WorldWideScience

Sample records for amniotic epithelial cells

  1. Serum-Free Cryopreservation of Human Amniotic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    H. Niknejad

    2013-04-01

    Full Text Available Introduction & Objective: One of the important issues in long term storage of cells is removal of animal serum from cell culture environments. The aim of this study was to evaluate amni-otic fluid (AF, which is full of growth factors, as substitute for fetal bovine serum (FBS in the cryopreservation protocol. Materials & Methods: In this experimental study human amniotic epithelial cells were isolated from placentas which were seronegative for microbial infections. The cells were preserved in 24 different patterns for 12 months in -196 ?C (liquid nitrogen and viability of cells were determined before and after cryopreservation by trypan blue and MTT assay. Moreover, Oct-4 expression was studied to determine pluripotency before and after cryopreservation with immunocytochemistry. Results were compared between groups with ANOVA (Tukey Post-Test. P.value under 0.01 and 0.05 was considered statistically significant. Results: The presence of DMEM, FBS or AF is necessary for amniotic cell cryopreservation. Trypan-blue, MTT and immunocytochemistry showed that there isn’t significant difference between using AF and FBS in viability and pluripotency of cells. Moreover, results showed that DMSO is a better cryoprotectant compared to glycerol. Conclusion : Results showed that amniotic fluid can be a proper substitute for FBS in amniotic epithelial cells cryopreservation. (Sci J Hamadan Univ Med Sci 2013; 20 (1:15-24

  2. Human amniotic epithelial cells combined with silk ifbroin scaffold in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Ting-gang Wang; Jie Xu; Ai-hua Zhu; Hua Lu; Zong-ning Miao; Peng Zhao; Guo-zhen Hui; Wei-jiangWu

    2016-01-01

    Treatment and functional reconstruction atfer central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artiifcial scaffold materials, such as ifbroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithe-lial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk ifbroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk ifbroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inlfammatory cell inifltration at the trans-plant site, milder host-versus-gratf reaction, and a marked improvement in motor function. hTese ifndings conifrm that the transplantation of amniotic epithelial cells combined with silk ifbroin scaffold can promote the repair of spinal cord injury. Silk ifbroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.

  3. Human amniotic epithelial cells express specific markers of nerve cells and migrate along the nerve fibers in the corpus callosum

    Institute of Scientific and Technical Information of China (English)

    Zhiyuan Wu; Guozhen Hui; Yi Lu; Tianjin Liu; Qin Huang; Lihe Guo

    2012-01-01

    Human amniotic epithelial cells were isolated from a piece of fresh amnion. Using immunocytochemical methods, we investigated the expression of neuronal phenotypes (microtubule-associated protein-2, glial fibrillary acidic protein and nestin) in human amniotic epithelial cells. The conditioned medium of human amniotic epithelial cells promoted the growth and proliferation of rat glial cells cultured in vitro, and this effect was dose-dependent. Human amniotic epithelial cells were further transplanted into the corpus striatum of healthy adult rats and the grafted cells could integrate with the host and migrate 1-2 mm along the nerve fibers in corpus callosum. Our experimental findings indicate that human amniotic epithelial cells may be a new kind of seed cells for use in neurograft.

  4. Placental amniotic epithelial cells and their therapeutic potential in liver diseases

    Directory of Open Access Journals (Sweden)

    Asli eTahan

    2014-12-01

    Full Text Available As a unique source of stem cells, there is a growing interest in amniotic epithelial (AE cells. Placenta is readily available; in fact, it is often discarded following delivery. As such, it is without the ethical concerns of embryonic stem cells. Further advantages to AE include that AE cells do not demonstrate tumorigenicity upon transplantation, and are gifted with immunomodulatory and anti-inflamatory properties. Thus, AE cells have exceptional features for use as cell-based therapies for liver disease.

  5. Therapeutic effect of human amniotic epithelial cell transplantation into the lateral ventricle of hemiparkinsonian rats

    Institute of Scientific and Technical Information of China (English)

    YANG Xin-xin; XUE Shou-ru; DONG Wan-li; Kong Yan

    2009-01-01

    Background Human amniotic epithelial cells (HAECs) are able to secrete biologically active neurotrophins such as brain-derived neurotrophic factor and neurotrophin-3, both of which exhibit trophic activities on dopamine neurons.Previous study showed that when human amniotic epithelial cells were transplanted into the striatum of 6-hydroxydopamine (6-OHDA)-induced Parkinson disease rats, the cells could survive and exert functional effects. The purpose of this study was to investigate the survival and the differentiation of human amniotic epithelial cells after being transplanted into the lateral ventricle of Parkinson's disease (PD) rats, and to investigate the effects of grafts on healing PD in models.Methods The Parkinson's model was made with stereotactic microinjection of 6-hydroxydopamine (6-OHDA) into the striatum of a rat. The PD models were divided into two groups: the HAECs group and the normal saline (NS) group.Some untreated rats were taken as the control. The rotational asymmetry induced by apomorphine of the HAECs group and the NS group were measured post cell transplantation. The expression of nestin and vimentin in grafts were determined by immunohistology. Ten weeks after transplantation the density of tyrosine hydroxylase positive cells in the substantia nigra of the HAECs group, NS group and the untreated group was determined. The differentiation of grafts was determined by TH immunohistology. High performance liquid chromatography (HPLC) was used to determine monoamine neurotransmitter levels in the striatum.Results The rotational asymmetry induced by apomorphine of the HAECs group was ameliorated significantly compared to the NS group two weeks after transplantation (P <0.01). The grafts expressed nestin and vimentin five weeks after transplantation. TH immunohistochemistry indicated that the TH positive cells in the substantia nigra of the HAECs group increased significantly compared to the NS group (P<0.01). Tyrosine hydroxylase (TH) positive

  6. Human amniotic epithelial cell transplantation for the repair of injured brachial plexus nerve: evaluation of nerve viscoelastic properties

    Directory of Open Access Journals (Sweden)

    Hua Jin

    2015-01-01

    Full Text Available The transplantation of embryonic stem cells can effectively improve the creeping strength of nerves near an injury site in animals. Amniotic epithelial cells have similar biological properties as embryonic stem cells; therefore, we hypothesized that transplantation of amniotic epithelial cells can repair peripheral nerve injury and recover the creeping strength of the brachial plexus nerve. In the present study, a brachial plexus injury model was established in rabbits using the C 6 root avulsion method. A suspension of human amniotic epithelial cells was repeatedly injected over an area 4.0 mm lateral to the cephal and caudal ends of the C 6 brachial plexus injury site (1 × 10 6 cells/mL, 3 μL/injection, 25 injections immediately after the injury. The results showed that the decrease in stress and increase in strain at 7,200 seconds in the injured rabbit C 6 brachial plexus nerve were mitigated by the cell transplantation, restoring the viscoelastic stress relaxation and creep properties of the brachial plexus nerve. The forepaw functions were also significantly improved at 26 weeks after injury. These data indicate that transplantation of human amniotic epithelial cells can effectively restore the mechanical properties of the brachial plexus nerve after injury in rabbits and that viscoelasticity may be an important index for the evaluation of brachial plexus injury in animals.

  7. Human amniotic epithelial cell transplantation for the repair of injured brachial plexus nerve:evaluation of nerve viscoelastic properties

    Institute of Scientific and Technical Information of China (English)

    Hua Jin; Qi Yang; Feng Ji; Ya-jie Zhang; Yan Zhao; Min Luo

    2015-01-01

    The transplantation of embryonic stem cells can effectively improve the creeping strength of nerves near an injury site in animals. Amniotic epithelial cells have similar biological properties as em-bryonic stem cells; therefore, we hypothesized that transplantation of amniotic epithelial cells can repair peripheral nerve injury and recover the creeping strength of the brachial plexus nerve. In the present study, a brachial plexus injury model was established in rabbits using the C6root avulsion method. A suspension of human amniotic epithelial cells was repeatedly injected over an area 4.0 mm lateral to the cephal and caudal ends of the C6 brachial plexus injury site (1 × 106 cells/mL, 3μL/injection, 25 injections) immediately after the injury. The results showed that the decrease in stress and increase in strain at 7,200 seconds in the injured rabbit C6 brachial plexus nerve were mitigated by the cell transplantation, restoring the viscoelastic stress relaxation and creep properties of the brachial plexus nerve. The forepaw functions were also signiifcantly improved at 26 weeks after injury. These data indicate that transplantation of human amniotic epithelial cells can effec-tively restore the mechanical properties of the brachial plexus nerve after injury in rabbits and that viscoelasticity may be an important index for the evaluation of brachial plexus injury in animals.

  8. Value of human amniotic epithelial cells in tissue engineering for cornea.

    Science.gov (United States)

    Fatimah, Simat Siti; Ng, Sook Luan; Chua, Kien Hui; Hayati, Abdul Rahman; Tan, Ay Eeng; Tan, Geok Chin

    2010-11-01

    Human amniotic epithelial cells (hAECs) are potentially one of the key players in tissue engineering due to their easy availability. The aim of the present study was to develop an optimal isolation and transportation technique, as well as to determine the immunophenotype and epithelial gene expression of hAECs. Amnion was mechanically peeled off from the chorion and digested with trypsin-ethylenediaminetetraacetic acid. The isolated hAECs were cultured in medium containing 10 ng/mL epidermal growth factor until P4. The epithelial gene expression, cell surface antigen and protein expression of hAECs were analyzed by quantitative polymerase chain reaction, flow cytometry and immunocytochemistry. hAECs were also cultured in adipogenic, osteogenic and neurogenic induction media. The best cell yield of hAECs was seen in the digestion of 15 pieces of amnion (2 × 2 cm) and isolated 30 min after digestion with trypsin. F12:Dulbecco's modified eagle medium was the best medium for short term storage at 4 °C. hAECs expressed CD9, CD44, CD73 and CD90, and negligibly expressed CD31, CD34, CD45 and CD117. After serial passage, CK3, CK19 and involucrin gene expressions were upregulated, while p63, CK1 and CK14 gene expressions were downregulated. Sustained gene expressions of integrin β1 and CK18 were observed. At initial culture, these cells might have stem-like properties. However, they differentiated after serial passage. Nonetheless, hAECs have epithelial stem cell characteristics and have the potential to differentiate into corneal epithelial cells. Further investigations are still needed to elucidate the mechanism of differentiation involved and to optimize the culture condition for long term in vitro culture.

  9. Identification of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD-inducible genes in human amniotic epithelial cells

    Directory of Open Access Journals (Sweden)

    Kokame Koichi

    2006-05-01

    Full Text Available Abstract Background Exposure to dioxins results in a broad range of pathophysiological disorders in human fetuses. In order to evaluate the effects of dioxins on the feto-placental tissues, we analyzed the gene expression in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD treated primary cultures of human amniotic epithelial cells. Methods Human amniotic epithelial cells were dispersed by trypsin from amniotic membranes and cultured in DME/Ham's F12 medium supplemented with 10% FBS. Two weeks after plating, cells were treated with 50 nM TCDD or DMSO (control, further incubated for 48 hrs, and the gene expression was analyzed by DNA microarray technology and quantitative real-time PCR. Results Thirty eight TCDD-inducible genes, including cytochromeP4501A1 and cytochromeP4501B1, were identified. One of the remarkable profiles of the gene expression was the prominent up-regulation of interferon-inducible genes. The genes involved in the interferon gene expression and interferon signaling pathways were also up-regulated. Furthermore, the expression of genes related to collagen synthesis or degradation was enhanced by TCDD. Conclusion Using DNA microarray and quantitative real-time PCR analyses, we identified TCDD-inducible genes, including interferon-inducible genes and genes related to collagen synthesis or degradation, in human amniotic epithelial cells.

  10. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos

    Directory of Open Access Journals (Sweden)

    Daniela Ávila-González

    2015-09-01

    Full Text Available Data from the literature suggest that human embryonic stem cell (hESC lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1 from poor-quality (PQ embryos derived and maintained on human amniotic epithelial cells (hAEC. This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers.

  11. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos.

    Science.gov (United States)

    Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián

    2015-09-01

    Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers.

  12. Photo-cross-linking of amniotic membranes for limbal epithelial cell cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw

    2014-12-01

    In the present study, we developed photo-cross-linked amniotic membrane (AM) as a limbal stem cell niche. After ultraviolet (UV) irradiation for varying time periods, the biological tissues were studied by determinations of cross-linking structure, degradability, and nutrient permeation ability. Our results showed that the number of cross-links per unit mass of AM significantly increased with increasing illumination time from 5 to 50 min. However, the cross-link formation was inhibited by longer irradiation time (i.e., 150 min), probably due to the scission of tissue collagen chains through irradiation. The biological stability and matrix permeability of photo-cross-linked AM materials strongly depended on their cross-linking densities affected by the UV irradiation. In vitro biocompatibility studies including cell viability and pro-inflammatory gene expression analyses demonstrated that, irrespective of the irradiation time employed, the physically cross-linked biological tissues exhibited negligible cytotoxicity and similar interleukin-6 (IL-6) mRNA levels. The data clearly indicate that these AM matrices do not cause potential harm to the corneal epithelial cells. After the growth of limbal epithelial cells (LECs) on AM substrates, Western blot analyses were conducted to examine the expression of ABCG2. It was found that the ability of UV-irradiated AM to maintain the undifferentiated precursor cell phenotype was significantly enhanced with increasing extent of photo-cross-linking. In summary, the UV irradiation time may have a profound influence on the fabrication of photo-cross-linked AM matrices for LEC cultivation. - Highlights: • We report the development of photo-cross-linked AM as a limbal stem cell niche. • Cross-linked structure of tissue materials was controlled by UV irradiation time. • Biostability and matrix permeability of AM depended on cross-linking density. • All the studied photo-cross-linked AM showed good in vitro biocompatibility.

  13. Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    WU Zhi-yuan; HUI Guo-zhen; LU Yi; WU Xin; GUO Li-he

    2006-01-01

    Background Human amniotic epithelial cells (HAECs), which have several characteristics similar to stem cells,therefore could possibly be used in cell therapy without creating legal or ethical problems. In this study, we transplanted HEACs into the injured spinal cord of rats to investigate if the cells can improve the rats' hindlimb motor function.Methods HAECs were obtained from a piece of fresh amnion, labeled with Hoechst33342, and transplanted into the site of complete midthoracic spinal transections in adult rats. The rats (n=21) were randomly divided into three groups: Sham-operation group (n=7), cells-graft group (n=7), and PBS group (n=7). One rat of each group was killed for histological analysis at the second week after the transplantation. The other six rats of each group were killed for histological analysis after an 8-week behavioral testing. Hindlimb motor function was assessed by using the open-field BBB scoring system. Survival rate of the graft cells was observed at second and eighth weeks after the transplantation. We also detected the myelin sheath fibers around the lesions and the size of the axotomized red nucleus. A one-way ANOVA was used to compare the means among the groups. The significance level was set at P<0.05.Results The graft HAECs survived for a long time (8 weeks) and integrated into the host spinal cord without immune rejection. Compared with the control group, HAECs can promote the regeneration and sprouting of the axons, improve the hindlimb motor function of the rats (BBB score: cells-graft group 9.0± 0.89 vs PBS group 3.7± 1.03, P<0.01), and inhibit the atrophy of axotomized red nucleus [cells-graft group (526.47 ± 148.42) μm2 vs PBS group (473.69±164.73) μm2, P<0.01].Conclusion Transplantation of HAECs can improve the hindlimb motor function of rats with spinal cord injury.

  14. Human amniotic epithelial cell transplantation induces markers of alternative macrophage activation and reduces established hepatic fibrosis.

    Directory of Open Access Journals (Sweden)

    Ursula Manuelpillai

    Full Text Available Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl(4 twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2 × 10(6 were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively. Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl(4 treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl(4 administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl(4 demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl(4 treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl(4 alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl(4 treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established

  15. Synthetic bone substitute engineered with amniotic epithelial cells enhances bone regeneration after maxillary sinus augmentation.

    Directory of Open Access Journals (Sweden)

    Barbara Barboni

    Full Text Available BACKGROUND: Evidence has been provided that a cell-based therapy combined with the use of bioactive materials may significantly improve bone regeneration prior to dental implant, although the identification of an ideal source of progenitor/stem cells remains to be determined. AIM: In the present research, the bone regenerative property of an emerging source of progenitor cells, the amniotic epithelial cells (AEC, loaded on a calcium-phosphate synthetic bone substitute, made by direct rapid prototyping (rPT technique, was evaluated in an animal study. MATERIAL AND METHODS: Two blocks of synthetic bone substitute (∼0.14 cm(3, alone or engineered with 1×10(6 ovine AEC (oAEC, were grafted bilaterally into maxillary sinuses of six adult sheep, an animal model chosen for its high translational value in dentistry. The sheep were then randomly divided into two groups and sacrificed at 45 and 90 days post implantation (p.i.. Tissue regeneration was evaluated in the sinus explants by micro-computer tomography (micro-CT, morphological, morphometric and biochemical analyses. RESULTS AND CONCLUSIONS: The obtained data suggest that scaffold integration and bone deposition are positively influenced by allotransplantated oAEC. Sinus explants derived from sheep grafted with oAEC engineered scaffolds displayed a reduced fibrotic reaction, a limited inflammatory response and an accelerated process of angiogenesis. In addition, the presence of oAEC significantly stimulated osteogenesis either by enhancing bone deposition or making more extent the foci of bone nucleation. Besides the modulatory role played by oAEC in the crucial events successfully guiding tissue regeneration (angiogenesis, vascular endothelial growth factor expression and inflammation, data provided herein show that oAEC were also able to directly participate in the process of bone deposition, as suggested by the presence of oAEC entrapped within the newly deposited osteoid matrix and by their

  16. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid

    Directory of Open Access Journals (Sweden)

    Sanie-Jahromi Fatemeh

    2012-04-01

    Full Text Available Abstract Background Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers during treatment of human retinal pigment epithelium (RPE cells with amniotic fluid (AF, RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Results Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1 confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Conclusion Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells.

  17. Involvement of gene methylation changes in the differentiation of human amniotic epithelial cells into islet-like cell clusters.

    Science.gov (United States)

    Peng, Lin; Wang, Jian; Lu, Guangxiu

    2014-09-01

    Insulin-dependent diabetes results from destruction of the insulin-producing β-cells of the pancreas. Islet cell transplantation is a promising cure for diabetes. Here, we induced human amniotic epithelial cells (hAECs) to differentiate into islet-like cell clusters by nicotinamide plus betacellulin in vitro, and further investigated the DNA methylation status by a Nimble MeDIP microarray before and after cell differentiation to shed light on the molecular mechanisms of this differentiation. In addition, 5-Aza-2'-deoxycytidine was used to investigate whether the differentiation of hAECs into islet-like cells occurred through demethylation. Purified hAECs (CK18(+)/E-cadherin(+)/CD29(+)/CD90(-)/CD34(-)/CD45(-)) were isolated from human amnia. After induction, hAECs were found to be insulin positive and sensitive to glucose, indicating successful induction to islet-like cells. The methylation status of cell cytoskeleton-related genes was down-regulated and that of negative regulation of cell adhesion-related genes was up-regulated. The methylation status of pancreas development-related genes such as HNF1α and DGAT1 was decreased in hAECs after induction. After brief demethylation, INS gene expression was up-regulated in islet-like cell clusters, suggesting that DNA methylation changes were associated with the differentiation of hAECs into islet-like cell clusters.

  18. Amniotic Mesenchymal Stem Cells: A New Source for Hepatocyte-Like Cells and Induction of CFTR Expression by Coculture with Cystic Fibrosis Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Valentina Paracchini

    2012-01-01

    Full Text Available Cystic fibrosis (CF is a monogenic disease caused by mutations in the CF transmembrane conductance regulator (CFTR gene, with lung and liver manifestations. Because of pitfalls of gene therapy, novel approaches for reconstitution of the airway epithelium and CFTR expression should be explored. In the present study, human amniotic mesenchymal stem cells (hAMSCs were isolated from term placentas and characterized for expression of phenotypic and pluripotency markers, and for differentiation potential towards mesoderm (osteogenic and adipogenic lineages. Moreover, hAMSCs were induced to differentiate into hepatocyte-like cells, as demonstrated by mixed function oxidase activity and expression of albumin, alpha1-antitrypsin, and CK19. We also investigated the CFTR expression in hAMSCs upon isolation and in coculture with CF airway epithelial cells. Freshly isolated hAMSCs displayed low levels of CFTR mRNA, which even decreased with culture passages. Following staining with the vital dye CM-DiI, hAMSCs were mixed with CFBE41o- respiratory epithelial cells and seeded onto permeable filters. Flow cytometry demonstrated that 33–50% of hAMSCs acquired a detectable CFTR expression on the apical membrane, a result confirmed by confocal microscopy. Our data show that amniotic MSCs have the potential to differentiate into epithelial cells of organs relevant in CF pathogenesis and may contribute to partial correction of the CF phenotype.

  19. Combination of melatonin and Wnt-4 promotes neural cell differentiation in bovine amniotic epithelial cells and recovery from spinal cord injury.

    Science.gov (United States)

    Gao, Yuhua; Bai, Chunyu; Zheng, Dong; Li, Changli; Zhang, Wenxiu; Li, Mei; Guan, Weijun; Ma, Yuehui

    2016-04-01

    Although melatonin has been shown to exhibit a wide variety of biological functions, its effects on promoting differentiation of neural cells remain unknown. Wnt signaling mediates major developmental processes during embryogenesis and regulates maintenance, self-renewal, and differentiation of adult mammalian stem cells. However, the role of the noncanonical Wnt pathway during neurogenesis remains poorly understood. In this study, the amniotic epithelial cells ( AECs) were isolated from bovine amnion and incubated with various melatonin concentrations (0.01, 0.1, 1, 10, or 100 μm) and 5 × 10(-5) m all-trans retinoic acid (RA) for screening optimum culture medium of neural differentiation, compared with each groups, 1 μm melatonin and 5 × 10(-5) m RA were selected to induce neural differentiation of AECs, and then siMT1, siMT2, oWnt-4, and siWnt-4 were expressed in AECs to research role of these genes in neural differentiation. Efficiency of neural differentiation was evaluated after expressed above genes using flow cytometry. Cell function of neural cells was demonstrated in vivo using spinal cord injury model after cell transplantation, and damage repair of spinal cord was assessed using cell tracking and Basso, Beattie, Bresnahan Locomotor Rating Scale scores. Results demonstrated that melatonin stimulated melatonin receptor 1, which subsequently increased bovine amniotic epithelial cell vitality and promoted differentiation into neural cells. This took place through cooperation with Wnt-4. Additionally, following cotreatment with melatonin and Wnt-4, neurogenesis gene expression was significantly altered. Furthermore, single inhibition of melatonin receptor 1 or Wnt-4 expression decreased expression of neurogenesis-related genes, and bovine amniotic epithelial cell-derived neural cells were successfully colonized into injured spinal cord, which suggested participation in tissue repair.

  20. Effect of microcystin-LR on protein phosphatase 2A and its function in human amniotic epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Jing LIANG; Tan LI; Ya-li ZHANG; Zong-lou GUO; Li-hong XU

    2011-01-01

    Due to their toxicity,the increased distribution of microcystins (MCs) has become an important worldwide problem.MCs have been recognized as inhibitors of protein phosphatase 2A (PP2A) through their binding to the PP2A catalytic subunit.However,the exact mechanism of MC toxicity has not been elucidated,especially concerning the cellular response and its autoregulation.To further dissect the role of PP2A in MC-induced toxicity,the present study was undertaken to determine the response of PP2A in human amniotic epithelial (FL) cells treated with microcystin-LR (MCLR),one of the MC congeners.The results show that a low-dose treatment of MCLR in FL cells for 6 h induced an increase in PP2A activity,and a high-dose treatment of MCLR for 24 h decreased the activity of PP2A,as expected.The increased mRNA and protein levels of the PP2A C subunit may explain the increased activity of PP2A.Furthermore,MCLR altered microtubule post-translational modifications through PP2A.These results further clarify the underlying mechanism how MCLR affects PP2A and may be helpful for elucidating the complex toxicity of MCLR.

  1. Positive effects of bFGF modified rat amniotic epithelial cells transplantation on transected rat optic nerve.

    Directory of Open Access Journals (Sweden)

    Jia-Xin Xie

    Full Text Available Effective therapy for visual loss caused by optic nerve injury or diseases has not been achieved even though the optic nerve has the regeneration potential after injury. This study was designed to modify amniotic epithelial cells (AECs with basic fibroblast growth factor (bFGF gene, preliminarily investigating its effect on transected optic nerve.A human bFGF gene segment was delivered into rat AECs (AECs/hbFGF by lentiviral vector, and the gene expression was examined by RT-PCR and ELISA. The AECs/hbFGF and untransfected rat AECs were transplanted into the transected site of the rat optic nerve. At 28 days post transplantation, the survival and migration of the transplanted cells was observed by tracking labeled cells; meanwhile retinal ganglion cells (RGCs were observed and counted by employing biotin dextran amine (BDA and Nissl staining. Furthermore, the expression of growth associated protein 43 (GAP-43 within the injury site was examined with immunohistochemical staining.The AECs/hbFGF was proven to express bFGF gene and secrete bFGF peptide. Both AECs/hbFGF and AECs could survive and migrate after transplantation. RGCs counting implicated that RGCs numbers of the cell transplantation groups were significantly higher than that of the control group, and the AECs/hbFGF group was significantly higher than that of the AECs group. Moreover GAP-43 integral optical density value in the control group was significantly lower than that of the cell transplantation groups, and the value in the AECs/hbFGF group was significantly higher than that of the AECs group.AECs modified with bFGF could reduce RGCs loss and promote expression of GAP-43 in the rat optic nerve transected model, facilitating the process of neural restoration following injury.

  2. M1 and M2 macrophage recruitment during tendon regeneration induced by amniotic epithelial cell allotransplantation in ovine.

    Science.gov (United States)

    Mauro, Annunziata; Russo, Valentina; Di Marcantonio, Lisa; Berardinelli, Paolo; Martelli, Alessandra; Muttini, Aurelio; Mattioli, Mauro; Barboni, Barbara

    2016-04-01

    Recently, we have demonstrated that ovine amniotic epithelial cells (oAECs) allotransplanted into experimentally induced tendon lesions are able to stimulate tissue regeneration also by reducing leukocyte infiltration. Amongst leukocytes, macrophages (Mφ) M1 and M2 phenotype cells are known to mediate inflammatory and repairing processes, respectively. In this research it was investigated if, during tendon regeneration induced by AECs allotransplantation, M1Mφ and M2Mφ phenotype cells are recruited and differently distributed within the lesion site. Ovine AECs treated and untreated (Ctr) tendons were explanted at 7, 14, and 28 days and tissue microarchitecture was analyzed together with the distribution and quantification of leukocytes (CD45 positive), Mφ (CD68 pan positive), and M1Mφ (CD86, and IL12b) and M2Mφ (CD206, YM1 and IL10) phenotype related markers. In oAEC transplanted tendons CD45 and CD68 positive cells were always reduced in the lesion site. At day 14, oAEC treated tendons began to recover their microarchitecture, contextually a reduction of M1Mφ markers, mainly distributed close to oAECs, and an increase of M2Mφ markers was evidenced. CD206 positive cells were distributed near the regenerating areas. At day 28 oAECs treated tendons acquired a healthy-like structure with a reduction of M2Mφ. Differently, Ctr tendons maintained a disorganized morphology throughout the experimental time and constantly showed high values of M1Mφ markers. These findings indicate that M2Mφ recruitment could be correlated to tendon regeneration induced by oAECs allotransplantation. Moreover, these results demonstrate oAECs immunomodulatory role also in vivo and support novel insights into their allogeneic use underlying the resolution of tendon fibrosis.

  3. Differential Expression of Extracellular Matrix and Adhesion Molecules in Fetal-Origin Amniotic Epithelial Cells of Preeclamptic Pregnancy.

    Directory of Open Access Journals (Sweden)

    Myung-Sun Kim

    Full Text Available Preeclampsia is a common disease that can occur during human pregnancy and is a leading cause of both maternal and neonatal morbidity and mortality. Inadequate trophoblast invasion and deficient remodeling of uterine spiral arteries are associated with preeclampsia (PE. The development of this syndrome is thought to be related to multiple factors. Recently, we isolated patient-specific human amniotic epithelial cells (AECs from the placentas of 3 women with normal pregnancy and 3 with preeclamptic pregnancy. Since the characteristics of human AECs in PE are different from those in normal pregnancy, we sought to confirm the genes differentially expressed between preeclamptic pregnancy and normal pregnancy. Therefore, we performed transcriptome analysis to investigate the candidate genes associated with the possible pathophysiology of preeclampsia. Pathway analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID and Kyoto Encyclopedia of Genes and Genomes (KEGG online resource. In this study, we selected a total of 12 pathways and focused on extracellular matrix-related and biological adhesion molecules. Using RT-PCR array and real-time PCR, we confirmed that COL16A1, ITGB2, and LAMA3 were significantly up-regulated, but ITGA1, ITGA3, ITGA6, MMP1, MMP3, MMP10 and MMP11 were significantly down-regulated in preeclamptic fetal origin cells. Taken together, we suggest that the genes and pathways identified here may be responsible for the occurrence and development of PE, and controlling their expression may play a role in communication with fetal-maternal placenta to keep normal pregnancy.

  4. Differential Expression of Extracellular Matrix and Adhesion Molecules in Fetal-Origin Amniotic Epithelial Cells of Preeclamptic Pregnancy.

    Science.gov (United States)

    Kim, Myung-Sun; Yu, Ji Hea; Lee, Min-Young; Kim, Ah Leum; Jo, Mi Hyun; Kim, MinGi; Cho, Sung-Rae; Kim, Young-Han

    2016-01-01

    Preeclampsia is a common disease that can occur during human pregnancy and is a leading cause of both maternal and neonatal morbidity and mortality. Inadequate trophoblast invasion and deficient remodeling of uterine spiral arteries are associated with preeclampsia (PE). The development of this syndrome is thought to be related to multiple factors. Recently, we isolated patient-specific human amniotic epithelial cells (AECs) from the placentas of 3 women with normal pregnancy and 3 with preeclamptic pregnancy. Since the characteristics of human AECs in PE are different from those in normal pregnancy, we sought to confirm the genes differentially expressed between preeclamptic pregnancy and normal pregnancy. Therefore, we performed transcriptome analysis to investigate the candidate genes associated with the possible pathophysiology of preeclampsia. Pathway analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and Kyoto Encyclopedia of Genes and Genomes (KEGG) online resource. In this study, we selected a total of 12 pathways and focused on extracellular matrix-related and biological adhesion molecules. Using RT-PCR array and real-time PCR, we confirmed that COL16A1, ITGB2, and LAMA3 were significantly up-regulated, but ITGA1, ITGA3, ITGA6, MMP1, MMP3, MMP10 and MMP11 were significantly down-regulated in preeclamptic fetal origin cells. Taken together, we suggest that the genes and pathways identified here may be responsible for the occurrence and development of PE, and controlling their expression may play a role in communication with fetal-maternal placenta to keep normal pregnancy.

  5. Cytocompatibility of Three Corneal Cell Types with Amniotic Membrane

    Institute of Scientific and Technical Information of China (English)

    CHENJian-su; CHENRui; XUJin-tang; DINGYong; ZHAOSong-bin; LISui-lian

    2004-01-01

    Rabbit limbal corneal epithelial cells, corneal endothelial cells and keratocytes were cultured on amniotic membrane. Phase contrast microscope examination was performed daily. Histological and scan electron microscopic examinations were carried out to observe the growth, arrangement and adhesion of cultivated cells. Results showed that three corneal cell types seeded on amniotic membrane grew well and had normal cell morphology. Cultured cells attached firmly on the surface of amniotic membrane. Corneal epithelial cells showed singular layer or stratification. Cell boundaries were formed and tightly opposed. Corneal endothelial cells showed cobblestone or polygonal morphologic characteristics that appeared uniform in size. The cellular arrangement was compact. Keratocytes elongated and showed triangle or dendritic morphology with many intercellular joints which could form networks. In conclusion, amniotic membrane has good scaffold property, diffusion effect and compatibility with corneal cells. The basement membrane side of amniotic membrane facilitated the growth of corneal epithelial cells and endothelial cells and cell junctions were tightly developed. The spongy layer of amniotic membrane facilitated the growth of keratocytes and intercellular joints were rich. Amniotic membrane is an ideal biomaterial for layering tissue engineered cornea.

  6. Phenotype and differentiation capacity of human amniotic epithelial cells cultured in vitro%体外培养人羊膜上皮细胞的表型及分化能力

    Institute of Scientific and Technical Information of China (English)

    连建春; 刘洋; 刘畅; 吕世杰; 郭昕; 南丰; 孙广炜; 贺欣; 马小军

    2014-01-01

    BACKGROUND:Human amniotic epithelial cells are an important source of cells in regenerative medicine as its multipotentation, but new studies mainly focused on differentiation features and there were little research oneffect of culture in vitro on biological property of amniotic epithelial cells. OBJECTIVE:To analyze the effects of in vitro culture on growth, cellphenotype and differentiation capacity of human amniotic epithelial cells into cardiomyocyte-like cells, and explore the correlation of primarily cultured human amniotic epithelial cells marker SSEA-4 expression level and the change of biological characteristics of human amniotic epithelial cells. METHODS:Primarily cultured human amniotic epithelial cells were obtained from amniotic tissues by using the same separation protocol. Human amniotic epithelial cells were cultured in vitro. The proliferation, cellphenotype and the differentiation capacity of human amniotic epithelial cells into cardiomyocyte-like cells were evaluated by means of cellcounting kit-8, flow cytometry and real-time PCR. RESULTS AND CONCLUSION:The SSEA-4 positive cells in primarily cultured human amniotic epithelial cells from different fetal tissues were between 26.7%-97%, which indicated that there was great individual difference among amniotic tissue samples. Moreover, with passage, the SSEA-4 expression in human amniotic epithelial cells decreased significantly, which did not correlate with the SSEA-4 expression in primarily cultured human amniotic epithelial cells. Results indicated that there was great individual difference in SSEA-4 expression level in primarily cultured human amniotic epithelial cells from different amniotic tissue samples. Thus, it is necessary to set up clinical screening indexes to get samples with higher SSEA-4 expression stably and to control the quality of human amniotic epithelial cells. In addition, during culture period, SSEA-4 expression level was affected by culture conditions. The culture

  7. Synergic activation of toll-like receptor (TLR 2/6 and 9 in response to Ureaplasma parvum & urealyticum in human amniotic epithelial cells.

    Directory of Open Access Journals (Sweden)

    Martha Triantafilou

    Full Text Available Ureaplasma species are the most frequently isolated microorganisms inside the amniotic cavity and have been associated with spontaneous abortion, chorioamnionitis, premature rupture of the membranes (PROM, preterm labour (PL pneumonia in neonates and bronchopulmonary dysplasia in neonates. The mechanisms by which Ureaplasmas cause such diseases remain unclear, but it is believed that inappropriate induction of inflammatory responses is involved, triggered by the innate immune system. As part of its mechanism of activation, the innate immune system employs germ-lined encoded receptors, called pattern recognition receptors (PRRs in order to "sense" pathogens. One such family of PRRs are the Toll like receptor family (TLR. In the current study we aimed to elucidate the role of TLRs in Ureaplasma-induced inflammation in human amniotic epithelial cells. Using silencing, as well as human embryonic kidney (HEK transfected cell lines, we demonstrate that TLR2, TLR6 and TLR9 are involved in the inflammatory responses against Ureaplasma parvum and urealyticum serovars. Ureaplasma lipoproteins, such as Multiple Banded antigen (MBA, trigger responses via TLR2/TLR6, whereas the whole bacterium is required for TLR9 activation. No major differences were observed between the different serovars. Cell activation by Ureaplasma parvum and urealyticum seem to require lipid raft function and formation of heterotypic receptor complexes comprising of TLR2 and TLR6 on the cell surface and TLR9 intracellularly.

  8. 人类羊膜上皮细胞与间充质干细胞的免疫调节功能%The immune regulation functions of human amniotic epithelial cells and mesenchymal cells

    Institute of Scientific and Technical Information of China (English)

    王佳萍

    2010-01-01

    成体干细胞是一种具有自我更新和多向分化能力的细胞,在组织工程、基因治疗和细胞移植领域具有较好的应用前景.近年研究显示,人类羊膜中也存在两种干细胞:羊膜上皮细胞(HAEC)和羊膜间充质干细胞(hAMSC),由于具有来源广泛、取材方便、多向分化潜能以及免疫原性低等优点,在细胞移植中表现出免疫调节等作用,且可作为细胞组织工程种子,正逐渐成为干细胞研究领域的热点之一.现就两种羊膜细胞生物学特性、免疫调节机制以及临床运用的潜在价值进行综述.%Adult stem cells are a kind of cells which have the capability to differentiate into multiple cell types as well as self renew continuously. They have great therapeutic potential in tissue engineering,genetherapy and cell transplantation.In recent study, it has been found that there were two kinds of stem cells in human amniotic membrane,including human amniotic epithelial cells and human amniotic mesenchymal stem cells. As a new source of stem cells, these two amniotic cells have become the hot spot in stem cells research due to their advantages such as extensive resource, easy to acquire, multi-differentiation potential and negligible antigenicity. This article reviewed biological characteristics, immune regulation mechanism and prospect on amniotic epithelial cells and mesenchymal cells.

  9. Comparative study of effects of magnesium and taurine on electrical parameters of natural and artificial membranes. VIII. Effect on the ultrastructure of human amniotic epithelial cells.

    Science.gov (United States)

    Guiet-Bara, A; Bara, M; Durlach, J

    1991-03-01

    The ultrastructure of human amniotic epithelial cells from normal pregnancies, at term, was studied using transmission electron microscopy. The results were analysed by a stereological method which indicates the ratio between the volume of the intercellular space (R1, the microvilli (R2), and the podocytes (R3) versus the cell volume. At low concentration (2 mM), MgCl2 decreased R1 and R3 and had no significant effect on R2. In contrast, taurine (2 mM) increased R1 and had no significant effect on R2 and R3. There is no vicarious action between Mg and taurine. These data are in contrast to the results obtained after electrophysiological studies, which indicates that the structural targets for Mg and taurine are different from the targets responsible for ionic transfer.

  10. Low microRNA-199a expression in human amniotic epithelial cell feeder layers maintains human-induced pluripotent stem cell pluripotency via increased leukemia inhibitory factor expression

    Institute of Scientific and Technical Information of China (English)

    Te Liu; Qing Chen; Yongyi Huang; Qin Huang; Lizhen Jiang; Lihe Guo

    2012-01-01

    Human-induced pluripotent stem (iPS) cells share the same key properties as embryonic stem cells,and may be generated from patient- or disease-specific sources,which makes them attractive for personalized medicine,drug screens,or cellular therapy.Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state is a major challenge.Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells,or spermatogonial stem cells,as they express endogenous leukemia inhibitory factor (LIF) at high levels.Here,we examined the effect of exogenous microRNA-199a regulation on endogenous LIF expression in HuAECs,and in torn on human iPS cell pluripotency.We found that HuAECs feeder cells transfected with microRNA-199a mutant expressed LIF at high levels,allowing iPS to maintain a high level of alkaline phosphatase activity in longterm culture and form teratomas in severe combined immunodeficient mice.The expression of stem cell markers was increased in iPS cultured on HuAECs feeder cells transfected with the microRNA-199a mutant,compared with iPS cultured on HuAECs transfected with microRNA-199a or mouse embryo fibroblasts.Taken together,these results suggested that LIF expression might be regulated by microRNA-199a,and LIF was a crucial component in feeder cells,and also was required for maintenance of human iPS cells in an undifferentiated,proliferative state capable of self-renewal.

  11. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Te, E-mail: liute79@yahoo.com [School of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Shanghai Geriatric Institute of Chinese Medicine, Shanghai 200031 (China); Cheng, Weiwei [International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai 200030 (China); Huang, Yongyi [Laboratoire PROTEE, Batiment R, Universite du Sud Toulon-Var, 83957 LA GARDE Cedex (France); Huang, Qin; Jiang, Lizhen [Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Guo, Lihe, E-mail: liute79@yahoo.com [Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2012-02-15

    Currently, human induced pluripotent stem (iPS) cells were generated from patient or disease-specific sources and share the same key properties as embryonic stem cells. This makes them attractive for personalized medicine, drug screens or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state are a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, but the mechanism for this is unknown. Here, we examined the effect of endogenous microRNA-145 regulation on Sox2 expression in human iPS cells by HuAECs feeder cells regulation, and in turn on human iPS cells pluripotency. We found that human IPS cells transfected with a microRNA-145 mutant expressed Sox2 at high levels, allowing iPS to maintain a high level of AP activity in long-term culture and form teratomas in SCID mice. Expression of stem cell markers was increased in iPS transfected with the microRNA-145 mutant, compared with iPS was transfected with microRNA-145. Besides, the expression of Drosha proteins of the microRNA-processor complex, required for the generation of precursor pre-miRNA, was significantly increased in human iPS cells cultured on MEF but not on HuAECs. Taken together, these results suggest that endogenous Sox2 expression may be regulated by microRNA-145 in human iPS cells with HuAECs feeder cells, and Sox2 is a crucial component required for maintenance of them in an undifferentiated, proliferative state capable of self-renewal. Highlights: Black-Right-Pointing-Pointer microRNA-145 inhibits Sox2 expression in human iPS cells. Black-Right-Pointing-Pointer microRNA-145 suppresses the self-renewal and pluripotency of human iPS cells. Black-Right-Pointing-Pointer HuAECs regulate expression of microRNA-145 and Sox2 in human iPS cells. Black-Right-Pointing-Pointer HuAECs feeder

  12. Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide-co-glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds.

    Science.gov (United States)

    Russo, Valentina; Tammaro, Loredana; Di Marcantonio, Lisa; Sorrentino, Andrea; Ancora, Massimo; Valbonetti, Luca; Turriani, Maura; Martelli, Alessandra; Cammà, Cesare; Barboni, Barbara

    2016-12-01

    Three biodegradable thermoplastic polymers, poly(ε-caprolactone) (PCL), poly(l-lactide-co-d,l-lactide) (PLA) and poly(l-lactide-co-glycolide) (PLGA), have been used to produce nonwovens scaffolds with uniform micrometer fibres. Scaffolds' physical and morphological characterization was performed by X-ray diffraction, Scanning Electron Microscopy and Contact-Angle test. Morphological investigations revealed that all produced fibres were randomly orientated with interconnected pores ranging between 5 and 12μm in diameter. An average fibre diameter of 1.5, 0.75 and 1.2μm was found for PCL, PLA and PLGA, respectively. Moreover, experiments were designed to verify whether the fabricated electrospun substrates were biocompatible for ovine amniotic epithelial stem cells (oAECs) under in vitro conditions. Cell adhesion, survival, spatial organization on fibres, proliferation index, and DNA quantification after 48h culture, showed an enhanced adhesion and proliferation, especially for PLGA scaffolds. The favourable interaction between oAECs and the fibrous scaffolds was attributed to the greatly improved porosity and pore size distribution of the electrospun scaffolds. In addition, AECs can be considered ideal for tissue engineering especially when using biocompatible and opportunely produced scaffolds.

  13. Intracerebroventricular transplantation of human amniotic epithelial cells ameliorates spatial memory deficit in the doubly transgenic mice coexpressing APPswe and PS1ΔE9-deleted genes

    Institute of Scientific and Technical Information of China (English)

    XUE Shou-ru; CHEN Chong-fang; DONG Wan-li; HUI Guo-zhen; LIU Tian-jun; GUO Li-he

    2011-01-01

    Background Human amniotic epithelial cells (HAECs),which have characteristics of both embryonic and pluripotent stem cells,are therefore a candidate in cell therapy without creating legal or ethical problems.In the present study,we aimed to investigate the effects of intracerebroventricular transplantation of HAECs on doubly transgenic mice of Alzheimer's disease (AD) coexpressing presenilin-1 (PS1) and mutant Sweden amyloid precursor protein (APPswe)genes.Methods The offspring mice genotypes were detected using PCR identification of APPswe and PS1 gene.The doubly transgenic (TG) mice (n=20) and wild-type (WT) mice (n=20) were randomly divided into two groups respectively:the transplantation group treated with HAECs and the control group with phosphate buffered saline.Six radial arm water maze test was used to assess the spatial memory in the TG and WT mice.Amyloid plaques and neurofibrillary tangles were analyzed using congo red and acid-silver methenamine staining respectively.Immunofluorescence cytochemistry was used to track the survival of HAECs.Immunohistochemistry was used to determine the expression of octamer-binding protein 4 (Oct-4) and Nanog in the HAECs.High performance liquid chromatography was used to measure acetylcholine in hippocampus.The density of cholinergic neurons in basal forebrain and nerve fibers in hippocampus was measured using acetylcholinesterase staining.Results Amyloid deposition occurred in hippocampus and frontal cortex in the double TG mice aged 8 months,but not in WT mice.The results also showed that transplanted HAECs can survive for at least 8 weeks and migrate to the third ventricle without immune rejection.The graft HAECs can also express the specific marker Oct-4 and Nanog of stem cell.Compared with the control group,transplantation of HAECs can not only significantly improve the spatial memory of the TG mice,but also increase acetylcholine concentration and the number of hippocampal cholinergic neurites.Conclusions These

  14. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells.

    Science.gov (United States)

    Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C

    2012-08-01

    As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.

  15. Therapeutic potential of amniotic fluid stem cells.

    Science.gov (United States)

    Abdulrazzak, Hassan; De Coppi, Paolo; Guillot, Pascale V

    2013-03-01

    Human amniotic fluid cells have been used traditionally as a diagnostic tool for genetic anomalies. More recently it has been recognized that amniotic fluid contains populations of stem cells. Mesenchymal stem cells (AFMSC) were first to be described. These cells are able to differentiate towards mesodermal lineages. More recently cells with broader potential, defined as amniotic fluid stem cells (AFSC), were also isolated. They have intermediate characteristics between embryonic and adult stem cells and are able to differentiate into lineages representative of all three germ layers but unlike ES cells they do not form tumours in vivo. Furthermore, AFSC have been reverted to functional pluripotency in a transgene-free approach using an epigenetics modifier. These characteristics, together with absence of ethical issues concerning their employment, have made stem cells from amniotic fluid a promising candidate for cell therapy and tissue engineering.

  16. Human amniotic epithelial cells culture in vitro and the research of Stem cell characteristics.%羊膜上皮细胞的体外培养及干细胞特性研究

    Institute of Scientific and Technical Information of China (English)

    耿娟娟; 崔勇; 邱书奇

    2012-01-01

    Objective To establish in vitro culture procedure of human amniotic epithelial cells (hAECS) and to explore the biological characteristics. Methods Human placenta were deliveried from third-trimester healthy mothers. The amnion layer was mechanically peeled off of the chorion, washed several times and splitted in 1 mm x 1 mm. The amnion membrane was incubated with 0.05% trypsin containing 0.53 mM EDTA4Na and then cultured. The hAECS were obtained from the amniotic membrane by the digestion of trypsin. The stem cell markers (OCT-4^ Nanog、SSEA-4) were examined by the Immunofluorescence, Western. Result The amniotic epithelial cells express 0CT-4、Nanog^SSEA-4, which is the marker of the stem cells according to immunofluorescence staining and Westernblot results. Conclusion the hAECS express the marker of embryonic stem cell, which means it can be used as a new source of stem cells.%目的:体外分离培养人单膜上皮细胞(hAECS)并探讨其生物学特性.方法:取足月产胎儿胎盘,无菌条件下将胎盘的羊膜层与绒毛膜层分离.将洗净的羊膜组织用眼科剪剪成约1 mm×1 mm大小,加入0.05%的含有0.53 mM EDTA4Na的胰酶制备羊膜上皮细胞并进行培养.用免疫荧光、Westem blot等方法检测干细胞相关表面标记物(0CT-4、Nanog、SSEA-4)等的表达情况.结果:根据免疫荧光组织化学,Westernblot的结果显示,羊膜上皮细胞OCT-4、Nanog、ssea-4、Nestin表达阳性.结论:羊膜上皮细胞表达类似胚胎干细胞的表面标志物,可以作为干细胞的新来源.

  17. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Fang, Cheng-Hu; Jin, Jiyong; Joe, Jun-Ho; Song, Yi-Sun; So, Byung-Im; Lim, Sang Moo; Cheon, Gi Jeong; Woo, Sang-Keun; Ra, Jeong-Chan; Lee, Young-Yiul; Kim, Kyung-Soo

    2012-01-01

    Human amniotic epithelial cells (h-AECs), which have various merits as a cell source for cell therapy, are known to differentiate into cardiomyocytes in vitro. However, the ability of h-AECs to differentiate into cardiomyocytes in vivo and their cell transplantation effects on myocardial infarction are still unknown. In this study, we assessed whether h-AECs could differentiate into cardiomyocytes in vivo and whether h-AECs transplantation can decrease infarct size and improve cardiac function, in comparison to transplantation of cord blood-derived mesenchymal stem cells (MSCs) or adipose tissue-derived MSCs. For our study, we injected h-AECs, cord blood-derived MSCs, adipose tissue-derived MSCs, and saline into areas of myocardial infarction in athymic nude rats. After 4 weeks, 3% of the surviving h-AECs expressed myosin heavy chain, a marker specific to the myocardium. Compared with the saline group, all cell-implanted groups showed a higher ejection fraction, lower infarct area by positron emission tomography and histology, and more abundant myocardial gene and protein expression in the infarct area. We showed that h-AECs can differentiate into cardiomyocyte-like cells, decrease infarct size, and improve cardiac function in vivo. The beneficial effects of h-AECs were comparable to those of cord blood and adipose tissue-derived MSCs. These results support the need for further studies of h-AECs as a cell source for myocardial regeneration due to their plentiful availability, low immunity, and lack of ethical issues related to their use.

  18. Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine?

    Science.gov (United States)

    Parolini, Ornella; Soncini, Maddalena; Evangelista, Marco; Schmidt, Dörthe

    2009-03-01

    Human amniotic membranes and amniotic fluid have attracted increasing attention in recent years as a possible reserve of stem cells that may be useful for clinical application in regenerative medicine. Many studies have been conducted to date in terms of the differentiation potential of these cells, with several reports demonstrating that cells from both the amniotic fluid and membrane display high plasticity. In addition, cells from the amniotic membrane have also been shown to display immunomodulatory characteristics both in vivo and in vitro, which could make them useful in an allotransplantation setting. Here, we provide an overview comparing the latest findings regarding the stem characteristics of cells from both the amniotic membrane and amniotic fluid, as well as on the potential utility of these cells for future clinical application in regenerative medicine.

  19. Both Freshly Prepared and Frozen-Stored Amniotic Membrane Cells Express the Complement Inhibitor CD59

    Directory of Open Access Journals (Sweden)

    Ágnes Füst

    2012-01-01

    Full Text Available Amniotic membrane proved to be very effective tool in the treatment of a number of ocular surface diseases. The amniotic membrane, however, has to be stored before its transplantation onto the ocular surface followed by mandatory serologic control in order to exclude the transmission of certain viruses. Therefore it is most important to study if cryopreservation of the membrane affects cell surface expression of the molecules. We measured cell surface expression of CD59, a membrane-bound complement inhibitor on the cells of freshly prepared and cryopreserved amniotic membrane. Cells of amniotic membrane were separated mechanically. Epithelial and mesenchymal cells were identified by the intracellular expression of nanog and the cell surface ICAM1 positivity, respectively. Multicolor flow cytometric immunophenotyping was used for determination of the CD59 expression. CellQuest-Pro software program (Becton Dickinson was used both for measurements and analysis. CD59-positive cells could be detected in all investigated samples and in all investigated cell types, although the expression level of CD59 differed. CD59 was expressed both on freshly prepared and frozen-stored samples. Higher level of CD59 was detected on ICAM1+ mesenchymal cells than on nanog+ epithelial cells. Our findings indicate that amniotic membranes maintain their complement inhibiting capacity after cryopreservation.

  20. Rat amniotic epithelial cells are induced to differentiate into neural-like stem cells in vitro%大鼠羊膜上皮细胞体外诱导可分化为类神经干细胞*★

    Institute of Scientific and Technical Information of China (English)

    郭兵; 许家军

    2013-01-01

      背景:以往研究发现修复神经损伤的细胞来源主要有许旺细胞、嗅鞘细胞、神经干细胞、激活的巨噬细胞等,但这些细胞存在着来源困难、有成瘤性、异体排斥等缺点。而羊膜上皮细胞不存在以上缺陷,且具有多向分化潜能,经诱导后可向心肌样细胞、神经干细胞、肝细胞、成骨和软骨细胞等分化。目的:体外培养大鼠羊膜上皮细胞,并诱导其向类神经干细胞方向分化。方法:取妊娠晚期大鼠,采用胰酶消化法获得羊膜上皮细胞,用无血清的神经干细胞条件培养基对细胞进行诱导分化,并用免疫细胞化学法和RT-PCR对诱导前后的细胞相关标志物进行鉴定。结果与结论:形态学观察结果显示,条件培养基诱导后的羊膜上皮细胞胞体回缩,胞核部分折光性增强,出现类似于树突及轴突样结构,这些突起可交织成网状,细胞贴壁牢靠。免疫细胞化学检测结果显示,与诱导前相比,条件培养基诱导后的羊膜上皮细胞中巢蛋白、胶质纤维酸性蛋白荧光强度较强,而特异性胚胎抗原4、波形蛋白荧光强度较弱。RT-PCR检测显示,与诱导前相比,条件培养基诱导后的羊膜上皮细胞的巢蛋白、胶质纤维酸性蛋白、微管相关蛋白 mRNA 的表达增强,而平滑肌22α、Sox-2及Nanog mRNA的表达减弱。说明体外诱导的大鼠羊膜上皮细胞可成功分化为类神经干细胞。%BACKGROUND:Previous studies have found that Schwann cel s, olfactory ensheathing cel s, neural stem cel s and activated macrophages may repair nerve injuries, but these cel s have some deficiencies, such as source restrictions, tumorigenicity, and al ograft rejection. Amniotic epithelial cel s have no above-mentioned limits, and possess multiple-differentiation potential. After the induction, amniotic epithelial cel s may differentiate into cardiomyocyte-like cel s, neural stem

  1. Active Pedicle Epithelial Flap Transposition Combined with Amniotic Membrane Transplantation for Treatment of Nonhealing Corneal Ulcers

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2016-01-01

    Full Text Available Introduction. The objective was to evaluate the efficacy of active pedicle epithelial flap transposition combined with amniotic membrane transplantation (AMT in treating nonhealing corneal ulcers. Material and Methods. Eleven patients (11 eyes with nonhealing corneal ulcer who underwent the combined surgery were included. Postoperatively, ulcer healing time was detected by corneal fluorescein staining. Visual acuity, intraocular pressure, surgical complications, and recurrence were recorded. Corneal status was inspected by the laser scanning confocal microscopy and anterior segment optical coherence tomography (AS-OCT. Results. The primary diseases were herpes simplex keratitis (8 eyes, corneal graft ulcer (2 eyes, and Stevens-Johnson syndrome (1 eye. All epithelial flaps were intact following surgery, without shedding or displacement. Mean ulcer healing time was 10.8±3.1 days, with a healing rate of 91%. Vision significantly improved from 1.70 to 0.82 log MAR (P=0.001. A significant decrease in inflammatory cell infiltration and corneal stromal edema was revealed 2 months postoperatively by confocal microscopy and AS-OCT. Corneal ulcer recurred in 1 eye. None of the patients developed major complications. Conclusion. Active pedicle epithelial flap transposition combined with AMT is a simple and effective treatment for nonhealing corneal ulcers.

