficiency and extraction selectivity of copper both reached more than 95% by using ammonia-based leaching solutions. A new electrodeposition process has been proven feasible with 90% current efficiency during copper recovery, and the copper purity can reach 99.8 wt %. The residue from the first-stage leaching was screened into coarse and fine fractions. The coarse fraction was returned to be releached for further copper recovery. The fine fraction was treated in the second-stage leaching using sulfuric acid to further concentrate precious metals, which could achieve a 100% increase in their concentrations in the residue with negligible loss into the leaching solution. By a combination of different leaching steps and proper physical separation of light materials, this process can achieve closed-loop recycling of the waste with significant efficiency. PMID:26061274

  16. Recovery of Pu,Np in 1BP of Dilute TBP Extraction Process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In the TBP extraction process, Np and Pu need to be recovered from effluents of the TBP extraction process. In this work, the recovery of Np and Pu from TBP extraction effluents is studied was investigated

  17. A novel oxidative desulfurization process to remove refractory sulfur compounds from diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sampanthar, Jeyagowry T.; Xiao, Huang; Dou, Jian; Nah, Teo Yin; Rong, Xu; Kwan, Wong Pui [Applied Catalysis Technology Group, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, No. 1, Pesek Road, Jurong Island, Singapore 627833 (Singapore)

    2006-03-22

    Manganese and cobalt oxide catalysts supported on {gamma}-Al{sub 2}O{sub 3} have been found to be effective in catalyzing air oxidation of the sulfur impurities in diesel to corresponding sulfones at a temperature range of 130-200{sup o}C and atmospheric pressure. The sulfones were removed by extraction with polar solvent to reduce the sulfur level in diesel to as low as 40-60ppm. Oxidation of model compounds showed that the most refractory sulfur compounds in hydrodesulfurization of diesel were more reactive in oxidation. The oxidative reactivity of model impurities in diesel follows the order: trialkyl-substituted dibenzothiophene>dialkyl-substituted dibenzothiophene>monoalkyl-substituted dibenzothiophene>dibenzothiophene. (author)

  18. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    Science.gov (United States)

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%.

  19. The redesign of a warranty distribution network with recovery processes

    NARCIS (Netherlands)

    Ashayeri, J.; Ma, N.; Sotirov, R.

    2015-01-01

    A warranty distribution network provides aftersales warranty services to customers and resembles a closed-loop supply chain network with specific challenges for reverse flows management like recovery, repair, and reflow of refurbished products. We present here a nonlinear and nonconvex mixed integer

  20. Evaluation of a sulfur oxide chemical heat storage process for a steam solar electric plant

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, J.; Lynn, S.; Foss, A.

    1979-07-01

    The purpose of this study was to develop and evaluate technically feasible process configurations for the use of the sulfur oxide system, 2 SO/sub 3/ reversible 2 SO/sub 2/ + O/sub 2/, in energy storage. The storage system is coupled with a conventional steam-cycle power plant. Heat for both the power plant and the storage system is supplied during sunlit hours by a field of heliostats focussed on a central solar receiver. When sunlight is not available, the storage system supplies the heat to operate the power plant. A technically feasible, relatively efficient configuration is proposed for incorporating this type of energy storage system into a solar power plant. Complete material and energy balances are presented for a base case that represents a middle range of expected operating conditions. Equipment sizes and costs were estimated for the base case to obtain an approximate value for the cost of the electricity that would be produced from such an installation. In addition, the sensitivity of the efficiency of the system to variations in design and operating conditions was determined for the most important parameters and design details. In the base case the solar tower receives heat at a net rate of 230 MW(t) for a period of eight hours. Daytime electricity is about 30 MW(e). Nighttime generation is at a rate of about 15 MW(e) for a period of sixteen hours. The overall efficiency of converting heat into electricity is about 26%. The total capital cost for the base case is estimated at about $68 million, of which about 67% is for the tower and heliostats, 11% is for the daytime power plant, and 22% is for the storage system. The average cost of the electricity produced for the base case is estimated to be about 11 cents/kW(e)-hr.

  1. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. PMID:24342048

  2. Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1989-04-28

    This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

  3. Souls in Extremis: Enacting Processes of Recovery from Homelessness Among Older African American Women.

    Science.gov (United States)

    Moxley, David P; Washington, Olivia G M

    2016-06-01

    In a midwestern city of the USA, the authors implemented the Leaving Homelessness Intervention Research Project-and its eight subprojects-to further understand homelessness as experienced by older minority women, develop intervention strategies to facilitate the movement of the participants out of homelessness, and illuminate the women's recovery process. After reviewing the social issue of homelessness among older African American women in the USA, and offering a framework on recovery and qualitative themes of recovery among participants involved in the Telling My Story subproject, the authors present a four-factor model of recovery-focused practice. The model reflects two recovery paradigms: one that is responsive to the negative consequences people experience as a result of their exposure to extreme situations, such as homelessness, and a proactive one in which assistance is designed to help people in recovery advance their own self-development and move forward their process of individuation. PMID:26781673

  4. Sulfur cycling in freshwater sediments

    Science.gov (United States)

    Klug, M. J.

    1985-01-01

    Organic sulfur containing compounds represent greater than 80% of the total sulfur in sediments of eutrophic freshwater lakes. Although sedimentary sulfur is predominantly in the form of organic compounds, more sulfur is transformed by sulfate reduction than by any other process. Rates of sulfate reduction in these sediments average 7 mmol/sq m/day. This rate is 19 times greater than the net rate of production of inorganic sulfur from organic compounds on an annual basis.

  5. The Waste - heat Recovery and Equipment Selection of the 200kt/a - Output Plant of the Sulfuric Acid by Pyrite Roasting%年产20万t硫铁矿制酸装置的余热回收和相关设备选型

    Institute of Scientific and Technical Information of China (English)

    陈雄

    2011-01-01

    介绍了200kt/a硫铁矿制酸的余热回收和利用,主要分为高温、中温、低温余热,并介绍了相应的设备选型过程。%The waste- heat recovery of the 200kt/a- output plant of the sulfuric acid by pyrite roasting was introduced, including high temperature waste- heat, middle temperature waste- heat, low temperature waste - heat. And the process of equipment selection was also mentioned.

  6. Sorption dehumidification and heat recovery: applications in industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Longo, G.A. (Padua Univ. (Italy)); Piccininni, F. (Politecnico di Bari (Italy). Ist. di Fisica Tecnica)

    1992-09-01

    A new sorption dehumidification plant is proposed for industrial drying. It works with a LiBr-H[sub 2]O mixture and it recovers a large fraction of sensible and latent heat from the exhaust air. It gives an energy saving higher than 25% if compared with a conventional air drying plant equipped with a heat recovery system. A scheme operating in a closed loop is also considered. (author).

  7. Petroleum recovery process utilizing formaldehyde-sulfite-reacted polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-09-25

    Micellar slugs followed by thickened water floods were injected into Berea cores (20.4 percent porosity, 398.4 md permeability, see Patent 3,692,113 for pretreatment) for enhanced oil recovery. About 61.1 percent residual oil was produced when the polymer in the thickened water was sulfomethylated hydrolyzed polyacrylamide. However, use of the conventional unhydrolyzed polyacrylamide recovered only 27.7 percent residual oil.

  8. Resource Recovery of Magnesium Saponification Wastewater of Leaching Solution of Sulfuric Acid Calcining RE Concentrate%浓硫酸高温焙烧稀土精矿水浸液镁皂化废水的资源化

    Institute of Scientific and Technical Information of China (English)

    刘磊; 谢军; 李赫; 柳凌云; 侯少春; 萨如拉; 姚龙君

    2015-01-01

    研究了包头稀土精矿浓硫酸高温焙砂水浸液经过镁皂化萃取转型产生的镁皂废水的资源化全循环工艺,针对镁皂废水的净化除杂、晶体制备、晶体煅烧等进行了可行性研究。结果表明:控制草酸用量为理论量的2倍,镁皂废水的氧化钙质量浓度<0.2g/L ;净化后的镁皂废水经陶瓷膜过滤、纳滤膜浓缩得到的透析水可回用于水浸,浓水进入蒸发系统回收硫酸镁和冷凝水;冷凝水回用于水浸,硫酸镁晶体与碳粉在850℃下煅烧8 h可制备氧化镁;所得氧化镁的 CAA 活性值为109 s ,MgO 质量分数为96.84%,CaO 质量分数为0.52%,可用于生产稀土;硫酸镁煅烧产生的二氧化硫在钒触媒催化作用下可转化成70%的硫酸,回用于焙烧。该工艺可实现镁皂废水资源化全循环利用。%The resource recovery of magnesium saponification wastewater of leaching solution of sulfuric acid calcining rare earth concentrate was studied mainly involving the progresses of purification ,crystallization ,calcination and so on .T he experiment results show w hen the actual amount of oxalic acid is twice the theoretical amount ,the content of CaO in the magnesium saponification wastewater can be reduced to less than 2% .Then the dialysis water by ceramic membrane and nanofiltration membrane can be used in the process of RE leaching ,and the concentrate water can be used to recover magnesium sulfate and condensate water in evaporation system .The condensate water can used in the process of RE leaching .The magnesium sulfate crystal with carbon powder is calcinated for 8 h at 850 ℃ ,the magnesium oxide can be obtained .The analysis results show that in the magnesium oxide ,the content of MgO and CaO is 96 .84% and 0 .52% ,respectively .The value of CAA for the magnesium oxide is 109 s .Sulfur dioxide produced in the process of calcination can be conversed into 70% sulfuric acid used in the process

  9. Cytoplasmic sulfur trafficking in sulfur-oxidizing prokaryotes.

    Science.gov (United States)

    Dahl, Christiane

    2015-04-01

    Persulfide groups are chemically versatile and participate in a wide array of biochemical pathways. Although it is well documented that persulfurated proteins supply a number of important and elaborate biosynthetic pathways with sulfane sulfur, it is far less acknowledged that the enzymatic generation of persulfidic sulfur, the successive transfer of sulfur as a persulfide between multiple proteins, and the oxidation of sulfane sulfur in protein-bound form are also essential steps during dissimilatory sulfur oxidation in bacteria and archaea. Here, the currently available information on sulfur trafficking in sulfur oxidizing prokaryotes is reviewed, and the idea is discussed that sulfur is always presented to cytoplasmic oxidizing enzymes in a protein-bound form, thus preventing the occurrence of free sulfide inside of the prokaryotic cell. Thus, sulfur trafficking emerges as a central element in sulfur-oxidizing pathways, and TusA homologous proteins appear to be central and common elements in these processes.

  10. Platinum group metal recovery and catalyst manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. S.; Kim, Y. S.; Yoo, J. H.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Lee, S. H.; Paek, S. W.; Kang, H. S.

    1998-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metal such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solution was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400 m{sup 2}/g. The content of palladium impregnated on the support was 10 wt.%. Hydrogen isotope exchange efficiency of 93 % to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its actively is unimportant as in nuclear industries. (author). 63 refs., 38 tabs., 36 figs.

  11. 降低硫黄装置尾气SO2排放浓度的探索%Study on reduction of tail gas SO2 emission of sulfur recovery unit

    Institute of Scientific and Technical Information of China (English)

    王有义; 张宝庆

    2011-01-01

    The 20,000 TPY sulfur recovery unit in SINOPEC Tahe Company was started up in December 7, 2004, In more than one year' s operation after start-up, the tail gas SO2 emission of sulfur recovery unit failed to meet the design specifications, and the SO2 emission exceeded standard specifications. After extensive study , four major causes were located, I. E. 1) imprecise air supply for Claus system, 2) large diameter of packings in tail gas absorber and lower design solvent recycle rate, 3) failure to cool down high-temperature solvent, 4) poor lean solvent quality because of overload of solvent regeneration. To solve these problems, the unit was revamped in the turnaround in May, 2006. The SO2 concentration in emission was 500-803 mg/m3 after revamping. In July 1, 2011, China Environmental Protection Bureau began to implement new emission standard, which is lower than 400 mg/m for SO2 in tail gas of sulfur recovery unit. To meet the new standard, the off-specification causes were analyzed and process parameters were adjusted. As the result, the SO2 emission was gradually lowered and was finally reduced to 300 mg/m .%中国石油化工股份有限公司塔河分公司2×104 t/a硫黄回收装置于2004年10月底建成,12月7日开工,开工后经一年多调整工艺操作,硫黄装置尾气中SO2排放浓度达不到设计值,超标排放,经查找原因,有4大影响因素:①克劳斯系统不能精确配风;②尾气吸收塔填料直径大,溶剂循环量设计偏小;③溶剂温度高,冷却不下;④溶剂再生超负荷,造成贫液质量差.针对上述4个问题在2006年5月大修时进行技改,开工后尾气中SO2排放质量浓度为500 ~ 803 mg/m3.2011年国家环保部要求制硫尾气中SO2于7月1日后实施新标准400 mg/m3以下.根据这一标准,经分析原因及针对性调整工艺参数,分段查找影响因素,逐步修正工艺参数,使制硫尾气中SO2排放浓度逐步下降,最终使尾气中SO2

  12. Waste heat and water recovery opportunities in California tomato paste processing

    International Nuclear Information System (INIS)

    Water and energy efficiency are important for the vitality of the food processing industry as demand for these limited resources continues to increase. Tomato processing, which is dominated by paste production, is a major industry in California – where the majority of tomatoes are processed in the United States. Paste processing generates large amounts of condensate as moisture is removed from the fruit. Recovery of the waste heat in this condensate and reuse of the water may provide avenues to decrease net energy and water use at processing facilities. However, new processing methods are needed to create demand for the condensate waste heat. In this study, the potential to recover condensate waste heat and apply it to the tomato enzyme thermal inactivation processing step (the hot break) is assessed as a novel application. A modeling framework is established to predict heat transfer to tomatoes during the hot break. Heat recovery and reuse of the condensate water are related to energy and monetary savings gained through decreased use of steam, groundwater pumping, cooling towers, and wastewater processing. This analysis is informed by water and energy usage data from relevant unit operations at a commercial paste production facility. The case study indicates potential facility seasonal energy and monetary savings of 7.3 GWh and $166,000, respectively, with most savings gained through reduced natural gas use. The sensitivity of heat recovery to various process variables associated with heat exchanger design and processing conditions is presented to identify factors that affect waste heat recovery. - Highlights: • The potential to recovery waste heat in tomato paste processing is examined. • Heat transfer from evaporator condensate to tomatoes in the hot break is modeled. • Processing facility data is used in model to predict heat recovery energy savings. • The primary benefit of heat recovery is reduced use of natural gas in boilers. • Reusing

  13. Research process of lithium-sulfur batteries%锂硫电池正极材料研究进展

    Institute of Scientific and Technical Information of China (English)

    罗晓华; 余瑞芳

    2014-01-01

    锂硫电池是一类极具发展前景的高容量储能体系,将是下一代电动汽车以及混合电动汽车的化学能源。通过十余年的研究和开发,虽然对其电化学过程中复杂反应机理还没有完整系统的理论描述,但是围绕锂硫电池的研究取得了很多成果。回顾了过去十余年在锂硫电池正极材料领域取得的研究成果,介绍了锂硫电池正极材料的研究现状,分析了该体系的缺陷和存在的问题,并展望了今后锂硫电池的研究方向。%Lithium-sulfur battery is a high capacity energy storage system with bright future,and it is considered as the next generation portable energy supply device for electric vehicle(EV)and hybrid electric vehicle(HEV).Through decades of research and development,people understand the system stepwisely.The electrochemistry mechanism of sulfur cathode is very complex and hard to examine,which is the key point to develop lithium-sulfur battery.Although there are many unknown mechanism in the electrochemical process of charge/discharge of the lithium sul-fur battery,some achievements have been made on the development of cathode materials which provide various sources to study.The achievements on lithium sulfur battery in the past decade from the respects of lithium sulfur battery system and cathode materials are reviewed in this pa-per.The weaknesses are revealed and the future is prospected.

  14. Downstream extraction process development for recovery of organic acids from a fermentation broth.

    Science.gov (United States)

    Bekatorou, Argyro; Dima, Agapi; Tsafrakidou, Panagiotia; Boura, Konstantina; Lappa, Katerina; Kandylis, Panagiotis; Pissaridi, Katerina; Kanellaki, Maria; Koutinas, Athanasios A

    2016-11-01

    The present study focused on organic acids (OAs) recovery from an acidogenic fermentation broth, which is the main problem regarding the use of OAs for production of ester-based new generation biofuels or other applications. Specifically, 10 solvents were evaluated for OAs recovery from aqueous media and fermentation broths. The effects of pH, solvent/OAs solution ratios and application of successive extractions were studied. The 1:1 solvent/OAs ratio showed the best recovery rates in most cases. Butyric and isobutyric acids showed the highest recovery rates (80-90%), while lactic, succinic, and acetic acids were poorly recovered (up to 45%). The OAs recovery was significantly improved by successive 10-min extractions. Alcohols presented the best extraction performance. The process using repeated extractions with 3-methyl-1-butanol led to the highest OAs recovery. However, 1-butanol can be considered as the most cost-effective option taking into account its price and availability. PMID:27560489

  15. Experimental analysis of an adsorption refrigerator with mass and heat-pipe heat recovery process

    International Nuclear Information System (INIS)

    Highlights: ► We develop one heat pipe type adsorption refrigerator. ► New compound adsorbent of CaCl2/activated carbon–ammonia can work more effectively. ► Combined mass recovery-heat pipe heat recovery can improve adsorption performance. ► Combined mass recovery-heat pipe heat recovery can reduce cycle time. - Abstract: A heat pipe type adsorption refrigerator system is proposed and investigated, which can be powered by solar energy or waste heat of engine. The study assesses the performance of compound adsorbent (CaCl2 and activated carbon)–ammonia adsorption refrigeration cycle with different orifice sets and different mass and heat recovery processes by experimental prototype machine. Specific cooling power (SCP) and coefficient of performance (COP) were calculated with experimental data to analyze the influences of operating condition. The results show that the jaw opening of the hand needle nozzle can influence the adsorption performance obviously and the thermostatic expansion valve (TEV) is effective in the intermediate cycle time in the adsorption refrigeration system. The SCP of the cycle with the mass-heat recovery together (combined recovery process) is superior to that of the conventional cycles with mass recovery or heat recovery independently.

  16. Advances in uranium ore processing and recovery from non-conventional resources

    International Nuclear Information System (INIS)

    The main topics covered by the technical sessions were: in situ and heap leaching, improvements in conventional acid and alkaline uranium ore processing, recovery of uranium from wet-process phosphoric acid and recovery of uranium from coal and from natural waters. The technical sessions concluded with three panel discussions dealing with pre-concentration and benefication, in situ and heap leaching, and recovery of uranium from wet-process phosphoric acid. The present volume includes 18 of the 27 presented papers. A separate abstract was prepared for each of these papers

  17. Sulfur and carbon geochemistry of the Santa Elena peridotites: Comparing oceanic and continental processes during peridotite alteration

    Science.gov (United States)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Gazel, Esteban; Madrigal, Pilar

    2016-05-01

    Ultramafic rocks exposed on the continent serve as a window into oceanic and continental processes of water-peridotite interaction, so called serpentinization. In both environments there are active carbon and sulfur cycles that contain abiogenic and biogenic processes, which are eventually imprinted in the geochemical signatures of the basement rocks and the calcite and magnesite deposits associated with fluids that issue from these systems. Here, we present the carbon and sulfur geochemistry of ultramafic rocks and carbonate deposits from the Santa Elena ophiolite in Costa Rica. The aim of this study is to leverage the geochemistry of the ultramafic sequence and associated deposits to distinguish between processes that were dominant during ocean floor alteration and those dominant during low-temperature, continental water-peridotite interaction. The peridotites are variably serpentinized with total sulfur concentrations up to 877 ppm that is typically dominated by sulfide over sulfate. With the exception of one sample the ultramafic rocks are characterized by positive δ34Ssulfide (up to + 23.1‰) and δ34Ssulfate values (up to + 35.0‰). Carbon contents in the peridotites are low and are isotopically distinct from typical oceanic serpentinites. In particular, δ13C of the inorganic carbon suggests that the carbon is not derived from seawater, but rather the product of the interaction of meteoric water with the ultramafic rocks. In contrast, the sulfur isotope data from sulfide minerals in the peridotites preserve evidence for interaction with a hydrothermal fluid. Specifically, they indicate closed system abiogenic sulfate reduction suggesting that oceanic serpentinization occurred with limited input of seawater. Overall, the geochemical signatures preserve evidence for both oceanic and continental water-rock interaction with the majority of carbon (and possibly sulfate) being incorporated during continental water-rock interaction. Furthermore, there is

  18. Thermodynamics calculation on the oxidation and sulfur removal abilities of slag in EAF dust pellet reduction process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The valuable metals in the dust can be recycled by mixing it with reducing agent carbon and lignosulfonate as the binder to make pellets, then returning the pellets to electric arc furnace (EAF) and adding ferro-silicon. Part of valuable metals in the dust is reduced by carbon and part of them reduced by ferro-silicon for the economical consideration. The reduced metals get into the steel in the stainless steel or special steel production. But the sulfur in the lignosulfonate may affect the quality of produced steel, which is dependent on the status of the smelting slag. The experiments were conducted in the way of changing the ratio of start iron, pellets, ferro-silicon and lime. The content of the slag was checked by XRF for the calculation thermodynamics study. The active concentrations of materials in the slag, the slag abilities of oxidation and sulfur removal in EAF dust reduction process were determined by thermodynamics calculation study on CaO-MgO-FeO-Fe2O3-SiO2-S slag at 1 550 ℃. The oxidation ability of slag can be expressed as N(FetO)=N(FeO)+6N(Fe2O3)+8N(Fe3O4). The sulfur removal ability is dependent on the amount of added ferro-silicon and the basicity of the slag. The calculation thermodynamics model was set up and it could be applied to the practical production.

  19. Secondary oil recovery process. [two separate surfactant slugs

    Energy Technology Data Exchange (ETDEWEB)

    Fallgatter, W.S.

    1969-01-14

    Oil recovery by two separate surfactant slugs is greater than for either one alone. One slug contains a surfactant(s) in either oil or water. The other slug contains surfactant(s) in thickened water. The surfactants are sodium petroleum sulfonate (Promor SS20), polyoxyethylene sorbitan trioleate (Tween 85), lauric acid diethanolamide (Trepoline L), and sodium tridecyl sulfate polyglycol ether (Trepenol S30T). The thickener is carboxymethyl cellulose (Hercules CMC 70-S Medium thickener) or polyvinyl alcohol (Du Pont Elvanol 50-42). Consolidated sandstone cores were flooded with water, followed with Hawes crude, and finally salt water (5 percent sodium chloride) which recovered about 67 percent of the crude. A maximum of 27.5 percent of the residual oil was recovered by surfactant(s) in oil or water followed by fresh water, then surfactant(s) plus thickener in water followed by fresh water. Either surfactant slug may be injected first. Individually, each of the surfactant slugs can recover from about 3 to 11 percent less residual oil than their total recovery when used consecutively.

  20. Formation of binary silver sulfide clusters and sulfur sensitization of photographic process

    Institute of Scientific and Technical Information of China (English)

    彭必先; 崔卫东; 于忠德; 高振; 朱起鹤; 孔繁敖

    1997-01-01

    Formation of silver sulfide binary cluster ions,as well as the effects of silver and sulfur content proportion,the cluster size range,the influence of laser fluence,the UV laser photolysis,etc.,was studied with the laser ablation method and a tandem time-of-flight mass spectrometer.The results show that there exist two different forms of positively charge-bearing cluster ions;[(Ag2S)n Ag] + and [ (Ag2S)n-1 Ag3]+.The most possible forms of the sulfur sensitization centers acting as traps of photoelectrons are [Ag2S] +,[ Ag2S Ag] +,[ Ag2S Ag3]+ and the analogs.

  1. Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.

    Science.gov (United States)

    Li, Qian-Zhu; Jiang, Xing-Lin; Feng, Xin-Jun; Wang, Ji-Ming; Sun, Chao; Zhang, Hai-Bo; Xian, Mo; Liu, Hui-Zhou

    2016-01-01

    The new movement towards green chemistry and renewable feedstocks makes microbial production of chemicals more competitive. Among the numerous chemicals, organic acids are more attractive targets for process development efforts in the renewable-based biorefinery industry. However, most of the production costs in microbial processes are higher than that in chemical processes, among which over 60% are generated by separation processes. Therefore, the research of separation and purification processes is important for a promising biorefinery industry. This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects in terms of recovery yields and industrial application.

  2. Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.

    Science.gov (United States)

    Li, Qian-Zhu; Jiang, Xing-Lin; Feng, Xin-Jun; Wang, Ji-Ming; Sun, Chao; Zhang, Hai-Bo; Xian, Mo; Liu, Hui-Zhou

    2016-01-01

    The new movement towards green chemistry and renewable feedstocks makes microbial production of chemicals more competitive. Among the numerous chemicals, organic acids are more attractive targets for process development efforts in the renewable-based biorefinery industry. However, most of the production costs in microbial processes are higher than that in chemical processes, among which over 60% are generated by separation processes. Therefore, the research of separation and purification processes is important for a promising biorefinery industry. This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects in terms of recovery yields and industrial application. PMID:26403818

  3. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  4. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    Science.gov (United States)

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  5. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yorstos, Yannis C.

    2003-03-19

    The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

  6. Local Risk-Minimization for Defaultable Claims with Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, Francesca, E-mail: biagini@mathematik.uni-muenchen.de [LMU, Department of Mathematics (Germany); Cretarola, Alessandra, E-mail: alessandra.cretarola@dmi.unipg.it [Universita degli Studi di Perugia, Dipartimento di Matematica e Informatica (Italy)

    2012-06-15

    We study the local risk-minimization approach for defaultable claims with random recovery at default time, seen as payment streams on the random interval [0,{tau} Logical-And T], where T denotes the fixed time-horizon. We find the pseudo-locally risk-minimizing strategy in the case when the agent information takes into account the possibility of a default event (local risk-minimization with G-strategies) and we provide an application in the case of a corporate bond. We also discuss the problem of finding a pseudo-locally risk-minimizing strategy if we suppose the agent obtains her information only by observing the non-defaultable assets.

  7. Use of WSA Acid Manufacture and Recovery Process in Integrated Methanol-Ammonia Production Project%WSA制酸回收工艺在醇氨联产项目中的应用

    Institute of Scientific and Technical Information of China (English)

    宋玉国; 许慎永; 周梦远

    2014-01-01

    概述了WSA制酸回收工艺流程及其特点,同时与超级克劳斯( Super Claus )工艺进行了工艺对比。实际运行情况表明, WSA制酸回收工艺具有流程短、硫回收率高、综合能耗和运行成本低、操作弹性大等特点。%A summary is given of the process flow and special features of the WSA acid manufacture and recovery process , and a comparison is done with the Super Claus process .The actual operation shows that the WSA acid manufacture and recovery process has the characteristics of short flowsheet , high sulfur recovery , low comprehensive energy consumptions , low operating cost , and high operation flexibility .

  8. Aquatic worm reactor for improved sludge processing and resource recovery

    NARCIS (Netherlands)

    Hendrickx, T.L.G.

    2009-01-01

    Municipal waste water treatment is mainly achieved by biological processes. These processes produce huge volumes of waste sludge (up 1.5 million m3/year in the Netherlands). Further processing of the waste sludge involves transportation, thickening and incineration. A decrease in the amount of waste

  9. The global sulfur cycle

    Science.gov (United States)

    Sagan, D. (Editor)

    1985-01-01

    The results of the planetary biology microbial ecology's 1984 Summer Research Program, which examined various aspects of the global sulfur cycle are summarized. Ways in which sulfur flows through the many living and chemical species that inhabit the surface of the Earth were investigated. Major topics studied include: (1) sulfur cycling and metabolism of phototropic and filamentous sulfur bacteria; (2) sulfur reduction in sediments of marine and evaporite environments; (3) recent cyanobacterial mats; (4) microanalysis of community metabolism in proximity to the photic zone in potential stromatolites; and (5) formation and activity of microbial biofilms on metal sulfides and other mineral surfaces. Relationships between the global sulfur cycle and the understanding of the early evolution of the Earth and biosphere and current processes that affect global habitability are stressed.

  10. Sulfomethylated lignosulfonates as additives in oil recovery processes involving chemical recovery agents

    Energy Technology Data Exchange (ETDEWEB)

    Kalfoglou, G.

    1979-10-30

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of sulfomethylated lignosulfonate salt as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the sulfomethylated lignosulfonates into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  11. Sulfomethylated lignosulfonates as additives in oil recovery processes involving chemical recovery agents

    Energy Technology Data Exchange (ETDEWEB)

    Kalfoglou, G.

    1981-05-26

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of sulfomethylated lignosulfonate salt as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the sulfomethylated lignosulfonates into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  12. Acceptance and Avoidance Processes at Different Levels of Psychological Recovery from Enduring Mental Illness.

    Science.gov (United States)

    Siqueira, Vinicius R; Oades, Lindsay G

    2015-01-01

    Objective. This study examined the use of psychological acceptance and experiential avoidance, two key concepts of Acceptance and Commitment Therapy (ACT), in the psychological recovery process of people with enduring mental illness. Method. Sixty-seven participants were recruited from the metropolitan, regional, and rural areas of New South Wales, Australia. They all presented some form of chronic mental illness (at least 12 months) as reflected in DSM-IV Axis I diagnostic criteria. The Acceptance and Action Questionnaire (AAQ-19) was used to measure the presence of psychological acceptance and experiential avoidance; the Recovery Assessment Scale (RAS) was used to examine the levels of psychological recovery; and the Scales of Psychological Well-Being was used to observe if there are benefits in utilizing psychological acceptance and experiential avoidance in the recovery process. Results. An analysis of objectively quantifiable measures found no clear correlation between the use of psychological acceptance and recovery in mental illness as measured by the RAS. The data, however, showed a relationship between psychological acceptance and some components of recovery, thereby demonstrating its possible value in the recovery process. Conclusion. The major contribution of this research was the emerging correlation that was observed between psychological acceptance and positive levels of psychological well-being among individuals with mental illness. PMID:26576412

  13. Acceptance and Avoidance Processes at Different Levels of Psychological Recovery from Enduring Mental Illness

    Directory of Open Access Journals (Sweden)

    Vinicius R. Siqueira

    2015-01-01

    Full Text Available Objective. This study examined the use of psychological acceptance and experiential avoidance, two key concepts of Acceptance and Commitment Therapy (ACT, in the psychological recovery process of people with enduring mental illness. Method. Sixty-seven participants were recruited from the metropolitan, regional, and rural areas of New South Wales, Australia. They all presented some form of chronic mental illness (at least 12 months as reflected in DSM-IV Axis I diagnostic criteria. The Acceptance and Action Questionnaire (AAQ-19 was used to measure the presence of psychological acceptance and experiential avoidance; the Recovery Assessment Scale (RAS was used to examine the levels of psychological recovery; and the Scales of Psychological Well-Being was used to observe if there are benefits in utilizing psychological acceptance and experiential avoidance in the recovery process. Results. An analysis of objectively quantifiable measures found no clear correlation between the use of psychological acceptance and recovery in mental illness as measured by the RAS. The data, however, showed a relationship between psychological acceptance and some components of recovery, thereby demonstrating its possible value in the recovery process. Conclusion. The major contribution of this research was the emerging correlation that was observed between psychological acceptance and positive levels of psychological well-being among individuals with mental illness.

  14. Two-step optimization of pressure and recovery of reverse osmosis desalination process.

    Science.gov (United States)

    Liang, Shuang; Liu, Cui; Song, Lianfa

    2009-05-01

    Driving pressure and recovery are two primary design variables of a reverse osmosis process that largely determine the total cost of seawater and brackish water desalination. A two-step optimization procedure was developed in this paper to determine the values of driving pressure and recovery that minimize the total cost of RO desalination. It was demonstrated that the optimal net driving pressure is solely determined by the electricity price and the membrane price index, which is a lumped parameter to collectively reflect membrane price, resistance, and service time. On the other hand, the optimal recovery is determined by the electricity price, initial osmotic pressure, and costs for pretreatment of raw water and handling of retentate. Concise equations were derived for the optimal net driving pressure and recovery. The dependences of the optimal net driving pressure and recovery on the electricity price, membrane price, and costs for raw water pretreatment and retentate handling were discussed.

  15. 高砷硫金精矿提金研究%Investigation on Gold Recovery from High Arsenic Sulfur Bearing Gold Concentrate

    Institute of Scientific and Technical Information of China (English)

    段东平; 周娥; 陈思明; 李婷; 夏光祥

    2012-01-01

    广西贵港金精矿含15%~22%As,并含碳、铅等不利于氰化的元素,金直接氰化率8%~36%.采用催化氧化酸浸法预处理后,金氰化率可达92%~98%,氰渣浮选后精矿的金总收率达97%~99%.预氧化工艺在中温自热、低压、低酸操作条件下进行,废渣、废液符合环保要求.多批次小型试验及扩大试验结果表明该工艺技术指标稳定,经济可行.%Guangxi Guigang gold concentrate contained 15% ~22% As, carbon, lead and other detrimental element, gold direct cyaniding recovery was 8%~36%. Gold cyaniding recovery reached 92%~-98%, summary gold recovery after flotation of cyanide residue reached 97%~99% with pretreatment of catalytic oxidation acid leaching. The pre-oxidation process could be operated in self-heating, low pressure, low a-cidity operation conditions. Waste residue and effluent complied with environmental requirements. Results of laboratory experiments and pilot trials indicate that this technology route is stable and feasible.

  16. 某铁矿尾矿综合回收工艺研究%Study on the Comprehensive Recovery Process of Tailings from a Certain Iron Mine

    Institute of Scientific and Technical Information of China (English)

    张亚辉; 施维; 周超; 李妍; 季婷婷

    2011-01-01

    The chemical composition of tailings sands with Fe 21.77%, Cu O.20%, S 1.03 % and the phase of main mineral were analyzed, and then a process of low intensity magnetic separation-high intensity magnetic separation-reduction roasting-low intensity magnetic separation-bulk flotation of copper and sulfur-separation of copper and sulfur is made to get Fe, Cu and S.Under the optimal technical conditions obtained from tests, iron concentrate with a yield of 20.39%, Fe grade of 61.62%, Fe recovery of 57.71%, copper concentrate with Cu grade of 14.57 % , Cu recovery of 3.21% , and Sulfur concentrate with S grade of 38.21% and S recovery of 10.95% are achieved.The conclusion is that the recovery of iron minerals reaches remarkable economic benefits, but the recovery of copper and sulfide minerals are not ideal.%对某含铁21.77%、铜0.20%、硫1.03%的尾矿砂的化学成分及主要矿物物相进行了分析,并针对性地制定了铁、铜、硫回收试验的弱磁-强磁-还原焙烧-弱磁-铜硫混浮-铜硫分离原则流程,在试验确定的最优工艺技术条件下,获得了产率20.39%、铁品位61.62%、回收率57.71%的铁精矿,铜品位14.57%、回收率3.21%的铜精矿,硫品位38.21%、回收率10.95%的硫精矿.得出铁矿物回收经济效益显著、铜硫矿物回收效益不理想的结论.