  2. Neurogenic differentiation of amniotic fluid stem cells.

    Science.gov (United States)

    Rosner, M; Mikula, M; Preitschopf, A; Feichtinger, M; Schipany, K; Hengstschläger, M

    2012-05-01

    In 2003, human amniotic fluid has been shown to contain stem cells expressing Oct-4, a marker for pluripotency. This finding initiated a rapidly growing and very promising new stem cell research field. Since then, amniotic fluid stem (AFS) cells have been demonstrated to harbour the potential to differentiate into any of the three germ layers and to form three-dimensional aggregates, so-called embryoid bodies, known as the principal step in the differentiation of pluripotent stem cells. Marker selection and minimal dilution approaches allow the establishment of monoclonal AFS cell lineages with high proliferation potential. AFS cells have a lower risk for tumour development and do not raise the ethical issues of embryonic stem cells. Compared to induced pluripotent stem cells, AFS cells do not need exogenic treatment to induce pluripotency, are chromosomal stable and do not harbour the epigenetic memory and accumulated somatic mutations of specific differentiated source cells. Compared to adult stem cells, AFS can be grown in larger quantities and show higher differentiation potential. Accordingly, in the recent past, AFS became increasingly accepted as an optimal tool for basic research and probably also for specific cell-based therapies. Here, we review the current knowledge on the neurogenic differentiation potential of AFS cells.

  3. Expression of specific proteins of neural cells in rat's cultured amniotic epithelial cells%神经组织细胞特异性蛋白在大鼠羊膜上皮细胞中的表达

    Institute of Scientific and Technical Information of China (English)

    娄小倩; 孟晓婷; 王大伟; 陈东

    2006-01-01

    BACKGROUND: It has been suggested that amniotic epithelial cells (AECs) express almost all of the markers of neural cell and secret a lot of neurotrophic factors and neurotransmitters. If AECs could substitute neural cells, its neurotrophic effect will bring promising prospect in treating neuron injuries and degenerative neural disease.OBJECTIVE: To detect specific proteins of neural cells in rat's cultured AECs.DESIGN: Repeated measurement design.SETTING: Second Clinical Medical College , Jilin University; Department of Histology & Embryology, School of Basic Medical Science, Jilin University.MATERIALS: This experiment was conducted at the Department of Histology & Embryology, School of Basic Medical Science, Jilin University from October 2004 to October 2005. The rat amniotic epithelial tissue was mechanically peeled from an embryonic 12 to 14days Wistar rats. Mouse anti Nestin was purchased from Chemicon Co.,and anti-ChAT rabbit anti-NSE and anti-NT-3 antibodies from Wuhan Boshide Company. Mouse anti-Musashi antibody was donated by Pro.Okano.METHODS: AECs were dissociated and purified from the amnion of pregnancy 12-14 day rats. AECs were treated with trypsin for 5 minutes,then cultured in DMEM/F12 medium at a humidified atmosphere of 0.05 volume fraction of CO2 in air at 37 ℃. Cells were inoculated at a concentration of 5×109 cells/L in culture flask. After 3 days, cells were inoculated onto poly-lysine-treated 35 mm culture Petri dish at a density of 1 × 108 cells/L for immunocytochemically staining. The cells were fixed with 40 g/L paraformaldehyde for 20 minutes. Immunocytochemical staining method was used to detect the expression of microtubule-associated protein-2 (MAP-2),neuron specific enolase(NSE), glial fibrillary acidic protein (GFAP) and choline acetyl transferase(ChAT).MAIN OUTCOME MEASURES: ① Morphological observation of rat'AECs at different culture time. ② Expression of specific protein of neural cells in rat' cultured AECs.RESULTS:

  4. Amniotic Fluid Cells Proliferation in Normal and Down Syndrome Subjects

    Directory of Open Access Journals (Sweden)

    Honcea Adina

    2016-02-01

    Full Text Available Down Syndrome/Trisomy 21 is the most common chromosomal anomaly, and it represents the most common congenital cause of infants’ intellectual disability. Subjects with this syndrome are affected by degenerative processes caused by accelerated aging or unknown ethyologies. In recent years, accumulating evidence revealed increased potential of amniotic fluid-derived stem cells to be used in regenerative therapy. Our aim was to assess differences in immunophenotype, cell morphology and proliferation of amniotic fluid cells from normal and Down Syndrome pregnancies using a quantitative cytometry approach. Results revealed the emergence of a population of small sized cells in Down Syndrome derived amniotic fluid cells that are readily visible upon microscopic inspection. Hence, the fluorescence–based quantitative image cytometry determinations showed a tendency of decrease in both cell and nuclei size in trisomy, with no significant modification in nuclei circularity, as measured following actin cytoskeleton and nuclei labeling. The propensity of Ki67 positive cells was found to be increased in Down Syndrome derived cells (48.92% as compared to normal specimens (28.68%. However, cells in S and G2/M cell cycle phases decreased from 32.91% to 4.49% in diseased cells. Further studies are devoted to understanding the molecular basis of the observed differences in the proliferation ability of Down Syndrome amniotic cells, in order to evaluate the potential therapeutic effect of amniotic fluid stem cells for tissue regeneration in subjects with trisomy and to find correlations between amniotic cells phenotype and patient prognosis.

  5. PRELIMINARY STUDY ON TRANSDIFFERENTIATION OF HUMAN AMNIOTIC EPITHELIAL CELLS AND ITS INTRASLENIC TRANSPLANTATION%人羊膜上皮细胞横向分化及脾内移植的初步研究

    Institute of Scientific and Technical Information of China (English)

    罗宏武; 黄湘俊; 黄飞舟; 刘浔阳

    2011-01-01

    Objective The human amniotic epithelial cells (hAECs) are a recently identified new type of stem cells.It has previously been shown that hAECs express hepatocyte-related gene and possess intracellular features and functional properties of hepatocytes.The hAECs may be a candidate seed cell for liver regeneration.To research the survival and migration in vivo of hAECs via adeno-associated virus-mediated the green fluorescent protein gene (AAV-GFP) transfection, and to explore the expression ofhepatocyte-like function.Methods Thirty nude mice (aging 6-8 weeks, halfmales and females, and weighing 20-22 g) were randomly divided into 3 groups (groups A, B, and C, n=10).The mice of groups A and C were made the 2/3 partial hepatectomy model, and the mice of group B underwent open abdominal operation without hepatectomy.The hAECs transfected by AAV-GFP were transplanted into the inferior end of the spleen in groups A and B with a cell density of 5 × 106/mL and a volume of 0.2 mL; the same volume of normal saline was injected in group C.At 4 hours, the nude mice were sacrificed and the samples of liver, spleen, heart, lung, brain, and kidney were harvested and the general observation, histological observation, and immunofluorescence detection were performed for the hAECs survival, migration, and the functional properties of hepatocytes.Results No tumor tissue was found in liver and spleen of 3 groups, and HE staining showed no tumor cells.There were a lot of roundlike and deeply-stained cells with less cytoplasm and large nucleus in the spleen and the liver of group A; no abnormal cells were found in liver and spleen of groups B and C and in kidney, heart, bung, and brain of groups A, B, and C.The GFP+ cells were detected in the spleen and liver of group A with expressing human albumin, but no GFP+ cells was found in liver and spleen of groups B and C and in heart, kidney, lung, and brain of groups A, B, and C.Conclusion AAV-GFP infected hAECs transplanted into SCID nude

  6. CM-Dil与DAPI联合标记人羊膜上皮细胞的可行性研究%Feasibility of CM-Dil combined with DAPI double-labeling human amniotic epithelial cells

    Institute of Scientific and Technical Information of China (English)

    王黎; 周清; 杨艳; 陈剑; 徐锦堂

    2013-01-01

    目的 建立人羊膜上皮细胞(human amniotic epithelial cell,HAEC)的体外培养方法,并探讨氯甲基苯甲酰胺(CM-Dil)与4’,6-二脒基-2-苯基吲哚(DAPI)对HAEC进行联合标记示踪的可行性.方法 运用酶消化法获取HAEC,收集第2代细胞,流式细胞仪检测CD29、CD34、CD44、CD45和CD105的表达率,SP免疫化学法鉴定HAEC.CM-Dil与DAPI对HAEC进行体外标记,荧光倒置显微镜下观察1d、7d和14 d的标记情况,台盼蓝染色检测细胞活力,CCK-8法检测细胞增殖以明确联合标记对体外培养HAEC生长特性的影响.结果 HAEC贴壁培养后呈扁平多角形,CD29、CD34、CD44、CD45和CD105的阳性率分别为99.64%、2.21%、32.41%、0.84%、36.70%,细胞角蛋白Keratin阳性表达.HAEC在CM-Dil和DAPI联合标记1d后,荧光显微镜下可观察到细胞膜和细胞核分别在不同波长下呈红色和蓝色荧光,标记率为100%;14 d后,经传代培养的HAEC荧光强度与1d时相近,细胞形态无改变.台盼蓝染色显示标记细胞存活率为96.8% ~ 98.9%,CCK-8检测标记细胞的增殖力较未标记组差异无统计学意义(P>0.05).结论 CM-Dil和DAPI可有效标记HAEC,染色简单、无细胞毒性,荧光衰减较慢,可作为HAEC的标记及示踪方法.

  7. 人羊膜上皮细胞移植急性肝损伤小鼠的定量效果分析☆%Quantitative analysis of transplanted effect of human amniotic epithelial cells in mice with acute liver injury

    Institute of Scientific and Technical Information of China (English)

    罗宏武; 寻权; 黄湘俊; 黄飞舟

    2013-01-01

      背景:目前已有较多关于人羊膜上皮细胞移植入动物体内的存活、迁徙及相关特性的初步研究,但其对移植效果的定量分析尚未见报道。目的:对脾内移植传代的人羊膜上皮细胞小鼠血清肝生化功能及人血白蛋白的定量分析。方法:40只裸小鼠随机分为4组,每组各10只。肝叶切除+细胞移植2周组、肝叶切除+细胞移植4周组、肝叶切除+盐水组,行半肝叶切除,肝叶切除+细胞移植组自脾下极移植密度为5×106传代的人羊膜上皮细胞约0.2 mL,分别于移植后2周和4周采血;肝叶切除+盐水组自脾下极注射生理盐水0.2 mL;单纯细胞移植组:不行肝叶切除,自脾下极移植密度为5×106传代的人羊膜上皮细胞约0.2 mL。检测其各组肝脾组织学、形态学的改变及各组血清谷丙转氨酶、谷草转氨酶、人血白蛋白的变化和人血白蛋白表达定量分析。结果与结论:人羊膜上皮细胞移植急性肝损伤小鼠4周后肝脾形态未见明显改变,组织学可检测到特异性细胞,血清谷丙转氨酶、谷草转氨酶、人血白蛋白有明显改善,血清中能检测到人血白蛋白且移植后4周较移植后2周有明显升高。因此,人羊膜上皮细胞移植入肝受损小鼠体内能存活超过4周且仍表达肝细胞样细胞的部分特性及功能,改善小鼠的肝功能,治疗小鼠急性肝损伤。%BACKGROUND:There are many preliminary studies on the survival, metaptosis, and correlation characteristics of human amniotic epithelial cel s after transplanted into the animals, but there are no reports on the quantitative analysis of the transplantation effect. OBJECTIVE:To make quantitative analysis on serum biochemical function of liver and the expression of human albumin in mice received passaged human amniotic epithelial cel s transplantation in spleen. METHODS:Forty nude mice were randomly divided into four groups (n=10

  8. Stem cells from amniotic fluid--Potential for regenerative medicine.

    Science.gov (United States)

    Loukogeorgakis, Stavros P; De Coppi, Paolo

    2016-02-01

    Regenerative medicine has recently been established as an emerging field focussing on repair, replacement or regeneration of cells, tissues and whole organs. The significant recent advances in the field have intensified the search for novel sources of stem cells with potential for therapy. Recently, researchers have identified the amniotic fluid as an untapped source of stem cells that are multipotent, possess immunomodulatory properties and do not have the ethical and legal limitations of embryonic stem cells. Stem cells from the amniotic fluid have been shown to differentiate into cell lineages representing all three embryonic germ layers without generating tumours, which make them an ideal candidate for tissue engineering applications. In addition, their ability to engraft in injured organs and modulate immune and repair responses of host tissues suggest that transplantation of such cells may be useful for the treatment of various degenerative and inflammatory diseases affecting major tissues/organs. This review summarises the evidence on amniotic fluid cells over the past 15 years and explores the potential therapeutic applications of amniotic fluid stem cells and amniotic fluid mesenchymal stem cells.

  9. Transplantation of human limbal cells cultivated on amniotic membrane for reconstruction of rat corneal epithelium after alkaline burn

    Institute of Scientific and Technical Information of China (English)

    SONG E; YANG Wei; CUI Zhi-hua; DONG Yu; SUI Dong-ming; GUAN Xiao-kang; MA Yang-ling

    2005-01-01

    Background The transplantation of limbal epithelial cells cultivated on amniotic membrane is a newly developed treatment for limbal stem cell deficiency. The purpose of our study was to investigate the biological characteristics of limbal epithelial cells and evaluate the effect of transplantation of cultivated human limbal epithelial cells on ocular surface reconstruction in limbal stem cell deficiency rat model. Methods Human limbal cells were isolated and cultivated in vitro. Cytokertins 3, 12, and 19 (K3, K12 and K19) and p63 were detected by immunofluorescent staining or RT-PCR. BrdU labelling test was used to identify the slow cycling cells in the cultures. Limbal stem cell deficiency was established in rat cornea by alkali burn. Two weeks after injury, the rats received transplants of human limbal stem cells cultivated on amniotic membrane carrier. The therapeutic effect was evaluated by slit lamp observation, Hemotoxin and Eosin (HE) staining and immunofluorescent staining.Results On day 7 in primary culture, p63 and K19 were strongly expressed by most cells but only a few cells expressed K3. On days 14 and 21, p63 and K19 were still expressed by a majority of cells, but the expressive intensity of p63 decreased in a number of cells, while the proportion of K3 positive cells increased slightly and some cells coexpressed p63 and K3. RT-PCR showed that gene expression of both p63 and K12 were positive in cultivated limbal cells, but in mature superficial epithelial cells, only K12 was detected. BrdU labelling test showed that most cells were labelled with BrdU after 7 days' labelling and BrdU label retaining cells were observed after chasing for 21 days with BrdU free medium. For in vivo test, slit lamp observation, HE staining and immunofluorescent staining showed that the rats receiving transplant of human limbal stem cells cultivated on amniotic membrane grew reconstructed corneas with intact epithelium, improved transparency and slight or no

  10. Rat full term amniotic fluid harbors highly potent stem cells.

    Science.gov (United States)

    Mun-Fun, Hoo; Ferdaos, Nurfarhana; Hamzah, Siti Nurusaadah; Ridzuan, Noridzzaida; Hisham, Nurul Afiqah; Abdullah, Syahril; Ramasamy, Rajesh; Cheah, Pike See; Thilakavathy, Karrupiah; Yazid, Mohd Nazri; Nordin, Norshariza

    2015-10-01

    Amniotic fluid stem cells (AFSCs) are commonly isolated from mid-term amniotic fluid (AF) of animals and human collected via an invasive technique, amniocentesis. Alternatively, AFSCs could be collected at full-term. However, it is unclear whether AFSCs are present in the AF at full term. Here, we aimed to isolate and characterize stem cells isolated from AF of full term pregnant rats. Three stem cell lines have been established following immuno-selection against the stem cell marker, c-kit. Two of the new lines expressed multiple markers of pluripotency until more than passage 90. Further, they spontaneously differentiated into derivatives of the three primary germ layers through the formation of good quality embryoid bodies (EBs), and can be directly differentiated into neural lineage. Their strong stemness and potent neurogenic properties highlight the presence of highly potent stem cells in AF of full-term pregnancies, which could serve as a potential source of stem cells for regenerative medicine.

  11. Human amniotic fluid: a source of stem cells for possible therapeutic use.

    Science.gov (United States)

    Dziadosz, Margaret; Basch, Ross S; Young, Bruce K

    2016-03-01

    Stem cells are undifferentiated cells with the capacity for differentiation. Amniotic fluid cells have emerged only recently as a possible source of stem cells for clinical purposes. There are no ethical or sampling constraints for the use of amniocentesis as a standard clinical procedure for obtaining an abundant supply of amniotic fluid cells. Amniotic fluid cells of human origin proliferate rapidly and are multipotent with the potential for expansion in vitro to multiple cell lines. Tissue engineering technologies that use amniotic fluid cells are being explored. Amniotic fluid cells may be of clinical benefit for fetal therapies, degenerative disease, and regenerative medicine applications. We present a comprehensive review of the evolution of human amniotic fluid cells as a possible modality for therapeutic use.

  12. Transplante de células-tronco epiteliais límbicas alógenas expandidas ex vivo sobre membrana amniótica: relato de caso Transplantation of allogenic limbal epithelial stem cells cultivated ex vivo on amniotic membrane: case report

    Directory of Open Access Journals (Sweden)

    José Álvaro Pereira Gomes

    2009-04-01

    Full Text Available Paciente apresentou falência de transplante de limbo e conjuntiva de doador vivo alógeno no olho direito após ceratoconjuntivite epidêmica. Após alguns meses, foi submetida a transplante de células-tronco epiteliais límbicas alógenas cultivadas ex vivo sobre membrana amniótica (primeiro caso no Brasil, tendo evoluído com epitelização total da córnea e melhora da acuidade visual. Após o 3º mês da cirurgia, iniciou-se neovascularização superficial periférica com piora da transparência corneana. A visão manteve-se 0,1 após um ano de cirurgia.Case report of a patient who developed failure of an allogenic living related conjunctival limbal transplantation in the right eye after an episode of epidemic keratoconjunctivitis. After a few months, she underwent transplantation of allogenic limbal epithelial stem cells cultivated ex vivo on amniotic membrane (first case in Brazil. The patient evolved with total corneal epithelialization and improvement of the visual acuity. Three months after the surgery, peripheral superficial neovascularization with worsening of the corneal transparency was observed. The vision remained 0.1 after one year of the transplantation.

  13. Amniotic fluid may act as a transporting pathway for signaling molecules and stem cells during the embryonic development of amniotes.

    Science.gov (United States)

    Tong, Xinglong

    2013-11-01

    Amniotic fluid (AF) is formed at the very early stages of pregnancy, and is present throughout embryonic development of amniotes. It is well-known that AF provides a protective sac around the fetus that allows fetal movement and growth, and prevents mechanical and thermal shock. However, a growing body of evidence has shown that AF contains a number of proteins and peptides, including growth factors and cytokines, which potently affect cellular growth and proliferation. In addition, pluripotent stem cells have recently been identified in AF. Herein, this article reviews the biological properties of AF during embryonic development and speculates that AF may act as a transporting pathway for signaling molecules and stem cells during amniote embryonic development. Defining this novel function of AF is potentially significant for further understanding embryonic development and regenerative medicine, preventing genetic diseases, and developing therapeutic options for human malignancies.

  14. Amniotic fluid-derived stem cells in regenerative medicine research.

    Science.gov (United States)

    Joo, Sunyoung; Ko, In Kap; Atala, Anthony; Yoo, James J; Lee, Sang Jin

    2012-02-01

    The stem cells isolated from amniotic fluid present an exciting possible contribution to the field of regenerative medicine and amniotic fluid-derived stem (AFS) cells have significant potential for research and therapeutic applications. AFS cells are multipotent, showing the ability to differentiate into cell types from all three embryonic germ layers. They express both embryonic and adult stem cell markers, expand extensively without feeder cells, double in 36 h, and are not tumorigenic. The AFS cells can be maintained for over 250 population doublings and preserve their telomere length and a normal karyotype. They differentiate easily into specific cell lineages and do not require human embryo tissue for their isolation, thus avoiding the current controversies associated with the use of human embryonic stem (ES) cells. The discovery of the AFS cells has been recent, and a great deal of work remains to be performed on the characterization and use of these cells. This review describes the various differentiated lineages that AFS cells can form and the future of these promising new stem cells in regenerative medicine research.

  15. Peculiarity of Porcine Amniotic Membrane and Its Derived Cells: A Contribution to the Study of Cell Therapy from a Large Animal Model.

    Science.gov (United States)

    Lange-Consiglio, Anna; Corradetti, Bruna; Bertani, Sabrina; Notarstefano, Valentina; Perrini, Claudia; Marini, Maria Giovanna; Arrighi, Silvana; Bosi, Giampaolo; Belloli, Angelo; Pravettoni, Davide; Locatelli, Valentina; Cremonesi, Fausto; Bizzaro, Davide

    2015-12-01

    The aim of this work was to provide, for the first time, a protocol for isolation and characterization of stem cells from porcine amniotic membrane in view of their potential uses in regenerative medicine. From three samples of allanto-amnion recovered at delivery, the amniotic membrane was stripped from overlying allantois and digested with trypsin and collagenase to isolate epithelial (amniotic epithelial cells [AECs]) and mesenchymal cells, respectively. Proliferation, differentiation, and characterization studies by molecular biology and flow cytometry were performed. Histological examination revealed very few mesenchymal cells in the stromal layer, and a cellular yield of AECs of 10 × 10(6)/gram of digested tissue was achieved. AECs readily attached to plastic culture dishes displaying typical cuboidal morphology and, although their proliferative capacity decreased to the fifth passage, AECs showed a mean doubling time of 24.77 ± 6 h and a mean frequency of one fibroblast colony-forming unit (CFU-F) for every 116.75 plated cells. AECs expressed mesenchymal stem cell (MSC) mRNA markers (CD29, CD166, CD90, CD73, CD117) and pluripotent markers (Nanog and Oct 4), whereas they were negative for CD34 and MHCII. Mesodermic, ectodermic, and endodermic differentiation was confirmed by staining and expression of specific markers. We conclude that porcine amniotic membrane can provide an attractive source of stem cells that may be a useful tool for biomedical research.

  16. Coronaviruses in polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Bekker, C P; Voorhout, W F; Horzinek, M C; Van der Ende, A; Strous, G J; Rottier, P J

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. In this paper the interactions of the porcine transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV-A59) with epithelial cells are compared. Porcine (LLC-PK1) and murine (mTAL) epithelial cells were grown on permeable supp

  17. Mammary epithelial cell

    DEFF Research Database (Denmark)

    Kass, Laura; Erler, Janine Terra; Dembo, Micah

    2007-01-01

    a repertoire of transmembrane receptors, of which integrins are the best characterized. Integrins modulate cell fate by reciprocally transducing biochemical and biophysical cues between the cell and the extracellular matrix, facilitating processes such as embryonic branching morphogenesis and lactation...... in the mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal...... responses to regulate processes including branching morphogenesis and alveolar differentiation. Malignant transformation of the breast is also associated with significant matrix remodeling and a progressive stiffening of the stroma that can enhance mammary epithelial cell growth, perturb breast tissue...

  18. Cell-free fetal DNA in amniotic fluid supernatant for prenatal diagnosis.

    Science.gov (United States)

    Soltani, M; Nemati, M; Maralani, M; Estiar, M A; Andalib, S; Fardiazar, Z; Sakhinia, E

    2016-04-30

    In widespread conviction, amniotic fluid is utilized for prenatal diagnosis. Amniotic fluid supernatant is usually discarded, notwithstanding being a good source of fetal DNA. The aim of the present study was to assess cell-free fetal DNA extracted from amniotic fluid supernatant for application in prenatal diagnosis such as gender determination and early diagnosis of β-thalassemia. Samples of amniotic fluid of 70 pregnant women were collected and went through routine tests along with tests for cell-free fetal DNA from amniotic fluid supernatant. The DNA in the amniotic fluid supernatant was extracted and analyzed for gender determination by PCR and Real-time PCR. ARMS-PCR was applied to test early diagnosis of IVS II-I mutation (common β-thalassemia mutation) and E7V mutation for sickle cell anemia using DNA extracted from the amniotic fluid supernatant. Using the cell-free fetal DNA extracted from the amniotic fluid supernatant, the sensitivity of PCR and Real-time PCR for gender detection was compared with the routine cytogenetic method. The fetus tested for sickle cell anemia and β-thalassemia was observed to be healthy but heterozygous for IVS II-I mutation. The findings indicated that cell-free fetal DNA from amniotic fluid supernatant can be a good source of fetal DNA and be used in early prenatal diagnosis since because of its fast and accurate application. Therefore, it would be suggested that the amniotic fluid supernatant's disposal is prevented because if the tests needs to be repeated, cell-free fetal DNA extracted from the amniotic fluid supernatant can be used as an alternative source for prenatal diagnosis.

  19. Engineering Replacement Tissues with Amniotic Stem Cells

    Science.gov (United States)

    2012-10-01

    chondrogenic conditions (2D) formed tight nodes after 14 days. From left to right, nodes stained positive for alcian blue, safranin -O, and collagen II. 3...potential (alcian blue, safranin -O, collagen II staining) and colony forming ability were established (Figure 2). We were able to expand the cell...groups appear to be negative for Safranin -O stain (Figure 16) and weakly positive for alcian blue stain (Figure 17). Upon examination at a higher

  20. Mesenchymal Stem Cells from Wharton's Jelly and Amniotic Fluid.

    Science.gov (United States)

    Joerger-Messerli, Marianne S; Marx, Caterina; Oppliger, Byron; Mueller, Martin; Surbek, Daniel V; Schoeberlein, Andreina

    2016-02-01

    The discovery of mesenchymal stem cells (MSCs) in perinatal sources, such as the amniotic fluid (AF) and the umbilical connective tissue, the so-called Wharton's jelly (WJ), has transformed them into promising stem cell grafts for the application in regenerative medicine. The advantages of AF-MSCs and WJ-MSCs over adult MSCs, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), include their minimally invasive isolation procedure, their more primitive cell character without being tumourigenic, their low immunogenicity and their potential autologous application in congenital disorders and when cryopreserved in adulthood. This chapter gives an overview of the biology of AF-MSCs and WJ-MSCs, and their regenerative potential based on the results of recent preclinical and clinical studies. In the end, open questions concerning the use of WJ-MSCs and AF-MSCs in regenerative medicine will be emphasized.

  1. A comparative study on rabbit bone mesenchymal stem cells and human amniotic epithelial cells transplantation for rabbit limbal stem cell deficiency%兔骨髓间充质干细胞及人羊膜上皮细胞移植治疗兔角膜缘干细胞缺损的研究

    Institute of Scientific and Technical Information of China (English)

    卢建民; 吕秀丽; 马翔

    2011-01-01

    Background Limbal stem cell deficiency usually leads to blindness, and traditional therapy is limited. Recent research demonstrated that bone mesenchymal stem cells ( BMSCs ) and human amniotic epithelial cells(AECs) could differentiate into many kinds of cells including corneal epithelial cells, but the outcome and effect of these cells on corneal stem cell deficiency are still unclear. Objective This study aimed to observe and compare the effects of rabbit BMSCs and human AECs transplantation for rabbit limbal stem cell deficiency. Methods Eighteen clean New Zealand rabbits were randomly divided into the amniotic stroma(AS) group, rabbit BMSCs group and human AECs group with 6 rabbits for each group. Limbal stem cell deficiency models were established by putting a piece of filter paper that had been soaked in a NaOH solution at the corneal center. Rabbit BMSCs were isolated and purified by density gradient centrifugation combined with the attachment culture method, and human AECs were collected by a sequential trypsin digestion technique,and the third generation rabbit BMSCs and the first generation human AECs were identified with RT-PCR. After that,cells were inoculated onto the denuded AS and grafted to the corneal surface of the experimental animals. Twenty-eight days after cell transplantation, the therapeutic effects were evaluated based on the corneal neovascularization and opacity scores. Corneal histopathological examination and immunohistochemistry were performed to evaluate and compare the effectiveness among AS,rabbit BMSCs and human AECs on corneal stem cell deficiency. The procedure complied with the Regulations for the Administration of Affair Concerning Experimental Animals by State Science and Technology Commission. Results The third generation of rabbit BMSCs grew well after 12 hours, and the first generation of human AECs formed a membrane-like monolayer after 48 hours of incubation on AS. Immunohistochemistry staining showed that, 28 days after

  2. A Mini Overview of Isolation, Characterization and Application of Amniotic Fluid Stem Cells.

    Science.gov (United States)

    Gholizadeh-Ghalehaziz, Shiva; Farahzadi, Raheleh; Fathi, Ezzatollah; Pashaiasl, Maryam

    2015-11-01

    Amniotic fluid represents rich sources of stem cells that can be used in treatments for a wide range of diseases. Amniotic fluid- stem cells have properties intermediate between embryonic and adult mesenchymal stem cells which make them particularly attractive for cellular regeneration and tissue engineering. Furthermore, scientists are interested in these cells because they come from the amniotic fluid that is routinely discarded after birth. In this review we give a brief introduction of amniotic fluid followed by a description of the cells present within this fluid and aim to summarize the all existing isolation methods, culturing, characterization and application of these cells. Finally, we elaborate on the differentiation and potential for these cells to promote regeneration of various tissue defects, including fetal tissue, the nervous system, heart, lungs, kidneys, bones, and cartilage in the form of table.

  3. Human umbilical cord mesenchymal stem cell-loaded amniotic membrane for the repair of radial nerve injury

    Institute of Scientific and Technical Information of China (English)

    Zhi Li; Hanjiao Qin; Zishan Feng; Wei Liu; Ye Zhou; Lifeng Yang; Wei Zhao; Youjun Li

    2013-01-01

    In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis, the injured radial nerve was enwrapped with the prepared nerve conduit, which was fixed to the epineurium by sutures, with the cellon the inner surface of the conduit. Simultaneously, a 1.0 mL aliquot of human umbilical cord mesenchymal stem cellsuspension was injected into the distal and proximal ends of the injured radial nerve with 1.0 cm intervals. A total of 1.75 × 107 cells were seeded on the amniotic membrane. In the control group, patients received only neurolysis. At 12 weeks after celltransplantation, more than 80%of patients exhibited obvious improvements in muscular strength, and touch and pain sensations. In contrast, these improve-ments were observed only in 55-65% of control patients. At 8 and 12 weeks, muscular electro-physiological function in the region dominated by the injured radial nerve was significantly better in the transplantation group than the control group. After celltransplantation, no immunological rejec-tions were observed. These findings suggest that human umbilical cord mesenchymal stem cel-loaded amniotic membrane can be used for the repair of radial nerve injury.

  4. The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy.

    Science.gov (United States)

    Kim, Eun Young; Lee, Kyung-Bon; Kim, Min Kyu

    2014-03-01

    The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, including the possibility of noninvasive isolation, multipotency, self-renewal, low immunogenicity, anti-inflammatory and nontumorigenicity properties, and minimal ethical problem. The AF-MSCs and AM-MSCs may be appropriate sources of mesenchymal stem cells for regenerative medicine, as an alternative to embryonic stem cells (ESCs). Recently, regenerative treatments such as tissue engineering and cell transplantation have shown potential in clinical applications for degenerative diseases. Therefore, amnion and MSCs derived from amnion can be applied to cell therapy in neuro-degeneration diseases. In this review, we will describe the potential of AM-MSCs and AF-MSCs, with particular focus on cures for neuronal degenerative diseases.

  5. Amniotic Fluid Analysis

    Science.gov (United States)

    ... page: Was this page helpful? Also known as: Amniocentesis; Amnio; Culture - amniotic fluid; Culture - amniotic cells; Fetal ... Back to top When is it ordered? While amniocentesis is safe and has been performed for many ...

  6. Amniotic Fluid Stem Cells and Their Application in Cell-Based Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2012-01-01

    Full Text Available Advances in stem cell biotechnology hold great promise in the field of tissue engineering andregenerative medicine. Of interest are marrow mesenchymal stem cells (MSCs, embryonic stemcells (ESCs, and induced pluripotent stem cells (iPSCs. In addition, amniotic fluid stem cells (AFSCshave attracted attention as a viable choice following the search for an alternative stem cellsource. Investigators are interested in these cells because they come from the amniotic fluid that isroutinely discarded after birth. There have been multiple investigations conducted worldwide in anattempt to better understand AF-SCs in terms of their potential use in regenerative medicine. In thisreview we give a brief introduction of amniotic fluid followed by a description of the cells presentwithin this fluid. Their history related to stem cell discovery in the amniotic fluid as well as themain characteristics of AF-SCs are discussed. Finally, we elaborate on the potential for these cellsto promote regeneration of various tissue defects, including fetal tissue, the nervous system, heart,lungs, kidneys, bones, and cartilage.

  7. Expression and effect of Notch1 during differentiation of human amniotic epithelial cells into neuron-like cells induced by salvia miltiorrhiza bunge in vitro%复方丹参注射液体外诱导人羊膜上皮细胞分化为神经元样细胞及Notch1表达的变化及意义

    Institute of Scientific and Technical Information of China (English)

    陈旭东; 王晓兰; 华新宇

    2012-01-01

    Objective:To explore the expression and effect of Notchl during differentiation of human amniotic epithelial cells (hAECs) into neurons induced by salvia miltiorrhiza bunge (SMB) in vitro. Methods:hAECs were divided into a SMB pre-treatment group and a control group, and SMB group had 5 subgroups. The morphological changes of hAECs were oberved under an optical microscope and the expressions of NSE, MAP-2 and Notchl were identified with the immunocytochemical method. RT-PCR was further used to detect the expression of multiple genes Oct4, Notchl and NSE. The cell viability was measured with methyl thiazolyl tetrazolium (MTT) methods. Results: Under the convert microscope, it was observed that the shape of hAECs started to change, and there were several axon or dendrite-like processes out from the cell body induced by SMB after 24 h. The NSE and MAP-2 positive straining was the strongest in the group of cells in 1. 5 μl/ml at 48 h, while the Notchl positive straining was less than that in the control group. The cell survival rate of every subgroup was decreased compared with the control group. RT-PCR showed that the expression of Oct4 and Notchl was less than that of the control group, wlile NSE was higher than that of the control group. Conclusion: SMB can induce hAECs into neuron-like cells, and the expression of Notchl decreased in the progress (especially at 1. 5μl/ml-48 h). Its possible mechanism may rely on the inhibition of Notch signal pathway.g%目的:探讨复方丹参注射液体外诱导入羊膜上皮细胞(hAECs)向神经细胞分化中Notch1的表达变化的意义.方法:将hAECs分为丹参诱导组和对照组.丹参注射液组设立5个浓度亚组,诱导hAECs分化为神经细胞,观察不同浓度丹参诱导组间细胞形态变化,应用免疫细胞化学显色鉴定神经元特异性烯醇化酶(NSE)、微管相关蛋白2(MAP-2)、Notch1.RT-PCR进一步鉴定细胞多能基因Oct4、Notch1、神经元标记物NSE,四甲基偶氮唑盐比

  8. Integrins and epithelial cell polarity.

    Science.gov (United States)

    Lee, Jessica L; Streuli, Charles H

    2014-08-01

    Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity.

  9. A new approach to the pathomechanism of amniotic fluid embolism:unknown role of amniotic cells in the induction of disseminated intravascular coagulation

    Institute of Scientific and Technical Information of China (English)

    Mieczyslaw Uszyński; Waldemar Uszyński

    2012-01-01

    There are four concepts (theories) of amniotic fluid embolism (AFE). The aim of the study was to perform their critical review and to popularize a novel integrated concept. We searched Medline (from its inception to 2011), using key words:amniotic fluid embolism, amniotic cells, tissue factor, leukotriene and microparticles. Articles most eligible for the study of etiopathomechanism of AFE were chosen by title and/or abstract contents. The analysis of the publications revealed that:(i) the integrated concept of AFE is an adequate tool to interpret the complication, being particularly useful for taking direct therapeutic decisions; (ii) disseminated intravascular coagulation (DIC) in this complication is induced not by tissue factor (TF) of amniotic origin but by spectacular procoagulant activity of apoptosis-affected amniotic cells. Descriptions of molecular processes were provided. In clonclusioin, there are two independent pathways of AFE-the DIC pathway and the leukotriene pathway. It is not the TF but the apoptosis-affected amniotic cells that are responsible for the process of DIC in AFE. 3. One of the therapeutic conclusions of the new approach to the concept of AFE indicates that attempts to use heparin in AFE are justified (at the onset of the complication).

  10. EFFECT OF HUMAN AMNIOTIC MEMBRANE ON CORNEAL EPITHELIUM AND YAC-1 CELL

    Institute of Scientific and Technical Information of China (English)

    叶纹; 沈玺; 钟一声

    2003-01-01

    Objective To study the effect of the amniotic membrane on enhancing the proliferation of corneal epithelia and YAC 1 cell.MethodsAfter the primary culture of the rabbits corneal epithelia and YAC 1 cells, they were seeded on the upper surface or stromal matrix side of amniotic membrane respectively. The proliferation results were observed by MTT test.ResultsThe amniotic membrane was found significantly enhancing the proliferation of corneal epithelia on the d1,d3,and d5 after culture. The proliferation rate was 28.93%,23.32%,23.41%(P<0.05)respectively, but the d7 proliferation rate was 20.72%(P>0.05).On the d1,d3,d7 after culture,the YAC 1 cells proliferation rate was 34.87%,36.28%,33.86%(P<0.01)respectively.ConclusionOur results demonstrated that the amniotic membrane could enhance the prolifera tion of both corneal epithelia and YAC 1 cells significantly. Although amniotic membrane has been suggested as an ideal material for reconstruction of ocular surface, special attention should be paid during amniotic membrane transplantation for treating ocular surface lesion resulted from epibulbar tumors.

  11. Comparison of Characteristics of Human Amniotic Membrane and Human Adipose Tissue Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Dizaji Asl, Khadijeh; Shafaei, Hajar; Soleimani Rad, Jafar; Nozad, Hojjat Ollah

    2017-01-01

    BACKGROUND Mesenchymal stem cells (MSCs) are ideal candidates for treatment of diseases. Amniotic membranes are an inexpensive source of MSCs (AM-MSC) without any donor site morbidity in cell therapy. Adipose tissue derived stem cells (ASCs) are also suitable cells for cell therapy. There is discrepancy in CD271 expression among MSCs from different sources. In this study, the characteristics of AM-MSC and ASCs and CD271 expression were compared. METHODS Adult adipose tissue samples were obtained from patients undergoing elective surgical procedure, and samples of amniotic membrane were collected immediately after caesarean operation. After isolation and expansion of MSCs, the proliferation rate and viability of cells were evaluated through calculating DT and MTT assay. Expression of routine mesenchymal specific surface antigens of MSCs and CD271 was evaluated by flow cytometry for both types of cells. RESULTS The growth rate and viability of the MSCs from the amniotic membrane was significantly higher compared with the ASCs. The low expression of CD14 and CD45 indicated that AM-MSC and ASCs are non hematopoietic cells, and both cell types expressed high percentages of CD44, CD105. The results revealed that AM-MSC and ASCs expressed no CD271 on their surfaces. CONCLUSION This study showed that amniotic membrane is a suitable cell source for cell therapy, and CD271 is a negative marker for MSCs identification from amniotic membrane and adipose tissue.

  12. Stem Cells in Amniotic Fluid - What are the Next Steps to Do?

    Directory of Open Access Journals (Sweden)

    Hengstschläger M

    2005-01-01

    Full Text Available It is the hope of patients and investigators that in future the characterisation and isolation of human stem cells will allow the establishment of new therapeutic concepts for a wide variety of diseases. Recently, we found a new source for stem cells. Human amniotic fluid contains cells, which express Oct-4, a marker for pluripotent stem cells. In addition, we described amniotic fluid cells expressing markers for neuronal stem cells. The latter harbour the potential to differentiate into neurogenic cells. This opened a new field in stem cell research. In this review I want to summarise the current knowledge about amniotic fluid cells focusing on the open questions, which need to be investigated in future.

  13. Satellited 4q identified in amniotic fluid cells

    Energy Technology Data Exchange (ETDEWEB)

    Miller, I.; Hsieh, C.L.; Songster, G. [Stanford Univ. Medical Center, Stanford, CA (United States)] [and others

    1995-01-16

    Extra material was identified on the distal long arm of a chromosome 4 in an amniotic fluid specimen sampled at 16.6 weeks of gestational age. There was no visible loss of material from chromosome 4, and no evidence for a balanced rearrangement. The primary counseling issue in this case was advanced maternal age. Ultrasound findings were normal, and family history was unremarkable. The identical 4qs chromosome was observed in cells from a paternal peripheral blood specimen and appeared to be an unbalanced rearrangement. This extra material was NOR positive in lymphocytes from the father, but was negative in the fetal amniocytes. Father`s relatives were studied to verify the familial origin of this anomaly. In situ hybridization with both exon and intron sequences of ribosomal DNA demonstrated that ribosomal DNA is present at the terminus of the 4qs chromosome in the fetus, father, and paternal grandmother. This satellited 4q might have been derived from a translocation event that resulted in very little or no loss from the 4q and no specific phenotype. This derivative chromosome 4 has been inherited through at least 3 generations of phenotypically normal individuals. 8 refs., 3 figs.

  14. Amniotic fluid stem cells from EGFP transgenic mice attenuate hyperoxia-induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Shih-Tao Wen

    Full Text Available High concentrations of oxygen aggravate the severity of lung injury in patients requiring mechanical ventilation. Although mesenchymal stem cells have been shown to effectively attenuate various injured tissues, there is limited information regarding a role for amniotic fluid stem cells (AFSCs in treating acute lung injury. We hypothesized that intravenous delivery of AFSCs would attenuate lung injury in an experimental model of hyperoxia-induced lung injury. AFSCs were isolated from EGFP transgenic mice. The in vitro differentiation, surface markers, and migration of the AFSCs were assessed by specific staining, flow cytometry, and a co-culture system, respectively. The in vivo therapeutic potential of AFSCs was evaluated in a model of acute hyperoxia-induced lung injury in mice. The administration of AFSCs significantly reduced the hyperoxia-induced pulmonary inflammation, as reflected by significant reductions in lung wet/dry ratio, neutrophil counts, and the level of apoptosis, as well as reducing the levels of inflammatory cytokine (IL-1β, IL-6, and TNF-α and early-stage fibrosis in lung tissues. Moreover, EGFP-expressing AFSCs were detected and engrafted into a peripheral lung epithelial cell lineage by fluorescence microscopy and DAPI stain. Intravenous administration of AFSCs may offer a new therapeutic strategy for acute lung injury (ALI, for which efficient treatments are currently unavailable.

  15. AMNIOTIC FLUID STEM CELLS: THE KNOWN, THE UNKNOWN AND POTENTIAL REGENERATIVE MEDICINE APPLICATIONS.

    Science.gov (United States)

    Loukogeorgakis, Stavros P; De Coppi, Paolo

    2016-12-23

    The amniotic fluid has been identified as an untapped source of cells with broad potential, which possess immunomodulatory properties and don't have the ethical and legal limitations of embryonic stem cells. CD117(c-Kit)+ cells selected from amniotic fluid have been shown to differentiate into cell lineages representing all three embryonic germ layers without generating tumours, making them ideal candidates for regenerative medicine applications. Moreover, their ability to engraft in injured organs and modulate immune and repair responses of host tissues, suggest that transplantation of such cells may be useful for the treatment of various degenerative and inflammatory diseases. Although significant questions remain regarding the origin, heterogeneous phenotype and expansion potential of amniotic fluid stem cells, evidence to date supports their potential role as a valuable stem cell source for the field of regenerative medicine. This article is protected by copyright. All rights reserved.

  16. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    NARCIS (Netherlands)

    Hartmann-Fritsch, Fabienne; Hosper, Nynke; Luginbuehl, Joachim; Biedermann, Thomas; Reichmann, Ernst; Meuli, Martin

    2013-01-01

    Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis formati

  17. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Hiroaki [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Yoshida, Toshiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nogami, Makiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Orthopedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Koike, Chika; Okabe, Motonori [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Noto, Zenko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Arai, Naoya; Noguchi, Makoto [Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nikaido, Toshio, E-mail: tnikaido@med.u-toyama.ac.jp [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan)

    2012-12-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAM{alpha} cells and induced to osteogenic status-their in vivo osteogenesis was subsequently investigated in rats. It was found that HAM{alpha} cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAM{alpha} cells. The expression of osteocalcin mRNA was increased in HAM{alpha} cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAM{alpha} cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: Black-Right-Pointing-Pointer Human amniotic mesenchymal cells include cells (HAM{alpha} cells) that have the properties of MSCs. Black-Right-Pointing-Pointer HAM{alpha} cells have excellent osteogenic differentiation potential. Black-Right-Pointing-Pointer Osteogenic differentiation ability of HAM{alpha} was amplified by calcium phosphate scaffolds. Black-Right-Pointing-Pointer HAM{alpha} cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  18. Osteogenic differentiation of amniotic fluid mesenchymal stromal cells and their bone regeneration potential.

    Science.gov (United States)

    Pipino, Caterina; Pandolfi, Assunta

    2015-05-26

    In orthopedics, tissue engineering approach using stem cells is a valid line of treatment for patients with bone defects. In this context, mesenchymal stromal cells of various origins have been extensively studied and continue to be a matter of debate. Although mesenchymal stromal cells from bone marrow are already clinically applied, recent evidence suggests that one may use mesenchymal stromal cells from extra-embryonic tissues, such as amniotic fluid, as an innovative and advantageous resource for bone regeneration. The use of cells from amniotic fluid does not raise ethical problems and provides a sufficient number of cells without invasive procedures. Furthermore, they do not develop into teratomas when transplanted, a consequence observed with pluripotent stem cells. In addition, their multipotent differentiation ability, low immunogenicity, and anti-inflammatory properties make them ideal candidates for bone regenerative medicine. We here present an overview of the features of amniotic fluid mesenchymal stromal cells and their potential in the osteogenic differentiation process. We have examined the papers actually available on this regard, with particular interest in the strategies applied to improve in vitro osteogenesis. Importantly, a detailed understanding of the behavior of amniotic fluid mesenchymal stromal cells and their osteogenic ability is desirable considering a feasible application in bone regenerative medicine.

  19. Osteogenic differentiation of amniotic fluid mesenchymalstromal cells and their bone regeneration potential

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    In orthopedics, tissue engineering approach usingstem cells is a valid line of treatment for patients withbone defects. In this context, mesenchymal stromalcells of various origins have been extensively studiedand continue to be a matter of debate. Although mesenchymalstromal cells from bone marrow are alreadyclinically applied, recent evidence suggests that one mayuse mesenchymal stromal cells from extra-embryonictissues, such as amniotic fluid, as an innovative andadvantageous resource for bone regeneration. Theuse of cells from amniotic fluid does not raise ethicalproblems and provides a sufficientnumber of cellswithout invasive procedures. Furthermore, they donot develop into teratomas when transplanted, aconsequence observed with pluripotent stem cells.In addition, their multipotent differentiation ability,low immunogenicity, and anti-inflammatory propertiesmake them ideal candidates for bone regenerativemedicine. We here present an overview of the featuresof amniotic fluid mesenchymal stromal cells and theirpotential in the osteogenic differentiation process.We have examined the papers actually availableonthis regard, with particular interest in the strategiesapplied to improve in vitro osteogenesis. Importantly, adetailed understanding of the behavior of amniotic fluidmesenchymal stromal cells and their osteogenic abilityis desirable considering a feasible application in boneregenerative medicine.

  20. Mesenchymal stem cells from amnion and amniotic fluid in the bovine.

    Science.gov (United States)

    Corradetti, B; Meucci, A; Bizzaro, D; Cremonesi, F; Lange Consiglio, A

    2013-04-01

    Amnion and amniotic fluid (AF) are noncontroversial and inexhaustible sources of mesenchymal stem cells (MSCs) that can be harvested noninvasively at low cost. As in humans, also in veterinary field, presumptive stem cells derived from these tissues reveal as promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. The aim of this work is to obtain and characterize, for the first time in bovine species, presumptive MSCs from the epithelial portion of the amnion (AECs) and from the AF (AF-MSCs) to be used for clinical applications. AECs display a polygonal morphology, whereas AF-MSCs exhibit a fibroblastic-like morphology only starting from the second passage, being heterogeneous during the primary culture. For both lines, the proliferative ability has been found constant over the ten passages studied and AECs show a statistically lower (P<0.05) doubling time with respect to AF-MSCs. AECs express MSC-specific markers (ITGB1 (CD29), CD44, ALCAM (CD166), ENG (CD105), and NT5E (CD73)) from P1 to P3; in AF-MSCs, only ITGB1, CD44, and ALCAM mRNAs are detected; NT5E is expressed from P2 and ENG has not been found at any passage. AF-MSCs and AECs are positive for the pluripotent markers (POU5F1 (OCT4) and MYC (c-Myc)) and lack of the hematopoietic markers. When appropriately induced, both cell lines are capable of differentiating into ectodermal and mesodermal lineages. This study contributes to reinforce the emerging importance of these cells as ideal tools in veterinary medicine. A deeper evaluation of the immunological properties needs to be performed in order to better understand their role in cellular therapy.

  1. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis.

    Directory of Open Access Journals (Sweden)

    Laura Perin

    Full Text Available Acute Tubular Necrosis (ATN causes severe damage to the kidney epithelial tubular cells and is often associated with severe renal dysfunction. Stem-cell based therapies may provide alternative approaches to treating of ATN. We have previously shown that clonal c-kit(pos stem cells, derived from human amniotic fluid (hAFSC can be induced to a renal fate in an ex-vivo system. Herein, we show for the first time the successful therapeutic application of hAFSC in a mouse model with glycerol-induced rhabdomyolysis and ATN. When injected into the damaged kidney, luciferase-labeled hAFSC can be tracked using bioluminescence. Moreover, we show that hAFSC provide a protective effect, ameliorating ATN in the acute injury phase as reflected by decreased creatinine and BUN blood levels and by a decrease in the number of damaged tubules and apoptosis therein, as well as by promoting proliferation of tubular epithelial cells. We show significant immunomodulatory effects of hAFSC, over the course of ATN. We therefore speculate that AFSC could represent a novel source of stem cells that may function to modulate the kidney immune milieu in renal failure caused by ATN.

  2. Conditioned Medium From Human Amniotic Mesenchymal Stromal Cells Limits Infarct Size and Enhances Angiogenesis

    NARCIS (Netherlands)

    Danieli, Patrizia; Malpasso, Giuseppe; Cluffreda, Maria Chiara; Cervio, Elisabetta; Calvillo, Laura; Copes, Francesco; Pisano, Federica; Mura, Manuela; Kleijn, Lennaert; de Boer, Rudolf A.; Viarengo, Gianluca; Rosti, Vittorio; Spinillo, Arsenio; Roccio, Marianna; Gnecchi, Massimiliano

    2015-01-01

    The paracrine properties of human amniotic membrane-derived mesenchymal stromal cells (hAMCs) have not been fully elucidated. The goal of the present study was to elucidate whether hAMCs can exert beneficial paracrine effects on infarcted rat hearts, in particular through cardioprotection and angiog

  3. Senescence of primary amniotic cells via oxidative DNA damage.

    Directory of Open Access Journals (Sweden)

    Ramkumar Menon

    Full Text Available OBJECTIVE: Oxidative stress is a postulated etiology of spontaneous preterm birth (PTB and preterm prelabor rupture of the membranes (pPROM; however, the precise mechanistic role of reactive oxygen species (ROS in these complications is unclear. The objective of this study is to examine impact of a water soluble cigarette smoke extract (wsCSE, a predicted cause of pregnancy complications, on human amnion epithelial cells. METHODS: Amnion cells isolated from fetal membranes were exposed to wsCSE prepared in cell culture medium and changes in ROS levels, DNA base and strand damage was determined by using 2'7'-dichlorodihydro-fluorescein and comet assays as well as Fragment Length Analysis using Repair Enzymes (FLARE assays, respectively. Western blot analyses were used to determine the changes in mass and post-translational modification of apoptosis signal-regulating kinase (ASK1, phospho-p38 (P-p38 MAPK, and p19(arf. Expression of senescence-associated β-galectosidase (SAβ-gal was used to confirm cell ageing in situ. RESULTS: ROS levels in wsCSE-exposed amnion cells increased rapidly (within 2 min and significantly (p<0.01 at all-time points, and DNA strand and base damage was evidenced by comet and FLARE assays. Activation of ASK1, P-p38 MAPK and p19(Arf correlated with percentage of SAβ-gal expressing cells after wsCSE treatment. The antioxidant N-acetyl-L-cysteine (NAC prevented ROS-induced DNA damage and phosphorylation of p38 MAPK, whereas activation of ASK1 and increased expression of p19(Arf were not significantly affected by NAC. CONCLUSIONS: The findings support the hypothesis that compounds in wsCSE induces amnion cell senescence via a mechanism involving ROS and DNA damage. Both pathways may contribute to PTB and pPROM. Our results imply that antioxidant interventions that control ROS may interrupt pathways leading to pPROM and other causes of PTB.

  4. Applications of Amniotic Membrane and Fluid in Stem Cell Biology and Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Kerry Rennie

    2012-01-01

    Full Text Available The amniotic membrane (AM and amniotic fluid (AF have a long history of use in surgical and prenatal diagnostic applications, respectively. In addition, the discovery of cell populations in AM and AF which are widely accessible, nontumorigenic and capable of differentiating into a variety of cell types has stimulated a flurry of research aimed at characterizing the cells and evaluating their potential utility in regenerative medicine. While a major focus of research has been the use of amniotic membrane and fluid in tissue engineering and cell replacement, AM- and AF-derived cells may also have capabilities in protecting and stimulating the repair of injured tissues via paracrine actions, and acting as vectors for biodelivery of exogenous factors to treat injury and diseases. Much progress has been made since the discovery of AM and AF cells with stem cell characteristics nearly a decade ago, but there remain a number of problematic issues stemming from the inherent heterogeneity of these cells as well as inconsistencies in isolation and culturing methods which must be addressed to advance the field towards the development of cell-based therapies. Here, we provide an overview of the recent progress and future perspectives in the use of AM- and AF-derived cells for therapeutic applications.