  17. Recovery of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Uranium values are recovered as uranyl peroxide from wet process phosphoric acid by a solvent extraction-precipitation process. The preferred form of this process comprises a first solvent extraction with depa-topo followed by reductive stripping of the extractant with fe++ - containing phosphoric acid. After reoxidation, the uranium-containing aqueous stripping solution is extracted again with depa-topo and the pregnant organic is then stripped with a dilute ammonium carbonate solution. The resulting ammonium uranyl tricarbonate solution is then acidified, with special kerosene treatment to prevent wax formation, and the acidified solution is reacted with H2O2 to precipitate a uranyl peroxide compound

  18. Optimal operation of integrated processes. Studies on heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Glemmestad, Bjoern

    1997-12-31

    Separators, reactors and a heat exchanger network (HEN) for heat recovery are important parts of an integrated plant. This thesis deals with the operation of HENs, in particular, optimal operation. The purpose of heat integration is to save energy, but the HEN also introduces new interactions and feedback into the overall plant. A prerequisite for optimisation is that there are extra degrees of freedom left after regulatory control is implemented. It is shown that extra degrees of freedom may not always be utilized for energy optimisation, and a quantitative expression for the degrees of freedom that can be so utilized are presented. A simplified expression that is often valid is also deduced. The thesis presents some improvements and generalisations of a structure based method that has been proposed earlier. Structural information is used to divide possible manipulations into three categories depending on how each manipulation affects the utility consumption. By means of these categories and two heuristic rules for operability, the possible manipulations are ordered in a priority table. This table is used to determine which manipulation should be preferred and which manipulation should be selected if an active manipulation is saturated. It is shown that the method may correspond to split-range control. A method that uses parametric information in addition to structural information is proposed. In this method, the optimal control structure is found through solving an integer programming problem. The thesis also proposes a method that combines the use of steady state optimisation and optimal selection of measurements. 86 refs., 46 figs., 8 tabs.

  19. Initial Assessment of Sulfur-Iodine Process Safety Issues and How They May Affect Pilot Plant Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Cherry

    2006-09-01

    The sulfur-iodine process to make hydrogen by the thermochemical splitting of water is under active development as part of a U.S. Department of Energy program. An integrated lab scale system is currently being designed and built. The next planned stage of development is a pilot plant with a thermal input of about 500 kW, equivalent to about 30,000 standard liters per hour of hydrogen production. The sulfur-iodine process contains a variety of hazards, including temperatures up to 850 ºC and hazardous chemical species including SO2, H2SO4, HI, I2, and of course H2. The siting and design of a pilot plant must consider these and other hazards. This report presents an initial analysis of the hazards that might affect pilot plant design and should be considered in the initial planning. The general hazards that have been identified include reactivity, flammability, toxicity, pressure, electrical hazards, and industrial hazards such as lifting and rotating equipment. Personnel exposure to these hazards could occur during normal operations, which includes not only running the process at the design conditions but also initial inventory loading, heatup, startup, shutdown, and system flushing before equipment maintenance. Because of the complexity and severity of the process, these ancillary operations are expected to be performed frequently. In addition, personnel could be exposed to the hazards during various abnormal situations which could include unplanned phase changes of liquids or solids, leaks of process fluids or cooling water into other process streams, unintentional introducion of foreign species into the process, and unexpected side reactions. Design of a pilot plant will also be affected by various codes and regulations such as the International Building Code, the International Fire Code, various National Fire Protection Association Codes, and the Emergency Planning and Community Right-to-Know Act.

  20. Recovery Process for Lighter Hydrocarbon of Natural Gas in Liaohe Oilfield

    Institute of Scientific and Technical Information of China (English)

    Sun Fulu

    1995-01-01

    @@ Liaohe Oilfield, the third largest oilfield in China is richer in natural gas. Up to the end of 1993,the accumulative production of natural gas reached 31. 15 billion m3,among which associated gas occupied 19.83 billion m3. In the recent ten years ,more than ten of lighter hydrocarbon recovery units with different scales have been constructed. The following is describing the main process features about recovery units of 200 × 104m3/d,120× 104 m3/d and other small recovery units for lighter hydrocarbon of natural gas.

  1. Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling

    DEFF Research Database (Denmark)

    Pellerin, André; Bui, Thi Hao; Rough, Mikaella;

    2015-01-01

    of Mangrove Lake appears to include sulfide oxidation to elemental sulfur followed by the disproportionation of the elemental sulfur to sulfate and sulfide. This model also indicates that the reoxidative sulfur cycle of Mangrove Lake turns over from 50 to 80% of the sulfide produced by microbial sulfate...... that the two processes cannot be discriminated from each other....

  2. Experimental Efficiency investigation on heat recovery system used in a solar-powered desalination process

    OpenAIRE

    Rachdi, Aouatef; Qoaider, Louy; Ben-Amara, Mahmoud; Guizani, Amenallah

    2012-01-01

    The aim of this work is to experimentally study, the effect of the heat recovery on water production in a solar desalination process that is working with multiple stage humidification technique. The water production, the temperature and the humidity were tested for such a pilot plant, which operates without and with a heat recovery system. The humidifier efficiency increases with the number of the operating heat exchangers and cannot normally exceed 45% when the system operates wi...

  3. Separation and recovery of molybdenum values from uranium process waste

    International Nuclear Information System (INIS)

    A method is described of recovering molybdenum and uranium values from a process waste generated from the production of nuclear-grade uranium hexafluoride which consists of: (a) hydrolysing the process waste which contains UF6, MoF6 and MoOF4 in an aqueous solution containing ammonium carbonate and ammonium hydroxide thereby forming ammonium uranyl carbonate; (b) digesting while maintaining a pH > 9, the resulting mother liquor at a temperature of about 600-800C. to evolve CO2 and convert the ammonium uranyl carbonate to solid ammonium diuranate; (c) filtering, washing and drying the solid ammonium diuranate

  4. The chemical processing of gas-phase carbonyl compounds by sulfuric acid aerosols: 2,4-pentanedione

    Science.gov (United States)

    Nozière, Barbara; Riemer, Daniel D.

    This work investigates the interactions between gas-phase carbonyl compounds and sulfuric acid aerosols. It focuses on understanding the chemical processes, giving a first estimate of their importance in the atmosphere, and suggesting directions for further investigations. The solubility and reactivity of a compound with a large enolization constant, 2,4-pentanedione, in water/sulfuric acid solutions 0-96 wt% have been investigated at room temperature using the bubble column/GC-FID technique. 2,4-pentanedione was found to undergo aldol condensation at acidities as low as 20 wt% H 2SO 4, that is, well in the tropospheric range of aerosol composition. In agreement with well-established organic chemical knowledge, this reaction resulted in changes of color of the solutions of potential importance for the optical properties of the aerosols. 2,4-pentanedione was also found to undergo retroaldol reaction, specific to dicarbonyl compounds, producing acetone and acetaldehyde. The Henry's law coefficient for 2,4-pentanedione was found to be a factor 5 larger than the one of acetone over the whole range of acidity, with a value in water of H (297 K)=(155±27) M atm -1. A chemical system is proposed to describe the transformations of carbonyl compounds in sulfuric acid aerosols. Aldol condensation is likely to be the most common reaction for these compounds, probably involving a large number of the ones present in the atmosphere and a wide range of aerosol compositions. The enolization constant contributes as a proportional factor to the rate constant for aldol condensation, and is shown in this work to contribute as an additive constant to the Henry's law coefficient. In addition to the many important aspects of these reactions illustrated in this work, the rate of aldol condensation was estimated to be potentially fast enough for the losses of some compounds in acidic aerosols to compete with their gas-phase chemistry in the atmosphere.

  5. Exergy driven process synthesis for isoflavone recovery from okara

    NARCIS (Netherlands)

    Jankowiak, L.; Jonkman, J.; Rossier-Miranda, F.; Goot, van der A.J.; Boom, R.M.

    2014-01-01

    Isoflavones, found in soybeans and other members of the fabaceae family, are considered bioactive components of high economic value. An opportunity would be to separate isoflavones from okara, the by-product of the soymilk and tofu production. Such a process would not only valorise that side-stream

  6. Economic feasibility of biochemical processes for the upgrading of crudes and the removal of sulfur, nitrogen, and trace metals from crude oil -- Benchmark cost establishment of biochemical processes on the basis of conventional downstream technologies. Final report FY95

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.

    1996-08-01

    During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change in light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; and (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between biodegraded and biotreated oils. The downstream biotechnological crude oil processing research performed thus far is of laboratory scale and has focused on demonstrating the technical feasibility of downstream processing with different types of biocatalysts under a variety of processing conditions. Quantitative economic analysis is the topic of the present project which investigates the economic feasibility of the various biochemical downstream processes which hold promise in upgrading of heavy crudes, such as those found in California, e.g., Monterey-type, Midway Sunset, Honda crudes, and others.

  7. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Energy Technology Data Exchange (ETDEWEB)

    Braganca, S.R.; Castellan, J.L. [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2009-04-15

    A metamorphic limestone and a dolomite were employed as SO{sub 2} sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidized bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O{sub 2} level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (similar to 60%) for Ca/S = 2 was obtained.

  8. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Braganca; J.L. Castellan [Federal University of Rio Grande do Sul, Porto Alegre (Brazil)

    2009-07-01

    A metamorphic limestone and a dolomite were employed as SO{sub 2} sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidised bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O{sub 2} level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (about 60%) for Ca/S = 2 was obtained. 25 refs., 5 figs.

  9. Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Solon, Kimberly; Kazadi Mbamba, Christian;

    2016-01-01

    This paper proposes a series of extensions to functionally upgrade the IWA Anaerobic Digestion Model No. 1 (ADM1) to allow for plant-wide phosphorus (P) simulation. The close interplay between the P, sulfur (S) and iron (Fe) cycles requires a substantial (and unavoidable) increase in model......) inhibition effect and stripping to the gas phase (GH2S). The third extension (A3) accounts for chemical iron (III) (SFe 3+) reduction to iron (II) (SFe 2+) using hydrogen (SH2) and sulfides (SIS) as electron donors. A set of pre/post interfaces between the Activated Sludge Model No. 2d (ASM2d) and ADM1...... (SSO4) reduction by XSRB and storage of XPHA by XPAO; and, (2) decrease of acetoclastic and hydrogenotrophic methanogenesis due to ZH2S inhibition. Model A3 shows the potential for iron to remove free SIS (and consequently inhibition) and instead promote iron sulfide (XFeS) precipitation. It also...

  10. Processing ix spent resin waste for C-14 isotope recovery

    International Nuclear Information System (INIS)

    A process developed at Ontario Hydro for recovering carbon-14 (C-14) from spent ion exchange resin wastes is described. Carbon-14 is an undesirable by-product of CANDU1 nuclear reactor operation. It has an extremely long (5730 years) half-life and can cause dosage to inhabitants by contact, inhalation, or through the food cycle via photosynthesis. Release of carbon-14 to the environment must be minimized. Presently, all the C-14 produced in the Moderator and Primary Heat Transport (PHT) systems of the reactor is effectively removed by the respective ion exchange columns, and the spent ion exchange resins are stored in suitably engineered concrete structures. Because of the large volumes of spent resin waste generated each year this method of disposal by long term storage tends to be uneconomical; and may also be unsatisfactory considering the long half-life of the C-14. However, purified C-14 is a valuable commercial product for medical, pharmaceutical, agricultural, and organic chemistry research. Currently, commercial C-14 is made artificially in research reactors by irradiating aluminum nitride targets for 4.5 years. If the C-14 containing resin waste can be used to reduce this unnecessary production of C-14, the total global build-up of this radioactive chemical can be reduced. There is much incentive in removing the C-14 from the resin waste to reduce the volume of C-14 waste, and also in purifying the recovered C-14 to supply the commercial market. The process developed by Ontario Hydro consists of three main steps: C-14 removal from spent resins, enrichment of recovered C-14, and preparation of final product. Components of the process have been successfully tested at Ontario Hydro's Research Division, but the integration of the process is yet to be demonstrated. A pilot scale plant capable of processing 4 m3 of spent resins annually is being planned for demonstrating the technology. The measured C-14 activity levels on the spent resins ranged from 47-213 Ci

  11. A combined cesium-strontium extraction/recovery process

    International Nuclear Information System (INIS)

    A new solvent extraction process for the simultaneous extraction of cesium and strontium from acidic nitrate media is described. This process uses a solvent formulation comprised of 0.05 M di-t-butylcyclohexano-18-crown-6 (DtBuCH18C6), 0.1 M Crown 100' (a proprietary, cesium-selective derivative of dibenzo-18-crown-6), 1.2 M tributyl phosphate (TBP), and 5% (v/v) lauryl nitrile in an isoparaffinic hydrocarbon diluent. Distribution ratios for cesium and strontium from 4 M nitric acid are 4.13 and 3.46, respectively. A benchtop batch countercurrent extraction experiment indicates that >98% of the cesium and strontium initially present in the feed solution can be removed in only four extraction stages. Through proper choice of extraction and strip conditions, extracted cesium and strontium can be recovered either together or individually

  12. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.

    Science.gov (United States)

    Chen, Haihan; Grassian, Vicki H

    2013-09-17

    Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.

  13. Development of novel processes for Cu concentrates without producing sulfuric acid; Hiryusan hasseigata no atarashii doshigen shori gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Noguchi, F.; Takasu, T.; Ito, H. [Kyushu Inst. of Technology, Kitakyushu (Japan). Faculty of Engineering

    1997-02-01

    In the refining process for the production of copper from pyrites, heat treatment is carried out in a neutral atmosphere so that part of the sulphur will be collected in the form of simple sulfur and that pyrites naturally low in reactivity will be made active. A basic study is also conducted of a very high speed electrolytic method. The chemical aspects of pyrites which are various in composition (mainly CuFeS2) are clarified by X-ray diffraction, and then is subjected to heat-treatment in a 773K-1073K argon atmosphere. There is a decrease in the amount of sulfur at a temperatures not lower than 973K. The X-ray main diffraction line splits for the emergence of some lower angle diffraction lines. The specimen is then subjected to a leach test in a copper chloride base liquor, to disclose that leachability grows remarkably higher in the presence of a great change in the X-ray diffraction lattice constant. An experiment follows in which an electrolyte is allowed to flow at a high speed for accelerating the rate of electrolytic refining in an effort to prevent the passivation of anode and deposition of dendrite on the cathode that is apt to occur when the current density is high. Passivation is prevented when the flow rate is 10m/min or higher in the vicinity of the anode surface for the formation of a smooth electrodeposited surface. 2 refs., 2 figs., 2 tabs.

  14. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    Science.gov (United States)

    Ramkumar, Shwetha; Fan, Liang-Shih

    2013-07-30

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  15. Experimental study on the Bunsen reaction using an ionic liquid in thermochemical iodine-sulfur process for hydrogen production

    International Nuclear Information System (INIS)

    The feasibility of the Bunsen reaction using an ionic liquid (IL) containing iodide ions as the solvent was experimentally examined to improve the thermal efficiency of a thermochemical water-splitting iodine-sulfur (IS) process for hydrogen production using a high-temperature gas-cooled reactor (HTGR) by increasing the hydrogen iodide (HI) concentration in the Bunsen reaction. The solubility of the reactants of the Bunsen reaction, iodine (I2) and sulfur dioxide (SO2), in the IL was measured to confirm the feasibility of the reaction. 1-Butyl-3-methylimidazolium iodide ([bimi][I]) showed an I2 solubility of 4.78 mol/mol at room temperature, which was 2.47 times higher than that in hydriodic acid. [bimi][I] also showed a high SO2 solubility of 3.42 mol/mol, which was 125 times higher than that in water. The feasibility of the Bunsen reaction using the IL was confirmed in terms of the increases in I2 and SO2 concentrations in the Bunsen reaction. The HI concentration in the hydriodic acid in the Bunsen reaction using [bimi][I] was preliminary examined at room temperature, ambient pressure, and reactant composition of IL:I2:SO2:H2O=0.25-0.5:0.51-2.1:1.0:1.0 (molar ratio). The maximum HI concentration was 24.5 mol% (=69.8 wt%), which was higher than that obtained by the conventional Bunsen reaction. (author)

  16. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    Energy Technology Data Exchange (ETDEWEB)

    Ramkumar, Shwetha; Fan, Liang-Shih

    2015-11-04

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  17. Dung beetle communities in coal mining areas in the process of recovery

    Directory of Open Access Journals (Sweden)

    Joana Zamprônio Bett

    2014-09-01

    Full Text Available Dung beetles that are sensitive to environmental alterations may be used as indicator species to mark the recovery of degraded areas. This work aimed at registering and comparing the communities of Scarabaeinae located in areas with different periods of environmental recovery after being used for coal mining. This study was developed in Lauro Müller, Santa Catarina, and consisted of two areas in the process of recovery, one for one year and one for five years. Fifteen pitfall traps baited with human feces were placed in each area in order to attract the dung beetles. The counting, identification and measurement of body size and biomass of the specimens captured were carried out in the laboratory. Sampling sufficiency was verified and variables from both areas were compared using a t test. The recorded species were Canthon aff. chalybaeus, Canthon angularis, Canthon rutilans cyanescens, Deltochilum multicolor, Dichotomius sericeus, Eurysternus parallelus and Ontherus sulcator. A total of 35 individuals were captured, three in the one-year recovery area and 32 in the area under recovery for five years, C. rutilans cyanescens being the most abundant species (40.6%. All species collected were found in the five-years recovery area, whereas only C. aff. chalybaeus and D. multicolor were found in the one-year recovery area. Individuals sampled in the area with one year of recovery had an average size of 11.03 mm and average biomass of 0.051 g, whereas in the five-years recovery area the average size and the biomass of the dung beetles sampled was 12.25 mm and 0.093 g, respectively.

  18. Biological conversion of hydrogen sulfide into elemental sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Basu, R.; Clausen, E.C.; Gaddy, J.L. [Bioengineering Resources, Inc., Fayetteville, AR (United States)

    1996-12-31

    Currently, hydrogen sulfide is removed from process gas streams by a series of reactions at high temperature to produce elemental sulfur in Claus, Stretford or other processes. These physicochemical processes have high intrinsic capital and operating costs, often are restricted by contaminants, and do not effectively remove all the H{sub 2}S. As an alternative, the anaerobic, photosynthetic bacterium, Chlorobium thiosulfatophilum, has been demonstrated to convert hydrogen sulfide to elemental sulfur in a single step at atmospheric conditions. The autotrophic bacterium uses CO{sub 2} as the carbon source. Energy for cell metabolism is provided by incandescent light and the oxidation of H{sub 2}S. A bench scale study has been performed in a CSTR equipped with a sulfur separator. Optimum process conditions have been achieved to maximize cell growth and elemental sulfur production. Near total conversion of H{sub 2}S is achieved in a retention time of a few minutes. High concentrations of H{sub 2}S or organics do not affect the culture. Sulfur recovery by settling is very efficient and near theoretical yields of sulfur are achieved. Economic projections indicate that sour gas can be desulfurized for $0.08-0.12/MSCF. 13 refs.

  19. Preliminary observations of pollution of the sea bed and disturbance of sub-littoral communities in northern Brittany by oil from the Amoco Cadiz

    Energy Technology Data Exchange (ETDEWEB)

    Cabioch, L.; Dauvin, J.; Gentil, F.

    1978-11-01

    One of the peculiarities of the Amoco Cadiz oil spill was the rapid penetration of a considerable amount of oil into the sea bed. Important factors governing the logistics of the oil spill penetration are reviewed. The distribution of benthic communities in the area under consideration is described. It is concluded that the final development of the disruption produced by hydrocarbons in sublittoral benthic communities will depend largely on two general conditions: the natural capacity of the various types of habitat present to speed up or hinder their own cleansing; and the proximity of large reserves for recolonization. (1 graph, 2 maps, 6 references, 1 table)

  20. In Situ Analysis of Sulfur Species in Sulfur Globules Produced from Thiosulfate by Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes▿ †

    OpenAIRE

    Lee, Yong-Jin; Prange, Alexander; Lichtenberg, Henning; Rohde, Manfred; Dashti, Mona; Wiegel, Juergen

    2007-01-01

    The Firmicutes Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes convert thiosulfate, forming sulfur globules inside and outside cells. X-ray absorption near-edge structure analysis revealed that the sulfur consisted mainly of sulfur chains with organic end groups similar to sulfur formed in purple sulfur bacteria, suggesting the possibility that the process of sulfur globule formation by bacteria is an ancient feature.

  1. MANAGEMENT OF PROCESSING AND RECOVERY OF LEATHER WASTE

    Directory of Open Access Journals (Sweden)

    STAN Ovidiu Valentin

    2014-05-01

    Full Text Available The leather and leather goods industry development is conditioned by the development of the supply of raw materials - animal husbandry and chemical industries, sectors that tend to develop intensive on vertical - which causes a shortage of raw materials in relation with the market demand for quality products. The leather is the basic raw material of the leather and leather goods industry, this raw material is the most substantial contribution to downstream sectors, giving them a competitive advantage and it is known that the leather has the greatest potential to add value to the products in which it is incorporated. The advantages of using leather are many, the most important qualities are its hygienic properties, flexibility and adaptability to a wide variety of applications. Leather is manufactured on demand for each type of application, such as shoes, clothes, gloves, handbags, furniture upholstery or car interiors, yachts and planes. It requires better use of raw materials by using new technologies and manufacturing processes based on non-invasive methods on the environment leading to increase the product life cycle. The leather and leather goods industry is a supplier of large amounts of waste from the production cycle, waste that has the same properties and qualities as raw material used in the base product. Leather waste represents a loss for the companies, an additional cost related to storage and environmental protection.

  2. Recovery of Nutrients from Struvite Crystallization process using Dairy Manure

    Directory of Open Access Journals (Sweden)

    T.SUVATHIKA

    2016-04-01

    Full Text Available Wastes collected from dairy farm are converted into manure by various processes for their application in agricultural fields in order to yield more production of crops. But unexpectedly the nutrient present in the manure is not completely utilized by the plants sometimes due to surface water runoff, floods and certain other aspects. The production of mineral fertilizers has a significant environmental impact, including depletion of fossil fuels and minerals. Therefore, the nutrients present in this manure comprise of minerals such as Magnesium, Ammonium and Phosphate which is otherwise called as struvite. This struvite can be precipitated separately and can be made as a substitute for manure since struvite is far rich in nutrients compared to manure and also it is considered as a slow releasing fertilizer which has less soluble in water. This thesis work shows the amount of MAP (Mg, Nh4, and P nutrients generated when Dairy manure is used as the influent to the fluidized bed reactor with addition of Mgcl which acts as a precipitating agent and also the impact of struvite precipitation in the concentration of total solids, hardness, pH, BOD/COD from the dairy wastewater is observed.

  3. FASTMET(reg. sign): Proven process for steel mill waste recovery

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J.M. Jr. [Midrex Technologies, Incorporated, Charlotte, NC (United States)

    2002-07-01

    Two FASTMET{trademark} Process steel mill waste recovery plants are now in commercial operation. These FASTMET{trademark} Process facilities are converting steel mill wastes into useable iron units and valuable byproducts. This paper discusses operating experience from both plants, including waste oil fuel operation, product quality, zinc recovery and emissions testing. The first commercial FASTMET Plant was constructed at Nippon Steel's Hirohata Works, the second is now in operation at Kobe Steel's Kakogawa Works in Japan. 22 refs., 11 figs., 12 tabs.

  4. Supporting technology for enhanced oil recovery: Sixth amendment and extension to Annex IV enhanced oil recovery thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B. (USDOE Bartlesville Project Office, OK (United States)); Rivas, O. (INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela))

    1991-10-01

    This report contains the results of efforts under the six tasks of the Sixth Amendment and Extension of Annex 4, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 44 through 49. Tasks are: DOE-SUPRI-laboratory research on steam foam, CAT-SCAN, and in-situ combustion; INTEVEP-laboratory research and field projects on steam foam; DOE-NIPER-laboratory research and field projects light oil steam flooding; INTEVEP-laboratory research and field studies on wellbore heat losses; DOE-LLNL-laboratory research and field projects on electromagnetic induction tomography; INTEVEP-laoboratory research on mechanistic studies.

  5. Enhancement of the photo conversion efficiencies in Cu(In,Ga)(Se,S)2 solar cells fabricated by two-step sulfurization process

    International Nuclear Information System (INIS)

    Cu(In,Ga)(Se,S)2 (CIGSS) absorber layers were fabricated by using a modified two-stage sputter and a sequential selenization/sulfurization method, and the sulfurization process is changed from one-step to two-step. The two-step sulfurization was controlled with two different H2S gas concentrations during the sulfurization treatment. This two-step process yielded remarkable improvements in the efficiency (+0.7%), open circuit voltage (+14 mV), short circuit current (+0.23 mA/cm2), and fill factor (+0.21%) of a CIGSS device with 30 × 30 cm2 in size, owing to the good passivation at the grain boundary surface, uniform material composition among the grain boundaries, and modified depth profile of Ga and S. The deterioration of the P/N junction quality was prevented by the optimized S content in the CIGSS absorber layer. The effects of the passivation quality at the grain boundary surface, the material uniformity, the compositional depth profiles, the microstructure, and the electrical characteristics were examined by Kelvin probe force microscopy, X-ray diffraction, secondary ion mass spectrometry, scanning electron microscopy, and current-voltage curves, respectively. The two-step sulfurization process is experimentally found to be useful for obtaining good surface conditions and, enhancing the efficiency, for the mass production of large CIGSS modules

  6. Structural development and dynamic process in sulfurizing precursors to prepare Cu{sub 2}ZnSnS{sub 4} absorber layer

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Donghua, E-mail: donghua_fan@126.com [School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020 (China); Zhang, Rong [Department of Physics, Shanghai Maritime University, 1550 Haigang Avenue, Shanghai 201306 (China); Zhu, Yufu [Faculty of Mechanical Engineering, Huaiyin Institute of Technology, Huaian 223003 (China); Peng, Huiren; Zhang, Junzhi [School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020 (China)

    2014-01-15

    Highlights: • CZTS films were fabricated by sulfurizing the fabricated precursor films. • Annealing time and temperature are very important for synthesis of pure CZTS films. • Pure CZTS films with high quality can prepared at 500 °C and 90 min. • Both high temperature and long heating time causes the decomposition of CZTS films. -- Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) films were fabricated by sulfurizing the fabricated metal-precursor films under sulfur atmosphere. All samples prepared at different conditions were characterized by X-ray diffraction, Raman scattering measurements, scanning electron microscopy, energy dispersive X-ray spectroscopy, and UV spectrophotometer. We systematically studied the influence of sulfurization time and temperature on structures, morphologies, compositions, and optical properties, and analyzed deeply the transformation of structural phase and dynamic process during the formation process of CZTS films. Experimental results indicate that the proper sulfurization time and temperature play an important role in synthesizing pure CZTS films with high quality. Compared with the others, the prepared sample at 500 °C and 90 min shows uniform surface morphology, excellent crystal quality, and optical properties. Various growth conditions realize the modulation of structure, impurity phase, morphology and optical properties. The present research results are helpful for us to deeply understand the growth process of CZTS film and pave the way for realizing the fabrication of high quality CZTS absorption layer.

  7. Enhancement of the photo conversion efficiencies in Cu(In,Ga)(Se,S){sub 2} solar cells fabricated by two-step sulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, JungYup; Nam, Junggyu; Kim, Dongseop; Lee, Dongho, E-mail: dhlee0333@gmail.com, E-mail: ddang@korea.ac.kr [Photovoltaic Development Team, Energy Storage Business Division, Samsung SDI, Cheonan-si 331-300 (Korea, Republic of); Kim, GeeYeong; Jo, William [Department of Physics and New and Renewable Energy Research Center, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kang, Yoonmook, E-mail: dhlee0333@gmail.com, E-mail: ddang@korea.ac.kr [KUKIST Green School, Graduate School of Energy and Environment, Korea University, Seoul 136-701 (Korea, Republic of)

    2015-11-09

    Cu(In,Ga)(Se,S){sub 2} (CIGSS) absorber layers were fabricated by using a modified two-stage sputter and a sequential selenization/sulfurization method, and the sulfurization process is changed from one-step to two-step. The two-step sulfurization was controlled with two different H{sub 2}S gas concentrations during the sulfurization treatment. This two-step process yielded remarkable improvements in the efficiency (+0.7%), open circuit voltage (+14 mV), short circuit current (+0.23 mA/cm{sup 2}), and fill factor (+0.21%) of a CIGSS device with 30 × 30 cm{sup 2} in size, owing to the good passivation at the grain boundary surface, uniform material composition among the grain boundaries, and modified depth profile of Ga and S. The deterioration of the P/N junction quality was prevented by the optimized S content in the CIGSS absorber layer. The effects of the passivation quality at the grain boundary surface, the material uniformity, the compositional depth profiles, the microstructure, and the electrical characteristics were examined by Kelvin probe force microscopy, X-ray diffraction, secondary ion mass spectrometry, scanning electron microscopy, and current-voltage curves, respectively. The two-step sulfurization process is experimentally found to be useful for obtaining good surface conditions and, enhancing the efficiency, for the mass production of large CIGSS modules.

  8. Activity Enhancement of Vanadium Catalysts with Ultrasonic Preparation Process for the Oxidation of Sulfur Dioxide

    Institute of Scientific and Technical Information of China (English)

    Zhenxing Chen; Honggui Li; Lingsen Wang

    2003-01-01

    The effect of ultrasonic cavitations on the activity of vanadium catalysts at low temperatures for the oxidation of sulfur dioxide, in which refined carbonized mother liquor had been added, was investigated.Twenty minutes were needed to produce obvious cavitations when the catalyst raw material was treated in the 50 W ultrasonic generator. However, only 10 minutes would be needed in a 150 W ultrasonic generator.The higher the temperature of the wet material, the less time was needed to produce cavitations, and the optimal temperature was 60 ℃. The water content in the wet material mainly affected the quantity of cavitations. Ls-8 catalyst was prepared using ultrasonic. Its activity for conversion of SO2 reached to 52.5% at 410 ℃ and 4.2% at 350 ℃. The differential thermal analyses indicate that both endothermic peaks and exothermic peaks noticeably shifted forward compared with Ls catalyst prepared without ultrasonic, and SEM results show a uniform pore size distribution for Ls-8 catalyst.

  9. Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites

    Science.gov (United States)

    Sordo, Federica; Michaud, Véronique

    2016-08-01

    Glass fiber reinforced composites with a self-healing, supramolecular hybrid network matrix were produced using a modified vacuum assisted resin infusion moulding process adapted to high temperature processing. The quality and fiber volume fraction (50%) of the obtained materials were assessed through microscopy and matrix burn-off methods. The thermo-mechanical properties were quantified by means of dynamic mechanical analysis, revealing very high damping properties compared to traditional epoxy-based glass fiber reinforced composites. Self-healing properties were assessed by three-point bending tests. A high recovery of the flexural properties, around 72% for the elastic modulus and 65% of the maximum flexural stress, was achieved after a resting period of 24 h at room temperature. Recovery after low velocity impact events was also visually observed. Applications for this intrinsic and autonomic self-healing highly reinforced composite material point towards semi-structural applications where high damping and/or integrity recovery after impact are required.

  10. Sulfur Cycle

    Science.gov (United States)

    Hariss, R.; Niki, H.

    1985-01-01

    Among the general categories of tropospheric sulfur sources, anthropogenic sources have been quantified the most accurately. Research on fluxes of sulfur compounds from volcanic sources is now in progress. Natural sources of reduced sulfur compounds are highly variable in both space and time. Variables, such as soil temperature, hydrology (tidal and water table), and organic flux into the soil, all interact to determine microbial production and subsequent emissions of reduced sulfur compounds from anaerobic soils and sediments. Available information on sources of COS, CS2, DMS, and H2S to the troposphere in the following paragraphs are summarized; these are the major biogenic sulfur species with a clearly identified role in tropospheric chemistry. The oxidation of SO2 to H2SO4 can often have a significant impact on the acidity of precipitation. A schematic representation of some important transformations and sinks for selected sulfur species is illustrated.

  11. Comparison of fixation and processing methods for hairless guinea pig skin following sulfur mustard exposure. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, M.A.; Braue Jr, E.H.

    1992-12-31

    Ten anesthetized hairless guinea pigs Crl:IAF(HA)BR were exposed to 10 pi of neat sulfur mustard (HD) in a vapor cup on their skin for 7 min. At 24 h postexposure, the guinea pigs were euthanatized and skin sections taken for histologic evaluation. The skin was fixed using either 10% neutral buffered formalin (NBF), McDowell Trump fixative (4CF-IG), Zenker`s formol-saline (Helly`s fluid), or Zenker`s fluid. Fixed skin sections were cut in half: one half was embedded in paraffin and the other half in plastic (glycol methacrylate). Paraffin-embedded tissue was stained with hematoxylin and eosin; plastic-embedded tissue was stained with Lee`s methylene blue basic fuchsin. Skin was also frozen unfixed, sectioned by cryostat, and stained with pinacyanole. HD-exposed skin was evaluated histologically for the presence of epidermal and follicular necrosis, microblister formation, epidermitis, and intracellular edema to determine the optimal fixation and embedding method for lesion preservation. The percentage of histologic sections with lesions varied little between fixatives and was similar for both paraffin and plastic embedding material. Plastic-embedded sections were thinner, allowing better histologic evaluation, but were more difficult to stain. Plastic embedding material did not infiltrate tissue fixed in Zenker`s fluid or Zenker`s formol-saline. Frozen tissue sections were prepared in the least processing time and lesion preservation was comparable to fixed tissue. It was concluded that standard histologic processing using formalin fixation and paraffin embedding is adequate for routine histopathological evaluation of HD skin lesions in the hairless guinea pig.... Sulfur mustard, Vesicating agents, Pathology, Hairless guinea pig model, Fixation.

  12. Preparation of Cu2Sn3S7 Thin-Film Using a Three-Step Bake-Sulfurization-Sintering Process and Film Characterization

    Directory of Open Access Journals (Sweden)

    Tai-Hsiang Lui

    2015-01-01

    Full Text Available Cu2Sn3S7 (CTS can be used as the light absorbing layer for thin-film solar cells due to its good optical properties. In this research, the powder, baking, sulfur, and sintering (PBSS process was used instead of vacuum sputtering or electrochemical preparation to form CTS. During sintering, Cu and Sn powders mixed in stoichiometric ratio were coated to form the thin-film precursor. It was sulfurized in a sulfur atmosphere to form CTS. The CTS film metallurgy mechanism was investigated. After sintering at 500°C, the thin film formed the Cu2Sn3S7 phase and no impurity phase, improving its energy band gap. The interface of CTS film is continuous and the formation of intermetallic compound layer can increase the carrier concentration and mobility. Therefore, PBSS process prepared CTS can potentially be used as a solar cell absorption layer.

  13. Direct sulfur removal from natural gas with the redox process Sulfint HP; Desulfuration directe du gaz naturel par le procede redox Sulfint HP

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, S.; Le Strat, P.Y. [Gaz de France, GDF, 75 - Paris (France); Ballaguet, J.P.; Streicher, Ch. [Institut Francais du Petrole, IFP, 92 - Rueil Malmaison (France); Cousin, J.P.; Gessat, T. [Le Gaz Integral, 92 - Nanterre (France)

    2000-07-01

    The new redox process Sulfint HP has been developed for removing H{sub 2}S from high pressure gases. Its technical innovation lies in a separate high pressure removal of elemental sulfur particles and a subsequent low pressure oxidation of the catalyst. Only the stoichiometric quantity, needed for H{sub 2}S removal, of clear redox solution is de-pressurized. In 1998, the Sulfint HP process has been tested continuously for two months on a pilot scale utilizing natural gas from an underground storage (gas flow rate: up to 2 000 m3(n)/h [1.7 MMSCFD], pressure: 80 bar [1150 psi]). More than 10{sup 6} m3(n) (850 MMSCF) of gas with 15 ppm H{sub 2}S have been treated to less than 1 ppm as the operation of the pilot was always very smooth. The high pressure sulfur separation is performed by a filter designed for continuous high pressure operation. Filtration cartridges, constituted of flexible filtration clothes, are alternatively loaded and discharged by reverse flow. The settled sulfur cake is periodically removed through a depressurization chamber. During the pilot test, the filter operation has proved to be easy and reliable. In addition no foaming or plugging problems and no troublesome sulfur sediments have been observed. This first two months pilot tests confirmed that high pressure filtration of sulfur loaded redox solution allows to operate the overall Sulfint HP unit without any foaming or plugging problems. (authors)

  14. The Amoco CadizOil Spill: Evolution of Petroleum Hydrocarbons in the Ile Grande Salt Marshes (Brittany) after a 13-year Period

    Science.gov (United States)

    Mille, G.; Munoz, D.; Jacquot, F.; Rivet, L.; Bertrand, J.-C.

    1998-11-01

    The Ile Grande salt marshes (Brittany coast) were polluted by petroleum hydrocarbons after theAmoco Cadizgrounding in 1978. Thirteen years after the oil spill, sediments were analysed for residual hydrocarbons in order to monitor the aliphatic and aromatic hydrocarbon signatures and to assess both qualitatively and quantitatively the changes in composition of theAmoco Cadizoil. Six stations were selected in the Ile Grande salt marshes and sediments were sampled to a depth of 20 cm. For each sample, the hydrocarbon compositions were determined for alkanes, alkenes, aromatics and biomarkers (terpanes, steranes, diasteranes). Hydrocarbon levels drastically decreased between 1978 and 1991, but to different extents according to the initial degree of contamination. In 1991, hydrocarbon concentrations never exceeded 1·7 g kg-1sediment dry weight, and in most cases were less than 0·1 g kg-1sediment dry weight. Even though petroleum hydrocarbons are still present, natural hydrocarbons were also detected at several stations. Changes in some biomarker distributions were observed 13 years after the oil spill. Nevertheless, most of the biomarkers are very stable in the salt marsh environment and remain unaltered even after a 13-year period.

  15. Effets de la marée noire de l' ''Amoco Cadiz '' sur le benthos sublittoral du nord de la Bretagne

    Science.gov (United States)

    Cabioch, L.; Dauvin, J. C.; Mora Bermudez, J.; Rodriguez Babio, C.

    1980-03-01

    Effects of the “Amoco Cadiz ” oil spill on the sublittoral benthos, north of Brittany. Effects of hydrocarbons on the sublittoral macrobenthic communities have been observed through (1) studies of population dynamics of selected communities, conducted prior to the spill by the tanker “Amoco Cadiz ” in spring 1978 and (2) comparisons between the situation in summer 1978 with that in earlier years, with continuation of the observations in some selected sites. The effect of the spill has been selective, involving a limited number of species, mainly crustaceans, molluscs and the sand-urchin Echinocardium cordatum. The spill mainly affected communities on fine sediments and, to a lesser degree, those on mixed sediments. Notably, the destruction of the dominant populations of Ampelisca, in areas of fine sands in the Bay of Morlaix, has led to a marked decrease of biomass and production. Moreover, repopulation will be difficult because of the isolation of such communities on the southern side of the English Channel. The effects evolved with time; after a phase of sharp and selective mortality, which did not last more than a few weeks, secondary effects on the recruitment of the remaining species do not seem to have occurred on a large scale. Nevertheless, a proliferation of polychaetes has been noticed.

  16. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  17. Recovery of work-related stress: Complaint reduction and work-resumption are relatively independent processes

    NARCIS (Netherlands)

    W. de Vente; J.H. Kamphuis; R.W.B. Blonk; P.M.G. Emmelkamp

    2015-01-01

    Purpose: The process of recovery from work-related stress, consisting of complaint reduction and work-resumption, is not yet fully understood. The aim of this study was to investigate predictors of complaint reduction and work-resumption, as well as testing complaint reduction as a mediator in the a

  18. WESTERN RESEARCH INSTITUTE CONTAINED RECOVERY OF OILY WASTES (CROW) PROCESS - ITER

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the Contained Recovery of Oily Wastes (CROW) technology developed by the Western Research Institute. The process involves the injection of heated water into the subsurface to mobilize oily wastes, which are removed from the ...

  19. Gene recovery microdissection (GRM) a process for producing chromosome region-specific libraries of expressed genes

    Energy Technology Data Exchange (ETDEWEB)

    Christian, A T; Coleman, M A; Tucker, J D

    2001-02-08

    Gene Recovery Microdissection (GRM) is a unique and cost-effective process for producing chromosome region-specific libraries of expressed genes. It accelerates the pace, reduces the cost, and extends the capabilities of functional genomic research, the means by which scientists will put to life-saving, life-enhancing use their knowledge of any plant or animal genome.

  20. 78 FR 22451 - Cost Recovery for Permit Processing, Administration, and Enforcement

    Science.gov (United States)

    2013-04-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Parts 701, 736, 737, 738, and 750 RIN 1029-AC65 Cost Recovery for Permit Processing, Administration, and Enforcement Correction In proposed...

  1. Purification of Sulfuric and Hydriodic Acids Phases in the Iodine-sulfur Process%碘硫循环中硫酸相与氢碘酸相的纯化过程

    Institute of Scientific and Technical Information of China (English)

    白莹; 张平; 郭翰飞; 陈崧哲; 王来军; 徐景明

    2009-01-01

    Iodine-sulfur (IS) thermochemical water-splitting cycle is the most promising massive hydrogen production process. To avoid the undesirable side reactions between hydriodic acid(HI) and sulfuric acid (H2SO4), it is necessary to purify the two phases formed by the Bunsen reaction. The purification process could be achieved byreverse reaction of the Bunsen reaction. In this study, the purification of the H2SO4 and HI Phases was studied. The purification proceeded in both batches and the continuous mode, the influences of operational parameters, includingthe reaction temperature, the flow rate of nitrogen gas, and the composition of the raw material solutions, on the pu-rification effect, were investigated. Results showed that the purification of the H2SO4 phase was dominantly af-fected by the reaction temperature, and iodine ion in the sulfuric acid phase could be removed completely when the temperature was above 130℃; although, the purification effect of the HI phase improved with increasing of both the flow rate of nitrogen gas and temperature.

  2. 从某铀矿石硫酸浸出液中回收铀、铜试验研究%Experiment Research on Recovery of Uranium and Copper From Leaching Solution of Uranium Ore With Sulfuric Acid

    Institute of Scientific and Technical Information of China (English)

    刘辉; 周根茂; 孟运生; 郑英; 师留印; 程浩

    2013-01-01

      某铀矿石硫酸浸出液中含有铀和铜,研究了从中综合回收铀和铜。试验结果表明:采用201×7树脂吸附铀,用酸性氯化钠溶液淋洗负载树脂,然后用氢氧化钠溶液从淋洗液中沉淀铀,铀回收率为98.4%;对铀的吸附尾液,采用循环铁粉置换法回收铜,铜回收率为90%。采用该方法可实现铀、铜的综合回收。%Recovery of uranium and copper from sulfuric acid leaching solution of a uranium ore has been studied .The results showed that uranium recovery was 98 .4% by adsorption uranium using 201 × 7 resin from the leaching solution ,and desorption uranium using acidic sodium chloride solution from loaded resin ,then precipitating uranium from the stripping liquid .The copper in the adsorption tail liquid was be replaced using iron powder ,recovery of copper was 90% .Comprehensive recovery of uranium and copper can be realized by the method .

  3. Comparative Analysis of Processes for Recovery of Rare Earths from Bauxite Residue

    Science.gov (United States)

    Borra, Chenna Rao; Blanpain, Bart; Pontikes, Yiannis; Binnemans, Koen; Van Gerven, Tom

    2016-09-01

    Environmental concerns and lack of space suggest that the management of bauxite residue needs to be re-adressed. The utilization of the residue has thus become a topic high on the agenda for both academia and industry, yet, up to date, it is only rarely used. Nonetheless, recovery of rare earth elements (REEs) with or without other metals from bauxite residue, and utilization of the left-over residue in other applications like building materials may be a viable alternative to storage. Hence, different processes developed by the authors for recovery of REEs and other metals from bauxite residue were compared. In this study, preliminary energy and cost analyses were carried out to assess the feasibility of the processes. These analyses show that the combination of alkali roasting-smelting-quenching-leaching is a promising process for the treatment of bauxite residue and that it is justified to study this process at a pilot scale.

  4. Equipment and obtention process of phosphorus-32 starting from sulfur-32; Equipo y proceso de obtencion de fosforo-32 a partir del azufre-32

    Energy Technology Data Exchange (ETDEWEB)

    Alanis M, J. [ININ, Departamento de Materiales Radiactivos, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-12-15

    In the National Institute of Nuclear Research, it is the Radioisotopes Production plant, which covers in the area of the medicine 70% approximately of the national market and it exports to some countries of Latin America (Technetium-99, iodine-131, Sm-153 among other). At the moment the plant has modern facilities and certified with the ISO-9001-2000 standard, this, gives trust to the clients as for the quality of its products. Besides the production of radioisotopes dedicated for the medical area, the work of the plant tends to be more enlarged every time, producing new radioisotopes not only but with medical purposes but also industrial and agricultural ones, such it is the case of the production of Phosphorus-32 ({sup 32}P) that has applications with medical, industrial and in the agriculture purposes. The investigation studies from the prime matter (sulfur-32), sulfur purification, sulfur irradiation in the nuclear reactor and the obtaining process of {sup 32}P in a prototype, its took us to design and to build the obtaining process from {sup 32}P to more high level, which is presented in this work. To be able to select the obtaining method of {sup 32} P that is presented it was necessary to study the methods that have been developed in the world, later on it was selected the way that is presented. In that way the physical and chemical properties of the sulfur were studied which is used as prime matter, the interest nuclear reaction was also studied to carry out the production of {sup 32}P by means of the realization of mathematical calculations of irradiation of the sulfur in TRIGA Mark lll nuclear reactor. Once the sulfur is irradiated, it is necessary to carry out the radiochemical separation of the {sup 32}P produced from the sulfur, for this, it was necessary to carry out experimental tests of this separation, later on it was developed a prototype where it was carried out this separation and finally it was developed the final equipment of production of

  5. Modeling and field observations of char bed processes in black liquor recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Engblom, M.

    2010-07-01

    The char bed plays an important role in kraft black liquor combustion. Stable operation of the char bed promotes efficient and safe operation of the black liquor recovery boiler. It also plays a crucial role in the recovery of the pulping chemicals. Char bed operation involves controlling the char bed size and shape. Mathematical modeling based on computational fluid dynamics (CFD) haas been applied to recovery boilers for increased insights into the recovery furnace processes and to aid in the design of new boilers. So far, all CED-based char bed models reported in literature have used a fixed bed shape. This imposes restrictions on simulation of char bed burning by not considering inherently occurring changes in bed shape. In this thesis, a CED -based recovery furnace model is further developed to predict changes in bed shape. The new model is used in simulation of existing recovery boilers. The predictions of bed shape are compared with observations from real boilers. The furnace model is capable of correctly simulating the overall response of the char bed size to operational changes. This confirms the current quantitative overall understanding of char bed burning. In addition to modeling, visual observations of the char bed processes were made in this work. The observations provide validation data concerning the physical behavior of the char bed, and the findings from the observations can be used in further development of char bed models. Modeling and simulations of fundamental laboratory scale char bed experiments reported in literature are also carried out. The simulations complement the experimental data by providing detailed insights into gas phase reactions that can occur inside the gas boundary layer above a char bed. (orig.)

  6. A Unified Process Model of Syntactic and Semantic Error Recovery in Sentence Understanding

    CERN Document Server

    Holbrook, J K; Mahesh, K; Holbrook, Jennifer K.; Eiselt, Kurt P.; Mahesh, Kavi

    1994-01-01

    The development of models of human sentence processing has traditionally followed one of two paths. Either the model posited a sequence of processing modules, each with its own task-specific knowledge (e.g., syntax and semantics), or it posited a single processor utilizing different types of knowledge inextricably integrated into a monolithic knowledge base. Our previous work in modeling the sentence processor resulted in a model in which different processing modules used separate knowledge sources but operated in parallel to arrive at the interpretation of a sentence. One highlight of this model is that it offered an explanation of how the sentence processor might recover from an error in choosing the meaning of an ambiguous word. Recent experimental work by Laurie Stowe strongly suggests that the human sentence processor deals with syntactic error recovery using a mechanism very much like that proposed by our model of semantic error recovery. Another way to interpret Stowe's finding is this: the human sente...

  7. Combined effect of ohmic heating and enzyme assisted aqueous extraction process on soy oil recovery.

    Science.gov (United States)

    Pare, Akash; Nema, Anurag; Singh, V K; Mandhyan, B L

    2014-08-01

    This research describes a new technological process for soybean oil extraction. The process deals with the combined effect of ohmic heating and enzyme assisted aqueous oil extraction process (EAEP) on enhancement of oil recovery from soybean seed. The experimental process consisted of following basic steps, namely, dehulling, wet grinding, enzymatic treatment, ohmic heating, aqueous extraction and centrifugation. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on aqueous oil extraction process were investigated. Three levels of electric field strength (i.e. OH600V, OH750V and OH900V), 3 levels of end point temperature (i.e. 70, 80 and 90 °C) and 3 levels of holding time (i.e. 0, 5 and 10 min.) were taken as independent variables using full factorial design. Percentage oil recovery from soybean by EAEP alone and EAEP coupled with ohmic heating were 53.12 % and 56.86 % to 73 % respectively. The maximum oil recovery (73 %) was obtained when the sample was heated and maintained at 90 °C using electric field strength of OH600V for a holding time of 10 min. The free fatty acid (FFA) of the extracted oil (i.e. in range of 0.97 to 1.29 %) was within the acceptable limit of 3 % (oleic acid) and 0.5-3 % prescribed respectively by PFA and BIS.

  8. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD)

    International Nuclear Information System (INIS)

    The present paper is the first of a series of two articles dealing with the development of an integrated process for the recovery of zinc from electric arc furnace dust (EAFD), a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Part I presents the EAFD characterization and its leaching process by diluted sulphuric acid, whereas Part II deals with the purification of the leach liquor and the recovery of zinc by solvent extraction/electrowinning. The characterization of the examined electric arc furnace dust was carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The leaching process was based on the Zn extraction with diluted sulphuric acid from EAFD under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The zinc recovery efficiency on the basis of EAFD weight reached 80%. X-ray diffraction and scanning electron microscopy were used for the characterization of the leached residues.

  9. Sulfur isotope analysis of individual aerosol particles – a new tool for studying heterogeneous oxidation processes in the marine environment

    Directory of Open Access Journals (Sweden)

    B. W. Sinha

    2009-02-01

    Full Text Available Understanding the importance of the different oxidation pathways of sulfur dioxide (SO2 to sulfate is crucial for an interpretation of the climate effects of sulfate aerosols. Sulfur isotope analysis of atmospheric aerosol is a well established tool for identifying sources of sulfur in the atmosphere and assessment of anthropogenic influence. The power of this tool is enhanced by a new ion microprobe technique that permits isotope analysis of individual aerosol particles as small as 0.5 μm diameter. With this new single particle technique, different types of primary and secondary sulfates are first identified based on their chemical composition, and then their individual isotopic signature is measured. Our samples were collected at Mace Head, Ireland, a remote coastal station on the North Atlantic Ocean. Sea-salt-sulfate (10–60%, ammonium sulfate/sulfuric acid particles (15–65%, and non-sea-salt-sulfate (nss-sulfate on aged salt particles all contributed significantly to sulfate loadings in our samples.

    The isotopic composition of secondary sulfates depends on the isotopic composition of precursor SO2 and the oxidation process. The fractionation with respect to the source SO2 is poorly characterized. In the absence of conclusive laboratory experiments, we consider the kinetic fractionation of −9‰ during the gas phase oxidation of SO2 by OH as suggested by Saltzman et al. (1983 and Tanaka et al. (1994 to be the most reasonable estimate for the isotope fractionation during gas phase oxidation of SO2hom=0.991 and the equilibrium fractionation for the uptake of SO2(g into the aqueous phase and the dissociation to HSO3 of +16.5‰ measured by Eriksen (1972a to be the best approximation for the fractionation during oxidation in the aqueous phase (αhet=1.0165. The sulfur isotope ratio of secondary sulfate particles can

  10. Energy efficiency improvement of a Kraft process through practical stack gases heat recovery

    International Nuclear Information System (INIS)

    A process scheme for the optimal recovery of heat from stack gases considering energy and technical constraints has been developed and applied to an existing Kraft pulping mill. A system based on a closed loop recirculation of hot oil is used to recover the heat from stack gases and distribute it to the appropriate cold streams. The recovery of heat from stack gases is part of an overall optimization of the Kraft mill. Tools such as Pinch Analysis and exergy analysis are used to evaluate the process streams. The results indicate that 10.8 MW of heat from stack gases can be reused to heat process streams such as the deaerator water, hot water, drying filtrates, and black liquor. A simulation model of the recirculation loop has been developed to determine the specifications of the recovery system. The total heat exchanger surface area required by the system is 3460 m2, with a hot oil recirculation temperature of 137 oC. The anticipated total investment is $10.3 M, with a payback time of 1.8 years. - Highlights: → We developed a process design for recovering heat from stack gases in a Kraft mill. → The recovered heat is optimally distributed to the process cold streams. → Heat recovery system has a total surface area of 3500 m2 without gases condensation. → A reduction of 7 percent in total process steam demand is anticipated. → A total investment of 10.3 M$ is needed with a payback time of less than two years

  11. Novel characterization of Radix Angelicae Dahuricae before and after the sulfur-fumigation process by combining high performance liquid chromatographic fingerprint and multi-ingredients determination

    Science.gov (United States)

    Liu, Xiao; Liu, Jingjing; Cai, Hao; Li, Songlin; Ma, Xiaoqing; Lou, Yajing; Qin, Kunming; Guan, Hongyue; Cai, Baochang

    2014-01-01

    Background: Harmful sulfur-fumigation processing method is abused during Radix Angelicae Dahuricae preparation. However, the analytical technique characterizing Radix Angelicae Dahuricae before and after the sulfur-fumigation process is absent. Materials and Methods: The high performance liquid chromatography (HPLC) technique was adopted to develop methods combining finger-print analysis and multi-ingredients simultaneous determination for quality evaluation of Radix Angelicae Dahuricae before and after the sulfur-fumigation process. The chromatographic fingerprint method was established for qualitative analysis coupled with statistical cluster analysis basing on Euclidean distance. Additionally, a determination method was developed for quantitative analysis, which was able to assay the concentrations of the major coumarins including imperatorin, isoimperatorin, xanthotoxin, xanthotoxol, isoimpinellin, oxypeucedanin, and bergapten in Radix Angelicae Dahuricae simultaneously. The separations of the two methods were both achieved on a Hypersil octadecylsilyl C18 column (250 mm × 4.6 mm, 5 μm) at 35°C under different strategic gradient elution programs. The detection wavelength was set at 254 nm all the time. Method validation data indicated that the methods were both reliable and applicable. They were then used to assay different Radix Angelicae Dahuricae samples collected from good agricultural practice (GAP) bases and local herbal markets. Results: The successful application demonstrated that the combination of HPLC fingerprint and simultaneous quantification of multi-ingredients offers an efficient approach for quality evaluation of Radix Angelicae Dahuricae before and after the sulfur-fumigation process. Conclusion: In order to discriminate Radix Angelicae Dahuricae before and after the sulfur-fumigation process, oxypeucedanin, and xanthotoxol were the most sensitive biomarkers and should be determined. PMID:25210323

  12. Integrating principal component analysis and vector quantization with support vector regression for sulfur content prediction in HDS process

    Directory of Open Access Journals (Sweden)

    Shokri Saeid

    2015-01-01

    Full Text Available An accurate prediction of sulfur content is very important for the proper operation and product quality control in hydrodesulfurization (HDS process. For this purpose, a reliable data- driven soft sensors utilizing Support Vector Regression (SVR was developed and the effects of integrating Vector Quantization (VQ with Principle Component Analysis (PCA were studied on the assessment of this soft sensor. First, in pre-processing step the PCA and VQ techniques were used to reduce dimensions of the original input datasets. Then, the compressed datasets were used as input variables for the SVR model. Experimental data from the HDS setup were employed to validate the proposed integrated model. The integration of VQ/PCA techniques with SVR model was able to increase the prediction accuracy of SVR. The obtained results show that integrated technique (VQ-SVR was better than (PCA-SVR in prediction accuracy. Also, VQ decreased the sum of the training and test time of SVR model in comparison with PCA. For further evaluation, the performance of VQ-SVR model was also compared to that of SVR. The obtained results indicated that VQ-SVR model delivered the best satisfactory predicting performance (AARE= 0.0668 and R2= 0.995 in comparison with investigated models.

  13. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part II: Durability of materials

    Directory of Open Access Journals (Sweden)

    López-Delgado, A.

    2012-02-01

    Full Text Available Under the European LIFE Program a microencapsulation process was developed for liquid mercury using Sulfur Polymer Stabilization/Solidification (SPSS technology, obtaining a stable concrete-like sulfur matrix that allows the immobilization of mercury for long-term storage. The process description and characterization of the materials obtained were detailed in Part I. The present document, Part II, reports the results of different tests carried out to determine the durability of Hg-S concrete samples with very high mercury content (up to 30 % w/w. Different UNE and RILEM standard test methods were applied, such as capillary water absorption, low pressure water permeability, alkali/acid resistance, salt mist aging, freeze-thaw resistance and fire performance. The samples exhibited no capillarity and their resistance in both alkaline and acid media was very high. They also showed good resistance to very aggressive environments such as spray salt mist, freeze-thaw and dry-wet. The fire hazard of samples at low heat output was negligible.

    Dentro del Programa Europeo LIFE, se ha desarrollado un proceso de microencapsulación de mercurio liquido, utilizando la tecnología de estabilización/solidificación con azufre polimérico (SPSS. Como resultado se ha obtenido un material estable tipo concreto que permite la inmovilización de mercurio y su almacenamiento a largo plazo. La descripción del proceso y la caracterización de los materiales obtenidos, denominados concretos Hg-S, se detallan en la Parte I. El presente trabajo, Parte II, incluye los resultados de los diferentes ensayos realizados para determinar la durabilidad de las muestras de concreto Hg-S con un contenido de mercurio de hasta el 30 %. Se han utilizado diferentes métodos de ensayo estándar, UNE y RILEM, para determinar propiedades como la absorción de agua por capilaridad, la permeabilidad de agua a baja presión, la resistencia a álcali y ácido, el comportamiento en

  14. Retrofit of heat exchanger networks with pressure recovery of process streams at sub-ambient conditions

    International Nuclear Information System (INIS)

    Highlights: • New mathematical model for heat exchanger networks retrofit with pressure recovery. • Optimal heat and work integration applied to the retrofit of sub-ambient processes. • Streams pressure manipulation is used to enhance heat integration of the system. • Compressors and turbines can act on a coupling shaft and/or as stand-alone equipment. • Use of smaller amount of cold utilities, reducing significantly the operational costs. - Abstract: This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes

  15. Design of Hybrid Steam-In Situ Combustion Bitumen Recovery Processes

    International Nuclear Information System (INIS)

    Given enormous capital costs, operating expenses, flue gas emissions, water treatment and handling costs of thermal in situ bitumen recovery processes, improving the overall efficiency by lowering energy requirements, environmental impact, and costs of these production techniques is a priority. Steam-assisted gravity drainage (SAGD) is the most widely used in situ recovery technique in Athabasca reservoirs. Steam generation is done on surface and consequently, because of heat losses, the energy efficiency of SAGD can never be ideal with respect to the energy delivered to the sandface. An alternative to surface steam generation is in situ combustion (ISC) where heat is generated within the formation through injection of oxygen at a sufficiently high pressure to initiate combustion of bitumen. In this manner, the heat from the combustion reactions can be used directly to mobilize the bitumen. As an alternative, the heat can be used to generate steam within the formation which then is the agent to move heat in the reservoir. In this research, alternative hybrid techniques with simultaneous and sequential steam-oxygen injection processes are examined to maximize the thermal efficiency of the recovery process. These hybrid processes have the advantage that during ISC, steam is generated within the reservoir from injected and formation water and as a product of oxidation. This implies that ex situ steam generation requirements are reduced and if there is in situ storage of combustion gases, that overall gas emissions are reduced. In this research, detailed reservoir simulations are done to examine the dynamics of hybrid processes to enable design of these processes. The results reveal that hybrid processes can lower emitted carbon dioxide-to-oil ratio by about 46%, decrease the consumed natural gas-to-oil ratio by about 73%, reduce the cumulative energy-to-oil ratio by between 40% and 70% compared to conventional SAGD, and drop water consumption per unit oil produced

  16. Network structure dependence on unconstrained isothermal-recovery processes for shape-memory thiol-epoxy "click" systems

    Science.gov (United States)

    Belmonte, Alberto; Fernández-Francos, Xavier; De la Flor, Silvia; Serra, Àngels

    2016-07-01

    The shape-memory response (SMR) of "click" thiol-epoxy polymers produced using latent catalysts, with different network structure and thermo-mechanical properties, was tested on unconstrained shape-recovery processes under isothermal conditions. Experiments at several programming temperatures ( T_{prog}) and isothermal-recovery temperatures ( T_{iso}) were carried out, and the shape-memory stability was analyzed through various consecutive shape-memory cycles. The temperature profile during the isothermal-recovery experiments was monitored, and it showed that the shape-recovery process takes place while the sample is becoming thermally stable and before stable isothermal temperature conditions are eventually reached. The shape-recovery process takes place in two different stages regardless of T_{iso}: a slow initial stage until the process is triggered at a temperature strongly related with the beginning of network relaxation, followed by the typical exponential decay of the relaxation processes until completion at a temperature below or very close to Tg. The shape-recovery process is slower in materials with more densely crosslinked and hindered network structures. The shape-recovery time ( t_{sr}) is significantly reduced when the isothermal-recovery temperature T_{iso} increases from below to above Tg because the network relaxation dynamics accelerates. However, the temperature range from the beginning to the end of the recovery process is hardly affected by T_{iso}; at higher T_{iso} it is only slightly shifted to higher temperatures. These results suggest that the shape-recovery process can be controlled by changing the network structure and working at T_{iso} shape-recovery rate.

  17. Network structure dependence on unconstrained isothermal-recovery processes for shape-memory thiol-epoxy "click" systems

    Science.gov (United States)

    Belmonte, Alberto; Fernández-Francos, Xavier; De la Flor, Silvia; Serra, Àngels

    2016-07-01

    The shape-memory response (SMR) of "click" thiol-epoxy polymers produced using latent catalysts, with different network structure and thermo-mechanical properties, was tested on unconstrained shape-recovery processes under isothermal conditions. Experiments at several programming temperatures ( T_{prog}) and isothermal-recovery temperatures ( T_{iso}) were carried out, and the shape-memory stability was analyzed through various consecutive shape-memory cycles. The temperature profile during the isothermal-recovery experiments was monitored, and it showed that the shape-recovery process takes place while the sample is becoming thermally stable and before stable isothermal temperature conditions are eventually reached. The shape-recovery process takes place in two different stages regardless of T_{iso}: a slow initial stage until the process is triggered at a temperature strongly related with the beginning of network relaxation, followed by the typical exponential decay of the relaxation processes until completion at a temperature below or very close to Tg. The shape-recovery process is slower in materials with more densely crosslinked and hindered network structures. The shape-recovery time ( t_{sr}) is significantly reduced when the isothermal-recovery temperature T_{iso} increases from below to above Tg because the network relaxation dynamics accelerates. However, the temperature range from the beginning to the end of the recovery process is hardly affected by T_{iso}; at higher T_{iso} it is only slightly shifted to higher temperatures. These results suggest that the shape-recovery process can be controlled by changing the network structure and working at T_{iso} structure and/or by increasing T_{iso} to minimize the effect but increasing the shape-recovery rate.

  18. Sulfomethylated lignite salt as a sacrifical agent in oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Kudchadker, M.V.; Weiss, W.J.

    1978-02-07

    A process is described for recovering petroleum from oil reservoirs by secondary recovery methods. The process involves injecting via an injection well into the reservoir an aqueous solution of sulfomethylated lignite salt as a sacrificial agent to inhibit the deposition of surfactant and polymer on the reservoir matrix. The process is conducted by first injecting the lignite salt into the formation through the injection well and following it with either a polymer or a surfactant solution, which also may contain the lignite salt. The polymer or surfactant would then be followed by a drive fluid, such as water, to push the chemicals and oil to the production well. (18 claims)

  19. Modified Purex process for the separation and recovery of plutonium--uranium residues

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, J.D.; Leebl, R.G.

    1978-07-08

    A modified (one-cycle) Purex process has been developed for the separation and recovery of plutonium and uranium from mixed actinide residues. The process utilizes 30 vol % tributyl phosphate--dodecane to extract uranium from a 5M nitric acid-plutonium (III)-uranium(VI) feed. After uranium extraction, plutonium in the aqueous feed solution is purified by anion exchange technology. Uranium in the organic is scrubbed and stripped to effectively purify the uranium so that it contains <5,000 ppM plutonium. The process has been used successfully to separate residues consisting of plutonium and uranium oxide.

  20. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  1. A business process for enhanced heavy oil recovery research and development

    International Nuclear Information System (INIS)

    Husky Oil's enhanced oil recovery (EOR) research management processes for reducing process development time and increasing investment efficiency were described. The considerations that went into the development of the plan a decade ago were reviewed and new ideas incorporated into the revised plan were presented. Four case studies were presented to illustrate the need for process to reservoir matching. A need for strategic research planning was emphasized. Proposed technologies for enhancement of heavy oil reservoir productivity were presented in tabular form. 1 tab., 7 figs

  2. Flux Recovery of a Forward Osmosis Membrane After a Fouling Process

    Science.gov (United States)

    Gamboa-Vázquez, Sonia; Flynn, Michael; Romero Mangado, Jaione; Parodi, Jurek

    2016-01-01

    Wastewater treatment through Forward Osmosis (FO) membranes is a process that has been evaluated in the past years as an innovative technology for the Next Generation Life Support Systems. FO technologies are cost effective, and require very low energy consumption, but are subject to membrane fouling. Membrane fouling occurs when unwanted materials accumulate on the active side of the membrane during the wastewater treatment process, which leads to a decrease in membrane flow rates. Membrane fouling can be reversed with the use of antifoulant solutions. The aim of this study is to identify the materials that cause flow rate reduction due to membrane fouling, as well as to evaluate the flux recovery after membrane treatment using commercially available antifoulants. 3D Laser Scanning Microscope images were taken to observe the surface of the membrane. Fourier Transform Infrared (FTIR) spectrometry results identified possible compounds that cause membrane fouling and FO testing results demonstrated flow rate recovery after membrane treatment using antifoulants.

  3. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  4. Fluid Diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Seright, R.S.; Martin, F.D.

    1991-11-01

    This report describes progress made during the second year of the three-year project, Fluid diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes.'' The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gasfloods. The work examines how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. 93 refs., 39 figs., 43 tabs.

  5. Flux Recovery of a Forward Osmosis Membrane After a Fouling Process

    Science.gov (United States)

    Romero-Mangado, Jaione; Parodi, Jurek; Gamboa-Vazquez, Sonia; Stefanson, Ofir; Diaz-Cartagena, Diana C.; Flynn, Michael

    2016-01-01

    Wastewater treatment through forward osmosis (FO) membranes is a process that has been evaluated in the past years as an innovative technology for the Next Generation Life Support Systems. FO technologies are cost effective, and require very low energy consumption, but are subject to membrane fouling. Membrane fouling occurs when unwanted materials accumulate on the active side of the membrane during the wastewater treatment process, which leads to a decrease in membrane flux rate. The aim of this study is to identify the materials that cause flux rate reduction due to membrane fouling, as well as to evaluate the flux rate recovery after membrane treatment using commercially available antifoulants. Fourier Transform Infrared (FTIR) spectrometry results identified possible compounds that cause membrane fouling and FO testing results demonstrated flux rate recovery after membrane treatment using antifoulants.

  6. Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process

    CERN Document Server

    Nauroy, Jean-François; Guy, N; Baroni, Axelle; Delage, Pierre; Mainguy, Marc; 10.2516/ogst/2012027

    2013-01-01

    In thermally enhanced recovery processes like cyclic steam stimulation (CSS) or steam assisted gravity drainage (SAGD), continuous steam injection entails changes in pore fluid, pore pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated sandstones. This in turn increases or decreases the effective stresses and changes the elastic properties of the rocks. Thermally enhanced recovery processes give rise to complex couplings. Numerical simulations have been carried out on a case study so as to provide an estimation of the evolution of pressure, temperature, pore fluid saturation, stress and strain in any zone located around the injector and producer wells. The approach of Ciz and Shapiro (2007) - an extension of the poroelastic theory of Biot-Gassmann applied to rock filled elastic material - has been used to model the velocity dispersion in the oil sand mass under different conditions of temperature and stress. A good agreement has been found between these pre...