  5. Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Liru Li

    Full Text Available The mesenchymal stem cells (MSCs derived from amniotic fluid (AF have become an attractive stem cells source for cell-based therapy because they can be harvested at low cost and avoid ethical disputes. In human research, stem cells derived from AF gradually became a hot research direction for disease treatment, specifically for their plasticity, their reduced immunogenicity and their tumor tropism regardless of the tumor size, location and source. Our work aimed to obtain and characterize human amniotic fluid mesenchymal stem cells (AFMSCs and detect their ovarian cancer tropsim in nude mice model. Ten milliliters of twenty independent amniotic fluid samples were collected from 16-20 week pregnant women who underwent amniocentesis for fetal genetic determination in routine prenatal diagnosis in the first affiliated hospital of Harbin medical university. We successfully isolated the AFMSCs from thirteen of twenty amniotic fluid samples. AFMSCs presented a fibroblastic-like morphology during the culture. Flow cytometry analyses showed that the cells were positive for specific stem cell markers CD73,CD90, CD105, CD166 and HLA-ABC (MHC class I, but negative for CD 45,CD40, CD34, CD14 and HLA-DR (MHC class II. RT-PCR results showed that the AFMSCs expressed stem cell marker OCT4. AFMSCs could differentiate into bone cells, fat cells and chondrocytes under certain conditions. AFMSCs had the high motility to migrate to ovarian cancer site but didn't have the tumorigenicity. This study enhances the possibility of AFMSCs as drug carrier in human cell-based therapy. Meanwhile, the research emphasis in the future can also put in targeting therapy of ovarian cancer.

  6. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    OpenAIRE

    2013-01-01

    PURPOSE: Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis formation and stratification in a humanized animal model. METHODS: Dermo-epidermal skin grafts with either amniocytes or with fibroblasts in the dermis were compared in a rat model. Full-thicknes...

  7. Reprogramming of mouse amniotic fluid cells using a PiggyBac transposon system

    Directory of Open Access Journals (Sweden)

    E. Bertin

    2015-11-01

    Full Text Available Induced pluripotent stem (iPS cells are generated from mouse and human somatic cells by forced expression of defined transcription factors using different methods. Amniotic fluid (AF cells are easy to obtain from routinely scheduled procedures for prenatal diagnosis and iPS cells have been generated from human AF. Here, we generated iPS cells from mouse AF cells, using a non-viral-based approach constituted by the PiggyBac (PB transposon system. All iPS cell lines obtained exhibited characteristics of pluripotent cells, including the ability to differentiate toward derivatives of all three germ layers in vitro and in vivo.

  8. Cat amniotic membrane multipotent cells are nontumorigenic and are safe for use in cell transplantation

    Directory of Open Access Journals (Sweden)

    Vidane AS

    2014-08-01

    Full Text Available Atanasio S Vidane,1 Aline F Souza,1 Rafael V Sampaio,1 Fabiana F Bressan,2 Naira C Pieri,1 Daniele S Martins,2 Flavio V Meirelles,2 Maria A Miglino,1 Carlos E Ambrósio2 1Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; 2Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, São Paulo, Brazil Abstract: Amnion-derived mesenchymal stem cells (AMSCs are multipotent cells with an enhanced ability to differentiate into multiple lineages. AMSCs can be acquired through noninvasive methods, and therefore are exempt from the typical ethical issues surrounding stem cell use. The objective of this study was to isolate and characterize AMSCs from a cat amniotic membrane for future application in regenerative medicine. The cat AMSCs were harvested after mechanical and enzymatic digestion of amnion. In culture medium, the cat AMSCs adhered to a plastic culture dish and displayed a fibroblast-like morphology. Immunophenotyping assays were positive for the mesenchymal stem cell-specific markers CD73 and CD90 but not the hematopoietic markers CD34, CD45, and CD79. Under appropriate conditions, the cat AMSCs differentiated into osteogenic, chondrogenic, and adipogenic cell lineages. One advantage of cat AMSCs was nonteratogenicity, assessed 4 weeks post injection of undifferentiated AMSCs into immunodeficient mice. These findings suggest that cat amniotic membranes may be an important and useful source of mesenchymal stem cells for clinical applications, especially for cell or tissue replacement in chronic and degenerative diseases. Keywords: amnion, cats, cell differentiation, fetal membranes, mesenchymal cells

  9. [Human amniotic epithelium (HAE) as a possible source of stem cells (SC)].

    Science.gov (United States)

    García-López, Guadalupe; García-Castro, Irma Lydia; Avila-González, Daniela; Molina-Hernández, Anayansi; Flores-Herrera, Héctor; Merchant-Larios, Horacio; Díaz-Martínez, Fabián

    2015-01-01

    There have been major recent advances in the field of developmental biology due to the investigation on stem cells (SC). Stem cells are characterized by their capacity of auto-renewal and differentiation to different cellular phenotypes. Based on the developmental stage, they can be classified into two different types: embryonic SCs and adult SCs. It has been widely reported that several problems need to be resolved before their possible clinical applications. As a result, fetal membranes have been suggested as an alternative source of SCs. In the human amniotic epithelium, the presence of markers of pluripotent SC´s has been reported, and its capacity as a feeder layer for expansion of different SC types. Also, fetal membranes are a discarded product after delivery, and thus there are not any ethical issues related to its use. In conclusion, the human amniotic epithelium can be a strong candidate for regenerative medicine.

  10. Amniotic fluid-borne hepatocyte growth factor protects rat pups against experimental necrotizing enterocolitis.

    Science.gov (United States)

    Jain, Sunil K; Baggerman, Eric W; Mohankumar, Krishnan; Namachivayam, Kopperuncholan; Jagadeeswaran, Ramasamy; Reyes, Victor E; Maheshwari, Akhil

    2014-03-01

    Fetal swallowing of amniotic fluid, which contains numerous cytokines and growth factors, plays a key role in gut mucosal development. Preterm birth interrupts this exposure to amniotic fluid-borne growth factors, possibly contributing to the increased risk of necrotizing enterocolitis (NEC) in premature infants. We hypothesized that supplementation of formula feeds with amniotic fluid can provide amniotic fluid-borne growth factors and prevent experimental NEC in rat pups. We compared NEC-like injury in rat pups fed with infant formula vs. formula supplemented either with 30% amniotic fluid or recombinant hepatocyte growth factor (HGF). Cytokines/growth factors in amniotic fluid were measured by immunoassays. Amniotic fluid and HGF effects on enterocyte migration, proliferation, and survival were measured in cultured IEC6 intestinal epithelial cells. Finally, we used an antibody array to investigate receptor tyrosine kinase (RTK) activation and immunoblots to measure phosphoinositide 3-kinase (PI3K) signaling. Amniotic fluid supplementation in oral feeds protected rat pups against NEC-like injury. HGF was the most abundant growth factor in rat amniotic fluid in our panel of analytes. Amniotic fluid increased cell migration, proliferation, and cell survival in vitro. These effects were reproduced by HGF and blocked by anti-HGF antibody or a PI3K inhibitor. HGF transactivated several RTKs in IEC6 cells, indicating that its effects extended to multiple signaling pathways. Finally, similar to amniotic fluid, recombinant HGF also reduced the frequency and severity of NEC-like injury in rat pups. Amniotic fluid supplementation protects rat pups against experimental NEC, which is mediated, at least in part, by HGF.

  11. Human amniotic membrane-derived stromal cells (hAMSC) interact depending on breast cancer cell type through secreted molecules.

    Science.gov (United States)

    Kim, Sun-Hee; Bang, So Hee; Kang, So Yeong; Park, Ki Dae; Eom, Jun Ho; Oh, Il Ung; Yoo, Si Hyung; Kim, Chan-Wha; Baek, Sun Young

    2015-02-01

    Human amniotic membrane-derived stromal cells (hAMSC) are candidates for cell-based therapies. We examined the characteristics of hAMSC including the interaction between hAMSC and breast cancer cells, MCF-7, and MDA-MB-231. Human amniotic membrane-derived stromal cells showed typical MSC properties, including fibroblast-like morphology, surface antigen expression, and mesodermal differentiation. To investigate cell-cell interaction via secreted molecules, we cultured breast cancer cells in hAMSC-conditioned medium (hAMSC-CM) and analyzed their proliferation, migration, and secretome profiles. MCF-7 and MDA-MB-231 cells exposed to hAMSC-CM showed increased proliferation and migration. However, in hAMSC-CM, MCF-7 cells proliferated significantly faster than MDA-MB-231 cells. When cultured in hAMSC-CM, MCF-7 cells migrated faster than MDA-MB-231 cells. Two cell types showed different profiles of secreted factors. MCF-7 cells expressed much amounts of IL-8, GRO, and MCP-1 in hAMSC-CM. Human amniotic membrane-derived stromal cells interact with breast cancer cells through secreted molecules. Factors secreted by hAMSCs promote the proliferation and migration of MCF-7 breast cancer cells. For much safe cell-based therapies using hAMSC, it is necessary to study carefully about interaction between hAMSC and cancer cells.

  12. Amniotic fluid

    Science.gov (United States)

    ... carefully. Removing a sample of the fluid through amniocentesis can provide information about the sex, health, and development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Cunningham FG, ...

  13. Isolation of c-Kit+ human amniotic fluid stem cells from second trimester.

    Science.gov (United States)

    Pozzobon, Michela; Piccoli, Martina; Schiavo, Andrea Alex; Atala, Anthony; De Coppi, Paolo

    2013-01-01

    Amniotic fluid-derived stem (AFS) cells have been described as an appealing source of stem cells because of their (1) fetal, non-embryonic origin, (2) easy access during pregnancy overcoming the ethical issues related both to the use of human embryonic cells and to the postnatal tissue biopsy with donor site morbidity, and (3) their undemanding ability to be expanded. We and others have demonstrated the broad differentiation potential and here we describe the established protocol we developed to obtain c-Kit+ human AFS cells, starting from second trimester amniocentesis samples.

  14. Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Ivana Antonucci

    2016-04-01

    Full Text Available In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers “in vitro”. In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.

  15. Amniotic mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities.

    Directory of Open Access Journals (Sweden)

    Sung-Whan Kim

    Full Text Available Although human amniotic mesenchymal stem cells (AMMs have been recognised as a promising stem cell resource, their therapeutic potential for wound healing has not been widely investigated. In this study, we evaluated the therapeutic potential of AMMs using a diabetic mouse wound model. Quantitative real-time PCR and ELISA results revealed that the angiogenic factors, IGF-1, EGF and IL-8 were markedly upregulated in AMMs when compared with adipose-derived mesenchymal stem cells (ADMs and dermal fibroblasts. In vitro scratch wound assays also showed that AMM-derived conditioned media (CM significantly accelerated wound closure. Diabetic mice were generated using streptozotocin and wounds were created by skin excision, followed by AMM transplantation. AMM transplantation significantly promoted wound healing and increased re-epithelialization and cellularity. Notably, transplanted AMMs exhibited high engraftment rates and expressed keratinocyte-specific proteins and cytokeratin in the wound area, indicating a direct contribution to cutaneous closure. Taken together, these data suggest that AMMs possess considerable therapeutic potential for chronic wounds through the secretion of angiogenic factors and enhanced engraftment/differentiation capabilities.

  16. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency.

    Science.gov (United States)

    Utheim, Tor Paaske; Utheim, Øygunn Aass; Khan, Qalb-E-Saleem; Sehic, Amer

    2016-03-01

    The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC), which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD). Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS) represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells.

  17. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency

    Directory of Open Access Journals (Sweden)

    Tor Paaske Utheim

    2016-03-01

    Full Text Available The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC, which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD. Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells.

  18. Upregulated expression of Ezrin and invasive phenotype in malignantly transformed esophageal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-Ying Shen; Li-Yan Xu; Ming-Hua Chen; En-Min Li; Jin-Tao Li; Xian-Ying Wu; Yi Zeng

    2003-01-01

    AIM: To investigate the correlation between ezrin expression and invasive phenotype formation in malignantly transformed esophageal epithelial cells. METHODS: The experimental cell line employed in the present study was originated form the progressive induction of a human embryonic esophageal epithelial cell line (SHEE)by the E6E7 genes of human papillomavirus (HPV) type 18.The cells at the 35th passage after induction called SHEEIMM were in a state of immortalized phase and used as the control,while that of the 85th passage denominated as SHEEMT represented the status of cells that were malignantly transformed. The expression changes of ezrin and its mRNA in both cell passages were respectively analyzed by RT-PCR and Western blot. Invasive phenotype was assessed in vivo by inoculating these cells into the severe combined immunodeficient (SCID) mice via subcutaneous and intraperitoneal injection, and in vitro by inoculating them on the surface of the amnion membranes, which then was determined by light microscopy and scanning electron microscopy. RESULTS: Upregulated expression of ezrin protein and its mRNA was observed in SHEEMT compared with that in SHEEIMM cells. The SHEEMT cells inoculated in SCID mice were observed forming tumor masses in both visceral organs and soft tissues in a period of 40 days with a special propensity to invading mesentery and pancreas, but did not exhibit hepatic metastases. Pathologically, these tumor cells harboring larger nucleus, nucleolus and less cytoplasm could infiltrate and destroy adjacent tissues. In the in vitro study,the inoculated SHEEMT cells could grow in cluster on the amniotic epithelial surface and intrude into the amniotic stroma. In contrast, unrestricted growth and invasiveness were not found in SHEEIMM cells in both in vivo and in vitroexperiment. CONCLUSION: The upregulated ezrin expression is one of the important factors that are possibly associated with the invasive phenotype formation in malignantly

  19. Human Amniotic Fluid Cells Form Functional Gap Junctions with Cortical Cells

    Directory of Open Access Journals (Sweden)

    Anna Jezierski

    2012-01-01

    Full Text Available The usage of stem cells is a promising strategy for the repair of damaged tissue in the injured brain. Recently, amniotic fluid (AF cells have received a lot of attention as an alternative source of stem cells for cell-based therapies. However, the success of this approach relies significantly on proper interactions between graft and host tissue. In particular, the reestablishment of functional brain networks requires formation of gap junctions, as a key step to provide sufficient intercellular communication. In this study, we show that AF cells express high levels of CX43 (GJA1 and are able to establish functional gap junctions with cortical cultures. Furthermore, we report an induction of Cx43 expression in astrocytes following injury to the mouse motor cortex and demonstrate for the first time CX43 expression at the interface between implanted AF cells and host brain cells. These findings suggest that CX43-mediated intercellular communication between AF cells and cortical astrocytes may contribute to the reconstruction of damaged tissue by mediating modulatory, homeostatic, and protective factors in the injured brain and hence warrants further investigation.

  20. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  1. A Study on the Preservation of Fresh Amniotic Membrane

    Institute of Scientific and Technical Information of China (English)

    Liying Xu; Shiyou Zhou; Jiaqi Chen; Longshan Chen; Mei Zhang

    2001-01-01

    Objective: To establish the standard preservation methods of fresh amniotic membranefor clinical use.Methods: Human placentas were collected aseptically from selective caesarean sectionsin normal women in time. Amniotic or placental membrane were peeled and preserved inN.S, P.B. SorDMEM at4°C or cultured in DMEM at 37°C, 5% CO2. Trypan-bluestaining, light and electronic microscopy were observed every six hours after preservation.Results: Seventy percent of amniotic epithelial cells survived after preservation in N. Sfor 6 hours, PBS 12 hours, DMEM 24 hours and 1 week in tissue culture. The amountof living epithelial cells maintained in placental membrane preservation was less thanthat in amniotic membrane preservation at the same time (t-test, P < 0. 01) . Nocollagen degeneration was found during preservation.Conclusion: Preservative solution and time will affect the maintenance time of freshamniotic membrane greatly. Fresh amniotic membrane should be preserved within 6hours in N.S, 12 hours in P.B.S, 24 hours in DMEM at 4 °C and 1 week in tissteculture for clinical use.

  2. AFM studies of cellular mechanics during osteogenic differentiation of human amniotic fluid-derived stem cells.

    Science.gov (United States)

    Chen, Qian; Xiao, Pan; Chen, Jia-Nan; Cai, Ji-Ye; Cai, Xiao-Fang; Ding, Hui; Pan, Yun-Long

    2010-01-01

    Amniotic fluid-derived stem cells (AFSCs) are becoming an important source of cells for regenerative medicine given with apparent advantages of accessibility, renewal capacity and multipotentiality. In this study, the mechanical properties of human amniotic fluid-derived stem cells (hAFSCs), such as the average Young's modulus, were determined by atomic force microscopy (3.97 ± 0.53 kPa for hAFSCs vs. 1.52 ± 0.63 kPa for fully differentiated osteoblasts). These differences in cell elasticity result primarily from differential actin cytoskeleton organization in these two cell types. Furthermore, ultrastructures, nanostructural details on the surface of cell, were visualized by atomic force microscopy (AFM). It was clearly shown that surface of osteoblasts were covered by mineralized particles, and the histogram of particles size showed that most of the particles on the surface of osteoblasts distributed from 200 to 400 nm in diameter, while the diameter of hAFSCs particles ranged from 100 to 200 nm. In contrast, there were some dips on the surface of hAFSCs, and particles were smaller than that of osteoblasts. Additionally, as osteogenic differentiation of hAFSCs progressed, more and more stress fibers were replaced by a thinner actin network which is characteristic of mature osteoblasts. These results can improve our understanding of the mechanical properties of hAFSCs during osteogenic differentiation. AFM can be used as a powerful tool for detecting ultrastructures and mechanical properties.

  3. Airway epithelial cell responses to ozone injury

    Energy Technology Data Exchange (ETDEWEB)

    Leikauf, G.D.; Simpson, L.G.; Zhao, Qiyu [Univ. of Cincinnati Medical Center, OH (United States)] [and others

    1995-03-01

    The airway epithelial cell is an important target in ozone injury. Once activated, the airway epithelium responds in three phases. The initial, or immediate phase, involves activation of constitutive cells, often through direct covalent interactions including the formation of secondary ozonolysis products-hydroxyhydroperoxides, aldehydes, and hydrogen peroxide. Recently, we found hydroxyhydroperoxides to be potent agonists; of bioactive eicosanoid formation by human airway epithelial cells in culture. Other probable immediate events include activation and inactivation of enzymes present on the epithelial surface (e.g., neutral endopeptidase). During the next 2 to 24 hr, or early phase, epithelial cells respond by synthesis and release of chemotactic factors, including chemokines-macrophage inflammatory protein-2, RANTES, and interleukin-8. Infiltrating leukocytes during this period also release elastase, an important agonist of epithelial cell mucus secretion and additional chemokine formation. The third (late) phase of ozone injury is characterized by eosinophil or monocyte infiltration. Cytokine expression leads to alteration of structural protein synthesis, with increases in fibronectin evident by in situ hybridization. Synthesis of epithelial antiproteases, e.g., secretary leukocyte protease inhibitor, may also increase locally 24 to 48 hr after elastase concentrations become excessive. Thus, the epithelium is not merely a passive barrier to ozone injury but has a dynamic role in directing the migration, activating, and then counteracting inflammatory cells. Through these complex interactions, epithelial cells can be viewed as the initiators (alpha) and the receptors (omega) of ozone-induced airway disease. 51 refs., 2 figs., 3 tabs.

  4. Microvesicles secreted from equine amniotic cells and their potential role in in vitro cell tendon repair

    Directory of Open Access Journals (Sweden)

    Claudia Perrini

    2015-07-01

    Full Text Available The regenerative mechanisms ascribed to mesenchymal stem cells (MSCs are classified into 3 categories: differentiating into damaged cell types, supplying nutrients, and improving survival/functions of the endogenous cells via paracrine actions. However, because of the inhospitable microenvironment of the injured tissues, a proportion of the implanted MSCs may quickly die, suggesting that other mechanisms might be present. This notion is supported by the overlapping beneficial effect (in terms of time of healing resulted  after the injection of AMCs or of amniotic mesenchymal cells - conditioned medium (AMC-CM  in equine spontaneous injured tendons and ligaments. Microvesicles (MVs released by cells are an integral component of the cell-to-cell communication network involved in tissue regeneration.In the present study, MVs secreted by AMCs were investigated with Nanosigth instrument and TEM. Then, the in vitro incorporation of MVs into equine tendon cells was studied by a dose-response curve. Lastly, the ability of MVs to counteract an in vitro inflammatory process induced by lipolysaccaride on tendon cells was studied evaluating the expression of pro-inflammatory genes like metallopeptidase (MPP 1 and 13, and prostaglandin-endoperoxide synthase 2 (COX2. Results demonstrated that AMCs secreted MVs ranging in size from 100 to 1000 nm with a prevalence of 100-200 nm large MVs. Tendon cells were able to uptake them with an inverse relationship between concentration and time. The greatest incorporation was detectable at 40x106 MVs/ml after 72h. MVs induced down-regulation of MMP1 and MMP13, suggesting that they may have contributed, along with soluble factors, to in vivo tendon regeneration.

  5. Therapeutic outcomes of transplantation of amniotic fluid-derived stem cells in experimental ischemic stroke

    Directory of Open Access Journals (Sweden)

    Naoki eTajiri

    2014-08-01

    Full Text Available Accumulating preclinical evidence suggests the use of amnion as a source of stem cells for investigations of basic science concepts related to developmental cell biology, but also for stem cells’ therapeutic applications in treating human disorders. We previously reported isolation of viable rat amniotic fluid-derived stem (AFS cells. Subsequently, we recently reported the therapeutic benefits of intravenous transplantation of AFS cells in a rodent model of ischemic stroke. Parallel lines of investiagtions have provided safety and efficacy of stem cell therapy for treating stroke and other neurological disorders. This review article highlights characterization of AFS cells’ phenotype and their transplant-mediated functional effects, the need for investigations of mechanisms underlying AFS cells’ therapeutic benefits and discusses lab-to-clinic translational gating items in an effort to optimize the clinical application of cell transplantation for stroke.

  6. Amniotic fluid derived stem cells give rise to neuron-like cells without a further differentiation potential into retina-like cells.

    Science.gov (United States)

    Hartmann, K; Raabe, O; Wenisch, S; Arnhold, S

    2013-01-01

    Amniotic fluid contains heterogeneous cell types and has become an interesting source for obtaining fetal stem cells. These stem cells have a high proliferative capacity and a good differentiation potential and may thus be suitable for regenerative medicine. As there is increasing evidence, that these stem cells are also able to be directed into the neural lineage, in our study we investigated the neuronal and glial differentiation potential of these cells, so that they may also be applied to cure degenerative diseases of the retina. Mesenchymal stem cells were isolated from routine prenatal amniocentesis at 15 to 18 weeks of pregnancy of human amniotic fluid and expanded in the cell culture. Cells were cultivated according to standard procedures for mesenchymal stem cells and were differentiated along the neural lineage using various protocols. Furthermore, it was also tried to direct them into cell types of the retina as well as into endothelial cells. Cells of more than 72 amniotic fluid samples were collected and characterized. While after induction neural-like phenotypes could actually be detected, which was confirmed using neural marker proteins such as GFAP and ßIII tubulina further differentiation into retinal like cells could not reliably be shown. These data suggest that amniotic fluid derived cells are an interesting cell source, which may also give rise to neural-like cells. However, a more specific differentiation into neuronal and glial cells could not unequivocally be shown, so that further investigations have to becarried out.

  7. Atomized Human Amniotic Mesenchymal Stromal Cells for Direct Delivery to the Airway for Treatment of Lung Injury

    NARCIS (Netherlands)

    Kim, Sally Yunsun; Burgess, Janette K.; Wang, Yiwei; Kable, Eleanor P. W.; Weiss, Daniel J.; Chan, Hak-Kim; Chrzanowski, Wojciech

    2016-01-01

    Background: Current treatment regimens for inhalation injury are mainly supportive and rely on self-regeneration processes for recovery. Cell therapy with mesenchymal stromal cells (MSCs) is increasingly being investigated for the treatment of inhalation injury. Human amniotic MSCs (hAMSCs) were use

  8. Atomized human amniotic mesenchymal stromal cells for direct delivery to the airway for treatment of lung injury

    NARCIS (Netherlands)

    Kim, Sally Yunsun; Burgess, Janette K.; Wang, Yiwei; Kable, Eleanor P. W.; Weiss, Daniel J.; Chan, Hak-Kim; Chrzanowski, Wojciech

    2016-01-01

    Background: Current treatment regimens for inhalation injury are mainly supportive and rely on self-regeneration processes for recovery. Cell therapy with mesenchymal stromal cells (MSCs) is increasingly being investigated for the treatment of inhalation injury. Human amniotic MSCs (hAMSCs) were use

  9. Polarized sorting and trafficking in epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Xinwang Cao; Michal A Surma; Kai Simons

    2012-01-01

    The polarized distribution of proteins and lipids at the surface membrane of epithelial cells results in the formation of an apical and a basolateral domain,which are separated by tight junctions.The generation and maintenance of epithelial polarity require elaborate mechanisms that guarantee correct sorting and vectorial delivery of cargo molecules.This dynamic process involves the interaction of sorting signals with sorting machineries and the formation of transport carriers.Here we review the recent advances in the field of polarized sorting in epithelial cells.We especially highlight the role of lipid rafts in apical sorting.

  10. Ultracytochemical study on the permeability of the human amniotic epithelium.

    Science.gov (United States)

    Matsubara, S; Tamada, T

    1991-06-01

    In order to elucidate and characterize the transport pathway of the substances in the amniotic fluid, the permeability of the term human amnion was studied ultracytochemically, with lanthanum or horse radish peroxidase (HRP) as a tracer. Pieces of the term human amnion were exposed to the solutions containing lanthanum or HRP, and processed for electronmicroscopy. Precipitates indicating lanthanum or HRP were observed in the lateral intercellular spaces of the amniotic epithelial cells through the entire depth of the spaces. Generally, pinocytosis of HPR was not observed. In rare cases, however, diffuse uptake of HRP was noticed in the cells of the electron-lucent cytoplasm. These facts indicated that the human amniotic epithelium is quite permeable and that this particular intercellular pathway is important in the mechanism of the transfer of substances between the mother and the fetus.

  11. Efficacy of cultivated corneal epithelial stem cells for ocular surface reconstruction

    Directory of Open Access Journals (Sweden)

    Prabhasawat P

    2012-09-01

    Full Text Available Pinnita Prabhasawat,1 Pattama Ekpo,2 Mongkol Uiprasertkul,3 Suksri Chotikavanich,1 Nattaporn Tesavibul11Department of Ophthalmology, 2Department of Immunology, 3Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, ThailandPurpose: To investigate the clinical outcomes of cultivated corneal limbal epithelial transplantation (CLET using human amniotic membrane for corneal limbal stem-cell deficiency.Methods: Prospective, noncomparative case series. Eighteen patients (19 eyes with severe ocular surface diseases were chosen to undergo CLET using human amniotic membrane. Twelve eyes received auto-CLET, and seven eyes received allo-CLET. Clinical outcomes of corneal surface epithelialization, conjunctivalization, inflammation, visual acuity, graft status, and complications were observed.Results: Corneal epithelium cultivated on amniotic membrane (two to four layers was positive for molecular markers p63, ABCG2, CK3, and CK12. The mean patient age was 44.7 ± 15.2 years. A successful clinical outcome, defined as corneal epithelialization without central conjunctivalization or severe inflammation, was obtained in 14 (73.7% of 19 eyes (mean follow-up 26.1 ± 13.5 months; range 6–47. A histopathologic success, defined as absence of goblet cells at the central cornea, was achieved in 12 (63.2% eyes. Clinical failures occurred in five (26.3% of 19 eyes, and histopathologic failures occurred in seven (36.8% of 19 eyes. Survival analysis at 1 year showed that the clinical success rate was 77.9% and the pathological success rate was 72.3%. Fourteen of 19 (73.7% eyes had visual acuity improvements after CLET. Six cases underwent penetrating keratoplasty; five of these grafts remained clear after 20.4 ± 6.9 months (range, 12–31 of follow-up. Complications included infectious keratitis (three cases and recurrent symblepharon (one case. All complicated cases had lid abnormalities. Factors affecting the final clinical

  12. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

    Directory of Open Access Journals (Sweden)

    Natascha Krömmelbein

    2016-02-01

    Full Text Available The human cytomegalovirus (HCMV replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production.

  13. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  14. Thymic epithelial cells. I. Expression of strong suppressive (veto) activity in mouse thymic epithelial cell cultures

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Ropke, C

    1990-01-01

    We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level....... It is concluded that the epithelial stromal cells of the thymus, by acting as veto cells, may be responsible for the negative intrathymic selection of self-reactive thymocytes leading to elimination of the vast majority of immature thymic lymphocytes....

  15. Amniotic membrane allografts: development and clinical utility in ophthalmology

    Directory of Open Access Journals (Sweden)

    Rizzuti A

    2014-12-01

    Full Text Available Allison Rizzuti,1,2 Adam Goldenberg,1 Douglas R Lazzaro1,2 1SUNY Downstate Medical Center, 2Kings County Hospital Center, Brooklyn, NY, USA Abstract: Amniotic membrane, the innermost layer of the placenta, is a tissue that promotes epithelialization, while decreasing inflammation, neovascularization, and scarring. It is used in the surgical management of a wide variety of ophthalmic conditions where it functions as a graft or patch in ocular surface reconstruction. The development of new preservation techniques, as well as a sutureless amniotic membrane, has allowed for easier, in-office placement, without the disadvantages of an operating room procedure. The purpose of this review is to describe the historical development of amniotic membrane in ophthalmology and to describe its current clinical applications, particularly focusing on recent advances. Keywords: ocular surface, cornea, stem cells, prokera, allograft, patch, transplantation

  16. Epithelial cell-extracellular matrix interactions and stem cells in airway epithelial regeneration.

    Science.gov (United States)

    Coraux, Christelle; Roux, Jacqueline; Jolly, Thomas; Birembaut, Philippe

    2008-08-15

    In healthy subjects, the respiratory epithelium forms a continuous lining to the airways and to the environment, and plays a unique role as a barrier against external deleterious agents to protect the airways from the insults. In respiratory diseases such as cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), chronic bronchitis, or asthma, the airway epithelium is frequently remodeled and injured, leading to the impairment of its defense functions. The rapid restoration of the epithelial barrier is crucial for these patients. The complete regeneration of the airway epithelium is a complex phenomenon, including not only the epithelial wound repair but also the epithelial differentiation to reconstitute a fully well differentiated and functional epithelium. The regeneration implies two partners: the epithelial stem/progenitor cells and factors able to regulate this process. Among these factors, epithelial cells-extracellular matrix (ECM) interactions play a crucial role. The secretion of a provisional ECM, the cell-ECM relationships through epithelial receptors, and the remodeling of the ECM by proteases (mainly matrix metalloproteinases) contribute not only to airway epithelial repair by modulating epithelial cell migration and proliferation, but also to the differentiation of repairing cells leading to the complete restoration of the wounded epithelium. A better characterization of resident stem cells and of effectors of the regeneration process is an essential prerequisite to propose new regenerative therapeutics to patients suffering from infectious/inflammatory respiratory diseases.

  17. Wound healing of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Masahiro Iizuka; Shiho Konno

    2011-01-01

    The intestinal epithelial cells (IECs) form a selective permeability barrier separating luminal content from underlying tissues. Upon injury, the intestinal epithelium undergoes a wound healing process. Intestinal wound healing is dependent on the balance of three cellular events;restitution, proliferation, and differentiation of epithelial cells adjacent to the wounded area. Previous studies have shown that various regulatory peptides, including growth factors and cytokines, modulate intestinal epithelial wound healing. Recent studies have revealed that novel factors, which include toll-like receptors (TLRs), regulatory peptides, particular dietary factors, and some gastroprotective agents, also modulate intestinal epithelial wound repair. Among these factors, the activation of TLRs by commensal bacteria is suggested to play an essential role in the maintenance of gut homeostasis. Recent studies suggest that mutations and dysregulation of TLRs could be major contributing factors in the predisposition and perpetuation of inflammatory bowel disease. Additionally, studies have shown that specific signaling pathways are involved in IEC wound repair. In this review, we summarize the function of IECs, the process of intestinal epithelial wound healing, and the functions and mechanisms of the various factors that contribute to gut homeostasis and intestinal epithelial wound healing.

  18. Human Amniotic Fluid Mesenchymal Stem Cells from Second- and Third-Trimester Amniocentesis: Differentiation Potential, Molecular Signature, and Proteome Analysis

    Directory of Open Access Journals (Sweden)

    Jurate Savickiene

    2015-01-01

    Full Text Available Human amniotic fluid stem cells have become an attractive stem cell source for potential applications in regenerative medicine and tissue engineering. The aim of this study was to characterize amniotic fluid-derived mesenchymal stem cells (AF-MSCs from second- and third-trimester of gestation. Using two-stage protocol, MSCs were successfully cultured and exhibited typical stem cell morphological, specific cell surface, and pluripotency markers characteristics. AF-MSCs differentiated into adipocytes, osteocytes, chondrocytes, myocytes, and neuronal cells, as determined by morphological changes, cell staining, and RT-qPCR showing the tissue-specific gene presence for differentiated cell lineages. Using SYNAPT G2 High Definition Mass Spectrometry technique approach, we performed for the first time the comparative proteomic analysis between undifferentiated AF-MSCs from late trimester of gestation and differentiated into myogenic, adipogenic, osteogenic, and neurogenic lineages. The analysis of the functional and expression patterns of 250 high abundance proteins selected from more than 1400 demonstrated the similar proteome of cultured and differentiated AF-MSCs but the unique changes in their expression profile during cell differentiation that may help the identification of key markers in differentiated cells. Our results provide evidence that human amniotic fluid of second- and third-trimester contains stem cells with multilineage potential and may be attractive source for clinical applications.

  19. Human amniotic fluid stem cell injection therapy for urethral sphincter regeneration in an animal model

    Directory of Open Access Journals (Sweden)

    Kim Bum

    2012-08-01

    Full Text Available Abstract Background Stem cell injection therapies have been proposed to overcome the limited efficacy and adverse reactions of bulking agents. However, most have significant limitations, including painful procurement, requirement for anesthesia, donor site infection and a frequently low cell yield. Recently, human amniotic fluid stem cells (hAFSCs have been proposed as an ideal cell therapy source. In this study, we investigated whether periurethral injection of hAFSCs can restore urethral sphincter competency in a mouse model. Methods Amniotic fluids were collected and harvested cells were analyzed for stem cell characteristics and in vitro myogenic differentiation potency. Mice underwent bilateral pudendal nerve transection to generate a stress urinary incontinence (SUI model and received either periurethral injection of hAFSCs, periurethral injection of Plasma-Lyte (control group, or underwent a sham (normal control group. For in vivo cell tracking, cells were labeled with silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate (MNPs@SiO2 (RITC and were injected into the urethral sphincter region (n = 9. Signals were detected by optical imaging. Leak point pressure and closing pressure were recorded serially after injection. Tumorigenicity of hAFSCs was evaluated by implanting hAFSCs into the subcapsular space of the kidney, followed two weeks later by retrieval and histologic analysis. Results Flow activated cell sorting showed that hAFSCs expressed mesenchymal stem cell (MSC markers, but no hematopoietic stem cell markers. Induction of myogenic differentiation in the hAFSCs resulted in expression of PAX7 and MYOD at Day 3, and DYSTROPHIN at Day 7. The nanoparticle-labeled hAFSCs could be tracked in vivo with optical imaging for up to 10 days after injection. Four weeks after injection, the mean LPP and CP were significantly increased in the hAFSC-injected group compared with the control group. Nerve regeneration and

  20. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells.

    Science.gov (United States)

    Li, Chunliang; Zhou, Junmei; Shi, Guilai; Ma, Yu; Yang, Ying; Gu, Junjie; Yu, Hongyao; Jin, Shibo; Wei, Zhe; Chen, Fang; Jin, Ying

    2009-11-15

    Direct reprogramming of human somatic cells into pluripotency has broad implications in generating patient-specific induced pluripotent stem (iPS) cells for disease modeling and cellular replacement therapies. However, the low efficiency and safety issues associated with generation of human iPS cells have limited their usage in clinical settings. Cell types can significantly influence reprogramming efficiency and kinetics. To date, human iPS cells have been obtained only from a few cell types. Here, we report for the first time rapid and efficient generation of iPS cells from human amniotic fluid-derived cells (hAFDCs) via ectopic expression of four human factors: OCT4/SOX2/KLF4/C-MYC. Significantly, typical single iPS cell colonies can be picked up 6 days after viral infection with high efficiency. Eight iPS cell lines have been derived. They can be continuously propagated in vitro and express pluripotency markers such as AKP, OCT4, SOX2, SSEA4, TRA-1-60 and TRA-1-81, maintaining the normal karyotype. Transgenes are completely inactivated and the endogenous OCT4 promoter is adequately demethylated in the established iPS cell lines. Moreover, various cells and tissues from all three germ layers are found in embryoid bodies and teratomas, respectively. In addition, microarray analysis demonstrates a high correlation coefficient between hAFDC-iPS cells and human embryonic stem cells, but a low correlation coefficient between hAFDCs and hAFDC-iPS cells. Taken together, these data identify an ideal human somatic cell resource for rapid and efficient generation of iPS cells, allowing us to establish human iPS cells using more advanced approaches and possibly to establish disease- or patient-specific iPS cells.

  1. Fetal stem cells obtained from amniotic fluid and wharton's jelly expanded using platelet lysate for tissue engineering applications

    OpenAIRE

    Pinto, A. R.; Aleixo, I; Frias, A.M.; Fernandes, S.; Rocha, L; Reis, R. L.; Neves, N.M

    2012-01-01

    Extra-embryonic tissues, such as amniotic fluid (AF) and Wharton´s Jelly (WJ) of umbilical cord, offer many advantages over both embryonic and adult stem cell sources. These tissues are routinely discarded at parturition and the extracorporeal nature of these cell sources facilitates isolation, as well as the comparatively large volume and ease of physical manipulation theoretically increases the number of stem cells that can be isolated. Autologous approaches to use MSCs, n...

  2. Amniotic fluid as a source of multipotent cells for clinical use.

    Science.gov (United States)

    Young, Bruce K; Chan, Michael K; Liu, Li; Basch, Ross S

    2016-04-01

    Amniotic fluid cells (AFC) from 2nd trimester amniocentesis have been found to be a source of multipotent stem cells which might overcome the limitations of expansion, histocompatibility, tumorigenesis, and ethical issues associated with using human embryonic cells, umbilical cord, cord blood, bone marrow, and induced pluripotent cells. Previous work by our group and others demonstrated multipotency and the ability to grow well in culture. However, all these studies were done in media containing fetal calf serum. We sought to observe the properties of AFC grown in serum-free media as that would be required for clinical transplantation in humans. Fresh samples were obtained from three patients, and each sample divided into a culture whose cells were not exposed to fetal calf serum, and the other half into a standard culture medium containing fetal calf serum. Doubling time and stem cell marker expression by flow cytometry were assessed. Differentiation to neural, osteoid, and chondrogenic lineages was induced using appropriate media and confirmed by fluorescent microscopy, histology, and immunohistochemistry. There were no statistically significant differences between cells grown serum-free and in standard media in any of these parameters. The data supports the possibility of clinical use of AFC in stem cell transplantation.

  3. The targeted inhibitory effects of human amniotic fluid stem cells carrying CXCR4 promoter and DAL-1 on non-small cell lung carcinoma growth.

    Science.gov (United States)

    Li, L; Li, S; Cai, T; Wang, H; Xie, X; Liu, Z; Zhang, Y

    2016-02-01

    The differentially expressed in adenocarcinoma of the lung-1 (DAL-1) protein has been demonstrated to be suppressive to various types of tumors including lung cancer. This study aimed to determine the targeted effects of human amniotic fluid stem cells (hAFS cells) carrying CXCR4 promoter driven conditionally replicable adenovirus vector overexpressing DAL-1 (Ad-CXCR4-DAL-1) on non-small cell lung carcinoma (NSCLC) growth. The apoptotic effects of virus vectors were assessed using flow cytometry, and the cytotoxicity analyzed by CCK-8 assay. In vivo imaging system was used to determine the homing capability of hAFS cells. A549 cell xenograft mouse model was created to assess the in vivo effect of DAL-1 overexpression on NSCLC growth. We found that infection of Ad-CXCR4-DAL-1 increased the apoptosis of A549 NSCLC cells but not 16HBE normal human bronchial epithelial cells. Ad-CXCR4-DAL-1 administered via intratumoral injection led to significant reduced growth and greater necrosis of A549 xenograft tumors comparing to null vector treated animals. When infused via tail vein, hAFS cells carrying Ad-CXCR4-DAL-1 homed to lung cancer xenografts, caused virus replication and DAL-1 overexpression, and led to significant lower growth and greater necrosis of A549 cell xenografts comparing to non-treatment control. In conclusion, hAFS cells are capable of carrying Ad-CXCR4-DAL-1 vectors, specifically targeting to lung cancer, and causing oncolytic effects when administered in vivo.

  4. Epithelial Cell Apoptosis and Lung Remodeling

    Institute of Scientific and Technical Information of China (English)

    Kazuyoshi Kuwano

    2007-01-01

    Lung epithelium is the primary site of lung damage in various lung diseases. Epithelial cell apoptosis has been considered to be initial event in various lung diseases. Apoptosis signaling is classically composed of two principle pathways. One is a direct pathway from death receptor ligation to caspase cascade activation and cell death. The other pathway triggered by stresses such as drugs, radiation, infectious agents and reactive oxygen species is mediated by mitochondria. Endoplasmic reticulum has also been shown to be the organelle to mediate apoptosis.Epithelial cell death is followed by remodeling processes, which consist of epithelial and fibroblast activation,cytokine production, activation of coagulation pathway, neoangiogenesis, re-epithelialization and fibrosis.Epithelial and mesenchymal interaction plays important roles in these processes. Further understanding of apoptosis signaling and its regulation by novel strategies may lead to effective treatments against various lung diseases. We review the recent advances in the understanding of apoptosis signaling and discuss the involvement of apoptosis in lung remodeling.

  5. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response.

    Directory of Open Access Journals (Sweden)

    Emily C Moorefield

    Full Text Available Amniotic fluid stem (AFS cells are broadly multipotent, can be expanded extensively in culture, are not tumorigenic and can be readily cryopreserved for cell banking. Mesenchymal stem cells (MSC show immunomodulatory activity and secrete a wide spectrum of cytokines and chemokines that suppress inflammatory responses, block mixed lymphocyte reactions (MLR and other immune reactions, and have proven therapeutic against conditions such as graft-versus-host disease. AFS cells resemble MSCs in many respects including surface marker expression and differentiation potential. We therefore hypothesized that AFS cells may exhibit similar immunomodulatory capabilities. We present data to demonstrate that direct contact with AFS cells inhibits lymphocyte activation. In addition, we show that cell-free supernatants derived from AFS cells primed with total blood monocytes or IL-1β, a cytokine released by monocytes and essential in mediation of the inflammatory response, also inhibited lymphocyte activation. Further investigation of AFS cell-free supernatants by protein array revealed secretion of multiple factors in common with MSCs that are known to be involved in immune regulation including growth related oncogene (GRO and monocyte chemotactic protein (MCP family members as well as interleukin-6 (IL-6. AFS cells activated by PBMCs released several additional cytokines as compared to BM-MSCs, including macrophage inflammatory protein-3α (MIP-3α, MIP-1α and Activin. AFS cells also released higher levels of MCP-1 and lower levels of MCP-2 compared to BM-MSCs in response to IL-1β activation. This suggests that there may be some AFS-specific mechanisms of inhibition of lymphocyte activation. Our results indicate that AFS cells are able to suppress inflammatory responses in vitro and that soluble factors are an essential component in the communication between lymphocytes and AFS cells. Their extensive self-renewal capacity, possibility for banking and

  6. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to glycosphingolipid, together with an increase in plasmalogen, phosphatidylethanolamine, and cholesterol content, whereas the opposite changes took place during an epithelial-to-mesenchymal transition. Moreover, during polarization, the sphingolipids became longer, more saturated, and more hydroxylated as required...

  7. Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure.

    Directory of Open Access Journals (Sweden)

    Yu-Bao Zheng

    Full Text Available Uncontrolled hepatic immunoactivation is regarded as the primary pathological mechanism of fulminant hepatic failure (FHF. The major acute-phase mediators associated with FHF, including IL-1β, IL-6, and TNF-α, impair the regeneration of liver cells and stem cell grafts. Amniotic-fluid-derived mesenchymal stem cells (AF-MSCs have the capacity, under specific conditions, to differentiate into hepatocytes. Interleukin-1-receptor antagonist (IL-1Ra plays an anti-inflammatory and anti-apoptotic role in acute and chronic inflammation, and has been used in many experimental and clinical applications. In the present study, we implanted IL-1Ra-expressing AF-MSCs into injured liver via the portal vein, using D-galactosamine-induced FHF in a rat model. IL-1Ra expression, hepatic injury, liver regeneration, cytokines (IL-1β, IL-6, and animal survival were assessed after cell transplantation. Our results showed that AF-MSCs over-expressing IL-1Ra prevented liver failure and reduced mortality in rats with FHF. These animals also exhibited improved liver function and increased survival rates after injection with these cells. Using green fluorescent protein as a marker, we demonstrated that the engrafted cells and their progeny were incorporated into injured livers and produced albumin. This study suggests that AF-MSCs genetically modified to over-express IL-1Ra can be implanted into the injured liver to provide a novel therapeutic approach to the treatment of FHF.

  8. Nukbone® promotes proliferation and osteoblastic differentiation of mesenchymal stem cells from human amniotic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Fuentes, Nayeli; Rodríguez-Hernández, Ana G. [Depto. Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510 (Mexico); Enríquez-Jiménez, Juana [Depto. Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City 14000 (Mexico); Alcántara-Quintana, Luz E. [Subd. de Investigación, Centro Nacional de la Transfusión Sanguínea, Secretaria de Salud, Mexico City 07370 (Mexico); Fuentes-Mera, Lizeth [Depto. Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, México City 4800 (Mexico); Piña-Barba, María C. [Depto. Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), México City 04510 (Mexico); Zepeda-Rodríguez, Armando [Depto. Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City 04510 (Mexico); and others

    2013-05-10

    Highlights: •Nukbone showed to be a good scaffold for adhesion, proliferation and differentiation of stem cells. •Nukbone induced osteoblastic differentiation of human mesenchymal stem cells. •Results showed that Nukbone offer an excellent option for bone tissue regeneration due to properties. -- Abstract: Bovine bone matrix Nukbone® (NKB) is an osseous tissue-engineering biomaterial that retains its mineral and organic phases and its natural bone topography and has been used as a xenoimplant for bone regeneration in clinics. There are not studies regarding its influence of the NKB in the behavior of cells during the repairing processes. The aim of this research is to demonstrate that NKB has an osteoinductive effect in human mesenchymal stem cells from amniotic membrane (AM-hMSCs). Results indicated that NKB favors the AM-hMSCs adhesion and proliferation up to 7 days in culture as shown by the scanning electron microscopy and proliferation measures using an alamarBlue assay. Furthermore, as demonstrated by reverse transcriptase polymerase chain reaction, it was detected that two gene expression markers of osteoblastic differentiation: the core binding factor and osteocalcin were higher for AM-hMSCs co-cultured with NKB in comparison with cultivated cells in absence of the biomaterial. As the results indicate, NKB possess the capability for inducing successfully the osteoblastic differentiation of AM-hMSC, so that, NKB is an excellent xenoimplant option for repairing bone tissue defects.

  9. Nuclear Nox4 Role in Stemness Power of Human Amniotic Fluid Stem Cells

    Directory of Open Access Journals (Sweden)

    Tullia Maraldi

    2015-01-01

    Full Text Available Human amniotic fluid stem cells (AFSC are an attractive source for cell therapy due to their multilineage differentiation potential and accessibility advantages. However the clinical application of human stem cells largely depends on their capacity to expand in vitro, since there is an extensive donor-to-donor heterogeneity. Reactive oxygen species (ROS and cellular oxidative stress are involved in many physiological and pathophysiological processes of stem cells, including pluripotency, proliferation, differentiation, and stress resistance. The mode of action of ROS is also dependent on the localization of their target molecules. Thus, the modifications induced by ROS can be separated depending on the cellular compartments they affect. NAD(PH oxidase family, particularly Nox4, has been known to produce ROS in the nucleus. In the present study we show that Nox4 nuclear expression (nNox4 depends on the donor and it correlates with the expression of transcription factors involved in stemness regulation, such as Oct4, SSEA-4, and Sox2. Moreover nNox4 is linked with the nuclear localization of redox sensitive transcription factors, as Nrf2 and NF-κB, and with the differentiation potential. Taken together, these results suggest that nNox4 regulation may have important effects in stem cell capability through modulation of transcription factors and DNA damage.

  10. Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro

    DEFF Research Database (Denmark)

    Alviano, Francesco; Fossati, Valentina; Marchionni, Cosetta

    2007-01-01

    BACKGROUND: Term Amniotic membrane (AM) is a very attractive source of Mesenchymal Stem Cells (MSCs) due to the fact that this fetal tissue is usually discarded without ethical conflicts, leading to high efficiency in MSC recovery with no intrusive procedures. Here we confirmed that term AM......, as previously reported in the literature, is an abundant source of hMSCs; in particular we further investigated the AM differentiation potential by assessing whether these cells may also be committed to the angiogenic fate. In agreement with the recommendation of the International Society for Cellular Therapy......, the mesenchymal cells herein investigated were named Amniotic Membrane-human Mesenchymal Stromal Cells (AM-hMSC). RESULTS: The recovery of hMSCs and their in vitro expansion potential were greater in amniotic membrane than in bone marrow stroma. At flow cytometry analysis AM-hMSCs showed an immunophenotypical...

  11. 羊水预处理在羊水细胞培养瓶法中应用效果研究%Application effect research with amniotic fluid pretreatment in amniotic fluid cell culture bottle

    Institute of Scientific and Technical Information of China (English)

    向文秀

    2013-01-01

    目的 研究羊水预处理在羊水细胞培养瓶法中的应用效果.方法 采用羊水预处理培养瓶法(实验组)和未经处理羊水细胞培养瓶法(对照组)对100例18-24周的孕中期孕妇和152例25-32周的孕晚期孕妇进行羊水细胞培养.结果 100例孕18-24周羊水细胞培养实验组培养成功率高于对照组(P<0.05),实验组羊水细胞培养时间比对照组短(P<0.001),实验组有效核分裂数比对照组多(P <0.001);152例孕25-32周羊水细胞培养实验组培养成功率高于对照组(P<0.01),实验组羊水细胞培养时间比对照组短(P <0.001),实验组有效核分裂数比对照组多(P <0.001).结论 羊水预处理羊水细胞培养瓶法羊水细胞培养成功率高,细胞培养时间短,有效核分裂数多,可进行羊水产前诊断孕妇孕周范围增宽.%Objective:Research with amniotic fluid pretreatment in amniotic fluid cell culture bottle of application effect.Methods:100 samples of amniotic fluid from pregnant women during 18-24th-week gestation and 152 samples of amniotic fluid from pregnant women during 25-32th-week gestation were cultured in fluid pretreatment amniotic fluid cell culture bottle and untreated amniotic fluid cell culture bottle.Results:In 100 samples of pregnant women during 18-24th-week gestation.Culture success rate of the experimental group than the control group (P < 0.05).Amniotic fluid cell culture time of the experimental group than the control group short (P < 0.001).Effective mitotic count of the experimental group than the control group (P < 0.001).In 152 samples of pregnant women during 25-32th-week gestation,Culture success rate of the experimental group than the control group (P <0.01),Amniotic fluid cell culture time of the experimental group than the control group short (P < 0.001).Effective mitotic count of the experimental group than the control group (P < 0.001).Conclusion:Amniotic fluid pretreatment in amniotic fluid cell

  12. Lipid polarity and sorting in epithelial cells

    NARCIS (Netherlands)

    van Meer, G.; Simons, K.

    1988-01-01

    Apical and basolateral membrane domains of epithelial cell plasma membranes possess unique lipid compositions. The tight junction, the structure separating the two domains, forms a diffusion barrier for membrane components and thereby prevents intermixing of the two sets of lipids. The barrier appar

  13. Protons Sensitize Epithelial Cells to Mesenchymal Transition

    Science.gov (United States)

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M.; Pluth, Janice M.; Cucinotta, Francis A.

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1. PMID:22844446

  14. Protons sensitize epithelial cells to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Minli Wang

    Full Text Available Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1-mediated epithelial-mesenchymal transition (EMT, a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu and hTERT- immortalized human esophageal epithelial cells (EPC were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1 kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.

  15. Amniotic fluid embolism

    Directory of Open Access Journals (Sweden)

    Kiranpreet Kaur

    2016-01-01

    Full Text Available Amniotic fluid embolism (AFE is one of the catastrophic complications of pregnancy in which amniotic fluid, fetal cells, hair, or other debris enters into the maternal pulmonary circulation, causing cardiovascular collapse. Etiology largely remains unknown, but may occur in healthy women during labour, during cesarean section, after abnormal vaginal delivery, or during the second trimester of pregnancy. It may also occur up to 48 hours post-delivery. It can also occur during abortion, after abdominal trauma, and during amnio-infusion. The pathophysiology of AFE is not completely understood. Possible historical cause is that any breach of the barrier between maternal blood and amniotic fluid forces the entry of amniotic fluid into the systemic circulation and results in a physical obstruction of the pulmonary circulation. The presenting signs and symptoms of AFE involve many organ systems. Clinical signs and symptoms are acute dyspnea, cough, hypotension, cyanosis, fetal bradycardia, encephalopathy, acute pulmonary hypertension, coagulopathy etc. Besides basic investigations lung scan, serum tryptase levels, serum levels of C3 and C4 complements, zinc coproporphyrin, serum sialyl Tn etc are helpful in establishing the diagnosis. Treatment is mainly supportive, but exchange transfusion, extracorporeal membrane oxygenation, and uterine artery embolization have been tried from time to time. The maternal prognosis after amniotic fluid embolism is very poor though infant survival rate is around 70%.