  7. Interfacing the tandem mirror reactor to the sulfur-iodine process for hydrogen production

    International Nuclear Information System (INIS)

    The blanket is linked to the H2SO4 vaporization units and SO3 decomposition reactor with either sodium or helium. The engineering and safety problems associated with these choices are discussed. This H2SO4 step uses about 90% of the TMR heat and is best close-coupled to the nuclear island. The rest of the process we propose to be driven by steam and does not require close-coupling. The sodium loop coupling seems to be preferable at this time. We can operate with a blanket around 1200 K and the SO3 decomposer around 1050 K. This configuration offers double-barrier protection between Li-Na and the SO3 process gases. Heat pipes offer an attractive alternate to provide an additional barrier, added modularity for increased reliability, and tritium concentration and isolation operations with very little thermal penalty

  8. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated

  9. A contribution to resource recovery from wastewater. Anaerobic processes for organic matter and nitrogen treatment

    OpenAIRE

    Basset Olivé, Núria

    2015-01-01

    Organic matter and nutrients present in urban and industrial wastewater should be removed or valorised to reduce its impact on the environment. Conventional wastewater treatments are focused on the removal of these pollution sources at the minimum cost. The idea of resource recovery from wastewater is changing the concept of the conventional wastewater treatment plants that tend to incorporate little by little processes as anaerobic digestion, MBR, biofilm, granulation, etc. However, their ap...

  10. Richness and species composition of ants in the recovery process of a gully erosion

    OpenAIRE

    Gabriel Biagiotti; José Aldo Alves Pereira; Carla Rodrigues Ribas; Vanesca Korasaki; Ronald Zanetti; Antônio César Medeiros de Queiroz

    2013-01-01

    This study aimed to determine how the richness and composition of ant species behaves with changes in the recovery process of a gully erosion. The study area has 0.9 hectares subdivided into three sections called sector: "A", "B" and "C". For the definition of the sectors, erosive and natural restoring were taken as the base level of activity. Four transects were laid systematically throughout the area and surrounding compound with forest and grassland. Each transect had three "pitfall trap" ...

  11. Process for the recovery of magnesium and/or nickel by liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Gabra, G.

    1984-02-14

    The recovery of substantially pure magnesium and/or nickel sulphite which is present in a solid starting meterial. The latter is treated with gaseous SO/sub 2/ in water, the solution obtained is treated by a liquid-liquid extraction, to give an aqueous phase and an organic phase and the magnesium and/or nickel sulphite is recovered from the aqueous phase. With this process, it is possible to obtain a magnesium salt of high purity.

  12. Study on incineration technology of oil gas generated during the recovery process of oil spill

    International Nuclear Information System (INIS)

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area.

  13. Process Model of A Fusion Fuel Recovery System for a Direct Drive IFE Power Reactor

    Science.gov (United States)

    Natta, Saswathi; Aristova, Maria; Gentile, Charles

    2008-11-01

    A task has been initiated to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. As part of the conceptual design phase of the project, a chemical process model is developed in order to observe the interaction of system components. This process model is developed using FEMLAB Multiphysics software with the corresponding chemical engineering module (CEM). Initially, the reactants, system structure, and processes are defined using known chemical species of the target chamber exhaust. Each step within the Fuel recovery system is modeled compartmentally and then merged to form the closed loop fuel recovery system. The output, which includes physical properties and chemical content of the products, is analyzed after each step of the system to determine the most efficient and productive system parameters. This will serve to attenuate possible bottlenecks in the system. This modeling evaluation is instrumental in optimizing and closing the fusion fuel cycle in a direct drive IFE power reactor. The results of the modeling are presented in this paper.

  14. Recovery of protactinium-231 and thorium-230 from cotter concentrate: pilot plant operatins and process development

    Energy Technology Data Exchange (ETDEWEB)

    Hertz, M.R.; Figgins, P.E.; Deal, W.R.

    1983-02-10

    The equipment and methods used to recover and purify 339 g of thorium-230 and 890 mg of protactinium-231 from 22 of the 1251 drums of Cotter Concentrate are described. The process developed was (1) dissolution at 100/sup 0/C in concentrated nitric acid and dilution to 2 to 3 molar acid, (2) filtration to remove undissolved solids (mostly silica filter aid), (3) extraction of uranium with di-sec-butyl-phenyl phophonate (DSBPP) in carbon tetrachloride, (4) extraction of both thorium and protactinium with tri-n-octylphosphine oxide (TOPO) in carbon tetrachloride followed by selective stripping of the thorium with dilute of sulfuric acid, (5) thorium purification using oxalic acid, (6) stripping protactinium from the TOPO with oxalic acid, and (7) protactinium purification through a sequence of steps. The development of the separation procedures, the design of the pilot plant, and the operating procedures are described in detail. Analytical procedures are given in an appendix. 8 figures, 4 tables.

  15. Recovery of protactinium-231 and thorium-230 from cotter concentrate: pilot plant operatins and process development

    International Nuclear Information System (INIS)

    The equipment and methods used to recover and purify 339 g of thorium-230 and 890 mg of protactinium-231 from 22 of the 1251 drums of Cotter Concentrate are described. The process developed was (1) dissolution at 1000C in concentrated nitric acid and dilution to 2 to 3 molar acid, (2) filtration to remove undissolved solids (mostly silica filter aid), (3) extraction of uranium with di-sec-butyl-phenyl phophonate (DSBPP) in carbon tetrachloride, (4) extraction of both thorium and protactinium with tri-n-octylphosphine oxide (TOPO) in carbon tetrachloride followed by selective stripping of the thorium with dilute of sulfuric acid, (5) thorium purification using oxalic acid, (6) stripping protactinium from the TOPO with oxalic acid, and (7) protactinium purification through a sequence of steps. The development of the separation procedures, the design of the pilot plant, and the operating procedures are described in detail. Analytical procedures are given in an appendix. 8 figures, 4 tables

  16. Crystallization behaviour of co-sputtered Cu₂ZnSnS₄ precursor prepared by sequential sulfurization processes.

    Science.gov (United States)

    Han, Junhee; Shin, Seung Wook; Gang, Myeong Gil; Kim, Jin Hyeok; Lee, Jeong Yong

    2013-03-01

    Cu(2)ZnSnS(4) (CZTS) thin films were prepared by the sequential sulfurization of a co-sputtered precursor with a multitarget (Cu, ZnS, and SnS(2)) sputtering system. In order to investigate the crystallization behaviour of the thin films, the precursors were sulfurized in a tube furnace at different temperatures for different time durations. The Raman spectra of the sulfurized thin films showed that their crystallinity gradually improved with an increase in the sulfurization temperature and duration. However, transmission electron microscopy revealed an unexpected result-the precursor thin films were not completely transformed to the CZTS phase and showed the presence of uncrystallized material when sulfurized at 250-400 °C for 60 min and at 500 °C for 30 min. Thus, the crystallization of the co-sputtered precursor thin films showed a strong dependence on the sulfurization temperature and duration. The crystallization mechanism of the precursor thin films was understood on the basis of these results and has been described in this paper. The understanding of this mechanism may improve the standard preparation method for high-quality CZTS absorber layers. PMID:23396187

  17. Crystallization behaviour of co-sputtered Cu2ZnSnS4 precursor prepared by sequential sulfurization processes

    International Nuclear Information System (INIS)

    Cu2ZnSnS4 (CZTS) thin films were prepared by the sequential sulfurization of a co-sputtered precursor with a multitarget (Cu, ZnS, and SnS2) sputtering system. In order to investigate the crystallization behaviour of the thin films, the precursors were sulfurized in a tube furnace at different temperatures for different time durations. The Raman spectra of the sulfurized thin films showed that their crystallinity gradually improved with an increase in the sulfurization temperature and duration. However, transmission electron microscopy revealed an unexpected result—the precursor thin films were not completely transformed to the CZTS phase and showed the presence of uncrystallized material when sulfurized at 250–400 °C for 60 min and at 500 °C for 30 min. Thus, the crystallization of the co-sputtered precursor thin films showed a strong dependence on the sulfurization temperature and duration. The crystallization mechanism of the precursor thin films was understood on the basis of these results and has been described in this paper. The understanding of this mechanism may improve the standard preparation method for high-quality CZTS absorber layers. (paper)

  18. Waste processing cost recovery at Los Alamos National Laboratory--analysis and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Steven Richard [Los Alamos National Laboratory

    2008-01-01

    Los Alamos National Laboratory is implementing full cost recovery for waste processing in fiscal year 2009 (FY2009), after a transition year in FY2008. Waste processing cost recovery has been implemented in various forms across the nuclear weapons complex and in corporate America. The fundamental reasoning of sending accurate price signals to waste generators is economically sound, and leads to waste minimization and reduced waste expense over time. However, Los Alamos faces significant implementation challenges because of its status as a government-owned, contractor-operated national scientific institution with a diverse suite of experimental and environmental cleanup activities, and the fact that this represents a fundamental change in how waste processing is viewed by the institution. This paper describes the issues involved during the transition to cost recovery and the ultimate selection of the business model. Of the six alternative cost recovery models evaluated, the business model chosen to be implemented in FY2009 is Recharge Plus Generators Pay Distributed Direct. Under this model, all generators who produce waste must pay a distributed direct share associated with their specific waste type to use a waste processing capability. This cost share is calculated using the distributed direct method on the fixed cost only, i.e., the fixed cost share is based on each program's forecast proportion of the total Los Alamos volume forecast of each waste type. (Fixed activities are those required to establish the waste processing capability, i.e., to make the process ready, permitted, certified, and prepared to handle the first unit ofwaste. Therefore, the fixed cost ends at the point just before waste begins 'to be processed. The activities to actually process the waste are considered variable.) The volume of waste actually sent for processing is charged a unit cost based solely on the variable cost of disposing of that waste. The total cost recovered each

  19. Reaction Mechanism for m-Xylene Oxidation in the Claus Process by Sulfur Dioxide.

    Science.gov (United States)

    Sinha, Sourab; Raj, Abhijeet; Al Shoaibi, Ahmed S; Chung, Suk Ho

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation.

  20. Process technology for production and recovery of heterologous proteins with Pichia pastoris.

    Science.gov (United States)

    Jahic, Mehmedalija; Veide, Andres; Charoenrat, Theppanya; Teeri, Tuula; Enfors, Sven-Olof

    2006-01-01

    Developments in process techniques for production and recovery of heterologous proteins with Pichia pastoris are presented. Limitations for the standard techniques are described, and alternative techniques that solve the limitations problems are reviewed together with the methods that resulted in higher productivity of the P. pastoris processes. The main limitations are proteolysis of the secreted products and cell death in the high cell density bioreactor cultures. As a consequence, both low productivity and lower quality of the feedstock for downstream processing are achieved in processes hampered with these problems. Methods for exploring proteolysis and cell death are also presented. Solving the problems makes the conditions for downstream processing superior for the P. pastoris expression systems compared to other systems, which either need complex media or rely on intracellular production. These improved conditions allow for interfacing of cultivation with downstream processing in an integrated fashion. PMID:17137292

  1. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  2. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    Science.gov (United States)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    The first stage of production of any oil reservoir involves oil displacement by natural drive mechanisms such as solution gas drive, gas cap drive and gravity drainage. Typically, improved oil recovery (IOR) methods are applied to oil reservoirs that have been depleted naturally. In more recent years, IOR techniques are applied to reservoirs even before their natural energy drive is exhausted by primary depletion. Descriptive screening criteria for IOR methods are used to select the appropriate recovery technique according to the fluid and rock properties. This methodology helps in assessing the most suitable recovery process for field deployment of a candidate reservoir. However, the already published screening guidelines neither provide information about the expected reservoir performance nor suggest a set of project design parameters, which can be used towards the optimization of the process. In this study, artificial neural networks (ANN) are used to build a high-performance neuro-simulation tool for screening different improved oil recovery techniques: miscible injection (CO2 and N2), waterflooding and steam injection processes. The simulation tool consists of proxy models that implement a multilayer cascade feedforward back propagation network algorithm. The tool is intended to narrow the ranges of possible scenarios to be modeled using conventional simulation, reducing the extensive time and energy spent in dynamic reservoir modeling. A commercial reservoir simulator is used to generate the data to train and validate the artificial neural networks. The proxy models are built considering four different well patterns with different well operating conditions as the field design parameters. Different expert systems are developed for each well pattern. The screening networks predict oil production rate and cumulative oil production profiles for a given set of rock and fluid properties, and design parameters. The results of this study show that the networks are

  3. Benzene destruction in claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab

    2014-07-02

    Benzene, toluene and xylene (BTX) are present as contaminants in the H 2S gas stream entering a Claus furnace. The exhaust gases from the furnace enter catalytic units, where BTX form soot particles. These particles clog and deactivate the catalysts. A solution to this problem is BTX oxidation before the gases enter catalyst beds. This work presents a theoretical investigation on benzene oxidation by SO2. Density functional theory is used to develop a detailed mechanism for phenyl radical -SO2 interactions. The mechanism begins with SO2 addition to phenyl radical after overcoming an energy barrier of 6.4 kJ/mol. This addition reaction is highly exothermic, where a reaction energy of 182 kJ/mol is released. The most favorable pathway involves O-S bond breakage, leading to the release of SO. A remarkable similarity between the pathways for phenyl radical oxidation by O2 and its oxidation by SO2 is observed. The reaction rate constants are also evaluated to facilitate process simulations. © 2014 American Chemical Society.

  4. Vapor-Liquid Equilibrium of Ethylene + Mesitylene System and Process Simulation for Ethylene Recovery

    Institute of Scientific and Technical Information of China (English)

    GUO Jing; WU Xianghong; JING Shuhong; ZHANG Qian; ZHENG Danxing

    2011-01-01

    The amount of ethylene in refinery off-gas is high with a mass fraction of 20%,but the refinery off-gas is usually used as fuel gas in most refineries.The separation and recovery of ethylene is of remarkable significance for saving energy and reducing carbon dioxide emission.The aim of this paper is to use a novel absorbent mesitylene for the ethylene absorption process and assess its application feasibility through the ethylene + mesitylene vapor-liquid equilibrium data measurement and its binary interaction parameter correlation,as well as the simulation for ethylene separation process.

  5. An approach to determining the economic feasibility of refuse-derived fuel and materials recovery processing

    Science.gov (United States)

    Gershman, H. W.

    1980-06-01

    An approach for determining the economic feasibility of refuse-derived fuel production and the recovery of materials is presented. This information is based on data developed for the metropolitan Washington, D.C. area as input for the consideration of a regional resource recovery program which would eventually encompass 4000 t/day of municipal solid waste; it is designed to recover refuse-derived fuel (RDF), ferrous and nonferrous metals, flint and color-mixed glass cullet, color-mixed glass fines, and waste newspapers. The planning process requires estimates of recovery product revenues and of process feasibility; since materials revenues can be predicted with a greater degree of certainty than RDF revenues, it becomes necessary to determine what revenues will be required from the sale of RDF so that predicted economics can be the same as the alternative disposal practice. A technique is described which will assist the decisionmaker in evaluating the economic feasibility of the proposed project by determining the RDF 'Indifference Value'.

  6. Impact of processing method on recovery of bacteria from wipes used in biological surface sampling.

    Science.gov (United States)

    Downey, Autumn S; Da Silva, Sandra M; Olson, Nathan D; Filliben, James J; Morrow, Jayne B

    2012-08-01

    Environmental sampling for microbiological contaminants is a key component of hygiene monitoring and risk characterization practices utilized across diverse fields of application. However, confidence in surface sampling results, both in the field and in controlled laboratory studies, has been undermined by large variation in sampling performance results. Sources of variation include controlled parameters, such as sampling materials and processing methods, which often differ among studies, as well as random and systematic errors; however, the relative contributions of these factors remain unclear. The objective of this study was to determine the relative impacts of sample processing methods, including extraction solution and physical dissociation method (vortexing and sonication), on recovery of Gram-positive (Bacillus cereus) and Gram-negative (Burkholderia thailandensis and Escherichia coli) bacteria from directly inoculated wipes. This work showed that target organism had the largest impact on extraction efficiency and recovery precision, as measured by traditional colony counts. The physical dissociation method (PDM) had negligible impact, while the effect of the extraction solution was organism dependent. Overall, however, extraction of organisms from wipes using phosphate-buffered saline with 0.04% Tween 80 (PBST) resulted in the highest mean recovery across all three organisms. The results from this study contribute to a better understanding of the factors that influence sampling performance, which is critical to the development of efficient and reliable sampling methodologies relevant to public health and biodefense.

  7. Chromium (III Removal and Recovery from Tannery Wastewater by Precipitation Process

    Directory of Open Access Journals (Sweden)

    Abass Esmaeili

    2005-01-01

    Full Text Available Chromium (III salts are the most widely used chemicals for tanning processes, but 60-70% of total chromium salts reacts with the hides. In the other word, about 30-40% of the chromium amount remains in the solids and liquid wastes (especially spent tanning solutions. Therefore, the removal and recovery of the chromium content of these wastewaters are necessary for environmental protection and economic reasons. Removal and recovery of chromium were carried out by using precipitation process. For this purpose, three precipitating agents calcium hydroxide, sodium hydroxide and magnesium oxide were used. The effects of pH, stirring time, settling rate and sludge volume were studied in batch experiments. Results show that the optimum pH is 8-9 and the good sludge with high settling rate and lower volume obtain by the MgO precipitating agent. Hence the MgO is a good precipitating agent for removal and recovery of chromium from tanning wastewater.

  8. Economical Analysis and Optimization of Recovery Processing Policies about Discarded Product

    Institute of Scientific and Technical Information of China (English)

    XieJiaping; KongLingcheng; ChenRongqiu

    2005-01-01

    On the foundation of analyzing the closed loop logistics chain of product with multi-lifecycle, the connotation of environmental value is set forth, recurring to such conceptions as supply chain and value chain.The plotting rules about disassembly tree are discussed in detail. The reachable matrix R of components' disassembly is introduced into distinguishing if disassembly is needed, in combination with disassembly-deciding vector X. Furthermore, the arithmetic of disassembly cost is put forward. And the cost-benefits of components'reusing, materials' recycling, safety disposing are dissertated based on the activity-based costing. Then the 0- 1 goal-programming model on product recovery processing is established, with components' demotion calculated.In addition, takinq the PC's recovery Drocessinq for example, we Dut it into application.

  9. Heat Transfer Characteristics of Calcined Petroleum Coke in Waste Heat Recovery Process

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2016-01-01

    Full Text Available This paper reports the results of heat transfer characteristics of calcined petroleum coke in waste heat recovery process. The model of heat exchanger was set up. The model has been used to investigate the effects of porosity (0.58 to 0.79, equivalent heat conductivity coefficient (0.9 to 1.1, and equivalent specific heat (0.9 to 1.1. The calculated values of calcined petroleum coke temperature showed good agreement with the corresponding available experimental data. The temperature distribution of calcined petroleum coke, the calcined petroleum coke temperature at heat exchanger outlet, the average heat transfer coefficient, and the heat recovery efficiency were studied. It can also be used in deriving much needed data for heat exchanger designs when employed in industry.

  10. Instrumentation and control systems for monitoring and data acquisition for thermal recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, J.; Hernandez, E.; Perozo, H. [PDVSA Intevep, S.A. (Venezuela)

    2011-07-01

    Thermal recovery methods are often applied to enhance oil recovery in heavy oil reservoirs, one of its challenges is to control the displacement of the thermal front. Methods are thus implemented to obtain data on the temperatures in the wells at any given time and to monitor other variables so that the behaviour of the thermal front can be predicted. The aim of this paper is to present a new control and instrumentation scheme to measure all of the variables. A software was created using Labview a graphs-based programming language software and PostgreSQL, a database management system. Using this software, sensors can be added or removed at any time; trends can be immediately visualized; and quality of the information is ensured since there is no human intervention in the data collection or processing. This paper presented a software which improves monitoring of all of the variables affecting the behaviour of the thermal front.

  11. Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process

    International Nuclear Information System (INIS)

    Highlights: ► Selective leaching of Au from scrap mobile phone PCBs by two stage electro-generated chlorine and recovery by ion exchange. ► Copper leaching (97%) by 1st stage electro-generated leaching (ORP value Ag/AgCl) with a minor gold (5%). ► Gold leaching (93%, ∼67 mg/L) by 2nd leaching (ORP value >1100 mVAg/AgCl) in 0.1 mol/L HCl at 25 °C. ► A concentrated gold solution, 6034 mg/L with 99.9% purity was obtained by ion exchange process. - Abstract: The leaching of gold from the scrap mobile phone PCBs by electro-generated chlorine as an oxidant and its recovery by ion exchange process was investigated. The leaching experiments were carried out by employing separate leaching reactor connected with the anode compartment of a Cl2 gas generator. The leaching of gold increased with increase in temperature and initial concentration of chlorine, and was favorable even at low concentration of acid, whereas copper leaching increased with increase in concentration of acid and decrease in temperature. In a two-stage leaching process, copper was mostly dissolved (97%) in 165 min at 25 °C during the 1st stage leaching in 2.0 mol/L HCl by electro-generated chlorine at a current density of 714 A/m2 along with a minor recovery of gold (5%). In the 2nd stage gold was mostly leached out (93% recovery, ∼67 mg/L) from the residue of the 1st stage by the electro-generated chlorine in 0.1 mol/L HCl. Gold recovery from the leach liquor by ion exchange using Amberlite XAD-7HP resin was found to be 95% with the maximum amount of gold adsorbed as 46.03 mg/g resin. A concentrated gold solution, 6034 mg/L with 99.9% purity was obtained in the ion exchange process.

  12. EXPERIMENTAL STUDY OF DESULFURIZATION OF ZHONG LIANG SHAN HIGH SULFUR COAL BY FLOTATION

    Institute of Scientific and Technical Information of China (English)

    姜志伟; 黄波; 曹炅

    1994-01-01

    Emission of large amount of SO2 from combustion of high sulfur coal causes serious envjsonmental pollution. Pre-combustion desulfurization of bigh sulfur coal has become a necessity. This paper reports test results of fine coal desuifurtzation with different flotation technology and the effect of pyrite depressant. Test work showed that when the coal sample from Zhong Liang Shah was processed with a Free Jet Flotation Column its pyritic sultur content was reduced from 3.08% to 0. 84%, with 72.22% recovery ofcombustible matter in clean coal. The concept of Desulfurlzatlon Efficiency Index Eofor comprehensive evaluation of dcsuifurlzation process is proposed, which is defined as the product of the ratio of sulfur content reduction of clean coal and the recovery of combustible matters.

  13. Viability analysis of heat recovery solution for industrial process of roasting coffee

    Directory of Open Access Journals (Sweden)

    Kljajić Miroslav V.

    2016-01-01

    Full Text Available Every industrial heat recovery solution is specific engineering challenge but not because predicted energy rationalization or achieved energy savings but potential unavoidable technological deviations and consequences on related processes and for sure, high investment because of delicate design and construction. Often, the energy savings in a particular segment of the industrial process is a main goal. However, in the food industry, especially roasting coffee, additional criteria has to be strictly observed and fulfilled. Such criteria may include prescribed and uniform product quality, compliance with food safety standards, stability of the processes etc., and all in the presence of key process parameters variability, inconsistency of raw material composition and quality, complexity of measurement and analytical methods etc. The paper respects all circumstances and checks viability of proposed recovery solution. The paper analyzes the possibility of using waste heat from the roasting process to ensure shortening of roasting cycle, reduction of fuel consumption and increasing capacity of roasting lines on daily basis. Analysis concludes that effects are valuable and substantial, although the complete solution is on the threshold of economic sustainability with numerous opportunities to improve of both technical and economic indicators. The analysis combines measuring and analytical methods with standard cost-benefit analysis. Conclusions are derived from measurements and calculations of key parameters in the operating conditions and checked by experimental methods. Test results deviate from 10 to 15%, in relation with parameters in main production line.

  14. Visualization of the functional recovery process of brain and spinal cord after injury

    International Nuclear Information System (INIS)

    Elucidation of the process of spontaneous functional recovery of central nervous system (CNS) after injury like trauma and stroke is important to develop and conduct the better rehabilitation training to promote the recuperation. Authors have developed a macaque monkey model with an artificial injury of cervical corticospinal tract (CST), where its elaborative motor activity of fingers spontaneously recovers. This paper describes the selective CST injury procedure, its recovery process in finger movement and in CNS images by positron emission tomography (PET), and validation of the obtained images by nerve block. For the injury, CST is cut selectively at monkey's C4/C5 boundary to block the hand motion nerve and to preserve the 2-synapse pathway through the propriospinal neuron, which results in acute loss of grasping a piece of potato food. At 1-3 months after the treatment, the elaborative motor activity of fingers completely recovers. During this recovery period, PET is conducted to trace the brain blood flow change at the upper center of the motion in realizing/grasping food, where the dorsal pathway and cerebellar nuclei are activated at the motion in the untreated animal. At 1-2 months after operation, the blood flow is found increased in the two areas above and the increased area, widened relative to those before operation. At 3 months (at complete functional recovery), the activity in the ipsilateral primary motor area returns to normal level and in the contralateral area, is spread accompanying the increase in the bilateral dorsal premotor and secondary somatosensory areas. Imaging results are validated by nerve block with micro-injection of muscimol into the activated areas during the task motor. Findings are helpful for developing a method to promote the compensation of nervous function after injury. (K.T.)

  15. Control structure design for resource recovery using the enhanced biological phosphorus removal and recovery (EBP2R) activated sludge process

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Fuentes-Martínez, José Manuel; Flores Alsina, Xavier;

    2016-01-01

    Nowadays, wastewater is considered as a set of resources to be recovered rather than a mixture of pollutantsthat should be removed. Many resource recovery schemes have been proposed, involving the useof novel technologies whose controllability is poorly studied. In this paper we present a control...

  16. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth

    2016-09-20

    An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.

  17. Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T B [USDOE Bartlesville Project Office, OK (United States); Colonomos, P [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)

    1993-02-01

    This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

  18. Study on the Recovery of Rhodium from Spent Organic Rhodium Catalysts of Acetic Acid Industry Using Pyrometallurgical Process

    Institute of Scientific and Technical Information of China (English)

    HE Xiaotang; WANG Huan; WU Xilong; LI Yong; ZHAO Yu; HAN Shouli; LI Kun; GUO Junmei

    2012-01-01

    A new process recycling rhodium from organic waste containing rhodium in acetic acid industry is developed.Use the special affinity of base metal sulfides (FeS,Ni2S3,CuS,etc.) on platinum group metals,adopting high nickel matte trapping-aluminothermic activation method to recovery rhodium from incinerator residue of organic rhodium waste.The method is shorter process,lower equipment requirement,and the higher activity of rhodium black.In pyrometallurgy enrichment process,the recovery rate of rhodium reached 94.65%,the full flow of rhodium recovery rate was 92.04%.

  19. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.

    Science.gov (United States)

    Kumari, Sinu; Das, Debabrata

    2015-10-01

    The aim of the present study was to enhance the gaseous energy recovery from sugarcane bagasse. The two stage (biohydrogen and biomethanation) batch process was considered under mesophilic condition. Alkali pretreatment (ALP) was used to remove lignin from sugarcane bagasse. This enhanced the enzymatic digestibility of bagasse to a great extent. The maximum lignin removal of 60% w/w was achieved at 0.25 N NaOH concentration (50°C, 30 min). The enzymatic hydrolysis efficiency was increased to about 2.6-folds with alkali pretreated sugarcane bagasse as compared to untreated one. The maximum hydrogen and methane yields from the treated sugarcane bagasse by biohydrogen and biomethanation processes were 93.4 mL/g-VS and 221.8 mL/g-VS respectively. This process resulted in significant increase in energy conversion efficiency (44.8%) as compared to single stage hydrogen production process (5.4%). PMID:26210150

  20. A New Quenching Process and Tower to Improve the Recovery of Acrylonitrile

    Institute of Scientific and Technical Information of China (English)

    甘永胜; 顾军民; 方永成

    2004-01-01

    Quenching process and design of the quenching tower in acrylonitrile production in China were studied in order to decrease the polymerization loss of acrylonitrile in the quenching tower. Based on the research of acrylonitrile polymerization in the quenching tower, a new quenching process was proposed to avoid the disadvantages of the original process. Two kinds of internals were installed to improve the performance of the quenching tower. Through a series of air-flow and real-flow model experiments, the new quenching process and new design were showed to be successful in enhancing the mass and heat transfer in the vapor-liquid system and decreasing the loss of acrylonitrile.Industrial application showed satisfactory results of decrease of the acrylonitrile loss in the quenching tower by about 4.5% and increase of the acrylonitrile recovery of the whole plant by more than 4%.

  1. Opportunities for low-grade heat recovery in the UK food processing industry

    International Nuclear Information System (INIS)

    Energy efficiency in the process industry is becoming an increasingly important issue due to the rising costs of both electricity and fossil fuel resources, as well as the tough targets for the reduction in greenhouse gas emissions outlined in the Climate Change Act 2008. Utilisation of waste heat sources is key to improving industrial energy efficiency, with an estimated 11.4 TWh of recoverable heat being wasted each year, a quarter of which is from the food and drinks processing sector. This paper examines the low-grade waste heat sources common to the food and drinks processing sector and the various opportunities for the use of this heat. A review of the best available technologies for recovery of waste heat is provided, ranging from heat transfer between source and sink, to novel technologies for the generation of electricity and refrigeration. Generally, the most economic option for waste heat recovery is heat exchange between nearby/same process source and sink, with a number of well-developed heat exchangers widely available for purchase. More novel options, such as the use of organic Rankine cycles for electricity generation prove to be less economical due to high capital outlays. However, with additional funding provision for demonstration of such projects and development of modular units, such technologies would become more common

  2. ThermoEnergy Ammonia Recovery Process for Municipal and Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    Alex G. Fassbender

    2001-01-01

    Full Text Available The Ammonia Recovery Process (ARP is an award-winning, low-cost, environmentally responsible method of recovering nitrogen, in the form of ammonia, from various dilute waste streams and converting it into concentrated ammonium sulfate. The ThermoEnergy Biogas System utilizes the new chemisorption-based ARP to recover ammonia from anaerobically digested wastes. The process provides for optimal biogas production and significantly reduced nitrogen levels in the treated water discharge. Process flows for the ammonia recovery and ThermoEnergy biogas processes are presented and discussed. A comparison with other techniques such as biological nitrogen removal is made. The ARP technology uses reversible chemisorption and double salt crystal precipitation to recover and concentrate the ammonia. The ARP technology was successfully proven in a recent large-scale field demonstration at New York City’s Oakwood Beach Wastewater Treatment Plant, located on Staten Island. This project was a joint effort with Foster Wheeler Environmental Corporation, the Civil Engineering Research Foundation, and New York City Department of Environmental Protection. Independent validated plant data show that ARP consistently recovers up to 99.9% of the ammonia from the city’s centrate waste stream (derived from dewatering of sewage sludge, as ammonium sulfate. ARP technology can reduce the nitrogen (ammonia discharged daily into local bodies of water by municipalities, concentrated animal farming operations, and industry. Recent advances to ARP enhance its performance and economic competitiveness in comparison to stripping or ammonia destruction technologies.

  3. SELECTIVE SEPARATION AND RECOVERY PROCESS —Supercritical fluid extraction and fractionation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A selective separation and recovery process has been developed based on the supercritical fluid extraction and fractionation (SFEF) technology. The solvent used varies from C3 to C5, depending on process objective. Basic research work has been done on the phase behavior, phase equilibria and modeling of a number of systems including petroleum residue, polymers, waxes and lubricants with the light hydrocarbon solvents. Semi-batch pilot and continuous pilot experiments were performed to establish data base for the process design of industrial scale. The effects of operation para-meters, such as temperature, pressure, ratio of solvent to oil and residence time, on separation selectivity and yield of extracts were studied in a wide range. Industrial demonstration plant with a capacity of 15 kt/a was setup and has run for a sufficient long period of time to confirm the design and to obtain the energy cost and economic analysis data for further commercial scale up. It was found that the process offers high efficient products and solvent recovery.

  4. Recovery of manganese and zinc from spent Zn-C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose.

    Science.gov (United States)

    Biswas, Ranjit K; Karmakar, Aneek K; Kumar, Sree L

    2016-05-01

    The spent Zn-C cell powder, containing ZnMn2O4, ZnO, MnO(OH) and possibly Mn2O3 and Mn3O4, can be leached by a sulfuric acid solution mixed with some glucose. The leaching is found to be dependent on solid to liquid (S/L) ratio, amount of glucose, concentration of sulfuric acid solution, time and pulp agitation speed. For 5g powder (S), 1h leaching time and 300rpm pulp agitation speed, two-level four-factor (2(4)) experimental designs have been carried out to derive models for extraction of both Mn(II) and Zn(II). Amount of glucose (G, g), concentration of H2SO4 solution (C, mol/L), volume of H2SO4 solution as leachant (L, mL) and leaching temperature (T, °C) are considered as factors (variables). The model in both cases consists of mean, factor effects and interaction effects. The four-factor interaction effect is observed in neither of the cases. Some two-factor and three-factor effects are found to have produced positive or negative contributions to dissolution percentage in both cases. The models are examined for comparison with experimental results with good fits and also used for optimization of factors. At optimized condition (G=0.50g, C=2mol/L, L=250mL and T=100°C), an aliquot of 5g powder in 1h and at 300rpm produces a solution containing (7.08±0.10)g/L Mn(II) and (2.20±0.06)g/L Zn(II) corresponding to almost 100% extraction of both metal ions. PMID:26564257

  5. Petrographic and isotopic evidence for late-stage processes in sulfuric acid caves of the Guadalupe Mountains, New Mexico, USA

    Directory of Open Access Journals (Sweden)

    Palmer Arthur N.

    2012-07-01

    Full Text Available Caves of the Guadalupe Mountains have experienced many modifications since their final phase of sulfuric acid speleogenesis several million years ago. Petrographic and geochemical data reveal details of the change from H2SO4 to CO2-dominated reactions. The H2SO4 dissolution front acquired a coating of replacement gypsum with local pockets of anhydrite and by-products of altered clay, including Fe-Mn oxides. Alteration of bedrock beneath the gypsum produced a white micritized rind with small negative shifts in δ13C and δ18O. Solution basins contain records of the earliest post-speleogenetic processes: corroded bedrock, residual anhydrite, Fe-Mn oxides from fluctuating pH and Eh, mammillary calcite, and dolomitization. Later meteoric water removed or recrystallized much of the gypsum and early micrite, and replaced some gypsum with calcite. Mammillary crusts demonstrate fluctuating groundwater, with calcite layers interrupted by films of Fe-Mn oxides precipitated during periodic inflow of anoxic water. Condensation moisture (from local evaporation absorbs CO2 from cave air, corroding earlier features and lowering their δ13C and δ18O. Drips of condensation water deposit minerals mainly by evaporation, which increases δ18O in the speleothems while δ13C remains nearly constant. By forcing calcite precipitation, evaporation raises the Mg content of remaining water and subsequent precipitates. Dolomite (both primary and replacive is abundant. In areas of low air circulation, water on and within carbonate speleothems equilibrates with cave-air CO2, causing minerals to recrystallize with glassy textures. Fluorite on young evaporative speleothems suggests a recent release of deep-source HF gas and absorption by droplets of condensation water.

  6. Granulation of susceptible sludge under carbon deficient conditions: A case of denitrifying sulfur conversion-associated EBPR process.

    Science.gov (United States)

    Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Lu, Hui; Chen, Guanghao

    2016-10-15

    Sludge granulation has been recognized as a promising biotechnology in wastewater treatment. Whereas the granulation of susceptible sludge in particular with a very low organic loading rate (OLR) (≤0.6 kg COD/m(3)/day or ≤ 120 mg COD/g VSS/day) is a difficult task that has not been achieved in activated sludge systems yet. This study was aimed at exploring an effective strategy for sludge granulation in the recently developed Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) process using a sequencing batch pump-lift reactor. Four strategies were studied by manipulating the factors of organic loading rate (OLR), superficial upflow velocity and sludge settling time individually or collectively. Increasing both the OLR and the superficial upflow velocity effectively promoted granule formation but at the same time led to unstable and even deteriorated reactor performance. The development of granules proceeded via several stages: formation, dispersion, reformation and stabilization. Gradually increasing the superficial upflow velocity from 5.1 to 6.8 m/h and keeping the OLR at 112.4 mg COD/g VSS/day proved to be most effective strategy for accelerating granulation while simultaneously achieving stable reactor performance. Under these conditions, the granules became stable with a diameter of 375-400 μm and displayed excellent settleability. The two major microbial groups, sulfate-reducing bacteria and sulfide-oxidizing bacteria, in the microbial community of the DS-EBPR granular sludge were enriched to 17.7% and 15.8% respectively. The newly developed DS-EBPR granular system was able to achieve an almost threefold improvement in phosphorus removal efficiency and 25% reduction in the operating cycle time compared with a flocculent DS-EBPR system. PMID:27498252

  7. Richness and species composition of ants in the recovery process of a gully erosion

    Directory of Open Access Journals (Sweden)

    Gabriel Biagiotti

    2013-12-01

    Full Text Available This study aimed to determine how the richness and composition of ant species behaves with changes in the recovery process of a gully erosion. The study area has 0.9 hectares subdivided into three sections called sector: "A", "B" and "C". For the definition of the sectors, erosive and natural restoring were taken as the base level of activity. Four transects were laid systematically throughout the area and surrounding compound with forest and grassland. Each transect had three "pitfall trap" ten meters apart from each other, with catches of ants were held in rainy and dry seasons. Analysis of variance was applied to compare the number of ant species per plot captured and Scott-Knott test 5% for comparison of means. To verify the similarity of species between environments it was performed an analysis of similarity (ANOSIM and ordering of environments a "Nonmetric Multidimensional Scaling" (NMDS. We captured 74 species of ants inside and around the gully erosion. The more degraded environment and initial stage of regeneration, showed greater richness of ant species. The composition of ant species was different between the recovery environments and around. The parameters of ant communities analyzed, richness and composition species were influenced by the regeneration of the area, indicating that ants can be used as bioindicators of gullies recovery.

  8. Developments in gold and silver recovery through flotation in processing of gold ore slags

    International Nuclear Information System (INIS)

    The aim of this work is to recover and improve the extraction of gold and silver present in smelting slags through various mineralogical processes applicable in gold ores. The slag was concentrated in a Knelson type centrifuge, two concentrates (C1 and C2 and a tailing T1) being obtained. In order to improve the recovery, three series of rougher flotation tests were conducted on the tailing T1. The variables analyzed were: particle size, type of collectors (xanthates, di-monothiophosphate) and flotation time. It was deduced that by applying gravity concentration, the recovery of Au and Ag (Knelson centrifuge) is 42.0% and 13.7%, respectively. Au recovery is improved by 87.7% through the flotation of the centrifuge separation tailings, whereas that for Ag is 47.4%. The optimum conditions were: particle size 200 mesh, collectors: PAX (15.8 g/t), F-C5439 (18.75 g/t), MIBC frother (12.5g/t) and 8.5 minutes of flotation time. (Author)

  9. Influence of Sulfur Fertilization on the Antioxidant Activities of Onion Juices Prepared by Thermal Treatment

    OpenAIRE

    Koh, Eunmi; Surh, Jeonghee

    2016-01-01

    Two onions (Sulfur-1 and Sulfur-4) cultivated with different sulfur applications were thermally processed to elucidate the effects of heat treatment on browning index and antioxidant activity. Sulfur-4 onion had higher sulfur content compared with the Sulfur-1 onion. After thermal processing, browning intensity was different between the two onions juices, with lower values observed for Sulfur-4 onion juice. This suggests that sulfur inhibits the Maillard browning reaction. The total reducing ...

  10. Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions

    DEFF Research Database (Denmark)

    Roselló-Soto, Elena; Galanakis, Charis M.; Brnčić, Mladen;

    2015-01-01

    Ultrasound treatment is an alternative affordable, effective and reproducible method for the improved recovery of bioactive compounds from various processing streams. The objective of this review is to discuss the impact of ultrasound-assisted extraction on the recovery of polyphenols, carotenoid...

  11. Heat Transfer Characteristics of Calcined Petroleum Coke in Waste Heat Recovery Process

    OpenAIRE

    Bin Zheng; Yongqi Liu; Lichen Zou; Ruiyang Li

    2016-01-01

    This paper reports the results of heat transfer characteristics of calcined petroleum coke in waste heat recovery process. The model of heat exchanger was set up. The model has been used to investigate the effects of porosity (0.58 to 0.79), equivalent heat conductivity coefficient (0.9 to 1.1), and equivalent specific heat (0.9 to 1.1). The calculated values of calcined petroleum coke temperature showed good agreement with the corresponding available experimental data. The temperature distri...

  12. Conversion of a deasphalting unit for use in the process of supercritical solvent recovery

    Directory of Open Access Journals (Sweden)

    Waintraub S.

    2000-01-01

    Full Text Available In order to reduce energy consumption and to increase deasphalted oil yield, an old PETROBRAS deasphalting unit was converted for use in the process of supercritical solvent recovery. In-plant and pilot tests were performed to determine the ideal solvent-to-oil ratio. The optimum conditions for separation of the supercritical solvent from the solvent-plus-oil liquid mixture were determined by experimental tests in PVT cells. These tests also allowed measurement of the dew and bubble points, determination of the retrograde region, observation of supercritical fluid compressibility and as a result construction of a phase equilibrium diagram.

  13. Distribution ratios on Dowex 50W resins of metal leached in the caron nickel recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, B.A.; Metsa, J.C.; Mullins, M.E.

    1980-05-01

    Pressurized ion exchange on Dowex 50W-X8 and 50W-X12 resins was investigated using elution techniques to determine distribution ratios for copper, nickel, and cobalt complexes contained in ammonium carbonate solution, a mixture which approximates the waste liquor from the Caron nickel recovery process. Results were determined for different feed concentrations, as well as for different concentrations and pH values of the ammonium carbonate eluant. Distribution ratios were compared with those previously obtained from a continuous annular chromatographic system. Separation of copper and nickel was not conclusively observed at any of the conditions examined.

  14. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents.

    Science.gov (United States)

    Siciliano, A; De Rosa, S

    2014-01-01

    Land spreading of digestates causes the discharge of large quantities of nutrients into the environment, which contributes to eutrophication and depletion of dissolved oxygen in water bodies. For the removal of ammonia nitrogen, there is increasing interest in the chemical precipitation of struvite, which is a mineral that can be reused as a slow-release fertilizer. However, this process is an expensive treatment of digestate because large amounts of magnesium and phosphorus reagents are required. In this paper, a struvite precipitation-based process is proposed for an efficient recovery of digestate nutrients using low-cost reagents. In particular, seawater bittern, a by-product of marine salt manufacturing and bone meal, a by-product of the thermal treatment of meat waste, have been used as low-cost sources of magnesium and phosphorus, respectively. Once the operating conditions are defined, the process enables the removal of more than 90% ammonia load, the almost complete recovery of magnesium and phosphorus and the production of a potentially valuable precipitate containing struvite crystals. PMID:24645466

  15. Conformational dynamics of Rouse chains during creep/recovery processes: a review

    International Nuclear Information System (INIS)

    The Rouse model is a well-established model for non-entangled polymer chains and also serves as a fundamental model for entangled chains. The dynamic behaviour of this model under strain-controlled conditions has been fully analysed in the literature. However, despite the importance of the Rouse model, no analysis has been made so far of the orientational anisotropy of the Rouse eigenmodes during the stress-controlled, creep and recovery processes. For completeness of the analysis of the model, the Rouse equation of motion is solved to calculate this anisotropy for monodisperse chains and their binary blends during the creep/recovery processes. The calculation is simple and straightforward, but the result is intriguing in the sense that each Rouse eigenmode during these processes has a distribution in the retardation times. This behaviour, reflecting the interplay/correlation among the Rouse eigenmodes of different orders (and for different chains in the blends) under the constant stress condition, is quite different from the behaviour under rate-controlled flow (where each eigenmode exhibits retardation/relaxation associated with a single characteristic time). Furthermore, the calculation indicates that the Rouse chains exhibit affine deformation on sudden imposition/removal of the stress and the magnitude of this deformation is inversely proportional to the number of bond vectors per chain. In relation to these results, a difference between the creep and relaxation properties is also discussed for chains obeying multiple relaxation mechanisms (Rouse and reptation mechanisms). (topical review)

  16. Removal and recovery of carbon disulfide emitted by the viscose process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, M.J.

    1992-02-01

    Teepak, Inc., which manufactures cellulose food casings by means of the viscose process, has a plant in Danville, Illinois, that emits approximately 400,000 cubic feet per minute (cfm) of water-saturated air containing approximately 100 parts per million (ppm) of carbon disulfide (CS{sub 2}). Both Teepak and the state of Illinois desire to reduce these emissions as soon as possible; however, the large air flow and very small CS{sub 2} concentration result in a difficult and costly separations problem without an obvious economically viable solution. One possibility is to incinerate the CS{sub 2}, but a more environmentally and economically acceptable alternative is to recover the CS{sub 2} for recycle to the process. The recovered CS{sub 2} would be worth about $700,000 annually to Teepak. Teepak has sponsored, with the Hazardous Waste Research and Information Center (HWRIC) of the Illinois Department of Natural Resources, a research project at Argonne National Laboratory (ANL) to evaluate current gas- purification and recovery technology and to suggest a route of development that will lead to a CS{sub 2} recovery process. The Illinois Department of Commerce and Community Affairs later provided on Illinois Challenge Grant to allow laboratory studies to supplement this effort. This report is a result of all those studies.

  17. Removal and recovery of carbon disulfide emitted by the viscose process

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, M.J.

    1992-02-01

    Teepak, Inc., which manufactures cellulose food casings by means of the viscose process, has a plant in Danville, Illinois, that emits approximately 400,000 cubic feet per minute (cfm) of water-saturated air containing approximately 100 parts per million (ppm) of carbon disulfide (CS{sub 2}). Both Teepak and the state of Illinois desire to reduce these emissions as soon as possible; however, the large air flow and very small CS{sub 2} concentration result in a difficult and costly separations problem without an obvious economically viable solution. One possibility is to incinerate the CS{sub 2}, but a more environmentally and economically acceptable alternative is to recover the CS{sub 2} for recycle to the process. The recovered CS{sub 2} would be worth about $700,000 annually to Teepak. Teepak has sponsored, with the Hazardous Waste Research and Information Center (HWRIC) of the Illinois Department of Natural Resources, a research project at Argonne National Laboratory (ANL) to evaluate current gas- purification and recovery technology and to suggest a route of development that will lead to a CS{sub 2} recovery process. The Illinois Department of Commerce and Community Affairs later provided on Illinois Challenge Grant to allow laboratory studies to supplement this effort. This report is a result of all those studies.

  18. Solar Energy for a Solvent Recovery Stage in a Biodiesel Production Process

    Directory of Open Access Journals (Sweden)

    José A. León

    2016-01-01

    Full Text Available Recent research and development of clean energy have become essential due to the global climate change problem, which is caused largely by fossil fuels burning. Therefore, biodiesel, a renewable and ecofriendly biofuel with less environmental impact than diesel, continues expanding worldwide. The process for biodiesel production involves a significant energy demand, specifically in the methanol recovery stage through a flash separator and a distillation column. Traditionally, the energy required for this process is supplied by fossil fuels. It represents an opportunity for the application of renewable energy. Hence, the current study presents a system of thermal energy storage modeled in TRNSYS® and supported by simulations performed in ASPEN PLUS®. The aim of this research was to supply solar energy for a methanol recovery stage in a biodiesel production process. The results highlighted that it is feasible to meet 91% of the energy demand with an array of 9 parabolic trough collectors. The array obtained from the simulation was 3 in series and 3 in parallel, with a total area of 118.8 m2. It represents an energy saving of 70 MWh per year.

  19. Process control and recovery in the Link Monitor and Control Operator Assistant

    Science.gov (United States)

    Lee, Lorrine; Hill, Randall W., Jr.

    1993-01-01

    This paper describes our approach to providing process control and recovery functions in the Link Monitor and Control Operator Assistant (LMCOA). The focus of the LMCOA is to provide semi-automated monitor and control to support station operations in the Deep Space Network. The LMCOA will be demonstrated with precalibration operations for Very Long Baseline Interferometry on a 70-meter antenna. Precalibration, the task of setting up the equipment to support a communications link with a spacecraft, is a manual, time consuming and error-prone process. One problem with the current system is that it does not provide explicit feedback about the effects of control actions. The LMCOA uses a Temporal Dependency Network (TDN) to represent an end-to-end sequence of operational procedures and a Situation Manager (SM) module to provide process control, diagnosis, and recovery functions. The TDN is a directed network representing precedence, parallelism, precondition, and postcondition constraints. The SM maintains an internal model of the expected and actual states of the subsystems in order to determine if each control action executed successfully and to provide feedback to the user. The LMCOA is implemented on a NeXT workstation using Objective C, Interface Builder and the C Language Integrated Production System.

  20. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  1. Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Couch, R; Becker, R; Rhee, M; Li, M

    2004-09-24

    Lawrence Livermore National Laboratory participated in a U. S. Department of Energy/Office of Industrial Technology sponsored research project 'Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery', as a Cooperative Agreement TC-02028 with the Alcoa Technical Center (ATC). The objective of the joint project with Alcoa is to develop a numerical modeling capability to optimize the hot rolling process used to produce aluminum plate. Product lost in the rolling process and subsequent recycling, wastes resources consumed in the energy-intensive steps of remelting and reprocessing the ingot. The modeling capability developed by project partners will be used to produce plate more efficiently and with reduced product loss.

  2. Sequential process for extraction and recovery of vanadium and uranium from wet process acids

    International Nuclear Information System (INIS)

    A process for preferentially extracting and recovering vanadium and uranium from wet process acids is claimed. The wet process acid first is contacted with a neutral organophosphorus compound to extract the vanadium values. The resulting loaded organic phase is separated from the wet process acid due to immiscibility of the acid and organic phases. The vanadium values then are separated from the organic phase by stripping. The raffinate separated from the first organic extractant then is contacted with a second organic extractant comprising a dialkyl-phosphoric acid and a neutral organo-phosphorus compound to extract the uranium values. The resulting loaded organic phase is separated from the wet process acid due to immiscibility of the acid and organic phases. The organic phase is stripped with a reductive stripping solution and the stripping solution then is oxidized to convert the uranium values to the hexavalent oxidation state. The oxidized solution then is contacted with another organic extractant to reextract the uranium to thereby concentrate the uranium product which then is stripped from the organic product with ammonium carbonate to form ammonium uranyl carbonate

  3. 硫精矿除杂提纯浮选工艺回收利用硫酸烧渣中的铁%Iron recovery from pyrite cinder by flotation process to remove impurities in sulfide concentrates

    Institute of Scientific and Technical Information of China (English)

    冯国臣; 高金昌

    2015-01-01

    硫酸烧渣是硫铁矿制酸氧化焙烧产物;从硫酸烧渣中选铁的工艺技术指标一直不高,其主要原因是硫铁矿氧化焙烧过程中生成的氧化铁矿物颗粒微细,高温时新生成的氧化铁矿物颗粒会与杂质和脉石矿物颗粒相互包裹、相互黏结、相互污染. 该文将硫酸烧渣选铁改为硫精矿再浮选提纯硫化铁,即通过提纯硫酸原料中硫化铁的质量分数,从而去除原料中的脉石和杂质,使硫酸原料中硫品位达到50 % ~52 %(黄铁矿型原料)以上,硫、铁回收率均达到90 % ~92 %;采用该高纯硫精矿制造硫酸,硫酸烧渣中铁品位达到63 % ~67 %,使硫酸烧渣全部直接成为铁精矿,无需再选矿,达到了有效利用硫酸烧渣中铁的目的. 该工艺能够获得较高技术指标的原因是硫精矿除杂提纯浮选是硫化矿选硫,采用高纯硫精矿制酸,避免了非目的矿物污染硫化铁的氧化焙烧过程以及硫酸烧渣选铁时杂质含量高、铁品位低、选矿技术指标低等问题.%Pyrite cinder is the product of oxidizing roasting of pyrite ores. The technical index in iron recovery from pyrite cinder keeps low. The main reason for it is that fine ferric oxide particles produced in the oxidizing roasting process of pyrite ores will in high temperature interact with impurities and gangue minerals including mutual inclu-ding,sticking and polluting. The paper modifies conventional process of iron recovery from pyrite cinder,and turns to a sulfide concentrates flotation process to concentrate ferric sulfide,that is to increase the mass fraction of ferric sulfide in raw materials of pyrites,so that gangue minerals and impurities are removed from the raw materials,reaching a sul-fur grade over 50 % to 52 % and sulfur and iron grade of 90 % to 92 %. The high grade sulfur concentrates are used to made sulfuric acid. The iron in pyrite cinder reaches 63 % to 67 % making the entire cinder directly become iron concentrates

  4. Iron recovery from pyrite cinder by flotation process to remove impurities in sulfide concentrates%硫精矿除杂提纯浮选工艺回收利用硫酸烧渣中的铁

    Institute of Scientific and Technical Information of China (English)

    冯国臣; 高金昌

    2015-01-01

    Pyrite cinder is the product of oxidizing roasting of pyrite ores. The technical index in iron recovery from pyrite cinder keeps low. The main reason for it is that fine ferric oxide particles produced in the oxidizing roasting process of pyrite ores will in high temperature interact with impurities and gangue minerals including mutual inclu-ding,sticking and polluting. The paper modifies conventional process of iron recovery from pyrite cinder,and turns to a sulfide concentrates flotation process to concentrate ferric sulfide,that is to increase the mass fraction of ferric sulfide in raw materials of pyrites,so that gangue minerals and impurities are removed from the raw materials,reaching a sul-fur grade over 50 % to 52 % and sulfur and iron grade of 90 % to 92 %. The high grade sulfur concentrates are used to made sulfuric acid. The iron in pyrite cinder reaches 63 % to 67 % making the entire cinder directly become iron concentrates without the need of further beneficiation,which is an effective way to utilize the iron in the cinder. The reason for higher technical index lies in the choice of sulfur flotation for impurity removal. High grade sulfur concen-trates making sulfuric acid avoids unwanted minerals hindering the oxidizing roasting of ferric sulfide and high content of impurities,low iron grade and low ore-dressing technical index in the process of iron recovery from pyrite cinder.%硫酸烧渣是硫铁矿制酸氧化焙烧产物;从硫酸烧渣中选铁的工艺技术指标一直不高,其主要原因是硫铁矿氧化焙烧过程中生成的氧化铁矿物颗粒微细,高温时新生成的氧化铁矿物颗粒会与杂质和脉石矿物颗粒相互包裹、相互黏结、相互污染. 该文将硫酸烧渣选铁改为硫精矿再浮选提纯硫化铁,即通过提纯硫酸原料中硫化铁的质量分数,从而去除原料中的脉石和杂质,使硫酸原料中硫品位达到50 % ~52 %(黄铁矿型原料)以上,硫、铁回收率均达到90 % ~92 %;

  5. Rethinking the Ancient Sulfur Cycle

    Science.gov (United States)

    Fike, David A.; Bradley, Alexander S.; Rose, Catherine V.

    2015-05-01

    The sulfur biogeochemical cycle integrates the metabolic activity of multiple microbial pathways (e.g., sulfate reduction, disproportionation, and sulfide oxidation) along with abiotic reactions and geological processes that cycle sulfur through various reservoirs. The sulfur cycle impacts the global carbon cycle and climate primarily through the remineralization of organic carbon. Over geological timescales, cycling of sulfur is closely tied to the redox state of Earth's exosphere through the burial of oxidized (sulfate) and reduced (sulfide) sulfur species in marine sediments. Biological sulfur cycling is associated with isotopic fractionations that can be used to trace the fluxes through various metabolic pathways. The resulting isotopic data provide insights into sulfur cycling in both modern and ancient environments via isotopic signatures in sedimentary sulfate and sulfide phases. Here, we review the deep-time δ34S record of marine sulfates and sulfides in light of recent advances in understanding how isotopic signatures are generated by microbial activity, how these signatures are encoded in marine sediments, and how they may be altered following deposition. The resulting picture shows a sulfur cycle intimately coupled to ambient carbon cycling, where sulfur isotopic records preserved in sedimentary rocks are critically dependent on sedimentological and geochemical conditions (e.g., iron availability) during deposition.

  6. Assessment of sulfide production risk in soil during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification process.

    Science.gov (United States)

    Ghorbel, L; Coudert, L; Gilbert, Y; Mercier, G; Blais, J F

    2016-10-01

    This study aimed to determine the potential of sulfide generation during infiltration through soil of domestic wastewater treated by a sulfur-utilizing denitrification process. Three types of soil with different permeability rates (K s = 0.028, 0.0013, and 0.00015 cm/s) were investigated to evaluate the potential risk of sulfur generation during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system. These soils were thoroughly characterized and tested to assess their capacity to be used as drainages for wastewaters. Experiments were conducted under two operating modes (saturated and unsaturated). Sulfate, sulfide, and chemical oxygen demand (COD) levels were determined over a period of 100 days. Despite the high concentration of sulfates (200 mg/L) under anaerobic conditions (ORP = -297 mV), no significant amount of sulfide was generated in the aqueous (process used to treat the domestic wastewater allowed the reduction of the concentration of biochemical oxygen demand (BOD5) below 5 mg/L, of DOC below 7 mg/L, and of COD below 100 mg/L.

  7. A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production conceptual process application to coal gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, W.J.W.; Kapteijn, F.; Moulijn, J.A. [Delft University of Technology, Delft (Netherlands)

    2003-12-15

    A high capacity, monolith or particle shaped, regenerable sorbent has been developed for the desulfurization of a dry type coal gas. It consists of crystalline MnAl{sub 2}O{sub 4}, a small amount of disperse MnO, and an amorphous Mn-Al-O phase. Elemental sulfur is the only observed regeneration product during regeneration with SO{sub 2}. The sorbent can be used in the temperature range between 673 and 1273 K but the optimum capacity is utilized between 1100 and 1200 K. For regeneration with SO{sub 2} the regeneration temperature should be > 873 K to avoid sulfate formation. The sulfur uptake capacity is high and amounts up to 20 wt.% S and the sorbent performance appears to be stable during at least 110 sulfiding and regeneration cycles at 1123 K. For temperatures above 1100 K thermodynamic calculations are in accordance with the observed (solid) phases after sulfiding and regeneration, indicating the predictive potential for high temperatures. The performance of the surface sites that play an important role during desulfurization can, however, not be predicted. The regenerative removal of H{sub 2}S, COS, HCl and HF can possibly take place simultaneously with the same sorbent. A new conceptual process configuration for high temperature coal gas cleaning and sorbent regeneration is proposed. Compared to other processes, less heat exchange equipment is required and no Claus unit is necessary to convert the regeneration product to sulfur.

  8. Design and Realization of Sulfuric Acid Process Calculation Software%硫酸工艺计算软件的设计与实现

    Institute of Scientific and Technical Information of China (English)

    郭凯; 黄卫华; 曹霞

    2014-01-01

    Sulfuric acid process design calculation is featured by many parameters and huge calculated amount. Formulate sulfuric acid process design calculation software by using computer programming technique, which can provide electronic-service when huge calculation needed for sulfuric acid design. Therefore, convenient and swift computer calculation take place traditional hand computation, which gives fully play to superiority of computer technology. Emancipate people from miscellaneous and repeated calculation so as to reduce the design cost, decrease the design cycle sharply and improve the work efficiency.%硫酸工艺设计计算存在参数多、计算量大的特点。采用计算机编程技术编制硫酸工艺设计计算软件,为硫酸工艺设计时大量的计算提供电子化服务,以方便快捷的计算机计算代替了传统的手工计算,充分发挥了计算机技术的优势,把人从繁杂和重复的计算劳动中解放出来,有效地降低设计成本,大幅减少了设计周期,提高了工作效率。

  9. Improved photovoltaic and grain boundary characteristics of single elementary target-sputtered Cu2ZnSnSe4 thin films by post sulfurization/selenization process

    International Nuclear Information System (INIS)

    A potential way to improve the quality of Cu2ZnSnSe4 absorber thin film by a one step process of sputtering using a single elementary target is proposed for thin film solar cells. As critical parameters, different S/Se ratios and grain boundary characteristics are achieved by adjusting sequential sulfurization and selenization post-treatment. The simple sulfurization of as-deposited film at 530 °C in H2S is not effective in raising the performance but the additional Se annealing at a shorter duration of 5 min improves conversion efficiency from 0.12 to 3.21% with a drastic increase of the open circuit voltage. Positively-charged grain boundaries with narrow potential peaks seem to play a critical role for effective exciton separation and higher efficiency. The improvement is also understood as related to well-defined microstructures and the variable optical band gap. (paper)

  10. An integrated process of three-dimensional biofilm-electrode with sulfur autotrophic denitrification (3DBER-SAD) for wastewater reclamation.

    Science.gov (United States)

    Hao, Ruixia; Meng, Chengcheng; Li, Jianbing

    2016-08-01

    A three-dimensional biofilm-electrode reactor (3DBER) was integrated with sulfur autotrophic denitrification (SAD) to improve nitrogen removal performance for wastewater reclamation. The impacts of influent carbon/nitrogen (C/N) ratio, electric current, and hydraulic retention time (HRT) were evaluated. The new process, abbreviated as 3DBER-SAD, achieved a more stable denitrification compared to the recently studied 3DBER in literature. Its nitrogen removal improved by about 45 % as compared to 3DBER, especially under low C/N ratio conditions. The results also revealed that the biofilm bacteria community of 3DBER-SAD contained 21.1 % of the genus Thauera, 19.3 % of the genus Thiobacillus and Sulfuricella, as well as 5.3 % of the genus Alicycliphilus, Pseudomonas, and Paracoccus. The synergy between these heterotrophic, sulfur autotrophic, and hydrogenotrophic denitrification bacteria was believed to cause the high and stable nitrogen removal performance under various operating conditions.

  11. RO brine treatment and recovery by biological activated carbon and capacitive deionization process.

    Science.gov (United States)

    Tao, Guihe; Viswanath, Bala; Kekre, Kiran; Lee, Lai Yoke; Ng, How Yong; Ong, Say Leong; Seah, Harry

    2011-01-01

    The generation of brine solutions from dense membrane (reverse osmosis, RO or nanofiltration, NF) water reclamation systems has been increasing worldwide, and the lack of cost effective disposal options is becoming a critical water resources management issue. In Singapore, NEWater is the product of a multiple barrier water reclamation process from secondary treated domestic effluent using MF/UF-RO and UV technologies. The RO brine (concentrates) accounts for more than 20% of the total flow treated. To increase the water recovery and treat the RO brine, a CDI based process with BAC as pretreatment was tested. The results show that ion concentrations in CDI product were low except SiO2 when compared with RO feed water. CDI product was passed through a RO and the RO permeate was of better quality including low SiO2 as compared to NEWater quality. It could be beneficial to use a dedicated RO operated at optimum conditions with better performance to recover the water. BAC was able to achieve 15-27% TOC removal of RO brine. CDI had been tested at a water recovery ranging from 71.6 to 92.3%. CDI based RO brine treatment could improve overall water recovery of NEWater production over 90%. It was found that calcium phosphate scaling and organic fouling was the major cause of CDI pressure increase. Ozone disinfection and sodium bisulfite dosing were able to reduce CDI fouling rate. For sustainable operation of CDI organic fouling control and effective organic fouling cleaning should be further studied.

  12. RO brine treatment and recovery by biological activated carbon and capacitive deionization process.

    Science.gov (United States)

    Tao, Guihe; Viswanath, Bala; Kekre, Kiran; Lee, Lai Yoke; Ng, How Yong; Ong, Say Leong; Seah, Harry

    2011-01-01

    The generation of brine solutions from dense membrane (reverse osmosis, RO or nanofiltration, NF) water reclamation systems has been increasing worldwide, and the lack of cost effective disposal options is becoming a critical water resources management issue. In Singapore, NEWater is the product of a multiple barrier water reclamation process from secondary treated domestic effluent using MF/UF-RO and UV technologies. The RO brine (concentrates) accounts for more than 20% of the total flow treated. To increase the water recovery and treat the RO brine, a CDI based process with BAC as pretreatment was tested. The results show that ion concentrations in CDI product were low except SiO2 when compared with RO feed water. CDI product was passed through a RO and the RO permeate was of better quality including low SiO2 as compared to NEWater quality. It could be beneficial to use a dedicated RO operated at optimum conditions with better performance to recover the water. BAC was able to achieve 15-27% TOC removal of RO brine. CDI had been tested at a water recovery ranging from 71.6 to 92.3%. CDI based RO brine treatment could improve overall water recovery of NEWater production over 90%. It was found that calcium phosphate scaling and organic fouling was the major cause of CDI pressure increase. Ozone disinfection and sodium bisulfite dosing were able to reduce CDI fouling rate. For sustainable operation of CDI organic fouling control and effective organic fouling cleaning should be further studied. PMID:22053461

  13. Overview of Membrane Processes for the Recovery of Polyphenols from Olive Mill Wastewater

    Directory of Open Access Journals (Sweden)

    Ompe Aime Mudimu

    2012-01-01

    Full Text Available Problem statement: Olive Mill Wastewater (OMW is an ambivalent by-product of the olive oil production, which appears in huge amounts every year after the olive-harvest in the production countries, mainly in the Mediterranean region. OMW is characterized by a high organic load and i.a. contains considerable amounts of phytotoxical polyphenols, which cause important environmental problems. Approach: Due to their antioxidant properties the use of these polyphenols is also popular in several industry branches, which results in high sale values for this group of chemicals. The removal of polyphenols from biological wastewaters like OMW does not only reduce the pollutant load but also shows great potential for a beneficial recovery of these antioxidants. This is the reason why a growing number of studies deal with a combined wastewater treatment, which, besides water purification, also regards the ability of recovering polyphenols. This article is an overview of reports concerning polyphenol recovery from OMW via membrane technologies. Results: Patents and studies, which appeared in literature, are reviewed in order to identify the potential of membranes as well as making comparisons possible. Some pretreatments, feasible for membrane processes, are covered. Depending on the initial wastewater and its polyphenol content the concentration in the obtained solution ranges from 0.5-19.3 g L-1 polyphenols. An example mentioned in WO2005/123603 even obtains a concentration of 30 g L-1. Polyphenols such as hydroxytyrosol, protocatechuic acid, tyrosol, caffeic acid and oleuropein were found in this concentrate and make it suitable for the use in industry. Conclusion: The membrane processes in sequential design in particular show good results and offer an alternative to other OMW treatments especially in terms of polyphenol recovery.

  14. Flow sheet model evaluation of nuclear hydrogen steelmaking processes with VHTR-IS (very high temperature reactor and iodine-sulfur process)

    International Nuclear Information System (INIS)

    Nuclear hydrogen steelmaking (NHS) and nuclear hydrogen partial reduction steelmaking (NHPRS) systems were proposed using very high temperature reactor, and thermochemical hydrogen production iodine-sulfur process. Heat input and CO2 emissions of these systems were analyzed by heat and mass balance calculation. Total net heat input to the NHS system was 28.4 GJ/t-high quality steel (HQS), including material production, material transportation, and power generation. This value was much larger than that of a blast furnace steelmaking (BFS) system of 17.6 GJ/t-HQS. Reduction of hydrogen consumption in the shaft furnace and electricity consumption in the electric arc furnace were desired for lowering the heat input. Total net heat input of a NHPRS system was 31.9 GJ/t-HQS. Optimization of operation parameters such as the reduction ratio of partial reduced ore (PRO) and ratio of the PRO input to the blast furnace is desired to decrease the heat input. CO2 emissions of the NHS system and the NHPRS system were 9% and 50% of that from the BFS system. Substitution of coal by hydrogen and reduction of transportation weight contributed to the reduction. Steelmaking cost was also evaluated. When steelmaking scale of each system was unified to one million t-HQS/y, NHS was economically competitive to BFS and Midrex steelmaking. And NHS was advantageous at higher cost of resources. (author)

  15. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction

    International Nuclear Information System (INIS)

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity. (paper)

  16. Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine.

    Science.gov (United States)

    Shao, Jiahui; Qin, Shu; Davidson, Joshua; Li, Wenxi; He, Yiliang; Zhou, H Susan

    2013-01-15

    The recovery of nickel from aqueous dilute solutions by complexation-ultrafiltration process with sodium polyacrylate (PAAS) and polyethylenimine (PEI) was studied. Experiments were performed as a function of aqueous pH, polymer/Ni(2+) ratio and background electrolyte concentration. At optimum experimental conditions, the nickel removal rate reaches 99.5% using PAAS and 93.0% using PEI as the complexation agent. The nickel removal rate was found to decrease as the adding salt NaCl concentration increases for both complexation agents. A series of experiments implied that the mechanism could be the compressing electric double layer other than the competitive complexation. Diafiltration technique was further performed to regenerate complexation agents and recover nickel. The nickel removal rates were found to be close to those obtained with the original PEI and PAAS. Finally, Langmuir-type binding isotherm equation was employed to evaluate the extent of nickel bound to PAAS and PEI. The overall results from the two-step process of complexation-UF and decomplexation-UF separation showed that it could be a promising method for nickel removal and recovery from aqueous solutions. PMID:23177250

  17. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.

    Science.gov (United States)

    Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves

    2016-01-01

    In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work.

  18. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.