  16. Genotoxic effects of cadmium chloride on human amniotic fluid cells cultured in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Fogu, G. [Sassari Univ., Sassari (Italy). Dept. of Physiological, Biochemical and Cellular sciences; Sassari Univ., Sassari (Italy). Centre of Clinical Genetics; Congiu, A. M.; Sini, M. C.; Ladu, R. [Sassari Univ., Sassari (Italy). Dept. of Physiological, Biochemical and Cellular sciences; Campus, P. M.; Sanna, R.; Soro, G. [Sassari Univ., Sassari (Italy). Centre of Clinical Genetics

    2000-12-01

    In this study it has been reported the results of cytogenetic tests, namely a search for chromosome aberrations (CA) and sister chromatid exchanges (SCEs), performed on human amniotic fluid cells cultured and treated with Cadmium chloride. The cells from primary cultures were exposed to CdCl{sub 2} at 1 {mu}M and 10 {mu}M for 24 h. At the higher dose, no metaphases were scored and at the lower dose (1 {mu}M) no effects were evident on cell proliferation, and no chromosome aberrations were found. In the subsequent experiments were used cells from subcultures exposed to 1 {mu}M and 5 {mu}M CdCl{sub 2}. At the 5 {mu}M dose was evident the induction of chromatid breaks, while the frequency of sister chromatid exchanges shows a small increase, not statistically significant at the dose of 1 {mu}M. In this study it was positively demonstrated that amniotic fluid cells grown in vitro are reliable for testing various mutagenic or teratogenic substances. With regard to cadmium treatment results, it is evident a clastogenic effect of cadmium chloride but not a significant induction of SCEs. [Italian] In questo studio abbiamo riportato i risultati dei tests citogenici di valutazione degli scambi fra cromatidi fratelli (SCEs) e di induzione di aberrazioni cromosomiche (CA) condotti su colture cellulari di liquido amniotico umano, trattate con cloruro di cadmio. Le cellule delle colture primarie venivano esposte al CdCl{sub 2} a concentrazioni di 1 {mu}M 10 {mu}M per 24 h. Alla dose piu' alta (10 {mu}M) non sono state osservate metafasi, mentre alla dose piu' bassa (1 {mu}M) non sono stati evidenziati ne' effetti sulla proliferazione cellulare ne' CA. Nei successivi esperimenti il CdC{sub 2} e' stato testato su subcolture cellulari alle dosi di 1 {mu}M e 5 {mu}M. Alla dose di 5 {mu}M sono state evidenziate rotture cromatidiche, mentre la frequenza di SCE alla dose di 1 {mu}M ha mostrato un piccolo incremento, statisticamente non significativo. In questo

  17. A new candidate substrate for cell-matrix adhesion study: the acellular human amniotic matrix.

    Science.gov (United States)

    Guo, Qianchen; Lu, Xuya; Xue, Yuan; Zheng, Hong; Zhao, Xiaotao; Zhao, Huajian

    2012-01-01

    In vivo adhesions between cells and the extracellular matrix play a crucial role in cell differentiation, proliferation, and migration as well as tissue remodeling. Natural three-dimensional (3D) matrices, such as self-assembling matrices and Matrigel, have limitations in terms of their biomechanical properties. Here, we present a simple method to produce an acellular human amniotic matrix (AHAM) with preserved biomechanical properties and a favorable adhesion potential. On the stromal side of the AHAM, human foreskin fibroblasts (HFFs) attached and extended with bipolar spindle-shaped morphology proliferated to multilayer networks, invaded into the AHAM, and migrated in a straight line. Moreover, αV integrin, paxillin, and fibronectin were observed to colocalize after 24 h of HFF culture on the stromal side of the AHAM. Our results indicate that the AHAM may be an ideal candidate as a cell-matrix adhesion substrate to study cell adhesion and invasion as well as other functions in vitro under a tensile force that mimics the in vivo environment.

  18. A New Candidate Substrate for Cell-Matrix Adhesion Study: The Acellular Human Amniotic Matrix

    Directory of Open Access Journals (Sweden)

    Qianchen Guo

    2012-01-01

    Full Text Available In vivo adhesions between cells and the extracellular matrix play a crucial role in cell differentiation, proliferation, and migration as well as tissue remodeling. Natural three-dimensional (3D matrices, such as self-assembling matrices and Matrigel, have limitations in terms of their biomechanical properties. Here, we present a simple method to produce an acellular human amniotic matrix (AHAM with preserved biomechanical properties and a favorable adhesion potential. On the stromal side of the AHAM, human foreskin fibroblasts (HFFs attached and extended with bipolar spindle-shaped morphology proliferated to multilayer networks, invaded into the AHAM, and migrated in a straight line. Moreover, αV integrin, paxillin, and fibronectin were observed to colocalize after 24 h of HFF culture on the stromal side of the AHAM. Our results indicate that the AHAM may be an ideal candidate as a cell-matrix adhesion substrate to study cell adhesion and invasion as well as other functions in vitro under a tensile force that mimics the in vivo environment.

  19. Amniotic Mesenchymal Stem Cells Can Enhance Angiogenic Capacity via MMPs In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Fei Jiang

    2015-01-01

    Full Text Available The aim of this study was to evaluate the angiogenic capacity and proteolytic mechanism of coculture using human amniotic mesenchymal stem cells (hAMSCs with human umbilical vein endothelial cells (HUVECs in vivo and in vitro by comparing to those of coculture using bone marrow mesenchymal stem cells with HUVEC. For the in vivo experiment, cells (HUVEC-monoculture, HUVEC-hAMSC coculture, and HUVEC-BMMSC coculture were seeded in fibrin gels and injected subcutaneously in nude mice. The samples were collected on days 7 and 14 and histologically analyzed by H&E and CD31 staining. CD31-positive staining percentage and vessel-like structure (VLS density were evaluated as quantitative parameters for angiogenesis. The increases of CD31-positive staining area and VLS density in both HUVEC-hAMSC group and HUVEC-BMMSC group were found between two time points, while obvious decline of those was observed in HUVEC-only group. For the in vitro experiment, we utilized the same 3D culture model to investigate the proteolytic mechanism related to capillary formation. Intensive vascular networks formed by HUVECs were associated with hAMSCs or BMMSCs and related to MMP2 and MMP9. In conclusion, hAMSCs shared similar capacity and proteolytic mechanism with BMMSCs on neovascularization.

  20. Calcitonin-Induced Effects on Amniotic Fluid-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Caterina Morabito

    2015-05-01

    Full Text Available Background/Aims: Mesenchymal stem cells from human amniotic fluid (huAFMSCs can differentiate into multiple lineages and are not tumorigenic after transplantation, making them good candidates for therapeutic purposes. The aim was to determine the effects of calcitonin on these huAFMSCs during osteogenic differentiation, in terms of the physiological role of calcitonin in bone homeostasis. Methods: For huAFMSCs cultured under different conditions, we assayed: expression of the calcitonin receptor, using immunolabelling techniques; proliferation and osteogenesis, using colorimetric and enzymatic assays; intracellular Ca2+ and cAMP levels, using videomicroscopy and spectrophotometry. Results: The calcitonin receptor was expressed in proliferating and osteo-differentiated huAFMSCs. Calcitonin triggered intracellular Ca2+ increases and cAMP production. Its presence in cell medium also induced dose-dependent inhibitory effects on proliferation and increased osteogenic differentiation of huAFMSCs, as also indicated by enhancement of specific markers and alkaline phosphatase activity. Conclusions: These data show that huAFMSCs represent a potential osteogenic model to study in-vitro cell responses to calcitonin (and other members of the calcitonin family. This leads the way to the opening of new lines of research that will add new insight both in cell therapies and in the pharmacological use of these molecules.

  1. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    Full Text Available BACKGROUND: The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. METHODOLOGY/PRINCIPAL FINDINGS: Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. CONCLUSION/SIGNIFICANCE: The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of

  2. Stromal-epithelial interaction study: The effect of corneal epithelial cells on growth factor expression in stromal cells using organotypic culture model.

    Science.gov (United States)

    Kobayashi, Takeshi; Shiraishi, Atsushi; Hara, Yuko; Kadota, Yuko; Yang, Lujun; Inoue, Tomoyuki; Shirakata, Yuji; Ohashi, Yuichi

    2015-06-01

    Interactions between stromal and epithelial cells play important roles in the development, homeostasis, and pathological conditions of the cornea. Soluble cytokines are critical factors in stromal-epithelial interactions, and growth factors secreted from corneal stromal cells contribute to the regulation of proliferation and differentiation of corneal epithelial cells (CECs). However, the manner in which the expression of growth factors is regulated in stromal cells has not been completely determined. To study stromal-epithelial cell interactions, we used an organotypic culture model. Human or rabbit CECs (HCECs or RCECs) were cultured on amniotic membranes placed on human corneal fibroblasts (HCFs) embedded in a collagen gel. The properties of the organotypic culture were examined by hematoxylin-eosin staining and immunofluorescence. In the organotypic culture, HCECs or RCECs were stratified into two-three layers after five days and five-seven layers after nine days. However, stratification was not observed when the HCECs were seeded on a collagen gel without fibroblasts. K3/K12 were expressed on day 9. The HCF-embedded collagen gels were collected on days 3, 5, or 9 after seeding the RCECs, and mRNA expression of growth factors FGF7, HGF, NGF, EGF, TGF-α, SCF, TGF-β1, TGF-β2, and TGF-β3 were quantified by real-time PCR. mRNA expression of the growth factors in HCFs cultured with RCECs were compared with those cultured without RCECs, as well as in monolayer cultures. mRNA expression of TGF-α was markedly increased in HCFs cultured with RCECs. However, mRNA expression of the TGF-β family was suppressed in HCFs cultured with RCECs. Principal component analysis revealed that mRNA expression of the growth factors in HCFs were generally similar when they were cultured with RCECs. In organotypic cultures, the morphological changes in the CECs and the expression patterns of the growth factors in the stromal cells clearly demonstrated stromal-epithelial cell

  3. Cerebroside Sulfatase Activity in Cultivated Human Skin Fibroblasts and Amniotic Fluid Cells

    Science.gov (United States)

    Booth, Carol W.; And Others

    1975-01-01

    Prenatal monitoring for metachromatic leukodystrophy (a fatal inherited metabolic disorder) suggested that the determination of levels of cerebroside sulfatase in the amniotic fluid helped in the prenatal detection of this disorder. (DB)

  4. Reversible transdifferentiation of alveolar epithelial cells.

    Science.gov (United States)

    Danto, S I; Shannon, J M; Borok, Z; Zabski, S M; Crandall, E D

    1995-05-01

    Alveolar epithelial type II (AT2) cells have been thought to be the progenitors of terminally differentiated type I (AT1) cells in the adult animal in vivo. In this study, we used an AT1 cell-specific monoclonal antibody (mAb VIII B2) to investigate expression of the AT1 cell phenotype accompanying reversible changes in expression of the AT2 cell phenotype. AT2 cells were isolated and cultured either on attached collagen gels or on gels detached 1 or 4 days after plating and maintained thereafter as floating gels. Monolayers on both attached and floating gels were harvested on days 4 and 8 and analyzed by electron microscopy for changes in morphology and binding of mAb VIII B2. Results indicate that: (1) alveolar epithelial cells (AEC) on attached gels develop characteristics of the AT1 cell phenotype, (2) AEC on gels detached on day 1 maintain features of the AT2 cell phenotype (and do not react with mAb VIII B2), and (3) the expression of AT1 cell phenotypic traits seen by day 4 on attached gels is reversed after detachment. We conclude that commitment to the AT1 and AT2 cell lineages requires continuous regulatory input to maintain the differentiated states, and that transdifferentiation between AT2 and AT1 cells may be reversible.

  5. Allogeneic amniotic membrane-derived mesenchymal stromal cell transplantation in a porcine model of chronic myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Kimura M

    2012-01-01

    Full Text Available Introduction. Amniotic membrane contains a multipotential stem cell population and is expected to possess the machinery to regulate immunological reactions. We investigated the safety and efficacy of allogeneic amniotic membrane-derived mesenchymal stromal cell (AMSC transplantation in a porcine model of chronic myocardial ischemia as a preclinical trial. Methods. Porcine AMSCs were isolated from amniotic membranes obtained by cesarean section just before delivery and were cultured to increase their numbers before transplantation. Chronic myocardial ischemia was induced by implantation of an ameroid constrictor around the left circumflex coronary artery. Four weeks after ischemia induction, nine swine were assigned to undergo either allogeneic AMSC transplantation or normal saline injection. Functional analysis was performed by echocardiography, and histological examinations were carried out by immunohistochemistry 4 weeks after AMSC transplantation. Results. Echocardiography demonstrated that left ventricular ejection fraction was significantly improved and left ventricular dilatation was well attenuated 4 weeks after AMSC transplantation. Histological assessment showed a significant reduction in percentage of fibrosis in the AMSC transplantation group. Injected allogeneic green fluorescent protein (GFP-expressing AMSCs were identified in the immunocompetent host heart without the use of any immunosuppressants 4 weeks after transplantation. Immunohistochemistry revealed that GFP colocalized with cardiac troponin T and cardiac troponin I. Conclusions. We have demonstrated that allogeneic AMSC transplantation produced histological and functional improvement in the impaired myocardium in a porcine model of chronic myocardial ischemia. The transplanted allogeneic AMSCs survived without the use of any immunosuppressants and gained cardiac phenotype through either their transdifferentiation or cell fusion.

  6. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  7. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    Science.gov (United States)

    Simon, R H; DeHart, P D; Todd, R F

    1986-11-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neutrophils with an antibody (anti-Mo1) that reduced neutrophil adherence to epithelial cells limited killing. Although a variety of serine protease inhibitors partially inhibited cytotoxicity, we found that neutrophil cytoplasts, neutrophil lysates, neutrophil-conditioned medium, purified azurophilic or specific granule contents, and purified human neutrophil elastase did not duplicate the injury. We conclude that stimulated neutrophils can kill alveolar epithelial cells in an oxygen metabolite-independent manner. Tight adherence of stimulated neutrophils to epithelial cell monolayers appears to promote epithelial cell killing.

  8. Intestinal epithelial cells in inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Giulia; Roda; Alessandro; Sartini; Elisabetta; Zambon; Andrea; Calafiore; Margherita; Marocchi; Alessandra; Caponi; Andrea; Belluzzi; Enrico; Roda

    2010-01-01

    The pathogenesis of inflammatory bowel diseases (IBDs) seems to involve a primary defect in one or more of the elements responsible for the maintenance of intestinal homeostasis and oral tolerance. The most important element is represented by the intestinal barrier, a complex system formed mostly by intestinal epithelial cells (IECs). IECs have an active role in producing mucus and regulating its composition; they provide a physical barrier capable of controlling antigen traff ic through the intestinal muco...

  9. Improvement of Heart Failure by Human Amniotic Mesenchymal Stromal Cell Transplantation in Rats

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Taghi Razavi Tousi

    2016-11-01

    Full Text Available Background: Recently, stem cells have been considered for the treatment of heart diseases, but no marked improvement has been recorded. This is the first study to examine the functional and histological effects of the transplantation of human amniotic mesenchymal stromal cells (hAMSCs in rats with heart failure (HF.Methods: This study was conducted in the years 2014 and 2015. 35 male Wistar rats were randomly assigned into 5 equal experimental groups (7 rats each as 1- Control 2- Heart Failure (HF 3- Sham 4- Culture media 5- Stem Cell Transplantation (SCT. Heart failure was induced using 170 mg/kg/d of isoproterenol subcutaneously injection in 4 consecutive days. The failure confirmed by the rat cardiac echocardiography on day 28. In SCT group, 3×106 cells in 150 µl of culture media were transplanted to the myocardium. At the end, echocardiographic and hemodynamic parameters together with histological evaluation were done.Results: Echocardiography results showed that cardiac ejection fraction in HF group increased from 58/73 ± 9% to 81/25 ± 6/05% in SCT group (p value < 0.001. Fraction shortening in HF group was increased from 27/53 ± 8/58% into 45/55 ± 6/91% in SCT group (p value < 0.001. Furthermore, hAMSCs therapy significantly improved mean diastolic blood pressure, mean arterial pressure, left ventricular systolic pressure, rate pressure product, and left ventricular end-diastolic pressure compared to those in the HF group, with the values reaching the normal levels in the control group. A marked reduction in fibrosis tissue was also found in the SCT group (p value < 0.001 compared with the animals in the HF group.Conclusion: The transplantation of hAMSCs in rats with heart failure not only decreased the level of fibrosis but also conferred significant improvement in heart performance in terms of echocardiographic and hemodynamic parameters.

  10. Reconstruction of Rabbit Corneal Layer Composed of Corneal Fibroblasts and Corneal Epithelium on the Lyophilized Amniotic Membrane

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Many researchers have employed the cryopreserved amniotic membrane(CAM) and corneal epithelial cells in the treatment of a severely damaged burned cornea, with corneal epithelial cells cultured on an amniotic membrane (AM). The lyophilized amniotic membrane (LAM) has a higher graft take and a longer shelf life; it is easier to store and safer because of gamma irradiation. Two Teflon rings(Ahn's supporter) were made for culturing the cells on the LAM, and were then used to support the LAM. To reconstruct a corneal layer composed of corneal fibroblasts and epithelium, the corneal fibroblasts were first cultivated on the stromal side of LAM for five days, followed by epithelial cells culture on the epithelial side, by using the air-liquid interface culture. The reconstructed corneal layer composed of corneal fibroblasts and corneal epithelial cells has a much healthier basal layer of corneal epithelium than the reconstructed corneal epithelium, which was got by using only corneal epithelial cells, and resembles the epithelium of normal corneas, without the horny layer. Thus, the reconstruction of the corneal layer by using a LAM is considered to be a good in vitro model, not only for its application in toxicological test kits, but also for transplantation in patients with a severely damaged cornea.

  11. Inhibition of glycogen synthase kinase-3 (GSK3) promotes the neural differentiation of full-term amniotic fluid-derived stem cells towards neural progenitor cells.

    Science.gov (United States)

    Gao, Liyang; Zhao, Mingyan; Ye, Wei; Huang, Jinzhi; Chu, Jiaqi; Yan, Shouquan; Wang, Chaojun; Zeng, Rong

    2016-08-01

    The amniotic fluid has a heterogeneous population of cells. Some human amniotic fluid-derived stem (hAFS) cells have been shown to harbor the potential to differentiate into neural cells. However, the neural differentiation efficiency of hAFS cells remains low. In this study, we isolated CD117-positive hAFS cells from amniotic fluid and then examined the pluripotency of these cells through the formation of embryoid bodies (EBs). Additionally, we induced the neural differentiation of these cells using neuroectodermal medium. This study revealed that the GSK3-beta inhibitor SB216763 was able to stimulate the proliferation of CD117-positive hAFS cells without influencing their undifferentiated state. Moreover, SB216763 can efficiently promote the neural differentiation of CD117-positive hAFS cells towards neural progenitor cells in the presence of DMEM/F12 and N2 supplement. These findings provide an easy and low-cost method to maintain the proliferation of hAFS cells, as well as induce an efficacious generation of neural progenitor cells from hAFS cells. Such induction of the neural commitment of hAFS cells may provide an option for the treatment of neurodegenerative diseases by hAFS cells-based therapies.

  12. Characterization of Human Mammary Epithelial Stem Cells

    Science.gov (United States)

    2010-10-01

    breast is highly expressed by luminal epithelial cells and is less expressed by basal cells19,20. In contrast, CD49f (a6 integrin) has an inverse pattern...mouse stretched on its back. The hose and nose cone from the anesthetic vaporizer are securely attached to one side of the plate, and a heated pad is...the mouse by a nose cone. Check that the mouse has reached surgical anesthesia by loss of pedal withdrawal reflex . ! cautIon Institutional review

  13. The use of human amniotic fluid mesenchymal stem cells as the feeder layer to establish human embryonic stem cell lines.

    Science.gov (United States)

    Soong, Yung-Kwei; Huang, Shang-Yu; Yeh, Chiu-Hsiang; Wang, Tzu-Hao; Chang, Kuo-Hsuan; Cheng, Po-Jen; Shaw, S W Steven

    2015-12-01

    Human embryonic stem cells (hESCs) are pluripotent cells that have the potential to differentiate into the three germ layers and possibly all tissues of the human body. To fulfil the clinical potentials for cell-based therapy, banks of hESC lines that express different combinations of the major histocompatibility genes should be established, preferably without exposing such cells to animal cells and proteins. In this study, we tested human amniotic fluid mesenchymal stem cells (AFMSCs) as feeder cells to support the growth of hESCs. Our results indicated that mitomycin-treated AFMSCs were able to support the newly established hESC lines CGLK-1 and CGLK-2. The hESC colonies cultured on AFMSCs expressed alkaline phosphatase (ALK-P), SSEA-4, TRA-1-60, TRA-1-81, Oct-4, Nanog and Sox-2, which are markers for undifferentiated hESCs. Chromosomal analyses of both hESC lines, CGLK-1 and CGLK-2, which were cultured on AFMSC feeders for 22 and 14 passages, respectively, were confirmed to be normal karyotypes (46, XX). The ability of AFMSCs as feeder cells to maintain the undifferentiated growth and pluripotency of hESCs was confirmed by in vivo formation of teratomas derived on AFMSC hESCs in severe combined immune-compromised mice. The use of AFMSCs for feeder cells to culture hESCs has several advantages, in that AFMSCs are not tumourigenic and can be expanded extensively with a short doubling time.

  14. Lactobacillus decelerates cervical epithelial cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Katarina Vielfort

    Full Text Available We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells.

  15. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair;

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  16. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    OpenAIRE

    Simon, R H; DeHart, P D; Todd, R F

    1986-01-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neut...

  17. Cells of Origin of Epithelial Ovarian Cancers

    Science.gov (United States)

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0280 TITLE: Cells of Origin of Epithelial Ovarian Cancers PRINCIPAL INVESTIGATOR: Zhe Li, PhD CONTRACTING...Xie, Zhe Li 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: zli4@rics.bwh.harvard.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...Lined Inclusion Cysts or Teratomas. PLoS ONE 8, e65067. Sherman-Baust, C.A., Kuhn, E., Valle, B.L., Shih Ie, M., Kurman, R.J., Wang , T.L., Amano, T

  18. Characterization of protocadherin-1 expression in primary bronchial epithelial cells : association with epithelial cell differentiation

    NARCIS (Netherlands)

    Koning, Henk; Sayers, Ian; Stewart, Ceri E.; de Jong, Debora; ten Hacken, Nick H. T.; Postma, Dirkje S.; van Oosterhout, Antoon J. M.; Nawijn, Martijn C.; Koppelman, Gerard H.

    2012-01-01

    Protocadherin-1 (PCDH1) is a novel susceptibility gene for asthma that is expressed in airway epithelium. We aimed to characterize PCDH1 mRNA transcripts and protein expression in primary bronchial epithelial cells and to determine regulation of PCDH1 during mucociliary differentiation. Total RNA an

  19. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  20. Nuclear microscopy of rat colon epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, M., E-mail: phyrenmq@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rajendran, Reshmi [Lab of Molecular Imaging, Singapore Bioimaging Consotium, 11 Biopolis Way, 02-02 Helios, Singapore 138667 (Singapore); Ng, Mary [Department of Pharmacology, National University of Singapore (Singapore); Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Jenner, Andrew Michael [Illawara Health and Medical Research Institute (IHMRI), University of Wollongong, NSW 2522 (Australia)

    2011-10-15

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  1. Silk film topography directs collective epithelial cell migration.

    Directory of Open Access Journals (Sweden)

    Brian D Lawrence

    Full Text Available The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography's edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization.

  2. Regulation of amniotic fluid volume.

    Science.gov (United States)

    Beall, M H; van den Wijngaard, J P H M; van Gemert, M J C; Ross, M G

    2007-01-01

    Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and bladder. A major pathway for amniotic fluid resorption is fetal swallowing; however, in many cases the amounts of fluid produced and absorbed do not balance. A second resorption pathway, the intramembranous pathway (across the amnion to the fetal circulation), has been proposed to explain the maintenance of normal amniotic fluid volume. Amniotic fluid volume is thus a function both of the amount of water transferred to the gestation across the placental membrane, and the flux of water across the amnion. Water flux across biologic membranes may be driven by osmotic or hydrostatic forces; existing data suggest that intramembranous flow in humans is driven by the osmotic difference between the amniotic fluid and the fetal serum. The driving force for placental flow is more controversial, and both forces may be in effect. The mechanism(s) responsible for regulating water flow to and from the amniotic fluid is unknown. In other parts of the body, notably the kidney, water flux is regulated by the expression of aquaporin water channels on the cell membrane. We hypothesize that aquaporins have a role in regulating water flux across both the amnion and the placenta, and present evidence in support of this theory. Current knowledge of gestational water flow is sufficient to allow prediction of fetal outcome when water flow is abnormal, as in twin-twin transfusion syndrome. Further insight into these mechanisms may allow novel treatments for amniotic fluid volume abnormalities with resultant improvement in clinical outcome.

  3. In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells.

    Science.gov (United States)

    Weber, Benedikt; Kehl, Debora; Bleul, Ulrich; Behr, Luc; Sammut, Sébastien; Frese, Laura; Ksiazek, Agnieszka; Achermann, Josef; Stranzinger, Gerald; Robert, Jérôme; Sanders, Bart; Sidler, Michele; Brokopp, Chad E; Proulx, Steven T; Frauenfelder, Thomas; Schoenauer, Roman; Emmert, Maximilian Y; Falk, Volkmar; Hoerstrup, Simon P

    2016-01-01

    Amniotic fluid cells (AFCs) have been proposed as a valuable source for tissue engineering and regenerative medicine. However, before clinical implementation, rigorous evaluation of this cell source in clinically relevant animal models accepted by regulatory authorities is indispensable. Today, the ovine model represents one of the most accepted preclinical animal models, in particular for cardiovascular applications. Here, we investigate the isolation and use of autologous ovine AFCs as cell source for cardiovascular tissue engineering applications. Fetal fluids were aspirated in vivo from pregnant ewes (n = 9) and from explanted uteri post mortem at different gestational ages (n = 91). Amniotic non-allantoic fluid nature was evaluated biochemically and in vivo samples were compared with post mortem reference samples. Isolated cells revealed an immunohistochemical phenotype similar to ovine bone marrow-derived mesenchymal stem cells (MSCs) and showed expression of stem cell factors described for embryonic stem cells, such as NANOG and STAT-3. Isolated ovine amniotic fluid-derived MSCs were screened for numeric chromosomal aberrations and successfully differentiated into several mesodermal phenotypes. Myofibroblastic ovine AFC lineages were then successfully used for the in vitro fabrication of small- and large-diameter tissue-engineered vascular grafts (n = 10) and cardiovascular patches (n = 34), laying the foundation for the use of this relevant pre-clinical in vivo assessment model for future amniotic fluid cell-based therapeutic applications.

  4. Uranium induces apoptosis in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Periyakaruppan, Adaikkappan; Sarkar, Shubhashish; Sadanandan, Bindu; Thomas, Renard; Wilson, Bobby L. [Texas Southern University, Environmental Toxicology Program, Department of Chemistry, Houston, TX (United States); Ravichandran, Prabakaran; Sharma, Chidananda S.; Ramesh, Vani; Hall, Joseph C.; Ramesh, Govindarajan T. [Norfolk State University, Molecular Toxicology Laboratory, Department of Biology, Center for Biotechnology and Biomedical Sciences, Norfolk, VA (United States)

    2009-06-15

    Uranium is a naturally occurring radioactive material present everywhere in the environment. It is toxic because of its chemical or radioactive properties. Uranium enters environment mainly from mines and industry and cause threat to human health by accumulating in lungs as a result of inhalation. In our previous study, we have shown the effectiveness of antioxidant system response to the oxidative stress induced by uranyl acetate (UA) in rat lung epithelial (LE) cells. As part of our continuing studies; here, we investigated the mechanism underlying when LE cells are exposed to different concentration of UA. Oxidative stress may lead to apoptotic signaling pathways. LE cells treated with 0.25, 0.5 and 1 mM of UA results in dose and time-dependent increase in activity of both caspases-3 and -8. Increase in the concentration of cytochrome-c oxidase in cytosol was seen in LE cells treated with 1 mM UA as a result of mitochondria membrane permeability. The cytochrome-c leakage may trigger the apoptotic pathway. TUNEL assay performed in LE cells treated with 1 mM of UA showed significant incorporation of dNTPs in the nucleus after 24 h. In the presence of the caspase inhibitors, we observed the significant decrease in the activity of caspases-8 and -3 in 0.5 and 1 mM UA-treated LE cells. (orig.)

  5. Progressive transformation of immortalized esophageal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-Ying Shen; Li-Yan Xu; Min-Hua Chen; Jian Shen; Wei-Jia Cai; Yi Zeng

    2002-01-01

    .CONCLUSION: In continual cultivation of fetal esophageal epithelial cells with transduction of HPV18E6E7, cells from the 10th to the 85th passage were changed gradually from preimmortal, immortal, precancerous to malignantly transformed stages. All of these changes were in a dynamic progressive process. The establishment of a continuous line of esophageal epithelium may provide a in vitro model of carcinogenesis induced by HPV.

  6. 应用羊膜上皮干细胞微环境培养人角膜内皮细胞的研究%Microenvironment of amniotic epithelium cells enhances the proliferation of human corneal endothelial cells

    Institute of Scientific and Technical Information of China (English)

    王忠浩; 陈玮; 宋莉; 沙翔垠; 梁轩伟

    2013-01-01

    Objective To establish an effective method to enhance the proliferation of human corneal endothelial cells (HCECs). Methods The culture conditions of HCEC were optimized by utilizing the totipotent characteristics of human amniotic membrane epithelial stem cells (HAEC) to establish the optimal culture microenvironment of HAEC to promote the proliferation of HCEC. The morphology of HCEC was observed by using phase-contrast microscope and transmission electron microscope. MTT assay and Giemsa staining were performed to detect the proliferation of HCEC. The rate of apoptotic cells was investigated by using Hoechst33342 staining assay. Results Compared to the corneal endothelial cells medium (CEM), the microenvironment containing 20% HAEC-conditioned medium and HAEC-HCEC co-culture microenvironment could promote the proliferation of HCEC and could reduce the apoptosis of HCEC. The cells in HAEC-HCEC microenvironment group could be passaged 4 times without lossing their polygonal appearance. Conclusion The HAEC microenvironment could effectively enhance the proliferation of HCEC, maintain the morphology of HCEC, and inhibit the process of apoptosis of HCEC.%目的:建立一种利用羊膜上皮干细胞(human amniotic membrane epithelial cell,HAEC)微环境培养人角膜内皮细胞(human corneal endothelial cells,HCEC)的方法.方法:制备羊膜上皮干细胞微环境培养HCEC,并探讨诱导HCEC增殖的最佳培养微环境,倒置相差显微镜和透射电镜观察培养过程中细胞的形态学变化,MTT和Giemsa染色观察细胞增殖情况,Hoechst33342检测凋亡细胞比例.结果:在HCEC基本培养液(corneal endothelial cell medium,CEM)的基础上添加20% HAEC上清、HAEC-HCEC的微环境可促进HCEC的增殖,减少凋亡,细胞传代能力显著增强,HAEC-HCEC组传至4代仍保持多角形的内皮细胞形态.结论:羊膜上皮干细胞微环境培养可有效提高HCEE的增殖能力,更好地维持HCEC的形态,并能抑制其凋亡进程.

  7. Globoside accelerates the differentiation of dental epithelial cells into ameloblasts

    Institute of Scientific and Technical Information of China (English)

    Takashi Nakamura; Yuta Chiba; Masahiro Naruse; Kan Saito; Hidemitsu Harada; Satoshi Fukumoto

    2016-01-01

    Tooth crown morphogenesis is tightly regulated by the proliferation and differentiation of dental epithelial cells. Globoside (Gb4), a globo-series glycosphingolipid, is highly expressed during embryogenesis as well as organogenesis, including tooth development. We previously reported that Gb4 is dominantly expressed in the neutral lipid fraction of dental epithelial cells. However, because its functional role in tooth development remains unknown, we investigated the involvement of Gb4 in dental epithelial cell differentiation. The expression of Gb4 was detected in ameloblasts of postnatal mouse molars and incisors. A cell culture analysis using HAT-7 cells, a rat-derived dental epithelial cell line, revealed that Gb4 did not promote dental epithelial cell proliferation. Interestingly, exogenous administration of Gb4 enhanced the gene expression of enamel extracellular matrix proteins such as ameloblastin, amelogenin, and enamelin in dental epithelial cells as well as in developing tooth germs. Gb4 also induced the expression of TrkB, one of the key receptors required for ameloblast induction in dental epithelial cells. In contrast, Gb4 downregulated the expression of p75, a receptor for neurotrophins (including neurotrophin-4) and a marker of undifferentiated dental epithelial cells. In addition, we found that exogenous administration of Gb4 to dental epithelial cells stimulated the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase signalling pathways. Furthermore, Gb4 induced the expression of epiprofin and Runx2, the positive regulators for ameloblastin gene transcription. Thus, our results suggest that Gb4 contributes to promoting the differentiation of dental epithelial cells into ameloblasts.

  8. Sonic Hedgehog regulates thymic epithelial cell differentiation.

    Science.gov (United States)

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-04-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus.

  9. Potential uses of milk epithelial cells: a review

    OpenAIRE

    2002-01-01

    International audience; Secretions collected from the mammary gland of different species contain heterogeneous populations of cells including lymphocytes, neutrophils, macrophages and epithelial cells in different species. Several factors influence the somatic cell count in milk and the distribution of cell types, such as species, infection status, physiological status and management practices. The epithelial cells are shed into milk during the lactation process. Most of them are viable and e...

  10. MACROPHAGE MIGRATION INHIBITORY FACTOR IN PATIENTS WITH PRETERM PARTURITION AND MICROBIAL INVASION OF THE AMNIOTIC CAVITY

    Science.gov (United States)

    Chaiworapongsa, Tinnakorn; Romero, Roberto; Espinoza, Jimmy; Kim, Yeon Mee; Edwin, Samuel; Bujold, Emmanuel; Gomez, Ricardo; Kuivaniemi, Helena

    2006-01-01

    significant difference in median maternal plasma MIF concentrations among patients with preterm labor and intact membranes who delivered at term, those who delivered preterm, and those who had intra-amniotic infection (p>0.05 for all comparisons). Immunohistochemistry demonstrated that MIF protein was present in amniotic epithelial cells, and the mean percentage of immunoreactive MIF-staining cells was higher in patients with histologic chorioamnionitis than in those without this lesion (p=0.03). Similarly, the mean MIF mRNA expression was higher in chorioamniotic membranes obtained from patients with histologic chorioamnionitis than in those without this lesion (p=0.03). CONCLUSIONS Intra-amniotic infection and preterm parturition, but not term parturition, are associated with a significant increase in amniotic fluid MIF concentrations. Among patients with preterm labor with intact membranes, elevated amniotic fluid concentrations of MIF are associated with intra-amniotic inflammation, histologic chorioamnionitis, and shorter amniocentesis-to-delivery interval. These changes in amniotic fluid were not reflected in maternal plasma. An increased expression of MIF protein and mRNA in chorioamniotic membranes was observed in patients with histologic chorioamnionitis. PMID:16390807

  11. Desmosome dynamics in migrating epithelial cells requires the actin cytoskeleton

    Science.gov (United States)

    Roberts, Brett J.; Pashaj, Anjeza; Johnson, Keith R.; Wahl, James K.

    2011-01-01

    Re-modeling of epithelial tissues requires that the cells in the tissue rearrange their adhesive contacts in order to allow cells to migrate relative to neighboring cells. Desmosomes are prominent adhesive structures found in a variety of epithelial tissues that are believed to inhibit cell migration and invasion. Mechanisms regulating desmosome assembly and stability in migrating cells are largely unknown. In this study we established a cell culture model to examine the fate of desmosomal components during scratch wound migration. Desmosomes are rapidly assembled between epithelial cells at the lateral edges of migrating cells and structures are transported in a retrograde fashion while the structures become larger and mature. Desmosome assembly and dynamics in this system are dependent on the actin cytoskeleton prior to being associated with the keratin intermediate filament cytoskeleton. These studies extend our understanding of desmosome assembly and provide a system to examine desmosome assembly and dynamics during epithelial cell migration. PMID:21945137

  12. Sphingosine 1-phosphate in amniotic fluid modulates cyclooxygenase-2 expression in human amnion-derived WISH cells.

    Science.gov (United States)

    Kim, Jung Im; Jo, Eun Jin; Lee, Ha-Young; Cha, Moon Seok; Min, Jung Kee; Choi, Chang Hwan; Lee, Yong Moon; Choi, Young-Ae; Baek, Suk-Hwan; Ryu, Sung Ho; Lee, Kyu Sup; Kwak, Jong-Young; Bae, Yoe-Sik

    2003-08-22

    The metabolism of arachidonic acid, in particular the generation of prostaglandins (PGs), has been proposed to play a key role in the regulation of labor. Moreover, several extracellular proteins have been reported to modulate PG synthesis in amnion cells. In this study, we found that lipid components dissolved in the amniotic fluid modulate PG synthesis in WISH human amnion cells and identified one of these components as a sphingosine 1-phosphate (S1P). WISH cells express several S1P receptors including S1P1, S1P2, and S1P3. When WISH cells were stimulated with S1P, PGE2 synthesis increased in a concentration-dependent manner, showing maximal activity at around 100 nM. S1P treatment also caused the up-regulation of cyclooxygenase-2 (COX-2) mRNA and protein, which was apparent within 3-12 h of stimulation. In terms of the intracellular signaling pathway of S1P-induced WISH cell activation, we found that S1P stimulated two kinds of MAPK, ERK, and p38 kinase. We examined the roles of these two MAPKs in S1P-induced COX-2 expression. S1P-induced COX-2 expression was blocked completely by PD-98059 but not by SB-203580, suggesting that ERK has a critical role in the process. Transfection of S1P1 or S1P3 but not of S1P2 antisense oligonucleotide inhibited S1P-induced COX-2 expression and PGE2 production in WISH cells, indicating the involvements of S1P1 and S1P3 in the processes. This study demonstrates the physiological role of S1P in amniotic fluid and its effect on the modulation of COX-2 expression and PGs synthesis in WISH cells.

  13. Observing planar cell polarity in multiciliated mouse airway epithelial cells.

    Science.gov (United States)

    Vladar, Eszter K; Lee, Yin Loon; Stearns, Tim; Axelrod, Jeffrey D

    2015-01-01

    The concerted movement of cilia propels inhaled contaminants out of the lungs, safeguarding the respiratory system from toxins, pathogens, pollutants, and allergens. Motile cilia on the multiciliated cells (MCCs) of the airway epithelium are physically oriented along the tissue axis for directional motility, which depends on the planar cell polarity (PCP) signaling pathway. The MCCs of the mouse respiratory epithelium have emerged as an important model for the study of motile ciliogenesis and the PCP signaling mechanism. Unlike other motile ciliated or planar polarized tissues, airway epithelial cells are relatively easily accessible and primary cultures faithfully model many of the essential features of the in vivo tissue. There is growing interest in understanding how cells acquire and polarize motile cilia due to the impact of mucociliary clearance on respiratory health. Here, we present methods for observing and quantifying the planar polarized orientation of motile cilia both in vivo and in primary culture airway epithelial cells. We describe how to acquire and evaluate electron and light microscopy images of ciliary ultrastructural features that reveal planar polarized orientation. Furthermore, we describe the immunofluorescence localization of PCP pathway components as a simple readout for airway epithelial planar polarization and ciliary orientation. These methods can be adapted to observe ciliary orientation in other multi- and monociliated cells and to detect PCP pathway activity in any tissue or cell type.

  14. The Preliminary Experimental Study of Induced Differentiation of Embryonic Stem Cells into Corneal Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Ling Yu; Jian Ge; Zhichong Wang; Bing Huang; Keming Yu; Chongde Long; Xigu Chen

    2001-01-01

    Purpose:To study preliminarily induced differentiation of embryonic stem cells intocorneal epithelial cells in vitro.Methods: Murine embryonic stem cells were co-cultured with Rabbit limbal cornealepithelial cells in Transwell system to induce differentiation. Mophological andimmunohistochemical examination were implemented.Results: The induced cells from embryonic stem cells have an epithelial appearance.The cells formed a network and were confluent into film gradually after beingco-cultured with rabbit limbal corneal epithelial cells for 24 ~ 96 hours. The cells rangedmosaic structure and localized together with clear rim. Most of the cells showedpolygonal appearance. Transmission electron microscope showed lots of microvilli on thesurface of induced cells and tight junctions between them. These epithelial-like cellsexpressed the corneal epithelial cell specific marker cytokeratin3/cytokeratinl2.Conclusion: The potential mechanism of the differentiation of murine embryonic stemcells into corneal epithelial cells induced by limbal corneal epithelial cell-derivedinducing activity is to be further verified.

  15. Magnetic Resonance Imaging of Human-Derived Amniotic Membrane Stem Cells Using PEGylated Superparamagnetic Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maryam Naseroleslami

    2016-09-01

    Full Text Available Objective: The label and detection of cells injected into target tissues is an area of focus for researchers. Iron oxide nanoparticles can be used to label cells as they have special characteristics. The purpose of this study is to examine the effects of iron oxide nanoparticles on human-derived amniotic membrane stem cell (hAMCs survival and to investigate the magnetic properties of these nanoparticles with increased contrast in magnetic resonance imaging (MRI. Materials and Methods: In this experimental study, we initially isolated mesenchymal stem cells from amniotic membranes and analyzed them by flow cytometry. In addition, we synthesized superparamagnetic iron oxide nanoparticles (SPIONs and characterized them by various methods. The SPIONs were incubated with hAMCs at concentrations of 25-800 μg/mL. The cytotoxicity of nanoparticles on hAMCs was measured by the MTT assay. Next, we evaluated the effectiveness of the magnetic nanoparticles as MRI contrast agents. Solutions of SPION were prepared in water at different iron concentrations for relaxivity measurements by a 1.5 Tesla clinical MRI instrument. Results: The isolated cells showed an adherent spindle shaped morphology. Polyethylene glycol (PEG-coated SPIONs exhibited a spherical morphology. The average particle size was 20 nm and magnetic saturation was 60 emu/g. Data analysis showed no significant reduction in the percentage of viable cells (97.86 ± 0.41% after 72 hours at the 125 μg/ml concentration compared with the control. The relaxometry results of this SPION showed a transverse relaxivity of 6.966 (μg/ml.s-1 Conclusion: SPIONs coated with PEG used in this study at suitable concentrations had excellent labeling efficiency and biocompatibility for hAMCs.

  16. Magnetic Resonance Imaging of Human-Derived Amniotic Membrane Stem Cells Using PEGylated Superparamagnetic Iron Oxide Nanoparticles

    Science.gov (United States)

    Naseroleslami, Maryam; Parivar, Kazem; Khoei, Samideh; Aboutaleb, Nahid

    2016-01-01

    Objective The label and detection of cells injected into target tissues is an area of focus for researchers. Iron oxide nanoparticles can be used to label cells as they have special characteristics. The purpose of this study is to examine the effects of iron oxide nanoparticles on human-derived amniotic membrane stem cell (hAMCs) survival and to investigate the magnetic properties of these nanoparticles with increased contrast in magnetic resonance imaging (MRI). Materials and Methods In this experimental study, we initially isolated mesenchymal stem cells from amniotic membranes and analyzed them by flow cytometry. In addition, we synthesized superparamagnetic iron oxide nanoparticles (SPIONs) and characterized them by various methods. The SPIONs were incubated with hAMCs at concentrations of 25-800 μg/mL. The cytotoxicity of nanoparticles on hAMCs was measured by the MTT assay. Next, we evaluated the effectiveness of the magnetic nanoparticles as MRI contrast agents. Solutions of SPION were prepared in water at different iron concentrations for relaxivity measurements by a 1.5 Tesla clinical MRI instrument. Results The isolated cells showed an adherent spindle shaped morphology. Polyethylene glycol (PEG)-coated SPIONs exhibited a spherical morphology. The average particle size was 20 nm and magnetic saturation was 60 emu/g. Data analysis showed no significant reduction in the percentage of viable cells (97.86 ± 0.41%) after 72 hours at the 125 μg/ml concentration compared with the control. The relaxometry results of this SPION showed a transverse relaxivity of 6.966 (μg/ml.s)-1 Conclusion SPIONs coated with PEG used in this study at suitable concentrations had excellent labeling efficiency and biocompatibility for hAMCs. PMID:27602314

  17. Establishment of Hertwig’s Epithelial Root Sheath/Epithelial Rests of Malassez Cell Line from Human Periodontium

    OpenAIRE

    Nam, Hyun; Kim, Ji-Hye; Kim, Jae-Won; Seo, Byoung-Moo; Park, Joo-Cheol; Kim, Jung-Wook; Lee, Gene

    2014-01-01

    Human Hertwig’s epithelial root sheath/epithelial rests of Malassez (HERS/ERM) cells are epithelial remnants of teeth residing in the periodontium. Although the functional roles of HERS/ERM cells have yet to be elucidated, they are a unique epithelial cell population in adult teeth and are reported to have stem cell characteristics. Therefore, HERS/ERM cells might play a role as an epithelial component for the repair or regeneration of dental hard tissues; however, they are very rare populati...

  18. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  19. AMNIOTIC MEMBRANE TRANSPLANTATION FOR KERATITIS.

    Directory of Open Access Journals (Sweden)

    Snezhana Murgova

    2015-06-01

    Full Text Available Keratitis without proper management tends to perforate the cornea, resulting in severe adverse consequences. In recent studies, amniotic membrane is reported to have anti-inflammatory effect and promote wound healing of corneal ulcer. Purpose: To report on the efficacy of permanent amniotic membrane transplantation (AMT in the treatment of keratitis. Case report: A 58-year-old man with severe keratitis in both eyes caused by long term administration of topical anesthetic (alcaine for electric ophthalmia. Single layer of amniotic membrane (AM was placed on the defect and secured to the limbus with interrupted 10-0 nylon sutures. A bandage contact lens was applied on the AM. Postoperative medication included topical antibiotic, artificial tears and mydriatic. Three months later corticosteroid was included. There was an immediate decrease of patient’s pain after surgery. Complete epithelialization was noted after 1 month. Conclusion: AMT is an alternative adjunctive method of treatment of keratitis; it promotes epithelialization process, decreased inflammation, corneal haze and neovascularization.

  20. Quantitative assessment of cytosolic Salmonella in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Leigh A Knodler

    Full Text Available Within mammalian cells, Salmonella enterica serovar Typhimurium (S. Typhimurium inhabits a membrane-bound vacuole known as the Salmonella-containing vacuole (SCV. We have recently shown that wild type S. Typhimurium also colonizes the cytosol of epithelial cells. Here we sought to quantify the contribution of cytosolic Salmonella to the total population over a time course of infection in different epithelial cell lines and under conditions of altered vacuolar escape. We found that the lysosomotropic agent, chloroquine, acts on vacuolar, but not cytosolic, Salmonella. After chloroquine treatment, vacuolar bacteria are not transcriptionally active or replicative and appear degraded. Using a chloroquine resistance assay, in addition to digitonin permeabilization, we found that S. Typhimurium lyses its nascent vacuole in numerous epithelial cell lines, albeit with different frequencies, and hyper-replication in the cytosol is also widespread. At later times post-infection, cytosolic bacteria account for half of the total population in some epithelial cell lines, namely HeLa and Caco-2 C2Bbe1. Both techniques accurately measured increased vacuole lysis in epithelial cells upon treatment with wortmannin. By chloroquine resistance assay, we also determined that Salmonella pathogenicity island-1 (SPI-1, but not SPI-2, the virulence plasmid nor the flagellar apparatus, was required for vacuolar escape and cytosolic replication in epithelial cells. Together, digitonin permeabilization and the chloroquine resistance assay will be useful, complementary tools for deciphering the mechanisms of SCV lysis and Salmonella replication in the epithelial cell cytosol.

  1. An Ultra-thin Amniotic Membrane as Carrier in Corneal Epithelium Tissue-Engineering.

    Science.gov (United States)

    Zhang, Liying; Zou, Dulei; Li, Sanming; Wang, Junqi; Qu, Yangluowa; Ou, Shangkun; Jia, Changkai; Li, Juan; He, Hui; Liu, Tingting; Yang, Jie; Chen, Yongxiong; Liu, Zuguo; Li, Wei

    2016-02-15

    Amniotic membranes (AMs) are widely used as a corneal epithelial tissue carrier in reconstruction surgery. However, the engineered tissue transparency is low due to the translucent thick underlying AM stroma. To overcome this drawback, we developed an ultra-thin AM (UAM) by using collagenase IV to strip away from the epithelial denuded AM (DAM) some of the stroma. By thinning the stroma to about 30 μm, its moist and dry forms were rendered acellular, optically clear and its collagen framework became compacted and inerratic. Engineered rabbit corneal epithelial cell (RCEC) sheets generated through expansion of limbal epithelial cells on UAM were more transparent and thicker than those expanded on DAM. Moreover, ΔNp63 and ABCG2 gene expression was greater in tissue engineered cell sheets expanded on UAM than on DAM. Furthermore, 2 weeks after surgery, the cornea grafted with UAM based cell sheets showed higher transparency and more stratified epithelium than the cornea grafted with DAM based cell sheets. Taken together, tissue engineered corneal epithelium generated on UAM has a preferable outcome because the transplanted tissue is more transparent and better resembles the phenotype of the native tissue than that obtained by using DAM for this procedure. UAM preserves compact layer of the amniotic membrane and maybe an ideal substrate for corneal epithelial tissue engineering.

  2. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera-Hernandez (Monica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  3. Ion transport in epithelial spheroids derived from human airway cells

    DEFF Research Database (Denmark)

    Pedersen, P S; Frederiksen, O; Holstein-Rathlou, N H

    1999-01-01

    In the present study, we describe a novel three-dimensional airway epithelial explant preparation and demonstrate its use for ion transport studies by electrophysiological technique. Suspension cultures of sheets of epithelial cells released by protease treatment from cystic fibrosis (CF) and non...

  4. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells

    Indian Academy of Sciences (India)

    Forum Kayastha; Kaid Johar; Devarshi Gajjar; Anshul Arora; Hardik Madhu; Darshini Ganatra; Abhay Vasavada

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers -SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO.

  5. Tuberin and PRAS40 are anti-apoptotic gatekeepers during early human amniotic fluid stem-cell differentiation.

    Science.gov (United States)

    Fuchs, Christiane; Rosner, Margit; Dolznig, Helmut; Mikula, Mario; Kramer, Nina; Hengstschläger, Markus

    2012-03-01

    Embryoid bodies (EBs) are three-dimensional multicellular aggregates allowing the in vitro investigation of stem-cell differentiation processes mimicking early embryogenesis. Human amniotic fluid stem (AFS) cells harbor high proliferation potential, do not raise the ethical issues of embryonic stem cells, have a lower risk for tumor development, do not need exogenic induction of pluripotency and are chromosomal stable. Starting from a single human AFS cell, EBs can be formed accompanied by the differentiation into cells of all three embryonic germ layers. Here, we report that siRNA-mediated knockdown of the endogenous tuberous sclerosis complex-2 (TSC2) gene product tuberin or of proline-rich Akt substrate of 40 kDa (PRAS40), the two major negative regulators of mammalian target of rapamycin (mTOR), leads to massive apoptotic cell death during EB development of human AFS cells without affecting the endodermal, mesodermal and ectodermal cell differentiation spectrum. Co-knockdown of endogenous mTOR demonstrated these effects to be mTOR-dependent. Our findings prove this enzyme cascade to be an essential anti-apoptotic gatekeeper of stem-cell differentiation during EB formation. These data allow new insights into the regulation of early stem-cell maintenance and differentiation and identify a new role of the tumor suppressor tuberin and the oncogenic protein PRAS40 with the relevance for a more detailed understanding of the pathogenesis of diseases associated with altered activities of these gene products.

  6. Endoplasmic reticulum protein 29 regulates epithelial cell integrity during the mesenchymal-epithelial transition in breast cancer cells.

    Science.gov (United States)

    Bambang, I F; Lee, Y K; Richardson, D R; Zhang, D

    2013-03-07

    The epithelial-mesenchymal transition (EMT) correlates with disruption of cell-cell adhesion, loss of cell polarity and development of epithelial cell malignancy. Identifying novel molecules that inhibit EMT has profound potential for developing mechanism-based therapeutics. We previously demonstrated that the endoplasmic reticulum protein 29 (ERp29) is a novel factor that can drive mesenchymal-epithelial transition (MET) and induce cell growth arrest in MDA-MB-231 cells. Here, we show that ERp29 is an important molecule in establishing epithelial cell integrity during the MET. We demonstrate that ERp29 regulates MET in a cell context-dependent manner. ERp29 overexpression induced a complete MET in mesenchymal MDA-MB-231 cells through downregulating the expression of transcriptional repressors (for example, Slug, Snai1, ZEB2 and Twist) of E-cadherin. In contrast, overexpression of ERp29 induces incomplete MET in basal-like BT549 cells in which the expression of EMT-related markers (for example, vimentin; cytokeratin 19 (CK19) and E-cadherin) and the transcriptional repressors of E-cadherin were not altered. However, ERp29 overexpression in both cell-types resulted in loss of filamentous stress fibers, formation of cortical actin and restoration of an epithelial phenotype. Mechanistic studies revealed that overexpression of ERp29 in both cell-types upregulated the expression of TJ proteins (zonula-occludens-1 (ZO-1) and occludin) and the core apical-basal polarity proteins (Par3 and Scribble) at the membrane to enhance cell-cell contact and cell polarization. Knockdown of ERp29 in the epithelial MCF-7 cells decreased the expression of these proteins, leading to the disruption of cell-cell adhesion. Taken together, ERp29 is a novel molecule that regulates MET and epithelial cell integrity in breast cancer cells.

  7. Amniotic fluid (image)

    Science.gov (United States)

    Amniotic fluid surrounds the growing fetus in the womb and protects the fetus from injury and temperature changes. ... of fetal movement and permits musculoskeletal development. The amniotic fluid can be withdrawn in a procedure called amniocentsis ...

  8. Minor ipsilateral simple limbal epithelial transplantation (mini-SLET) for pterygium treatment

    Science.gov (United States)

    Hernández-Bogantes, Erick; Amescua, Guillermo; Navas, Alejandro; Garfias, Yonathan; Ramirez-Miranda, Arturo; Lichtinger, Alejandro; Graue-Hernández, Enrique O

    2015-01-01

    We describe a novel surgical technique for pterygium removal taking advantage of the properties of amniotic membrane and limbal epithelial stem cells. A total of 10 eyes underwent pterygium excision with amniotic membrane coverage of the bare sclera and placement of pieces of limbal epithelium in a linear fashion in the affected limbal area covered by a second amniotic membrane using fibrin glue. After up to 8 months of follow-up, there were no signs of early recurrence or sight-threatening complications. The minor ipsilateral simple limbal epithelial transplantation technique for the treatment of pterygium requires less tissue than the conventional conjunctival autograft, leaving healthy conjunctiva if needed for another procedure in the future and offers the advantages of epithelial stem cells, which in the long term may reduce the rate of recurrence significantly. PMID:26130669

  9. Mitosis orientation in prostate epithelial cells changed by endocrine effect

    Institute of Scientific and Technical Information of China (English)

    Xiang-yun LIU; Dong-mei Li; Xiao-fang ZHANG; Jian-hui WU; Zu-yue SUN

    2008-01-01

    Aim: The aim of the present study was to investigate the effect of androgen and estrogen on mitosis orientation in the prostate epithelial cells of male rats. Methods: Castrated rats were treated with a single injection of testosterone propionate (TP) or benzogynestry (E2). There were 8 rats in the control group and TP-treated or E2-treated group. Prostate, liver, a specimen of skin, and a segment of the jejunum and colon were removed after the corresponding treatment. The results were observed through immunohistochemistry and iron hematoxylin-eosin staining.Results: All mitoses found in the prostate epithelial cells of castrated rats with TP were oriented parallel to the basement membrane; however, mitoses found in the prostate epithelial cells of castrated rats in E2 and the control group were oriented perpendicular to the basement membrane. TP treatment resulted in marked changes in mitosis orientation in the prostate epithelial cells. Bromodeoxyuridine-labeled positive cells could be seen throughout the stroma and prostate epithelial cells with an injection of TP; however, the positive cells could only be seen in the stroma of prostate with an injection of E2, and the positive cells could hardly be seen in the control group. Conclusion: We found a novel effect of TP in the prostate as a marked change of mitosis orientation in prostate epithelial cells.