    Science.gov (United States)

    Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves

    2016-01-01

    In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work. PMID:26433358

  19. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  20. Shape Memory as a Process: Optimizing Polymer Design for Shape Recovery

    Science.gov (United States)

    Vaia, Richard; Koerner, Hilmar; Lee, Kyungmin; Strong, Robert; Smith, Mattew; Wang, Huabin; White, Tim; Tan, Loon-Seng

    2012-02-01

    Shape memory is a process that enables the reversible storage and recovery of mechanical energy through a change in shape. Polymers provide a unique alternative to kinematic designs and other materials (e.g. metallic alloys) for applications requiring large deformation and novel control options. The effect control of storage and relaxation of strain energy associated with chain deformation depends on the nonlinear visco-elasitc behavior and glassy dynamics of the polymer network. Considering the molecular understanding of rubbery elasticity, chain entanglements in concentrated polymer liquids, affine deformation of networks, and glass fragility, heuristic guidelines can be formulated to optimize the molecular design of a polymer for shape memory. These are applied to the development of a polymer system for shape memory processes at high-temperature (200^oC). The low-crosslink density polyimide exhibits very rapid shape recovery, excellent fixity, high creep resistance, and good cyclability. Furthermore, the molecular design affords a very narrow temperature range for programming and triggering shape change that can also be accessed by photo-isomerization of the cross-link nodes.

  1. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction

    Science.gov (United States)

    Liang, Yicheng; Peng, Hao

    2015-02-01

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  2. Oxidative stripping process for the recovery of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    The present invention is a two-cycle liquid-liquid extraction process in which the uranium, as uranous ion, is extracted with a first-cycle extractant and then oxidatively stripped with a concentrated phosphoric acid solution. This uranium-enriched strip solution then serves as feed for a second liquid-liquid solvent extraction cycle where uranyl ions are extracted into an organic phase, stripped from the organic phase with ammonium carbonate soluton, and recovered as a high-grade u3O8 product. (author)

  3. Application of waste heat powered absorption refrigeration system to the LNG recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Kalinowski, Paul; Hwang, Yunho; Radermacher, Reinhard [Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States); Al Hashimi, Saleh; Rodgers, Peter [The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2009-06-15

    The recovery process of the liquefied natural gas requires low temperature cooling, which is typically provided by the vapor compression refrigeration systems. The usage of an absorption refrigeration system powered by waste heat from the electric power generating gas turbine could provide the necessary cooling at reduced overall energy consumption. In this study, a potential replacement of propane chillers with absorption refrigeration systems was theoretically analyzed. From the analysis, it was found that recovering waste heat from a 9 megawatts (MW) electricity generation process could provide 5.2 MW waste heat produced additional cooling to the LNG plant and save 1.9 MW of electricity consumption. Application of the integrated cooling, heating, and power is an excellent energy saving option for the oil and gas industry. (author)

  4. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    Science.gov (United States)

    Rao, Dandina N.

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  5. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    Science.gov (United States)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  6. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Yanis C.

    2001-08-07

    This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  7. Process Model of the Gas Recovery System in an IFE reactor

    Science.gov (United States)

    Gentile, Charles; Aristova, Maria

    2007-11-01

    It is necessary to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. In order to observe the interaction of all components, a chemical process model is developed as part of the conceptual design phase of the project. Initially, the reactants, system structure, and processes are defined using the known contents of the vacuum vessel exhaust. The output, which will include physical properties and chemical content of the products, is analyzed to determine the most efficient and productive system parameters. The results of the modeling will be presented in this paper. This modeling exercise will be instrumental in optimizing and closing the fusion fuel cycle in the IFE power reactor.

  8. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Y.C.

    2001-05-29

    This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  9. Performance Evaluation of Absorbent Solution for Draw Solute Recovery in Forward Osmosis Desalination Process

    International Nuclear Information System (INIS)

    Although forward osmosis desalination technology has drawn substantial attention as a next-generation desalination method, the energy efficiency of its draw solution treatment process should be improved for its commercialization. When ammonium bicarbonate is used as the draw solute, the system consists of forward-osmosis membrane modules, draw solution separation and recovery processes. Mixed gases of ammonia and carbon dioxide generated during the draws solution separation, need to be recovered to re-concentrate ammonium bicarbonate solution, for continuous operation as well as for the economic feasibility. The diluted ammonium bicarbonate solution has been proposed as the absorbent for the draw solution regeneration. In this study, experiments are conducted to investigate performance and features of the absorption corresponding to absorbent concentration. It is concluded that ammonium bicarbonate solution can be used to recover the generated ammonia and carbon dioxide. The results will be applied to design and operation of pilot-scale forward-osmosis desalination system

  10. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

    2004-10-01

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in

  11. Study on the recovery process of hydrocarbon cleaning agent%碳氢清洗剂再生利用工艺方法的研究

    Institute of Scientific and Technical Information of China (English)

    刘瑞广

    2011-01-01

    ODS(Ozone Depleting Substances) cleaning agent takes a large portion in halogenated cleaning agent, which is the most common cleaning agent. The use of halogenated cleaning agent has threatened human, object to be cleaned and the environment. As a substitute of halogenated cleaning agent, hydrocarbon cleaning agent has been widely used in the recent years. Compared with halogenated cleaning agent, hydrocarbon cleaning agent has higher boiling point 150-190 ℃ and lower flashing point 50~70 ℃, which means the traditional cleaning agent recovery process are not suitable to recover hydrocarbon cleaning agent. This paper describes a new method to recover hydrocarbon cleaning a-gent. The recovery process is sulfuric acid extraction, clarification and distillation. Thus, the final product is qualified to be reused, and the sulfuric acid can also be reused.%在工业清洗领域使用最多的卤代烃清洗剂,其中ODS(破坏臭氧层物质)清洗剂占有很大比重,但在使用中对人、被清洗物和环境会带来许多危害.为此,各种替代产品和替代技术应运而生.从经济、适用、安全、环保等方面综合评价,经过多年的探索、论证、比较和筛选,碳氢清洗剂作为替代品已得到广泛应用,尽管碳氢清洗剂有诸多优点,但与ODS清洗剂相比,其沸点高(150~190℃)、闪点低(50~70℃)、与被清洗的物质相容性好,使碳氢清洗剂的再生无法用原有工艺方法实现.本工艺方法的研究是采取硫酸萃取、静置分离、精馏的方法再生碳氢清洗剂,达到原有的品质重复利用,硫酸萃取剂蒸馏回收重复利用,达到资源化利用的目的.

  12. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system

    Science.gov (United States)

    Martinez, Sanja; Stern, Ivica

    2002-10-01

    The corrosion rates in the presence of mimosa tannin as a low carbon steel corrosion inhibitor in sulfuric acid media, were measured by the weight loss method, in the range of temperatures from 20 to 60 °C. The Temkin, Frumkin and Freundlich isotherms were tested for their fit to the experimental data. The free energies and enthalpies for the adsorption process and the apparent activation energies, enthalpies and entropies of the dissolution process were determined. The fundamental thermodynamic functions were used to glean important information about the mimosa tannin inhibitory behavior. The results were explained in terms of chemical thermodynamics.

  13. Influence of plasma processing on recovery and analysis of circulating nucleic acids.

    Directory of Open Access Journals (Sweden)

    Karen Page

    Full Text Available Circulating nucleic acids (CNAs are under investigation as a liquid biopsy in cancer. However there is wide variation in blood processing and methods for isolation of circulating free DNA (cfDNA and microRNAs (miRNAs. Here we compare the extraction efficiency and reproducibility of 4 commercially available kits for cfDNA and 3 for miRNA using spike-in of reference templates. We also compare the effects of increasing time between venepuncture and centrifugation and differential centrifugation force on recovery of CNAs. cfDNA was quantified by TaqMan qPCR and targeted deep sequencing. miRNA profiles were assessed with TaqMan low-density arrays and assays. The QIAamp(® DNA Blood Mini and Circulating nucleic acid kits gave the highest recovery of cfDNA and efficient recovery (>90% of a 564bp spike-in. Moreover, targeted sequencing revealed overlapping cfDNA profiles and variant depth, including detection of HER2 gene amplification, using the Ion AmpliSeq™Cancer Hotspot Panel v2. Highest yields of miRNA and the synthetic Arabidopsis thaliana miR-159a spike-in were obtained using the miRNeasy Serum/Plasma kit, with saturation above 200 µl of plasma. miRNA profiles showed significant variation with increasing time before centrifugation (p 12 years, highlighting the potential for analysis of stored sample biobanks. In the era of the liquid biopsy, standardisation of methods is required to minimise variation, particularly for miRNA.

  14. STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Roger Hester

    2004-09-30

    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increase in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.

  15. Effect of Sulfurization Temperature on Solution-Processed Cu2ZnSnS4 Thin Films.

    Science.gov (United States)

    Park, Si-Nae; Sung, Shi-Joon; Son, Dae-Ho; Kim, Dae-Hwan; Sim, Jun-Hyoung; Kang, Jin-Kyu

    2015-03-01

    Cu2ZnSnS4 (CZTS) solar cells are attracting significant attention as an alternative to CIGS (Culn1-xGa(x)S2) solar cells because of the non-toxic and inexpensive constituent elements of CZTS. Recently, solution-based deposition methods are being developed because they have advantages such as suitability for use in large-area deposition, high-throughput manufacturing, and a very short energy payback time with drastically lower manufacturing costs. In this work, we fabricated solution-based CZTS thin films and investigated them in order to observe the effects of sulfurization temperature on CZTS thin films. We confirmed the grain size, morphology, chemical composition, crystallinity, and electrical properties of CZTS thin films depending on various sulfurization temperatures. PMID:26413693

  16. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  17. The relationship between coping styles and psychological adaptation in the recovery process: patients with coronary heart disease

    Directory of Open Access Journals (Sweden)

    Besharat M.A.

    2008-11-01

    Full Text Available "nBackground: The relationship between coping styles and psychological adaptation during the recovery process was investigated in a sample of coronary heart disease (CHD patients. "nMethods: One hundred and fifty patients from Shahid Rajaee Heart Center, Tehran, Iran, were included in this study at intake and forty five patients (27 men, 18 women participated in the follow-up study. All participants were asked to complete the Tehran Coping Styles Scale (TCSS and Mental Health Inventory (MHI. The Recovery Process Questionnaire (RPQ was completed using each patient's medical file and clinical examinations by cardiologists. Styles of coping with stress were categorized as problem-focused, positive emotional-focused and negative emotional-focused. Psychological adaptation included psychological well-being and psychological distress. "nResults: Objective recovery status showed no significant correlation with either coping styles or psychological adaptation. Perceived recovery revealed a significant positive association with negative emotional-focused coping (p<0.05, but no significant correlation with other coping and psychological adaptation variables. Perceived recovery revealed a significant negative association with psychological distress (p<0.05, but showed no significant correlation with psychological well-being. "nConclusions: Perceived recovery in CHD patients is positively influenced by negative emotional-focused coping styles. Results and implications are discussed specifically in terms of the possible reasons for the positive relationship between perceived recovery and negative emotional-focused coping.

  18. The process of recovery in eating disorder sufferers' own words: an Internet-based study.

    Science.gov (United States)

    Keski-Rahkonen, Anna; Tozzi, Federica

    2005-01-01

    This exploratory Internet-based study attempts to understand what eating disorder sufferers suggest when they mention the word recovery. All messages (N = 685) posted in a Finnish-language eating disorders discussion group during a 3-month period were analyzed for the contexts of the word recovery using text analysis software and qualitative methods. The discussion group participants' views of recovery changed according to their current stage of change. Mentioning recovery was least likely during precontemplation and relapse. Internet discussion group was seen as helpful in the early stages of change, but as impeding recovery in the last stages. Willpower and ceasing to identify with eating disorders were viewed as essential to recovery. The value of professional help in recovery was viewed as conditional on the eating disorders sufferer's own willingness to change. Internet-based support groups have many potential therapeutic applications. Motivational aspects need to be taken into account in promoting recovery.

  19. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Ecological Society Symposium held jointly with the Linnean Society of London. Oxford: Blackwell. Huston MH and Smith T (1987) Plant succession: Life history and competition. American Naturalist 130: 168–198. Sulfur Cycle P A Loka Bharathi, National Institute.... Vegetatio 110: 115–147. Odum EP (1969) The strategy of ecosystem development. Science 164: 262–270. Walker KR and Alberstadt LP(1975) Ecological succession asan aspect of structure in fossil communities. Paleobiology 1: 238–257. Author's personal copy S 4 O...

  20. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  1. Intensified recovery of valuable products from whey by use of ultrasound in processing steps - A review.

    Science.gov (United States)

    Gajendragadkar, Chinmay N; Gogate, Parag R

    2016-09-01

    The current review focuses on the analysis of different aspects related to intensified recovery of possible valuable products from cheese whey using ultrasound. Ultrasound can be used for process intensification in processing steps such as pre-treatment, ultrafiltration, spray drying and crystallization. The combination of low-frequency, high intensity ultrasound with the pre-heat treatment minimizes the thickening or gelling of protein containing whey solutions. These characteristics of whey after the ultrasound assisted pretreatment helps in improving the efficacy of ultrafiltration used for separation and also helps in preventing the blockage of orifice of spray dryer atomizing device. Further, the heat stability of whey proteins is increased. In the subsequent processing step, use of ultrasound assisted atomization helps to reduce the treatment times as well as yield better quality whey protein concentrate (WPC) powder. After the removal of proteins from the whey, lactose is a major constituent remaining in the solution which can be efficiently recovered by sonocrystallization based on the use of anti-solvent as ethanol. The scale-up parameters to be considered during designing the process for large scale applications are also discussed along with analysis of various reactor designs. Overall, it appears that use of ultrasound can give significant process intensification benefits that can be harnessed even at commercial scale applications.

  2. Intensified recovery of valuable products from whey by use of ultrasound in processing steps - A review.

    Science.gov (United States)

    Gajendragadkar, Chinmay N; Gogate, Parag R

    2016-09-01

    The current review focuses on the analysis of different aspects related to intensified recovery of possible valuable products from cheese whey using ultrasound. Ultrasound can be used for process intensification in processing steps such as pre-treatment, ultrafiltration, spray drying and crystallization. The combination of low-frequency, high intensity ultrasound with the pre-heat treatment minimizes the thickening or gelling of protein containing whey solutions. These characteristics of whey after the ultrasound assisted pretreatment helps in improving the efficacy of ultrafiltration used for separation and also helps in preventing the blockage of orifice of spray dryer atomizing device. Further, the heat stability of whey proteins is increased. In the subsequent processing step, use of ultrasound assisted atomization helps to reduce the treatment times as well as yield better quality whey protein concentrate (WPC) powder. After the removal of proteins from the whey, lactose is a major constituent remaining in the solution which can be efficiently recovered by sonocrystallization based on the use of anti-solvent as ethanol. The scale-up parameters to be considered during designing the process for large scale applications are also discussed along with analysis of various reactor designs. Overall, it appears that use of ultrasound can give significant process intensification benefits that can be harnessed even at commercial scale applications. PMID:27150751

  3. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  4. Downstream processing for xylitol recovery from fermented sugar cane bagasse hydrolysate using aluminium polychloride.

    Science.gov (United States)

    Silva, S S; Ramos, R M; Rodrigues, D C; Mancilha, I M

    2000-01-01

    Xylitol, a sweetener comparable to sucrose, is anticariogenic and can be consumed by diabetics. This sugar has been employed successfully in many foods and pharmaceutical products. The discovery of microorganisms capable of converting xylose present in lignocellulosic biomass into xylitol offers the opportunity of producing this poliol in a simple way. Xylitol production by biotechnological means using sugar cane bagasse is under study in our laboratories, and fermentation parameters have already been established. However, the downstream processing for xylitol recovery is still a bottleneck on which there is only a few data available in the literature. The present study deals with xylitol recovery from fermented sugar cane bagasse hydrolysate using 5.2 g/l of aluminium polychloride associated with activated charcoal. The experiments were performed at pH 9, 50 degrees C for 50 min. The results showed that aluminium polychloride and activated charcoal promoted a 93.5% reduction in phenolic compounds and a 9.7% loss of xylitol from the fermented medium, which became more discoloured, facilitating the xylitol separation.

  5. Tensiomygraphic Measurement of Atrophy Related Processes During Bed Rest and Recovery

    Science.gov (United States)

    Simunic, B. ostjan; Degens, Hans; Rittweger, Jorn; Narici, Marcco; Pisot, Venceslav; Mekjavic, Igor B.; Pisot, Rado

    2013-02-01

    Tensiomyographic (TMG) parameters were recently proposed for a non-invasive estimation of MHC distribution in human vastus lateralis muscle. However, TMG potential is even higher, offers additional insight into the skeletal muscle physiology, especially in the field of atrophy and hypertrophy. The purpose of this study is in developing time dynamics of TMG-measured contraction time (Tc) and maximal response amplitude (Dm), together with muscle belly thickness, measure thoroughly during 35-day bed rest and followed in 30-day recovery (N = 10 males; age 24.3 ± 2.6 years). Measurements were performed in two postural muscles (vastus medialis and lateralis) and one non-postural muscle (biceps femoris). During bed rest period we found different dynamics of muscle thickness decrease and Dm increase. Tc was unchanged in postural muscles, but in non-postural muscle increased significantly and stayed as such even at the end of recovery. We could conclude that TMG related parameters are more sensitive in measuring muscle atrophic and hypertrophic processes than biomedical imaging technique. However, a mechanism that regulates Dm still needs to be identified.

  6. Uncertainty in Population Estimates for Endangered Animals and Improving the Recovery Process

    OpenAIRE

    Rachlow, Janet L; Goble, Dale D.; Matthew Zak; J. Michael. Scott; Katie Hammond; Haines, Aaron M.

    2013-01-01

    Simple Summary The objective of our study was to evaluate the mention of uncertainty (i.e., variance) associated with population size estimates within U.S. recovery plans for endangered animals. To do this we reviewed all finalized recovery plans for listed terrestrial vertebrate species. We found that more recent recovery plans reported more estimates of population size and uncertainty. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty. We recomm...

  7. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  8. Uncertainty in Population Estimates for Endangered Animals and Improving the Recovery Process

    Directory of Open Access Journals (Sweden)

    Janet L. Rachlow

    2013-08-01

    Full Text Available United States recovery plans contain biological information for a species listed under the Endangered Species Act and specify recovery criteria to provide basis for species recovery. The objective of our study was to evaluate whether recovery plans provide uncertainty (e.g., variance with estimates of population size. We reviewed all finalized recovery plans for listed terrestrial vertebrate species to record the following data: (1 if a current population size was given, (2 if a measure of uncertainty or variance was associated with current estimates of population size and (3 if population size was stipulated for recovery. We found that 59% of completed recovery plans specified a current population size, 14.5% specified a variance for the current population size estimate and 43% specified population size as a recovery criterion. More recent recovery plans reported more estimates of current population size, uncertainty and population size as a recovery criterion. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty compared to reptiles and amphibians. We suggest the use of calculating minimum detectable differences to improve confidence when delisting endangered animals and we identified incentives for individuals to get involved in recovery planning to improve access to quantitative data.

  9. Modified sodium diuranate process for the recovery of uranium from uranium hexafluoride transport cylinder wash solution

    Science.gov (United States)

    Meredith, Austin Dean

    Uranium hexafluoride (UF6) containment cylinders must be emptied and washed every five years in order to undergo recertification, according to ANSI standards. During the emptying of the UF6 from the cylinders, a thin residue, or heel, of UF6 is left behind. This heel must be removed in order for recertification to take place. To remove it, the inside of the containment cylinder is washed with acid and the resulting solution generally contains three or four kilograms of uranium. Thus, before the liquid solution can be disposed of, the uranium must be separated. A modified sodium diuranate (SDU) uranium recovery process was studied to support development of a commercial process. This process was sought to ensure complete uranium recovery, at high purity, in order that it might be reused in the nuclear fuel cycle. An experimental procedure was designed and carried out in order to verify the effectiveness of the commercial process in a laboratory setting. The experiments involved a small quantity of dried UO2F2 powder that was dosed with 3wt% FeF3 and was dissolved in water to simulate the cylinder wash solution. Each experiment series started with a measured amount of this powder mixture which was dissolved in enough water to make a solution containing about 120 gmU/liter. The experiments involved validating the modified SDU extraction process. A potassium diuranate (KDU) process was also attempted. Very little information exists regarding such a process, so the task was undertaken to evaluate its efficacy and determine whether a potassium process yields any significant differences or advantages as compared to a sodium process. However, the KDU process ultimately proved ineffective and was abandoned. Each of the experiments was organized into a series of procedures that started with the UO2F2 powder being dissolved in water, and proceeded through the steps needed to first convert the uranium to a diuranate precipitate, then to a carbonate complex solution, and finally

  10. Drought and Recovery: Independently Regulated Processes Highlighting the Importance of Protein Turnover Dynamics and Translational Regulation in Medicago truncatula.

    Science.gov (United States)

    Lyon, David; Castillejo, Maria Angeles; Mehmeti-Tershani, Vlora; Staudinger, Christiana; Kleemaier, Christoph; Wienkoop, Stefanie

    2016-06-01

    Climate change in conjunction with population growth necessitates a systems biology approach to characterize plant drought acclimation as well as a more thorough understanding of the molecular mechanisms of stress recovery. Plants are exposed to a continuously changing environment. Extremes such as several weeks of drought are followed by rain. This requires a molecular plasticity of the plant enabling drought acclimation and the necessity of deacclimation processes for recovery and continuous growth.During drought stress and subsequent recovery, the metabolome and proteome are regulated through a sequence of molecular processes including synthesis and degradation and molecular interaction networks are part of this regulatory process. In order to study this complex regulatory network, a comprehensive analysis is presented for the first time, investigating protein turnover and regulatory classes of proteins and metabolites during a stress recovery scenario in the model legume Medicago truncatula The data give novel insights into the molecular capacity and differential processes required for acclimation and deacclimation of severe drought stressed plants.Functional cluster and network analyses unraveled independent regulatory mechanisms for stress and recovery with different dynamic phases that during the course of recovery define the plants deacclimation from stress. The combination of relative abundance levels and turnover analysis revealed an early transition phase that seems key for recovery initiation through water resupply and is independent from renutrition. Thus, a first indication for a metabolite and protein-based load capacity was observed necessary for the recovery from drought, an important but thus far ignored possible feature toward tolerance. The data indicate that apart from the plants molecular stress response mechanisms, plasticity may be related to the nutritional status of the plant prior to stress initiation. A new perspective and possible new

  11. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part I: Characterization of materials

    Directory of Open Access Journals (Sweden)

    López-Delgado, A.

    2012-02-01

    Full Text Available European Directives consider mercury a priority hazardous substance due to its adverse effects on human health and the environment. In response to environmental concerns, a microencapsulation process has been developed within the European LIFE program as a long-term storage option for mercury. This process leads to the obtainment of a stable concrete-like sulfur matrix that allows the immobilization of mercury. The final product, in the form of a solid block containing up to 30 % Hg, exhibits excellent mechanical properties (compressive strength 53-61MPa and flexural strength 7-10 MPa, low porosity (0.57 % PHe, very low total pore volume (0.63x10-2 cm3 g-1, and extremely low permeability (coefficient of water absorption by capillarity 0.07 g cm-2. Toxicity characteristic leaching tests reveal a mercury concentration in leachates well below the 0.2 mg L-1 set out in US EPA Land Disposal Restrictions (LDRs. The values of mercury vapor emissions of final products were lower than those of cinnabar and metacinnabar.

    Resumen Las Directivas Europeas consideran al mercurio una sustancia de peligrosidad prioritaria debido a sus efectos adversos sobre la salud humana y sobre el medio ambiente. En respuesta a estas preocupaciones ambientales, y dentro del Programa Europeo LIFE, se ha desarrollado un proceso de microencapsulación como una opción al almacenamiento a largo plazo del mercurio. Con este proceso se obtiene un material estable, tipo concreto, de matriz de azufre que permite la inmovilización del mercurio. El producto final, en forma de un bloque sólido, contiene hasta un 30 % de Hg, presenta excelentes propiedades mecánicas (resistencia a la compresión 53-61 MPa, y a la flexión 7-10 MPa, baja porosidad (0,57 % PHe, muy bajo volumen total de poro (0,63 x 10-2 cm3 g-1 y una permeabilidad extremadamente baja (coeficiente de absorción de

  12. Recovery process of cathode material of the spent lithium-ion batteries using Pechini methods

    International Nuclear Information System (INIS)

    This work proposes a new process of recovering LiCoO2 from spent Li-ion batteries (LIBs) by a combination of acid leaching and Pechini synthesis, as an alternative process to improve the recovery efficiency of LiCoO2 and reduce energy consumption and pollution. The effects of calcination temperature and lithium acetate addition in the synthesis on the structure and morphology of LiCoO2 powders were characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. According to the analysis, the crystallinity of LiCoO2 powders depends on the calcination temperature. The results indicate the layered HT-LiCoO2 powders can be obtained at 750 deg C for 24 h in oxygen with lithium salt addition. Cyclic voltammograms showed one reversible redox process at 4.0/3.85 V for the LiCoO2 obtained with lithium addition in the synthesis and irreversible redox process for the LiCoO2 obtained without lithium addition. (author)

  13. Critical value for the contact process with random recovery rates and edge weights on regular tree

    Science.gov (United States)

    Xue, Xiaofeng

    2016-11-01

    In this paper we are concerned with contact processes with random recovery rates and edge weights on rooted regular trees TN. Let ρ and ξ be two nonnegative random variables such that P(ɛ ≤ ξ 0. For each vertex x on TN, ξ(x) is an independent copy of ξ while for each edge e on TN, ρ(e) is an independent copy of ρ. An infected vertex x becomes healthy at rate ξ(x) while an infected vertex y infects an healthy neighbor z at rate proportional to ρ(y , z) . For this model, we prove that the critical value under the annealed measure approximately equals (N E ρ E 1/ξ )-1 as N grows to infinity. Furthermore, we show that the critical value under the quenched measure equals that under the annealed measure when the cluster containing the root formed with edges with positive weights is infinite.

  14. Modelling stressors on the eelgrass recovery process in two Danish estuaries

    DEFF Research Database (Denmark)

    Kuusemäe, Kadri; Rasmussen, Erik Kock; Canal-Vergés, Paula;

    2016-01-01

    succeeded. The mechanisms hindering/delaying eelgrass recovery were recently identified: 1) lack of sediment anchoring capacity, 2) resuspension created by drifting ephemeral macroalgae, 3) seedling uprooting created by current and wave forces, 4) ballistic stress from attached macroalgae and 5) burial...... of seeds and seedlings by lugworms. These processes were quantified and introduced to an ecological MIKE 3D model. The developed model was calibrated and validated on two Danish estuaries, Odense Fjord and Roskilde Fjord. Analyses of the simulations were performed on area distribution maps...... the second strongest negative impact on eelgrass growth, area reduction of 78.31% and 73.14% in Odense and Roskilde Fjord was seen. Ballistic stress from attached macroalgae also reduced growth drastically. Light conditions, sediment organic content along with shear stress at the sediment surface impact...

  15. Reason Analysis and Technical Reformation Measure for Operating Fault of Equipment in Sulfur Recovery Device%硫回收装置设备运行故障原因分析及技改措施

    Institute of Scientific and Technical Information of China (English)

    赵月刚; 李振和

    2012-01-01

    介绍了硫回收装置设备运行中存在的问题;对尾气废热锅炉、酸性气废热锅炉与酸性气燃烧炉的短接、燃烧炉空气鼓风机损坏的原因进行了分析;提出了具体技改方案;结果表明,通过技术改造,尾气废热锅炉产生2.5MPa饱和蒸汽全部返回蒸汽管网,全年创造经济效益336.6万元。%Author has introduced the existing problems in running of equipment of sulfur recovery unit ; has made the analysis of reason of damages for waste heat boiler of acid gas, spool piece of waste heat boiler of acid gas between combustion furnace of acid gas, air blower of combustion furnace ; has presented concrete technical reformation scheme, the result indicates that the saturated steam at 2.5MPa produced from waste heat boiler of tail gas is fully returned to steam piping network through technical reformation, the economic benefit of 3,366,000 Yuan RMB is created annually.

  16. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates

    OpenAIRE

    Rawlings Douglas E

    2005-01-01

    Abstract Microorganisms are used in large-scale heap or tank aeration processes for the commercial extraction of a variety of metals from their ores or concentrates. These include copper, cobalt, gold and, in the past, uranium. The metal solubilization processes are considered to be largely chemical with the microorganisms providing the chemicals and the space (exopolysaccharide layer) where the mineral dissolution reactions occur. Temperatures at which these processes are carried out can var...

  17. Environmentally Friendly Recovery of Phenylacetic Acid from 7-ADCA Production Process%从7-ADCA生产过程中环境友好的回收苯乙酸

    Institute of Scientific and Technical Information of China (English)

    李珣珣; 周新基; 咸娟; 冒小青

    2015-01-01

    采用新工艺回收7-氨基-3-脱乙酰氧基头孢烷酸(7-ADCA)生产中产生的苯乙酸,并对苯乙酸回收过程中产生的废硫酸进行处理.采用硫酸(98%)洗涤二氯甲烷,硫酸与二氯甲烷适宜的体积比为1:50,洗涤好的二氯甲烷中含苯乙酸4%.蒸馏出二氯甲烷,趁热向熔融苯乙酸中加入母液,降温析出苯乙酸.晾干的苯乙酸为白色鳞片状,含量大于99%,苯乙酸母液补充部分清水套用到下一批析出苯乙酸.废浓硫酸用芬顿试剂氧化,控制80℃氧化4h,双氧水和七水硫酸亚铁重量比为6:1,废浓硫酸COD下降85%以上.氧化结束后向废硫酸中加入铁粉和双氧水,制得聚合硫酸铁.%A new technology to recover the by-product of 7-ADCA and purify the waste sulfuric acid produced in phenylacetic acid recovery process was adopted. Firstly, wash CH2Cl2 with sulfuric acid (98%) under the condition that the volumeratio of sulfuric acid to CH2Cl2 was 1:50, and the mass fraction of phenylacetic acid in washed CH2Cl2 was 4%. Secondly, distilled the CH2Cl2 and added mother liquid into the rest part--mainly fused phenylacetic acid. Thirdly, separated phenylacetic acid by the method of decrease the composition liquid temperature, the content of which was more than 99% .Then, applied the remaining with water added into the next batch. Fenton reagent was used to oxidize the waste sulfuric acid. The oxidization lasted for 4h with the controlling temperature of 80℃ and the weight ratio of H2O2 and FeSO4·7H2O was 6:1, then the COD of waste sulfuric acid decreased by more than 85%. After that, Fe and H2O2 were added into the waste sulfuric acid to produce polymeric ferric sulfate.

  18. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao

    2003-10-01

    This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflect mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been considered and

  19. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    Science.gov (United States)

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR. PMID:21853326

  20. Designing of an intensification process for biosynthesis and recovery of menaquinone-7.

    Science.gov (United States)

    Berenjian, Aydin; Mahanama, Raja; Talbot, Andrea; Regtop, Hubert; Kavanagh, John; Dehghani, Fariba

    2014-02-01

    A nutritional food rich in menaquinone-7 has a potential in preventing osteoporosis and cardiovascular diseases. The static fermentation of Bacillus subtilis natto is widely regarded as an optimum process for menaquinone-7 production. The major issues for the bulk production of menaquinone-7 are the low fermentation yield, biofilm formation and the use of organic solvents for the vitamin extraction. In this study, we demonstrate that the dynamic fermentation involving high stirring and aeration rates enhances the yield of fermentation process significantly compared to static system. The menaquinone-7 concentration of 226 mg/L was produced at 1,000 rpm, 5 vvm, 40 °C after 5 days of fermentation. This concentration is 70-fold higher than commercially available food products such as natto. Additionally, it was found that more than 80% of menaquinone-7 was recovered in situ in the vegetable oil that was gradually added to the system as an anti-foaming agent. The intensification process developed in this study has a capacity to produce an oil rich in menaquinone-7 in one step and eliminate the use of organic solvents for recovery of this compound. This oil can, therefore, be used for the preparation of broad range of supplementary and dietary food products rich in menaquinone-7 to reduce the risk of osteoporotic fractures and cardiovascular diseases.

  1. Designing of an intensification process for biosynthesis and recovery of menaquinone-7.

    Science.gov (United States)

    Berenjian, Aydin; Mahanama, Raja; Talbot, Andrea; Regtop, Hubert; Kavanagh, John; Dehghani, Fariba

    2014-02-01

    A nutritional food rich in menaquinone-7 has a potential in preventing osteoporosis and cardiovascular diseases. The static fermentation of Bacillus subtilis natto is widely regarded as an optimum process for menaquinone-7 production. The major issues for the bulk production of menaquinone-7 are the low fermentation yield, biofilm formation and the use of organic solvents for the vitamin extraction. In this study, we demonstrate that the dynamic fermentation involving high stirring and aeration rates enhances the yield of fermentation process significantly compared to static system. The menaquinone-7 concentration of 226 mg/L was produced at 1,000 rpm, 5 vvm, 40 °C after 5 days of fermentation. This concentration is 70-fold higher than commercially available food products such as natto. Additionally, it was found that more than 80% of menaquinone-7 was recovered in situ in the vegetable oil that was gradually added to the system as an anti-foaming agent. The intensification process developed in this study has a capacity to produce an oil rich in menaquinone-7 in one step and eliminate the use of organic solvents for recovery of this compound. This oil can, therefore, be used for the preparation of broad range of supplementary and dietary food products rich in menaquinone-7 to reduce the risk of osteoporotic fractures and cardiovascular diseases. PMID:24173914

  2. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate.

    Science.gov (United States)

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-01-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g(-1) COD and methane percentages of 53-76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L(-1)) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg(-1) N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L(-1) d(-1) was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68-95 fmol N cell(-1) d(-1), which finally led to the stable operation of the system. PMID:27279481

  3. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate

    Science.gov (United States)

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-06-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g‑1 COD and methane percentages of 53–76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L‑1) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg‑1 N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L‑1 d‑1 was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68–95 fmol N cell‑1 d‑1, which finally led to the stable operation of the system.

  4. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are stabil

  5. Technology Development of an Advanced Small-scale Microchannel-type Process Heat Exchanger (PHE) for Hydrogen Production in Iodine-sulfur Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Injin; Kim, Chan Soo; Kim, Yong Wan; Park, Jae-Won; Kim, Eung-Seon; Kim, Min-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, ongoing manufacturing processes of the components employed in an advanced small-scale microchannel-type PHE are presented. The components, such as mechanically machined microchannels and a diffusion-bonded stack are introduced. Also, preliminary studies on surface treatment techniques for improving corrosion resistance from the corrosive sulfuric environment will be covered. Ongoing manufacturing process for an advanced small-size microchannel-type PHE in KAERI is presented. Through the preliminary studies for optimizing diffusion bonding condition of Hastelloy-X, a diffusion-bonded stack, consisting of primary and secondary side layer by layer, is scheduled to be fabricated in a few months. Also, surface treatment for enhancing the corrosion resistance from the sulfuric acid environment is in progress for the plates with microchannels. A massive production of hydrogen with electricity generation is expected in a Process Heat Exchanger (PHE) in a Very High Temperature gas-cooled Reactor (VHTR) system. For the application of hydrogen production, a small-scale gas loop for feasibility testing of a laboratory-scale has constructed and operated in Korea Atomic Energy Research Institute (KAERI) as a precursor to an experimental- and a pilot-scale gas loops.

  6. Analysis of Exhaust Gas Waste Heat Recovery and Pollution Processing for Z12V190 Diesel Engine

    Directory of Open Access Journals (Sweden)

    Hou Xuejun

    2012-06-01

    Full Text Available With the increasingly prominent problem regarding rapid economy development and the gradually serious environmental pollution, the waste heat recovery and waste gas pollution processing have received significant attention. Z12V190 diesel engine has high fuel consumption and low thermal efficiency and releases large amounts of exhaust gas and waste heat into the atmosphere, causing serious problems of energy waste and environmental pollution. In this work, the diesel engine exhaust gas components are analysed and the diesel engine exhaust emission rates and exhaust gas waste heat rates are calculated. The calculating results proved the economic feasibility of waste heat recovery from Z12V190 diesel engine exhaust gas. Then, the mainly harmful components are analysed and the corresponding methods of purification and processing about Z12V190 diesel engine exhaust gas pollution discussed. In order to achieve full recovery of waste heat, save energy, purify treatment pollution and ultimate to lay the foundation for waste gas recovery and pollution treatment, the comprehensive process flows of Z12V190 diesel engine exhaust gas pollution processing and waste heat recovery are preliminary designed.

  7. Advanced sulfur control concepts for hot-gas desulfurization technology

    International Nuclear Information System (INIS)

    twenty-five-cycle test. The sorbent was exposed for 58 consecutive days to temperatures between 600C and 800C and gas atmospheres from highly reducing to highly oxidizing without measurable loss of sulfur capacity or reactivity. In the process analysis phase of this study, a two-stage desulfurization process using cerium sorbent with SO2 regeneration followed by zinc sorbent with dilute O2 regeneration was compared to a single-stage process using zinc sorbent and O2 regeneration with SO2 in the regeneration product gas converted to elemental sulfur using the direct sulfur recovery process (DSRP). Material and energy balances were calculated using the process simulation package PRO/II. Major process equipment was sized and a preliminary economic analysis completed. Sorbent replacement rate, which is determined by the multicycle sorbent durability, was found to be the most significant factor in both processes. For large replacement rates corresponding to average sorbent lifetimes of 250 cycles or less, the single-stage zinc sorbent process with DSRP was estimated to be less costly. However, the cost of the two-stage cerium sorbent process was more sensitive to sorbent replacement rate, and, as the required replacement rate decreased, the economics of the two-stage process improved. For small sorbent replacement rates corresponding to average sorbent lifetimes of 1000 cycles or more, the two-stage cerium process was estimated to be less costly. In the relatively wide middle range of sorbent replacement rates, the relative economics of the two processes depends on other factors such as the unit cost of sorbents, oxygen, nitrogen, and the relative capital costs

  8. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    a twenty-five-cycle test. The sorbent was exposed for 58 consecutive days to temperatures between 600°C and 800°C and gas atmospheres from highly reducing to highly oxidizing without measurable loss of sulfur capacity or reactivity. In the process analysis phase of this study, a two-stage desulfurization process using cerium sorbent with SO2 regeneration followed by zinc sorbent with dilute O2 regeneration was compared to a single-stage process using zinc sorbent and O2 regeneration with SO2 in the regeneration product gas converted to elemental sulfur using the direct sulfur recovery process (DSRP). Material and energy balances were calculated using the process simulation package PRO/II. Major process equipment was sized and a preliminary economic analysis completed. Sorbent replacement rate, which is determined by the multicycle sorbent durability, was found to be the most significant factor in both processes. For large replacement rates corresponding to average sorbent lifetimes of 250 cycles or less, the single-stage zinc sorbent process with DSRP was estimated to be less costly. However, the cost of the two-stage cerium sorbent process was more sensitive to sorbent replacement rate, and, as the required replacement rate decreased, the economics of the two-stage process improved. For small sorbent replacement rates corresponding to average sorbent lifetimes of 1000 cycles or more, the two-stage cerium process was estimated to be less costly. In the relatively wide middle range of sorbent replacement rates, the relative economics of the two processes depends on other factors such as the unit cost of sorbents, oxygen, nitrogen, and the relative capital costs.

  9. SULFUR POLYMER ENCAPSULATION

    International Nuclear Information System (INIS)

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ((approx)$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  10. A Practical Approach for Studying Fouling Process in Li-Recovery Pilot Plant

    Science.gov (United States)

    Kong, M.; Yoon, H.; Eom, C.; Kim, B.; Chung, K.

    2011-12-01

    The efficiency of selective ion recovery such as lithium from seawater has been major interest of previous studies. However, the characterization of adsorption behavior as well as dissolution yield as discharging environmentally problematic chemical species must carefully studied in various conditions including different seawater conditions [1]. Marine biofouling communities are complex, highly dynamic ecosystems consisting of a diverse range of organisms. The development of such communities begins with bacterial attachment followed by the colonization of higher organisms such as invertebrate larvae and algal spores [2-3]. Monitoring and field studies regarding fouling problems during operation of Li-recovery pilot plant which is designed by the Korea Institute of Geoscience & Mineral Resources (KIGAM) were major concern of this study. We examined fouling process for the duration of exposure time in real marine environment. Substrated with no-antifouling treated material and antifouling treated material were exposed and tested for different behaviors toward fouling in ocean. SEM-EDS (Scanning Electron Microscope-Energy dispersive Spectroscopy) analysis was done for surface identification of specific elements for possible dissolution during seawater exposure. To identify organic compound was used GC-MS (Gas Chromatography Mass Spectrometer) analysis. Experiment results, organisms such as alga are fouled the most on 30 days and antitreated material is fouled less than non antitreated material. Operating Li-recovery pilot plant to sea, we need to consider in order to effectively and economically resolve the fouling problem. Acknowledgement : This research was supported by the national research project titled "The Development of Technology for Extraction of Resources Dissolved in Seawater" of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Land, Transport and Maritime Affairs. References [1] M. Y. Diego, K. Soren, and D. J. Kim

  11. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition.

    Science.gov (United States)

    Xia, Cheng-Wang; Ma, Yun-Jie; Zhang, Fang; Lu, Yong-Ze; Zeng, Raymond J

    2014-01-01

    In enhanced biological phosphorus removal (EBPR) process, phosphorus (P) in wastewater is removed via wasted sludge without actual recovery. A novel approach to realize phosphorus recovery with special external chemical oxygen demand (COD) addition in EBPR process was proposed. During the new operating approach period, it was found that (1) no phosphorus was detected in the effluent; (2) with an external addition of 10 % of influent COD amount, 79 % phosphorus in the wastewater influent was recovered; (3) without wasted sludge, the MLVSS concentration in the system increased from 2,010 to 3,400 mg/L and kept stable after day 11 during 24-day operating period. This demonstrates that the novel approach is feasible to realize phosphorus recovery with no wasted sludge discharge in EBPR process. Furthermore, this approach decouples P removal and sludge age, which may enhance the application of membrane bioreactor for P removal. PMID:24122666

  12. Hydrometallurgical recovery of copper from leach liquor of polymetallic nodules in solvent extraction process

    Directory of Open Access Journals (Sweden)

    B. Pospiech

    2012-12-01

    Full Text Available Purpose: Purpose of this paper is to present the possibilities of copper(II recovery from the synthetic sulphate leach liquor containing cobalt(II, nickel(II and manganese(II.Design/methodology/approach: The investigations have been undertaken in order to determine the influence of major parameters on the extraction process of copper(II from the leach liquor of polymetallic manganese nodules. Copper(II ions were extracted with Kelex 100 and LIX 70 in kerosene. The effect of different parameters such as pH of aqueous phase, extractants concentration in the organic phase, concentration of sulphuric acid as the stripping reagent were investigated.Findings: The optimal conditions of metal ions selectivity extraction have been determined. Over 99% of Cu(II can be effectively extracted with 5% Kelex 100 and 10% LIX 70 at pH of 2.0 from model leach liquor in the presence of Co(II, Ni(II and Mn(II, while less than 10% of the other metals is transported to the organic phase. The selectivity of Cu(II extraction over Co(II, Ni(II and Mn(II with Kelex 100 depended upon the acidity of aqueous solution and the selectivity increased with decreasing of pH in the feed solution. Separation of Cu(II from these metal ions is very effective. Cu(II can be recovered successfully from the loaded organic phase with Kelex 100 through stripping with 2.0 M H2SO4.Practical implications: The results can be used during the hydrometallurgical recovery of metals from nodules on the industrial scale.Originality/value: The study on the solvent extraction of Cu(II using LIX 70 and Kelex 100 from leach liquor of polymetallic manganese nodules has not been reported yet. Conducting this research is therefore the most reasonable and necessary.

  13. Experimental Research on Comprehensive Processing of High-Sulfur Cu-Zn Polymetallic Ore%某高硫铜锌多金属矿综合回收试验研究

    Institute of Scientific and Technical Information of China (English)

    张文翰; 李志春

    2015-01-01

    A complex high⁃sulphur Cu⁃Zn polymetallic ore is rich in a variety of valuable metallic elements, among which, copper and zinc minerals are mainly finely⁃disseminated, while pyrite is mainly of coarse grain, with a complicated dissemination among minerals. A technique consisting of coarse grinding, Cu⁃Zn asynchronous bulk flotation for tailings discarding, regrinding of rough concentrate and Cu⁃Zn separation was adopted, resulting in the copper concentrate graded 22.56% Cu at a recovery of 87.55%, and zinc concentrate graded 42.86% Zn at a recovery of 75. 64%. Shaking table was introduced to obtain high⁃grade sulfur concentrate from tailings by the process of coarse grinding⁃bulk flotation.%某复杂高硫铜锌多金属矿富含多种有价金属元素,铜、锌矿物以细粒嵌布为主,黄铁矿主要以粗粒形态存在,矿物间嵌布关系复杂。采用粗磨铜锌异步混选抛尾⁃粗精矿再磨铜锌分离选矿工艺,获得了铜精矿品位22.56%、回收率87.55%,锌精矿品位42.86%、回收率75.64%的指标,粗磨混浮尾矿用摇床重选可选出合格硫精矿。

  14. Asphaltene precipitation and its effects on the vapour extraction (VAPEX) heavy oil recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P.; Wang, X.; Gu, Y. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada). Petroleum Technology Research Centre; Zhang, H. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Core Laboratories Canada Ltd., Calgary, AB (Canada); Moghadam, L. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-10-15

    One of the most important physical phenomena during the solvent vapour extraction (VAPEX) of heavy oil recovery is asphaltene precipitation. After the asphaltene precipitation occurs, the produced heavy oil is deasphalted in-situ, resulting in a lower viscosity and better quality. However, precipitated asphaltenes may plug some small pores of the reservoir formation, thus reducing its permeability. This paper examined the effects of three operating factors on the asphaltene precipitation during the VAPEX process, notably solvent type; operating pressure; and sand-pack permeability. Eight VAPEX tests were conducted to recover two different Lloydminster heavy oil samples from a rectangular sand-packed physical model with a butane mixture and propane as the respective solvents. The accumulative heavy oil and solvent production from the physical model were measured in the entire VAPEX process. The paper described the materials, experimental set-up, and experimental preparation. The VAPEX test was also explained. Results were presented for sand consolidation; solvent effect; pressure effect; and permeability effect. It was concluded that when the extracting solvent is in a liquid-gas state, asphaltene precipitation occurs and leads to in-situ deasphalting. 15 refs., 3 tabs., 6 figs.

  15. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process

    Directory of Open Access Journals (Sweden)

    Alfredo Cassano

    2014-08-01

    Full Text Available Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS content of 10 g·100 g−1 was pre-concentrated by nanofiltration (NF up to 32 g TSS 100 g−1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g−1, was performed by using an osmotic distillation (OD apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g−1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF. The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications.

  16. The influence of age, muscle strength and speed of information processing on recovery responses to external perturbations in gait.

    Science.gov (United States)

    Senden, R; Savelberg, H H C M; Adam, J; Grimm, B; Heyligers, I C; Meijer, K

    2014-01-01

    Dynamic imbalance caused by external perturbations to gait can successfully be counteracted by adequate recovery responses. The current study investigated how the recovery response is moderated by age, walking speed, muscle strength and speed of information processing. The gait pattern of 50 young and 45 elderly subjects was repeatedly perturbed at 20% and 80% of the first half of the swing phase using the Timed Rapid impact Perturbation (TRiP) set-up. Recovery responses were identified using 2D cameras. Muscular factors (dynamometer) and speed of information processing parameters (computer-based reaction time task) were determined. The stronger, faster reacting and faster walking young subjects recovered more often by an elevating strategy than elderly subjects. Twenty three per cent of the differences in recovery responses were explained by a combination of walking speed (B=-13.85), reaction time (B=-0.82), maximum extension strength (B=0.01) and rate of extension moment development (B=0.19). The recovery response that subjects employed when gait was perturbed by the TRiP set-up was modified by several factors; the individual contribution of walking speed, muscle strength and speed of information processing was small. Insight into remaining modifying factors is needed to assist and optimise fall prevention programmes.

  17. INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Yannis C. Yortsos

    2003-02-01

    This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

  18. The effective synthesis of Insoluble sulfur using electron beam

    International Nuclear Information System (INIS)

    Vulcanization is process that formed crosslinking by Insoluble sulfur between linear structure of rubber polymer. Recently, Synthesis of Insoluble sulfur is used Thermal polymerization using about 250 ∼ 300 .deg. C and extraction process is used carbon disulfide(CS2) for separation between soluble sulfur and insoluble sulfur. But this process isn't environmental, economical and safety. This research was focus on developing of insoluble sulfur synthesis process using electron beam. This new process is using under the 140 .deg. C. Because of that, explosion risk is decrease, environmental and economical factor is increased. The sulfur can be melt by increase temperature or made solution using carbon disulfide. And electron beam is irradiated melting sulfur or sulfur solution. After irradiation, The high purity insoluble sulfur can be obtained by separation with carbon disulfide

  19. Session 4: The Mo/Al{sub 2}O{sub 3}-H{sub 2}O{sub 2} a catalytic system for the obtention of ultra low sulfur diesel by oxidative desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Gutierrez, J.L.; Jimenez Cruz, F.; Atocha Hernandez Cortazar, F. de; Cano Dominguez, J.L.; Ramirez Verduzco, L.F.; Murrieta Guevara, F.R. [Programa de Tratamiento de Crudo Maya. Instituto Mexicano del Petroleo Eje Central Lazaro Cardenas 152, D. F. (Mexico)

    2004-07-01

    At present the production of transportation fuels free of polluting compounds is a matter of consequence worldwide. Particularly, sulfur compounds are undesirable in gasoline and diesel because they contribute to air pollution and acid rain. In this work, we present the results obtained in the development of some supported catalysts containing molybdenum and its evaluation in the desulfurization of several model sulfur systems and diesel by the oxidation-extraction process using hydrogen peroxide with the aim of produce ultra low sulfur diesel. The molybdenum catalysts were prepared by the equilibrium adsorption method. The oxidizing reagent was hydrogen peroxide (30 wt % solution in water) and the fuel was a Mexican diesel with 0.0320 wt % sulfur. The sulfur concentration in the samples was measured by a total sulfur analyzer equipped with a X-ray fluorescence detector, the accuracy is {+-} 5 %. The oxidation-extraction process of diesel was carried out in a batch reactor in presence of hydrogen peroxide, a solvent and the catalyst. The oxidation proceeds under mild conditions: temperature less than 373 K and atmospheric pressure. Oxidized sulfur compounds were separated from the diesel by extraction with the same solvent used in the oxidation process. The effect of the reaction variables, e. g.: time, temperature, hydrogen peroxide concentration, solvent and its concentration, molybdenum precursor, support, the stability of the catalytic activity, structure of the model sulfur compounds, were examined. The results show that the catalyst activity depends on the isoelectric point of the support. It was observed that the oxidation was carried out with good yield only in the presence of a polar solvent. A linear dependence was found between the electric density of the sulfur atom for the organosulfur compounds and its oxidation facility with the oxidation system in matter. This is in good agreement with the work reported by Otsuki. In the oxidation of diesel, it was

  20. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization.

    Science.gov (United States)

    Zou, Haiming; Wang, Yan

    2016-07-01

    A new process of enhanced biological phosphorus removal coupled with crystallization recovery of phosphorus was developed here, where the feasibility of nutrients removal and potential for phosphorus recovery from domestic wastewater was further assessed. Results showed that an excellent nutrients removal and phosphorus recovery performance was achieved, in which the averaged COD, PO4(3-)-P and NO3(-)-N removal efficiencies were 82.6%, 87.5% and 91.6%, respectively and a total of 59.3% of phosphorus was recovered as hydroxyapatite. What's more, crystallization recovery of phosphorus greatly enhanced the biological phosphorus removal efficiency. After the incorporation of the phosphorus recovery column via side-stream, the phosphorus concentration of effluent was significantly decreased ranging from 1.24mg/L to 0.85mg/L, 0.52mg/L and 0.41mg/L at the lateral flow ratios of 0, 0.1, 0.2 and 0.3, respectively. The results obtained here would be beneficial to provide a prospective alternative for phosphorus removal and recovery from wastewater. PMID:27003794

  1. Sulfur meter speeds coal blending

    International Nuclear Information System (INIS)

    The sulfur content has become the most important criterion that industry looks at when purchasing coal. The exact amount of sulfur in coal being processed by a preparation plant must be known and, if possible, controlled by blending coal streams of various sulfur contents. Present techniques, however, of measuring the sulfur in coal involve laborious and time-consuming sampling and chemical analysis (12 to 24 hr), and the results usually are not available until the following day. By then, the coal barges or trains are already on the way to their destinations. A new nuclear sulfur meter is expected to overcome these difficulties and help lead to true automation in coal preparation plants. Initially developed by the Bureau of Mines' Morgantown Energy Research Center (MERC) at Morgantown, W. Va., and completed after reorganization of the center by the US Energy Research and Development Administration (ERDA), the meter can scan coal to produce a reading within 2 min to an accuracy of 0.04 percent sulfur. The meter is expected to soon result in an element-ash-moisture-Btu meter that would rapidly detect the sulfur, sodium, potassium, and overall mineral content of the coal, as well as its ash and Btu content

  2. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative......Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...

  3. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    Science.gov (United States)

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively. PMID:25191877

  4. A novel NGL (natural gas liquid) recovery process based on self-heat recuperation

    International Nuclear Information System (INIS)

    This study examined an innovative self-heat-recuperation technology that circulates latent and sensible heat in the thermal process and applied it to the NGL (natural gas liquid) recovery process. A CGCC (column grand composite curve) was used to assess the thermodynamic feasibility of implementing the heat pump system and self-heat-recuperation technology into a conventional distillation column. The proposed distillation based on self-heat recuperation reduced the energy consumption dramatically by compressing the effluent stream, whose temperature was increased to provide the minimum temperature difference for the heat exchanger, and circulating the stream heat in the process. According to a simulation of the proposed sequence, up to 73.43 and 83.48% of the condenser and reboiler energy, respectively, were saved compared to a conventional column. This study also proposes heat integration to improve the performance of self-heat recuperation. The results showed that the modified sequence saves up 64.35, 100.00 and 31.60% of the condenser energy requirements, reboiler energy requirements and OP (operating cost), respectively, compared to a classical heat pump system, and 90.24, 100.00, and 67.19%, respectively, compared to a conventional column. The use of these sequences to retrofit a distillation column to save energy was also considered. - Highlights: • Innovative self-heat-recuperation technology that circulates latent and sensible heat. • A CGCC (column grand composite curve) is used to assess the thermodynamic feasibility. • The proposed sequence saves up 67.19% of the OP (operating cost). • The proposed sequences can be used to retrofit a distillation column to save energy

  5. Energy Recovery from a Low Consistency TMP Process - A Feasibility Study; Energiaatervinning vid LC-raffinering - Foerstudie

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkqvist, Olof; Engstrand, Per; Friden, Haakan

    2008-11-15

    Normally, steam recovery from a conventional low consistency (LC) mechanical pulp refining system is not possible. This is due to the fact that the temperature level in the LC-refiner is less than 100 deg C. The steam with such a low temperature and associated pressure has limited value in the mill. In this project, we study a concept of increasing the temperature in the refiner to a level were process steam with higher quality can be recovered. The temperature level can be increased by transferring heat from outgoing pulp or drainage to incoming pulp or water. This makes it possible to recover heat from the process. An initial estimate indicates that steam recovery from LC-refining systems may have a good economic potential. Three cases have been analyzed: Case A: Steam recovery in combination with pulp/pulp heat exchanging, Case B: Steam recovery in combination with a pressurized screw press and finally Case C: steam recovery in combination with pump/water heat exchanging. Case B show the best specific steam recovery, 87% kWh recovered steam per kWh used electricity. This concept has a lower technological uncertainty compared to cases A and C as it does not need heat exchanging from pulp. The specific heat recovery from case A and C is 78% and 82% respectively. However, the suggested heat exchangers used in these cases do not exist on the market today. There is hence a need for development of exchangers that can handle pulp with high viscosity. The technological risk associated with the screw press scenario is lower and it is likely that this concept is easier to implement

  6. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. PMID:26918838

  7. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process.

  8. Wastewater resource recovery via the Enhanced Biological Phosphorus Removal and Recovery (EBP2R) process coupled with green microalgae cultivation

    DEFF Research Database (Denmark)

    Valverde Perez, Borja

    compatible to interface with ASM-2d. Therefore, the third part of the PhD project focusses on the development of a process model for micro-algal growth and substrate storage kinetics (referred to as ASM-A). To facilitate the integration in already well-stablished simulation platforms for wastewater treatment......, e.g., the Benchmark Simulation Models 1 and 2, ASM-A was implemented as an extension to the ASM-2d. A set of experiments at different laboratory-scales (microbatch, 1-litre and 24-litre SBR) was designed to generate data for model identification. Furthermore, an independent data set was used...... for model evaluation. The ASM-A can effectively predict the algal biomass growth, as well as the ammonium and phosphorus concentrations in the bulk liquid and the microbial stored phosphorus. Conversely, our results suggest that the maximum uptake rate parameter for nitrate can be significantly affected...

  9. Processes Affecting the Trihalomethane Concentrations Associated with the Third Injection, Storage, and Recovery Test at Lancaster, Antelope Valley, California, March 1998 through April 1999

    Science.gov (United States)

    Fram, Miranda S.; Bergamaschi, Brian A.; Goodwin, Kelly D.; Fujii, Roger; Clark, Jordan F.

    2003-01-01

    bacteria did not degrade CHCl3 or CHBr3 under aerobic conditions, but did degrade CHBr3 under anaerobic conditions. However, the aquifer is naturally aerobic and CHCl3 is the dominant THM species; therefore, biodegradation is not considered an important attenuation mechanism for THMs in this aquifer. The alluvial-fan sediments comprising the aquifer have very low contents of organic matter; therefore, sorption is not considered to be an important attenuation mechanism for THMs in this aquifer. Laboratory experiments on formation of THMs in the injection water indicate that continued THM formation in the injection water after injection into the aquifer was limited by the amount of residual chlorine in the injection water at the time of injection. After accounting for THMs formed by reaction of this residual chlorine, THMs behaved as conservative constituents in the aquifer, and the only process affecting the concentration of THMs was mixing of the injection water and the ground water. The mixing process was quantified using mass balances of injected constituents, the sulfur hexafluoride (SF6) tracer that was added to the injected water, and a simple descriptive mathematical mixing model. Mass balance calculations show that only 67 percent of the injected THMs and chloride were recovered by the time that a volume of water equivalent to 132 percent of the injection water volume was extracted. Pumping 250 percent of the injection water volume only increased recovery of injected THMs to 80 percent. THM and SF6 concentrations in the extracted water decreased concomitantly during the extraction period, and THM concentrations predicted from SF6 concentrations closely matched the measured THM concentrations. Because SF6 is a conservative tracer that was initially only present in the injection water, parallel decreases in SF6 and THM concentrations in the extracted water must be due to dilution of injection water with ground water. The simple descriptive mixing mode

  10. Lunar Sulfur Capture System

    Science.gov (United States)

    Berggren, Mark; Zubrin, Robert; Bostwick-White, Emily

    2013-01-01

    The Lunar Sulfur Capture System (LSCS) protects in situ resource utilization (ISRU) hardware from corrosion, and reduces contaminant levels in water condensed for electrolysis. The LSCS uses a lunar soil sorbent to trap over 98 percent of sulfur gases and about two-thirds of halide gases evolved during hydrogen reduction of lunar soils. LSCS soil sorbent is based on lunar minerals containing iron and calcium compounds that trap sulfur and halide gas contaminants in a fixed-bed reactor held at temperatures between 250 and 400 C, allowing moisture produced during reduction to pass through in vapor phase. Small amounts of Earth-based polishing sorbents consisting of zinc oxide and sodium aluminate are used to reduce contaminant concentrations to one ppm or less. The preferred LSCS configuration employs lunar soil beneficiation to boost concentrations of reactive sorbent minerals. Lunar soils contain sulfur in concentrations of about 0.1 percent, and halogen compounds including chlorine and fluorine in concentrations of about 0.01 percent. These contaminants are released as gases such as H2S, COS, CS2,HCl, and HF during thermal ISRU processing with hydrogen or other reducing gases. Removal of contaminant gases is required during ISRU processing to prevent hardware corrosion, electrolyzer damage, and catalyst poisoning. The use of Earth-supplied, single-use consumables to entirely remove contaminants at the levels existing in lunar soils would make many ISRU processes unattractive due to the large mass of consumables relative to the mass of oxygen produced. The LSCS concept of using a primary sorbent prepared from lunar soil was identified as a method by which the majority of contaminants could be removed from process gas streams, thereby substantially reducing the required mass of Earth-supplied consumables. The LSCS takes advantage of minerals containing iron and calcium compounds that are present in lunar soil to trap sulfur and halide gases in a fixedbed reactor

  11. Sulfur removal from lignite by oxydesulfurization using fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, S.; Kucukbayrak, S. [Istanbul Technical University, Istanbul (Turkey). Chemical Engineering Dept.

    1997-01-01

    Since fly ash contains alkaline oxides, it is possible to use its water-extractable components as a desulfurization agent. This was investigated using some high-sulfur Turkish lignites. The effects of the amount of fly ash used, temperature, partial pressure of oxygen and time were studied in the range 5-40 g, 403-498 K, 0.0-1.5 MPa and 15-90 min respectively. The extents of pyritic and organic sulfur removal and recoveries of coal and calorific value were investigated for each of these variables. Reactivity and some combustion characteristics (ignition temperature, end temperature of combustion and combustion rate) of original and desulfurzed lignite samples were compared using combustion curves obtained from thermogravimetric analysis (t.g.a) results. FT-i.r. spectroscopy was used to determine the effects of the desulfurization process on the coal structure. 5 refs., 6 figs.,4 tabs.

  12. 硫磺回收装置余热锅炉过热器弯头开裂原因初步分析%Preliminary Analysis on Tube Cracking Cause of Waste Heat Boiler Superheater of the Sulfur Recovery Unit

    Institute of Scientific and Technical Information of China (English)

    李玉军; 蒋仕良

    2011-01-01

    Refinery sulfur recovery unit plays an important role in the entire production system, and the waste heat boiler superheater is the key component of the device. Because the condition is demanding and complex,the case of superheater elbow cracking was once reported. Through the comprehensive examina-tion and test on the macroscopic test about Elbow cracking parts, thickness measurement, spectrum anal-ysis , metallographic examination, hardness testing and chemical components analysis of stove ash fouling etc, the cause of cracking and the impact of the waste heat boiler superheater and its safe operation was analyzed, then the corresponding prevention and control measure is proposed.%炼化企业硫磺回收装置在整个生产系统中起着重要作用,而余热锅炉过热器是装置的关键组成部分,由于工况苛刻且较为复杂,曾有过热器弯头开裂案例报导,通过对弯头开裂部位宏观检查、测厚、光谱分析、金相检验、硬度测定及炉灰垢样化学成分分析等方面综合检验检测,分析了开裂的产生原因及其对余热锅炉过热器安全运行的影响,并提出了相应的预防与控制措施.

  13. Identification of bacteria used for microbial enhanced oil recovery process by fluorescence in situ hybridization technique

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Tanaka, S.; Otsuka, M. [Kansai Research Institute, Kyoto (Japan). Lifescience Lab.; Yonebayashi, H. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    A fluorescence in situ hybridization (FISH) technique using 16S rRNA-targeted oligonucleotide probes was developed for rapid detection of microorganisms for use in the microbial enhancement of oil recovery (MEOR) process. Two microorganisms, Enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were selected from a collection of Enterobacter sp. and Bacillus sp. which were screened in previous studies as candidate microorganisms for injection, and were used for this experiment. Oligonucleotide probes, design based on specific sequences in the 16S rRNA gene were labeled with either fluorescein isothiocyanate (FITC), or 6-car-boxy-X-rhodamine (ROX), and were allowed to hybridize with fixed cells of the two microorganisms noted above. The fluorescence signal emitted from each microorganism cells could clearly be detected by an epifluorescence microscope. Moreover, E. cloacae TRC-322 and B, licheniformis TRC-18-2-a, suspended in actual reservoir brine, including inorganic salts, oil and aboriginal cells of the reservoir brine, could be detected directly by this hybridization method, without the need for cultivation and isolation. (author)

  14. Evaluation of an Anaerobic Digestion System for Processing CELSS Crop Residues for Resource Recovery

    Science.gov (United States)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    Three bioreactors, connected in series, were used to process CELSS potato residues for recovery of resources. The first stage was an anaerobic digestor (8 L working volume; cow rumen contents inoculum; fed-batch; 8 day retention time; feed rate 25 gdw/day) that converted 33% of feed (dry weight loss) to CO2 and "volatile fatty acids" (vfa, 83:8:8 mmolar ratio acetic:propionic:butyric). High nitrate-N in the potato residue feed was absent in the anaerobic effluent, with a high portion converted to NH4(+)-N and the remainder unaccounted and probably lost to denitrification and NH4(+) volatilization. Liquid anaerobic effluent was fed to an aerobic, yeast biomass production vessel (2 L volume; Candida ingens inoculum; batch [pellicle] growth; 2 day retention time) where the VFAs and some NH4(+)-N were converted into yeast biomass. Yeast yields accounted for up to 8% of potato residue fed into the anaerobic bioreactor. The third bioreactor (0.5 L liquid working volume; commercial nitrifier inoculum; packed-bed biofilm; continuous yeast effluent feed; recirculating; constant volume; 2 day hydraulic retention time) was used to convert successfully the remaining NH4(+)-N into nitrate-N (preferred form of N for CELSS crop production) and to remove the remaining degradable soluble organic carbon. Effluents from the last two stages were used for partial replenishment of minerals for hydroponic potato production.

  15. Occurrence process of unsafe act and recovery in conducting EOP under a simulated emergency

    International Nuclear Information System (INIS)

    Emergency operating procedures (EOPs) are plant procedures that direct operator actions necessary to mitigate the consequences of transients and accidents that have caused plant parameters to exceed reactor protection system set points or engineered safety feature set points, or other established limits. Therefore an EOP operation according to the EOP instruction is critical to a plant's safety after accidents. For this reason, EOPs should be developed to reduce operators' cognitive burden and to enhance operators' performance related to the EOP operation. In spite of many kinds of efforts to reduce operators' cognitive burden, it has been reported that EOPs also require operators' cognitive efforts in coping with off normal events. In Korea, we have analyzed an operator's behaviors such as error of omission (EOO) and error of commission (EOC) by noncompliance with emergency training records collected from a full scope simulator of a Westinghouse 3 loop pressurized water reactor (PWR). The simulated scenario for this study is a steam generator tube rupture immediately following a main steam line break. The purpose of this paper is to classify the occurrence process of an unsafe act by a performer and a recovery behavior observed under a simulated emergency. This result will be applied to the development of HRA (Human Reliability Analysis) data handbook and the improvement the existing HRA methodology

  16. Fluid diversion and sweep improvement with chemical gels in oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Seright, F.S.; Martin, F.D.

    1991-04-01

    The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work will establish how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. This report describes progress made during the first year of this three-year study the following tasks: gel screening studies; impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel; preliminary study of the permeability reduction for CO{sub 2} and water using a resorcinol-formaldehyde gel; preliminary study of permeability reduction for oil and water using a resorcinol-formaldehyde gel; rheology of Cr(III)-xanthan gel and gelants in porous media; impact of diffusion, dispersion, and viscous fingering on gel placement in injection wells; examination of flow-profile changes for field applications of gel treatments in injection wells; and placement of gels in production wells. Papers have been indexed separately for inclusion on the data base.

  17. Supporting Technology for Enhanced Oil Recovery-EOR Thermal Processes Report IV-12

    Energy Technology Data Exchange (ETDEWEB)

    Izequeido, Alexandor

    2001-04-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth, fifth, sixth, seventh, eight, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/1/SP, DOE/BC-90/1/SP) DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1! 987, November 1988, December 1989, October 1991, February 1993, and March 1995 respectively.

  18. Mathematical model of a record type device for valued components recovery from end process gases of uranium hexafluoride production

    OpenAIRE

    Bereza, V. N.; Dyadik, Valery Feodosievich; Baydali, Sergey Anatolievich

    2007-01-01

    Mathematical model of the device for valued components recovery from end gases of sublimate production including hydrodynamics, thermodynamics and kinetics of interaction process of solid and gaseous phases realized in the package MATLAB has been presented. Static and dynamic characteristics of the device as a control object necessary for control algorithm synthesis are obtained and analyzed

  19. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Science.gov (United States)

    2010-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of...

  20. RECOVERY OF URANIURN FROM CARBONATE SOLUTIONS USING STRONGLY BASIC ANION EXCHANGER 3.THE MECHANISMS OF RECOVERY PROCESSES

    Institute of Scientific and Technical Information of China (English)

    SongYinjie; ZhangHui; 等

    1997-01-01

    A moving boundary model under considering the volume change of spherical resin beads during ion exchange processes was employed to recognize the mechanisms of reecovering uranium from carbonate solutions using strongly basic anion exchanger.Two important factors,swelling and ion exchange,which directly affect the violume of ion exchangers were taken into account.An ion exchange mechanism has been found for the forward reaction PCl/[UO2(CO3)3]4-,and is partical diffusion governing at high concentration of the complex anion.The mechanism of RCl/U(VI) at pH 5.5-7.5 is a chemical reaction taking place at the moving boundary of the unreacted nucleus.For the reverse reaction RnU/NaCl,the uranyl tricarbonate complex anion in the resin phase is replaced by Cl- ions with an ion exchange mechanism alway determined by particle diffusion.The other forms of uranium in the solid phase loaded on the resin at pH5.5-7.5 should belong to non-exchangeable uranium.The mechanism of the reverse reaction RnU/HCl is always chemical reaction which is not restricted to the moving boundary of the unreacted core.