  10. Simvastatin Attenuates TGF-β1-Induced Epithelial-Mesenchymal Transition in Human Alveolar Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Tuo Yang

    2013-06-01

    Full Text Available Background: Transforming growth factor-β1 (TGF-β1-induced epithelial-mesenchymal transition (EMT of alveolar epithelial cells (AEC may contribute to idiopathic pulmonary fibrosis (IPF. TGF-β1-induced EMT in A549 cells (a human AEC cell line resulted in the adoption of mesenchymal responses that were predominantly mediated via the TGF-β1-Smad2/3 signaling pathway. Simvastatin (Sim, a 3-hydroxy-3-methylglutaryl CoA (HMG-CoA reductase inhibitor, has been previously reported to inhibit EMT in human proximal tubular epithelial cells and porcine lens epithelial cells and to suppress Smad2/3 phosphorylation in animal models. However, whether Sim can attenuate TGF-β1-induced EMT in A549 cells and its underlying mechanisms remains unknown. Methods: Cells were incubated with TGF-β1 in the presence or absence of Sim. The epithelial marker E-cadherin (E-Cad and the mesenchymal markers, α-smooth muscle actin (α-SMA, vimentin (Vi and fibronectin (FN, were detected using western blotting analyses and immunofluorescence. Phosphorylated Smad2 and Smad3 levels and connective tissue growth factor (CTGF were analyzed using western blotting. In addition, a cell migration assay was performed. Moreover, the levels of matrix metalloproteinase (MMP-2 and -9 in the culture medium were examined using ELISA. Results: Sim significantly attenuated the TGF-β1-induced decrease in E-Cad levels and elevated the levels of α-SMA, Vi and FN via the suppression of Smad2 and Smad3 phosphorylation. Furthermore, Sim inhibited the mesenchymal-like responses in A549 cells, including cell migration, CTGF expression and secretion of MMP-2 and -9. However, Sim failed to reverse the cell morphologial changes induced by TGF-β1 in A549 cells. Conclusion: Sim attenuated TGF-β1-induced EMT in A549 cells and might be a promising therapeutic agent for treating IPF.

  11. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume...... expression of ion transporters and channels is now recognized as one of the hallmarks of cancer, it is timely to consider this especially for epithelia. Epithelial cells are highly proliferative and epithelial cancers, carcinomas, account for about 90% of all cancers. In this review we will focus on ion...... transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed....

  12. Cell cycle regulation by glucosamine in human pulmonary epithelial cells.

    Science.gov (United States)

    Chuang, Kun-Han; Lu, Chih-Shen; Kou, Yu Ru; Wu, Yuh-Lin

    2013-04-01

    Airway epithelial cells play an important role against intruding pathogens. Glucosamine, a commonly used supplemental compound, has recently begun to be regarded as a potential anti-inflammatory molecule. This study aimed to uncover how glucosamine impacts on cellular proliferation in human alveolar epithelial cells (A549) and bronchial epithelial cells (HBECs). With trypan blue-exclusion assay, we observed that glucosamine (10, 20, 50 mM) caused a decrease in cell number at 24 and 48 h; with a flow cytometric analysis, we also noted an enhanced cell accumulation within the G(0)/G(1) phase at 24 h and induction of late apoptosis at 24 and 48 h by glucosamine (10, 20, 50 mM) in A549 cells and HBECs. Examination of phosphorylation in retinoblastoma (Rb) protein, we found an inhibitory effect by glucosamine at 20 and 50 mM. Glucosamine at 50 mM was demonstrated to elevate both the mRNA and protein expression of p53 and heme oxygenase-1 (HO-1), but also caused a reduction in p21 protein expression. In addition, glucosamine attenuated p21 protein stability via the proteasomal proteolytic pathway, as well as inducing p21 nuclear accumulation. Altogether, our results suggest that a high dose of glucosamine may inhibit cell proliferation through apoptosis and disturb cell cycle progression with a halt at G(0)/G(1) phase, and that this occurs, at least in part, by a reduction in Rb phosphorylation together with modulation of p21, p53 and HO-1 expression, and nuclear p21 accumulation.

  13. Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila.

    Science.gov (United States)

    Chihara, Takahiro; Kato, Kagayaki; Taniguchi, Misako; Ng, Julian; Hayashi, Shigeo

    2003-04-01

    Cell rearrangement, accompanied by the rapid assembly and disassembly of cadherin-mediated cell adhesions, plays essential roles in epithelial morphogenesis. Various in vitro and cell culture studies on the small GTPase Rac have suggested it to be a key regulator of cell adhesion, but this notion needs to be verified in the context of embryonic development. We used the tracheal system of Drosophila to investigate the function of Rac in the epithelial cell rearrangement, with a special attention to its role in regulating epithelial cadherin activity. We found that a reduced Rac activity led to an expansion of cell junctions in the embryonic epidermis and tracheal epithelia, which was accompanied by an increase in the amount of Drosophila E-Cadherin-Catenin complexes by a post-transcriptional mechanism. Reduced Rac activity inhibited dynamic epithelial cell rearrangement. Hyperactivation of Rac, on the other hand, inhibited assembly of newly synthesized E-Cadherin into cell junctions and caused loss of tracheal cell adhesion, resulting in cell detachment from the epithelia. Thus, in the context of Drosophila tracheal development, Rac activity must be maintained at a level necessary to balance the assembly and disassembly of E-Cadherin at cell junctions. Together with its role in cell motility, Rac regulates plasticity of cell adhesion and thus ensures smooth remodeling of epithelial sheets into tubules.

  14. Amniotic fluid stem cells morph into a cardiovascular lineage: analysis of a chemically induced cardiac and vascular commitment.

    Science.gov (United States)

    Maioli, Margherita; Contini, Giovanni; Santaniello, Sara; Bandiera, Pasquale; Pigliaru, Gianfranco; Sanna, Raimonda; Rinaldi, Salvatore; Delitala, Alessandro P; Montella, Andrea; Bagella, Luigi; Ventura, Carlo

    2013-01-01

    Mouse embryonic stem cells were previously observed along with mesenchymal stem cells from different sources, after being treated with a mixed ester of hyaluronan with butyric and retinoic acids, to show a significant increase in the yield of cardiogenic and vascular differentiated elements. The aim of the present study was to determine if stem cells derived from primitive fetal cells present in human amniotic fluid (hAFSCs) and cultured in the presence of a mixture of hyaluronic (HA), butyric (BU), and retinoic (RA) acids show a higher yield of differentiation toward the cardiovascular phenotype as compared with untreated cells. During the differentiation process elicited by exposure to HA + BU + RA, genes controlling pluripotency and plasticity of stem cells, such as Sox2, Nanog, and Oct4, were significantly downregulated at the transcriptional level. At this point, a significant increase in expression of genes controlling the appearance of cardiogenic and vascular lineages in HA + BU + RA-treated cells was observed. The protein expression levels typical of cardiac and vascular phenotypes, evaluated by Western blotting, immunofluorescence, and flow cytometry, were higher in hAFSCs cultured in the presence of HA + BU + RA, as compared with untreated control cells. Appearance of the cardiac phenotype was further inferred by ultrastructural analysis using transmission and scanning electron microscopy. These results demonstrate that a mixture of HA + BU + RA significantly increased the yield of elements committed toward cardiac and vascular phenotypes, confirming what we have previously observed in other cellular types.

  15. Potential uses of milk epithelial cells: a review.

    Science.gov (United States)

    Boutinaud, Marion; Jammes, Hélène

    2002-01-01

    Secretions collected from the mammary gland of different species contain heterogeneous populations of cells including lymphocytes, neutrophils, macrophages and epithelial cells in different species. Several factors influence the somatic cell count in milk and the distribution of cell types, such as species, infection status, physiological status and management practices. The epithelial cells are shed into milk during the lactation process. Most of them are viable and exhibit the characteristics of fully differentiated alveolar cells. Primary cultures of epithelial cells from colostrum and milk of humans, baboons, cows and goats together with established cell lines from human and goat milk, provide a good model for the study of lactogenesis, immunity transmission, cancer research and infection by viruses. The RNA extracted from milk cells have been shown to be representative of gene expression in the mammary gland and thus provide a source of material for molecular studies of gene expression and environmental interactions.

  16. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Samantha Sheller

    Full Text Available At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i exosomes act as carriers of signals in utero-placental compartments and ii exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC. We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H 3, heat shock protein (HSP 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK (P-p38 MAPK co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (p<0.05. Finally, mass spectrometry and bioinformatics analysis identified 221 different proteins involved in immunomodulatory response and cell-to-cell communication. This study determined

  17. In Vitro transformation of LW13 Rat liver epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    SHICAN; KARLFETNANSKY; 等

    1992-01-01

    A rat liver epithelial cell line designated LW 13 was established using a sequential sedimentation method.The cell line retained many normal proerties of liver epithelial cells and showed some structural and functional features resembling those of liver parenchymal cells,LW13 cells became malignant after the intrduction of exogenous transforming EJ Ha ras gene,Tumors produced by inoculation of the transformed cells into baby rats contained areas of poorly differentialted hepatocellular carcinoma,In situ hybridization analysis confirmed the random rather than specific integration of exogenous ras gene into host chromosomes.Furthermore,an at least tenfold increase in the expression of the endogenous c mys gene was detected among transformed cell lines,suggesting the involvement of the c myc proto oncogene in the in vitro transformation of rat liver epithelial cells by EJ Ha ras oncogene.

  18. Histochemical, Biochemical and Cell Biological aspects of tail regeneration in lizard, an amniote model for studies on tissue regeneration.

    Science.gov (United States)

    Alibardi, Lorenzo

    2014-01-01

    The present review summarizes biochemical, histochemical and immunocytochemical aspects of the process of tissue regeneration in lizards, non-mammalian amniotes with high regenerative power. The amputated tail initially mobilizes the glycogen and lipid reserves during wound healing. In the following stage of formation of the regenerative blastema tissue remodeling produces a typical embryonic tissue, initially increasing the amount of water and glycosaminoglycans such as jaluronate, which are later replaced by sulfated glycosaminoglycans and collagen during tail elongation. In blastematic and early differentiating stages the initial anaerobic metabolism utilizes glycolysis and hexose monophosphate pathways to sustain high RNA production and lipid catabolism for energy production. This stage, after formation of blood vessels, is replaced by the energy-efficient aerobic metabolism based on the Krebs' cycle that is needed for the differentiation and growth of the new tissues of the regenerating tail. Specific proteins of the cytoskeleton, extracellular matrix, cell junctions, transcriptional and growth factors are actively produced in the embryonic environment of early stages of regeneration and allow for cell movement, signaling and differentiation. During wound healing, the production of anti-microbial peptides in granulocytes is likely involved in limiting inflammation and stimulates tissue regeneration in the tail while the lasting inflammatory reaction of the limb and spinal cord limits their potential of regeneration. Activated hemopoiesis, circulating blood, endocrine glands, liver, kidney and spleen supply the regenerating tissues with metabolites and hormones but also with phagocytes and immuno-competent cells that can inhibit tissue regeneration after repetitive amputations that elicit chronic inflammation. The latter aspect shows how successful tissue regeneration in an amniote can be turned into scarring by the alteration of the initial microenvironment

  19. Endothelin-1 and macrophage colony-stimulating factor are co-localized in human amnion membrane cells and secreted into amniotic fluid.

    Science.gov (United States)

    Fried, Gabriel; Sand, Anna; Ostlund, Eva; Andersson, Eva; Byström, Birgitta; Ståbi, Berit

    2003-11-01

    We have examined the cellular localization and human amniotic fluid content of endothelin-1 (ET-1) and macrophage colony-stimulating factor (M-CSF). The study material consisted of amniotic fluid from 20 patients referred for amniocentesis, and placental samples from normal deliveries. ET-1 and M-CSF were analysed by radioimmunoassay and enzyme-linked immunosorbent assay respectively. The cellular localization of ET-1 and M-CSF in the amnion membranes was analysed by double-labelling immunocytochemistry using fluorescein isothiocyanate- and Cy3-labelled secondary antibodies. Release of ET-1 and M-CSF was studied in cultured amniocytes. We found that the mean +/- SD concentrations of ET-1 and M-CSF in fetal amniotic fluid were 45.6 +/- 17.3 pmol/l (range 16.8-85.5) and 7323 +/- 3415 ng/l (range 2640-12 110) respectively. Double-labelling immunocytochemistry showed that both M-CSF and ET-1 were co-localized in the same cells to a high extent. Further analysis revealed that levels of M-CSF, but not ET-1, were significantly correlated with pregnancy length. Both M-CSF and ET-1 were released from cultured amniocytes in response to interleukin-1. These findings show that ET-1 and M-CSF are partly co-localized to specific cells in the human amniotic membrane. As both M-CSF and ET-1 were released from cultured amniocytes in vitro, this suggests that they both may be secreted into fetal amniotic fluid in vivo as well.

  20. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  1. Connective Tissue Growth Factor Expression in Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Amrita DOSANJH

    2006-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein that promotes extracellular matrix deposition. CTGF is selectively induced by transforming growth factor β and des-Arg kallidin in lung fibroblasts and increases steady-state mRNA levels of α type I collagen, 5α-integrin and fibronectin in fibroblasts. Bronchial epithelial cells have been proposed to functionally interact with lung fibroblasts. We therefore investigated if bronchial epithelial cells are able to synthesize CTGF. Human bronchial epithelial cells were grown to subconfluence in standard growth media. Proliferating cells grown in small airway growth media were harvested following starvation for up to 24 h. Expression of CTGF transcripts was measured by PCR. Immunocytochemistry was also completed using a commercially available antibody.The cells expressed readily detectable CTGF transcripts. Starvation of these cells resulted in a quantitative decline of CTGF transcripts. Direct sequencing of the PCR product identified human CTGF. Immunocytochemistry confirmed intracellular CTGF in the cells and none in negative control cells. We conclude that bronchial epithelial cells could be a novel source of CTGF. Bronchial epithelial cell-derived CTGF could thus directly influence the deposition of collagen in certain fibrotic lung diseases.

  2. Evaluation of correlation between nucleated red blood cell count in term newborns and meconium-stained amniotic fluid

    Directory of Open Access Journals (Sweden)

    Esmaeilian L

    2001-09-01

    Full Text Available Considering the incidence of meconium-stained amniotic fluid (MSAF in newborns and its complications, and also based on indirect reports pointing out relationship between nucleated red blood cell (nRBC, as a marker of chronic hypoxia, and MSAF in term newborns, and in order to determine this relationship more accurately, this study was done on women with uncomplicated singleton term pregnancy that admitted for delivery at Shariati hospital in year 2000. After excluding confounding factors on nRBC, case group who includes infants with MSAF, and control group who have clear amniotic fluid were determined. Maternal age and parity, gestational age, birth weight, apgar score, neonatal out come, and FHR pattern as well as newborn hemoglobin values were evaluated. Venous cord blood was analyzed for nRBC counts per 100 WBC. Case and control groups were divided according to nRBC counts with cutoff point of 10 and then compared statistically. From the samples, 117 cases and 67 controls were evaluated. Maternal and neonatal factors were similar in two situations. Number of nRBC was 3.75±4.8 in control group and 12.04±11.7 in case group (P<0.01 and it was abnormal (>10 in 9 percent of newborns with clear fluid and 32 percent of MSAF (P<0.01. Cord blood nRBC count increased when meconium is passed intrauterine. This suggests that cases with MSAF may be at risk of chronic hypoxia. Cohort research is recommended to study the affect of delivery mode on the neonatal outcome in cases with MSAF and to evaluate the cause of fetal hypoxia in uncomplicated pregnancy with MSAF.

  3. Comparison of the neural differentiation potential of human mesenchymal stem cells from amniotic fluid and adult bone marrow.

    Science.gov (United States)

    Yan, Zhong-Jie; Hu, Yu-Qin; Zhang, Hong-Tian; Zhang, Peng; Xiao, Zong-Yu; Sun, Xin-Lin; Cai, Ying-Qian; Hu, Chang-Chen; Xu, Ru-Xiang

    2013-05-01

    Human mesenchymal stem cells (MSCs) are considered a promising tool for cell-based therapies of nervous system diseases. Bone marrow (BM) has been the traditional source of MSCs (BM-MSCs). However, there are some limitations for their clinical use, such as the decline in cell number and differentiation potential with age. Recently, amniotic fluid (AF)-derived MSCs (AF-MSCs) have been shown to express embryonic and adult stem cell markers, and can differentiate into cells of all three germ layers. In this study, we isolated AF-MSCs from second-trimester AF by limiting dilution and compared their proliferative capacity, multipotency, neural differentiation ability, and secretion of neurotrophins to those of BM-MSCs. AF-MSCs showed a higher proliferative capacity and more rapidly formed and expanded neurospheres compared to those of BM-MSCs. Both immunocytochemical and quantitative real-time PCR analyses demonstrated that AF-MSCs showed higher expression of neural stemness markers than those of BM-MSCs following neural stem cell (NSC) differentiation. Furthermore, the levels of brain-derived growth factor and nerve growth factor secreted by AF-MSCs in the culture medium were higher than those of BM-MSCs. In addition, AF-MSCs maintained a normal karyotype in long-term cultures after NSC differentiation and were not tumorigenic in vivo. Our findings suggest that AF-MSCs are a promising and safe alternative to BM-MSCs for therapy of nervous system diseases.

  4. Levels of CD105(+) cells increase and cell proliferation decreases during S-phase arrest of amniotic fluid cells in long-term culture.

    Science.gov (United States)

    Wang, Ding; Chen, Rui; Zhong, Xuan; Fan, Yong; Lai, Weiqiang; Sun, Xiaofang

    2014-11-01

    The present study aimed to improve the characterization of amniotic fluid cells (AFCs) in order to optimize their use in chromosomal prenatal diagnosis and as seed or stem cells for tissue engineering. The AFCs used in the current study were obtained from three females in their second trimester of pregnancy. The cells were cultured independently and characterized by cell morphology, cell markers, cell cycle distribution and chromosome Giemsa banding in an early- and late-passage. The AFCs remained homogeneous in culture and expressed mesenchymal markers, but not endothelial markers along the culture process. In addition, compared with the early-passage cells, the late-passage cells exhibit an increase in CD105 expression, a decrease in cell division and a delay in the cell cycle, and a number of cells underwent cell cycle arrest. However, the cells retained a normal karyotype. Therefore, the current study characterized AFCs in a clinical culture and confirmed that AFCs are mesenchymal precursors. The results obtained may be useful for the application of AFCs in prenatal diagnosis.

  5. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    Science.gov (United States)

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  6. Trefoil peptides promote restitution of wounded corneal epithelial cells.

    Science.gov (United States)

    Göke, M N; Cook, J R; Kunert, K S; Fini, M E; Gipson, I K; Podolsky, D K

    2001-04-01

    The ocular surface shares many characteristics with mucosal surfaces. In both, healing is regulated by peptide growth factors, cytokines, and extracellular matrix proteins. However, these factors are not sufficient to ensure most rapid healing. Trefoil peptides are abundantly expressed epithelial cell products which exert protective effects and are key regulators of gastrointestinal epithelial restitution, the critical early phase of cell migration after mucosal injury. To assess the role of trefoil peptides in corneal epithelial wound healing, the effects of intestinal trefoil factor (ITF/TFF3) and spasmolytic polypeptide (SP/TFF2) on migration and proliferation of corneal epithelial cells were analyzed. Both ITF and SP enhanced restitution of primary rabbit corneal epithelial cells in vitro. While the restitution-enhancing effects of TGF-alpha and TGF-beta were both inhibited by neutralizing anti-TGF-beta-antibodies, trefoil peptide stimulation of restitution was not. Neither trefoil peptide significantly affected proliferation of primary corneal epithelial cells. ITF but not SP or pS2 mRNA was present in rabbit corneal and conjunctival tissues. In summary, the data indicate an unanticipated role of trefoil peptides in healing of ocular surface and demand rating their functional actions beyond the gastrointestinal tract.

  7. Attachment of epithelial cells and fibroblasts to ceramic materials.

    Science.gov (United States)

    Niederauer, G G; McGee, T D; Keller, J C; Zaharias, R S

    1994-04-01

    This study examined in vitro gingival epithelial and fibroblast cell attachment to ceramic materials made of tricalcium phosphate and/or magnesium aluminate spinel. The composite made of tricalcium phosphate and spinel is called 'osteoceramic'. These ceramics had various compositions and surface structures, which were initially characterized. Cell attachment assays were performed using both cell types to compare cellular response to the ceramic materials. Specimens were also prepared for scanning electron microscopy to investigate cellular morphology. The highest levels of cell attachment for gingival epithelial cells were observed on the rough osteoceramic surface, whereas gingival fibroblasts attached least to the rough osteoceramic surface.

  8. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  9. Lingual Epithelial Stem Cells and Organoid Culture of Them

    Directory of Open Access Journals (Sweden)

    Hiroko Hisha

    2016-01-01

    Full Text Available As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP, were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  10. Lingual Epithelial Stem Cells and Organoid Culture of Them.

    Science.gov (United States)

    Hisha, Hiroko; Tanaka, Toshihiro; Ueno, Hiroo

    2016-01-28

    As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP), were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  11. Starved epithelial cells uptake extracellular matrix for survival

    Science.gov (United States)

    Muranen, Taru; Iwanicki, Marcin P.; Curry, Natasha L.; Hwang, Julie; DuBois, Cory D.; Coloff, Jonathan L.; Hitchcock, Daniel S.; Clish, Clary B.; Brugge, Joan S.; Kalaany, Nada Y.

    2017-01-01

    Extracellular matrix adhesion is required for normal epithelial cell survival, nutrient uptake and metabolism. This requirement can be overcome by oncogene activation. Interestingly, inhibition of PI3K/mTOR leads to apoptosis of matrix-detached, but not matrix-attached cancer cells, suggesting that matrix-attached cells use alternate mechanisms to maintain nutrient supplies. Here we demonstrate that under conditions of dietary restriction or growth factor starvation, where PI3K/mTOR signalling is decreased, matrix-attached human mammary epithelial cells upregulate and internalize β4-integrin along with its matrix substrate, laminin. Endocytosed laminin localizes to lysosomes, results in increased intracellular levels of essential amino acids and enhanced mTORC1 signalling, preventing cell death. Moreover, we show that starved human fibroblasts secrete matrix proteins that maintain the growth of starved mammary epithelial cells contingent upon epithelial cell β4-integrin expression. Our study identifies a crosstalk between stromal fibroblasts and epithelial cells under starvation that could be exploited therapeutically to target tumours resistant to PI3K/mTOR inhibition. PMID:28071763

  12. Glial cell line-derived neurotrophic factor induced the differentiation of amniotic fluid-derived stem cells into vascular endothelial-like cells in vitro.

    Science.gov (United States)

    Zhang, Ruyu; Lu, Ying; Li, Ju; Wang, Jia; Liu, Caixia; Gao, Fang; Sun, Dong

    2016-02-01

    Amniotic fluid-derived stem cells (AFSCs) are a novel source of stem cells that are isolated and cultured from second trimester amniocentesis. Glial cell line-derived neurotrophic factor (GDNF) acts as a tissue morphogen and regulates stem cell proliferation and differentiation. This study investigated the effect of an adenovirus-mediated GDNF gene, which was engineered into AFSCs, on the cells' biological properties and whether GDNF in combination with AFSCs can be directionally differentiated into vascular endothelial-like cells in vitro. AFSCs were isolated and cultured using the plastic adherence method in vitro and identified by the transcription factor Oct-4, which is the primary marker of pluripotent stem cells. AFSCs were efficiently transfected by a GFP-labeled plasmid system of an adenovirus vector carrying the GDNF gene (Ad-GDNF-GFP). Transfected AFSCs stably expressed GDNF. Transfected AFSCs were cultured in endothelial growth medium-2 containing vascular endothelial growth factor. After 1 week, AFSCs were positive for von Willebrand factor (vWF) and CD31, which are markers of endothelial cells, and the recombinant GDNF group was significantly higher than undifferentiated controls and the GFP only group. These results demonstrated that AFSCs differentiated into vascular endothelial-like cells in vitro, and recombinant GDNF promoted differentiation. The differentiation-induced AFSCs may be used as seed cells to provide a new manner of cell and gene therapies for transplantation into the vascular injury site to promote angiogenesis.

  13. Optimizing amniotic membrane tissue banking protocols for ophthalmic use.

    Science.gov (United States)

    Hettiarachchi, D; Dissanayake, V H W; Goonasekera, H W W

    2016-09-01

    Amniotic membrane (AM) due to its anti-inflammatory, anti-scarring and anti-angiogenic properties is used as corneal and wound grafts. When developing AM tissue banks, cell viability, membrane morphology and genomic stability should be preserved following cryopreservation. To analyze the changes rendered to the AM during the process of cryopreservation by comparing different combinations of standard cryopreservation media; fetal bovine serum (FBS), dimethyl sulfoxide (DMSO), Dulbecco's modified eagle's medium (DMEM) and glycerol at -80 °C and at -196 °C for a period of 6 weeks and at 4 °C in 70 % alcohol for 6 weeks. Following informed consent, placentae of healthy term pregnancies delivered by elective Cesarean section were collected and AM separated into 5 × 5 cm size sections and under sterile conditions stored in 9:1 DMSO:FBS and 1:1 DMEM:Glycerol at -196 and -80 °C for 6 weeks. Similar sections were also stored at 4 °C in 70 % alcohol for 6 weeks. After storage periods following were assessed; AM epithelial cell viability by trypan blue vital stain, epithelial cell proliferation capacity by cell doubling time, membrane morphology by haematoxylin and eosin (H&E) stain and genomic stability by conventional G-banded karyotyping. Human amniotic epithelial cells were cultured in DMEM and 10 % FBS in humidified atmosphere of 5 % carbon dioxide at 37 °C and were characterized using RT-PCR for Octamer-binding protein 4 (Oct-4) and glucose-6-phosphate dehydrogenase (G6PD) genes. All the above parameters were also assessed in fresh AM. AM obtained from 4 term placentae. Mean cell count and mean cell doubling times in days respectively; for fresh AM 3.8 × 10(6); 1.59, after 6 weeks in DMSO:FBS at -196 °C 3.0 × 10(6); 2.38 and at -80 °C 2.1 × 10(6); 1.60, in DMEM:Glycerol at -196 °C 3.6 × 10(6); 2.33 at -80 °C 23 × 10(6); 1.66 and at 4 °C 3.3 × 10(6); 2.14. Histology analysis of the fresh AM showed an intact epithelial

  14. Biological characteristics and dopaminergic neural-like cell differentiation potential of human amniotic membrane-derived mesenchymal stem cells%人羊膜间充质干细胞生物学特征及向多巴胺能神经元样细胞的分化

    Institute of Scientific and Technical Information of China (English)

    周文然; 李新; 王文波; 谢燕霞; 唐娜; 阎影

    2014-01-01

    amniotic membrane-derived mesenchymal stem cells and amniotic epithelial cells simultaneously, wi

  15. Role of p53 in Mammary Epithelial Cell Senescence

    Science.gov (United States)

    2009-05-01

    culture of normal human breast epithelial cells. Methods Cell Biol 1980, 21B:107-135. 23. Easty GC, Easty DM, Monaghan P, Ormerod MG, Neville AM...27, 2006 Monitoring Editor: John Cleveland Polycomb group (PcG) protein Bmi-1 is an important regulator of cell proliferation. It regulates cellular

  16. Study of p53 expression and post-transcriptional modifications after GSM-900 radiofrequency exposure of human amniotic cells.

    Science.gov (United States)

    Bourthoumieu, Sylvie; Magnaudeix, Amandine; Terro, Faraj; Leveque, Philippe; Collin, Alice; Yardin, Catherine

    2013-01-01

    The potential effects of radiofrequency (RF) exposure on the genetic material of cells are very important to determine since genome instability of somatic cells may be linked to cancer development. In response to genetic damage, the p53 protein is activated and can induce cell cycle arrest allowing more time for DNA repair or elimination of damaged cells through apoptosis. The objective of this study was to investigate whether the exposure to RF electromagnetic fields, similar to those emitted by mobile phones of the second generation standard, Global System for Mobile Communications (GSM), may induce expression of the p53 protein and its activation by post-translational modifications in cultured human cells. The potential induction of p53 expression and activation by GSM-900 was investigated after in vitro exposure of human amniotic cells for 24 h to average specific absorption rates (SARs) of 0.25, 1, 2, and 4 W/kg in the temperature range of 36.3-39.7 °C. The exposures were carried out using a wire-patch cell (WPC) under strictly controlled conditions of temperature. Expression and activation of p53 by phosphorylation at serine 15 and 37 were studied using Western blot assay immediately after three independent exposures of cell cultures provided from three different donors. Bleomycin-exposed cells were used as a positive control. According to our results, no significant changes in the expression and activation of the p53 protein by phosphorylation at serine 15 and 37 were found following exposure to GSM-900 for 24 h at average SARs up to 4 W/kg in human embryonic cells.

  17. Accuracy Assessment of Interphase Fluorescence In-Situ Hybridization on Uncultured Amniotic Fluid Cells

    Directory of Open Access Journals (Sweden)

    Hamideh Karimi

    2007-01-01

    Full Text Available Background: Parental anxiety while waiting for the results of amniocentesis has been investigatedby many authors. It seems that the implementation of faster techniques such as fluorescence in-situhybridization (FISH will have some benefits in reducing this anxiety. Besides the patients' attitudesto choosing this method, gynecologists who are the persons responsible for treatment, must feelcomfortable about prescribing FISH techniques.Materials and Methods: This study, using a simple methodology, was undertaken to evaluate theresults of FISH tests on the amniotic fluid from 40 pregnant women undergoing cesarean surgery.Two sets of probes including X/Y cocktail and 13, 21 and 18 were applied on different slides.Results: The results of FISH tests were compared with the reports of the pediatrician about thehealth condition of the newborn. Complete conformity between the two sets of findings, haveconvinced our gynecologists of the benefit of prescribing this method to reduce the anxiety ofpatients at risk of having abnormal offspring due to chromosomal anuploidies.Conclusion: As has been documented by many authors, conventional chromosome analysis hasgreat advantages over fluorescence in situ hybridization of interphase amniocytes, but reducing theanxiety of parents is a good reason for employing the FISH technique.

  18. Accuracy Assessment of Interphase Fluorescence In-Situ Hybridization on Uncultured Amniotic Fluid Cells

    Directory of Open Access Journals (Sweden)

    Hamid Gourabi

    2008-01-01

    Full Text Available Background: Parental anxiety while waiting for the results of amniocentesis has been investigatedby many authors. It seems that the implementation of faster techniques such as fluorescence in-situhybridization (FISH will have some benefits in reducing this anxiety. Besides the patients' attitudesto choosing this method, gynecologists who are the persons responsible for treatment, must feelcomfortable about prescribing FISH techniques.Materials and Methods: This study, using a simple methodology, was undertaken to evaluate theresults of FISH tests on the amniotic fluid from 40 pregnant women undergoing cesarean surgery.Two sets of probes including X/Y cocktail and 13, 21 and 18 were applied on different slides.Results: The results of FISH tests were compared with the reports of the pediatrician about thehealth condition of the newborn. Complete conformity between the two sets of findings, haveconvinced our gynecologists of the benefit of prescribing this method to reduce the anxiety ofpatients at risk of having abnormal offspring due to chromosomal anuploidies.Conclusion: As has been documented by many authors, conventional chromosome analysis hasgreat advantages over fluorescence in situ hybridization of interphase amniocytes, but reducing theanxiety of parents is a good reason for employing the FISH technique.

  19. Amniotic fluid embolism

    Directory of Open Access Journals (Sweden)

    Rudra A

    2009-01-01

    Full Text Available The disastrous entry of amniotic fluid into the maternal circulation leads to dramatic sequelae of clinical events, characteristically referred to as Amniotic fluid embolism (AFE. The underlying mechanism for AFE is still poorly understood. Unfortunately, this situation has very grave maternal and fetal consequences. AFE can occur during labor, caesarean section, dilatation and evacuation or in the immediate postpartum period. The pathophysiology is believed to be immune mediated which affects the respiratory, cardiovascular, neurological and hematological systems. Undetected and untreated it culminates into fulminant pulmonary edema, intractable convulsions, disseminated intravascular coagulation (DIC, malignant arrhythmias and cardiac arrest. Definite diagnosis can be confirmed by identification of lanugo, fetal hair and fetal squamous cells (squames in blood aspirated from the right ventricle. Usually the diagnosis is made clinically and by exclusion of other causes. The cornerstone of management is a multidisciplinary approach with supportive treatment of failing organs systems. Despite improved modalities for diagnosing AFE, and better intensive care support facilities, the mortality is still high.

  20. Change in Cell Shape Is Required for Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition of Mammary Epithelial Cells

    Science.gov (United States)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2010-01-01

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a “cuboidal” epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-β-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents. PMID:18506791

  1. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  2. Biomaterial surface proteomic signature determines interaction with epithelial cells.

    Science.gov (United States)

    Abdallah, Mohamed-Nur; Tran, Simon D; Abughanam, Ghada; Laurenti, Marco; Zuanazzi, David; Mezour, Mohamed A; Xiao, Yizhi; Cerruti, Marta; Siqueira, Walter L; Tamimi, Faleh

    2017-03-01

    Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices.

  3. Induction of micronuclei, hyperdiploidy and chromosomal breakage affecting the centric/pericentric regions of chromosomes 1 and 9 in human amniotic fluid cells after treatment with asbestos and ceramic fibers.

    Science.gov (United States)

    Dopp, E; Schuler, M; Schiffmann, D; Eastmond, D A

    1997-06-09

    This article describes the induction of micronuclei, hyperdiploidy and chromosome breakage in human amniotic cells in vitro by amosite, chrysotile and crocidolite asbestos, and ceramic fibers. The response of human (amniotic fluid cells) and rodent (Syrian hamster embryo fibroblasts, SHE) cells to fiber treatment was compared using the micronucleus assay. The data of the rodent studies were taken from a previous investigation (Dopp, E. et al. (1995) Environ. Health Perspect., 103, 268-271). All types of mineral fibers caused a significant increase of micronucleated cells. The kinetochore analysis revealed that all three types of asbestos and ceramic fibers yielded similar effects. Approximately 50% of the induced micronuclei were kinetochore-negative indicating formation through clastogenic events. Human amniotic cells were much less susceptible than SHE cells to the induction of micronuclei by mineral fibers. This again demonstrates that SHE cells are more susceptible to chromosomal changes than human amniotic fluid cells. The application of fluorescence in situ hybridization (FISH) with tandem DNA probes yielded more detailed information about specific structural chromosome aberrations in the 1 (cen-q12) and 9 (cen-q12) regions and about abnormal numbers of chromosomes in interphase human amniotic fluid cells. Using this FISH approach we found a statistically significant increase of chromosomal breakage in the pericentric heterochromatin regions of chromosomes 1 and 9 in interphase human amniotic cells after exposure to asbestos and ceramic fibers compared to control cells. The number of hyperdiploid cells was also significantly increased. Our results show that asbestos fibers as well as ceramic fibers are inducers of structural and numerical chromosomal aberrations in human amniotic fluid cells.

  4. Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta.

    Science.gov (United States)

    Mareschi, Katia; Castiglia, Sara; Sanavio, Fiorella; Rustichelli, Deborah; Muraro, Michela; Defedele, Davide; Bergallo, Massimiliano; Fagioli, Franca

    2016-02-01

    Mesenchymal stromal cells (MSCs) are a promising tool in cell therapies because of their multipotent, bystander, and immunomodulatory properties. Although bone marrow represents the main source of MSCs, there remains a need to identify a stem cell source that is safe and easily accessible and yields large numbers of cells without provoking debates over ethics. In this study, MSCs isolated from amniotic fluid and placenta were compared with bone marrow MSCs. Their immunomodulatory properties were studied in total activated T cells (peripheral blood mononuclear cells) stimulated with phytohemagglutinin (PHA-PBMCs). In particular, an in vitro co-culture system was established to study: (i) the effect on T-lymphocyte proliferation; (ii) the presence of T regulatory lymphocytes (Treg); (iii) the immunophenotype of various T subsets (Th1 and Th2 naïve, memory, effector lymphocytes); (iv) cytokine release and master gene expression to verify Th1, Th2, and Th17 polarization; and (v) IDO production. Under all co-culture conditions with PHA-PBMCs and MSCs (independently of tissue origin), data revealed: (i) T proliferation inhibition; (ii) increase in naïve T and decrease in memory T cells; (iii) increase in T regulatory lymphocytes; (iv) strong Th2 polarization associated with increased interleukin-10 and interleukin-4 levels, Th1 inhibition (significant decreases in interleukin-2, tumor necrosis factor-α, interferon-γ, and interleukin-12) and Th17 induction (production of high concentrations of interleukins-6 and -17); (v) indoleamine-2,3-dioxygenase mRNA induction in MSCs co-cultured with PHA-PBMCs. AF-MSCs had a more potent immunomodulatory effect on T cells than BM-MSCs, only slightly higher than that of placenta MSCs. This study indicates that MSCs isolated from fetal tissues may be considered a good alternative to BM-MSCs for clinical applications.

  5. Human amniotic fluid stem cells support undifferentiated propagation and pluripotency of human embryonic stem cell without b-FGF in a density dependent manner.

    Science.gov (United States)

    Ma, Xiaorong; Li, Huanqi; Xin, Shujia; Ma, Yueting; Ouyang, Tianxiang

    2014-01-01

    Human embryonic stem cells (hESCs) are pluripotent cells which can give rise to almost all adult cell lineages. Culture system of hESCs is complex, requiring exogenous b-FGF and feeder cell layer. Human mesenchymal stem cells (MSCs) not only synthesize soluble cytokines or factors such as b-FGF, but also provide other mechanism which might play positive role on sustaining hESCs propagation and pluripotency. Human amniotic fluid stem (AFS) cells, which share characteristics of both embryonic and adult stem cells, have been regarded as promising cells for regenerative medicine. Taking advantage by AFS cells, we studied the ability of AFS cells in supporting undifferentiated propagation and pluripotency of Chinese population derived X-01 hESCs. Human AF-type amniotic fluid stem cells (hAF-AFSCs) transcribed genes including Activin A, TGF-β1, Noggin and b-FGF, which involved in maintaining pluripotency and self-renewal of hESCs. Compared to mouse embryonic fibroblasts (MEFs), hAF-AFSCs secreted higher concentration of b-FGF which was important in hESCs culture (P FGF supplementation, keeping undifferentiated status. While exogenous b-FGF was obviated, propagation of hESCs with undifferentiated status was dependent on density of hAF-AFSC feeder layer. Lower density of hAF-AFSCs resulted in rapid decline in undifferentiated clone number, while higher ones hindered the growth of colonies. The most appropriate hAF-AFSCs feeder density to maintain the X-01 hESC line without exogenous b-FGF was 15-20×10(4)/well. To the best of our knowledge, this is the first study demonstrating that hAF-AFSCs could support undifferentiated propagation and pluripotency of Chinese population derived hESCs without exogenous b-FGF supplementation.

  6. Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo.

    Science.gov (United States)

    Ma, Xiaorong; Zhang, Shengli; Zhou, Junmei; Chen, Baisong; Shang, Yafeng; Gao, Tongbing; Wang, Xue; Xie, Hua; Chen, Fang

    2012-08-01

    Stem cell-based therapy may be the most promising method to cure skeletal muscle degenerative diseases such as Duchenne muscular dystrophy (DMD) and trauma in the future. Human amniotic fluid is enriched with early-stage stem cells from developing fetuses and these cells have cardiomyogenic potential both in vitro and in vivo. In the present study, we investigated the characteristics of human amniotic fluid-derived AF-type stem (HAF-AFS) cells by flow cytometry, immunofluorescence staining, reverse-transcription polymerase chain reaction, and osteogenic and adipogenic differentiation analysis. After confirming the stemness of HAF-AFS cells, we tested whether HAF-AFS cells could differentiate into skeletal myogenic cells in vitro and incorporate into regenerating skeletal muscle in vivo. By temporary exposure to the DNA demethylation agent 5-aza-2'-deoxycytidine (5-Aza dC) or co-cultured with C2C12 myoblasts, HAF-AFS cells differentiated into skeletal myogenic cells, expressing skeletal myogenic cell-specific markers such as Desmin, Troponin I (Tn I) and α-Actinin. Four weeks after transplantation into cardiotoxin-injured and X-ray-irradiated tibialis anterior (TA) muscles of NOD/SCID mice, HAF-AFS cells survived, differentiated into myogenic precursor cells and fused with host myofibres. The findings that HAF-AFS cells differentiate into myogenic cells in vitro and incorporate in skeletal muscle regeneration in vivo hold the promise of HAF-AFS cell-based therapy for skeletal muscle degenerative diseases.

  7. Human amniotic fluid stem cells as a model for functional studies of genes involved in human genetic diseases or oncogenesis.

    Science.gov (United States)

    Rosner, Margit; Dolznig, Helmut; Schipany, Katharina; Mikula, Mario; Brandau, Oliver; Hengstschläger, Markus

    2011-09-01

    Besides their putative usage for therapies, stem cells are a promising tool for functional studies of genes involved in human genetic diseases or oncogenesis. For this purpose induced pluripotent stem (iPS) cells can be derived from patients harbouring specific mutations. In contrast to adult stem cells, iPS cells are pluripotent and can efficiently be grown in culture. However, iPS cells are modulated due to the ectopic induction of pluripotency, harbour other somatic mutations accumulated during the life span of the source cells, exhibit only imperfectly cleared epigenetic memory of the source cell, and are often genomically instable. In addition, iPS cells from patients only allow the investigation of mutations, which are not prenatally lethal. Embryonic stem (ES) cells have a high proliferation and differentiation potential, but raise ethical issues. Human embryos, which are not transferred in the course of in vitro fertilization, because of preimplantation genetic diagnosis of a genetic defect, are still rarely donated for the establishment of ES cell lines. In addition, their usage for studies on gene functions for oncogenesis is hampered by the fact the ES cells are already tumorigenic per se. In 2003 amniotic fluid stem (AFS) cells have been discovered, which meanwhile have been demonstrated to harbour the potential to differentiate into cells of all three germ layers. Monoclonal human AFS cell lines derived from amniocenteses have a high proliferative potential, are genomically stable and are not associated with ethical controversies. Worldwide amniocenteses are performed for routine human genetic diagnosis. We here discuss how generation and banking of monoclonal human AFS cell lines with specific chromosomal aberrations or monogenic disease mutations would allow to study the functional consequences of disease causing mutations. In addition, recently a protocol for efficient and highly reproducible siRNA-mediated long-term knockdown of endogenous gene

  8. Human thymic epithelial cells express functional HLA-DP molecules

    DEFF Research Database (Denmark)

    Jørgensen, A; Röpke, C; Nielsen, M

    1996-01-01

    T lymphocytes, we examined whether human thymic epithelial cells (TEC) expressed HLA-DP molecules. We present evidence that TEC obtained from short time culture express low but significant levels of HLA-DP molecules. The expression of HLA-DP molecules was comparable to or higher than the expression...... of HLA-DP allospecific primed lymphocyte typing (PLT) CD4 T cell lines. IFN-gamma treatment strongly upregulated the HLA-DP allospecific PLT responses whereas other PLT responses remained largely unchanged. In conclusion, these data indicate that human thymus epithelial cells express significant levels...

  9. Immunolocalization of epithelial and mesenchymal matrix constituents in association with inner enamel epithelial cells.

    Science.gov (United States)

    Bosshardt, D D; Nanci, A

    1998-02-01

    After crown formation, the enamel organ reorganizes into Hertwig's epithelial root sheath (HERS). Although it is generally accepted that HERS plays an inductive role during root formation, it also has been suggested that it may contribute enamel-related proteins to cementum matrix. By analogy to the enamel-free area (EFA) in rat molars, in which epithelial cells express not only enamel proteins but also "typical" mesenchymal matrix constituents, it has been proposed that HERS cells may also have the potential to produce cementum proteins. To test this hypothesis, we examined the nature of the first matrix layer deposited along the cervical portion of root dentin and the characteristics of the associated cells. Rat molars were processed for postembedding colloidal gold immunolabeling with antibodies to amelogenin (AMEL), ameloblastin (AMBN), bone sialoprotein (BSP), and osteopontin (OPN). To minimize the possibility of false-negative results, several antibodies to AMEL were used. The labelings were compared with those obtained at the EFA. Initial cementum matrix was consistently observed at a time when epithelial cells from HERS covered most of the forming root surface. Cells with mesenchymal characteristics were rarely seen in proximity to the matrix. Both the EFA matrix and initial cementum exhibited collagen fibrils and were intensely immunoreactive for BSP and OPN. AMEL and AMBN were immunodetected at the EFA but not over the initial cementum proper. These two proteins were, however, present at the cervical-most portion of the root where enamel matrix extends for a short distance between dentin and cementum. These data suggest that epithelial cells along the root surface are likely responsible for the deposition of the initial cementum matrix and therefore, like the cells at the EFA, may be capable of producing mesenchymal proteins.

  10. Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells

    Science.gov (United States)

    Chen, Qike K.; Lee, KangAe; Radisky, Derek C.; Nelson, Celeste M.

    2013-01-01

    Mouse mammary epithelial cells undergo transdifferentiation via epithelial-mesenchymal transition (EMT) upon treatment with matrix metalloproteinase-3 (MMP3). In rigid microenvironments, MMP3 upregulates expression of Rac1b, which translocates to the cell membrane to promote induction of reactive oxygen species and EMT. Here we examine the role of the extracellular matrix (ECM) in this process. Our data show that the basement membrane protein laminin suppresses the EMT response in MMP3-treated cells, whereas fibronectin promotes EMT. These ECM proteins regulate EMT via interactions with their specific integrin receptors. α6-integrin sequesters Rac1b from the membrane and is required for inhibition of EMT by laminin. In contrast, α5-integrin maintains Rac1b at the membrane and is required for the promotion of EMT by fibronectin. Understanding the regulatory role of the ECM will provide insight into mechanisms underlying normal and pathological development of the mammary gland. PMID:23660532

  11. Investigation on biological characteristics of human amniotic fluid-derived stem cells%人羊水来源干细胞生物学性状的研究

    Institute of Scientific and Technical Information of China (English)

    张建芳; 顾潇; 陈必良

    2011-01-01

    Objective: Human amniotic fluid samples were isolated and cultured in vitro.To establish in vitro culture procedure of amniotic fluid-derived stem cells (AFS) and to study their biological characteristics.Methods: AFS were isolated from second-trimester amniotic fluid by adherence.The phenotypes of AFS were detected by flow cytometry and RT-PCR.Results: Primary cells grow slowly, The cells proliferated rapidly after passage and they were positive for CD29, CD44, CD105 and negative for CD45 and CD133 by flow cytometry.RT-PCR analysis showed that AFS were positive for Oct-4 and Nanog.Conclusion: Experiment has successfully isolated stem cells in amniotic fluid.The stem cells isolated from second-trimester amniotic fluid have a great potential of proliferation, which express mesenchymal stem cell markers.Their characteristics are in accord with mesenchymal stem cells.%目的 对人羊水标本进行体外分离培养,建立人羊水来源干细胞的体外培养体系,对其生物学形状进行研究.方法 贴壁法体外分离获得人羊水来源干细胞,多次传代扩增后,采用流式细胞仪和RT-PCR技术检测细胞表面抗原的表达.结果 羊水干细胞原代生长较慢,传代后生长迅速,体外倍增时间约36h,流式细胞仪检测证实细胞表达CD29、CD44、CD105等间充质干细胞标志,不表达造血干细胞标志CD45和CD133.RT-PCR检测显示羊水干细胞表达Oct-4、Nanog基因.结论 实验成功分离获得羊水中具有干细胞性质的细胞群,采用贴壁法分离获得的干细胞体外增殖能力强,表达间充质干细胞表面标志,符合间充质干细胞的特点.

  12. 羊水来源干细胞的研究进展%Research Progresses of Amniotic Fluid-derived Stem Cells

    Institute of Scientific and Technical Information of China (English)

    王艳

    2011-01-01

    干细胞具有自我更新和多向分化的潜能,是目前医学及组织工程学研究的热点.近来发现羊水中含有干细胞,具有向内、中、外三个胚层分化的能力,且通过了功能测试.由于羊水来源广泛、创伤小、无伦理道德方面的限制且无致瘤性,将为干细胞开辟新的研究领域,为组织工程提供新的种子细胞来源,为细胞介导的基因治疗提供新的载体.目前对其来源及生物学特征的研究还不是很清楚.现对羊水中细胞的组成、羊水来源干细胞分离培养、生物学特征及鉴定、分化潜能等问题进行综述.%Stem cells possess the potentials of self-renewal and multipotent differentiation, which has become a hotspot of medical and tissue engineering research. Recently, amniotic fluids are found to contain stem cells capable of differentiating to endoderm, mesoderm,and ectoderm as justified by functional tests. As amniotic fluids have a wide source, minimally invasive harvest,less ethnical restriction, and free of tumorigenesis,they are used to create a new research field to provide new seed cells for tissue engineering and new vectors for cell-based gene therapy. The source and biological properties of amniotic fluid-derived stem cells remain unclear until now. This article reviews the components of amniotic cells,isolation and culture of amniotic fluid-derived stem cells, biological properties, characterization, and differential potentials.

  13. AN IN VITRO MODEL FOR MURINE URETERIC EPITHELIAL CELLS

    Science.gov (United States)

    This report presents a model developed to study growth and differentiation of primary cultures of ureteric epithelial cells from embryonic C57BL/6N mouse urinary tracts. Single cells were resuspended in medium and plated onto transwells coated with collagen IV and laminin. Basa...

  14. No junctional communication between epithelial cells in hydra

    DEFF Research Database (Denmark)

    de Laat, S W; Tertoolen, L G; Grimmelikhuijzen, C J

    1980-01-01

    properties of the junctional membranes by electrophysiological methods and by intracellular-dye iontophoresis. We report here that no electrotonic coupling is detectable between epithelial cells of Hydra attenuata in: (1) intact animals, (2) head-regenerating animals, (3) cell re-aggregates, and (4) hydra...

  15. Células-tronco do líquido amniótico Amniotic fluid stem cells

    Directory of Open Access Journals (Sweden)

    Sergio P. Bydlowski

    2009-05-01

    Full Text Available Desde o primeiro isolamento e cultivo de células-tronco embrionárias humanas, há mais de 10 anos, seu uso na pesquisa e terapia foi inibida por considerações éticas complexas e pelo risco de transformação maligna destas células indiferenciadas após transplante no paciente. As células-tronco adultas são eticamente aceitas e o risco de transformação maligna é muito baixo. Entretanto, seu potencial de diferenciação e sua capacidade proliferativa são limitados. Cerca de 6 anos atrás, a descoberta de célulastronco no líquido amniótico que expressavam Oct-4, um marcador específico de pluripotencialidade, com alta capacidade de proliferação e diferenciação, iniciou um novo campo promissor na área das células-tronco. Estas células têm potencial de se diferenciar em células dos três folhetos germinativos. Não formam tumores in vivo e não levantam os questionamentos éticos associados com as células-tronco embrionárias humanas. Futuras investigações revelarão se as células-tronco do líquido amniótico realmente irão representar um tipo intermediário com vantagens em relação tanto às células-tronco embrionárias quanto às adultas. Este artigo faz uma revisão acerca destes tópicos e das características biológicas das células-tronco do líquido amniótico.Since the first successful isolation and cultivation of human embryonic stem cells about 10 years ago, their use for research and therapy has been constrained by complex ethical considerations as well as by the risk of development of malignancies of undifferentiated embryonic stem cells after transplantation into the patient. Adult stem cells are ethically acceptable and the risk of tumor development is low. However, their differentiation potential and proliferative capacity are limited. About 6 years ago, the discovery of Oct-4 expressing amniotic fluid stem cells, a specific marker of pluripotency, with a high proliferative capacity, and multilineage

  16. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    OpenAIRE

    Youn, Hyun-Yi; McCanna, David J.; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated w...

  17. Oxidized alginate hydrogels as niche environments for corneal epithelial cells.

    Science.gov (United States)

    Wright, Bernice; De Bank, Paul A; Luetchford, Kim A; Acosta, Fernando R; Connon, Che J

    2014-10-01

    Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2-0.8 µm) than unmodified gels (pore diameter: 0.05-0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy.

  18. Amniotic fluid stem cells with low γ-interferon response showed behavioral improvement in Parkinsonism rat model.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chang

    Full Text Available Amniotic fluid stem cells (AFSCs are multipotent stem cells that may be used in transplantation medicine. In this study, AFSCs established from amniocentesis were characterized on the basis of surface marker expression and differentiation potential. To further investigate the properties of AFSCs for translational applications, we examined the cell surface expression of human leukocyte antigens (HLA of these cells and estimated the therapeutic effect of AFSCs in parkinsonian rats. The expression profiles of HLA-II and transcription factors were compared between AFSCs and bone marrow-derived mesenchymal stem cells (BMMSCs following treatment with γ-IFN. We found that stimulation of AFSCs with γ-IFN prompted only a slight increase in the expression of HLA-Ia and HLA-E, and the rare HLA-II expression could also be observed in most AFSCs samples. Consequently, the expression of CIITA and RFX5 was weakly induced by γ-IFN stimulation of AFSCs compared to that of BMMSCs. In the transplantation test, Sprague Dawley rats with 6-hydroxydopamine lesioning of the substantia nigra were used as a parkinsonian-animal model. Following the negative γ-IFN response AFSCs injection, apomorphine-induced rotation was reduced by 75% in AFSCs engrafted parkinsonian rats but was increased by 53% in the control group after 12-weeks post-transplantation. The implanted AFSCs were viable, and were able to migrate into the brain's circuitry and express specific proteins of dopamine neurons, such as tyrosine hydroxylase and dopamine transporter. In conclusion, the relative insensitivity AFSCs to γ-IFN implies that AFSCs might have immune-tolerance in γ-IFN inflammatory conditions. Furthermore, the effective improvement of AFSCs transplantation for apomorphine-induced rotation paves the way for the clinical application in parkinsonian therapy.