  1. Study on Leaching Process of Germanium Fly Ash with Sulfuric Acid%含锗烟尘的硫酸浸出工艺研究

    Institute of Scientific and Technical Information of China (English)

    郑东升; 肖松; 梁杰

    2012-01-01

    为简化含锗烟尘浸出过程,提出一段硫酸浸出工艺。浸出工艺条件为:浸出温度90℃,初始硫酸质量浓度120g/L,液固比8mL/g,浸出时间2.5h,搅拌转速120r/min。在该条件下,锌、锗浸出率分别为99.1%和87.61%左右,最终硫酸质量浓度约34.80g/L。去除不溶性锗后,锗浸出率可达到97.21%。%To simplify the leaching process of germanium fly ash, the one stage sulfuric acid leaching process was studied. The result shows the leaching processing as following: leaching temperature 90℃ initial sulfuric acid concentration 120 g/L, ratio of hquid to solid 5 mL/g, leaching time 2 h, and mixing speed 120 r/min. Under these conditions, the leaching rates of Zn and Ge were about 99.1% and 87.61%, and the concentration of end acid is about 34.80 g/L, and by removal of insoluble germanium, the leaching rate of Germanium could be about 97.21%. Zinc and Germanium can be effectively leached from Germanium fly ash in the leaching process, and the leaching technique is effective and stable.

  2. Comparative Aspects of Sulfur Mineralization in Sediments of a Eutrophic Lake Basin †

    OpenAIRE

    Gary M King; Klug, M. J.

    1982-01-01

    The net mineralization of organic sulfur compounds in surface sediments of Wintergreen Lake was estimated from a mass-balance budget of sulfur inputs and sediment sulfur concentrations. The net mineralization of organic sulfur inputs is 80% of total sulfur) in sediment. Although sediment sulfur is predominantly organic, sulfate reduction is the most significant process in terms of the quantities of sulfur transformed in surface sediments. Rates of sulfate reduction in these sediments average ...

  3. Sulfur isotope ratios and the origins of the aerosols and cloud droplets in California stratus

    OpenAIRE

    Ludwig, F. L.

    2011-01-01

    Marine aerosols often have sulfur-to-chloride ratios greater than that found in seawater. Sulfur isotope ratios (34S/32S) were measured in aerosol and cloud droplet samples collected in the San Francisco Bay Area in an attempt to understand the processes that produce the observed sulfur-to-chloride ratios. Seawater sulfur usually has very high sulfur isotope ratios; fossil fuel sulfur tends to have smaller isotope ratios and sulfur of bacteriogenic origin still smaller. Samples collected in u...

  4. Natural stone muds as secondary raw materials: towards a new sustainable recovery process

    Science.gov (United States)

    Zichella, Lorena; Tori, Alice; Bellopede, Rossana; Marini, Paola

    2016-04-01

    The production of residual sludge is a topical issue, and has become essential to recover and reuse the materials, both for the economics and the environmental aspect. According to environmental EU Directives, in fact ,the stone cutting and processing should characterized by following objectives, targets and actions: the reduction of waste generated, the decreasing of use of critical raw material, the zero landfilling of sludge and decreasing in potential soil contamination, the prevention of transport of dangerous waste, the reduction of energy consumption, the zero impact on air pollution and the cost reduction . There are many industrial sector in which residual sludge have high concentrations of metals and/or elements deemed harmful and therefore hazardous waste. An important goal, for all industrial sectors, is an increase in productivity and a parallel reduction in costs. The research leads to the development of solutions with an always reduced environmental impact. The possibility to decrease the amount of required raw materials and at the same time the reduction in the amount of waste has become the aim for any industrial reality. From literature there are different approaches for the recovery of raw and secondary materials, and are often used for the purpose chemical products that separate the elements constituting the mud but at the same time make additional pollutants. The aim of the study is to find solutions that are environmentally sustainable for both industries and citizens. The present study is focused on three different Piedmont rocks: Luserna, Diorite from Traversella and Diorite from Vico, processed with three different stone machining technologies: cutting with diamond wire in quarry (blocks), in sawmill (slabs) and surface polishing. The steps are: chemical analysis, particle size analysis and mineralogical composition and characterization of the sludge obtained from the various machining operations for the recovery of the metal material by

  5. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.

    Science.gov (United States)

    Fan, Bailin; Chen, Xiangping; Zhou, Tao; Zhang, Jinxia; Xu, Bao

    2016-05-01

    In this work, an eco-friendly and hydrometallurgical process for the recovery of cobalt and lithium from spent lithium-ion batteries has been proposed, which includes pretreatment, citric acid leaching, selective chemical precipitation and circulatory leaching. After pretreatment (manual dismantling, N-methyl pyrrolidone immersion and calcination), Cu and Al foils are recycled directly and the cathode active materials are separated from the cathode efficiently. Then, the obtained cathode active materials (waste LiCoO2) was firstly leached with 1.25 mol l(-1) citric acid and 1 vol.% H2O2 solution. Then cobalt was precipitated using oxalic acid (H2C2O4) under a molar ratio of 1:1.05 (H2C2O4: Co(2+)). After filtration, the filtrate (containing Li(+)) and H2O2 was employed as a leaching agent and the optimum conditions are studied in detail. The leaching efficiencies can reach as high as 98% for Li and 90.2% for Co, respectively, using filter liquor as leaching reagent under conditions of leaching temperature of 90°C, 0.9 vol.% H2O2 and a solid-to-liquid ratio of 60 ml g(-1) for 35 min. After three bouts of circulatory leaching, more than 90% Li and 80% Co can be leached under the same leaching conditions. In this way, Li and Co can be recovered efficiently and waste liquor re-utilization is achievable with this hydrometallurgical process, which may promise both economic and environmental benefits. PMID:26951340

  6. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.

    Science.gov (United States)

    Fan, Bailin; Chen, Xiangping; Zhou, Tao; Zhang, Jinxia; Xu, Bao

    2016-05-01

    In this work, an eco-friendly and hydrometallurgical process for the recovery of cobalt and lithium from spent lithium-ion batteries has been proposed, which includes pretreatment, citric acid leaching, selective chemical precipitation and circulatory leaching. After pretreatment (manual dismantling, N-methyl pyrrolidone immersion and calcination), Cu and Al foils are recycled directly and the cathode active materials are separated from the cathode efficiently. Then, the obtained cathode active materials (waste LiCoO2) was firstly leached with 1.25 mol l(-1) citric acid and 1 vol.% H2O2 solution. Then cobalt was precipitated using oxalic acid (H2C2O4) under a molar ratio of 1:1.05 (H2C2O4: Co(2+)). After filtration, the filtrate (containing Li(+)) and H2O2 was employed as a leaching agent and the optimum conditions are studied in detail. The leaching efficiencies can reach as high as 98% for Li and 90.2% for Co, respectively, using filter liquor as leaching reagent under conditions of leaching temperature of 90°C, 0.9 vol.% H2O2 and a solid-to-liquid ratio of 60 ml g(-1) for 35 min. After three bouts of circulatory leaching, more than 90% Li and 80% Co can be leached under the same leaching conditions. In this way, Li and Co can be recovered efficiently and waste liquor re-utilization is achievable with this hydrometallurgical process, which may promise both economic and environmental benefits.

  7. Waste Heat Recovery by Heat Pipe Air-Preheater to Energy Thrift from the Furnace in a Hot Forging Process

    OpenAIRE

    Lerchai Yodrak; Sampan Rittidech; Nattapol Poomsa-ad; Pattanapol Meena

    2010-01-01

    Problem statement: Currently, the heat pipe air-preheater has become importance equipment for energy recovery from industrial waste heat because of its low investment cost and high thermal conductivity. Approach: This purpose of the study was to design, construct and test the waste heat recovery by heat pipe air-preheater from the furnace in a hot brass forging process. The mathematical model was developed to predict heat transfer rate and applied to compute the heat pipe air-preheater in a h...

  8. An investigation into the recovery process of a maximum stretch-shortening cycle fatigue protocol on drop and rebound jumps.

    Science.gov (United States)

    Comyns, Thomas M; Harrison, Andrew J; Hennessy, Liam K

    2011-08-01

    The aim of this study was to investigate the recovery process of a maximal stretch-shortening cycle (SSC) fatigue workout on the biomechanical performance of drop jump (DJ) and rebound jump (RBJ) on a force sledge apparatus. Thirteen elite level rugby players performed sledge DJs and RBJs before and 15, 45, 120, and 300 seconds after a maximum SSC fatigue workout. Flight time, ground contact time (CT), peak force, reactive strength index (RSI), and leg-spring stiffness were the dependent variables. The DJ results showed that after 15 seconds recovery, there was a significant reduction in flight time (FT) (p jumps 300 seconds postfatigue. PMID:21572355

  9. Interlock recovery during the drying, calcination and vitrification phase of Am/Cm processing

    International Nuclear Information System (INIS)

    This document summarizes the results of five CIM5 [5-inch Cylindrical Induction Melter] runs designed to demonstrate power interlock recovery methods during the drying, calcination and vitrification phases of the Am/Cm melter cycle

  10. Conference on microbiological processes useful in enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    Six formal presentations were made at the meeting, followed by four workshops dealing with specific topics: bioengineering, reservoir ecology and environment, transformations, and bioproducts. All were related to microbial enhancement of oil recovery. (DLC)

  11. Konditherm process for heat recovery. From concept to implementation; Konditherm-Verfahren zur Waermerueckgewinnung. Von der Idee zur Realisierung

    Energy Technology Data Exchange (ETDEWEB)

    Schu, G.F.

    2007-07-01

    The development of a process for heat recovery from vapours is presented. Vapours are bound to dispersed condensates by a process of mixed condensation. This will heat the condensate up to a high temperature level which can be used for supplying room heating systems, water heating systems and refrigeration systems working by the absorption technique. The contribution outlines the development from the first concept to experiments, pilot plant constructing and industrial-scale application. (orig.)

  12. Eco-friendly copper recovery process from waste printed circuit boards using Fe3+/Fe2+ redox system

    International Nuclear Information System (INIS)

    Highlights: • We developed an ecofriendly mediated electrochemical process for copper recovery. • The recovery of copper was achieved without mechanical pretreatment of the samples. • We identified the optimal flow rate for the leaching and electrowinning of copper. • The copper content of the obtained cathodic deposits was over 99.9%. - Abstract: The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe3+ combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in an original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%

  13. Development of a coupling process heat exchanger between a VHTR and a sulfur-iodine hydrogen production system - HTR2008-58071

    International Nuclear Information System (INIS)

    A heat exchanger to transfer the heat generated from a nuclear reactor to a sulfur-iodine hydrogen production system has been developed. This heat exchanger operates in the extreme environments of a high corrosion, a high temperature, and a high differential pressure. A coating and ion beam mixing surface modification technology are applied to the process heat exchanger in order to enhance its corrosion resistance without loosing the manufacturability of the metal. A Ni-based super alloy is coated with a silicon carbide to enhance its corrosion resistance. The development of heat exchanger including shape design, thermal sizing, ion beam mixing process, stress analysis, and the manufacturing of small scale mock-up heat exchanger are discussed in this paper. The heat exchanger is a hybrid type to meet the design pressure requirements between a nuclear system and a hydrogen production system. A thermal sizing procedure for the process heat exchanger by considering the heat of sulfuric acid gas decomposition is developed. A finite element stress analysis is carried out by using the temperature profile obtained from the thermal sizing calculation. The finite element models were studied to simulate the stress state of the heat exchanger. Two-dimensional analysis was performed at the entrance region of the heat exchanger. A three-dimensional analysis for a single effective heat transfer channel was performed to investigate three-dimensional stress state. Stress analysis results have shown that the developed heat exchanger can withstand the required pressure difference at the elevated temperature condition. A small size heat exchanger was fabricated in order to test it in a high temperature nitrogen-gas loop. The fabrication of the heat exchanger includes a machining of the flow path, a coating and ion beam mixing, and a diffusion bonding of the heat transfer plate. (authors)

  14. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N. (Nu-Energie, LLC); Hullette, J.N. (Nu-Energie, LLC)

    2009-09-01

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  15. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  16. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process.

    Science.gov (United States)

    Xiu, Fu-Rong; Zhang, Fu-Shen

    2009-06-15

    An effective and benign process for copper and lead recovery from waste printed circuit boards (PCBs) was developed. In the process, the PCBs was pre-treated in supercritical water, then subjected to electrokinetic (EK) process. Experimental results showed that supercritical water oxidation (SCWO) process was strong enough to decompose the organic compounds of PCBs, and XRD spectra indicated that copper and lead were oxidized into CuO, Cu(2)O and beta-PbO(2) in the process. The optimum SCWO treatment conditions were 60 min, 713 K, 30 MPa, and EK treatment time, constant current density were 11h, 20 mA cm(-2), respectively. The recovery percentages of copper and lead under optimum SCWO+EK treatment conditions were around 84.2% and 89.4%, respectively. In the optimized EK treatment, 74% of Cu was recovered as a deposit on the cathode with a purity of 97.6%, while Pb was recovered as concentrated solutions in either anode (23.1%) or cathode (66.3%) compartments but little was deposited on the electrodes. It is believed that the process is effective and practical for Cu and Pb recovery from waste electric and electronic equipments.

  17. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process

    International Nuclear Information System (INIS)

    An effective and benign process for copper and lead recovery from waste printed circuit boards (PCBs) was developed. In the process, the PCBs was pre-treated in supercritical water, then subjected to electrokinetic (EK) process. Experimental results showed that supercritical water oxidation (SCWO) process was strong enough to decompose the organic compounds of PCBs, and XRD spectra indicated that copper and lead were oxidized into CuO, Cu2O and β-PbO2 in the process. The optimum SCWO treatment conditions were 60 min, 713 K, 30 MPa, and EK treatment time, constant current density were 11 h, 20 mA cm-2, respectively. The recovery percentages of copper and lead under optimum SCWO + EK treatment conditions were around 84.2% and 89.4%, respectively. In the optimized EK treatment, 74% of Cu was recovered as a deposit on the cathode with a purity of 97.6%, while Pb was recovered as concentrated solutions in either anode (23.1%) or cathode (66.3%) compartments but little was deposited on the electrodes. It is believed that the process is effective and practical for Cu and Pb recovery from waste electric and electronic equipments.

  18. Advanced sulfur control concepts in hot-gas desulfurization technology. Quarterly report, April--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, D.P.

    1994-07-01

    The primary objective of this research project is the direct production of elemental sulfur during the regeneration of known high temperature desulfurization sorbents. The contract was awarded to LSU on April 12, 1994, and this quarterly report covers accomplishments during the first 2 1/2 months of the project. Effort during the initial 2 1/2 month period has been limited to Tasks 1 and 2, and involves a search of the literature to identify concepts for producing elemental sulfur during regeneration of known metal oxide sorbents and a thermodynamic evaluation of these concepts. While searching and evaluating the literature is a continuing process, concentrated effort on that phase is now complete and a detailed summary is included in this report. Three possible concepts for the direct production of elemental sulfur were identified in the LSU proposal, and the literature search has not uncovered any additional concepts. Thus, the three concepts being investigated involve: (1) regeneration with SO{sub 2}, (2) regeneration with mixtures Of 02 and H{sub 2}O, and (3) regeneration with H{sub 2}O. While concept (3) directly produces H{sub 2}S instead of elemental sulfur, the concept is included because the possibility exists for converting H{sub 2}S to elemental sulfur using the Claus process. Each of the concepts will ultimately be compared to the Direct Sulfur Recovery Process (DSRP) under development by RTI. DSRP involves initial sorbent regeneration to SO{sub 2}, and the inclusion of additional processing steps to reduce the SO{sub 2} to elemental sulfur.

  19. Process optimization of 65 kt/a sulfuric acid alkylation plant%6.5万t/a硫酸烷基化装置工艺优化

    Institute of Scientific and Technical Information of China (English)

    田肃宁

    2000-01-01

    Aiming at the problems of the raw materials and the operation of acid settling stage faced before the start-up of the 65 kt/a Stratco sulfuric acid alkylation plant, the technical measures of process optimization and emulsion settling rate control were used. The result of start-up proved that these measures were feasible.%针对6.5万t/a Stratco硫酸烷基化装置开工前面临的原料及酸沉积段开工操作问题,采取了优化CC4加工流程、控制调整乳化液沉积速度等措施,从而确保了该装置的顺利开工。

  20. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    Science.gov (United States)

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  1. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.

    Science.gov (United States)

    Oustadakis, P; Tsakiridis, P E; Katsiapi, A; Agatzini-Leonardou, S

    2010-07-15

    The present paper is the first of a series of two articles dealing with the development of an integrated process for the recovery of zinc from electric arc furnace dust (EAFD), a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Part I presents the EAFD characterization and its leaching process by diluted sulphuric acid, whereas Part II deals with the purification of the leach liquor and the recovery of zinc by solvent extraction/electrowinning. The characterization of the examined electric arc furnace dust was carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The leaching process was based on the Zn extraction with diluted sulphuric acid from EAFD under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The zinc recovery efficiency on the basis of EAFD weight reached 80%. X-ray diffraction and scanning electron microscopy were used for the characterization of the leached residues.

  2. Optimal swab processing recovery method for detection of bioterrorism-related Francisella tularensis by real-time PCR.

    Science.gov (United States)

    Walker, Roblena E; Petersen, Jeannine M; Stephens, Kenyatta W; Dauphin, Leslie A

    2010-10-01

    Francisella tularensis, the etiological agent of tularemia, is regarded as a potential bioterrorism agent. The advent of bioterrorism has heightened awareness of the need for validated methods for processing environmental samples. In this study we determined the optimal method for processing environmental swabs for the recovery and subsequent detection of F. tularensis by the use of real-time PCR assays. Four swab processing recovery methods were compared: heat, sonication, vortexing, and the Swab Extraction Tube System (SETS). These methods were evaluated using cotton, foam, polyester and rayon swabs spiked with six pathogenic strains of F. tularensis. Real-time PCR analysis using a multi-target 5'nuclease assay for F. tularensis showed that the use of the SETS method resulted in the best limit of detection when evaluated using multiple strains of F. tularensis. We demonstrated also that the efficiency of F. tularensis recovery from swab specimens was not equivalent for all swab processing methodologies and, thus, that this variable can affect real-time PCR assay sensitivity. The effectiveness of the SETS method was independent of the automated DNA extraction method and real-time PCR platforms used. In conclusion, diagnostic laboratories can now potentially incorporate the SETS method into specimen processing protocols for the rapid and efficient detection of F. tularensis by real-time PCR during laboratory bioterrorism-related investigations.

  3. Hydrogen production by the solar-powered hybrid sulfur process: Analysis of the integration of the CSP and chemical plants in selected scenarios

    Science.gov (United States)

    Liberatore, Raffaele; Lanchi, Michela; Turchetti, Luca

    2016-05-01

    The Hybrid Sulfur (HyS) is a water splitting process for hydrogen production powered with high temperature nuclear heat and electric power; among the numerous thermo-chemical and thermo-electro-chemical cycles proposed in the literature, such cycle is considered to have a particularly high potential also if powered by renewable energy. SOL2HY2 (Solar to Hydrogen Hybrid Cycles) is a 3 year research project, co-funded by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU). A significant part of the project activities are devoted to the analysis and optimization of the integration of the solar power plant with the chemical, hydrogen production plant. This work reports a part of the results obtained in such research activity. The analysis presented in this work builds on previous process simulations used to determine the energy requirements of the hydrogen production plant in terms of electric power, medium (550°C) temperature heat. For the supply of medium temperature (MT) heat, a parabolic trough CSP plant using molten salts as heat transfer and storage medium is considered. A central receiver CSP (Concentrated Solar Power) plant is considered to provide high temperature (HT) heat, which is only needed for sulfuric acid decomposition. Finally, electric power is provided by a power block included in the MT solar plant and/or drawn from the grid, depending on the scenario considered. In particular, the analysis presented here focuses on the medium temperature CSP plant, possibly combined with a power block. Different scenarios were analysed by considering plants with different combinations of geographical location and sizing criteria.

  4. 硫铁矿烧渣双酸酸解工艺研究%Study on decomposition process of pyrite cinder with hydrochloric acid and sulfuric acid

    Institute of Scientific and Technical Information of China (English)

    左大学; 王仁宗

    2012-01-01

    The decomposition process of pyrite cinder with hydrochloric acid and sulfuric acid , and its influence factors are studied. Through orthogonal test, the optimum process conditions are confirmed including: the consumption factor of hydrochloric acid with w(HC1) of 37% is 0.12; the consumption factor of sulfuric acid with w(H2SO4) of 65%-70% is 0.95, the reaction temperature is of 125 ℃, the reaction time is of 4h. The decomposition rate of pyrite cinder can reach to above 95%, and the product ferric sulfate solution can be used to produce polymeric ferric sulfate and iron oxide pigments.%研究了硫铁矿烧渣双酸酸解工艺及影响酸解的因素。通过正交实验,找到最适宜的工艺条件:w(HCl)37%,盐酸用量系数为0.12,硫酸用量系数为0.95,硫酸W(H2SO4)为65%~70%,反应温度为125℃,反应时间为4h,酸解率可达95%以上,制得的硫酸铁盐溶液可用作生产聚合硫酸铁及氧化铁系颜料的原料。

  5. Modeling the contribution of toxicokinetic and toxicodynamic processes to the recovery of Gammarus pulex populations after exposure to pesticides.

    Science.gov (United States)

    Galic, Nika; Ashauer, Roman; Baveco, Hans; Nyman, Anna-Maija; Barsi, Alpar; Thorbek, Pernille; Bruns, Eric; Van den Brink, Paul J

    2014-07-01

    Because aquatic macroinvertebrates may be exposed regularly to pesticides in edge-of-the-field water bodies, an accurate assessment of potential adverse effects and subsequent population recovery is essential. Standard effect risk assessment tools are not able to fully address the complexities arising from multiple exposure patterns, nor can they properly address the population recovery process. In the present study, we developed an individual-based model of the freshwater amphipod Gammarus pulex to evaluate the consequences of exposure to 4 compounds with different modes of action on individual survival and population recovery. Effects on survival were calculated using concentration-effect relationships and the threshold damage model (TDM), which accounts for detailed processes of toxicokinetics and toxicodynamics. Delayed effects as calculated by the TDM had a significant impact on individual survival and population recovery. We also evaluated the standard assessment of effects after short-term exposures using the 96-h concentration-effect model and the TDM, which was conservative for very short-term exposure. An integration of a TKTD submodel with a population model can be used to explore the ecological relevance of ecotoxicity endpoints in different exposure environments.

  6. Plant sulfur and Big Data.

    Science.gov (United States)

    Kopriva, Stanislav; Calderwood, Alexander; Weckopp, Silke C; Koprivova, Anna

    2015-12-01

    Sulfur is an essential mineral nutrient for plants, therefore, the pathways of its uptake and assimilation have been extensively studied. Great progress has been made in elucidation of the individual genes and enzymes and their regulation. Sulfur assimilation has been intensively investigated by -omics technologies and has been target of several genome wide genetic approaches. This brought a significant step in our understanding of the regulation of the pathway and its integration in cellular metabolism. However, the large amount of information derived from other experiments not directly targeting sulfur has also brought new and exciting insights into processes affecting sulfur homeostasis. In this review we will integrate the findings of the targeted experiments with those that brought unintentional progress in sulfur research, and will discuss how to synthesize the large amount of information available in various repositories into a meaningful dissection of the regulation of a specific metabolic pathway. We then speculate how this might be used to further advance knowledge on control of sulfur metabolism and what are the main questions to be answered. PMID:26706053

  7. PROGRESS IN CATALYST AND PROCESS DEVELOPMENT FOR LOW SULFUR AND LOW AROMATICS DIESEL PRODUCTION%低硫低芳烃柴油生产技术开发进展

    Institute of Scientific and Technical Information of China (English)

    周勇; 韩崇仁

    2003-01-01

    The article includes three parts: ①The development and performance of FH-DS catalyst for deep and ultra-deep distillate HDS; ②The single stage HDS/HDA hydrotreating process for the production of low sulfur and low aromatics diesels from straight run and coker AGO by using highly active base metal catalyst at moderate pressure; ③A two-stage aromatics saturation system utilizing noble metal catalyst in the second stage developed for production of low sulfur and low aromatics diesel from LCO. FDA catalyst developed by FRIPP has high activity for aromatics saturation together with high tolerance for sulfur and nitrogen in the feed. The process is effective in reducing density and increasing cetane number.

  8. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO{sub 2} emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO{sub 2} emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus{sup TM} Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition.

  9. Estimating Effects of Atmospheric Deposition and Peat Decomposition Processes on Mercury and Sulfur Accumulation and Retention in Northern Peatlands, Minnesota

    Science.gov (United States)

    Furman, O.; Nater, E.; Toner, B. M.; Sebestyen, S. D.; Tfaily, M. M.; Chanton, J.; Kolka, R. K.

    2013-12-01

    Northern peatland ecosystems play an important role in mercury (Hg) and sulfur (S) co-cycling. Peatlands are sinks for total Hg and sources for methyl Hg through the activity of sulfate-reducing bacteria. These ecosystems are vulnerable to environmental change, and projected changes in climate for the north-central U.S. have the potential to affect Hg and S stores and cycling in the subsurface, which may stimulate the release of bioaccumulative methyl Hg to receiving water bodies. SPRUCE (Spruce and Peatland Responses under Climate and Environmental change experiment) is an interdisciplinary study of the effects of temperature and enriched carbon dioxide on the responses of northern peatland ecosystems at the Marcell Experimental Forest, Minnesota. In the first year of SPRUCE, we are investigating Hg and S accumulation rates in 12-m diameter experimental plots on a black spruce bog before peatland heating experiments start in 2014. Understanding Hg and S accumulation rates and their retention mechanisms in the subsurface are needed in order to reconstruct historical trends in Hg and S deposition, and predict peatland responses to climate change. In this study, we will attempt to separate the effects of atmospheric deposition vs peat humification on Hg and S retention. As such, peat cores were sampled from sixteen experimental SPRUCE plots in August 2012. These 'Time 0' peat subsamples have been analyzed for total Hg, methyl Hg and total S, and bulk density as a function of depth (50 cm), and showed lower variability. Changes in Hg and S over depth seem to be associated with the variation in humification of soil organic matter. These findings are critical to better conceptualization as well as parameterization of models that project how climate change will affect the accumulation, cycling, and export of toxic methylmercury from peatlands.

  10. Influence of Sulfur Fertilization on the Antioxidant Activities of Onion Juices Prepared by Thermal Treatment.

    Science.gov (United States)

    Koh, Eunmi; Surh, Jeonghee

    2016-06-01

    Two onions (Sulfur-1 and Sulfur-4) cultivated with different sulfur applications were thermally processed to elucidate the effects of heat treatment on browning index and antioxidant activity. Sulfur-4 onion had higher sulfur content compared with the Sulfur-1 onion. After thermal processing, browning intensity was different between the two onions juices, with lower values observed for Sulfur-4 onion juice. This suggests that sulfur inhibits the Maillard browning reaction. The total reducing capacity of the juices increased at higher thermal processing temperatures; however, it was also lower in the Sulfur-4 onion juice. This suggests that the heat treatment of onions enhanced their antioxidant activity, but the effect was offset in the Sulfur-4 onion juice presumably due to higher sulfur content. This study indicates that sulfur, a core element for the functionality of onions, can decrease the antioxidant activity of thermally processed onions because of its potential as a Maillard reaction inhibitor. PMID:27390734

  11. Influence of Sulfur Fertilization on the Antioxidant Activities of Onion Juices Prepared by Thermal Treatment

    Science.gov (United States)

    Koh, Eunmi; Surh, Jeonghee

    2016-01-01

    Two onions (Sulfur-1 and Sulfur-4) cultivated with different sulfur applications were thermally processed to elucidate the effects of heat treatment on browning index and antioxidant activity. Sulfur-4 onion had higher sulfur content compared with the Sulfur-1 onion. After thermal processing, browning intensity was different between the two onions juices, with lower values observed for Sulfur-4 onion juice. This suggests that sulfur inhibits the Maillard browning reaction. The total reducing capacity of the juices increased at higher thermal processing temperatures; however, it was also lower in the Sulfur-4 onion juice. This suggests that the heat treatment of onions enhanced their antioxidant activity, but the effect was offset in the Sulfur-4 onion juice presumably due to higher sulfur content. This study indicates that sulfur, a core element for the functionality of onions, can decrease the antioxidant activity of thermally processed onions because of its potential as a Maillard reaction inhibitor. PMID:27390734

  12. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  13. Microfinance institutions and a coastal community's disaster risk reduction, response, and recovery process: a case study of Hatiya, Bangladesh.

    Science.gov (United States)

    Parvin, Gulsan Ara; Shaw, Rajib

    2013-01-01

    Several researchers have examined the role of microfinance institutions (MFIs) in poverty alleviation, but the part that they play in disaster risk reduction remains unaddressed. Through an empirical study of Hatiya Island, one of the most vulnerable coastal communities of Bangladesh, this research evaluates perceptions of MFI support for the disaster risk reduction, response, and recovery process. The findings reveal no change in relation to risk reduction and income and occupation aspects for more than one-half of the clients of MFIs. In addition, only 26 per cent of them have witnessed less damage as a result of being members of MFIs. One can argue, though, that the longer the membership time period the better the disaster preparedness, response, and recovery process. The outcomes of this study could help to guide the current efforts of MFIs to enhance the ability of coastal communities to prepare for and to recover from disasters efficiently and effectively. PMID:23050797

  14. Micro-textures and in situ sulfur isotopic analysis of spheroidal and zonal sulfides in the giant Jinding Zn-Pb deposit, Yunnan, China: Implications for biogenic processes

    Science.gov (United States)

    Xue, Chunji; Chi, Guoxiang; Fayek, Mostafa

    2015-05-01

    The Jinding deposit in Yunnan, southwest China, is the largest sandstone- and conglomerate-hosted Zn-Pb deposit in the world. In this paper, we report various micro-textures of spheroidal and zonal sulfides, such as pellet-shaped and colloform aggregates of pyrite and sphalerite, from the deposit and interpret them to be possibly related to micro-colonies of sulfate reducing bacteria, probably supporting an in situ BSR hypothesis. Micro-scale sulfur isotope analysis in different parts of the spheroidal and zonal sulfide aggregates, using secondary ion mass spectrometry (SIMS), revealed δ34S (VCDT) values as low as -48.4‰ for sulfides formed in the early-main stage disseminated ores in the western part of the deposit, possibly suggesting maximum sulfur isotopic fractionation through BSR. Relatively elevated δ34S (VCDT) values (-7.7‰ to -34.8‰, mainly from -10‰ to -20‰) for the late-stage, cavity-filling ores in the eastern part of the deposit, are interpreted to be possibly related to elevated temperatures close to the hydrothermal conduit and elevated δ34S values of the remaining sulfates resulting from the preceding BSR processes. The apparent discrepancy between the low temperatures required for BSR and the high temperatures indicated by fluid inclusions (>120 °C) may be reconciled through invoking episodic influx of ore-forming hydrothermal fluids into a shallow, relatively cool environment. It is proposed that the host rocks of the Jinding deposit have not been buried to great depths (⩽1 km), which, combined with the availability of hydrocarbons in the Jinding dome (a paleo-oil and gas reservoir), provides an ideal environment for BSR. Episodic influx of metal-carrying hydrothermal fluids temporarily and locally suppressed BSR and promoted thermo-chemical sulfate reduction (TSR), resulting in deposit- and micro-scale variations of δ34S.

  15. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. (Institute of Gas Technology, Chicago, IL (United States)); Gidaspow, D.; Gupta, R.; Wasan, D.T. (Illinois Inst. of Tech., Chicago, IL (United States)); Pfister, R.M.: Krieger, E.J. (Ohio State Univ., Columbus, OH (United States))

    1992-05-01

    This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  16. Improving oil recovery in the CO2 flooding process by utilizing nonpolar chemical modifiers☆

    Institute of Scientific and Technical Information of China (English)

    Yong Yang; Xiangliang Li; Ping Guo; Yayun Zhuo; Yong Sha

    2016-01-01

    By means of experiments of CO2 miscibility with crude oil, four nonpolar chemicals were evaluated in order to enhance the miscibility of CO2 with crude oil. Through pre-slug injection and joint injection of toluene in CO2, crude oil displacement experiments in the slim-tube were conducted to investigate effects of the toluene-enhanced CO2 flooding under simulated subterranean reservoir conditions. Experimental results showed that toluene can enhance extraction of oil into CO2 and dissolution of CO2 into oil with the increment of 251%and 64%respectively. Addition of toluene can obviously improve the oil recovery in either pre-slug injection or joint injection, and the crude oil recovery increased with the increase of the toluene concentration. The oil recov-ery can increase by 22.5%in pre-slug injection with the high toluene concentration. Pre-slug injection was recom-mended because it can consume less toluene than joint injection. This work could be useful to development and application of the CO2 flooding in the oil recovery as wel as CO2 emission reduction.

  17. Recovery of precious metals from waste materials by the method of flotation process

    OpenAIRE

    B. Oleksiak; G. Siwiec; Blacha-Grzechnik, A.

    2013-01-01

    The article presents the investigation results upon recovery of precious metals from electronics waste and used ceramic catalytic converters. Various frothing agents which generate stable and abundant foam as well as collectors and pH regulators have been used in the investigations. The tests were conducted with the use of laboratory flotation device.

  18. Recovery of precious metals from waste materials by the method of flotation process

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2013-01-01

    Full Text Available The article presents the investigation results upon recovery of precious metals from electronics waste and used ceramic catalytic converters. Various frothing agents which generate stable and abundant foam as well as collectors and pH regulators have been used in the investigations. The tests were conducted with the use of laboratory flotation device.

  19. The relationship between coping styles and psychological adaptation in the recovery process: patients with coronary heart disease

    OpenAIRE

    Besharat M.A.; Pourang P; Sadeghpour Tabaee A

    2008-01-01

    "nBackground: The relationship between coping styles and psychological adaptation during the recovery process was investigated in a sample of coronary heart disease (CHD) patients. "nMethods: One hundred and fifty patients from Shahid Rajaee Heart Center, Tehran, Iran, were included in this study at intake and forty five patients (27 men, 18 women) participated in the follow-up study. All participants were asked to complete the Tehran Coping Styles Scale (TCSS) and Mental Health Inv...

  20. A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process

    OpenAIRE

    Monlau, Florian; Sambusiti, Cécilia; Antoniou, N; Barakat, Abdellatif; Zabaniotou, A.

    2015-01-01

    In a full-scale anaerobic digestion plant, agricultural residues are generally converted into biogas and digestate, the latter usually produced in large amount. Generally, biogas is converted into heat, often lost, and electricity, which is completely valorized or it is sold to the public grid. In this context, the aim of this study was to investigate the feasibility to combine anaerobic digestion and pyrolysis processes in order to increase the energy recovery from agricultural residues and ...