  19. Role of p53 Mammary Epithelial Cell Senescence

    Science.gov (United States)

    2005-05-01

    AD Award Number: DAMD17-02-1-0509 TITLE: Role of p53 Mammary Epithelial Cell Senescence PRINCIPAL INVESTIGATOR: Goberdhan P. Dimri, Ph.D. CONTRACTING ...type and However, Mucl , K-18, and ASMA were not expressed in luminal cell type groups [12,68]. Interestingly, a significant cells present in...13,17,27], the has also attracted a great interest in the field of breast cancer candidate mammary stem cells appear to be ESA+, Mucl -, research, and

  20. Collective Movement of Epithelial Cells on a Collagen Gel Substrate

    OpenAIRE

    Haga, Hisashi; Irahara, Chikako; KOBAYASHI, Ryo; Nakagaki, Toshiyuki; Kawabata, Kazushige

    2004-01-01

    Collective cell movement acts as an efficient strategy in many physiological events, including wound healing, embryonic development, and morphogenesis. We found that epithelial cells (Madin-Darby canine kidney cell) migrated collectively along one direction on a collagen gel substrate. Time-lapse images of Madin-Darby canine kidney cells cultured on type-I collagen gels and glass substrates were captured by phase contrast microscopy equipped with an incubation system. On the gel substrate, th...

  1. Electrospun Poly(l-lactide/Poly(ethylene glycol Scaffolds Seeded with Human Amniotic Mesenchymal Stem Cells for Urethral Epithelium Repair

    Directory of Open Access Journals (Sweden)

    Xiaokui Lv

    2016-08-01

    Full Text Available Tissue engineering-based urethral replacement holds potential for repairing large segmental urethral defects, which remains a great challenge at present. This study aims to explore the potential of combining biodegradable poly(l-lactide (PLLA/poly(ethylene glycol (PEG scaffolds and human amniotic mesenchymal cells (hAMSCs for repairing urethral defects. PLLA/PEG fibrous scaffolds with various PEG fractions were fabricated via electrospinning. The scaffolds were then seeded with hAMSCs prior to implantation in New Zealand male rabbits that had 2.0 cm-long defects in the urethras. The rabbits were randomly divided into three groups. In group A, hAMSCs were grown on PLLA/PEG scaffolds for two days and then implanted to the urethral defects. In group B, only the PLLA/PEG scaffolds were used to rebuild the rabbit urethral defect. In group C, the urethral defect was reconstructed using a regular urethral reparation technique. The repair efficacy was compared among the three groups by examining the urethral morphology, tissue reconstruction, luminal patency, and complication incidence (including calculus formation, urinary fistula, and urethral stricture using histological evaluation and urethral radiography methods. Findings from this study indicate that hAMSCs-loaded PLLA/PEG scaffolds resulted in the best urethral defect repair in rabbits, which predicts the promising application of a tissue engineering approach for urethral repair.

  2. Electrospun Poly(l-lactide)/Poly(ethylene glycol) Scaffolds Seeded with Human Amniotic Mesenchymal Stem Cells for Urethral Epithelium Repair

    Science.gov (United States)

    Lv, Xiaokui; Guo, Qianping; Han, Fengxuan; Chen, Chunyang; Ling, Christopher; Chen, Weiguo; Li, Bin

    2016-01-01

    Tissue engineering-based urethral replacement holds potential for repairing large segmental urethral defects, which remains a great challenge at present. This study aims to explore the potential of combining biodegradable poly(l-lactide) (PLLA)/poly(ethylene glycol) (PEG) scaffolds and human amniotic mesenchymal cells (hAMSCs) for repairing urethral defects. PLLA/PEG fibrous scaffolds with various PEG fractions were fabricated via electrospinning. The scaffolds were then seeded with hAMSCs prior to implantation in New Zealand male rabbits that had 2.0 cm-long defects in the urethras. The rabbits were randomly divided into three groups. In group A, hAMSCs were grown on PLLA/PEG scaffolds for two days and then implanted to the urethral defects. In group B, only the PLLA/PEG scaffolds were used to rebuild the rabbit urethral defect. In group C, the urethral defect was reconstructed using a regular urethral reparation technique. The repair efficacy was compared among the three groups by examining the urethral morphology, tissue reconstruction, luminal patency, and complication incidence (including calculus formation, urinary fistula, and urethral stricture) using histological evaluation and urethral radiography methods. Findings from this study indicate that hAMSCs-loaded PLLA/PEG scaffolds resulted in the best urethral defect repair in rabbits, which predicts the promising application of a tissue engineering approach for urethral repair. PMID:27517902

  3. Prenatal diagnosis of Down syndrome using cell-free fetal DNA in amniotic fluid by quantitative fluorescent polymersase chain reaction

    Institute of Scientific and Technical Information of China (English)

    Wu Dan; Chi Hongbin; Shao Minjie; Wu Yao; Jin Hongyan; Wu Baiyan; Qiao Jie

    2014-01-01

    Backgroud Amniotic fluid (AF) supernatant contains cell-free fetal DNA (cffDNA) fragments.This study attempted to take advantage of cffDNA as a new material for prenatal diagnosis,which could be combined with simple quantitative fluorescent polymerase chain reaction (QF-PCR) to provide an ancillary method for the prenatal diagnosis of trisomy 21 syndrome.Methods AF supernatant samples were obtained from 27 women carrying euploid fetuses and 28 women carrying aneuploid fetuses with known cytogenetic karyotypes.Peripheral blood samples of the parents were collected at the same time.Short tandem repeat (STR) fragments on chromosome 21 were amplified by QF-PCR.Fetal condition and the parental source of the extra chromosome could be determined by the STR peaks.Results The sensitivity of the assay for the aneuploid was 93% (26/28; confidence interval,CI:77%-98%) and the specificity was 100% (26/26; CI:88%-100%).The determination rate of the origin of the extra chromosome was 69%.The sensitivity and the specificity of the assay in the euploid were 100% (27/27).Conclusions Trisomy 21 can be prenatally diagnosed by the QF-PCR method in AF supernatant.This karyotype analysis method greatly reduces the requirement for the specimen size.It will be a benefit for early amniocentesis and could avoid pregnancy complications.The method may become an ancillary method for prenatal diagnosis of trisomy 21.

  4. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume re...... transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed.......The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume...... regulation both rely on the spatially and temporally coordinated function of ion channels and transporters. In healthy epithelia, specific ion channels/transporters localize to the luminal and basolateral membranes, contributing to functional epithelial polarity. In pathophysiological processes...

  5. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    Science.gov (United States)

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland.

  6. Tiotropium attenuates IL-13-induced goblet cell metaplasia of human airway epithelial cells

    NARCIS (Netherlands)

    Kistemaker, Loes E. M.; Hiemstra, Pieter S.; Bos, I. Sophie T.; Bouwman, Susanne; van den Berge, Maarten; Hylkema, Machteld N.; Meurs, Herman; Kerstjens, Huib A. M.; Gosens, Reinoud

    2015-01-01

    BACKGROUND: It has been shown that acetylcholine is both a neurotransmitter and acts as a local mediator, produced by airway cells including epithelial cells. In vivo studies have demonstrated an indirect role for acetylcholine in epithelial cell differentiation. Here, we aimed to investigate direct

  7. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells.

    Science.gov (United States)

    Cho, Kyoung Bin; Cho, Min Kyong; Lee, Won Young; Kang, Keon Wook

    2010-07-28

    The c-myc gene is frequently overexpressed in human breast cancer and its target genes are involved in tumorigenesis. Epithelial mesenchymal transitions (EMT), where cells undergo a developmental switch from a polarized epithelial phenotype to a highly motile mesenchymal phenotype, are associated with invasion and motility of cancer cells. Basal E-cadherin expression was down-regulated in c-myc overexpressing MCF10A (c-myc-MCF10A) cells compared to GFP-overexpressing MCF10A (GFP-MCF10A) cells, while N-cadherin was distinctly increased in c-myc-MCF10A cells. Given that glycogen synthase kinase-3beta (GSK-3beta) and the snail axis have key roles in E-cadherin deregulation during EMT, we investigated the role of GSK-3beta/snail signaling pathways in the induction of EMT by c-myc overexpression. In contrast to GFP-MCF10A cells, both the transcriptional activity and the ubiquitination-dependent protein stability of snail were enhanced in c-myc-MCF10A cells, and this was reversed by GSK-3beta overexpression. We also found that c-myc overexpression inhibits GSK-3beta activity through activation of extracellular signal-regulated kinase (ERK). Inhibition of ERK by dominant negative mutant transfection or chemical inhibitor significantly suppressed snail gene transcription. These results suggest that c-myc overexpression during transformation of mammary epithelial cells (MEC) is involved in EMTs via ERK-dependent GSK-3beta inactivation and subsequent snail activation.

  8. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nagai A

    2003-09-01

    Full Text Available Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inappropriate production of inflammatory cytokines and growth factors, and an increased risk of lung cancer. However, the most deleterious effect of cigarette smoke on alveolar epithelial cells is cell death, i.e., either apoptosis or necrosis depending on the magnitude of cigarette smoke exposure. Cell death induced by cigarette smoke exposure can largely be accounted for by an enhancement in oxidative stress. In fact, cigarette smoke contains and generates many reactive oxygen species that damage alveolar epithelial cells. Whether apoptosis and/or necrosis in alveolar epithelial cells is enhanced in healthy cigarette smokers is presently unclear. However, recent evidence indicates that the apoptosis of alveolar epithelial cells and alveolar endothelial cells is involved in the pathogenesis of pulmonary emphysema, an important cigarette smoke-induced lung disease characterized by the loss of alveolar structures. This review will discuss oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke.

  9. Epithelial neoplasia in Drosophila entails switch to primitive cell states.

    Science.gov (United States)

    Khan, Sumbul J; Bajpai, Anjali; Alam, Mohammad Atif; Gupta, Ram P; Harsh, Sneh; Pandey, Ravi K; Goel-Bhattacharya, Surbhi; Nigam, Aditi; Mishra, Arati; Sinha, Pradip

    2013-06-11

    Only select cell types in an organ display neoplasia when targeted oncogenically. How developmental lineage hierarchies of these cells prefigure their neoplastic propensities is not yet well-understood. Here we show that neoplastic Drosophila epithelial cells reverse their developmental commitments and switch to primitive cell states. In a context of alleviated tissue surveillance, for example, loss of Lethal giant larvae (Lgl) tumor suppressor in the wing primordium induced epithelial neoplasia in its Homothorax (Hth)-expressing proximal domain. Transcriptional profile of proximally transformed mosaic wing epithelium and functional tests revealed tumor cooperation by multiple signaling pathways. In contrast, lgl(-) clones in the Vestigial (Vg)-expressing distal wing epithelium were eliminated by cell death. Distal lgl(-) clones, however, could transform when both tissue surveillance and cell death were compromised genetically and, alternatively, when the transcription cofactor of Hippo signaling pathway, Yorkie (Yki), was activated, or when Ras/EGFR signaling was up-regulated. Furthermore, transforming distal lgl(-) clones displayed loss of Vg, suggesting reversal of their terminal cell fate commitment. In contrast, reinforcing a distal (wing) cell fate commitment in lgl(-) clones by gaining Vg arrested their neoplasia and induced cell death. We also show that neoplasia in both distal and proximal lgl(-) clones could progress in the absence of Hth, revealing Hth-independent wing epithelial neoplasia. Likewise, neoplasia in the eye primordium resulted in loss of Elav, a retinal cell marker; these, however, switched to an Hth-dependent primitive cell state. These results suggest a general characteristic of "cells-of-origin" in epithelial cancers, namely their propensity for switch to primitive cell states.

  10. CXCL12 expression by healthy and malignant ovarian epithelial cells

    Directory of Open Access Journals (Sweden)

    Emilie Dominique

    2011-03-01

    Full Text Available Abstract Background CXCL12 has been widely reported to play a biologically relevant role in tumor growth and spread. In epithelial ovarian cancer (EOC, CXCL12 enhances tumor angiogenesis and contributes to the immunosuppressive network. However, its prognostic significance remains unclear. We thus compared CXCL12 status in healthy and malignant ovaries, to assess its prognostic value. Methods Immunohistochemistry was used to analyze CXCL12 expression in the reproductive tracts, including the ovaries and fallopian tubes, of healthy women, in benign and borderline epithelial tumors, and in a series of 183 tumor specimens from patients with advanced primary EOC enrolled in a multicenter prospective clinical trial of paclitaxel/carboplatin/gemcitabine-based chemotherapy (GINECO study. Univariate COX model analysis was performed to assess the prognostic value of clinical and biological variables. Kaplan-Meier methods were used to generate progression-free and overall survival curves. Results Epithelial cells from the surface of the ovary and the fallopian tubes stained positive for CXCL12, whereas the follicles within the ovary did not. Epithelial cells in benign, borderline and malignant tumors also expressed CXCL12. In EOC specimens, CXCL12 immunoreactivity was observed mostly in epithelial tumor cells. The intensity of the signal obtained ranged from strong in 86 cases (47% to absent in 18 cases ( Conclusion Our findings highlight the previously unappreciated constitutive expression of CXCL12 on healthy epithelia of the ovary surface and fallopian tubes, indicating that EOC may originate from either of these epithelia. We reveal that CXCL12 production by malignant epithelial cells precedes tumorigenesis and we confirm in a large cohort of patients with advanced EOC that CXCL12 expression level in EOC is not a valuable prognostic factor in itself. Trial Registration ClinicalTrials.gov: NCT00052468

  11. Apicobasal Polarity Controls Lymphocyte Adhesion to Hepatic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Natalia Reglero-Real

    2014-09-01

    Full Text Available Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1 adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α. We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery.

  12. Mannheimia haemolytica biofilm formation on bovine respiratory epithelial cells.

    Science.gov (United States)

    Boukahil, Ismail; Czuprynski, Charles J

    2016-12-25

    Mannheimia haemolytica is the most important bacterial agent associated with the bovine respiratory disease complex (BRDC), which causes worldwide economic losses to the cattle industry. M. haemolytica cells initially colonize the tonsillar crypts in the upper respiratory tract of cattle, from where they can subsequently descend into the lungs to cause disease. Many bacteria exist as biofilms inside their hosts. We hypothesize that M. haemolytica colonization of cattle during its commensal state may include biofilm formation. To begin to assess this possibility, we developed an in vitro system to study biofilm formation directly on bovine respiratory epithelial cells. Using fixed primary bovine bronchial epithelial cells, we observed M. haemolytica biofilm formation after a 48h incubation period at 37°C. Addition of mucin, the main component of mucus present in the upper respiratory tract, decreased M. haemolytica biofilm formation on bovine epithelial cells. We investigated the effects of prior viral infection of the epithelial cells on subsequent biofilm formation by M. haemolytica and found negligible effects. Utilization of this model system will provide new insights into the potential role of biofilm formation by M. haemolytica in the pathogenesis of BRDC.

  13. Feasibility of Human Amniotic Fluid Derived Stem Cells in Alleviation of Neuropathic Pain in Chronic Constrictive Injury Nerve Model.

    Directory of Open Access Journals (Sweden)

    Chien-Yi Chiang

    Full Text Available The neurobehavior of neuropathic pain by chronic constriction injury (CCI of sciatic nerve is very similar to that in humans, and it is accompanied by a profound local inflammation response. In this study, we assess the potentiality of human amniotic fluid derived mesenchymal stem cells (hAFMSCs for alleviating the neuropathic pain in a chronic constriction nerve injury model.This neuropathic pain animal model was conducted by four 3-0 chromic gut ligatures loosely ligated around the left sciatic nerve in Sprague-Dawley rats. The intravenous administration of hAFMSCs with 5x105 cells was conducted for three consecutive days.The expression IL-1β, TNF-α and synaptophysin in dorsal root ganglion cell culture was remarkably attenuated when co-cultured with hAFMSCs. The significant decrease of PGP 9.5 in the skin after CCI was restored by administration of hAFMSCs. Remarkably increased expression of CD 68 and TNF-α and decreased S-100 and neurofilament expression in injured nerve were rescued by hAFMSCs administration. Increases in synaptophysin and TNF-α over the dorsal root ganglion were attenuated by hAFMSCs. Significant expression of TNF-α and OX-42 over the dorsal spinal cord was substantially attenuated by hAFMSCs. The increased amplitude of sensory evoked potential as well as expression of synaptophysin and TNF-α expression was alleviated by hAFMSCs. Human AFMSCs significantly improved the threshold of mechanical allodynia and thermal hyperalgesia as well as various parameters of CatWalk XT gait analysis.Human AFMSCs administration could alleviate the neuropathic pain demonstrated in histomorphological alteration and neurobehavior possibly through the modulation of the inflammatory response.

  14. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells

    Science.gov (United States)

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis. PMID:27936102

  15. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells.

    Science.gov (United States)

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito; Kihara, Akio

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis.

  16. Intestinal epithelial cells and their role in innate mucosal immunity

    OpenAIRE

    Maldonado-Contreras, A. L.; McCormick, Beth A

    2010-01-01

    The mucosal surfaces of the respiratory, gastrointestinal and urogenital tracts are covered by a layer of epithelial cells that are responsible for sensing and promoting a host immune response in order to establish the limits not only for commensal microorganisms but also for foreign organisms or particles. This is a remarkable task as the human body represents a composite of about 10 trillion human-self cells plus non-self cells from autochthonous or indigenous microbes that outnumber human ...

  17. Integrin Signaling in Mammary Epithelial Cells and Breast Cancer

    OpenAIRE

    Lambert, Arthur W.; Sait Ozturk; Sam Thiagalingam

    2012-01-01

    Cells sense and respond to the extracellular matrix (ECM) by way of integrin receptors, which facilitate cell adhesion and intracellular signaling. Advances in understanding the mammary epithelial cell hierarchy are converging with new developments that reveal how integrins regulate the normal mammary gland. But in breast cancer, integrin signaling contributes to the development and progression of tumors. This paper highlights recent studies which examine the role of integrin signaling in mam...

  18. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry.

    Science.gov (United States)

    Spivey, Megan A; Dunn-Horrocks, Sadie L; Duong, Tri

    2014-11-01

    Administration of probiotic Lactobacillus cultures is an important alternative to the use of antibiotic growth promoters and has been demonstrated to improve animal health, growth performance, and preharvest food safety in poultry production. Whereas gastrointestinal colonization is thought to be critical to their probiotic functionality, factors important to Lactobacillus colonization in chickens are not well understood. In this study we investigate epithelial cell adhesion in vitro and colonization of Lactobacillusin vivo in broiler chickens. Adhesion of Lactobacillus cultures to epithelial cells was evaluated using the chicken LMH cell line. Lactobacillus cultures were able adhere effectively to LMH cells relative to Bacillus subtilis and Salmonella Typhimurium. Epithelial cell adhesion was similar for Lactobacillus crispatus TDCC 75, L. cristpatus TDCC 76, and Lactobacillus gallinarum TDCC 77, and all 3 were more adherent than L. gallinarum TDCC 78. However, when colonization was evaluated in the ileum and cecum of broiler chicks, L. crispatus TDCC 75 and L. gallinarum TDCC 77 were more persistent than L. crispatus TDCC 76 and L. gallinarum TDCC 78. The reduction of growth in medium supplemented with oxgal was greater for L. gallinarum TDCC 78 than L. gallinarum TDCC 77, suggesting that whereas adhesion was similar for the 2 strains, the difference in colonization between L. gallinarum strains may be due in part to their bile sensitivity. This study demonstrates that whereas adhesion to epithelial cells may be important in predicting gastrointestinal colonization, other factors including bile tolerance may also contribute to the colonization of Lactobacillus in poultry. Additionally, the chicken LMH cell line is expected to provide a platform for investigating mechanisms of Lactobacillus adhesion to epithelial tissue and evaluating the probiotic potential Lactobacillus in poultry.

  19. Immunohistochemical demonstration of airway epithelial cell markers of guinea pig.

    Science.gov (United States)

    Li, Yong; Wang, Jing; He, Hai Yan; Ma, Ling Jie; Zeng, Jin; Deng, Guang Cun; Liu, Xiaoming; Engelhardt, John F; Wang, Yujiong

    2011-10-01

    The guinea pig (Cavea porcellus) is a mammalian non-rodent species in the Caviidae family. The sensitivity of the respiratory system and the susceptibility to infectious diseases allows the guinea pig to be a useful model for both infectious and non-infectious lung diseases such as asthma and tuberculosis. In this report, we demonstrated for the first time, the major cell types and composition in the guinea pig airway epithelium, using cell type-specific markers by immunohistochemical staining using the commercial available immunological reagents that cross-react with guinea pig. Our results revealed the availability of antibodies cross-reacting with airway epithelial cell types of basal, non-ciliated columnar, ciliated, Clara, goblet and alveolar type II cells, as well as those cells expressing Mucin 5AC, Mucin 2, Aquaporin 4 and Calcitonin Gene Related Peptide. The distribution of these various cell types were quantified in the guinea pig airway by immunohistochemical staining and were comparable with morphometric studies using an electron microscopy assay. Moreover, this study also demonstrated that goblet cells are the main secretory cell type in the guinea pig's airway, distinguishing this species from rats and mice. These results provide useful information for the understanding of airway epithelial cell biology and mechanisms of epithelial-immune integration in guinea pig models.

  20. Sodium selectivity of semicircular canal duct epithelial cells

    Directory of Open Access Journals (Sweden)

    Harbidge Donald G

    2011-09-01

    Full Text Available Abstract Background Sodium absorption by semicircular canal duct (SCCD epithelial cells is thought to contribute to the homeostasis of the volume of vestibular endolymph. It was previously shown that the epithelial cells could absorb Na+ under control of a glucocorticoid hormone (dexamethasone and the absorptive transepithelial current was blocked by amiloride. The most commonly-observed target of amiloride is the epithelial sodium channel (ENaC, comprised of the three subunits α-, β- and γ-ENaC. However, other cation channels have also been observed to be sensitive in a similar concentration range. The aim of this study was to determine whether SCCD epithelial cells absorb only Na+ or also K+ through an amiloride-sensitive pathway. Parasensory K+ absorption could contribute to regulation of the transduction current through hair cells, as found to occur via vestibular transitional cells [S. H. Kim and D. C. Marcus. Regulation of sodium transport in the inner ear. Hear.Res. doi:10.1016/j.heares.2011.05.003, 2011]. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6197, whole-cell patch clamp and transepithelial recordings in primary cultures of rat SCCD. α-, β- and γ-ENaC were all previously reported as present. The selectivity of the amiloride-sensitive transepithelial and cell membrane currents was observed in Ussing chamber and whole-cell patch clamp recordings. The cell membrane currents were carried by Na+ but not K+, but the Na+ selectivity disappeared when the cells were cultured on impermeable supports. Transepithelial currents across SCCD were also carried exclusively by Na+. Conclusions These results are consistent with the amiloride-sensitive absorptive flux of SCCD mediated by a highly Na+-selective channel, likely αβγ-ENaC. These epithelial cells therefore absorb only Na+ via the amiloride-sensitive pathway and do not provide a parasensory K+ efflux from the

  1. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

    Institute of Scientific and Technical Information of China (English)

    Li-Wei Zheng; Logan Linthicum; Pamela K DenBesten; Yan Zhang

    2013-01-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCI) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which ,vas also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  2. File list: ALL.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.20.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epitheli...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  3. File list: ALL.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.50.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epitheli...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  4. File list: ALL.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.05.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epitheli...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  5. File list: ALL.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.10.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epitheli...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  6. Computational investigation of epithelial cell dynamic phenotype in vitro

    Directory of Open Access Journals (Sweden)

    Debnath Jayanta

    2009-05-01

    Full Text Available Abstract Background When grown in three-dimensional (3D cultures, epithelial cells typically form cystic organoids that recapitulate cardinal features of in vivo epithelial structures. Characterizing essential cell actions and their roles, which constitute the system's dynamic phenotype, is critical to gaining deeper insight into the cystogenesis phenomena. Methods Starting with an earlier in silico epithelial analogue (ISEA1 that validated for several Madin-Darby canine kidney (MDCK epithelial cell culture attributes, we built a revised analogue (ISEA2 to increase overlap between analogue and cell culture traits. Both analogues used agent-based, discrete event methods. A set of axioms determined ISEA behaviors; together, they specified the analogue's operating principles. A new experimentation framework enabled tracking relative axiom use and roles during simulated cystogenesis along with establishment of the consequences of their disruption. Results ISEA2 consistently produced convex cystic structures in a simulated embedded culture. Axiom use measures provided detailed descriptions of the analogue's dynamic phenotype. Dysregulating key cell death and division axioms led to disorganized structures. Adhering to either axiom less than 80% of the time caused ISEA1 to form easily identified morphological changes. ISEA2 was more robust to identical dysregulation. Both dysregulated analogues exhibited characteristics that resembled those associated with an in vitro model of early glandular epithelial cancer. Conclusion We documented the causal chains of events, and their relative roles, responsible for simulated cystogenesis. The results stand as an early hypothesis–a theory–of how individual MDCK cell actions give rise to consistently roundish, cystic organoids.

  7. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    Science.gov (United States)

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets.

  8. Maintenance of Epithelial Stem Cells by Cbl Proteins

    Science.gov (United States)

    2012-09-01

    150 mM NaCl, 0.5% Nonidet P - 40 , 0.1 mM Na4VO3, 1 mM NaF, and protease inhibitor mixture), and cyclin-dependent kinase (Cdk) complex was recovered by...17060907] 40 . Jenndahl LE, Isakson P , Baeckstrom D. c-erbB2-induced epithelial-mesenchymal transition in mammary epithelial cells is suppressed by...overexpressing breast cancer. Ann Oncol. 2010;21(Suppl 7):vii36– 40 . [PubMed: 20943641] 33. Ludwig DL, Pereira DS, Zhu Z, Hicklin DJ, Bohlen P . Monoclonal

  9. Etk/Bmx activation modulates barrier function in epithelial cells.

    Science.gov (United States)

    Hamm-Alvarez, S F; Chang, A; Wang, Y; Jerdeva, G; Lin, H H; Kim, K J; Ann, D K

    2001-06-01

    Etk/Bmx is a member of the Tec family of cytoplasmic non-receptor tyrosine kinases known to express in epithelial cells. We demonstrate herein that Etk activation in stably Etk-transfected epithelial Pa-4 cells resulted in a consistently increased transepithelial resistance (TER). After 24 h of hypoxic (1% O(2)) exposure, the TER and equivalent active ion transport rate (I(eq)) were reduced to <5% of the normoxia control in Pa-4 cells, whereas both TER and I(eq) were maintained at comparable and 60% levels, respectively, relative to their normoxic controls in cells with Etk activation. Moreover, Pa-4 cells exhibited an abundant actin stress fiber network with a diffuse distribution of beta-catenin at the cell periphery. By contrast, Etk-activated cells displayed a redistribution of actin to an exclusively peripheral network, with a discrete band of beta-catenin also concentrated at the cell periphery, and an altered occludin distribution profile. On the basis of these findings, we propose that Etk may be a novel regulator of epithelial junctions during physiological and pathophysiological conditions.

  10. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    Science.gov (United States)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  11. Quantitative mapping of intracellular cations in the human amniotic membrane

    Science.gov (United States)

    Moretto, Ph.; Llabador, Y.; Simonoff, M.; Razafindrabe, L.; Bara, M.; Guiet-Bara, A.

    1993-05-01

    The effect of magnesium and taurine on the permeability of cell membranes to monovalent cations has been investigated using the Bordeaux nuclear microprobe. PIXE and RBS techniques have been used to provide quantitative measurements and ion distributions in the isolated amniotic membrane. This physiological model for cellular exchanges allowed us to reveal the distribution of most elements involved in cellular pathways and the modifications under different experimental conditions of incubation in physiological fluids. The PIXE microanalysis provided an original viewpoint on these mechanisms. Following this first study, the amnion compact lamina was found to play a role which was not, up to now, taken into account in the interpretation of electrophysiological experimentations. The release of some ionic species, such as K +, from the epithelial cells, during immersion in isotonic fluids, could have been hitherto underestimated.

  12. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    Science.gov (United States)

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells.

  13. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  14. Biomechanics of epithelial cell islands analyzed by modeling and experimentation

    CERN Document Server

    Coburn, Luke; Noppe, Adrian; Caldwell, Benjamin J; Moussa, Elliott; Yap, Chloe; Priya, Rashmi; Lobaskin, Vladimir; Roberts, Anthony P; Yap, Alpha S; Neufeld, Zoltan; Gomez, Guillermo A

    2016-01-01

    We generated a new computational approach to analyze the biomechanics of epithelial cell islands that combines both vertex and contact-inhibition-of-locomotion models to include both cell-cell and cell-substrate adhesion. Examination of the distribution of cell protrusions (adhesion to the substrate) in the model predicted high order profiles of cell organization that agree with those previously seen experimentally. Cells acquired an asymmetric distribution of protrusions (and traction forces) that decreased when moving from the edge to the island center. Our in silico analysis also showed that tension on cell-cell junctions (and monolayer stress) is not homogeneous across the island. Instead it is higher at the island center and scales up with island size, which we confirmed experimentally using laser ablation assays and immunofluorescence. Moreover, our approach has the minimal elements necessary to reproduce mechanical crosstalk between both cell-cell and cell substrate adhesion systems. We found that an i...

  15. Uranium induces oxidative stress in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.; Ramesh, Govindarajan T. [Texas Southern University, Molecular Neurotoxicology Laboratory/Proteomics Core, Department of Biology, Houston, TX (United States)

    2007-06-15

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells. (orig.)

  16. File list: DNS.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.20.AllAg.Tracheal_epithelial_cells hg19 DNase-seq Lung Tracheal epithelial ...cells SRX1420085,SRX374730,SRX374729 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  17. File list: DNS.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.10.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  18. File list: Oth.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithel...ial cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  19. File list: His.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.50.AllAg.Tracheal_epithelial_cells hg19 Histone Lung Tracheal epithelial ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  20. File list: Unc.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Lng.05.AllAg.Tracheal_epithelial_cells hg19 Unclassified Lung Tracheal epitheli...al cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  1. File list: Oth.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lng.05.AllAg.Tracheal_epithelial_cells hg19 TFs and others Lung Tracheal epithe...lial cells SRX268452,SRX268450,SRX268451 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  2. File list: His.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  3. File list: DNS.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.20.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  4. File list: Unc.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.05.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  5. File list: DNS.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.05.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  6. File list: Unc.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Lng.20.AllAg.Tracheal_epithelial_cells hg19 Unclassified Lung Tracheal epitheli...al cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  7. File list: Pol.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.05.AllAg.Tracheal_epithelial_cells hg19 RNA polymerase Lung Tracheal epithe...lial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  8. File list: Oth.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lng.10.AllAg.Tracheal_epithelial_cells hg19 TFs and others Lung Tracheal epithe...lial cells SRX268452,SRX268450,SRX268451 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  9. File list: Pol.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.50.AllAg.Tracheal_epithelial_cells hg19 RNA polymerase Lung Tracheal epithe...lial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  10. File list: Oth.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithel...ial cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  11. File list: Pol.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.20.AllAg.Tracheal_epithelial_cells hg19 RNA polymerase Lung Tracheal epithe...lial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  12. File list: Unc.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Lng.50.AllAg.Tracheal_epithelial_cells hg19 Unclassified Lung Tracheal epitheli...al cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  13. File list: His.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  14. File list: Unc.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.10.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  15. File list: Pol.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.05.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithel...ial cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  16. File list: His.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.20.AllAg.Tracheal_epithelial_cells hg19 Histone Lung Tracheal epithelial ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  17. File list: DNS.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.05.AllAg.Tracheal_epithelial_cells hg19 DNase-seq Lung Tracheal epithelial ...cells SRX1420085,SRX374730,SRX374729 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  18. File list: His.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX403485,SRX396749,SRX403486,SRX031075,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  19. File list: Unc.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.50.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  20. File list: DNS.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.50.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  1. File list: His.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  2. File list: Pol.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.50.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithel...ial cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  3. File list: DNS.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.50.AllAg.Tracheal_epithelial_cells hg19 DNase-seq Lung Tracheal epithelial ...cells SRX1420085,SRX374730,SRX374729 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  4. File list: Unc.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.20.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  5. File list: Pol.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.10.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithel...ial cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  6. File list: Oth.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithel...ial cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  7. File list: Oth.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lng.20.AllAg.Tracheal_epithelial_cells hg19 TFs and others Lung Tracheal epithe...lial cells SRX268452,SRX268451,SRX268450 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  8. File list: His.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.05.AllAg.Tracheal_epithelial_cells hg19 Histone Lung Tracheal epithelial ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  9. File list: Unc.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Lng.10.AllAg.Tracheal_epithelial_cells hg19 Unclassified Lung Tracheal epitheli...al cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  10. File list: Oth.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lng.50.AllAg.Tracheal_epithelial_cells hg19 TFs and others Lung Tracheal epithe...lial cells SRX268450,SRX268452,SRX268451 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  11. File list: DNS.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.10.AllAg.Tracheal_epithelial_cells hg19 DNase-seq Lung Tracheal epithelial ...cells SRX1420085,SRX374730,SRX374729 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  12. File list: Pol.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.10.AllAg.Tracheal_epithelial_cells hg19 RNA polymerase Lung Tracheal epithe...lial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  13. File list: His.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.10.AllAg.Tracheal_epithelial_cells hg19 Histone Lung Tracheal epithelial ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  14. File list: Oth.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithel...ial cells SRX424872,SRX330635,SRX330636 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  15. File list: Pol.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.20.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithel...ial cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  16. Directed differentiation of airway epithelial cells of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Li, Jian-Dong

    2016-11-01

    The ability to generate lung and airway epithelial cells from human bone marrow mesenchymal stem cells (hBMSCs) would have applications in regenerative medicine, modeling of lung disease, drug screening, and studies of human lung development. In this research, hBMSCs were cultured in specialized airway epithelial cell growth media for differentiation of airway epithelial cells, including keratinocyte growth factor transferrin, bovine pituitary extract, epinephrine, triiodothyronine and retinoic acid. The surfactant protein C, a specific marker of type II pneumocytes, and its corresponding protein were demonstrated by immunofluorescence and western blotting after differentiation of airway epithelial cells, respectively. These cells were then transferred into an induced acute lung injury model. The results showed that the hBMSCs could induce differentiation in airway epithelial cells under the special conditions of the medium, the result for surfactant protein C was positive in differentiated airway epithelial cells using immunofluorescence and western blotting, and these cells were successfully colonized in the injured lung airway. In conclusion, our research shows that a population of airway epithelial cells can be specifically generated from hBMSCs and that induced cells may be allowed to participate in tissue repair.

  17. The PCP pathway regulates Baz planar distribution in epithelial cells

    OpenAIRE

    2016-01-01

    The localisation of apico-basal polarity proteins along the Z-axis of epithelial cells is well understood while their distribution in the plane of the epithelium is poorly characterised. Here we provide a systematic description of the planar localisation of apico-basal polarity proteins in the Drosophila ommatidial epithelium. We show that the adherens junction proteins Shotgun and Armadillo, as well as the baso-lateral complexes, are bilateral, i.e. present on both sides of cell interfaces. ...

  18. Intravenous grafts of amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate behavioral deficits in ischemic stroke rats.

    Directory of Open Access Journals (Sweden)

    Naoki Tajiri

    Full Text Available We recently reported isolation of viable rat amniotic fluid-derived stem (AFS cells [1]. Here, we tested the therapeutic benefits of AFS cells in a rodent model of ischemic stroke. Adult male Sprague-Dawley rats received a 60-minute middle cerebral artery occlusion (MCAo. Thirty-five days later, animals exhibiting significant motor deficits received intravenous transplants of rat AFS cells or vehicle. At days 60-63 post-MCAo, significant recovery of motor and cognitive function was seen in stroke animals transplanted with AFS cells compared to vehicle-infused stroke animals. Infarct volume, as revealed by hematoxylin and eosin (H&E staining, was significantly reduced, coupled with significant increments in the cell proliferation marker, Ki67, and the neuronal marker, MAP2, in the dentate gyrus (DG [2] and the subventricular zone (SVZ of AFS cell-transplanted stroke animals compared to vehicle-infused stroke animals. A significantly higher number of double-labeled Ki67/MAP2-positive cells and a similar trend towards increased Ki67/MAP2 double-labeling were observed in the DG and SVZ of AFS cell-transplanted stroke animals, respectively, compared to vehicle-infused stroke animals. This study reports the therapeutic potential of AFS cell transplantation in stroke animals, possibly via enhancement of endogenous repair mechanisms.

  19. Limbal Stromal Tissue Specific Stem Cells and Their Differentiation Potential to Corneal Epithelial Cells.

    Science.gov (United States)

    Katikireddy, Kishore Reddy; Jurkunas, Ula V

    2016-01-01

    From the derivation of the first human embryonic stem (hES) cell line to the development of induced pluripotent stem (iPS) cells; it has become evident that tissue specific stem cells are able to differentiate into a specific somatic cell types. The understanding of key processes such as the signaling pathways and the role of the microenvironment in epidermal/epithelial development has provided important clues for the derivation of specific epithelial cell types.Various differentiation protocols/methods were used to attain specific epithelial cell types. Here, we describe in detail the procedure to follow for isolation of tissue specific stem cells, mimicking their microenvironment to attain stem cell characteristics, and their potential differentiation to corneal epithelial cells.

  20. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Doupnik, C.A.; Leikauf, G.D. (Univ. of Cincinnati College of Medicine, OH (USA))

    1990-10-01

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with (3H)arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. (3H)arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein.

  1. In vitro methods to culture primary human breast epithelial cells.

    Science.gov (United States)

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  2. Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via CCL2 modulation in bronchoalveolar lavage.

    Directory of Open Access Journals (Sweden)

    Orquidea Garcia

    Full Text Available The potential for amniotic fluid stem cell (AFSC treatment to inhibit the progression of fibrotic lung injury has not been described. We have previously demonstrated that AFSC can attenuate both acute and chronic-fibrotic kidney injury through modification of the cytokine environment. Fibrotic lung injury, such as in Idiopathic Pulmonary Fibrosis (IPF, is mediated through pro-fibrotic and pro-inflammatory cytokine activity. Thus, we hypothesized that AFSC treatment might inhibit the progression of bleomycin-induced pulmonary fibrosis through cytokine modulation. In particular, we aimed to investigate the effect of AFSC treatment on the modulation of the pro-fibrotic cytokine CCL2, which is increased in human IPF patients and is correlated with poor prognoses, advanced disease states and worse fibrotic outcomes. The impacts of intravenous murine AFSC given at acute (day 0 or chronic (day 14 intervention time-points after bleomycin injury were analyzed at either day 3 or day 28 post-injury. Murine AFSC treatment at either day 0 or day 14 post-bleomycin injury significantly inhibited collagen deposition and preserved pulmonary function. CCL2 expression increased in bleomycin-injured bronchoalveolar lavage (BAL, but significantly decreased following AFSC treatment at either day 0 or at day 14. AFSC were observed to localize within fibrotic lesions in the lung, showing preferential targeting of AFSC to the area of fibrosis. We also observed that MMP-2 was transiently increased in BAL following AFSC treatment. Increased MMP-2 activity was further associated with cleavage of CCL2, rendering it a putative antagonist for CCL2/CCR2 signaling, which we surmise is a potential mechanism for CCL2 reduction in BAL following AFSC treatment. Based on this data, we concluded that AFSC have the potential to inhibit the development or progression of fibrosis in a bleomycin injury model during both acute and chronic remodeling events.

  3. Estradiol increases mucus synthesis in bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Anthony Tam

    Full Text Available Airway epithelial mucus hypersecretion and mucus plugging are prominent pathologic features of chronic inflammatory conditions of the airway (e.g. asthma and cystic fibrosis and in most of these conditions, women have worse prognosis compared with male patients. We thus investigated the effects of estradiol on mucus expression in primary normal human bronchial epithelial cells from female donors grown at an air liquid interface (ALI. Treatment with estradiol in physiological ranges for 2 weeks caused a concentration-dependent increase in the number of PAS-positive cells (confirmed to be goblet cells by MUC5AC immunostaining in ALI cultures, and this action was attenuated by estrogen receptor beta (ER-β antagonist. Protein microarray data showed that nuclear factor of activated T-cell (NFAT in the nuclear fraction of NHBE cells was increased with estradiol treatment. Estradiol increased NFATc1 mRNA and protein in ALI cultures. In a human airway epithelial (1HAE0 cell line, NFATc1 was required for the regulation of MUC5AC mRNA and protein. Estradiol also induced post-translational modification of mucins by increasing total fucose residues and fucosyltransferase (FUT-4, -5, -6 mRNA expression. Together, these data indicate a novel mechanism by which estradiol increases mucus synthesis in the human bronchial epithelium.

  4. Host epithelial geometry regulates breast cancer cell invasiveness

    Science.gov (United States)

    Boghaert, Eline; Gleghorn, Jason P.; Lee, KangAe; Gjorevski, Nikolce; Radisky, Derek C.; Nelson, Celeste M.

    2012-01-01

    Breast tumor development is regulated in part by cues from the local microenvironment, including interactions with neighboring nontumor cells as well as the ECM. Studies using homogeneous populations of breast cancer cell lines cultured in 3D ECM have shown that increased ECM stiffness stimulates tumor cell invasion. However, at early stages of breast cancer development, malignant cells are surrounded by normal epithelial cells, which have been shown to exert a tumor-suppressive effect on cocultured cancer cells. Here we explored how the biophysical characteristics of the host microenvironment affect the proliferative and invasive tumor phenotype of the earliest stages of tumor development, by using a 3D microfabrication-based approach to engineer ducts composed of normal mammary epithelial cells that contained a single tumor cell. We found that the phenotype of the tumor cell was dictated by its position in the duct: proliferation and invasion were enhanced at the ends and blocked when the tumor cell was located elsewhere within the tissue. Regions of invasion correlated with high endogenous mechanical stress, as shown by finite element modeling and bead displacement experiments, and modulating the contractility of the host epithelium controlled the subsequent invasion of tumor cells. Combining microcomputed tomographic analysis with finite element modeling suggested that predicted regions of high mechanical stress correspond to regions of tumor formation in vivo. This work suggests that the mechanical tone of nontumorigenic host epithelium directs the phenotype of tumor cells and provides additional insight into the instructive role of the mechanical tumor microenvironment. PMID:23150585

  5. Alveolar epithelial type II cell: defender of the alveolus revisited

    Directory of Open Access Journals (Sweden)

    Fehrenbach Heinz

    2001-01-01

    Full Text Available Abstract In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2 cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, and host defence. AE2 cells proliferate, differentiate into AE1 cells, and remove apoptotic AE2 cells by phagocytosis, thus contributing to epithelial repair. AE2 cells may act as immunoregulatory cells. AE2 cells interact with resident and mobile cells, either directly by membrane contact or indirectly via cytokines/growth factors and their receptors, thus representing an integrative unit within the alveolus. Although most data support the concept, the controversy about the character of hyperplastic AE2 cells, reported to synthesise profibrotic factors, proscribes drawing a definite conclusion today.

  6. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  7. Trichomonas vaginalis perturbs the junctional complex in epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Trichomonas vaginalis, a protist parasite of the urogenital tract in humans, is the causative agent of trichomonosis,which in recent years have been associated with the cervical cancer development. In the present study we analyzed the modifications at the junctional complex level of Caco-2 cells after interaction with two isolates of T. vaginalis and the influence of the iron concentration present in the parasite's culture medium on the interaction effects. Our results show that T. vaginalis adheres to the epithelial cell causing alterations in the junctional complex, such as: (a) a decrease in transepithelial electrical resistance; (b) alteration in the pattern of junctional complex proteins distribution as obseryed for E-cadherin, occludin and ZO-1; and (c) enlargement of the spaces between epithelial cells. These effects were dependent on (a) the degree of the parasite virulence isolate, (b) the iron concentration in the culture medium, and (c) the expression of adhesin proteins on the parasite surface.

  8. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  9. Application Value of Amniotic Cell Culture in the Prenatal Diagnosis%羊水细胞培养在产前诊断中的应用价值

    Institute of Scientific and Technical Information of China (English)

    张赫

    2016-01-01

    目的:探讨羊水细胞培养在产前诊断中的应用价值。方法整群选取2010年5月—2015年10月在医院进行产前诊断的216例高危孕妇,给予羊膜穿刺和羊水细胞培养后分析染色体核型。结果所有孕妇穿刺成功率为99.1%,经过羊水细胞培养后,211例为正常核型,占97.7%,5例为异常核型,占2.3%。结论对孕妇进行羊水细胞培养在产前诊断中意义重大,可以预防先天性缺陷患儿的发生,提高新生儿质量,值得应用。%Objective To discuss the application value of amniotic cell culture in the prenatal diagnosis. Methods 216 cas-es of high risk pregnant women with prenatal diagnosis treated in our hospital from May 2010 to October 2015 were select-ed, and the chromosome karyotypes were analyzed after giving amniocentesis and amniotic cell culture. Results The success rate of amniocentesis of all pregnant women was 99.1%, 211 cases were normal karyotypes, accounting for 97.7%, 5 cases were abnormal karyotypes, accounting for 2.3%. Conclusion Amniotic cell culture in the prenatal diagnosis is of great sig-nificance, which can prevent the occurrence of children with congenital defects and improve the quality of newborns, and it is worth application.

  10. Asbestos exposure increases human bronchial epithelial cell fibrinolytic activity.

    Science.gov (United States)

    Gross, T J; Cobb, S M; Gruenert, D C; Peterson, M W

    1993-03-01

    Chronic exposure to asbestos fibers results in fibrotic lung disease. The distal pulmonary epithelium is an early target of asbestos-mediated injury. Local plasmin activity may be important in modulating endoluminal inflammatory responses in the lung. We studied the effects of asbestos exposure on cell-mediated plasma clot lysis as a marker of pericellular plasminogen activation. Exposing human bronchial epithelial (HBE) cells to 100 micrograms/ml of asbestos fibers for 24 h resulted in increased plasma clot lysis. Fibrinolytic activity was augmented in a dose-dependent fashion, was not due to secreted protease, and occurred only when there was direct contact between the plasma clot and the epithelial monolayer. Further analysis showed that asbestos exposure increased HBE cell-associated urokinase-type plasminogen activator (uPA) activity in a time-dependent manner. The increased cell-associated PA activity could be removed by acid washing. The increase in PA activity following asbestos exposure required new protein synthesis because it was abrogated by treatment with either cycloheximide or actinomycin D. Therefore, asbestos exposure increases epithelial-mediated fibrinolysis by augmenting expression of uPA activity at the cell surface by mechanisms that require new RNA and protein synthesis. These observations suggest a novel mechanism whereby exposure of the distal epithelium to inhaled particulates may result in a chronic inflammatory response that culminates in the development of fibrotic lung disease.

  11. Expression of inducible nitric oxide in human lung epithelial cells.

    Science.gov (United States)

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  12. Expression of Connexin43 in Rat Epithelial Cells and Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To explore the role of connexin43 (Cx43) in gap junctional intercellular communication (GJIC) and propagated sensation along meridians, the expression of Cx43 in the rat epithelial cells and fibroblasts was studied both in vitro and in vivo. With the in vitro study, the rat epithelial cells and fibroblasts were cultured together, and the localization of Cx43 was detected by immunohistochemistry and indirect immunofluorescent cytochemistry and under confocal microscopy . And the expression of Cx43 on the surface of the cells was examined by flow cytometry. With the in vivo examination, 20 SD rats were randomized into control group (n = 10) and electrical acupuncture group (EAgroup, n=10). EA ( 0.5-1.5 V, 4-16 Hz , 30 min) was applied to"Zusanli"acupoint for 30 min at rat's hind paw, the localization of Cx43 was immunohistochemically detected.The immunohistochemical staining and indirect immunfluorescent cytochemistry showed that Cx43was localized on the surface of the cells and in the cytoplasm. The relative expression level of Cx43on the cellular membrane surfaces of the rat epithelial cells and fibroblasts, as determined by FACS, were 13.91 % and 29.53 % respectively. Our studied suggested that Cx43 might be involved in GJIC and propagated sensation along meridians.

  13. Radiogenic transformation of human mammary epithelial cells in vitro

    Science.gov (United States)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  14. Generation of Spheres from Dental Epithelial Stem Cells

    Science.gov (United States)

    Natsiou, Despoina; Granchi, Zoraide; Mitsiadis, Thimios A.; Jimenez-Rojo, Lucia

    2017-01-01

    The in vitro three-dimensional sphere model has already been established as an important tool in fundamental sciences. This model facilitates the study of a variety of biological processes including stem cell/niche functions and tissue responses to injury and drugs. Here we describe the complete protocol for the in vitro formation of spheres originated from the epithelium of rodent incisors. In addition, we show that in these spheres cell proliferation is maintained, as well as the expression of several key molecules characterizing stem cells such as Sox2 and p63. These epithelial dentospheres could be used as an in vitro model system for stem cell research purposes. PMID:28154538

  15. Amniotic Fluid Embolism

    Science.gov (United States)

    ... oxygen can cause permanent, severe neurological damage or brain death. Lengthy hospital stay. Women who survive an amniotic ... Infant death. Your baby is at risk of brain injury or death. Prompt evaluation and delivery of your baby improves ...

  16. Lim Mineralization Protein 3 Induces the Osteogenic Differentiation of Human Amniotic Fluid Stromal Cells through Kruppel-Like Factor-4 Downregulation and Further Bone-Specific Gene Expression

    Directory of Open Access Journals (Sweden)

    Marta Barba

    2012-01-01

    Full Text Available Multipotent mesenchymal stem cells with extensive self-renewal properties can be easily isolated and rapidly expanded in culture from small volumes of amniotic fluid. These cells, namely, amniotic fluid-stromal cells (AFSCs, can be regarded as an attractive source for tissue engineering purposes, being phenotypically and genetically stable, plus overcoming all the safety and ethical issues related to the use of embryonic/fetal cells. LMP3 is a novel osteoinductive molecule acting upstream to the main osteogenic pathways. This study is aimed at delineating the basic molecular events underlying LMP3-induced osteogenesis, using AFSCs as a cellular model to focus on the molecular features underlying the multipotency/differentiation switch. For this purpose, AFSCs were isolated and characterized in vitro and transfected with a defective adenoviral vector expressing the human LMP3. LMP3 induced the successful osteogenic differentiation of AFSC by inducing the expression of osteogenic markers and osteospecific transcription factors. Moreover, LMP3 induced an early repression of the kruppel-like factor-4, implicated in MSC stemness maintenance. KLF4 repression was released upon LMP3 silencing, indicating that this event could be reasonably considered among the basic molecular events that govern the proliferation/differentiation switch during LMP3-induced osteogenic differentiation of AFSC.

  17. Amniotic fluid water dynamics.

    Science.gov (United States)

    Beall, M H; van den Wijngaard, J P H M; van Gemert, M J C; Ross, M G

    2007-01-01

    Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and bladder. A major pathway for amniotic fluid resorption is fetal swallowing; however in many cases the amounts of fluid produced and absorbed do not balance. A second resorption pathway, the intramembranous pathway (across the amnion to the fetal circulation), has been proposed to explain the maintenance of normal amniotic fluid volume. Amniotic fluid volume is thus a function both of the amount of water transferred to the gestation across the placental membrane, and the flux of water across the amnion. Membrane water flux is a function of the water permeability of the membrane; available data suggests that the amnion is the structure limiting intramembranous water flow. In the placenta, the syncytiotrophoblast is likely to be responsible for limiting water flow across the placenta. In human tissues, placental trophoblast membrane permeability increases with gestational age, suggesting a mechanism for the increased water flow necessary in late gestation. Membrane water flow can be driven by both hydrostatic and osmotic forces. Changes in both osmotic/oncotic and hydrostatic forces in the placenta my alter maternal-fetal water flow. A normal amniotic fluid volume is critical for normal fetal growth and development. The study of amniotic fluid volume regulation may yield important insights into the mechanisms used by the fetus to maintain water homeostasis. Knowledge of these mechanisms may allow novel treatments for amniotic fluid volume abnormalities with resultant improvement in clinical outcome.

  18. Serratia marcescens is injurious to intestinal epithelial cells.

    Science.gov (United States)

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens.

  19. Amniotic fluid stem cell-based models to study the effects of gene mutations and toxicants on male germ cell formation

    Institute of Scientific and Technical Information of China (English)

    Claudia Gundacker; Helmut Dolznig; Mario Mikula; Margit Rosner; Oliver Brandau; Markus Hengstschl(a)ger

    2012-01-01

    Male infertility is a major public health issue predominantly caused by defects in germ cell development.In the past,studies on the genetic regulation of spermatogenesis as well as on negative environmental impacts have been hampered by the fact that human germ cell development is intractable to direct analysis in vivo.Compared with model organisms including mice,there are fundamental differences in the molecular processes of human germ cell development.Therefore,an in vitro model mimicking human sperm formation would be an extremely valuable research tool.In the recent past,both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have been reported to harbour the potential to differentiate into primordial germ cells and gametes.We here discuss the pessibility to use human amniotic fluid stem (AFS) cells as a biological model.Since their discovery in 2003,AFS cells have been characterized to differentiate into cells of all three germ layers,to be genomically stable,to have a high proliferative potential and to be non-tumourigenic.In addition,AFS cells are not subject of ethical concerns.In contrast to iPS cells,AFSs cells do not need ectopic induction of pluripotency,which is often associated with only imperfectly cleared epigenetic memory of the source cells.Since AFS cells can be derived from amniocentesis with disease-causing mutations and can be transfected with high efficiency,they could be used in probing gene functions for spermatogenesis and in screening for male reproductive toxicity.

  20. Molecular cloning, sequence analysis, and function of the intestinal epithelial stem cell marker Bmi1 in pig intestinal epithelial cells.

    Science.gov (United States)

    Li, C-M; Yan, H-C; Fu, H-L; Xu, G-F; Wang, X-Q

    2014-01-01

    In the present work, we cloned the full-length cDNA of the pig Bmi1 gene (BMI1 polycomb ring finger oncogene), which has been indicated as an intestinal epithelial stem cell (IESC) marker in other mammals. This paper provides the first report of the function of Bmi1 in pig intestinal epithelial cells and a brief description of its underlying mechanism. Rapid amplification of cDNA ends technology was used to clone the complete pig Bmi1 sequence, and a Bmi1-pcDNA3.1 vector was constructed for transfection into an intestinal porcine epithelial cell line (IPEC-1). The proliferation ability of the cells was estimated using the MTT assay and the EdU incorporation method at different time points after seeding. Cell cycle information was detected by flow cytometry. The mRNA abundances of cell cycle-related genes were also measured. The results indicated that the pig Bmi1 cDNA is 3,193 bp in length and consists of a 981 bp open reading frame, a 256 bp 5´ untranslated region (UTR), and a 1,956 bp 3' UTR. The transcript contains no signal peptides, and there are no transmembrane regions in the pig Bmi1 coded protein, which has a total of 326 AA. The overexpression of the pig Bmi1 in the IPEC-1 cells led to increased cell proliferation and a lower percentage of cells in the G1 and S phases (P cells in the G2 phase (P 0.05). Our data suggested that pig Bmi1 can increase the proliferation of IPEC-1 cells by promoting the G1/S transition and the overall cell cycle process.

  1. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine

    NARCIS (Netherlands)

    Klunder, Leon J; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C D

    2017-01-01

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we

  2. Protective Effects of Trehalose on the Corneal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Pasquale Aragona

    2014-01-01

    Full Text Available Purpose. Aim of the present work was to evaluate the effects of the trehalose on the corneal epithelium undergoing alcohol delamination. Methods. Twelve patients undergoing laser subepithelial keratomileusis (LASEK were consecutively included in the study. The right eyes were pretreated with 3% trehalose eye drops, whilst left eyes were used as control. Epithelial specimens were processed for cells vitality assessment, apoptosis, and light and transmission electron microscopy; a morphometric analysis was performed in both groups. Results. In both trehalose-untreated eyes (TUE and trehalose-treated eyes (TTE, the percentage of vital cells was similar and no apoptotic cells were observed. In TUE, the corneal epithelium showed superficial cells with reduced microfolds, wing cells with vesicles and dilated intercellular spaces, and dark basal cells with vesicles and wide clefts. In TTE, superficial and wing cells were better preserved, and basal cells were generally clear with intracytoplasmatic vesicles. The morphometric analysis showed statistically significant differences between the two groups: the TTE epithelial height was higher, the basal cells showed larger area and clearer cytoplasm. The distribution of desmosomes and hemidesmosomes was significantly different between the groups. Conclusions. Trehalose administration better preserved morphological and morphometric features of alcohol-treated corneal epithelium, when compared to controls.

  3. Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells

    DEFF Research Database (Denmark)

    Thit, Amalie; Selck, Henriette; Bjerregaard, Henning F.

    2015-01-01

    CuO NPs have previously been reported as toxic to a range of cell cultures including kidney epithelial cells from the frog, Xenopus laevis (A6). Here we examine the molecular mechanisms affecting toxicity of Cu in different forms and particle sizes. A6 cells were exposed to ionic Cu (Cu2+) or CuO...... of the sequence of events explaining Poly toxicity. Briefly, the events include: cellular uptake, most likely via endocytosis, production of ROS, which cause DNA damage that activates a signaling pathway which eventually leads to cell death, mainly via apoptosis......CuO NPs have previously been reported as toxic to a range of cell cultures including kidney epithelial cells from the frog, Xenopus laevis (A6). Here we examine the molecular mechanisms affecting toxicity of Cu in different forms and particle sizes. A6 cells were exposed to ionic Cu (Cu2+) or Cu......O particles of three different sizes: CuO NPs of 6 nm (NP6), larger Poly-dispersed CuO NPs of toxic than NP6, Micro and Cu2+ to A6 cells, causing DNA damage, decreased cell viability...

  4. Oral epithelial cell responses to multispecies microbial biofilms.

    Science.gov (United States)

    Peyyala, R; Kirakodu, S S; Novak, K F; Ebersole, J L

    2013-03-01

    This report describes the use of a novel model of multispecies biofilms to stimulate profiles of cytokines/chemokines from oral epithelial cells that contribute to local inflammation in the periodontium. Streptococcus gordonii (Sg)/S. oralis (So)/S. sanguinis (Ss) and Sg/Fusobacterium nucleatum (Fn)/Porphyromonas gingivalis (Pg) biofilms elicited significantly elevated levels of IL-1α and showed synergistic stimulatory activity compared with an additive effect of the 3 individual bacteria. Only the Sg/Actinomyces naeslundii (An)/Fn multispecies biofilms elicited IL-6 levels above those of control. IL-8 was a primary response to the Sg/An/Fn biofilms, albeit the level was not enhanced compared with a predicted composite level from the monospecies challenges. These results represent some of the first data documenting alterations in profiles of oral epithelial cell responses to multispecies biofilms.

  5. Evaluating alternative stem cell hypotheses for adultcorneal epithelial maintenance

    Institute of Scientific and Technical Information of China (English)

    John D West; Natalie J Dorà; Natalie J Dorà,

    2015-01-01

    In this review we evaluate evidence for three differenthypotheses that explain how the corneal epitheliumis maintained. The limbal epithelial stem cell (LESC)hypothesis is most widely accepted. This proposes thatstem cells in the basal layer of the limbal epithelium,at the periphery of the cornea, maintain themselvesand also produce transient (or transit) amplifying cells(TACs). TACs then move centripetally to the centre ofthe cornea in the basal layer of the corneal epitheliumand also replenish cells in the overlying suprabasallayers. The LESCs maintain the corneal epitheliumduring normal homeostasis and become more active torepair significant wounds. Second, the corneal epithelialstem cell (CESC) hypothesis postulates that, duringnormal homeostasis, stem cells distributed throughoutthe basal corneal epithelium, maintain the tissue.According to this hypothesis, LESCs are present in thelimbus but are only active during wound healing. We alsoconsider a third possibility, that the corneal epithelium ismaintained during normal homeostasis by proliferationof basal corneal epithelial cells without any input fromstem cells. After reviewing the published evidence,we conclude that the LESC and CESC hypotheses areconsistent with more of the evidence than the thirdhypothesis, so we do not consider this further. The LESCand CESC hypotheses each have difficulty accountingfor one main type of evidence so we evaluate the twokey lines of evidence that discriminate between them.Finally, we discuss how lineage-tracing experimentshave begun to resolve the debate in favour of theLESC hypothesis. Nevertheless, it also seems likely thatsome basal corneal epithelial cells can act as long-termprogenitors if limbal stem cell function is compromised.Thus, this aspect of the CESC hypothesis may have alasting impact on our understanding of corneal epithelialmaintenance, even if it is eventually shown that stemcells are restricted to the limbus as proposed by the

  6. Continuous cytokine exposure of colonic epithelial cells induces DNA damage

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole Haagen

    2005-01-01

    Chronic inflammatory diseases of the intestinal tract are associated with an increased risk of colorectal cancer. As an example ulcerative colitis (UC) is associated with a production of reactive oxygen species (ROS), including nitrogen monoxide (NO), which is produced in high amounts by inducibl...... nitrogen oxide synthase (iNOS). NO as well as other ROS are potential DNA damaging agents. The aim was to determine the effect of long-term cytokine exposure on NO formation and DNA damage in epithelial cells....

  7. Vaginal epithelial dendritic cells renew from bone marrow precursors.

    Science.gov (United States)

    Iijima, Norifumi; Linehan, Melissa M; Saeland, Sem; Iwasaki, Akiko

    2007-11-27

    Dendritic cells (DCs) represent key professional antigen-presenting cells capable of initiating primary immune responses. A specialized subset of DCs, the Langerhans cells (LCs), are located in the stratified squamous epithelial layer of the skin and within the mucosal epithelial lining of the vaginal and oral cavities. The vaginal mucosa undergoes cyclic changes under the control of sex hormones, and the renewal characteristics of the vaginal epithelial DCs (VEDCs) remain unknown. Here, we examined the origin of VEDCs. In contrast to the skin epidermal LCs, the DCs in the epithelium of the vagina were found to be repopulated mainly by nonmonocyte bone-marrow-derived precursors, with a half-life of 13 days under steady-state conditions. Upon infection with HSV-2, the Gr-1(hi) monocytes were found to give rise to VEDCs. Furthermore, flow cytometric analysis of the VEDCs revealed the presence of at least three distinct populations, namely, CD11b(+)F4/80(hi), CD11b(+)F4/80(int), and CD11b(-)F4/80(-). Importantly, these VEDC populations expressed CD207 at low levels and had a constitutively more activated phenotype compared with the skin LCs. Collectively, our results revealed mucosa-specific features of the VEDCs with respect to their phenotype, activation status, and homeostatic renewal potential.

  8. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, Victor Paul

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means of labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.

  9. The effects of cryopreservation on angiogenesis modulation activity of human amniotic membrane.

    Science.gov (United States)

    Yazdanpanah, Ghasem; Paeini-Vayghan, Ghodsieh; Asadi, Samira; Niknejad, Hassan

    2015-12-01

    Amniotic membrane (AM), as the innermost layer of placenta, has side dependent effects on the angiogenesis. Cryopreservation is a necessary process to avoid the challenging problems of fresh tissues; a procedure which makes the AM ready-to-use. Since the cryopreservation can influence the AM characteristics for experimental and clinical purposes, in this study the effects of cryopreservation were evaluated on angiogenesis modulation activity of the AM compared to fresh tissues in an animal model. The AM was implanted mesenchymal side up or epithelial side up in a rat dorsal skinfold chamber. The length and number of branches of formed capillaries were measured via intravital microscopy after 7 days. The amount of IL-8 (interleukin-8) and TIMP-2 (Tissue Inhibitor of Matrix Metalloproteinase-2) as two factors in amniotic cells which have great impacts on angiogenesis were evaluated using ELISA assay. The epithelial surface of cryopreserved AM had inhibitory effects on vessel formation. The cryopreserved amniotic mesenchymal side increased the vessel length and sprout. The result of cryopreserved AM on angiogenesis was similar to that of fresh tissues. The levels of IL-8 and TIMP-2 in cryopreserved samples were significantly less than fresh AMs which shows that angio-modulatory properties are not limited to the effects of amnion epithelial and mesenchymal stem cells and the other components such as extracellular matrix may contribute in angio-modulatory effects. These promising results show that inducing and inhibitory effects of the AM, which make it an appropriate candidate for different clinical situations, were maintained after cryopreservation.

  10. Epithelial stem cell islands in the regenerated epidermis

    Institute of Scientific and Technical Information of China (English)

    Fu Xiaobing; Sun Xiaoqing; Li Xiaokun; Sheng Zhiyong

    2001-01-01

    Objective: The effects of growth factors on wound healing have been studied extensively, however,their molecular and genetic mechanisms that regulate epidermal regeneration are not fully understood. In this study,we explore the cell reversion characteristics and epithelial stem cell distribution in human regenerated epidermis treated with recombinant human epidermal growth factor (rhEGF). Methods:Tissue biospies from 8 regenerated skins treated with rhEGF were used to evaluate the cell reversion and stem cell distribution in epidermis . The expression of β1 integrin, keratin 19 (K19), keratin 14 (K14) and keratin 10 (K10) in skins was detected with SP immunohistochemical methods. Another 8 biopsies from the regenerated epidermis treated without rhEGF, fetus, children and adults were used as the controls. Results:Immunohistochemical stain for β1 integrin and keratin 19 showed that there were some new stem cell islands in the epidermis treated with rhEGF. These cells were small, containing low RNA content and exhibiting positive expression with β1 integrin and K19 stain. They were isolated, bearing no anatomic relation with the epithelial stem cells in the basal layer. The serial identification experiments indicated that there treated without rhEGF. All of these results supported that these β1 integrin and K19 positive stain cells were the stem cells. Conclusions: The results indicated that these stem cell islands were the specific and individual cell structures in rhEGF treated wounds and rhEGF is the main factor in inducing the stem cell island formation. These results offer a direct evidence for epidermal cell reversion from the differentiated cells to undifferentiated stem cells in vivo and may be useful in the rational use of this growth factor to promote wound healing in clinic.

  11. Epithelial progenitor cell lines as models of normal breast morphogenesis and neoplasia

    DEFF Research Database (Denmark)

    Petersen, Ole William; Gudjonsson, Thorarinn; Villadsen, René;

    2003-01-01

    epithelial or the myoepithelial cell phenotype in primary cultures. Having succeeded in continuous propagation presumably without loss of markers, we could show that a subset of the luminal epithelial cells could convert to myoepithelial cells, signifying the possible existence of a progenitor cell...... cell lines. This suprabasal-derived epithelial cell line is able to generate both itself and differentiated luminal epithelial and myoepithelial cells, and in addition, is able to form elaborate terminal duct lobular unit (TDLU)-like structures within a reconstituted basement membrane. As more than 90...

  12. Effects of N-acetylcysteine on matrix metalloproteinase-9 secretion and cell migration of human corneal epithelial cells

    OpenAIRE

    Ramaesh, T; Ramaesh, K; Riley, S C; West, J.D.; Dhillon, B

    2012-01-01

    Matrix metalloproteinase-9 (MMP-9) secreted by corneal epithelial cells has a role in the remodelling of extracellular matrix and migration of epithelial cells. Elevated levels of MMP-9 activity in the ocular surface may be involved in the pathogenesis of corneal diseases. N-acetylcysteine (NAC) has been used to treat corneal diseases, including recurrent epithelial erosions. In this study, its effects on the MMP-9 secretion and human corneal epithelial (HCE) cell migration were evaluated in ...

  13. Modifications in cell cycle kinetics and in expression of G1 phase-regulating proteins in human amniotic cells after exposure to electromagnetic fields and ionizing radiation.

    Science.gov (United States)

    Lange, S; Viergutz, T; Simkó, M

    2004-10-01

    Low-frequency electromagnetic fields are suspected of being involved in carcinogenesis, particularly in processes that could be related to cancer promotion. Because development of cancer is associated with deregulated cell growth and we previously observed a magnetic field-induced decrease in DNA synthesis [Lange et al. (2002) Alterations in the cell cycle and in the protein level of cyclin D1p, 21CIP1, and p16INK4a after exposure to 50 HZ. MF in human cells. Radiat. Environ. Biophys.41, 131], this study aims to document the influence of 50 Hz, 1 mT magnetic fields (MF), with or without initial gamma-ionizing radiation (IR), on the following cell proliferation-relevant parameters in human amniotic fluid cells (AFC): cell cycle distribution, expression of the G1 phase-regulating proteins Cdk4, cyclin D1, p21CIP1 and p16INK4a, and Cdk4 activity. While IR induced a G1 delay and a dose-dependent G2 arrest, no discernible changes in cell cycle kinetics were observed due to MF exposure. However, a significant decrease in the protein expression of cyclin D1 and an increase in p21CIP1- and p16INK4a-expression could be detected after exposure to MF alone. IR-exposure caused an augmentation of p21CIP1- and p16INK4a- levels as well, but did not alter cyclin D1 expression. A slight diminution of Cdk4 activity was noticed after MF exposure only, indicating that Cdk4 appears not to act as a mediator of MF- or IR-induced changes in the cell cycle of AFC cells. Co-exposure to MF/IR affected neither cell cycle distribution nor protein expression or kinase activity additionally or synergistically, and therefore MF seems not to modify the mutagenic potency of IR.

  14. Stimulation of mucin secretion from human bronchial epithelial cells by mast cell chymase

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Jian ZHENG

    2004-01-01

    AIM: To investigate the effect ofchymase on the mucin secretion from human bronchial epithelial cells. METHODS:Primarily-cultured human bronchial epithelial (PCHBE) cells and normal human bronchial epithelial (NHBE) cells were cultured with chymase or other stimulus in a mixture of bronchial epithelial growth medium (BEGM) and Dulbecco's modified Eagle's medium (DMEM), and the quantities of stimulatory mucin release were recorded.MUC5AC mucin was measured with an ELISA and dolichos biflorus agglutinin (DBA) mucin was determined with an enzyme linked DBA assay. RESULTS: A dose-dependent secretion of DBA mucin from PCHBE cells was observed with chymase with a maximum secretion of 98 % above baseline being achieved following 3 h incubation.The action of chymase started from 1 h, peaked at 3 h and dramatically decreased at 20 h following incubation.Chymase was able to also stimulate approximately 38 % increase in MUC5AC mucin release from PCHBE cells, and about 121% increase in DBA mucin release from NHBE cells. A chymase inhibitor soybean trypsin inhibitor (SBTI)was able to inhibit up to 85 % chymase induced mucin release, indicating that the enzymatic activity was essential for the actions of chymase on bronchial epithelial cells. CONCLUSION: Chymase is a potent stimulus of mucin secretion from human bronchial epithelial cells. It can contribute to mucus hypersecretion process in the patients with chronic obstructive pulmonary disease or asthma.

  15. EOTAXIN AND EOTAXIN-2 EXPRESSION IN HUMAN BRONCHIAL EPITHELIAL CELL

    Institute of Scientific and Technical Information of China (English)

    TANG Wei; DENG Wei-wu; Albert CHAN; Stanley CHIK; Adrain WU

    2005-01-01

    Objective To study the role of eotaxin and eotaxin-2 expression by Th2 cytokine and analyze their relationship in normal human bronchial epithelial cell line-BEAS-2B cell. Methods Levels of eotaxin mRNA and protein expression in the bronchial epithelial cell line BEAS-2B cell were determined with RT-PCR and ELISA. We also used RT-PCR to evaluate eotaxin-2 expression under the regulation of Th2 cytokine IL-4 and IL-13 as well as proinflammatory agent-TNFα. Results Eotaxin mRNA expression was the highest at the time point of 12h under the stimulation of TNF-α. While Th2 cytokine IL-4 and IL-13 had the amplification effect on the expression. Eotaxin protein was also elevated with the combination stimulation of proinflammatory agent TNF-α and IL-4 in dose and time dependent manner(P<0.01). These results were also seen when the cells were stimulated by TNF-α and IL-13. Eotaxin-2 mRNA expression was the highest at the time point of 8h. The expression evaluated by semi-quantitative RT-PCR also elevated under the co-stimulation of TNF-α and IL-4 or TNF-α and IL-13 and it should significantly correlate with Eotaxin(P<0.05). Conclusion This study demonstrated that Th2 cytokine like IL-4 and IL-13 enhances eotaxin and eotaxin-2 expression when co-stimulated with proinflammatory agent TNF-α. These results showed that Th2 cytokines existence is the strong evidence for bronchial epithelial cells taking part in the allergic inflammation especially in eosinophils recruitment.

  16. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    Science.gov (United States)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  17. Induction of E-cadherin+ human amniotic fluid cell differentiation into oocyte-like cells via culture in medium supplemented with follicular fluid.

    Science.gov (United States)

    Liu, Te; Huang, Yongyi; Bu, Yanzhen; Zhao, Yanhui; Zou, Gang; Liu, Zhixue

    2014-07-01

    Pluripotent human amniotic fluid cells (HuAFCs) can differentiate into various types of somatic cell in vitro. However, their differentiation into oocyte-like cells has never been described to the best of our knowledge. In the present study, differentiation of E-cadherin+ and E-cadherin- HuAFC sub-populations into oocyte-like cells was induced via culture in medium containing bovine follicular fluid and β-mercaptoethanol. The E-cadherin+ HuAFCs expressed DAZL highly. Post-induction, cells with an oocyte-like phenotype were found among the E-cadherin+ HuAFCs, expressing markers specific to germ cells and oocytes (VASA, ZP3 and GDF9) and meiosis (DMC1 and SCP3). When specific small interfering RNA (siRNA) was used to suppress E-cadherin in the E-cadherin+ HuAFCs, the levels of DAZL expression were reduced. Post-induction, the morphology of the siRNA‑E‑cadherin HuAFCs was poorer and the expression levels of germ cell-specific markers were lower compared with those of the siRNA-mock HuAFCs. Therefore, E-cadherin+ HuAFCs could be more easily induced to differentiate into oocyte-like cells by bovine follicular fluid and β-mercaptoethanol. In addition, the E-cadherin+ HuAFCs exhibited potential characteristics of DAZL protein expression, and thus it was conjectured that bovine follicular fluid acts on DAZL protein and promotes E-cadherin+ HuAFC differentiation into oocyte-like cells.

  18. Ocular Surface Reconstruction with Cultivated Limbal Epithelial Cells in Limbal Stem Cell Deficiency: One-year Follow-up Results

    Directory of Open Access Journals (Sweden)

    İsmet Durak

    2012-05-01

    Full Text Available Pur po se: To evaluate the 1-year follow-up results of cultivated limbal epithelial cell (CLEC transplantation in unilateral limbal stem cell deficiency (LSCD. Ma te ri al and Met hod: One-year follow-up results of five unilateral LSCD patients who had undergone CLEC transplantation were evaluated. Parameters for this evaluation were: fluorescein staining of ocular surface, corneal vascularization and status of epithelium with slit lamp, and visual acuity. 1.5-mm limbal biopsy was performed from the superior limbus of the healthy eyes, broke into two equal pieces, expanded on human amniotic membrane (hAM and inserts for 14 days until getting 20 mm in size. CLECs on hAMs were used directly, and cells on inserts were usedafter detachment procedure. The symblepharon and pannus tissues were removed, superficial keratectomy was performed. CLEC on hAMs were transplanted with the epithelial side up onto the bare corneal stroma, sutured to the conjunctiva with 10-0 nylon sutures. Free CLEC layer from insert was placed on hAM as a second layer, additional hAM was used as a protective layer all over other tissues. Re sults: Median age was 44.4 years (14-71. The etiology was chemical burn in all patients. Median duration of symptoms was 10 years (2-18, median follow-up period was 12.6 (12-12.5 months. Preoperative best corrected visual acuities (BCVA were light perception in three patients, counting fingers at 50 cm in one patient and 3/10 in one patient. Visions were improved in all patients. Postoperative BCVA 12 months after the surgery were between counting fingers at 3 meters to 6/10. There was a temporary hemorrhage between the two layers of hAMs in one patient at the early postoperative period. Peripheral corneal vascularization has occurred in three patients, in patient corneal vascularization has reached to the paracentral area. Dis cus si on: CLEC transplantation is an efficient treatment option for unilateral LSCD in mid-long term. (Turk J

  19. Epithelial cells from smokers modify dendritic cell responses in the context of influenza infection

    Science.gov (United States)

    Epidemiologic evidence suggests that cigarette smoking is a risk factor for infection with influenza, but the mechanisms underlying this susceptibility remain unknown. To ascertain if airway epithelial cells from smokers demonstrate a decreased ability to orchestrate an influenza...

  20. Epstein-Barr virus infection and persistence in nasopharyngeal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Chi Man Tsang; Wen Deng; Yim Ling Yip; Mu-Sheng Zeng; Kwok Wai Lo; Sai Wah Tsao

    2014-01-01

    Epstein-Barr virus (EBV) infection is closely associated with undifferentiated nasopharyngeal carcinoma (NPC), strongly implicating a role for EBV in NPC pathogenesis; conversely, EBV infection is rarely detected in normal nasopharyngeal epithelial tissues. In general, EBV does not show a strong tropism for infecting human epithelial cels, and EBV infection in oropharyngeal epithelial cels is believed to be lytic in nature. To establish life-long infection in humans, EBV has evolved efficient strategies to infect B cels and hijack their celular machinery for latent infection. Lytic EBV infection in oropharyngeal epithelial cels, though an infrequent event, is believed to be a major source of infectious EBV particles for salivary transmission. The biological events associated with nasopharyngeal epithelial cells are only beginning to be understood with the advancement of EBV infection methods and the availability of nasopharyngeal epithelial cel models for EBV infection studies. EBV infection in human epithelial cels is a highly inefficient process compared to that in B cels, which express the complement receptor type 2 (CR2) to mediate EBV infection. Although receptor(s) on the epithelial cell surface for EBV infection remain(s) to be identified, EBV infection in epithelial cels could be achieved via the interaction of glycoproteins on the viral envelope with surface integrins on epithelial cels, which might trigger membrane fusion to internalize EBV in cels. Normal nasopharyngeal epithelial cells are not permissive for latent EBV infection, and EBV infection in normal nasopharyngeal epithelial cells usually results in growth arrest. However, genetic alterations in premalignant nasopharyngeal epithelial cells, including p16 deletion and cyclin D1 overexpression, could override the growth inhibitory effect of EBV infection to support stable and latent EBV infection in nasopharyngeal epithelial cells. The EBV episome in NPC is clonal in nature, suggesting that NPC

  1. Oral microbial biofilm stimulation of epithelial cell responses.

    Science.gov (United States)

    Peyyala, Rebecca; Kirakodu, Sreenatha S; Novak, Karen F; Ebersole, Jeffrey L

    2012-04-01

    Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria.

  2. High glucose stimulates the expression of erythropoietin in rat glomerular epithelial cells

    OpenAIRE

    Lim, Seul Ki; Park, Soo Hyun

    2011-01-01

    It has been reported that the levels of erythropoietin are associated with diabetes mellitus. Glomerular epithelial cells, located in the renal cortex, play an important role in the regulation of kidney function and hyperglycemia-induced cell loss of glomerular epithelial cells is implicated in the onset of diabetic nephropathy. This study investigated the effect of high glucose on erythropoietin and erythropoietin receptor expression in rat glomerular epithelial cells. We found that 25 mM D-...

  3. Combined HLA matched limbal stem cells allograft with amniotic membrane transplantation as a prophylactic surgical procedure to prevent corneal graft rejection after penetrating keratoplasty: case report

    Directory of Open Access Journals (Sweden)

    Paolo Capozzi

    2014-09-01

    Full Text Available Purpose. To determine if the use of combined HLA matched limbal stem cells allograft with amniotic membrane transplantation (AMT is a safe and effective prophylactic surgical procedure to prevent corneal graft after penetrating keratoplasty (PK. Methods. We report the case of a 17 years old patient with a history of congenital glaucoma, trabeculectomy and multiple corneal graft rejections, presenting total limbal cell deficiency. To reduce the possibility of graft rejection in the left eye after a new PK, a two step procedure was performed. At first the patient underwent a combined HLA matched limbal stem cells allograft (LAT and AMT and then, 10 months later, a new PK. Results. During 12 months of follow-up, the corneal graft remained stable and smooth, with no sign of graft rejection. Conclusions. In our patient, the prophylactic use of LAT from HLA-matched donors and AMT before PK, may result in a better prognosis of corneal graft survival.

  4. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  5. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo. CONCLUSIONS/SIGNIFICANCE: Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  6. [Amniotic membrane in conjunctivoplasty].

    Science.gov (United States)

    Samoila, O; Lacramioara, Totu; Mihu, D

    2012-01-01

    The basic principles of conjunctival reconstruction are similar in all pathologies that inflict conjunctival tissue loss. Large conjunctival defects are difficult to treat, with little conjunctival reserve that can be used to close the defect. The study had the objective to find alternatives to conjunctival autograft. Frozen amniotic membrane was investigated. From 27 cases, 22 cases were reconstructed using amniotic membrane alone, but in 5 cases conjunctival autograft was also needed. Bulbar conjunctiva was reconstructed in 23 cases, of which 19 with pterygium, 3 with conjunctival tumors, one operatory plague. Fornix reconstruction was carried out in 4 cases, one tumor and 3 symblepharons (2 after conjunctival burns and one pemfigus). The rate of pterygium recurrence was 7,14%. Amniotic membrane can heal large defects of the conjunctiva, either bulbar or forniceal.

  7. Bordetella pertussis entry into respiratory epithelial cells and intracellular survival.

    Science.gov (United States)

    Lamberti, Yanina; Gorgojo, Juan; Massillo, Cintia; Rodriguez, Maria E

    2013-12-01

    Bordetella pertussis is the causative agent of pertussis, aka whooping cough. Although generally considered an extracellular pathogen, this bacterium has been found inside respiratory epithelial cells, which might represent a survival strategy inside the host. Relatively little is known, however, about the mechanism of internalization and the fate of B. pertussis inside the epithelia. We show here that B. pertussis is able to enter those cells by a mechanism dependent on microtubule assembly, lipid raft integrity, and the activation of a tyrosine-kinase-mediated signaling. Once inside the cell, a significant proportion of the intracellular bacteria evade phagolysosomal fusion and remain viable in nonacidic lysosome-associated membrane-protein-1-negative compartments. In addition, intracellular B. pertussis was found able to repopulate the extracellular environment after complete elimination of the extracellular bacteria with polymyxin B. Taken together, these data suggest that B. pertussis is able to survive within respiratory epithelial cells and by this means potentially contribute to host immune system evasion.

  8. HUMAN AMNIOTIC MEMBRANE GRAFTING: A BOON IN OCULAR CHEMICAL INJURIES

    Directory of Open Access Journals (Sweden)

    Shashikala

    2013-03-01

    Full Text Available INTRODUCTION: Amniotic membrane is the innermost layer of the f etal membranes. It has a stromal matrix, a collagen layer, and an overlying basement membrane with a single layer of epithelium. (1 Amniotic membrane has unique properties including an ti-adhesive effects, bacterio-static properties, wound protection, pain redu ction, and epithelialisation effects. Another characteristic of amniotic membrane is the lack of imunogenicity. (2 Amniotic membranes have been used as a dressing to promote he aling of chronic ulcers of the leg and as a biological dressing for burned skin and skin woun ds. (3, 4 It has also been used in surgical reconstruction of artificial vagina, for repairing o mphaloceles, and to prevent tissue adhesion in surgeries of the abdomen, head, or pelvis. (5, 6 Amniotic membrane has been successfully used in ocular conditions like persistent epithelial defects (7, pterygium, (8 Symblepharon (9 and for ocular surface reconstruction. (10, 11 The purpose of this study was to evaluate the use of cryo- preserved Human amniotic membrane graft( HAMT, with or without limbal autograft transplantation (LAT in patients with previous and fr esh chemical eye injuries respectively. Institutional ethical committee approval was obtained .

  9. Nerve growth factor modulate proliferation of cultured rabbit corneal endothelial cells and epithelial cells.

    Science.gov (United States)

    Li, Xinyu; Li, Zhongguo; Qiu, Liangxiu; Zhao, Changsong; Hu, Zhulin

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF. MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  10. Human amniotic membrane as an intestinal patch for neomucosal growth in the rabbit model.

    Science.gov (United States)

    Barlas, M; Gökçora, H; Erekul, S; Dindar, H; Yücesan, S

    1992-05-01

    This experiment was carried out as a preliminary study, an attempt to grow new intestinal mucosa on human amniotic membrane in the terminal ileum in 37 rabbits. After ketamin sulfate anesthesia at laparatomy, 5-cm ileal defects were patched with human amniotic membrane (5 x 2 cm). These patched intestines were investigated on the first postoperative day and the 2nd, 5th, 10th, and 20th weeks corresponding to 4, 5, 5, 10, and 10 rabbits, respectively. Only three rabbits died in the early postoperative period. There was no evidence of intestinal obstruction or dilatation with barium meal. Microscopically, the neomucosa consisted of a thin layer of columnar epithelial cells at 2 weeks with more maturity of the villi and less irregularity and branching by 20 weeks. All patches were covered with neomucosa commencing at 2 weeks and covering the whole patch area by 20 weeks. This technique's advantages are the large size and the ease of the availability of the human amniotic membrane for neonates at risk without jeopardizing the neonates tissues. It is hoped that this method might be considered when neonatal material is scarce.

  11. Expression of ICAM-1 in colon epithelial cells

    DEFF Research Database (Denmark)

    Vainer, Ben; Sørensen, Susanne; Seidelin, Jakob;

    2003-01-01

    on monolayers of cancer cells. Conflicting results exist on epithelial ICAM-1 expression, and the aim of this study was to compare the expression in various models of colonic epithelium. MATERIALS AND METHODS: Colonic biopsies from four UC patients and four controls were examined by cryoimmuno......-electron microscopy using ICAM-1-antibodies. In four other controls, the epithelium was isolated from colonic biopsies, embedded in collagen, and evaluated similarly. Isolated crypts and cultured cancer cells were stimulated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF-alpha). RESULTS: ICAM-1......, both colonocytes and HT29 cells were capable of expressing ICAM-1 on their apical membranes in response to supraphysiologic cytokine concentrations. These observations question the justification of extrapolating observations from colon cancer cell lines to in vivo inflammatory conditions....

  12. Human respiratory epithelial cells from nasal turbinate expressed stem cell genes even after serial passaging.

    Science.gov (United States)

    Ruszymah, B H I; Izham, B A Azrul; Heikal, M Y Mohd; Khor, S F; Fauzi, M B; Aminuddin, B S

    2011-12-01

    Current development in the field of tissue engineering led to the idea of repairing and regenerating the respiratory airway through in vitro reconstruction using autologous respiratory epithelial (RE). To ensure the capability of proliferation, the stem cell property of RE cells from the nasal turbinate should be evaluated. Respiratory epithelial cells from six human nasal turbinates were harvested and cultured in vitro. The gene expression of FZD-9 and BST-1 were expressed in passage 2 (P2) and passage 4 (P4). The levels of expression were not significant between both passages. The RE cells exhibit the stem cell properties, which remains even after serial passaging.

  13. Cell-mediated infection of cervix derived epithelial cells with primary isolates of human immunodeficiency virus.

    Science.gov (United States)

    Tan, X; Phillips, D M

    1996-01-01

    We have previously demonstrated that HIV-infected transformed T-cells or monocytes adhere to monolayers of CD4-negative epithelial cells. Adhesion is soon followed by budding of HIV from infected mononuclear cells onto the surface of epithelial cells. Epithelial cells subsequently take up virus and become productively infected. Based on these findings, we proposed that sexual transmission of HIV may involve cell-mediated infection of intact mucosal epithelia of the urogenital tract. However, it has become increasingly clear that primary cells and HIV strains isolated from patients are more appropriate models for HIV infection than established cell lines and lab strains of virus. In the studies described here, we infected cervix-derived epithelial monolayers with primary monocytes infected with patient isolates of non-syncytial inducing (NSI) macrophage-tropic strains of HIV. Under the culture conditions employed, HIV-infected primary monocytes do not remain adherent to the apical surface of the epithelium, as did HIV-infected transformed cells. Instead, following adherence, the primary cells migrate between epithelial cells. Virus is secreted from a pseudopod as HIV-infected primary monocytes pass between cells of the epithelium. Productive infection of the epithelium was detected by p24 ELISA and PCR Southern blot analysis. Infection can be blocked by sera from HIV-seropositive individuals or by certain sulfated polysaccharides. These findings support the supposition that transmission of HIV may occur via cell-mediated infection of intact epithelia. The observations also hint at the possibility that-HIV-infected monocyte/macrophages in semen or cervical-vaginal secretions could cross intact epithelia by passing between epithelial cells. Blocking studies suggest that it may be possible to inhibit sexual transmission of HIV either by antibodies in genital tract secretions or by a topical formulation containing certain sulfated polysaccharides.

  14. Effects of different Helicobacter pylori culture filtrates on growth of gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Guo Yan; Gang Zhao; Jin-Ping Ma; Shi-Rong Cai; Wen-Hua Zhan

    2008-01-01

    AIM: To study the effects of different Helicobacter pylori (H py/orl) culture filtrates on growth of gastric epithelial cells.METHODS: Broth culture filtrates of H pylori were prepared. Gastric epithelial cells were treated with the filtrates, and cell growth was determined by growth curve and flow cytometry. DNA damage of gastric epithelial cells was measured by single-cell microgel electrophoresis.RESULTS: Gastric epithelial cells proliferated actively when treated by CagA-gene-positive broth culture filtrates, and colony formation reached 40%. The number of cells in S phase increased compared to controls. Comet assay showed 41.2% comet cells in GES-1 cells treated with CagA-positive filtrates (P<0.05).CONCLUSION: CagA-positive filtrates enhance the changes in morphology and growth characteristics of human gastric epithelial tumor cells. DNA damage maybe one of the mechanisms involved in the growth changes.

  15. Limbal stem cells: Central concepts of corneal epithelial homeostasis

    Institute of Scientific and Technical Information of China (English)

    Jinny; J; Yoon; Salim; Ismail; Trevor; Sherwin

    2014-01-01

    A strong cohort of evidence exists that supports the localisation of corneal stem cells at the limbus. The distinguishing characteristics of limbal cells as stem cells include slow cycling properties, high proliferative potential when required, clonogenicity, absence of differentiation marker expression coupled with positive expression of progenitor markers, multipotency, centripetal migration, requirement for a distinct niche environment and the ability of transplanted limbal cells to regenerate the entire corneal epithelium. The existence of limbal stem cells supports the prevailing theory of corneal homeostasis, known as the XYZ hypothesis where X represents proliferation and stratification of limbal basal cells, Y centripetal migration of basal cells and Z desquamation of superficial cells. To maintain the mass of cornea, the sum of X and Y must equal Z and very elegant cell tracking experiments provide strong evidence in support of this theory. However, several recent stud-ies have suggested the existence of oligopotent stem cells capable of corneal maintenance outside of the limbus. This review presents a summary of data which led to the current concepts of corneal epithelial homeostasis and discusses areas of controversy surrounding the existence of a secondary stem cell reservoir on the corneal surface

  16. Interaction between submicron COD crystals and renal epithelial cells

    Directory of Open Access Journals (Sweden)

    Peng H

    2012-08-01

    Full Text Available Hua Peng1,2 Jian-Ming Ouyang1,2 Xiu-Qiong Yao1, Ru-E Yang11Department of Chemistry, Jinan University, 2Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, ChinaObjectives: This study aims to investigate the adhesion characteristics between submicron calcium oxalate dihydrate (COD with a size of 150 ± 50 nm and African green monkey kidney epithelial cells (Vero cells before and after damage, and to discuss the mechanism of kidney stone formation.Methods: Vero cells were oxidatively injured by hydrogen peroxide to establish a model of injured cells. Scanning electron microscopy was used to observe Vero–COD adhesion. Inductively coupled plasma emission spectrometry was used to quantitatively measure the amount of adhered COD microcrystals. Nanoparticle size analyzer and laser scanning confocal microscopy were performed to measure the change in the zeta potential on the Vero cell surface and the change in osteopontin expression during the adhesion process, respectively. The level of cell injury was evaluated by measuring the changes in malonaldehyde content, and cell viability during the adhesion process.Results: The adhesion capacity of Vero cells in the injury group to COD microcrystals was obviously stronger than that of Vero cells in the control group. After adhesion to COD, cell viability dropped, both malonaldehyde content and cell surface zeta potential increased, and the fluorescence intensity of osteopontin decreased because the osteopontin molecules were successfully covered by COD. Submicron COD further damaged the cells during the adhesion process, especially for Vero cells in the control group, leading to an elevated amount of attached microcrystals.Conclusion: Submicron COD can further damage injured Vero cells during the adhesion process. The amount of attached microcrystals is proportional to the degree of cell damage. The increased amount of microcrystals that adhered to the injured epithelial

  17. Optimization of optical and mechanical properties of real architecture for 3-dimensional tissue equivalents: Towards treatment of limbal epithelial stem cell deficiency.

    Science.gov (United States)

    Massie, Isobel; Kureshi, Alvena K; Schrader, Stefan; Shortt, Alex J; Daniels, Julie T

    2015-09-01

    Limbal epithelial stem cell (LESC) deficiency can cause blindness. Transplantation of cultured human limbal epithelial cells (hLE) on human amniotic membrane (HAM) can restore vision but clinical graft manufacture can be unreliable. We have developed a reliable and robust tissue equivalent (TE) alternative to HAM, Real Architecture for 3D Tissue (RAFT). Here, we aimed to optimize the optical and mechanical properties of RAFT TE for treatment of LESC deficiency in clinical application. The RAFT TE protocol is tunable; varying collagen concentration and volume produces differing RAFT TEs. These were compared with HAM samples taken from locations proximal and distal to the placental disc. Outcomes assessed were transparency, thickness, light transmission, tensile strength, ease of handling, degradation rates and suitability as substrate for hLE culture. Proximal HAM samples were thicker and stronger with poorer optical properties than distal HAM samples. RAFT TEs produced using higher amounts of collagen were thicker and stronger with poorer optical properties than those produced using lower amounts of collagen. The 'optimal' RAFT TE was thin, transparent but still handleable and was produced using 0.6ml of 3mg/ml collagen. Degradation rates of the 'optimal' RAFT TE and HAM were similar. hLE achieved confluency on 'optimal' RAFT TEs at comparable rates to HAM and cells expressed high levels of putative stem cell marker p63α. These findings support the use of RAFT TE for hLE transplantation towards treatment of LESC deficiency.

  18. Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol

    OpenAIRE

    Ali Reza Khosravi; David J Erle

    2016-01-01

    Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote ...

  19. Efficient immortalization of primary nasopharyngeal epithelial cells for EBV infection study.

    Directory of Open Access Journals (Sweden)

    Yim Ling Yip

    Full Text Available Nasopharyngeal carcinoma (NPC is common among southern Chinese including the ethnic Cantonese population living in Hong Kong. Epstein-Barr virus (EBV infection is detected in all undifferentiated type of NPC in this endemic region. Establishment of stable and latent EBV infection in premalignant nasopharyngeal epithelial cells is an early event in NPC development and may contribute to its pathogenesis. Immortalized primary nasopharyngeal epithelial cells represent an important tool for investigation of EBV infection and its tumorigenic potential in this special type of epithelial cells. However, the limited availability and small sizes of nasopharyngeal biopsies have seriously restricted the establishment of primary nasopharyngeal epithelial cells for immortalization. A reliable and effective method to immortalize primary nasopharyngeal epithelial cells will provide unrestricted materials for EBV infection studies. An earlier study has reported that Bmi-1 expression could immortalize primary nasopharyngeal epithelial cells. However, its efficiency and actions in immortalization have not been fully characterized. Our studies showed that Bmi-1 expression alone has limited ability to immortalize primary nasopharyngeal epithelial cells and additional events are often required for its immortalization action. We have identified some of the key events associated with the immortalization of primary nasopharyngeal epithelial cells. Efficient immortalization of nasopharyngeal epithelial cells could be reproducibly and efficiently achieved by the combined actions of Bmi-1 expression, activation of telomerase and silencing of p16 gene. Activation of MAPK signaling and gene expression downstream of Bmi-1 were detected in the immortalized nasopharyngeal epithelial cells and may play a role in immortalization. Furthermore, these newly immortalized nasopharyngeal epithelial cells are susceptible to EBV infection and supported a type II latent EBV infection

  20. Matrix proteoglycans as effector molecules for epithelial cell function

    Directory of Open Access Journals (Sweden)

    C. W. Frevert

    2005-12-01

    Full Text Available Matrix proteoglycans are complex molecules composed of a core protein and glycosaminoglycan side chains. Once thought to be the molecular glue providing structural support and imparting biomechanical properties to lung tissue, it is now apparent that proteoglycans are important biological modifiers which regulate processes such as lung development, homeostasis, inflammation and wound healing. The diverse roles of proteoglycans in the extracellular matrix suggest that these molecules play a critical role in normal and diseased lungs. This short article will discuss the role extracellular matrix proteoglycans play in regulating epithelial cell function in the lungs.

  1. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions.

    Science.gov (United States)

    Slamecka, Jaroslav; Salimova, Lilia; McClellan, Steven; van Kelle, Mathieu; Kehl, Debora; Laurini, Javier; Cinelli, Paolo; Owen, Laurie; Hoerstrup, Simon P; Weber, Benedikt

    2016-01-01

    Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.

  2. Klebsiella pneumoniae triggers a cytotoxic effect on airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Llobet-Brossa Enrique

    2009-08-01

    Full Text Available Abstract Background Klebsiella pneumoniae is a capsulated Gram negative bacterial pathogen and a frequent cause of nosocomial infections. Despite its clinical relevance, little is known about the features of the interaction between K. pneumoniae and lung epithelial cells on a cellular level, neither about the role of capsule polysaccharide, one of its best characterised virulence factors, in this interaction. Results The interaction between Klebsiella pneumoniae and cultured airway epithelial cells was analysed. K. pneumoniae infection triggered cytotoxicity, evident by cell rounding and detachment from the substrate. This effect required the presence of live bacteria and of capsule polysaccharide, since it was observed with isolates expressing different amounts of capsule and/or different serotypes but not with non-capsulated bacteria. Cytotoxicity was analysed by lactate dehydrogenase and formazan measurements, ethidium bromide uptake and analysis of DNA integrity, obtaining consistent and complementary results. Moreover, cytotoxicity of non-capsulated strains was restored by addition of purified capsule during infection. While a non-capsulated strain was avirulent in a mouse infection model, capsulated K. pneumoniae isolates displayed different degrees of virulence. Conclusion Our observations allocate a novel role to K. pneumoniae capsule in promotion of cytotoxicity. Although this effect is likely to be associated with virulence, strains expressing different capsule levels were not equally virulent. This fact suggests the existence of other bacterial requirements for virulence, together with capsule polysaccharide.

  3. Cholesteatoma fibroblasts promote epithelial cell proliferation through overexpression of epiregulin.

    Directory of Open Access Journals (Sweden)

    Mamoru Yoshikawa

    Full Text Available To investigate whether keratinocytes proliferate in response to epiregulin produced by subepithelial fibroblasts derived from middle ear cholesteatoma. Tissue samples were obtained from patients undergoing tympanoplasty. The quantitative polymerase chain reaction and immunohistochemistry were performed to examine epiregulin expression and localization in cholesteatoma tissues and retroauricular skin tissues. Fibroblasts were cultured from cholesteatoma tissues and from normal retroauricular skin. These fibroblasts were used as feeder cells for culture with a human keratinocyte cell line (PHK16-0b. To investigate the role of epiregulin in colony formation by PHK16-0b cells, epiregulin mRNA expression was knocked down in fibroblasts by using short interfering RNA and epiregulin protein was blocked with a neutralizing antibody. Epiregulin mRNA expression was significantly elevated in cholesteatoma tissues compared with that in normal retroauricular skin. Staining for epiregulin was more intense in the epithelial cells and subepithelial fibroblasts of cholesteatoma tissues than in retroauricular skin. When PHK16-0b cells were cultured with cholesteatoma fibroblasts, their colony-forming efficiency was 50% higher than when these cells were cultured with normal skin fibroblasts. Also, knockdown of epiregulin mRNA in cholesteatoma fibroblasts led to greater suppression of colony formation than knockdown in skin fibroblasts. Furthermore, the colony-forming efficiency of PHK16-0b cells was significantly reduced after treatment with an epiregulin neutralizing antibody in co-culture with cholesteatoma fibroblasts, but not in co-culture with skin fibroblasts. These results suggest that keratinocyte hyperproliferation in cholesteatoma is promoted through overexpression of epiregulin by subepithelial fibroblasts via epithelial-mesenchymal interactions, which may play a crucial role in the pathogenesis of middle ear cholesteatoma.

  4. Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells.

    Science.gov (United States)

    Kassmer, Susannah H; Bruscia, Emanuela M; Zhang, Ping-Xia; Krause, Diane S

    2012-03-01

    Previous studies have demonstrated that bone marrow (BM)-derived cells differentiate into nonhematopoietic cells of multiple tissues. To date, it remains unknown which population(s) of BM cells are primarily responsible for this engraftment. To test the hypothesis that nonhematopoietic stem cells in the BM are the primary source of marrow-derived lung epithelial cells, either wild-type hematopoietic or nonhematopoietic BM cells were transplanted into irradiated surfactant-protein-C (SPC)-null mice. Donor-derived, SPC-positive type 2 pneumocytes were predominantly detected in the lungs of mice receiving purified nonhematopoietic cells and were absent from mice receiving purified hematopoietic stem and progenitor cells. We conclude that cells contained in the nonhematopoietic fraction of the BM are the primary source of marrow-derived lung epithelial cells. These nonhematopoietic cells may represent a primitive stem cell population residing in adult BM.

  5. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    Science.gov (United States)

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  6. Identification of fetal ABO blood groups by analyzing amniotic fluid cells via PCR-SSP%PCR-SSP技术对羊水细胞ABO血型的基因鉴定

    Institute of Scientific and Technical Information of China (English)

    马欣; 陈江

    2013-01-01

    目的 通过PCR-SSP基因技术检测胎儿羊水细胞ABO血型基因型,产前诊断胎儿ABO血型.方法 选取了6名孕16 W以上的孕妇,抽取羊水细胞并进行分离,提取羊水细胞DNA,运用PCR-SSP技术分析其ABO血型基因型,并通过出生后的脐带血的血型鉴定进行确认.结果 6例羊水标本均通过PCR-SSP方法检测出了ABO血型的基因型;该6名胎儿的脐带血的ABO血型与羊水细胞的血型一致.结论 PCR-SSP技术可以准确地检测胎儿羊水细胞的ABO血型.%Objective To identify fetal ABO blood groups by analyzing amniotic fluid cells via PCR-SSP. Methods Six pregnant women with gestational age between 16 weeks and 25 weeks were selected. DNA was taken in amniotic fluid cells from these pregnant women and then ABO genotypes of amniotic fluid cells were detected by PCR-SSP. And the ABO genotypes were conformed by detecting the cord blood . Results The ABO genotypes were identified from the 6 samples of amniotic fluid cells, and the results were in accordance with cord blood. Conclusion Fetal ABO blood group can be accurately detected out by amniotic fluid cells.

  7. Effect of Lithium on Cell Cycle Progression of Pig Airway Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    陈文书; 吴人亮; 王曦; 李媛; 郝天玲

    2004-01-01

    To investigate the effect of lithium on cell cycle progression of airway epithelial cells,primary pig tracheobronchial epithelial cells were incubated with lithium chloride (LiCl) at different concentrations (0, 5 mmol/L, and 10 mmol/L) and time (12 h, 16 h and 24 h). After the treatment, cells were counted, cell cycle profile was measured by BrdU labeling and flow cytometry, and expression of cyclin D1 and cyclin B1 were detected by Western blotting. The results showed that after 24h of 10mmol/L but not 5mmol/L LiCl treatment, proliferation of cells was slowed down as manifested by delayed confluence and cell number accumulation (P<0.05). Lithium did not change the percentage of cells in S phase (P>0.05), but 24 h incubation with 10 mmol/L LiCl induced a G2/M cell cycle arrest. Furthermore, 10mmol/L LiCl elevated cyclin D1 expression after 12h treatment, while expression of cyclin B1 increased more significantly after 24h incubation. These data demonstrate that lithium inhibits proliferation of pig airway epithelial cells by inhibiting cell cycle progression, and suggest that lithium-sensitive molecule(s) such as glycogen synthase kinase 3 may have a role in the regulation of growth of airway epithelial cells.

  8. Lens Epithelial Cell Proliferation and Cell Density in Human Age-related Cataract

    Institute of Scientific and Technical Information of China (English)

    Xialin Liu; Yizhi Liu; Jianliang Zheng; Qiang Huang; Huling Zheng

    2000-01-01

    Purpose: To discuss the potential effect of the lens epithelial cell proliferation in age-related cataract.Methods: In vitro cell proliferation was assayed by MTT method to evaluate the lens epithelial cell density, index, and proliferation capacity in normal lens and all kinds of age-related cataract. Capsulotomy specimens from all kinds of patients who underwent cataract phacoemulsification extraction surgery were compared with the lens epithelial specimens from non-cataract lenses of Eye Bank eyes.Results: Lens epithelial cell density of central anterior capsule (LECD) in female normal lens was higher than that in male, LECD in nuclear cataract( > NⅢ ) was higher than that in normal lens, but in the mature cortical cataract, LF CD was lower. Mitotic index of three kinds of age-related cataracts in vivo had no statistical difference, neither did cell proliferation capacity of cultivated cells in vitro.Conclusion: The individual difference of lens epithelial cell density and proliferation capacity in vivo may be an important underlying cause for senile cataract in the cellular level, especially for nuclear cataract.

  9. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K channels...... in pancreatic duct cells, including KCNN4 (K 3.1), KCNMA1 (K1.1), KCNQ1 (K7.1), KCNH2 (K11.1), KCNH5 (K10.2), KCNT1 (K4.1), KCNT2 (K4.2), and KCNK5 (K5.1). We will give an overview of K channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from...... other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K channel research with respect to the physiology of secretion...

  10. Invasion of epithelial cells by Trichinella spiralis: in vitro observations

    Directory of Open Access Journals (Sweden)

    Romarís F.

    2001-06-01

    Full Text Available It has been known for many years that Trichinella spiralis initiates infection by penetrating the columnar epithelium of the small intestine, however, the mechanisms used by the parasite in the establishment of its intramulticellular niche in the intestine are unknown. The recent demonstration that invasion also occurs in vitro when infective larvae of T. spiralis are inoculated onto cultures of epithelial cells provides a model that allows the direct observation of the process by which the parasite recognizes, invades and migrates within the epithelium. The finding that penetration of the cell membrane or Induction of plasma membrane wounds by larvae do not always result in invasion argue in favor of some kind of host-parasite communication in successful invasion. In this sense, the in vitro model of invasion provides a readily manipulated and controlled system to investigate both parasite, and host cell requirements for invasion.

  11. Epithelial Cell Coculture Models for Studying Infectious Diseases: Benefits and Limitations

    Directory of Open Access Journals (Sweden)

    Benjamin L. Duell

    2011-01-01

    Full Text Available Countless in vitro cell culture models based on the use of epithelial cell types of single lineages have been characterized and have provided insight into the mechanisms of infection for various microbial pathogens. Diverse culture models based on disease-relevant mucosal epithelial cell types derived from gastrointestinal, genitourinary, and pulmonary organ systems have delineated many key host-pathogen interactions that underlie viral, parasitic, and bacterial disease pathogenesis. An alternative to single lineage epithelial cell monoculture, which offers more flexibility and can overcome some of the limitations of epithelial cell culture models based on only single cell types, is coculture of epithelial cells with other host cell types. Various coculture models have been described, which incorporate epithelial cell types in culture combination with a wide range of other cell types including neutrophils, eosinophils, monocytes, and lymphocytes. This paper will summarize current models of epithelial cell coculture and will discuss the benefits and limitations of epithelial cell coculture for studying host-pathogen dynamics in infectious diseases.

  12. Parietal Epithelial Cell Activation Marker in Early Recurrence of FSGS in the Transplant

    NARCIS (Netherlands)

    Fatima, H.; Moeller, M.J.; Smeets, B.; Yang, H.C.; D'Agati, V.D.; Alpers, C.E.; Fogo, A.B.

    2012-01-01

    BACKGROUND AND OBJECTIVES: Podocyte loss is key in glomerulosclerosis. Activated parietal epithelial cells are proposed to contribute to pathogenesis of glomerulosclerosis and may serve as stem cells that can transition to podocytes. CD44 is a marker for activated parietal epithelial cells. This stu

  13. Equine tracheal epithelial membrane strips - An alternate method for examining epithelial cell arachidonic acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P.R.; Derksen, F.J.; Robinson, N.E.; Peter-Golden, M.L. (Michigan State Univ., East Lansing (United States) Univ. of Michigan, Ann Arbor (United States))

    1990-02-26

    Arachidonic acid metabolism by tracheal epithelium can be studied using enzymatically dispersed cell suspensions or cell cultures. Both techniques require considerable tissue disruption and manipulation and may not accurately represent in vivo activity. The authors have developed an alternate method for obtaining strips of equine tracheal epithelium without enzymatic digestion. In the horse, a prominent elastic lamina supports the tracheal epithelium. By physical splitting this lamina, they obtained strips ({le}12 x 1.5 cm) of pseudostratified columnar epithelium attached to a layer of elastic tissue 30-100 {mu}m thick. Epithelial strips (1.2 x 0.5 cm) were attached to plexiglass rods and incubated with ({sup 3}H)arachidonic acid in M199 medium (0.5 {mu}Ci/ml) for 24 hours at 37C. The strips incorporated 36{+-}4% (mean {+-} SEM) of the total radioactivity and released 8.0{+-}1.2% of incorporated radioactivity when stimulated by 5.0 {mu}M calcium ionophore A23187. The extracted supernatant was processed using HPLC, resulting in peaks of radioactivity that co-eluted with authentic PGE{sub 2}, PGF{sub 2}{alpha}, and 12-HETE standards. The greatest activity corresponded to the PGE{sub 2} and PGF{sub 2}{alpha} standards, which is a similar pattern to that reported for cultured human tracheal epithelium.

  14. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

    Science.gov (United States)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-09-15

    We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.

  15. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  16. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells

    Directory of Open Access Journals (Sweden)

    Weli Simon

    2013-01-01

    Full Text Available Abstract Infectious salmon anaemia virus (ISAV, a member of the Orthomyxoviridae family, infects and causes disease in farmed Atlantic salmon (Salmo salar L.. Previous studies have shown Atlantic salmon endothelial cells to be the primary targets of ISAV infection. However, it is not known if cells other than endothelial cells play a role in ISAV tropism. To further assess cell tropism, we examined ISAV infection of Atlantic salmon gill epithelial cells in vivo and in vitro. We demonstrated the susceptibility of epithelial cells to ISAV infection. On comparison of primary gill epithelial cell cultures with ISAV permissive fish cell cultures, we found the virus yield in primary gill epithelial cells to be comparable with that of salmon head kidney (SHK-1 cells, but lower than TO or Atlantic salmon kidney (ASK-II cells. Light and transmission electron microscopy (TEM revealed that the primary gill cells possessed characteristics consistent with epithelial cells. Virus histochemistry showed that gill epithelial cells expressed 4-O-acetylated sialic acid which is recognized as the ISAV receptor. To the best of our knowledge, this is the first demonstration of ISAV infection in Atlantic salmon primary gill epithelial cells. This study thus broadens our understanding of cell tropism and transmission of ISAV in Atlantic salmon.

  17. NK cells are necessary for recovery of corneal CD11c+ dendritic cells after epithelial abrasion injury

    Science.gov (United States)

    Mechanisms controlling CD11c(+) MHCII(+) DCs during corneal epithelial wound healing were investigated in a murine model of corneal abrasion. Selective depletion of NKp46(+) CD3- NK cells that normally migrate into the cornea after epithelial abrasion resulted in >85% reduction of the epithelial CD1...

  18. The PCP pathway regulates Baz planar distribution in epithelial cells

    Science.gov (United States)

    Aigouy, Benoit; Le Bivic, André

    2016-01-01

    The localisation of apico-basal polarity proteins along the Z-axis of epithelial cells is well understood while their distribution in the plane of the epithelium is poorly characterised. Here we provide a systematic description of the planar localisation of apico-basal polarity proteins in the Drosophila ommatidial epithelium. We show that the adherens junction proteins Shotgun and Armadillo, as well as the baso-lateral complexes, are bilateral, i.e. present on both sides of cell interfaces. In contrast, we report that other key adherens junction proteins, Bazooka and the myosin regulatory light chain (Spaghetti squash) are unilateral, i.e. present on one side of cell interfaces. Furthermore, we demonstrate that planar cell polarity (PCP) and not the apical determinants Crumbs and Par-6 control Bazooka unilaterality in cone cells. Altogether, our work unravels an unexpected organisation and combination of apico-basal, cytoskeletal and planar polarity proteins that is different on either side of cell-cell interfaces and unique for the different contacts of the same cell. PMID:27624969

  19. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  20. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells.

    Science.gov (United States)

    Bhattacharya, Sujoy; Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco-2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco-2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF-α/CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner.

  1. Cytokeratin 18 is necessary for initiation of TGF-β1-induced epithelial-mesenchymal transition in breast epithelial cells.

    Science.gov (United States)

    Jung, Hyejung; Kim, Bomin; Moon, Byung In; Oh, Eok-Soo

    2016-12-01

    During epithelial-mesenchymal transition (EMT), epithelial cells lose key phenotypic markers (e.g., E-cadherin and cytokeratin 18) and acquire mesenchymal markers (e.g., N-cadherin and vimentin). Although the loss of cytokeratin 18 is a hallmark of EMT, the regulatory role of cytokeratin 18 in EMT is not yet fully understood. Here, we report that cytokeratin 18 is involved in the regulation of transforming growth factor-beta1 (TGF-β1)-induced EMT in breast epithelial cells. When MCF10A cells were treated with TGF-β1 for 24 h, considerable morphological changes, indicative of the early stages of EMT (e.g., loss of cell-cell contact), were observed and cytokeratin 18 was downregulated. However, E-cadherin levels were not altered until a later time point. This suggests that cytokeratin 18 may play an active role during the earlier stages of EMT. Consistent with this notion, siRNA-mediated knockdown of cytokeratin 18 delayed TGF-β1-mediated EMT, and the associated downregulation of E-cadherin reduced the phosphorylation/nuclear localization of smad 2/3 and decreased the expression levels of snail and slug (which inhibit E-cadherin expression in epithelial cells as an early response to TGF-β1). Taken together, these results suggest that cytokeratin 18 critically contributes to initiating TGF-β1-induced EMT via the smad 2/3-mediated regulation of snail and slug expression in breast epithelial cells.

  2. Human Epithelial Cells Discriminate between Commensal and Pathogenic Interactions with Candida albicans.

    Science.gov (United States)

    Rast, Timothy J; Kullas, Amy L; Southern, Peter J; Davis, Dana A

    2016-01-01

    The commensal fungus, Candida albicans, can cause life-threatening infections in at risk individuals. C. albicans colonizes mucosal surfaces of most people, adhering to and interacting with epithelial cells. At low concentrations, C. albicans is not pathogenic nor does it cause epithelial cell damage in vitro; at high concentrations, C. albicans causes mucosal infections and kills epithelial cells in vitro. Here we show that while there are quantitative dose-dependent differences in exposed epithelial cell populations, these reflect a fundamental qualitative difference in host cell response to C. albicans. Using transcriptional profiling experiments and real time PCR, we found that wild-type C. albicans induce dose-dependent responses from a FaDu epithelial cell line. However, real time PCR and Western blot analysis using a high dose of various C. albicans strains demonstrated that these dose-dependent responses are associated with ability to promote host cell damage. Our studies support the idea that epithelial cells play a key role in the immune system by monitoring the microbial community at mucosal surfaces and initiating defensive responses when this community is dysfunctional. This places epithelial cells at a pivotal position in the interaction with C. albicans as epithelial cells themselves promote C. albicans stimulated damage.

  3. Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells.

    Science.gov (United States)

    Bauckman, Kyle A; Mysorekar, Indira U

    2016-05-01

    Autophagy is a cellular recycling pathway, which in many cases, protects host cells from infections by degrading pathogens. However, uropathogenic Escherichia coli (UPEC), the predominant cause of urinary tract infections (UTIs), persist within the urinary tract epithelium (urothelium) by forming reservoirs within autophagosomes. Iron is a critical nutrient for both host and pathogen, and regulation of iron availability is a key host defense against pathogens. Iron homeostasis depends on the shuttling of iron-bound ferritin to the lysosome for recycling, a process termed ferritinophagy (a form of selective autophagy). Here, we demonstrate for the first time that UPEC shuttles with ferritin-bound iron into the autophagosomal and lysosomal compartments within the urothelium. Iron overload in urothelial cells induces ferritinophagy in an NCOA4-dependent manner causing increased iron availability for UPEC, triggering bacterial overproliferation and host cell death. Addition of even moderate levels of iron is sufficient to increase and prolong bacterial burden. Furthermore, we show that lysosomal damage due to iron overload is the specific mechanism causing host cell death. Significantly, we demonstrate that host cell death and bacterial burden can be reversed by inhibition of autophagy or inhibition of iron-regulatory proteins, or chelation of iron. Together, our findings suggest that UPEC persist in host cells by taking advantage of ferritinophagy. Thus, modulation of iron levels in the bladder may provide a therapeutic avenue to controlling UPEC persistence, epithelial cell death, and recurrent UTIs.

  4. Oxidant-induced corticosteroid unresponsiveness in human bronchial epithelial cells

    NARCIS (Netherlands)

    Heijink, Irene; van Oosterhout, Antoon; Kliphuis, Nathalie; Jonker, Marnix; Hoffmann, Roland; Telenga, Eef; Klooster, Karin; Slebos, Dirk-Jan; ten Hacken, Nick; Postma, Dirkje; van den Berge, Maarten

    2014-01-01

    Background We hypothesised that increased oxidative stress, as present in the airways of asthma and chronic obstructive pulmonary disease (COPD) patients, induces epithelial damage and reduces epithelial responsiveness to suppressive effects of corticosteroids on proinflammatory cytokine production

  5. Cigarette smoke impairs airway epithelial barrier function and cell-cell contact recovery.

    Science.gov (United States)

    Heijink, I H; Brandenburg, S M; Postma, D S; van Oosterhout, A J M

    2012-02-01

    Cigarette smoking, the major cause of chronic obstructive pulmonary disease (COPD), induces aberrant airway epithelial structure and function. The underlying mechanisms are unresolved so far. We studied effects of cigarette smoke extract (CSE) on epithelial barrier function and wound regeneration in human bronchial epithelial 16HBE cells and primary bronchial epithelial cells (PBECs) from COPD patients, nonsmokers and healthy smokers. We demonstrate that CSE rapidly and transiently impairs 16HBE barrier function, largely due to disruption of cell-cell contacts. CSE induced a similar, but stronger and more sustained, defect in PBECs. Application of the specific epidermal growth factor receptor (EGFR) inhibitor AG1478 showed that EGFR activation contributes to the CSE-induced defects in both 16HBE cells and PBECs. Furthermore, our data indicate that the endogenous protease calpain mediates these defects through tight junction protein degradation. CSE also delayed the reconstitution of 16HBE intercellular contacts during wound healing and attenuated PBEC barrier function upon wound regeneration. These findings were comparable between PBECs from smokers, healthy smokers and COPD patients. In conclusion, we demonstrate for the first time that CSE reduces epithelial integrity, probably by EGFR and calpain-dependent disruption of intercellular contacts. This may increase susceptibility to environmental insults, e.g. inhaled pathogens. Thus, EGFR may be a promising target for therapeutic strategies to improve mucosal barrier function in cigarette smoking-related disease.

  6. [In vitro development of rifampicin resistance in the epithelial cells].

    Science.gov (United States)

    Erokhina, M V; Aleksandrova, E A

    2006-01-01

    It has been first in vitro demonstrated on a model of epithelial cells that rifampicin may develop not only at the level of Mycobacterium tuberculosis, but also at the level of somatic cells. The mechanism of this phenomenon, its specificity (whether cross resistance to other antituberculous agents will occur), the way it puts into effect under the conditions of a microorganism, and how promptly it may be gone after discontinuation of the drug remain unknown. The effect of rifampicin on the functional activity of Pgp is an important factor that influences as a result not only the absorbability of drugs, but also normal transport processes in the body. These aspects seem to be topical and are the subject for further studies. The authors have obtained an epithelial cell line that resides in the presence of 100 microg/ml of rifampicin and that is 2-2.5 times more resistant to the drug as compared with the parental line. The cells of this line are 2-2.5 times more active in discharging the substrate rhodamine-123 for P-glycoprotein than those of the parental line, which suggests the enhanced functional activity of P-glycoprotein. The presence of P-glycoprotein in this line is confirmed by the action of this protein-specific blocker verapamil. At the same time rifampicin is not a substract for P-glycoprotein. Therefore, the mechanism of rifampicin resistance is unassociated with the functional activity of P-glycoprotein. The mechanism of the resistance remains open. At the same concentration (100 microg/ml), rifampicin can block the functional activity of P-glycoprotein. These results suggest the double mechanism of rifampicin in its long presence in the culture medium: as an inductor and a blocker of P-glycoprotein functional activity. The findings point to the fact that the pharmacokinetics of rifampicin and co-administered dtugs may change during their long use.

  7. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Jessica L Eisenberg

    2011-01-01

    Full Text Available Jessica L Eisenberg1,2, Asmahan Safi3, Xiaoding Wei3, Horacio D Espinosa3, GR Scott Budinger2, Desire Takawira1, Susan B Hopkinson1, Jonathan CR Jones1,21Department of Cell and Molecular Biology, 2Division of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; 3Department of Mechanical Engineering, Northwestern University, Evanston, IL, USAAim: The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC in the lung, including their deposition and organization of extracellular matrix (ECM proteins.Methods: Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy.Results: We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM.Conclusions: An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung.Keywords: alveolar epithelial cells, fibrosis, extracellular matrix, substrate stiffness

  8. Different Sensitivities to Apoptotic Induction by Camptothecin between Normal and Senescent Lens Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Haike Guo; Haiying Jin; Liya Wang; Hongyang Zhang; Xin Yang

    2002-01-01

    Purpose: To investigate whether normal and senescent lens epithelial cells have different defense abilities to apoptotic induction factor in vitro.Methods: Rabbit lens epithelial cells were cultured, passed. When reaching confluence, cells from the first and seventh passage were stained by x-gal staining to detect cell senescence. Cell apoptosis was detected by TUNEL(Roche).10μmol/L camptothecin was used to induce cell apoptosis from the lens epithelial cells of the first and seventh passage to distinguish different sensitivities to apoptotic induction factor between normal and senescent cells.Results: The senescent cells (41.17% ± 5.24% ) were detected in the lens epithelial cell culture of the seventh passage, which are higher than those of the first passage (0.98% ±0. 39% ). There was no apoptotic cell detected in the cell cultures undisturbed. Exposure of the first passage cells to camptothecin resulted in death of approximately 23.87% ± 3.45% of the cells during a 36 hour exposure period. In contrast, significantly more lens epithelial cells died through the apoptosis (38.29% ±4. 01% ) from the seventh passage.Conclusion: Senescent cells increased with cell passage. Senescence lens epithelial cells do not undergo apoptosis if they were not disturbed. But the vulnerabilities to apoptotic induction between health and senescence cells were different.

  9. Rhinovirus infection induces cytotoxicity and delays wound healing in bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Constantopoulos Andreas G

    2005-10-01

    Full Text Available Abstract Background Human rhinoviruses (RV, the most common triggers of acute asthma exacerbations, are considered not cytotoxic to the bronchial epithelium. Recent observations, however, have questioned this knowledge. The aim of this study was to evaluate the ability of RV to induce epithelial cytotoxicity and affect epithelial repair in-vitro. Methods Monolayers of BEAS-2B bronchial epithelial cells, seeded at different densities were exposed to RV serotypes 1b, 5, 7, 9, 14, 16. Cytotoxicity was assessed chromatometrically. Epithelial monolayers were mechanically wounded, exposed or not to RV and the repopulation of the damaged area was assessed by image analysis. Finally epithelial cell proliferation was assessed by quantitation of proliferating cell nuclear antigen (PCNA by flow cytometry. Results RV1b, RV5, RV7, RV14 and RV16 were able to induce considerable epithelial cytotoxicity, more pronounced in less dense cultures, in a cell-density and dose-dependent manner. RV9 was not cytotoxic. Furthermore, RV infection diminished the self-repair capacity of bronchial epithelial cells and reduced cell proliferation. Conclusion RV-induced epithelial cytotoxicity may become considerable in already compromised epithelium, such as in the case of asthma. The RV-induced impairment on epithelial proliferation and self-repair capacity may contribute to the development of airway remodeling.

  10. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    Science.gov (United States)

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  11. Long-term homeostasis and wound healing in an in vitro epithelial stem cell niche model

    Science.gov (United States)

    Miyashita, Hideyuki; Niwano, Hiroko; Yoshida, Satoru; Hatou, Shin; Inagaki, Emi; Tsubota, Kazuo; Shimmura, Shigeto

    2017-01-01

    Cultures of epithelial cells are limited by the proliferative capacity of primary cells and cell senescence. Herein we show that primary human epithelial cell sheets cultured without dermal equivalents maintained homeostasis in vitro for at least 1 year. Transparency of these sheets enabled live observation of pigmented melanocytes and Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) labeled epithelial cells during wound healing. Cell turn over and KRT15 expression pattern stabilized within 3 months, when KRT15 bright clusters often associated with niche-like melanocytes became apparent. EdU labels were retained in a subset of epithelial cells and melanocytes after 6 months chasing, suggesting their slow cell cycling property. FUCCI-labeling demonstrated robust cell migration and proliferation following wounding. Transparency and long-term (1 year) homeostasis of this model will be a powerful tool for the study of wound healing and cell linage tracing. PMID:28233843

  12. Comparison of human amniotic fluid-derived and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity

    Institute of Scientific and Technical Information of China (English)

    Jing Bai; Yuan Hu; Yi-Ru Wang; Li-Feng Liu; Jie Chen; Shao-Ping Su; Yu Wang

    2012-01-01

    Objective To compare the characterization and myocardial differentiation capacity of amniotic fluid-derived mesenchymal stromal cells (AF MSCs) and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells (WJ MSCs). Methods The human AF MSCs were cultured from amniotic fluid samples obtained by amniocentesis. The umbilical cord WJ MSCs were obtained from Wharton's Jelly of umbilical cords of infants delivered full-term by normal labor. The morphology, growth curves, and analyses by flow cytometry of cell surface markers were compared between the two types of cells. Myocardial genes (GATA-4, c-TnT, α-actin, and Cx43) were detected by real-time PCR and the corresponding protein expressions were detected by Western blot analysis after myocardial induced in AF MSCs and WJ MSCs. Results Our findings revealed AF MSCs and WJ MSCs shared similar morphological characteristics of the fibroblastoid shape. The AF MSCs were easily obtained than the WJ MSCs and had a shorter time to reach adherence of 2.7 ± 1.6 days to WJ MSCs of 6.5 ± 1.8 days. The growth curves by MTT cytotoxic assay showed the AF MSCs had a similar proliferative capacity at passage 5 and passage 10. However, the proliferative capacities of WJ MSCs were decreased at 5 passage relative to 10 passage. Both AF stem cells and WJ stem cells had the characteristics of mesenchymal stromal cells with some characteristics of embryonic stem cells. They express CD29 and CD105, but not CD34. They were positive for Class I major histocompatibility (MHC I) antigens (HLA-ABC), and were negative, or mildly positive, for MHC Class II (HLA-DR) antigen. Oct-4 was positive in all the two cells types. Both AF MSCs and WJ MSCs could differentiate along myocardium. The differentiation capacities were detected by the expression of GATA-4, c-TnT, α-actin, Cx43 after myocardial induction. Conclusions Both AF MSCs and WJ MSCs have the potential clinical application for myogenesis in cardiac regenerative therapy.

  13. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model.

    Science.gov (United States)

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-08-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia.

  14. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    Science.gov (United States)

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  15. Ionizing radiation induces heritable disruption of epithelial cell interactions

    Science.gov (United States)

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.

  16. Myosin Id is required for planar cell polarity in ciliated tracheal and ependymal epithelial cells.

    Science.gov (United States)

    Hegan, Peter S; Ostertag, Eric; Geurts, Aron M; Mooseker, Mark S

    2015-10-01

    In wild type (WT) tracheal epithelial cells, ciliary basal bodies are oriented such that all cilia on the cell surface beat in the same upward direction. This precise alignment of basal bodies and, as a result, the ciliary axoneme, is termed rotational planar cell polarity (PCP). Rotational PCP in the multi-ciliated epithelial cells of the trachea is perturbed in rats lacking myosin Id (Myo1d). Myo1d is localized in the F-actin and basal body rich subapical cortex of the ciliated tracheal epithelial cell. Scanning and transmission electron microscopy of Myo1d knock out (KO) trachea revealed that the unidirectional bending pattern is disrupted. Instead, cilia splay out in a disordered, often radial pattern. Measurement of the alignment axis of the central pair axonemal microtubules was much more variable in the KO, another indicator that rotational PCP is perturbed. The asymmetric localization of the PCP core protein Vangl1 is lost. Both the velocity and linearity of cilia-driven movement of beads above the tracheal mucosal surface was impaired in the Myo1d KO. Multi-ciliated brain ependymal epithelial cells exhibit a second form of PCP termed translational PCP in which basal bodies and attached cilia are clustered at the anterior side of the cell. The precise asymmetric clustering of cilia is disrupted in the ependymal cells of the Myo1d KO rat. While basal body clustering is maintained, left-right positioning of the clusters is lost.

  17. Isolation, growth, and characterization of human renal epithelial cells using traditional and 3D methods.

    Science.gov (United States)

    Gildea, John J; McGrath, Helen E; Van Sciver, Robert E; Wang, Dora Bigler; Felder, Robin A

    2013-01-01

    The kidney is a highly heterogeneous organ that is responsible for fluid and electrolyte balance. Much interest is focused on determining the function of specific renal epithelial cells in humans, which can only be accomplished through the isolation and growth of nephron segment-specific epithelial cells. However, human renal epithelial cells are notoriously difficult to maintain in culture. This chapter describes the isolation, growth, immortalization, and characterization of the human renal proximal tubule cell. In addition, we describe new paradigms in 3D cell culture which allow the cells to maintain more in vivo-like morphology and function.

  18. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    McCarthy J

    2011-06-01

    Full Text Available J McCarthy1, X Gong2, D Nahirney2, M Duszyk2, MW Radomski11School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 2Department of Physiology, University of Alberta, Edmonton, Alberta, CanadaBackground: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function.Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Cl- channels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches.Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl- and HCO3- secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles.Conclusion: This is the first study to identify

  19. Pim1 kinase protects airway epithelial cells from cigarette smoke-induced damage and airway inflammation

    NARCIS (Netherlands)

    de Vries, M.; Heijink, Hilde; Gras, R.; den Boef, L. E.; Reinders-Luinge, M.; Pouwels, S. D.; Hylkema, Machteld; van der Toorn, Marco; Brouwer, U.; van Oosterhout, A. J. M.; Nawijn, M. C.

    2014-01-01

    Exposure to cigarette smoke (CS) is the main risk factor for developing chronic obstructive pulmonary disease and can induce airway epithelial cell damage, innate immune responses, and airway inflammation. We hypothesized that cell survival factors might decrease the sensitivity of airway epithelial

  20. Cytotoxicity and induction of inflammation by pepsin in Acid in bronchial epithelial cells

    NARCIS (Netherlands)

    Bathoorn, Erik; Daly, Paul; Gaiser, Birgit; Sternad, Karl; Poland, Craig; Macnee, William; Drost, Ellen M

    2011-01-01

    Introduction. Gastroesophageal reflux has been associated with chronic inflammatory diseases and may be a cause of airway remodelling. Aspiration of gastric fluids may cause damage to airway epithelial cells, not only because acidity is toxic to bronchial epithelial cells, but also since it contains

  1. File list: ALL.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.05.AllAg.Mammary_epithelial_cells mm9 All antigens Breast Mammary epithelia...SRX031066,SRX031214,SRX396750 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  2. File list: ALL.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.50.AllAg.Mammary_epithelial_cells mm9 All antigens Breast Mammary epithelia...SRX396750,SRX031066,SRX031214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  3. File list: ALL.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.Mammary_epithelial_cells mm9 All antigens Breast Mammary epithelia...SRX396750,SRX031066,SRX031214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  4. Roles of Wnt/{beta}-catenin signaling in epithelial differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China); Li, Yan [Jiangsu Centers for Diseases Prevention and Control, Nanjing 210009 (China); Qin, Jizheng [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China); Han, Xiaodong, E-mail: hanxd@nju.edu.cn [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China)

    2009-12-25

    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/{beta}-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/{beta}-catenin signaling were determined, suggested down-regulation of Wnt/{beta}-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3{alpha} can inhibit the epithelial differentiation of MSCs. A loss of {beta}-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated {beta}-catenin expression and subsequently decreased {beta}-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/{beta}-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  5. Human immunodeficiency virus type 1 infection of human uterine epithelial cells: viral shedding and cell contact-mediated infectivity.

    Science.gov (United States)

    Asin, Susana N; Wildt-Perinic, Dunja; Mason, Sarah I; Howell, Alexandra L; Wira, Charles R; Fanger, Michael W

    2003-05-15

    We examined the mechanism of human immunodeficiency virus (HIV) type 1 infection of human uterine epithelial cells to gain a clearer understanding of the events by which HIV-1 infects cells within the female reproductive tract. We demonstrated that these cells can be productively infected by HIV-1 and that infection is associated with viral RNA reverse transcription, DNA transcription, and secretion of infectious virus. Levels of viral DNA and secreted virus decreased gradually after infection. Moreover, virus released by the uterine epithelial cells shortly after infection was able to infect human T cell lines, but virus released later did not. In contrast, human CD4(+) T cell lines were infected after cocultivation with epithelial cells at both early and late stages of infection. These data demonstrated that HIV-1 infects human epithelial cells of upper reproductive tract origin and that productive viral infection of epithelial cells may be an important mechanism of transmission of HIV-1 infection in women.

  6. Epithelial cell identity in hyperplastic precursors of breast cancer

    Institute of Scientific and Technical Information of China (English)

    Danila Coradini; Patrizia Boracchi; Saro Oriana; Elia Biganzoli; Federico Ambrogi

    2015-01-01

    Introduction:In the adult human breast, hyperplastic enlarged lobular unit (HELU) and atypical ductal hyperplasia (ADH) are two common abnormalities that frequently coexist with ductal carcinoma in situ (DCIS). For this reason, they have been proposed as the early steps in a biological continuum toward breast cancer. Methods:We investigated in silico the expression of 369 genes experimentally recognized as involved in establishing and maintaining epithelial cell identity and mammary gland remodeling, in HELUs or ADHs with respect to the corresponding patient-matched normal tissue. Results:Despite the common luminal origin, HELUs and ADHs proved to be characterized by distinct gene profiles that overlap for 5 genes only. While HELUs were associated with the overexpression of progesterone receptor (PGR), ADHs were characterized by the overexpression of estrogen receptor 1 (ESR1) coupled with the overexpression of some proliferation-associated genes. Conclusions:This unexpected finding contradicts the notion that in differentiated luminal cells the expression of estrogen receptor (ER) is dissociated from cell proliferation and suggests that the establishing of an ER-dependent signaling is able to sustain cell proliferation in an autocrine manner as an early event in tumor initiation. Although clinical evidence indicates that only a fraction of HELUs and ADHs evolve to invasive cancer, present findings warn that exposure to synthetic progestins, frequently administered as hormone-replacement therapy, and estrogens, when abnormally produced by adipose cells and persistently present in the stroma surrounding the mammary gland, may cause these hyperplastic lesions.

  7. The Neisseria meningitidis ADP-Ribosyltransferase NarE Enters Human Epithelial Cells and Disrupts Epithelial Monolayer Integrity.

    Directory of Open Access Journals (Sweden)

    Maria Valeri

    Full Text Available Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and impair essential functions of eukaryotic cells. It has been previously reported that Neisseria meningitidis possesses an ADP-ribosyltransferase enzyme, NarE, retaining the capacity to hydrolyse NAD and to transfer ADP-ribose moiety to arginine residues in target acceptor proteins. Here we show that upon internalization into human epithelial cells, NarE gains access to the cytoplasm and, through its ADP-ribosylating activity, targets host cell proteins. Notably, we observed that these events trigger the disruption of the epithelial monolayer integrity and the activation of the apoptotic pathway. Overall, our findings provide, for the first time, evidence for a biological activity of NarE on host cells, suggesting its possible involvement in Neisseria pathogenesis.

  8. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  9. Effect of curcumin on aging retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-09-01

    Full Text Available Wei Zhu,1,* Yan Wu,2,* Yi-Fang Meng,1 Jin-Yu Wang,1 Ming Xu,1 Jian-Jun Tao,1 Jiong Lu1 1Department of Ophthalmology, Changshu No 2 People’s Hospital, Changshu, 2Department of Ophthalmology, The First People’s Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Age-related macular degeneration (AMD is now one of the leading causes of blindness in the elderly population. The antioxidative effects of curcumin on aging retinal pigment epithelial (RPE cells are still unclear. We conducted an in vitro study to investigate the effects of curcumin on aging RPE cells. A pulsed H2O2 exposure aging model was adopted. Aging RPE cells were treated with curcumin 20 µM, 40 µM, and 80 µM. Apoptosis of RPE cells was analyzed by flow cytometry. The intracellular reactive oxygen species concentration was detected using a specific probe and apoptosis-associated proteins were detected by Western blot. Expression of oxidative biomarkers, including superoxide dismutase, maleic dialdehyde, and glutathione, was detected commercially available assay kits. Compared with normal cells, lower cell viability, higher apoptosis rates, and more severe oxidation status were identified in the aging RPE cell model. Curcumin improved cell viability and decreased apoptosis and oxidative stress. Further, curcumin had a significant influence on expression of apoptosis-associated proteins and oxidative stress biomarkers. In conclusion, treatment with curcumin was able to regulate proliferation, oxidative stress, and apoptosis in aging RPE cells. Accordingly, application of curcumin may be a novel strategy to protect against age-related change in AMD. Keywords: curcumin, retinal pigment epithelium, apoptosis, age-related macular degeneration

  10. Amniotic fluid embolism

    OpenAIRE

    Thongrong, Cattleya; Kasemsiri, Pornthep; Hofmann, James P; Bergese, Sergio D.; Thomas J Papadimos; Gracias, Vicente H.; Adolph, Michael D.; Stawicki, Stanislaw P A

    2013-01-01

    Amniotic fluid embolism (AFE) is an unpredictable and as-of-yet unpreventable complication of maternity. With its low incidence it is unlikely that any given practitioner will be confronted with a case of AFE. However, this rare occurrence carries a high probability of serious sequelae including cardiac arrest, ARDS, coagulopathy with massive hemorrhage, encephalopathy, seizures, and both maternal and infant mortality. In this review the current state of medical knowledge about AFE is outline...

  11. 利用抗氧化剂促进羊水细胞培养效果的研究%The study of improving the culture results of amniotic fluid cells by adding antioxidants

    Institute of Scientific and Technical Information of China (English)

    丘力功; 蔡小杰; 黄志诚

    2012-01-01

    目的 通过添加抗氧化剂促进羊水细胞的培养效果.方法 分离传代的成纤维型羊水细胞,以生长指数为检测指标,在H配方的基础上利用部分析因设计法和最陡爬坡法对促进羊水细胞生长的抗氧化剂进行筛选和优化.优化后的培养基通过原代羊水细胞培养进行效果验证.结果 添加的维生素E、L-抗坏血酸、α硫辛酸和还原型谷胱甘肽等抗氧化剂皆能促进羊水细胞的生长,且具有协同效应.与H培养基相比,经最陡爬坡法优化的培养基培养的羊水细胞在克隆总数、生长指数等指标都提高3倍以上,分裂相细胞总数增长4倍以上.结论 改良后的羊水细胞培养基培养效果要显著优于H配方培养基,在产前诊断应用中具有推广价值.%Objective To improve the culture results of amniotic fluid by adding antioxidants. Methods Using Fractional factorial designs combined with the steepest ascent path approach, the concentration of antioxidants added in H medium was optimized to increase the growth speed of the passage fibroblast cells from amniotic fluid . And the performance of the optimized culture medium was tested with the growth index, the numbers of clones and metaphase of primary amniotic fluid cells culture. Results Vitamin E, L-ascorbic acid,α-lipoic acid and reduced CSH can all promote the growth of the amniotic fluid cells with synergic effect. Total number of clones,growth index,and total number of metaphase cells from amniotic fluid cells cultured in medium optimized by the steepest ascent path approach are all 3 times higher than those from H medium. Conclusion The optimization method of adding antioxidants in H medium can improve significantly the results of amniotic fluid cells culture and the optimized culture medium is applicable to the prenatal diagnosis.

  12. To research application of the reforming of amniotic cells culture on the methods in prenatal diagnosis%改良羊水细胞培养方法在产前诊断中的应用研究

    Institute of Scientific and Technical Information of China (English)

    向文秀

    2011-01-01

    目的 研究改良羊水细胞培养法在产前诊断中的应用.方法 采用改良多种处理方式的经典羊水细胞培养法和原位培养法对280例孕16-32周的孕妇进行羊水产前诊断.结果 成功率99.7%,培养收获时间5-7天,最短收获5天,最长7天.有效的细胞染色体核型>60个/例,发现异常核型15例,染色体异常栓出率5.4%.结论 两种改良羊水细胞培养技术,培养成功率高,细胞培养时间短,可供分析染色体核型多,培养适用范围宽,可满足临床产前诊断的需要.%objective: To research application of the reforming of amniotic fluid cells culture in different methods in prenatal diagnosis. Methods: 280 samples of amniotic fluid from pregnant women during 16 -32th -week gestation were cultured in the reforming of diverse ways to deal with of amniotic cell culture in classical method of amniotic fluid cell culture and method of situ cultivation. Results: The successful rate was 99. 7%. Culture Collection time: 5 -7days, the shortest time: 5 days, The most time: 7days. Effective karyotypes in each case were more than the 60. Discovered 15 cases of abnormal karyotype. 5.4% rate of chromosomal abnormalities detected. Conclusion: The reforming of two amniotic fluid cell culture techniques were superior than the classical method of amniotic fluid cell culture in training success rate, cell culture time, providing the number of analysis of karyotype and training scope. They can meet the needs of clinical prenatal diagnosis.

  13. Chromosome karyotype analysis of amniotic fluid cells of 1 466 pregnant women in Yangzhou%扬州地区1466例孕妇羊水细胞染色体核型分析

    Institute of Scientific and Technical Information of China (English)

    陈剑; 徐贵江

    2014-01-01

    Objective To explore the clinic value of chromosome karyotype analysis of amniotic fluid cells in prenatal diagnosis . Methods 1 466 cases of pregnant women who had the prenatal diagnosis indexes were selected ,and their amniotic fluid specimens were collected through amniocentesis guiding by type‐B ultrasonic around the 16th to 24th week .Amniotic fluid cells were gained after a successful cell culture .G banding was used for the karyotype analysis of amniotic fluid cells .Results The one‐time success rate of cultivation for amniotic fluid cells was 99 .8% .In 1 466 cases of pregnant women ,there were 16 cases of abnormal karyotype polymorphism (including 12 cases of trisomy 21 ,1 case of trisomy 18 ,and 3 cases of Chromosome abnormalities) and 3 cases of chromosomal polymorphism .Conclusion The chromosome karyotype analysis of amniotic fluid cell is still an irreplaceable test in prenatal diagnosis .%目的:探讨孕妇羊水细胞染色体核型分析在产前诊断中的临床应用价值。方法选择孕16~24周、具有产前诊断指征的孕妇1466例,在B超引导下行羊膜腔穿刺抽取羊水。经过羊水细胞培养增殖成功后收获细胞,G显带检查分析羊水细胞的染色体核型。结果羊水细胞一次性培养成功率为99.8%。1466例孕妇中,检出16例异常核型(其中12例21三体,1例18三体,3例染色体异常)和3例染色体多态性。结论羊水细胞染色体核型检查仍然是产前诊断中不可替代的手段。

  14. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB

  15. Expression of ICAM-1 in colon epithelial cells

    DEFF Research Database (Denmark)

    Vainer, Ben; Sørensen, Susanne; Seidelin, Jakob;

    2003-01-01

    Studies have suggested that in ulcerative colitis (UC), intercellular adhesion molecule-1 (ICAM-1) is involved in migration of leukocytes toward the colonic epithelium. A suitable in vitro model of chronic colonic inflammation does not exist, and the role of the epithelium is based on monolayers ...... of cancer cells. Conflicting results exist on epithelial ICAM-1 expression, and the aim of this study was to compare the expression in various models of colonic epithelium.......Studies have suggested that in ulcerative colitis (UC), intercellular adhesion molecule-1 (ICAM-1) is involved in migration of leukocytes toward the colonic epithelium. A suitable in vitro model of chronic colonic inflammation does not exist, and the role of the epithelium is based on monolayers...

  16. Gene expression in epithelial cells in response to pneumovirus infection

    Directory of Open Access Journals (Sweden)

    Rosenberg Helene F

    2001-05-01

    Full Text Available Abstract Respiratory syncytial virus (RSV and pneumonia virus of mice (PVM are viruses of the family Paramyxoviridae, subfamily pneumovirus, which cause clinically important respiratory infections in humans and rodents, respectively. The respiratory epithelial target cells respond to viral infection with specific alterations in gene expression, including production of chemoattractant cytokines, adhesion molecules, elements that are related to the apoptosis response, and others that remain incompletely understood. Here we review our current understanding of these mucosal responses and discuss several genomic approaches, including differential display reverse transcription-polymerase chain reaction (PCR and gene array strategies, that will permit us to unravel the nature of these responses in a more complete and systematic manner.

  17. Transplante de membrana amniótica canina criopreservada para cicatrização de córnea com deficiência de células límbicas em coelhos Transplantation of cryopreserved canine amniotic membrane for cicatrisation in cornea with limbal stem cells deficiency in rabbits

    Directory of Open Access Journals (Sweden)

    D.N. Cremonini

    2007-12-01

    Full Text Available Avaliaram-se as alterações relacionadas à deficiência das células límbicas precursoras do epitélio corneano de coelhos e o efeito da membrana amniótica sobre sua cicatrização. A lesão, induzida com n-heptanol associado à peritomia conjuntival em 360°, foi recoberta com membrana amniótica canina, suturada à episclera perilímbica, criopreservada em meio para congelação de embrião ou em meio próprio, ambos com glicerol a 50% e mantida a -80°C. O grupo-controle não foi tratado com a membrana. As avaliações histológicas foram realizadas ao sétimo, 15º e 30º dias. Todos desenvolveram deficiência de células germinativas do limbo, denominada conjuntivalização, com presença de neovascularização, inflamação e defeitos epiteliais recorrentes, caracterizada na histopatologia pela presença de neovasos, edema, leucócitos e células caliciformes. O transplante de membrana amniótica não foi eficiente para o tratamento desta deficiência, entretanto auxiliou o processo de cicatrização da córnea.Changes related to limbal stem cells deficiency in corneal epithelium in rabbits, as well as the results of amniotic membrane transplant on the cicatrisation were evaluated. The ulcer was induced with n-heptanol associated to 360° conjunctival peritomy; the corneal surface was covered with canine amniotic membrane, sutured to perilimbal episclera, cryopreserved in embryo solution or own medium, both with 50% glycerol and stored at -80°C. The control group was not treated with membrane. Histological evaluations were performed at seven, 15, and 30 days. All of them developed limbal stem cells deficiency, named conjunctivalization, with neovascularization, inflammation and recurrent epithelial defects, observed in histopathology by the occurrence of neovascularization, edema, leukocytes and goblet cells. Thus amniotic membrane transplantation was not efficient in the treatment of limbal stem cells deficiency, however it helped in

  18. File list: ALL.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 All antigens Uterus Fallopian tube secret...hg19/assembled/ALL.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  19. File list: ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 All antigens Uterus Fallopian tube secret...hg19/assembled/ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  20. File list: ALL.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 All antigens Uterus Fallopian tube...hg19/assembled/ALL.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  1. In vitro isolation and cultivation of rabbit tracheal epithelial cells using tissue explant technique.

    Science.gov (United States)

    Shi, Hong-Can; Lu, Dan; Li, Hai-Jia; Han, Shi; Zeng, Yan-Jun

    2013-04-01

    Epithelial cells from tracheal mucosa offer significant potential as a cell source in development of tissue-engineered trachea. The purpose of this study was to investigate and optimize a suitable culture system for tracheal epithelial cells, including the methods of primary culture, passage, identification, and cryopreservation. Epithelial cells were isolated from rabbit tracheal mucosa using tissue explant technique and were subjected to immunohistochemistry, immunofluorescence, and cryopreservation after purification. Epithelial cells reached confluency at 14-15 d. Immunohistochemical staining for cytokeratin showed brown yellow-positive cytoplasm and blue-counterstained nuclei, while immunofluorescence staining for cytokeratin showed green-positive cytoplasm and clear cell outline, indicating that the cultured cells had properties of epithelial cells. After recovery, epithelial cells exhibited high survival and viability. The results demonstrated that in vitro isolation and cultivation model was successfully established to provide high proliferative capacity, typical morphology and characteristics of tracheal epithelial cells from trachea mucosa by the use of the tissue explant technique.

  2. Epithelial cells as active player in fibrosis: findings from an in vitro model.

    Directory of Open Access Journals (Sweden)

    Solange Moll

    Full Text Available Kidney fibrosis, a scarring of the tubulo-interstitial space, is due to activation of interstitial myofibroblasts recruited locally or systemically with consecutive extracellular matrix deposition. Newly published clinical studies correlating acute kidney injury (AKI to chronic kidney disease (CKD challenge this pathological concept putting tubular epithelial cells into the spotlight. In this work we investigated the role of epithelial cells in fibrosis using a simple controlled in vitro system. An epithelial/mesenchymal 3D cell culture model composed of human proximal renal tubular cells and fibroblasts was challenged with toxic doses of Cisplatin, thus injuring epithelial cells. RT-PCR for classical fibrotic markers was performed on fibroblasts to assess their modulation toward an activated myofibroblast phenotype in presence or absence of that stimulus. Epithelial cell lesion triggered a phenotypical modulation of fibroblasts toward activated myofibroblasts as assessed by main fibrotic marker analysis. Uninjured 3D cell culture as well as fibroblasts alone treated with toxic stimulus in the absence of epithelial cells were used as control. Our results, with the caveats due to the limited, but highly controllable and reproducible in vitro approach, suggest that epithelial cells can control and regulate fibroblast phenotype. Therefore they emerge as relevant target cells for the development of new preventive anti-fibrotic therapeutic approaches.

  3. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María Laura Chiribao

    2014-01-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response, a great number of transcription factors (including the majority of NFκB family members, and host metabolism (cholesterol, fatty acids, and phospholipids. These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.

  4. Interaction of oral bacteria with gingival epithelial cell multilayers.

    Science.gov (United States)

    Dickinson, B C; Moffatt, C E; Hagerty, D; Whitmore, S E; Brown, T A; Graves, D T; Lamont, R J

    2011-06-01

    Primary gingival epithelial cells were cultured in multilayers as a model for the study of interactions with oral bacteria associated with health and periodontal disease. Multilayers maintained at an air-liquid interface in low-calcium medium displayed differentiation and cytokeratin properties characteristic of junctional epithelium. Multilayers were infected with fluorescently labeled Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum or Streptococcus gordonii, and bacterial association was determined by confocal microscopy and quantitative image analysis. Porphyromonas gingivalis invaded intracellularly and spread from cell to cell; A. actinomycetemcomitans and F. nucleatum remained extracellular and showed intercellular movement through the multilayer; whereas S. gordonii remained extracellular and predominantly associated with the superficial cell layer. None of the bacterial species disrupted barrier function as measured by transepithelial electrical resistance. P. gingivalis did not elicit secretion of proinflammatory cytokines. However, A. actinomycetemcomitans and S. gordonii induced interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and IL-8 secretion; and F. nucleatum stimulated production of IL-1β and TNF-α. Aggregatibacter actinomycetemcomitans, F. nucleatum and S. gordonii, but not P. gingivalis, increased levels of apoptosis after 24 h infection. The results indicate that the organisms with pathogenic potential were able to traverse the epithelium, whereas the commensal bacteria did not. In addition, distinct host responses characterized the interaction between the junctional epithelium and oral bacteria.

  5. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells

    Directory of Open Access Journals (Sweden)

    Fabian eSalazar

    2013-11-01

    Full Text Available Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells, culminating in mast cell sensitization and triggering. Dendritic cells have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors dendritic cells are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence dendritic cells behaviour through the release of a number of Th2 promoting cytokines. In this review we will summarise current understanding of how allergens are recognised by dendritic cells and epithelial cells and what are the consequences of such interaction in the context of allergic sensitisation and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signalling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitisation hence hindering development or progression of allergic diseases.

  6. The Rho Target PRK2 Regulates Apical Junction Formation in Human Bronchial Epithelial Cells

    OpenAIRE

    Wallace, Sean W.; Magalhaes, Ana; Hall, Alan

    2010-01-01

    Rho GTPases regulate multiple signaling pathways to control a number of cellular processes during epithelial morphogenesis. To investigate the downstream pathways through which Rho regulates epithelial apical junction formation, we screened a small interfering RNA (siRNA) library targeting 28 known Rho target proteins in 16HBE human bronchial epithelial cells. This led to the identification of the serine-threonine kinase PRK2 (protein kinase C-related kinase 2, also called PKN2). Depletion of...

  7. Epithelial cell kinetics of the gastric mucosa during Helicobacter pylori infection

    DEFF Research Database (Denmark)

    Holck, Susanne; Holm, I.L.; Holck, P.P.

    2007-01-01

    Helicobacter pylori is an important pathogen in major gastroduodenal diseases, including inflammation with ulceration and gastric malignancies. Alterations in H. pylori associated cell turnover in gastric epithelial cells are examined in relation to inflammatory activity, bacteria load...

  8. Specific N-glycan alterations are coupled in epithelial-mesenchymal transition induced by EGF in GE11 epithelial cells.

    Science.gov (United States)

    Xu, Qingsong; Qu, Chen; Wang, Wenjing; Gu, Jianguo; Du, Yuguang; Song, Linsheng

    2017-02-01

    Epithelial-mesenchymal transition (EMT) is a phenomenon in cancer progression during which cancer cells undergo remarkable alteration acquiring highly invasive property. The aim of this study was to evaluate specific N-glycan alterations during EMT induced by epidermal growth factor (EGF) in GE11 epithelial cells. Herein, we demonstrated that EGF activated epidermal growth factor receptor (EGFR)/Akt/extracellular signal-regulated kinase (ERK) phosphorylation and promoted GE11 cell proliferation. Meanwhile, EGF stimulated the epithelial cells to undergo morphological alteration, destroying cell-cell inter-contact and exhibiting mesenchymal cells higher metastatic potential. A wound-healing assay showed the migratory ability increased 1.5-fold after EGF treatment. Moreover, the relative intensity of N-cadherin versus E-cadherin increased 2.6-fold, and the E-cadherin distribution in cell-cell junctions became jagged and faint after EGF incubation for 72 h. Interestingly, the amounts of bisecting GlcNAc structure were dramatically declined, by contrast, the formation of β1,6 GlcNAc branches on cell surface was upregulated during EMT induced by EGF. To understand the roles of N-glycans in EGF-induced EMT, the cells were stably transfected with N-acetylglucosaminyltransferase III (GnT-III), which catalyzes the bisecting GlcNAc structure formation. As the markers for EMT, EGF-induced E-cadherin decrease and fibronectin increase were delayed in GnT-III-overexpressing cells. Taken together, these results demonstrated that specific N-glycan alterations were coupled in EMT induced by EGF, which might be contributed to diagnosis and therapy of tumor metastasis.

  9. Elastase induces lung epithelial cell autophagy through placental growth factor

    Science.gov (United States)

    Hou, Hsin-Han; Cheng, Shih-Lung; Chung, Kuei-Pin; Kuo, Mark Yen-Ping; Yeh, Cheng-Chang; Chang, Bei-En; Lu, Hsuan-Hsuan; Wang, Hao-Chien; Yu, Chong-Jen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease, which is associated with increasing mortality and morbidity. Therefore, there is a need to clearly define the COPD pathogenic mechanism and to explore effective therapies. Previous studies indicated that cigarette smoke (CS) induces autophagy and apoptosis in lung epithelial (LE) cells. Excessive ELANE/HNE (elastase, neutrophil elastase), a factor involved in protease-antiprotease imbalance and the pathogenesis of COPD, causes LE cell apoptosis and upregulates the expression of several stimulus-responsive genes. However, whether or not elastase induces autophagy in LE cell remains unknown. The level of PGF (placental growth factor) is higher in COPD patients than non-COPD controls. We hypothesize that elastase induces PGF expression and causes autophagy in LE cells. In this study, we demonstrated that porcine pancreatic elastase (PPE) induced PGF expression and secretion in LE cells in vitro and in vivo. The activation of MAPK8/JNK1 (mitogen-activated protein kinase 8) and MAPK14/p38alpha MAPK signaling pathways was involved in the PGF mediated regulation of the TSC (tuberous sclerosis complex) pathway and autophagy in LE cells. Notably, PGF-induced MAPK8 and MAPK14 signaling pathways mediated the inactivation of MTOR (mechanistic target of rapamycin), the upregulation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and the increase of autophagosome formation in mice. Furthermore, the PPE-induced autophagy promotes further apoptosis in vitro and in vivo. In summary, elastase-induced autophagy promotes LE cell apoptosis and pulmonary emphysema through the upregulation of PGF. PGF and its downstream MAPK8 and MAPK14 signaling pathways are potential therapeutic targets for the treatment of emphysema and COPD. PMID:24988221

  10. Cytotoxic effects of curcumin in human retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Margrit Hollborn

    Full Text Available BACKGROUND: Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE cells in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM and delayed apoptosis (above 1 µM. The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. CONCLUSION: It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as

  11. Cytotoxic Effects of Curcumin in Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Hollborn, Margrit; Chen, Rui; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas; Kohen, Leon

    2013-01-01

    Backround Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE) cells in vitro. Methodology/Principal Findings Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM) and delayed apoptosis (above 1 µM). The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. Conclusion It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM) has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as concomitant therapy of

  12. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  13. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  14. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jason Bennett

    2016-04-01

    Full Text Available Epithelial-mesenchymal transition (EMT, a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506 and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity.

  15. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway.

    Science.gov (United States)

    Classen, Anne-Kathrin; Anderson, Kurt I; Marois, Eric; Eaton, Suzanne

    2005-12-01

    The mechanisms that order cellular packing geometry are critical for the functioning of many tissues, but they are poorly understood. Here, we investigate this problem in the developing wing of Drosophila. The surface of the wing is decorated by hexagonally packed hairs that are uniformly oriented by the planar cell polarity pathway. They are constructed by a hexagonal array of wing epithelial cells. Wing epithelial cells are irregularly arranged throughout most of development, but they become hexagonally packed shortly before hair formation. During the process, individual cell boundaries grow and shrink, resulting in local neighbor exchanges, and Cadherin is actively endocytosed and recycled through Rab11 endosomes. Hexagonal packing depends on the activity of the planar cell polarity proteins. We propose that these proteins polarize trafficking of Cadherin-containing exocyst vesicles during junction remodeling. This may be a common mechanism for the action of planar cell polarity proteins in diverse systems.

  16. Phthalates stimulate the epithelial to mesenchymal transition through an HDAC6-dependent mechanism in human breast epithelial stem cells.

    Science.gov (United States)

    Hsieh, Tsung-Hua; Tsai, Cheng-Fang; Hsu, Chia-Yi; Kuo, Po-Lin; Lee, Jau-Nan; Chai, Chee-Yin; Hou, Ming-Feng; Chang, Chia-Cheng; Long, Cheng-Yu; Ko, Ying-Chin; Tsai, Eing-Mei

    2012-08-01

    Phthalates are environmental hormone-like molecules that are associated with breast cancer risk and are involved in metastasis, a process that requires the epithelial-mesenchymal transition (EMT). However, few studies have addressed the potential effects of phthalates on stem cells. Here we tested the hypothesis that phthalates such as butyl benzyl phthalate and di-n-butyl phthalate induce EMT in R2d cells, a stem cell-derived human breast epithelial cell line that is responsive to estradiol for tumor development. We observed that phthalates induced EMT as evidenced by morphological changes concomitant with increased expression of mesenchymal markers and decreased expression of epithelial markers. Molecular mechanism studies revealed that histone deacetylase 6 (HDAC6) is required for phthalate-induced cell migration and invasion during EMT in vitro and metastasis into the lungs of nude mice. We also constructed a series of mutant HDAC6 promoter fragments and found that the transcription factor AP-2a plays a novel role in regulating the HDAC6 promoter. Furthermore, phthalates stimulated estrogen receptors and triggered the downstream EGFR-PKA signaling cascade, leading to increased expression of AP-2a in the nucleus. We also observed that phthalates increased expression of the PP1/HDAC6 complex and caused Akt activation and GSK3β inactivation, leading to transcriptional activation of vimentin through the β-catenin-TCF-4/LEF1 pathway. Understanding the signaling cascades of phthalates that activate EMT through HDAC6 in breast epithelial stem cells provides the identification of novel therapeutic target for human breast cancer.

  17. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage.

    Science.gov (United States)

    Aparicio-Domingo, Patricia; Romera-Hernandez, Monica; Karrich, Julien J; Cornelissen, Ferry; Papazian, Natalie; Lindenbergh-Kortleve, Dicky J; Butler, James A; Boon, Louis; Coles, Mark C; Samsom, Janneke N; Cupedo, Tom

    2015-10-19

    Disruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence of this high mitotic activity, mucosal surfaces are frequently targeted by anticancer therapies, leading to dose-limiting side effects. The cellular mechanisms that control tissue protection and mucosal healing in response to intestinal damage remain poorly understood. Type 3 innate lymphoid cells (ILC3s) are regulators of homeostasis and tissue responses to infection at mucosal surfaces. We now demonstrate that ILC3s are required for epithelial activation and proliferation in response to small intestinal tissue damage induced by the chemotherapeutic agent methotrexate. Multiple subsets of ILC3s are activated after intestinal tissue damage, and in the absence of ILC3s, epithelial activation is lost, correlating with increased pathology and severe damage to the intestinal crypts. Using ILC3-deficient Lgr5 reporter mice, we show that maintenance of intestinal stem cells after damage is severely impaired in the absence of ILC3s or the ILC3 signature cytokine IL-22. These data unveil a novel function of ILC3s in limiting tissue damage by preserving tissue-specific stem cells.

  18. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Millaku, Agron, E-mail: agron.mi@hotmail.com [Limnos-Company for Applied Ecology Ltd, Podlimbarskega 31, 1000 Ljubljana (Slovenia); Drobne, Damjana [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Centre of Excellence, Advanced Materials and Technologies for the Future (CO NAMASTE), Jamova cesta 39, 1000 Ljubljana (Slovenia); Centre of Excellence, Nanoscience and Nanotechnology (Nanocentre), Jamova cesta 39, 1000 Ljubljana (Slovenia); Torkar, Matjaz [Institute of Metals and Technology IMT, Lepi pot 11, 1000 Ljubljana (Slovenia); Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Novak, Sara [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Remškar, Maja [Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Pipan-Tkalec, Živa [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia)

    2013-09-15

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.

  19. File list: Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  20. File list: Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube... secretory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  1. File list: NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube... secretory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  2. File list: Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube... secretory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  3. File list: Oth.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr