WorldWideScience

Sample records for amnesia delayed neuronal

  1. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    International Nuclear Information System (INIS)

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T.

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, [3H]glutamate and [3H]glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of [3H]quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus

  2. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T. (Meijo Univ., Nagoya (Japan))

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, (3H)glutamate and (3H)glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of (3H)quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus.

  3. The neurobiology of thalamic amnesia: Contributions of medial thalamus and prefrontal cortex to delayed conditional discrimination.

    Science.gov (United States)

    Mair, Robert G; Miller, Rikki L A; Wormwood, Benjamin A; Francoeur, Miranda J; Onos, Kristen D; Gibson, Brett M

    2015-07-01

    Although medial thalamus is well established as a site of pathology associated with global amnesia, there is uncertainty about which structures are critical and how they affect memory function. Evidence from human and animal research suggests that damage to the mammillothalamic tract and the anterior, mediodorsal (MD), midline (M), and intralaminar (IL) nuclei contribute to different signs of thalamic amnesia. Here we focus on MD and the adjacent M and IL nuclei, structures identified in animal studies as critical nodes in prefrontal cortex (PFC)-related pathways that are necessary for delayed conditional discrimination. Recordings of PFC neurons in rats performing a dynamic delayed non-matching-to position (DNMTP) task revealed discrete populations encoding information related to planning, execution, and outcome of DNMTP-related actions and delay-related activity signaling previous reinforcement. Parallel studies recording the activity of MD and IL neurons and examining the effects of unilateral thalamic inactivation on the responses of PFC neurons demonstrated a close coupling of central thalamic and PFC neurons responding to diverse aspects of DNMTP and provide evidence that thalamus interacts with PFC neurons to give rise to complex goal-directed behavior exemplified by the DNMTP task. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Amnesia

    Science.gov (United States)

    ... amnesia) Most people with amnesia have problems with short-term memory — they can't retain new information. Recent memories ... heart attack, respiratory distress or carbon monoxide poisoning Long-term ... memory Degenerative brain diseases, such as Alzheimer's disease and ...

  5. Anterograde Amnesia

    Directory of Open Access Journals (Sweden)

    Serap Erdogan

    2010-08-01

    Full Text Available Memory can be divided into two categories (i.e. short term memory and long term memory according to time span. Information at our long term memory that can be remembered with conscious effort are placed in declarative memory. Information that can not be remembered conciously are placed in nondeclarative memory. The definition of anterograde amnesia is inability to generate new memories after the event causing amnesia. Episodic and semantic memories are usually unaffected among patients’ who had such amnesia. Anterograde amnesia could mostly result from head trauma but in some cases the cause could be serebrovascular events, Wernicke-Korsakoff Syndrome, santral nervous system enfections, anoxia or various substances. Medial temporal lobe and medial diencephalon are two brain regions mainly related with this condition. Medial temporal lobe is consisted of hippocampus, amygdala, parahippocampal cortex, perirhinal cortex and entorhinal cortex. Hypothalamus, thalamus, mamillary bodies and several thalamic nucleases compose medial diencephalon. Fornix and rarely serebellum damage may also play role in the development of anterograde amnesia. After the famous H.M case, who had anterograde amnesia after an epileptic surgery operation, hippocampus has been placed in the focus of memory researches. In the literature there are several reports evaluating brain tissues of amnesic patients at postmortem stage. Postmortem histological evaluations consistently revealed hippocampal neuronal loss among these patients’ brain tissues. Benzodiazepines usually cause short term anterograde amnesia. Benzodiazepine receptors are allosteric modulatory sites on gamma-aminobutyric acid-A (GABA-A receptors. GABA-A receptors composed of five subunits and anterograde amnesia emerges by means of alfa 1 subunit. Anterograde amnesia has been suggested to occur by the blocking of long term potentiation in hippocampus and piriform cortex. For the treatment of the anterograde

  6. Spiking Activity of a LIF Neuron in Distributed Delay Framework

    Directory of Open Access Journals (Sweden)

    Saket Kumar Choudhary

    2016-06-01

    Full Text Available Evolution of membrane potential and spiking activity for a single leaky integrate-and-fire (LIF neuron in distributed delay framework (DDF is investigated. DDF provides a mechanism to incorporate memory element in terms of delay (kernel function into a single neuron models. This investigation includes LIF neuron model with two different kinds of delay kernel functions, namely, gamma distributed delay kernel function and hypo-exponential distributed delay kernel function. Evolution of membrane potential for considered models is studied in terms of stationary state probability distribution (SPD. Stationary state probability distribution of membrane potential (SPDV for considered neuron models are found asymptotically similar which is Gaussian distributed. In order to investigate the effect of membrane potential delay, rate code scheme for neuronal information processing is applied. Firing rate and Fano-factor for considered neuron models are calculated and standard LIF model is used for comparative study. It is noticed that distributed delay increases the spiking activity of a neuron. Increase in spiking activity of neuron in DDF is larger for hypo-exponential distributed delay function than gamma distributed delay function. Moreover, in case of hypo-exponential delay function, a LIF neuron generates spikes with Fano-factor less than 1.

  7. Delay-dependent asymptotic stability of a two-neuron system with different time delays

    International Nuclear Information System (INIS)

    Tu Fenghua; Liao Xiaofeng; Zhang Wei

    2006-01-01

    In this paper, we consider a two-neuron system with time-delayed connections between neurons. Based on the construction of Lyapunov functionals, we obtain sufficient criteria to ensure local and global asymptotic stability of the equilibrium of the neural network. The obtained conditions are shown to be less conservative and restrictive than those reported in the literature. Some examples are included to illustrate our results

  8. Electrical Activity in a Time-Delay Four-Variable Neuron Model under Electromagnetic Induction

    Directory of Open Access Journals (Sweden)

    Keming Tang

    2017-11-01

    Full Text Available To investigate the effect of electromagnetic induction on the electrical activity of neuron, the variable for magnetic flow is used to improve Hindmarsh–Rose neuron model. Simultaneously, due to the existence of time-delay when signals are propagated between neurons or even in one neuron, it is important to study the role of time-delay in regulating the electrical activity of the neuron. For this end, a four-variable neuron model is proposed to investigate the effects of electromagnetic induction and time-delay. Simulation results suggest that the proposed neuron model can show multiple modes of electrical activity, which is dependent on the time-delay and external forcing current. It means that suitable discharge mode can be obtained by selecting the time-delay or external forcing current, which could be helpful for further investigation of electromagnetic radiation on biological neuronal system.

  9. Necessary and sufficient conditions for Hopf bifurcation in tri-neuron equation with a delay

    International Nuclear Information System (INIS)

    Liu Xiaoming; Liao Xiaofeng

    2009-01-01

    In this paper, we consider the delayed differential equations modeling three-neuron equations with only a time delay. Using the time delay as a bifurcation parameter, necessary and sufficient conditions for Hopf bifurcation to occur are derived. Numerical results indicate that for this model, Hopf bifurcation is likely to occur at suitable delay parameter values.

  10. Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system

    Science.gov (United States)

    Yu, Wen-Ting; Tang, Jun; Ma, Jun; Yang, Xianqing

    2016-06-01

    A neuronal network often involves time delay caused by the finite signal propagation time in a given biological network. This time delay is not a homogenous fluctuation in a biological system. The heterogeneous delay-induced asynchrony and resonance in a noisy small-world neuronal network system are numerically studied in this work by calculating synchronization measure and spike interval distribution. We focus on three different delay conditions: double-values delay, triple-values delay, and Gaussian-distributed delay. Our results show the following: 1) the heterogeneity in delay results in asynchronous firing in the neuronal network, and 2) maximum synchronization could be achieved through resonance given that the delay values are integer or half-integer times of each other.

  11. Relaxation Cycles in a Generalized Neuron Model with Two Delays

    Directory of Open Access Journals (Sweden)

    S. D. Glyzin

    2013-01-01

    Full Text Available A method of modeling the phenomenon of bursting behavior in neural systems based on delay equations is proposed. A singularly perturbed scalar nonlinear differentialdifference equation of Volterra type is a mathematical model of a neuron and a separate pulse containing one function without delay and two functions with different lags. It is established that this equation, for a suitable choice of parameters, has a stable periodic motion with any preassigned number of bursts in the time interval of the period length. To prove this assertion we first go to a relay-type equation and then determine the asymptotic solutions of a singularly perturbed equation. On the basis of this asymptotics the Poincare operator is constructed. The resulting operator carries a closed bounded convex set of initial conditions into itself, which suggests that it has at least one fixed point. The Frechet derivative evaluation of the succession operator, made in the paper, allows us to prove the uniqueness and stability of the resulting relax of the periodic solution.

  12. Determination of relevant neuron-neuron connections for neural prosthetics using time-delayed mutual information: tutorial and preliminary results.

    Science.gov (United States)

    Taghva, Alexander; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W

    2012-12-01

    Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural

  13. Delay-enhanced coherence of spiral waves in noisy Hodgkin-Huxley neuronal networks

    International Nuclear Information System (INIS)

    Wang Qingyun; Perc, Matjaz; Duan Zhisheng; Chen Guanrong

    2008-01-01

    We study the spatial dynamics of spiral waves in noisy Hodgkin-Huxley neuronal ensembles evoked by different information transmission delays and network topologies. In classical settings of coherence resonance the intensity of noise is fine-tuned so as to optimize the system's response. Here, we keep the noise intensity constant, and instead, vary the length of information transmission delay amongst coupled neurons. We show that there exists an intermediate transmission delay by which the spiral waves are optimally ordered, hence indicating the existence of delay-enhanced coherence of spatial dynamics in the examined system. Additionally, we examine the robustness of this phenomenon as the diffusive interaction topology changes towards the small-world type, and discover that shortcut links amongst distant neurons hinder the emergence of coherent spiral waves irrespective of transmission delay length. Presented results thus provide insights that could facilitate the understanding of information transmission delay on realistic neuronal networks

  14. An electronic implementation for Liao's chaotic delayed neuron model with non-monotonous activation function

    International Nuclear Information System (INIS)

    Duan Shukai; Liao Xiaofeng

    2007-01-01

    A new chaotic delayed neuron model with non-monotonously increasing transfer function, called as chaotic Liao's delayed neuron model, was recently reported and analyzed. An electronic implementation of this model is described in detail. At the same time, some methods in circuit design, especially for circuit with time delayed unit and non-monotonously increasing activation unit, are also considered carefully. We find that the dynamical behaviors of the designed circuits are closely similar to the results predicted by numerical experiments

  15. Stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters

    International Nuclear Information System (INIS)

    Xu, X.; Hu, H.Y.; Wang, H.L.

    2006-01-01

    It is very common that neural network systems usually involve time delays since the transmission of information between neurons is not instantaneous. Because memory intensity of the biological neuron usually depends on time history, some of the parameters may be delay dependent. Yet, little attention has been paid to the dynamics of such systems. In this Letter, a detailed analysis on the stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters is given. Moreover, the direction and the stability of the bifurcating periodic solutions are obtained by the normal form theory and the center manifold theorem. It shows that the dynamics of the neuron model with delay-dependent parameters is quite different from that of systems with delay-independent parameters only

  16. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks

    Science.gov (United States)

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  17. Ordering chaos and synchronization transitions by chemical delay and coupling on scale-free neuronal networks

    International Nuclear Information System (INIS)

    Gong Yubing; Xie Yanhang; Lin Xiu; Hao Yinghang; Ma Xiaoguang

    2010-01-01

    Research highlights: → Chemical delay and chemical coupling can tame chaotic bursting. → Chemical delay-induced transitions from bursting synchronization to intermittent multiple spiking synchronizations. → Chemical coupling-induced different types of delay-dependent firing transitions. - Abstract: Chemical synaptic connections are more common than electric ones in neurons, and information transmission delay is especially significant for the synapses of chemical type. In this paper, we report a phenomenon of ordering spatiotemporal chaos and synchronization transitions by the delays and coupling through chemical synapses of modified Hodgkin-Huxley (MHH) neurons on scale-free networks. As the delay τ is increased, the neurons exhibit transitions from bursting synchronization (BS) to intermittent multiple spiking synchronizations (SS). As the coupling g syn is increased, the neurons exhibit different types of firing transitions, depending on the values of τ. For a smaller τ, there are transitions from spatiotemporal chaotic bursting (SCB) to BS or SS; while for a larger τ, there are transitions from SCB to intermittent multiple SS. These findings show that the delays and coupling through chemical synapses can tame the chaotic firings and repeatedly enhance the firing synchronization of neurons, and hence could play important roles in the firing activity of the neurons on scale-free networks.

  18. Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks

    International Nuclear Information System (INIS)

    Gong Yubing; Wang Li; Xu Bo

    2012-01-01

    In this paper, we study the effect of time delay on the firing behavior and temporal coherence and synchronization in Newman–Watts thermosensitive neuron networks with adaptive coupling. At beginning, the firing exhibit disordered spiking in absence of time delay. As time delay is increased, the neurons exhibit diversity of firing behaviors including bursting with multiple spikes in a burst, spiking, bursting with four, three and two spikes, firing death, and bursting with increasing amplitude. The spiking is the most ordered, exhibiting coherence resonance (CR)-like behavior, and the firing synchronization becomes enhanced with the increase of time delay. As growth rate of coupling strength or network randomness increases, CR-like behavior shifts to smaller time delay and the synchronization of firing increases. These results show that time delay can induce diversity of firing behaviors in adaptive neuronal networks, and can order the chaotic firing by enhancing and optimizing the temporal coherence and enhancing the synchronization of firing. However, the phenomenon of firing death shows that time delay may inhibit the firing of adaptive neuronal networks. These findings provide new insight into the role of time delay in the firing activity of adaptive neuronal networks, and can help to better understand the complex firing phenomena in neural networks.

  19. Chaos and its synchronization in two-neuron systems with discrete delays

    International Nuclear Information System (INIS)

    Zhou Shangbo; Liao Xiaofeng; Yu Juebang; Wong Kwokwo

    2004-01-01

    It is well known that complex dynamic behaviors exist in time-delayed neural systems. Infinite positive Lyapunov exponents can be found in time-delayed chaotic systems since the dimension of such systems is infinite. However, theoretical and experimental models studied thus far are low dimensional systems with only one positive Lyapunov exponent. Consequently, messages masked by such chaotic systems are shown to be easily extracted in some cases. Therefore, communication system with a higher security level can be design by means of the time-delayed neuron systems. In this paper, we firstly investigate the dynamical behaviors of two-neuron systems with discrete delays. Then, the chaos synchronization in time-delayed neuron system is studied based on the method of designing the coupled system and employing Krasovskii-Lyapunov theory to search the synchronization conditions. Numerical results illustrate the correctness of our theoretical analyses

  20. Synchronization of map-based neurons with memory and synaptic delay

    Energy Technology Data Exchange (ETDEWEB)

    Sausedo-Solorio, J.M. [Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42074 Pachuca, Hidalgo (Mexico); Pisarchik, A.N., E-mail: apisarch@cio.mx [Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Centre for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid (Spain)

    2014-06-13

    Synchronization of two synaptically coupled neurons with memory and synaptic delay is studied using the Rulkov map, one of the simplest neuron models which displays specific features inherent to bursting dynamics. We demonstrate a transition from lag to anticipated synchronization as the relationship between the memory duration and the synaptic delay time changes. The neuron maps synchronize either with anticipation, if the memory is longer than the synaptic delay time, or with lag otherwise. The mean anticipation time is equal to the difference between the memory and synaptic delay independently of the coupling strength. Frequency entrainment and phase-locking phenomena as well as a transition from regular spikes to chaos are demonstrated with respect to the coupling strength. - Highlights: • We study synchronization of neurons with memory and synaptic delay in the map model. • Neurons synchronize either with anticipation or with lag depending on delay time. • Mean anticipation time is equal to the difference between memory and synaptic delay. • Frequency entrainment and phase locking are studied with respect to the coupling.

  1. Dynamics of Time Delay-Induced Multiple Synchronous Behaviors in Inhibitory Coupled Neurons

    Science.gov (United States)

    Gu, Huaguang; Zhao, Zhiguo

    2015-01-01

    The inhibitory synapse can induce synchronous behaviors different from the anti-phase synchronous behaviors, which have been reported in recent studies. In the present paper, synchronous behaviors are investigated in the motif model composed of reciprocal inhibitory coupled neurons with endogenous bursting and time delay. When coupling strength is weak, synchronous behavior appears at a single interval of time delay within a bursting period. When coupling strength is strong, multiple synchronous behaviors appear at different intervals of time delay within a bursting period. The different bursting patterns of synchronous behaviors, and time delays and coupling strengths that can induce the synchronous bursting patterns can be well interpreted by the dynamics of the endogenous bursting pattern of isolated neuron, which is acquired by the fast-slow dissection method, combined with the inhibitory coupling current. For an isolated neuron, when a negative impulsive current with suitable strength is applied at different phases of the bursting, multiple different bursting patterns can be induced. For a neuron in the motif, the inhibitory coupling current, of which the application time and strength is modulated by time delay and coupling strength, can cause single or multiple synchronous firing patterns like the negative impulsive current when time delay and coupling strength is suitable. The difference compared to the previously reported multiple synchronous behaviors that appear at time delays wider than a period of the endogenous firing is discussed. The results present novel examples of synchronous behaviors in the neuronal network with inhibitory synapses and provide a reasonable explanation. PMID:26394224

  2. Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks

    Science.gov (United States)

    Yan, Hao; Sun, Xiaojuan

    2017-06-01

    In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.

  3. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms.

    Science.gov (United States)

    Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D

    2017-01-01

    Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS

  4. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms

    Directory of Open Access Journals (Sweden)

    Mohammad Daneshzand

    2017-08-01

    Full Text Available Deep brain stimulation (DBS has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD. Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the

  5. From Quasiperiodic Partial Synchronization to Collective Chaos in Populations of Inhibitory Neurons with Delay.

    Science.gov (United States)

    Pazó, Diego; Montbrió, Ernest

    2016-06-10

    Collective chaos is shown to emerge, via a period-doubling cascade, from quasiperiodic partial synchronization in a population of identical inhibitory neurons with delayed global coupling. This system is thoroughly investigated by means of an exact model of the macroscopic dynamics, valid in the thermodynamic limit. The collective chaotic state is reproduced numerically with a finite population, and persists in the presence of weak heterogeneities. Finally, the relationship of the model's dynamics with fast neuronal oscillations is discussed.

  6. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury.

    Science.gov (United States)

    Li, Guangke; Sang, Nan

    2009-01-01

    Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.

  7. Hopf bifurcation of an (n + 1) -neuron bidirectional associative memory neural network model with delays.

    Science.gov (United States)

    Xiao, Min; Zheng, Wei Xing; Cao, Jinde

    2013-01-01

    Recent studies on Hopf bifurcations of neural networks with delays are confined to simplified neural network models consisting of only two, three, four, five, or six neurons. It is well known that neural networks are complex and large-scale nonlinear dynamical systems, so the dynamics of the delayed neural networks are very rich and complicated. Although discussing the dynamics of networks with a few neurons may help us to understand large-scale networks, there are inevitably some complicated problems that may be overlooked if simplified networks are carried over to large-scale networks. In this paper, a general delayed bidirectional associative memory neural network model with n + 1 neurons is considered. By analyzing the associated characteristic equation, the local stability of the trivial steady state is examined, and then the existence of the Hopf bifurcation at the trivial steady state is established. By applying the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction and stability of the bifurcating periodic solution. Furthermore, the paper highlights situations where the Hopf bifurcations are particularly critical, in the sense that the amplitude and the period of oscillations are very sensitive to errors due to tolerances in the implementation of neuron interconnections. It is shown that the sensitivity is crucially dependent on the delay and also significantly influenced by the feature of the number of neurons. Numerical simulations are carried out to illustrate the main results.

  8. Role of Delays in Shaping Spatiotemporal Dynamics of Neuronal Activity in Large Networks

    International Nuclear Information System (INIS)

    Roxin, Alex; Brunel, Nicolas; Hansel, David

    2005-01-01

    We study the effect of delays on the dynamics of large networks of neurons. We show that delays give rise to a wealth of bifurcations and to a rich phase diagram, which includes oscillatory bumps, traveling waves, lurching waves, standing waves arising via a period-doubling bifurcation, aperiodic regimes, and regimes of multistability. We study the existence and the stability of the various dynamical patterns analytically and numerically in a simplified rate model as a function of the interaction parameters. The results derived in that framework allow us to understand the origin of the diversity of dynamical states observed in large networks of spiking neurons

  9. Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus.

    Science.gov (United States)

    McAlpine, D; Jiang, D; Shackleton, T M; Palmer, A R

    1998-08-01

    Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were studied with binaural beats to assess their mean best interaural phase (BP) to a range of stimulating frequencies. Phase plots (stimulating frequency vs BP) were produced, from which measures of characteristic delay (CD) and characteristic phase (CP) for each neuron were obtained. The CD provides an estimate of the difference in travel time from each ear to coincidence-detector neurons in the brainstem. The CP indicates the mechanism underpinning the coincidence detector responses. A linear phase plot indicates a single, constant delay between the coincidence-detector inputs from the two ears. In more than half (54 of 90) of the neurons, the phase plot was not linear. We hypothesized that neurons with nonlinear phase plots received convergent input from brainstem coincidence detectors with different CDs. Presentation of a second tone with a fixed, unfavorable delay suppressed the response of one input, linearizing the phase plot and revealing other inputs to be relatively simple coincidence detectors. For some neurons with highly complex phase plots, the suppressor tone altered BP values, but did not resolve the nature of the inputs. For neurons with linear phase plots, the suppressor tone either completely abolished their responses or reduced their discharge rate with no change in BP. By selectively suppressing inputs with a second tone, we are able to reveal the nature of underlying binaural inputs to IC neurons, confirming the hypothesis that the complex phase plots of many IC neurons are a result of convergence from simple brainstem coincidence detectors.

  10. Phase-coherence transitions and communication in the gamma range between delay-coupled neuronal populations.

    Directory of Open Access Journals (Sweden)

    Alessandro Barardi

    2014-07-01

    Full Text Available Synchronization between neuronal populations plays an important role in information transmission between brain areas. In particular, collective oscillations emerging from the synchronized activity of thousands of neurons can increase the functional connectivity between neural assemblies by coherently coordinating their phases. This synchrony of neuronal activity can take place within a cortical patch or between different cortical regions. While short-range interactions between neurons involve just a few milliseconds, communication through long-range projections between different regions could take up to tens of milliseconds. How these heterogeneous transmission delays affect communication between neuronal populations is not well known. To address this question, we have studied the dynamics of two bidirectionally delayed-coupled neuronal populations using conductance-based spiking models, examining how different synaptic delays give rise to in-phase/anti-phase transitions at particular frequencies within the gamma range, and how this behavior is related to the phase coherence between the two populations at different frequencies. We have used spectral analysis and information theory to quantify the information exchanged between the two networks. For different transmission delays between the two coupled populations, we analyze how the local field potential and multi-unit activity calculated from one population convey information in response to a set of external inputs applied to the other population. The results confirm that zero-lag synchronization maximizes information transmission, although out-of-phase synchronization allows for efficient communication provided the coupling delay, the phase lag between the populations, and the frequency of the oscillations are properly matched.

  11. Neuregulin-1 is neuroprotective in a rat model of organophosphate-induced delayed neuronal injury

    International Nuclear Information System (INIS)

    Li, Yonggang; Lein, Pamela J.; Liu, Cuimei; Bruun, Donald A.; Giulivi, Cecilia; Ford, Gregory D.; Tewolde, Teclemichael; Ross-Inta, Catherine; Ford, Byron D.

    2012-01-01

    Current medical countermeasures against organophosphate (OP) nerve agents are effective in reducing mortality, but do not sufficiently protect the CNS from delayed brain damage and persistent neurological symptoms. In this study, we examined the efficacy of neuregulin-1 (NRG-1) in protecting against delayed neuronal cell death following acute intoxication with the OP diisopropylflurophosphate (DFP). Adult male Sprague–Dawley rats were pretreated with pyridostigmine (0.1 mg/kg BW, i.m.) and atropine methylnitrate (20 mg/kg BW, i.m.) prior to DFP (9 mg/kg BW, i.p.) intoxication to increase survival and reduce peripheral signs of cholinergic toxicity but not prevent DFP-induced seizures or delayed neuronal injury. Pretreatment with NRG-1 did not protect against seizures in rats exposed to DFP. However, neuronal injury was significantly reduced in most brain regions by pretreatment with NRG-1 isoforms NRG-EGF (3.2 μg/kg BW, i.a) or NRG-GGF2 (48 μg/kg BW, i.a.) as determined by FluroJade-B labeling in multiple brain regions at 24 h post-DFP injection. NRG-1 also blocked apoptosis and oxidative stress-mediated protein damage in the brains of DFP-intoxicated rats. Administration of NRG-1 at 1 h after DFP injection similarly provided significant neuroprotection against delayed neuronal injury. These findings identify NRG-1 as a promising adjuvant therapy to current medical countermeasures for enhancing neuroprotection against acute OP intoxication. -- Highlights: ► NRG-1 blocked DFP induced neuronal injury. ► NRG-1 did not protect against seizures in rats exposed to DFP. ► NRG-1 blocked apoptosis and oxidative stress in the brains of DFP-intoxicated rats. ► Administration of NRG-1 at 1 h after DFP injection prevented delayed neuronal injury.

  12. Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks

    International Nuclear Information System (INIS)

    Wang, Baoying; Gong, Yubing; Xie, Huijuan; Wang, Qi

    2016-01-01

    Highlights: • Optimal autaptic delay enhanced synchronization transitions induced by synaptic delay in neuronal networks. • Optimal synaptic delay enhanced synchronization transitions induced by autaptic delay. • Optimal coupling strength enhanced synchronization transitions induced by autaptic or synaptic delay. - Abstract: In this paper, we numerically study the effect of electrical autaptic and synaptic delays on synchronization transitions induced by each other in Newman–Watts Hodgkin–Huxley neuronal networks. It is found that the synchronization transitions induced by synaptic delay vary with varying autaptic delay and become strongest when autaptic delay is optimal. Similarly, the synchronization transitions induced by autaptic delay vary with varying synaptic delay and become strongest at optimal synaptic delay. Also, there is optimal coupling strength by which the synchronization transitions induced by either synaptic or autaptic delay become strongest. These results show that electrical autaptic and synaptic delays can enhance synchronization transitions induced by each other in the neuronal networks. This implies that electrical autaptic and synaptic delays can cooperate with each other and more efficiently regulate the synchrony state of the neuronal networks. These findings could find potential implications for the information transmission in neural systems.

  13. Robust Synchronization of Delayed Chaotic FitzHugh-Nagumo Neurons under External Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Muhammad Rehan

    2012-01-01

    Full Text Available Synchronization of chaotic neurons under external electrical stimulation (EES is studied in order to understand information processing in the brain and to improve the methodologies employed in the treatment of cognitive diseases. This paper investigates the dynamics of uncertain coupled chaotic delayed FitzHugh-Nagumo (FHN neurons under EES for incorporated parametric variations. A global nonlinear control law for synchronization of delayed neurons with known parameters is developed. Based on local and global Lipschitz conditions, knowledge of the bounds on the neuronal states, the Lyapunov-Krasovskii functional, and the L2 gain reduction, a less conservative local robust nonlinear control law is formulated to address the problem of robust asymptotic synchronization of delayed FHN neurons under parametric uncertainties. The proposed local control law guarantees both robust stability and robust performance and provides the L2 bound for uncertainty rejection in the synchronization error dynamics. Separate conditions for single-input and multiple-input control schemes for synchronization of a wide class of FHN systems are provided. The results of the proposed techniques are verified through numerical simulations.

  14. Impact of delays on the synchronization transitions of modular neuronal networks with hybrid synapses

    Science.gov (United States)

    Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok

    2013-09-01

    The combined effects of the information transmission delay and the ratio of the electrical and chemical synapses on the synchronization transitions in the hybrid modular neuronal network are investigated in this paper. Numerical results show that the synchronization of neuron activities can be either promoted or destroyed as the information transmission delay increases, irrespective of the probability of electrical synapses in the hybrid-synaptic network. Interestingly, when the number of the electrical synapses exceeds a certain level, further increasing its proportion can obviously enhance the spatiotemporal synchronization transitions. Moreover, the coupling strength has a significant effect on the synchronization transition. The dominated type of the synapse always has a more profound effect on the emergency of the synchronous behaviors. Furthermore, the results of the modular neuronal network structures demonstrate that excessive partitioning of the modular network may result in the dramatic detriment of neuronal synchronization. Considering that information transmission delays are inevitable in intra- and inter-neuronal networks communication, the obtained results may have important implications for the exploration of the synchronization mechanism underlying several neural system diseases such as Parkinson's Disease.

  15. Transient global amnesia: current perspectives

    Directory of Open Access Journals (Sweden)

    Spiegel DR

    2017-10-01

    Full Text Available David R Spiegel, Justin Smith, Ryan R Wade, Nithya Cherukuru, Aneel Ursani, Yuliya Dobruskina, Taylor Crist, Robert F Busch, Rahim M Dhanani, Nicholas Dreyer Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA Abstract: Transient global amnesia (TGA is a clinical syndrome characterized by the sudden onset of an extraordinarily large reduction of anterograde and a somewhat milder reduction of retrograde episodic long-term memory. Additionally, executive functions are described as diminished. Although it is suggested that various factors, such as migraine, focal ischemia, venous flow abnormalities, and epileptic phenomena, are involved in the pathophysiology and differential diagnosis of TGA, the factors triggering the emergence of these lesions are still elusive. Recent data suggest that the vulnerability of CA1 neurons to metabolic stress plays a pivotal part in the pathophysiological cascade, leading to an impairment of hippocampal function during TGA. In this review, we discuss clinical aspects, new imaging findings, and recent clinical–epidemiological data with regard to the phenotype, functional anatomy, and putative cellular mechanisms of TGA. Keywords: transient global amnesia, vascular, migraines, psychiatric

  16. Neuronal model with distributed delay: analysis and simulation study for gamma distribution memory kernel.

    Science.gov (United States)

    Karmeshu; Gupta, Varun; Kadambari, K V

    2011-06-01

    A single neuronal model incorporating distributed delay (memory)is proposed. The stochastic model has been formulated as a Stochastic Integro-Differential Equation (SIDE) which results in the underlying process being non-Markovian. A detailed analysis of the model when the distributed delay kernel has exponential form (weak delay) has been carried out. The selection of exponential kernel has enabled the transformation of the non-Markovian model to a Markovian model in an extended state space. For the study of First Passage Time (FPT) with exponential delay kernel, the model has been transformed to a system of coupled Stochastic Differential Equations (SDEs) in two-dimensional state space. Simulation studies of the SDEs provide insight into the effect of weak delay kernel on the Inter-Spike Interval(ISI) distribution. A measure based on Jensen-Shannon divergence is proposed which can be used to make a choice between two competing models viz. distributed delay model vis-á-vis LIF model. An interesting feature of the model is that the behavior of (CV(t))((ISI)) (Coefficient of Variation) of the ISI distribution with respect to memory kernel time constant parameter η reveals that neuron can switch from a bursting state to non-bursting state as the noise intensity parameter changes. The membrane potential exhibits decaying auto-correlation structure with or without damped oscillatory behavior depending on the choice of parameters. This behavior is in agreement with empirically observed pattern of spike count in a fixed time window. The power spectral density derived from the auto-correlation function is found to exhibit single and double peaks. The model is also examined for the case of strong delay with memory kernel having the form of Gamma distribution. In contrast to fast decay of damped oscillations of the ISI distribution for the model with weak delay kernel, the decay of damped oscillations is found to be slower for the model with strong delay kernel.

  17. Stability and bifurcation in a simplified four-neuron BAM neural network with multiple delays

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We first study the distribution of the zeros of a fourth-degree exponential polynomial. Then we apply the obtained results to a simplified bidirectional associated memory (BAM neural network with four neurons and multiple time delays. By taking the sum of the delays as the bifurcation parameter, it is shown that under certain assumptions the steady state is absolutely stable. Under another set of conditions, there are some critical values of the delay, when the delay crosses these critical values, the Hopf bifurcation occurs. Furthermore, some explicit formulae determining the stability and the direction of periodic solutions bifurcating from Hopf bifurcations are obtained by applying the normal form theory and center manifold reduction. Numerical simulations supporting the theoretical analysis are also included.

  18. Time-delay-induced phase-transition to synchrony in coupled bursting neurons

    Science.gov (United States)

    Adhikari, Bhim Mani; Prasad, Awadhesh; Dhamala, Mukeshwar

    2011-06-01

    Signal transmission time delays in a network of nonlinear oscillators are known to be responsible for a variety of interesting dynamic behaviors including phase-flip transitions leading to synchrony or out of synchrony. Here, we uncover that phase-flip transitions are general phenomena and can occur in a network of coupled bursting neurons with a variety of coupling types. The transitions are marked by nonlinear changes in both temporal and phase-space characteristics of the coupled system. We demonstrate these phase-transitions with Hindmarsh-Rose and Leech-Heart interneuron models and discuss the implications of these results in understanding collective dynamics of bursting neurons in the brain.

  19. Dynamics in a Delayed Neural Network Model of Two Neurons with Inertial Coupling

    Directory of Open Access Journals (Sweden)

    Changjin Xu

    2012-01-01

    Full Text Available A delayed neural network model of two neurons with inertial coupling is dealt with in this paper. The stability is investigated and Hopf bifurcation is demonstrated. Applying the normal form theory and the center manifold argument, we derive the explicit formulas for determining the properties of the bifurcating periodic solutions. An illustrative example is given to demonstrate the effectiveness of the obtained results.

  20. Stochastic Wilson–Cowan models of neuronal network dynamics with memory and delay

    International Nuclear Information System (INIS)

    Goychuk, Igor; Goychuk, Andriy

    2015-01-01

    We consider a simple Markovian class of the stochastic Wilson–Cowan type models of neuronal network dynamics, which incorporates stochastic delay caused by the existence of a refractory period of neurons. From the point of view of the dynamics of the individual elements, we are dealing with a network of non-Markovian stochastic two-state oscillators with memory, which are coupled globally in a mean-field fashion. This interrelation of a higher-dimensional Markovian and lower-dimensional non-Markovian dynamics is discussed in its relevance to the general problem of the network dynamics of complex elements possessing memory. The simplest model of this class is provided by a three-state Markovian neuron with one refractory state, which causes firing delay with an exponentially decaying memory within the two-state reduced model. This basic model is used to study critical avalanche dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the excitatory and inhibitory neurons. Such avalanches emerge due to the network size dependent noise (mesoscopic noise). Numerical simulations reveal an intermediate power law in the distribution of avalanche sizes with the critical exponent around −1.16. We show that this power law is robust upon a variation of the refractory time over several orders of magnitude. However, the avalanche time distribution is biexponential. It does not reflect any genuine power law dependence. (paper)

  1. DL-ReSuMe: A Delay Learning-Based Remote Supervised Method for Spiking Neurons.

    Science.gov (United States)

    Taherkhani, Aboozar; Belatreche, Ammar; Li, Yuhua; Maguire, Liam P

    2015-12-01

    Recent research has shown the potential capability of spiking neural networks (SNNs) to model complex information processing in the brain. There is biological evidence to prove the use of the precise timing of spikes for information coding. However, the exact learning mechanism in which the neuron is trained to fire at precise times remains an open problem. The majority of the existing learning methods for SNNs are based on weight adjustment. However, there is also biological evidence that the synaptic delay is not constant. In this paper, a learning method for spiking neurons, called delay learning remote supervised method (DL-ReSuMe), is proposed to merge the delay shift approach and ReSuMe-based weight adjustment to enhance the learning performance. DL-ReSuMe uses more biologically plausible properties, such as delay learning, and needs less weight adjustment than ReSuMe. Simulation results have shown that the proposed DL-ReSuMe approach achieves learning accuracy and learning speed improvements compared with ReSuMe.

  2. Stability and Hopf Bifurcation of a Reaction-Diffusion Neutral Neuron System with Time Delay

    Science.gov (United States)

    Dong, Tao; Xia, Linmao

    2017-12-01

    In this paper, a type of reaction-diffusion neutral neuron system with time delay under homogeneous Neumann boundary conditions is considered. By constructing a basis of phase space based on the eigenvectors of the corresponding Laplace operator, the characteristic equation of this system is obtained. Then, by selecting time delay and self-feedback strength as the bifurcating parameters respectively, the dynamic behaviors including local stability and Hopf bifurcation near the zero equilibrium point are investigated when the time delay and self-feedback strength vary. Furthermore, the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are obtained by using the normal form and the center manifold theorem for the corresponding partial differential equation. Finally, two simulation examples are given to verify the theory.

  3. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels.

    Science.gov (United States)

    Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi

    2013-04-01

    Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.

  4. Three dimensions of dissociative amnesia.

    Science.gov (United States)

    Dell, Paul F

    2013-01-01

    Principal axis factor analysis with promax rotation extracted 3 factors from the 42 memory and amnesia items of the Multidimensional Inventory of Dissociation (MID) database (N = 2,569): Discovering Dissociated Actions, Lapses of Recent Memory and Skills, and Gaps in Remote Memory. The 3 factors' shared variance ranged from 36% to 64%. Construed as scales, the 3 factor scales had Cronbach's alpha coefficients of .96, .94, and .93, respectively. The scales correlated strongly with mean Dissociative Experiences Scale scores, mean MID scores, and total scores on the Structured Clinical Interview for DSM-IV Dissociative Disorders-Revised (SCID-D-R). What is interesting is that the 3 amnesia factors exhibited a range of correlations with SCID-D-R Amnesia scores (.52, .63, and .70, respectively), suggesting that the SCID-D-R Amnesia score emphasizes gaps in remote memory over amnesias related to dissociative identity disorder. The 3 amnesia factor scales exhibited a clinically meaningful pattern of significant differences among dissociative identity disorder, dissociative disorder not otherwise specified-1, dissociative amnesia, depersonalization disorder, and nonclinical participants. The 3 amnesia factors may have greater clinical utility for frontline clinicians than (a) amnesia as discussed in the context of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, nosology of the dissociative disorders or (b) P. Janet's (1893/1977 ) 4-fold classification of dissociative amnesia. The author recommends systematic study of the phenomenological differences within specific dissociative symptoms and their differential relationship to specific dissociative disorders.

  5. Psychogenic amnesia: syndromes, outcome, and patterns of retrograde amnesia

    OpenAIRE

    Harrison, Neil A; Johnston, Kate; Corno, Federica; Casey, Sarah J; Friedner, Kimberley; Humphreys, Kate; Jaldow, Eli Joseph; Pitkanen, Mervi; Kopelman, Michael D

    2017-01-01

    There are very few case series of patients with acute psychogenic memory loss (also known as dissociative/functional amnesia), and still fewer studies of outcome, or comparisons with neurological memory-disordered patients. Consequently, the literature on psychogenic amnesia is somewhat fragmented and offers little of prognostic value for individual patients. In the present study, we reviewed the case records and neuropsychological findings in 53 psychogenic amnesia cases (3M:1F), in comparis...

  6. Synchronization of Coupled FitzHugh-Nagumo Neurons Using Self-Feedback Time Delay

    Science.gov (United States)

    Fan, Denggui; Song, Xinle; Liao, Fucheng

    Many neurological diseases are characterized by abnormally synchronous oscillations of neuronal populations. However, how the neurons can synchronize with each other is still not fully understood, which may have potentially hampered the understanding and diagnosis for these dynamical diseases. In this paper, the self-feedback time delay (SFTD) and adaptive control theory are employed to control the onset of synchronization in the coupled FitzHugh-Nagumo (FHN) neurons. It is found that the larger SFTD can induce the complete synchronization of coupled neuronal system. Further investigation reveals that the reinforcing SFTD can significantly postpone the synchronization onsets. In addition, for the case that synchronization cannot be achieved by adjusting SFTD, the parameter estimation update laws and adaptive controller with respect to SFTD of coupled system are investigated to deduce the sufficient condition for complete synchronization. Simulations are also provided to illustrate the effectiveness of the proposed methods. In particular, we observed the fascinating dynamical synchronization transitions, such as chaotic synchronization and bursting synchronization transitions, as well as the transition from anti-synchronization to complete synchronization.

  7. An electronic implementation for Liao's chaotic delayed neuron model with non-monotonous activation function

    Energy Technology Data Exchange (ETDEWEB)

    Duan Shukai [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China); School of Electronic and Information Engineering, Southwest University, Chongqing 400715 (China)], E-mail: duansk@swu.edu.cn; Liao Xiaofeng [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China)], E-mail: xfliao@cqu.edu.cn

    2007-09-10

    A new chaotic delayed neuron model with non-monotonously increasing transfer function, called as chaotic Liao's delayed neuron model, was recently reported and analyzed. An electronic implementation of this model is described in detail. At the same time, some methods in circuit design, especially for circuit with time delayed unit and non-monotonously increasing activation unit, are also considered carefully. We find that the dynamical behaviors of the designed circuits are closely similar to the results predicted by numerical experiments.

  8. The Many Faces of Amnesia

    Science.gov (United States)

    Gold, Paul E.

    2006-01-01

    Results from studies of retrograde amnesia provide much of the evidence for theories of memory consolidation. Retrograde amnesia gradients are often interpreted as revealing the time needed for the formation of long-term memories. The rapid forgetting observed after many amnestic treatments, including protein synthesis inhibitors, and the parallel…

  9. Effects of dynamic synapses on noise-delayed response latency of a single neuron

    Science.gov (United States)

    Uzuntarla, M.; Ozer, M.; Ileri, U.; Calim, A.; Torres, J. J.

    2015-12-01

    The noise-delayed decay (NDD) phenomenon emerges when the first-spike latency of a periodically forced stochastic neuron exhibits a maximum for a particular range of noise intensity. Here, we investigate the latency response dynamics of a single Hodgkin-Huxley neuron that is subject to both a suprathreshold periodic stimulus and a background activity arriving through dynamic synapses. We study the first-spike latency response as a function of the presynaptic firing rate f . This constitutes a more realistic scenario than previous works, since f provides a suitable biophysically realistic parameter to control the level of activity in actual neural systems. We first report on the emergence of classical NDD behavior as a function of f for the limit of static synapses. Second, we show that when short-term depression and facilitation mechanisms are included at the synapses, different NDD features can be found due to their modulatory effect on synaptic current fluctuations. For example, an intriguing double NDD (DNDD) behavior occurs for different sets of relevant synaptic parameters. Moreover, depending on the balance between synaptic depression and synaptic facilitation, single NDD or DNDD can prevail, in such a way that synaptic facilitation favors the emergence of DNDD whereas synaptic depression favors the existence of single NDD. Here we report the existence of the DNDD effect in the response latency dynamics of a neuron.

  10. [Transient amnesia in the elderly].

    Science.gov (United States)

    Sellal, François

    2006-03-01

    The two main aetiologies of transient amnesia in the elderly are idiopathic transient global amnesia (TGA) and iatrogenic or toxic amnesia. Vascular and epileptic amnesia are less common. According to the literature, transient psychogenic amnesia, which is a frequent cause of amnesia at age 30 to 50, is very rare in the elderly. TGA is the prototypical picture of transient amnesia. It occurs more often after age 50, with no identified cause, even if some authors accept emotional stress or minor head trauma as occasional precipitants. The mechanism of TGA remains a matter of discussion. It may be the consequence of a spreading depression similar to that described in migraine with aura, but other arguments support an ischemic mechanism. Iatrogenic amnesias are mainly caused by benzodiazepines (BZs) or anticholinergics. The former may occur in a non-anxious subject, who is not a usual consumer of BZ and takes a single dose. The latter are more often due to a hypersensitivity to anticholinergic drugs, in particular in patients presenting with a covert, incipient Alzheimer's disease. A vascular origin must be considered when amnesia is accompanied by other neurological symptoms, and when the regression of the amnesic disorder is slow, lasting several days. It results from lesions involving various mechanisms and locations, mainly subcortical. Partial seizures, most often mesio-temporal, more rarely frontal, may be the cause of transient amnesia in the elderly, in the absence of a past history of epilepsy. The red flag supportive of an epileptic origin is the repetition of stereotyped amnesic episodes. EEG demonstration of seizures may be difficult and the response to antiepileptic drugs effective on partial seizures is usually good.

  11. Failure of delayed nonsynaptic neuronal plasticity underlies age-associated long-term associative memory impairment

    Directory of Open Access Journals (Sweden)

    Watson Shawn N

    2012-08-01

    Full Text Available Abstract Background Cognitive impairment associated with subtle changes in neuron and neuronal network function rather than widespread neuron death is a feature of the normal aging process in humans and animals. Despite its broad evolutionary conservation, the etiology of this aging process is not well understood. However, recent evidence suggests the existence of a link between oxidative stress in the form of progressive membrane lipid peroxidation, declining neuronal electrical excitability and functional decline of the normal aging brain. The current study applies a combination of behavioural and electrophysiological techniques and pharmacological interventions to explore this hypothesis in a gastropod model (Lymnaea stagnalis feeding system that allows pinpointing the molecular and neurobiological foundations of age-associated long-term memory (LTM failure at the level of individual identified neurons and synapses. Results Classical appetitive reward-conditioning induced robust LTM in mature animals in the first quartile of their lifespan but failed to do so in animals in the last quartile of their lifespan. LTM failure correlated with reduced electrical excitability of two identified serotonergic modulatory interneurons (CGCs critical in chemosensory integration by the neural network controlling feeding behaviour. Moreover, while behavioural conditioning induced delayed-onset persistent depolarization of the CGCs known to underlie appetitive LTM formation in this model in the younger animals, it failed to do so in LTM-deficient senescent animals. Dietary supplementation of the lipophilic anti-oxidant α-tocopherol reversed the effect of age on CGCs electrophysiological characteristics but failed to restore appetitive LTM function. Treatment with the SSRI fluoxetine reversed both the neurophysiological and behavioural effects of age in senior animals. Conclusions The results identify the CGCs as cellular loci of age-associated appetitive

  12. Familial Transient Global Amnesia

    Directory of Open Access Journals (Sweden)

    R.Rhys Davies

    2012-12-01

    Full Text Available Following an episode of typical transient global amnesia (TGA, a female patient reported similar clinical attacks in 2 maternal aunts. Prior reports of familial TGA are few, and no previous account of affected relatives more distant than siblings or parents was discovered in a literature survey. The aetiology of familial TGA is unknown. A pathophysiological mechanism akin to that in migraine attacks, comorbidity reported in a number of the examples of familial TGA, is one possibility. The study of familial TGA cases might facilitate the understanding of TGA aetiology.

  13. Spatiotemporal dynamics on small-world neuronal networks: The roles of two types of time-delayed coupling

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hao; Jiang Huijun [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hou Zhonghuai, E-mail: hzhlj@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-10-15

    Highlights: > We compare neuronal dynamics in dependence on two types of delayed coupling. > Distinct results induced by different delayed coupling can be achieved. > Time delays in type 1 coupling can induce a most spatiotemporal ordered state. > For type 2 coupling, the systems exhibit synchronization transitions with delay. - Abstract: We investigate temporal coherence and spatial synchronization on small-world networks consisting of noisy Terman-Wang (TW) excitable neurons in dependence on two types of time-delayed coupling: {l_brace}x{sub j}(t - {tau}) - x{sub i}(t){r_brace} and {l_brace}x{sub j}(t - {tau}) - x{sub i}(t - {tau}){r_brace}. For the former case, we show that time delay in the coupling can dramatically enhance temporal coherence and spatial synchrony of the noise-induced spike trains. In addition, if the delay time {tau} is tuned to nearly match the intrinsic spike period of the neuronal network, the system dynamics reaches a most ordered state, which is both periodic in time and nearly synchronized in space, demonstrating an interesting resonance phenomenon with delay. For the latter case, however, we cannot achieve a similar spatiotemporal ordered state, but the neuronal dynamics exhibits interesting synchronization transitions with time delay from zigzag fronts of excitations to dynamic clustering anti-phase synchronization (APS), and further to clustered chimera states which have spatially distributed anti-phase coherence separated by incoherence. Furthermore, we also show how these findings are influenced by the change of the noise intensity and the rewiring probability of the small-world networks. Finally, qualitative analysis is given to illustrate the numerical results.

  14. Spatiotemporal dynamics on small-world neuronal networks: The roles of two types of time-delayed coupling

    International Nuclear Information System (INIS)

    Wu Hao; Jiang Huijun; Hou Zhonghuai

    2011-01-01

    Highlights: → We compare neuronal dynamics in dependence on two types of delayed coupling. → Distinct results induced by different delayed coupling can be achieved. → Time delays in type 1 coupling can induce a most spatiotemporal ordered state. → For type 2 coupling, the systems exhibit synchronization transitions with delay. - Abstract: We investigate temporal coherence and spatial synchronization on small-world networks consisting of noisy Terman-Wang (TW) excitable neurons in dependence on two types of time-delayed coupling: {x j (t - τ) - x i (t)} and {x j (t - τ) - x i (t - τ)}. For the former case, we show that time delay in the coupling can dramatically enhance temporal coherence and spatial synchrony of the noise-induced spike trains. In addition, if the delay time τ is tuned to nearly match the intrinsic spike period of the neuronal network, the system dynamics reaches a most ordered state, which is both periodic in time and nearly synchronized in space, demonstrating an interesting resonance phenomenon with delay. For the latter case, however, we cannot achieve a similar spatiotemporal ordered state, but the neuronal dynamics exhibits interesting synchronization transitions with time delay from zigzag fronts of excitations to dynamic clustering anti-phase synchronization (APS), and further to clustered chimera states which have spatially distributed anti-phase coherence separated by incoherence. Furthermore, we also show how these findings are influenced by the change of the noise intensity and the rewiring probability of the small-world networks. Finally, qualitative analysis is given to illustrate the numerical results.

  15. Feigning Amnesia Moderately Impairs Memory for a Mock Crime Video

    Directory of Open Access Journals (Sweden)

    Ivan Mangiulli

    2018-04-01

    Full Text Available Previous studies showed that feigning amnesia for a crime impairs actual memory for the target event. Lack of rehearsal has been proposed as an explanation for this memory-undermining effect of feigning. The aim of the present study was to replicate and extend previous research adopting a mock crime video instead of a narrative story. We showed participants a video of a violent crime. Next, they were requested to imagine that they had committed this offense and to either feign amnesia or confess the crime. A third condition was included: Participants in the delayed test-only control condition did not receive any instruction. On subsequent recall tests, participants in all three conditions were instructed to report as much information as possible about the offense. On the free recall test, feigning amnesia impaired memory for the video clip, but participants who were asked to feign crime-related amnesia outperformed controls. However, no differences between simulators and confessors were found on both correct cued recollection or on distortion and commission rates. We also explored whether inner speech might modulate memory for the crime. Inner speech traits were not found to be related to the simulating amnesia effect. Theoretical and practical implications of our results are discussed.

  16. Feigning Amnesia Moderately Impairs Memory for a Mock Crime Video.

    Science.gov (United States)

    Mangiulli, Ivan; van Oorsouw, Kim; Curci, Antonietta; Merckelbach, Harald; Jelicic, Marko

    2018-01-01

    Previous studies showed that feigning amnesia for a crime impairs actual memory for the target event. Lack of rehearsal has been proposed as an explanation for this memory-undermining effect of feigning. The aim of the present study was to replicate and extend previous research adopting a mock crime video instead of a narrative story. We showed participants a video of a violent crime. Next, they were requested to imagine that they had committed this offense and to either feign amnesia or confess the crime. A third condition was included: Participants in the delayed test-only control condition did not receive any instruction. On subsequent recall tests, participants in all three conditions were instructed to report as much information as possible about the offense. On the free recall test, feigning amnesia impaired memory for the video clip, but participants who were asked to feign crime-related amnesia outperformed controls. However, no differences between simulators and confessors were found on both correct cued recollection or on distortion and commission rates. We also explored whether inner speech might modulate memory for the crime. Inner speech traits were not found to be related to the simulating amnesia effect. Theoretical and practical implications of our results are discussed.

  17. Complex dynamics of a delayed discrete neural network of two nonidentical neurons

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuanlong [Mathematics Department, GuangDong University of Finance, Guangzhou 510521 (China); Huang, Tingwen [Mathematics Department, Texas A and M University at Qatar, P. O. Box 23874, Doha (Qatar); Huang, Yu, E-mail: stshyu@mail.sysu.edu.cn [Mathematics Department, Sun Yat-Sen University, Guangzhou 510275, People' s Republic China (China)

    2014-03-15

    In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results.

  18. Complex dynamics of a delayed discrete neural network of two nonidentical neurons

    International Nuclear Information System (INIS)

    Chen, Yuanlong; Huang, Tingwen; Huang, Yu

    2014-01-01

    In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results

  19. Complex dynamics of a delayed discrete neural network of two nonidentical neurons.

    Science.gov (United States)

    Chen, Yuanlong; Huang, Tingwen; Huang, Yu

    2014-03-01

    In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291-303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415-432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869-1878 (2013)]. We also give some numeric simulations to verify our theoretical results.

  20. Delay selection by spike-timing-dependent plasticity in recurrent networks of spiking neurons receiving oscillatory inputs.

    Directory of Open Access Journals (Sweden)

    Robert R Kerr

    Full Text Available Learning rules, such as spike-timing-dependent plasticity (STDP, change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.

  1. Psychogenic amnesia: syndromes, outcome, and patterns of retrograde amnesia.

    Science.gov (United States)

    Harrison, Neil A; Johnston, Kate; Corno, Federica; Casey, Sarah J; Friedner, Kimberley; Humphreys, Kate; Jaldow, Eli J; Pitkanen, Mervi; Kopelman, Michael D

    2017-09-01

    There are very few case series of patients with acute psychogenic memory loss (also known as dissociative/functional amnesia), and still fewer studies of outcome, or comparisons with neurological memory-disordered patients. Consequently, the literature on psychogenic amnesia is somewhat fragmented and offers little prognostic value for individual patients. In the present study, we reviewed the case records and neuropsychological findings in 53 psychogenic amnesia cases (ratio of 3:1, males:females), in comparison with 21 consecutively recruited neurological memory-disordered patients and 14 healthy control subjects. In particular, we examined the pattern of retrograde amnesia on an assessment of autobiographical memory (the Autobiographical Memory Interview). We found that our patients with psychogenic memory loss fell into four distinct groups, which we categorized as: (i) fugue state; (ii) fugue-to-focal retrograde amnesia; (iii) psychogenic focal retrograde amnesia following a minor neurological episode; and (iv) patients with gaps in their memories. While neurological cases were characterized by relevant neurological symptoms, a history of a past head injury was actually more common in our psychogenic cases (P = 0.012), perhaps reflecting a 'learning episode' predisposing to later psychological amnesia. As anticipated, loss of the sense of personal identity was confined to the psychogenic group. However, clinical depression, family/relationship problems, financial/employment problems, and failure to recognize the family were also statistically more common in that group. The pattern of autobiographical memory loss differed between the psychogenic groups: fugue cases showed a severe and uniform loss of memories for both facts and events across all time periods, whereas the two focal retrograde amnesia groups showed a 'reversed' temporal gradient with relative sparing of recent memories. After 3-6 months, the fugue patients had improved to normal scores for facts

  2. Stability and Hopf Bifurcation of Fractional-Order Complex-Valued Single Neuron Model with Time Delay

    Science.gov (United States)

    Wang, Zhen; Wang, Xiaohong; Li, Yuxia; Huang, Xia

    2017-12-01

    In this paper, the problems of stability and Hopf bifurcation in a class of fractional-order complex-valued single neuron model with time delay are addressed. With the help of the stability theory of fractional-order differential equations and Laplace transforms, several new sufficient conditions, which ensure the stability of the system are derived. Taking the time delay as the bifurcation parameter, Hopf bifurcation is investigated and the critical value of the time delay for the occurrence of Hopf bifurcation is determined. Finally, two representative numerical examples are given to show the effectiveness of the theoretical results.

  3. Effects of time delays on stability and Hopf bifurcation in a fractional ring-structured network with arbitrary neurons

    Science.gov (United States)

    Huang, Chengdai; Cao, Jinde; Xiao, Min; Alsaedi, Ahmed; Hayat, Tasawar

    2018-04-01

    This paper is comprehensively concerned with the dynamics of a class of high-dimension fractional ring-structured neural networks with multiple time delays. Based on the associated characteristic equation, the sum of time delays is regarded as the bifurcation parameter, and some explicit conditions for describing delay-dependent stability and emergence of Hopf bifurcation of such networks are derived. It reveals that the stability and bifurcation heavily relies on the sum of time delays for the proposed networks, and the stability performance of such networks can be markedly improved by selecting carefully the sum of time delays. Moreover, it is further displayed that both the order and the number of neurons can extremely influence the stability and bifurcation of such networks. The obtained criteria enormously generalize and improve the existing work. Finally, numerical examples are presented to verify the efficiency of the theoretical results.

  4. Time Delay and Long-Range Connection Induced Synchronization Transitions in Newman-Watts Small-World Neuronal Networks

    Science.gov (United States)

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595

  5. The influence of single neuron dynamics and network topology on time delay-induced multiple synchronous behaviors in inhibitory coupled network

    International Nuclear Information System (INIS)

    Zhao, Zhiguo; Gu, Huaguang

    2015-01-01

    Highlights: • Time delay-induced multiple synchronous behaviors was simulated in neuronal networks. • Multiple behaviors appear at time delays shorter than a bursting period of neurons. • The more spikes per burst of bursting, the more synchronous regions of time delay. • From regular to random via small-world networks, synchronous degree becomes weak. • An interpretation of the multiple behaviors and the influence of network are provided. - Abstract: Time delay induced-multiple synchronous behaviors are simulated in neuronal network composed of many inhibitory neurons and appear at different time delays shorter than a period of endogenous bursting of individual neurons. It is different from previous investigations wherein only one of multiple synchronous behaviors appears at time delay shorter than a period of endogenous firing and others appear at time delay longer than the period duration. The bursting patterns of the synchronous behaviors are identified based on the dynamics of an individual neuron stimulated by a signal similar to the inhibitory coupling current, which is applied at the decaying branch of a spike and suitable phase within the quiescent state of the endogenous bursting. If a burst of endogenous bursting contains more spikes, the synchronous behaviors appear at more regions of time delay. As the coupling strength increases, the multiple synchronous behaviors appear in a sequence because the different threshold of coupling current or strength is needed to achieve synchronous behaviors. From regular, to small-world, and to random networks, synchronous degree of the multiple synchronous behaviors becomes weak, and synchronous bursting patterns with lower spikes per burst disappear, which is properly interpreted by the difference of coupling current between neurons induced by different degree and the high threshold of coupling current to achieve synchronization for the absent synchronous bursting patterns. The results of the influence of

  6. Delayed neuronal cell death in brainstem after transient brainstem ischemia in gerbils

    Directory of Open Access Journals (Sweden)

    Hakuba Nobuhiro

    2010-09-01

    Full Text Available Abstract Background Because of the lack of reproducible brainstem ischemia models in rodents, the temporal profile of ischemic lesions in the brainstem after transient brainstem ischemia has not been evaluated intensively. Previously, we produced a reproducible brainstem ischemia model of Mongolian gerbils. Here, we showed the temporal profile of ischemic lesions after transient brainstem ischemia. Results Brainstem ischemia was produced by occlusion of the bilateral vertebral arteries just before their entry into the transverse foramina of the cervical vertebrae of Mongolian gerbils. Animals were subjected to brainstem ischemia for 15 min, and then reperfused for 0 d (just after ischemia, 1 d, 3 d and 7 d (n = 4 in each group. Sham-operated animals (n = 4 were used as control. After deep anesthesia, the gerbils were perfused with fixative for immunohistochemical investigation. Ischemic lesions were detected by immunostaining for microtubule-associated protein 2 (MAP2. Just after 15-min brainstem ischemia, ischemic lesions were detected in the lateral vestibular nucleus and the ventral part of the spinal trigeminal nucleus, and these ischemic lesions disappeared one day after reperfusion in all animals examined. However, 3 days and 7 days after reperfusion, ischemic lesions appeared again and clusters of ionized calcium-binding adapter molecule-1(IBA-1-positive cells were detected in the same areas in all animals. Conclusion These results suggest that delayed neuronal cell death took place in the brainstem after transient brainstem ischemia in gerbils.

  7. Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons

    Science.gov (United States)

    Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen

    2013-01-01

    Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337

  8. Variational calculation of the limit cycle and its frequency in a two-neuron model with delay

    International Nuclear Information System (INIS)

    Brandt, Sebastian F.; Wessel, Ralf; Pelster, Axel

    2006-01-01

    We consider a model system of two coupled Hopfield neurons, which is described by delay differential equations taking into account the finite signal propagation and processing times. When the delay exceeds a critical value, a limit cycle emerges via a supercritical Hopf bifurcation. First, we calculate its frequency and trajectory perturbatively by applying the Poincare-Lindstedt method. Then, the perturbation series are resummed by means of the Shohat expansion in good agreement with numerical values. However, with increasing delay, the accuracy of the results from the Shohat expansion worsens. We thus apply variational perturbation theory (VPT) to the perturbation expansions to obtain more accurate results, which moreover hold even in the limit of large delays

  9. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability

    Science.gov (United States)

    Speca, David J.; Ogata, Genki; Mandikian, Danielle; Bishop, Hannah I.; Wiler, Steve W.; Eum, Kenneth; Wenzel, H. Jürgen; Doisy, Emily T.; Matt, Lucas; Campi, Katharine L.; Golub, Mari S.; Nerbonne, Jeanne M.; Hell, Johannes W.; Trainor, Brian C.; Sack, Jon T.; Schwartzkroin, Philip A.; Trimmer, James S.

    2014-01-01

    The Kv2.1 delayed rectifier potassium channel exhibits high-level expression in both principal and inhibitory neurons throughout the central nervous system, including prominent expression in hippocampal neurons. Studies of in vitro preparations suggest that Kv2.1 is a key yet conditional regulator of intrinsic neuronal excitability, mediated by changes in Kv2.1 expression, localization and function via activity-dependent regulation of Kv2.1 phosphorylation. Here we identify neurological and behavioral deficits in mutant (Kv2.1−/−) mice lacking this channel. Kv2.1−/− mice have grossly normal characteristics. No impairment in vision or motor coordination was apparent, although Kv2.1−/− mice exhibit reduced body weight. The anatomic structure and expression of related Kv channels in the brains of Kv2.1−/− mice appears unchanged. Delayed rectifier potassium current is diminished in hippocampal neurons cultured from Kv2.1−/− animals. Field recordings from hippocampal slices of Kv2.1−/− mice reveal hyperexcitability in response to the convulsant bicuculline, and epileptiform activity in response to stimulation. In Kv2.1−/− mice, long-term potentiation at the Schaffer collateral – CA1 synapse is decreased. Kv2.1−/− mice are strikingly hyperactive, and exhibit defects in spatial learning, failing to improve performance in a Morris Water Maze task. Kv2.1−/− mice are hypersensitive to the effects of the convulsants flurothyl and pilocarpine, consistent with a role for Kv2.1 as a conditional suppressor of neuronal activity. Although not prone to spontaneous seizures, Kv2.1−/− mice exhibit accelerated seizure progression. Together, these findings suggest homeostatic suppression of elevated neuronal activity by Kv2.1 plays a central role in regulating neuronal network function. PMID:24494598

  10. Enhancement of delayed-rectifier potassium conductance by low concentrations of local anaesthetics in spinal sensory neurones

    Science.gov (United States)

    Olschewski, Andrea; Wolff, Matthias; Bräu, Michael E; Hempelmann, Gunter; Vogel, Werner; Safronov, Boris V

    2002-01-01

    Combining the patch-clamp recordings in slice preparation with the ‘entire soma isolation' method we studied action of several local anaesthetics on delayed-rectifier K+ currents in spinal dorsal horn neurones.Bupivacaine, lidocaine and mepivacaine at low concentrations (1–100 μM) enhanced delayed-rectifier K+ current in intact neurones within the spinal cord slice, while exhibiting a partial blocking effect at higher concentrations (>100 μM). In isolated somata 0.1–10 μM bupivacaine enhanced delayed-rectifier K+ current by shifting its steady-state activation characteristic and the voltage-dependence of the activation time constant to more negative potentials by 10–20 mV.Detailed analysis has revealed that bupivacaine also increased the maximum delayed-rectifier K+ conductance by changing the open probability, rather than the unitary conductance, of the channel.It is concluded that local anaesthetics show a dual effect on delayed-rectifier K+ currents by potentiating them at low concentrations and partially suppressing at high concentrations. The phenomenon observed demonstrated the complex action of local anaesthetics during spinal and epidural anaesthesia, which is not restricted to a suppression of Na+ conductance only. PMID:12055132

  11. Global existence of periodic solutions in a simplified four-neuron BAM neural network model with multiple delays

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We consider a simplified bidirectional associated memory (BAM neural network model with four neurons and multiple time delays. The global existence of periodic solutions bifurcating from Hopf bifurcations is investigated by applying the global Hopf bifurcation theorem due to Wu and Bendixson's criterion for high-dimensional ordinary differential equations due to Li and Muldowney. It is shown that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of the sum of two delays. Numerical simulations supporting the theoretical analysis are also included.

  12. Diapause formation and downregulation of insulin-like signaling via DAF-16/FOXO delays axonal degeneration and neuronal loss.

    Directory of Open Access Journals (Sweden)

    Andrea Calixto

    Full Text Available Axonal degeneration is a key event in the pathogenesis of neurodegenerative conditions. We show here that mec-4d triggered axonal degeneration of Caenorhabditis elegans neurons and mammalian axons share mechanistical similarities, as both are rescued by inhibition of calcium increase, mitochondrial dysfunction, and NMNAT overexpression. We then explore whether reactive oxygen species (ROS participate in axonal degeneration and neuronal demise. C. elegans dauers have enhanced anti-ROS systems, and dauer mec-4d worms are completely protected from axonal degeneration and neuronal loss. Mechanistically, downregulation of the Insulin/IGF-1-like signaling (IIS pathway protects neurons from degenerating in a DAF-16/FOXO-dependent manner and is related to superoxide dismutase and catalase-increased expression. Caloric restriction and systemic antioxidant treatment, which decrease oxidative damage, protect C. elegans axons from mec-4d-mediated degeneration and delay Wallerian degeneration in mice. In summary, we show that the IIS pathway is essential in maintaining neuronal homeostasis under pro-degenerative stimuli and identify ROS as a key intermediate of neuronal degeneration in vivo. Since axonal degeneration represents an early pathological event in neurodegeneration, our work identifies potential targets for therapeutic intervention in several conditions characterized by axonal loss and functional impairment.

  13. Anti-Epileptic Drugs Delay Age-Related Loss of Spiral Ganglion Neurons via T-type Calcium Channel

    Science.gov (United States)

    Lei, Debin; Gao, Xia; Perez, Philip; Ohlemiller, Kevin K; Chen, Chien-Chang; Campbell, Kevin P.; Hood, Aizhen Yang; Bao, Jianxin

    2011-01-01

    Loss of spiral ganglion neurons is a major cause of age-related hearing loss (presbycusis). Despite being the third most prevalent condition afflicting elderly persons, there are no known medications to prevent presbycusis. Because calcium signaling has long been implicated in age-related neuronal death, we investigated T-type calcium channels. This family is comprised of three members (Cav3.1, Cav3.2, and Cav3.3), based on their respective main pore-forming alpha subunits: α1G, α1H, and α1I. In the present study, we report a significant delay of age-related loss of cochlear function and preservation of spiral ganglion neurons in α1H null and heterozygous mice, clearly demonstrating an important role for Cav3.2 in age-related neuronal loss. Furthermore, we show that anticonvulsant drugs from a family of T-type calcium channel blockers can significantly preserve spiral ganglion neurons during aging. To our knowledge, this is the first report of drugs capable of diminishing age-related loss of spiral ganglion neurons. PMID:21640179

  14. Effects of the network structure and coupling strength on the noise-induced response delay of a neuronal network

    International Nuclear Information System (INIS)

    Ozer, Mahmut; Uzuntarla, Muhammet

    2008-01-01

    The Hodgkin-Huxley (H-H) neuron model driven by stimuli just above threshold shows a noise-induced response delay with respect to time to the first spike for a certain range of noise strengths, an effect called 'noise delayed decay' (NDD). We study the response time of a network of coupled H-H neurons, and investigate how the NDD can be affected by the connection topology of the network and the coupling strength. We show that the NDD effect exists for weak and intermediate coupling strengths, whereas it disappears for strong coupling strength regardless of the connection topology. We also show that although the network structure has very little effect on the NDD for a weak coupling strength, the network structure plays a key role for an intermediate coupling strength by decreasing the NDD effect with the increasing number of random shortcuts, and thus provides an additional operating regime, that is absent in the regular network, in which the neurons may also exploit a spike time code

  15. A Cross-Correlated Delay Shift Supervised Learning Method for Spiking Neurons with Application to Interictal Spike Detection in Epilepsy.

    Science.gov (United States)

    Guo, Lilin; Wang, Zhenzhong; Cabrerizo, Mercedes; Adjouadi, Malek

    2017-05-01

    This study introduces a novel learning algorithm for spiking neurons, called CCDS, which is able to learn and reproduce arbitrary spike patterns in a supervised fashion allowing the processing of spatiotemporal information encoded in the precise timing of spikes. Unlike the Remote Supervised Method (ReSuMe), synapse delays and axonal delays in CCDS are variants which are modulated together with weights during learning. The CCDS rule is both biologically plausible and computationally efficient. The properties of this learning rule are investigated extensively through experimental evaluations in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification performance. Results presented show that the CCDS learning method achieves learning accuracy and learning speed comparable with ReSuMe, but improves classification accuracy when compared to both the Spike Pattern Association Neuron (SPAN) learning rule and the Tempotron learning rule. The merit of CCDS rule is further validated on a practical example involving the automated detection of interictal spikes in EEG records of patients with epilepsy. Results again show that with proper encoding, the CCDS rule achieves good recognition performance.

  16. Discovery of talatisamine as a novel specific blocker for the delayed rectifier K+ channels in rat hippocampal neurons.

    Science.gov (United States)

    Song, M-K; Liu, H; Jiang, H-L; Yue, J-M; Hu, G-Y; Chen, H-Z

    2008-08-13

    Blocking specific K+ channels has been proposed as a promising strategy for the treatment of neurodegenerative diseases. Using a computational virtual screening approach and electrophysiological testing, we found four Aconitum alkaloids are potent blockers of the delayed rectifier K+ channel in rat hippocampal neurons. In the present study, we first tested the action of the four alkaloids on the voltage-gated K+, Na+ and Ca2+ currents in rat hippocampal neurons, and then identified that talatisamine is a specific blocker for the delayed rectifier K+ channel. External application of talatisamine reversibly inhibited the delayed rectifier K+ current (IK) with an IC50 value of 146.0+/-5.8 microM in a voltage-dependent manner, but exhibited very slight blocking effect on the voltage-gated Na+ and Ca2+ currents even at the high concentration of 1-3 mM. Moreover, talatisamine exerted a significant hyperpolarizing shift of the steady-state activation, but did not influence the steady state inactivation of IK and its recovery from inactivation, suggesting that talatisamine had no allosteric action on IK channel and was a pure blocker binding to the external pore entry of the channel. Our present study made the first discovery of potent and specific IK channel blocker from Aconitum alkaloids. It has been argued that suppressing K+ efflux by blocking IK channel may be favorable for Alzheimer's disease therapy. Talatisamine can therefore be considered as a leading compound worthy of further investigations.

  17. Delayed translocation of NGFI-B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid

    International Nuclear Information System (INIS)

    Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U.; Paulsen, Ragnhild E.

    2011-01-01

    Highlights: → NGFI-B and RXR translocate out of the nucleus after glutamate treatment. → Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. → Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXRα were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXRα, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.

  18. Transient global amnesia and functional retrograde amnesia: contrasting examples of episodic memory loss.

    OpenAIRE

    Kritchevsky, M; Zouzounis, J; Squire, L R

    1997-01-01

    We studied 11 patients with transient global amnesia (TGA) and ten patients with functional retrograde amnesia (FRA). Patients with TGA had a uniform clinical picture: a severe, relatively isolated amnesic syndrome that started suddenly, persisted for 4-12 h, and then gradually improved to essentially normal over the next 12-24 h. During the episode, the patients had severe anterograde amnesia for verbal and non-verbal material and retrograde amnesia that typically covered at least two decade...

  19. SIP-Based Single Neuron Stochastic Predictive Control for Non-Gaussian Networked Control Systems with Uncertain Metrology Delays

    Directory of Open Access Journals (Sweden)

    Xinying Xu

    2018-06-01

    Full Text Available In this paper, a novel data-driven single neuron predictive control strategy is proposed for non-Gaussian networked control systems with metrology delays in the information theory framework. Firstly, survival information potential (SIP, instead of minimum entropy, is used to formulate the performance index to characterize the randomness of the considered systems, which is calculated by oversampling method. Then the minimum values can be computed by optimizing the SIP-based performance index. Finally, the proposed strategy, minimum entropy method and mean square error (MSE are applied to a networked motor control system, and results demonstrated the effectiveness of the proposed strategy.

  20. Sensitivity and specificity of the 3-item memory test in the assessment of post traumatic amnesia.

    NARCIS (Netherlands)

    Andriessen, T.M.J.C.; Jong, B. de; Jacobs, B.; Werf, S.P. van der; Vos, P.E.

    2009-01-01

    PRIMARY OBJECTIVE: To investigate how the type of stimulus (pictures or words) and the method of reproduction (free recall or recognition after a short or a long delay) affect the sensitivity and specificity of a 3-item memory test in the assessment of post traumatic amnesia (PTA). METHODS: Daily

  1. Stability and attractive basins of multiple equilibria in delayed two-neuron networks

    International Nuclear Information System (INIS)

    Huang Yu-Jiao; Zhang Hua-Guang; Wang Zhan-Shan

    2012-01-01

    Multiple stability for two-dimensional delayed recurrent neural networks with piecewise linear activation functions of 2r (r ≥ 1) corner points is studied. Sufficient conditions are established for checking the existence of (2r + 1) 2 equilibria in delayed recurrent neural networks. Under these conditions, (r + 1) 2 equilibria are locally exponentially stable, and (2r + 1) 2 — (r + 1) 2 — r 2 equilibria are unstable. Attractive basins of stable equilibria are estimated, which are larger than invariant sets derived by decomposing state space. One example is provided to illustrate the effectiveness of our results. (general)

  2. Prediction of partial synchronization in delay-coupled nonlinear oscillators, with application to Hindmarsh–Rose neurons

    International Nuclear Information System (INIS)

    Ünal, Hakkı Ulaş; Michiels, Wim

    2013-01-01

    The full synchronization of coupled nonlinear oscillators has been widely studied. In this paper we investigate conditions for which partial synchronization of time-delayed diffusively coupled systems arises. The coupling configuration of the systems is described by a directed graph. As a novel quantitative result we first give necessary and sufficient conditions for the presence of forward invariant sets characterized by partially synchronous motion. These conditions can easily be checked from the eigenvalues and eigenvectors of the graph Laplacian. Second, we perform stability analysis of the synchronized equilibria in a (gain,delay) parameter space. For this analysis the coupled nonlinear systems are linearized around the synchronized equilibria and then the resulting characteristic function is factorized. By such a factorization, it is shown that the relation between the behaviour of different agents at the zero of the characteristic function depends on the structure of the eigenvectors of the weighted Laplacian matrix. By determining the structure of the solutions in the unstable manifold, combined with the characterization of invariant sets, we predict which partially synchronous regimes occur and estimate the corresponding coupling gain and delay values. We apply the obtained results to networks of coupled Hindmarsh–Rose neurons and verify the occurrence of the expected partially synchronous regimes by using a numerical simulation. We also make a comparison with an existing approach based on Lyapunov functionals. (paper)

  3. H2O2 INDUCES DELAYED HYPEREXCITABILITY IN NUCLEUS TRACTUS SOLITARII NEURONS

    Science.gov (United States)

    Ostrowski, Tim D.; Hasser, Eileen M.; Heesch, Cheryl M.; Kline, David D.

    2014-01-01

    Hydrogen peroxide (H2O2) is a stable reactive oxygen species and potent neuromodulator of cellular and synaptic activity. Centrally, endogenous H2O2 is elevated during bouts of hypoxia-reoxygenation, a variety of disease states, and aging. The nucleus tractus solitarii (nTS) is the central termination site of visceral afferents for homeostatic reflexes and contributes to reflex alterations during these conditions. We determined the extent to which H2O2 modulates synaptic and membrane properties in nTS neurons in rat brainstem slices. Stimulation of the tractus solitarii (which contains the sensory afferent fibers) evoked synaptic currents that were not altered by 10 – 500 μM H2O2. However, 500 μM H2O2 modulated several intrinsic membrane properties of nTS neurons, including a decrease in input resistance, hyperpolarization of resting membrane potential (RMP) and action potential (AP) threshold (THR), and an initial reduction in AP discharge to depolarizing current. H2O2 increased conductance of barium-sensitive potassium currents, and block of these currents ablated H2O2-induced changes in RMP, input resistance and AP discharge. Following washout of H2O2 AP discharge was enhanced due to depolarization of RMP and a partially maintained hyperpolarization of THR. Hyperexcitability persisted with repeated H2O2 exposure. H2O2 effects on RMP and THR were ablated by intracellular administration of the antioxidant catalase, which was immunohistochemically identified in neurons throughout the nTS. Thus, H2O2 initially reduces excitability of nTS neurons that is followed by sustained hyperexcitability, which may play a profound role in cardiorespiratory reflexes. PMID:24397952

  4. Bifurcation analysis for a discrete-time Hopfield neural network of two neurons with two delays and self-connections

    International Nuclear Information System (INIS)

    Kaslik, E.; Balint, St.

    2009-01-01

    In this paper, a bifurcation analysis is undertaken for a discrete-time Hopfield neural network of two neurons with two different delays and self-connections. Conditions ensuring the asymptotic stability of the null solution are found, with respect to two characteristic parameters of the system. It is shown that for certain values of these parameters, Fold or Neimark-Sacker bifurcations occur, but Flip and codimension 2 (Fold-Neimark-Sacker, double Neimark-Sacker, resonance 1:1 and Flip-Neimark-Sacker) bifurcations may also be present. The direction and the stability of the Neimark-Sacker bifurcations are investigated by applying the center manifold theorem and the normal form theory

  5. [Crime-related amnesia: real or feigned?].

    Science.gov (United States)

    Giger, P; Merten, T; Merckelbach, H

    2012-07-01

    In the context of criminal forensic evaluations, experts are often confronted with the problem of offenders' claims of crime-related amnesia. Because of the far-reaching legal consequences of the expert opinion, the nature of the suspected memory disorder has to be investigated with special care and due consideration of differential diagnoses. While the diagnosis of organic amnesia is comparatively easy to make, the same is not true for dissociative amnesia. Despite existing theoretical explanations such as stress, peritraumatic dissociation or repression, to date there is no sound, scientifically based and empirically supported explanation for the occurrence of genuine, non-organic crime-related amnesia. In the criminal context of claimed amnesia, secondary gain is usually obvious; thus, possible malingering of memory loss has to be carefully investigated by the forensic expert. To test this hypothesis, the expert has to resort to methods based on a high methodological level. The diagnosis of dissociative amnesia cannot be made by mere exclusion of evidence for organic amnesia; instead, malingering has to be ruled out on an explicit basis. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    Directory of Open Access Journals (Sweden)

    Luis I Angel-Chavez

    Full Text Available In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV. Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  7. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    Science.gov (United States)

    Angel-Chavez, Luis I; Acosta-Gómez, Eduardo I; Morales-Avalos, Mario; Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  8. Local and global Hopf bifurcation analysis in a neutral-type neuron system with two delays

    Science.gov (United States)

    Lv, Qiuyu; Liao, Xiaofeng

    2018-03-01

    In recent years, neutral-type differential-difference equations have been applied extensively in the field of engineering, and their dynamical behaviors are more complex than that of the delay differential-difference equations. In this paper, the equations used to describe a neutral-type neural network system of differential difference equation with two delays are studied (i.e. neutral-type differential equations). Firstly, by selecting τ1, τ2 respectively as a parameter, we provide an analysis about the local stability of the zero equilibrium point of the equations, and sufficient conditions of asymptotic stability for the system are derived. Secondly, by using the theory of normal form and applying the theorem of center manifold introduced by Hassard et al., the Hopf bifurcation is found and some formulas for deciding the stability of periodic solutions and the direction of Hopf bifurcation are given. Moreover, by applying the theorem of global Hopf bifurcation, the existence of global periodic solution of the system is studied. Finally, an example is given, and some computer numerical simulations are taken to demonstrate and certify the correctness of the presented results.

  9. Stranger than fiction: literary and clinical amnesia.

    Science.gov (United States)

    Dieguez, Sebastian; Annoni, Jean-Marie

    2013-01-01

    This chapter broadly covers literary uses of amnesia and memory disorders. Amnesia in fiction offers authors an efficient and dramatic device to tackle themes such as identity, personal liberty, or guilt. We argue against the common complaint that fictional amnesia is scientifically inaccurate, pointing out that the goals of literature are different from those of science, that amnesia is still poorly understood, and that real-life cases can sometimes be stranger than fiction. The chapter provides examples from the neuropsychological literature, media reports, mythology, historical cases, detective stories, war stories, theatrical plays, and other genres. Special attention is given to retrograde and dissociative amnesia, as these are the most frequent types of amnesia portrayed in fiction, while other types of memory disorders are more shortly treated. We argue that the predominance of disorders affecting autobiographical memory in fiction is in itself a revealing fact about the mechanisms of human memory, illustrating how fictional treatments of pathology can inform back neurological and psychological research. Copyright © 2013 S. Karger AG, Basel.

  10. Hydrogen peroxide-induced reduction of delayed rectifier potassium current in hippocampal neurons involves oxidation of sulfhydryl groups.

    Science.gov (United States)

    Hasan, Sonia M K; Redzic, Zoran B; Alshuaib, Waleed B

    2013-07-03

    This study examined the effect of H2O2 on the delayed rectifier potassium current (IKDR) in isolated hippocampal neurons. Whole-cell voltage-clamp experiments were performed on freshly dissociated hippocampal CA1 neurons of SD rats before and after treatment with H2O2. To reveal the mechanism behind H2O2-induced changes in IKDR, cells were treated with different oxidizing and reducing agents. External application of membrane permeable H2O2 reduced the amplitude and voltage-dependence of IKDR in a concentration dependent manner. Desferoxamine (DFO), an iron-chelator that prevents hydroxyl radical (OH) generation, prevented H2O2-induced reduction in IKDR. Application of the sulfhydryl-oxidizing agent 5,5 dithio-bis-nitrobenzoic acid (DTNB) mimicked the effect of H2O2. Sulfhydryl-reducing agents dithiothreitol (DTT) and glutathione (GSH) alone did not affect IKDR; however, DTT and GSH reversed and prevented the H2O2-induced inhibition of IKDR, respectively. Membrane impermeable agents GSH and DTNB showed effects only when added intracellularly identifying intracellular sulfhydryl groups as potential targets for hydroxyl-mediated oxidation. However, the inhibitory effects of DTNB and H2O2 at the positive test potentials were completely and partially abolished by DTT, respectively, suggesting an additional mechanism of action for H2O2, that is not shared by DTNB. In summary, this study provides evidence for the redox modulation of IKDR, identifies hydroxyl radical as an intermediate oxidant responsible for the H2O2-induced decrease in current amplitude and identifies intracellular sulfhydryl groups as an oxidative target. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Galveston Orientation Amnesia Test (GOAT Galveston Orientation Amnesia Test (GOAT Galveston Orientation Amnesia Test (GOAT

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Fürbringer e Silva

    2009-12-01

    Full Text Available O trauma crânio-encefálico contuso (TCEC é freqüentemente seguido pela amnésia pós-traumática (APT, caracterizada como um estado transitório de confusão e desorientação. Sua duração tem sido utilizada para quantificar a gravidade do TCEC e prever distúrbios nas funções cognitivas, assim como para antever as alterações na capacidade funcional das vítimas pós-trauma. O Galveston Orientation Amnesia Test (GOAT é o primeiro instrumento sistematizado criado e o mais amplamente utilizado para avaliar a APT. Este artigo apresenta esse instrumento, as bases conceituais para seu desenvolvimento e a adaptação e validação do GOAT para cultura brasileira. Além disso, descreve sua aplicação e comenta as restrições do seu uso. Resultados de pesquisas realizadas em nosso meio contribuíram para as evidências sobre a validade do GOAT. Também apontaram os indicadores do momento pós-trauma em que o GOAT deve ser aplicado e destacaram as dificuldades no uso desse instrumento.El trauma cráneo-encefálico contuso (TCEC es frecuentemente seguido por la amnesia pos-traumática (APT, caracterizada como un estado transitorio de confusión y desorientación. Su duración ha sido utilizada para cuantificar la severidad del TCEC y prever alteraciones en las funciones cognitivas, tanto como para antever las dificultades en la capacidad funcional de las víctimas pos-trauma. El Galveston Orientation Amnésia Test (GOAT es la primera encuesta sistematizada que fue creada y el mas ampliamente utilizada para evaluar la APT. Esta publicación presenta esta encuesta, las bases conceptuales para su desarrollo y la adaptación y validación del GOAT para la cultura brasileña. Además, describe su aplicación y limitaciones en el uso. Resultados de pesquisas brasileñas contribuyeron para las evidencias sobre la validad del GOAT. También apuntaron los indicadores del momento pos-trauma en que el GOAT debe ser aplicado y destacaron las dificultades

  12. Information in small neuronal ensemble activity in the hippocampal CA1 during delayed non-matching to sample performance in rats

    Directory of Open Access Journals (Sweden)

    Takahashi Susumu

    2009-09-01

    Full Text Available Abstract Background The matrix-like organization of the hippocampus, with its several inputs and outputs, has given rise to several theories related to hippocampal information processing. Single-cell electrophysiological studies and studies of lesions or genetically altered animals using recognition memory tasks such as delayed non-matching-to-sample (DNMS tasks support the theories. However, a complete understanding of hippocampal function necessitates knowledge of the encoding of information by multiple neurons in a single trial. The role of neuronal ensembles in the hippocampal CA1 for a DNMS task was assessed quantitatively in this study using multi-neuronal recordings and an artificial neural network classifier as a decoder. Results The activity of small neuronal ensembles (6-18 cells over brief time intervals (2-50 ms contains accurate information specifically related to the matching/non-matching of continuously presented stimuli (stimulus comparison. The accuracy of the combination of neurons pooled over all the ensembles was markedly lower than those of the ensembles over all examined time intervals. Conclusion The results show that the spatiotemporal patterns of spiking activity among cells in the small neuronal ensemble contain much information that is specifically useful for the stimulus comparison. Small neuronal networks in the hippocampal CA1 might therefore act as a comparator during recognition memory tasks.

  13. Novelty preference in patients with developmental amnesia.

    Science.gov (United States)

    Munoz, M; Chadwick, M; Perez-Hernandez, E; Vargha-Khadem, F; Mishkin, M

    2011-12-01

    To re-examine whether or not selective hippocampal damage reduces novelty preference in visual paired comparison (VPC), we presented two different versions of the task to a group of patients with developmental amnesia (DA), each of whom sustained this form of pathology early in life. Compared with normal control participants, the DA group showed a delay-dependent reduction in novelty preference on one version of the task and an overall reduction on both versions combined. Because VPC is widely considered to be a measure of incidental recognition, the results appear to support the view that the hippocampus contributes to recognition memory. A difficulty for this conclusion, however, is that according to one current view the hippocampal contribution to recognition is limited to task conditions that encourage recollection of an item in some associated context, and according to another current view, to recognition of an item with the high confidence judgment that reflects a strong memory. By contrast, VPC, throughout which the participant remains entirely uninstructed other than to view the stimuli, would seem to lack such task conditions and so would likely lead to recognition based on familiarity rather than recollection or, alternatively, weak memories rather than strong. However, before concluding that the VPC impairment therefore contradicts both current views regarding the role of the hippocampus in recognition memory, two possibilities that would resolve this issue need to be investigated. One is that some variable in VPC, such as the extended period of stimulus encoding during familiarization, overrides its incidental nature, and, because this condition promotes either recollection- or strength-based recognition, renders the task hippocampal-dependent. The other possibility is that VPC, rather than providing a measure of incidental recognition, actually assesses an implicit, information-gathering process modulated by habituation, for which the hippocampus is

  14. STICK: Spike Time Interval Computational Kernel, a Framework for General Purpose Computation Using Neurons, Precise Timing, Delays, and Synchrony.

    Science.gov (United States)

    Lagorce, Xavier; Benosman, Ryad

    2015-11-01

    There has been significant research over the past two decades in developing new platforms for spiking neural computation. Current neural computers are primarily developed to mimic biology. They use neural networks, which can be trained to perform specific tasks to mainly solve pattern recognition problems. These machines can do more than simulate biology; they allow us to rethink our current paradigm of computation. The ultimate goal is to develop brain-inspired general purpose computation architectures that can breach the current bottleneck introduced by the von Neumann architecture. This work proposes a new framework for such a machine. We show that the use of neuron-like units with precise timing representation, synaptic diversity, and temporal delays allows us to set a complete, scalable compact computation framework. The framework provides both linear and nonlinear operations, allowing us to represent and solve any function. We show usability in solving real use cases from simple differential equations to sets of nonlinear differential equations leading to chaotic attractors.

  15. Retrograde amnesia for semantic information in Alzheimer's disease

    OpenAIRE

    Meeter, M.; Kollen, A.; Scheltens, P.

    2005-01-01

    Patients with mild to moderate Alzheimer's disease and normal controls were tested on a retrograde amnesia test with semantic content (Neologism and Vocabulary Test, or NVT), consisting of neologisms to be defined. Patients showed a decrement as compared to normal controls, pointing to retrograde amnesia within semantic memory. No evidence for a gradient within this amnesia was found, although one was present on an autobiographic test of retrograde amnesia that had a wider time scale. Several...

  16. A mathematical model of forgetting and amnesia

    Directory of Open Access Journals (Sweden)

    Jaap M. J. Murre

    2013-02-01

    Full Text Available We describe a mathematical model of learning and memory and apply it to the dynamics of forgetting and amnesia. The model is based on the hypothesis that the neural systems involved in memory at different time-scales share two fundamental properties: (1 representations in a store decline in strength (2 while trying to induce new representations in higher-level more permanent stores. This paper addresses several types of experimental and clinical phenomena: (i the temporal gradient of retrograde amnesia (Ribot's Law, (ii forgetting curves with and without anterograde amnesia, and (iii learning and forgetting curves with impaired cortical plasticity. Results are in the form of closed-form expressions that are applied to studies with mice, rats, and monkeys. In order to analyze human data in a quantitative manner, we also derive a relative measure of retrograde amnesia that removes the effects of non-equal item difficulty for different time periods commonly found with clinical retrograde amnesia tests. Using these analytical tools, we review studies of temporal gradients in the memory of patients with Korsakoff's Disease, Alzheimer's Dementia, Huntington's Disease, and other disorders.

  17. Classic and recent advances in understanding amnesia [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Richard J. Allen

    2018-03-01

    Full Text Available Neurological amnesia has been and remains the focus of intense study, motivated by the drive to understand typical and atypical memory function and the underlying brain basis that is involved. There is now a consensus that amnesia associated with hippocampal (and, in many cases, broader medial temporal lobe damage results in deficits in episodic memory, delayed recall, and recollective experience. However, debate continues regarding the patterns of preservation and impairment across a range of abilities, including semantic memory and learning, delayed recognition, working memory, and imagination. This brief review highlights some of the influential and recent advances in these debates and what they may tell us about the amnesic condition and hippocampal function.

  18. Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia).

    Science.gov (United States)

    Johnston, Melissa; Anderson, Catrona; Colombo, Michael

    2017-01-15

    We recorded neuronal activity from the nidopallium caudolaterale, the avian equivalent of mammalian prefrontal cortex, and the entopallium, the avian equivalent of the mammalian visual cortex, in four birds trained on a differential outcomes delayed matching-to-sample procedure in which one sample stimulus was followed by reward and the other was not. Despite similar incidence of reward-specific and reward-unspecific delay cell types across the two areas, overall entopallium delay activity occurred following both rewarded and non-rewarded stimuli, whereas nidopallium caudolaterale delay activity tended to occur following the rewarded stimulus but not the non-rewarded stimulus. These findings are consistent with the view that delay activity in entopallium represents a code of the sample stimulus whereas delay activity in nidopallium caudolaterale represents a code of the possibility of an upcoming reward. However, based on the types of delay cells encountered, cells in NCL also code the sample stimulus and cells in ENTO are influenced by reward. We conclude that both areas support the retention of information, but that the activity in each area is differentially modulated by factors such as reward and attentional mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus

    Directory of Open Access Journals (Sweden)

    Eun Joo Bae

    2015-01-01

    Full Text Available The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not been addressed yet. In this study, we first compared ischemia-induced effects on p63 expression in the hippocampal regions (CA1- 3 between the young and adult gerbils subjected to 5 minutes of transient global cerebral ischemia. Neuronal death in the hippocampal CA1 region of young gerbils was significantly slow compared with that in the adult gerbils after transient global cerebral ischemia. p63 immunoreactivity in the hippocampal CA1 pyramidal neurons in the sham-operated young group was significantly low compared with that in the sham-operated adult group. p63 immunoreactivity was apparently changed in ischemic hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. In the ischemia-operated adult groups, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons was significantly decreased at 4 days post-ischemia; however, p63 immunoreactivity in the ischemia-operated young group was significantly higher than that in the ischemia-operated adult group. At 7 days post-ischemia, p63 immunoreactivity was decreased in the hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. Change patterns of p63 level in the hippocampal CA1 region of adult and young gerbils after ischemic damage were similar to those observed in the immunohistochemical results. These findings indicate that higher and longer-term expression of p63 in the hippocampal CA1 region of the young gerbils after ischemia/reperfusion may be related to more delayed neuronal death compared to that in the adults.

  20. Autobiographical Memory for Emotional Events in Amnesia

    Directory of Open Access Journals (Sweden)

    Irene Daum

    1996-01-01

    Full Text Available This study investigated autobiographical memory for emotionally flavoured experiences in amnesia. Ten amnesic patients and 10 matched control subjects completed the Autobiographical Memory Interview and three semi-structured interviews which assessed memory for personal events associated with pain, happiness and fear. Despite retrograde amnesia for autobiographical facts and incidents, amnesics remembered a similar number of emotionally significant personal experiences as control subjects. Their recollections generally lacked elaboration and detail, but pain-related memories appeared to be more mildly impaired than memories associated with happiness and fear. The findings are discussed in relation to recent views on the relationship between affect and memory.

  1. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP.

    Science.gov (United States)

    Krashes, Michael J; Shah, Bhavik P; Koda, Shuichi; Lowell, Bradford B

    2013-10-01

    Agouti-related peptide (AgRP) neurons of the hypothalamus release a fast transmitter (GABA) in addition to neuropeptides (neuropeptide Y [NPY] and Agouti-related peptide [AgRP]). This raises questions as to their respective functions. The acute activation of AgRP neurons robustly promotes food intake, while central injections of AgRP, NPY, or GABA agonist results in the marked escalation of food consumption with temporal variance. Given the orexigenic capability of all three of these neuroactive substances in conjunction with their coexpression in AgRP neurons, we looked to unravel their relative temporal role in driving food intake. After the acute stimulation of AgRP neurons with DREADD technology, we found that either GABA or NPY is required for the rapid stimulation of feeding, and the neuropeptide AgRP, through action on MC4 receptors, is sufficient to induce feeding over a delayed yet prolonged period. These studies help to elucidate the neurochemical mechanisms of AgRP neurons in controlling temporally distinct phases of eating. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Delayed Administration of VEGF Rescues Spinal Motor Neurons from Death with a Short Effective Time Frame in Excitotoxic Experimental Models in Vivo

    Directory of Open Access Journals (Sweden)

    Luis B Tovar-y-Romo

    2012-02-01

    Full Text Available VEGF (vascular endothelial growth factor prevents neuronal death in different models of ALS (amyotrophic lateral sclerosis, but few studies have addressed the efficacy of VEGF to protect motor neurons after the onset of symptoms, a critical point when considering VEGF as a potential therapeutic target for ALS. We studied the capability of VEGF to protect motor neurons after an excitotoxic challenge in two models of spinal neurodegeneration in rats induced by AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid administered either chronically with osmotic minipumps or acutely by microdialysis. VEGF was administered through osmotic minipumps in the chronic model or injected intracerebroventricularly in the acute model, and its effects were assessed by immunohistochemical and histological analyses and motor performance tests. In the chronic model, VEGF stopped the progression of the paralysis and protected motor neurons when administered after AMPA before the onset of the motor symptoms, whereas no protection was observed when administered after the onset. VEGF was also protective in the acute model, but with a short time window, since the protection was effective when administered 1 h but not 2 h after AMPA. Our results indicate that while VEGF has an indubitable neuroprotective effect, its therapeutic potential for halting or delaying the progression of motor neuron loss in ALS would likely have a short effective time frame.

  3. Amnesia due to bilateral hippocampal glioblastoma

    International Nuclear Information System (INIS)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K.

    1989-01-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.)

  4. A mathematical model of forgetting and amnesia

    NARCIS (Netherlands)

    Murre, J.M.J.; Chessa, A.G.; Meeter, M.

    2013-01-01

    We describe a mathematical model of learning and memory and apply it to the dynamics of forgetting and amnesia. The model is based on the hypothesis that the neural systems involved in memory at different time scales share two fundamental properties: (1) representations in a store decline in

  5. Cholinergic dysfunction and amnesia in patients with Wernicke-Korsakoff syndrome: a transcranial magnetic stimulation study.

    Science.gov (United States)

    Nardone, Raffaele; Bergmann, Jürgen; De Blasi, Pierpaolo; Kronbichler, Martin; Kraus, Jörg; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Golaszewski, Stefan

    2010-03-01

    The specific neurochemical substrate underlying the amnesia in patients with Wernicke-Korsakoff syndrome (WKS) is still poorly defined. Memory impairment has been linked to dysfunction of neurons in the cholinergic system. A transcranial magnetic stimulation (TMS) protocol, the short latency afferent inhibition (SAI), may give direct information about the function of some cholinergic pathways in the human motor cortex. In the present study, we measured SAI in eight alcoholics with WKS and compared the data with those from a group of age-matched healthy individuals; furthermore, we correlated the individual SAI values of the WKS patients with memory and other cognitive functions. Mean SAI was significantly reduced in WKS patients when compared with the controls. SAI was increased after administration of a single dose of donezepil in a subgroup of four patients. The low score obtained in the Rey Complex Figure delayed recall test, the Digit Span subtest of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) and the Corsi's Block Span subtest of the WAIS-R documented a severe impairment in the anterograde memory and short-term memory. None of the correlations between SAI values and these neuropsychological tests reached significance. We provide physiological evidence of cholinergic involvement in WKS. However, this putative marker of central cholinergic activity did not significantly correlate with the memory deficit in our patients. These findings suggest that the cholinergic dysfunction does not account for the memory disorder and that damage to the cholinergic system is not sufficient to cause a persisting amnesic syndrome in WKS.

  6. Deletion of Suppressor of Cytokine Signaling 3 from Forebrain Neurons Delays Infertility and Onset of Hypothalamic Leptin Resistance in Response to a High Caloric Diet.

    Science.gov (United States)

    McEwen, Hayden J L; Inglis, Megan A; Quennell, Janette H; Grattan, David R; Anderson, Greg M

    2016-07-06

    The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the

  7. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway.

    Science.gov (United States)

    Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y

    2015-07-09

    We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.

  8. Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice.

    Science.gov (United States)

    Sironi, Francesca; Vallarola, Antonio; Violatto, Martina Bruna; Talamini, Laura; Freschi, Mattia; De Gioia, Roberta; Capelli, Chiara; Agostini, Azzurra; Moscatelli, Davide; Tortarolo, Massimo; Bigini, Paolo; Introna, Martino; Bendotti, Caterina

    2017-12-01

    Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1β) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression. Copyright © 2017. Published by Elsevier B.V.

  9. Anterograde Amnesia during Electroconvulsive Therapy: A Prospective Pilot-Study in Patients with Major Depressive Disorder.

    Directory of Open Access Journals (Sweden)

    Elvira Boere

    Full Text Available Electroconvulsive therapy (ECT is considered an effective treatment for major depression with melancholic features. However, neurocognitive side-effects such as anterograde amnesia still regularly occur. The present study aims to evaluate the severity and course of anterograde amnesia in severely depressed patients undergoing ECT. In a prospective naturalistic study, anterograde memory function was assessed among inpatients who underwent ECT (n = 11. Subjects met DSM-IV criteria for major depressive disorder. Recruitment took place between March 2010-March 2011 and March 2012-March 2013. Controls treated with antidepressants (n = 9 were matched for age, gender and depression severity. Primary outcome measure was immediate recall; secondary outcome measures were delayed recall, recognition, and visual association. Differences were tested using repeated measures ANOVA and paired t-tests. Correlations with hypothesized covariates were calculated. In patients with major depressive disorder, ECT had a significant effect on delayed memory function (p<0.01 with large effect sizes. Findings on immediate recall were less consistent. Four weeks after treatment discontinuation, these memory functions had recovered. Age was identified as a very important covariate. The main limitations of our study are its naturalistic design, possibly compromising internal validity, and its small sample size. However, if these findings can be reproduced in a more comprehensive study group, then the possible induction of anterograde amnesia is not a justifiable reason for clinicians to disregard ECT as a treatment option.

  10. Multiple coherence resonances and synchronization transitions by time delay in adaptive scale-free neuronal networks with spike-timing-dependent plasticity

    International Nuclear Information System (INIS)

    Xie, Huijuan; Gong, Yubing

    2017-01-01

    In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on multiple coherence resonances (MCR) and synchronization transitions (ST) induced by time delay in adaptive scale-free Hodgkin–Huxley neuronal networks. It is found that STDP has a big influence on MCR and ST induced by time delay and on the effect of network average degree on the MCR and ST. MCR is enhanced or suppressed as the adjusting rate A p of STDP decreases or increases, and there is optimal A p by which ST becomes strongest. As network average degree 〈k〉 increases, ST is enhanced and there is optimal 〈k〉 at which MCR becomes strongest. Moreover, for a larger A p value, ST is enhanced more rapidly with increasing 〈k〉 and the optimal 〈k〉 for MCR increases. These results show that STDP can either enhance or suppress MCR, and there is optimal STDP that can most strongly enhance ST induced by time delay in the adaptive neuronal networks. These findings could find potential implication for the information processing and transmission in neural systems.

  11. O(t-α)-synchronization and Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations.

    Science.gov (United States)

    Chen, Jiejie; Chen, Boshan; Zeng, Zhigang

    2018-04-01

    This paper investigates O(t -α )-synchronization and adaptive Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations. Firstly, based on the framework of Filippov solution and differential inclusion theory, using a Razumikhin-type method, some sufficient conditions ensuring the global O(t -α )-synchronization of considered networks are established via a linear-type discontinuous control. Next, a new fractional differential inequality is established and two new discontinuous adaptive controller is designed to achieve Mittag-Leffler synchronization between the drive system and the response systems using this inequality. Finally, two numerical simulations are given to show the effectiveness of the theoretical results. Our approach and theoretical results have a leading significance in the design of synchronized fractional-order memristive neural networks circuits involving discontinuous activations and time-varying delays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injury.

    Directory of Open Access Journals (Sweden)

    Hey-Kyeong Jeong

    Full Text Available BACKGROUND: Brain inflammation is accompanied by brain injury. However, it is controversial whether inflammatory responses are harmful or beneficial to neurons. Because many studies have been performed using cultured microglia and neurons, it has not been possible to assess the influence of multiple cell types and diverse factors that dynamically and continuously change in vivo. Furthermore, behavior of microglia and other inflammatory cells could have been overlooked since most studies have focused on neuronal death. Therefore, it is essential to analyze the precise roles of microglia and brain inflammation in the injured brain, and determine their contribution to neuronal damage in vivo from the onset of injury. METHODS AND FINDINGS: Acute neuronal damage was induced by stereotaxic injection of ATP into the substantia nigra pars compacta (SNpc and the cortex of the rat brain. Inflammatory responses and their effects on neuronal damage were investigated by immunohistochemistry, electron microscopy, quantitative RT-PCR, and stereological counting, etc. ATP acutely caused death of microglia as well as neurons in a similar area within 3 h. We defined as the core region the area where both TH(+ and Iba-1(+ cells acutely died, and as the penumbra the area surrounding the core where Iba-1(+ cells showed activated morphology. In the penumbra region, morphologically activated microglia arranged around the injury sites. Monocytes filled the damaged core after neurons and microglia died. Interestingly, neither activated microglia nor monocytes expressed iNOS, a major neurotoxic inflammatory mediator. Monocytes rather expressed CD68, a marker of phagocytic activity. Importantly, the total number of dopaminergic neurons in the SNpc at 3 h (∼80% of that in the contralateral side did not decrease further at 7 d. Similarly, in the cortex, ATP-induced neuron-damage area detected at 3 h did not increase for up to 7 d. CONCLUSIONS: Different cellular

  13. National Amnesia of Victims of Torture

    Directory of Open Access Journals (Sweden)

    Julia Estela Monárrez Fragoso

    2017-05-01

    Full Text Available To release from government’s amnesia the torture suffered by a significant proportion of women and men in Mexico, specifically, one segment of Ciudad Juarez’s population, requires an academic commitment. The time frame I analyzed are the years 2006-2015. I make a nexus between two Chicana/ Latina/Feminist theoreticians Nicole Guidotti- Hernández’s narratives of national amnesia; Lisa Marie Cacho’s people ineligible for personhood, and Achille Mbembes’s necropolitics; and Tzvetan Todorov’s governments’ four techniques to control memory. With this theoretical framework I try to comprehend why some women and men are converted into torturable subjects and their torturers remain unknown to the State.

  14. Transient Global Amnesia: A Case Report

    Directory of Open Access Journals (Sweden)

    Richard Alan Rison

    2012-08-01

    Full Text Available Introduction: Transient global amnesia is a syndrome of temporary and reversible disruption of short-term memory accompanied by repetitive questioning. Although the etiology is unknown, the prognosis usually benign, and no particular treatment is required, it is important for all involved clinicians to recognize the diagnosis and possess knowledge about the evaluation of these affected patients. Case Presentation: A middle-aged Caucasian woman presented for neurologic evaluation for acute forgetfulness. Neurologic examination disclosed repetitive questioning with preserved orientation and no focal motor, speech, sensory, coordination, or cranial nerve deficits. Neurologic investigations did not reveal any pathologic findings. Her memory improved and reverted to normal baseline over the course of a 24-hour hospital stay. Conclusion: Transient global amnesia is an interesting syndrome of reversible anterograde amnesia associated with repetitive questioning that occurs with an unclear etiology in middle-aged and elderly individuals. Due clinical diligence is required in the investigation of these patients. Treatment is generally not required, and the condition usually does not recur. Clinicians, including neurologists, internists, family practice physicians, and psychiatrists, need awareness of this condition.

  15. Episodic memory, semantic memory, and amnesia.

    Science.gov (United States)

    Squire, L R; Zola, S M

    1998-01-01

    Episodic memory and semantic memory are two types of declarative memory. There have been two principal views about how this distinction might be reflected in the organization of memory functions in the brain. One view, that episodic memory and semantic memory are both dependent on the integrity of medial temporal lobe and midline diencephalic structures, predicts that amnesic patients with medial temporal lobe/diencephalic damage should be proportionately impaired in both episodic and semantic memory. An alternative view is that the capacity for semantic memory is spared, or partially spared, in amnesia relative to episodic memory ability. This article reviews two kinds of relevant data: 1) case studies where amnesia has occurred early in childhood, before much of an individual's semantic knowledge has been acquired, and 2) experimental studies with amnesic patients of fact and event learning, remembering and knowing, and remote memory. The data provide no compelling support for the view that episodic and semantic memory are affected differently in medial temporal lobe/diencephalic amnesia. However, episodic and semantic memory may be dissociable in those amnesic patients who additionally have severe frontal lobe damage.

  16. Digital amnesia and the future tourist

    Directory of Open Access Journals (Sweden)

    Chris Greenwood

    2017-04-01

    Full Text Available Purpose – The purpose of this paper is to examine the phenomenon of digital amnesia and its influence on the future tourist. Design/methodology/approach – A trend paper based on environmental scanning and speculative future analysis. Findings – The phenomena of digital amnesia are established. The growth of digital platforms and the consumer’s reliance is exponential. The implications for the future tourist in terms of decision making, the influence of marketing messaging and potentially the recall and reimagining of authentic experience will be significant in the future. Practical implications – Subject to the signals of change, should consumer’s reliance on digital platforms for the storing of information and memories continue to grow this has implications on how tourism businesses engage with their customers, influence and inform their marketing and how destinations would be reimagined based on the recall of their visitors. Originality/value – The trend of digital amnesia is an established and well-documented phenomenon. The development of the trend to consider the implications for the future tourism industry based a growing dependence on digital platforms is the focus of this paper.

  17. Persistent Autobiographical Amnesia: A Case Report

    Directory of Open Access Journals (Sweden)

    C. Repetto

    2007-01-01

    Full Text Available We describe a 47-year-old man who referred to the Emergency Department for sudden global amnesia and left mild motor impairment in the setting of increased arterial blood pressure. The acute episode resolved within 24 hours. Despite general recovery and the apparent transitory nature of the event, a persistent selective impairment in recollecting events from some specific topics of his personal life became apparent. Complete neuropsychological tests one week after the acute onset and 2 months later demonstrated a clear retrograde memory deficit contrasting with the preservation of anterograde memory and learning abilities. One year later, the autobiographic memory deficit was unmodified, except for what had been re-learnt. Brain MRI was normal while H20 brain PET scans demonstrated hypometabolism in the right globus pallidus and putamen after 2 weeks from onset, which was no longer present one year later. The absence of a clear pathomechanism underlying focal amnesia lead us to consider this case as an example of functional retrograde amnesia.

  18. The effect of hypnotic drug type on anesthetic depth and amnesia: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Amiri HR

    2009-06-01

    .001 in two groups were significant, respectively. No delay in recovery was observed."n"nConclusion: Although the Modified Ramsey Sedation Score and clinical sedation indices were the same, but BIS in patients varied in a wide range. Hypnotic drug was a main determinant of BIS score and amnesia.

  19. Chronic Ca2+ influx through voltage-dependent Ca2+ channels enhance delayed rectifier K+ currents via activating Src family tyrosine kinase in rat hippocampal neurons.

    Science.gov (United States)

    Yang, Yoon-Sil; Jeon, Sang-Chan; Kim, Dong-Kwan; Eun, Su-Yong; Jung, Sung-Cherl

    2017-03-01

    Excessive influx and the subsequent rapid cytosolic elevation of Ca 2+ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic Ca 2+ level in normal as well as pathological conditions. Delayed rectifier K + channels (I DR channels) play a role to suppress membrane excitability by inducing K + outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under Ca 2+ -mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of I DR channels to hyperexcitable conditions induced by high Ca 2+ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high Ca 2+ -treatment significantly increased the amplitude of I DR without changes of gating kinetics. Nimodipine but not APV blocked Ca 2+ -induced I DR enhancement, confirming that the change of I DR might be targeted by Ca 2+ influx through voltage-dependent Ca 2+ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated I DR enhancement was not affected by either Ca 2+ -induced Ca 2+ release (CICR) or small conductance Ca 2+ -activated K + channels (SK channels). Furthermore, PP2 but not H89 completely abolished I DR enhancement under high Ca 2+ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for Ca 2+ -mediated I DR enhancement. Thus, SFKs may be sensitive to excessive Ca 2+ influx through VDCCs and enhance I DR to activate a neuroprotective mechanism against Ca 2+ -mediated hyperexcitability in neurons.

  20. Archetypes of memory and amnesia in South African soap opera ...

    African Journals Online (AJOL)

    Archetypes of memory and amnesia in South African soap opera [English] This essay investigates the relationship between memory, or rather amnesia, in the South African context and soap opera. South Africa has only recently celebrated ten years of democracy and the past still affects the lives of its inhabitants.

  1. The relationship between psychopathy and crime-related amnesia

    NARCIS (Netherlands)

    Cima-Knijff, M.J.; van Oorsouw, K.

    2013-01-01

    The objective of this study was to investigate whether levels of psychopathy predicted claims of crime-related amnesia. Different characteristics of psychopathy were based on the factor structure of the self-report questionnaire Psychopathic Personality Inventory (PPI). Crime-related amnesia claims

  2. Intact memory for irrelevant information impairs perception in amnesia

    NARCIS (Netherlands)

    Barense, M.D.; Groen, I.I.A.; Lee, A.C.H.; Yeung, L.K.; Brady, S.M.; Gregory, M.; Kapur, N.; Bussey, T.J.; Saksida, L.M.; Henson, R.N.A.

    2012-01-01

    Memory and perception have long been considered separate cognitive processes, and amnesia resulting from medial temporal lobe (MTL) damage is thought to reflect damage to a dedicated memory system. Recent work has questioned these views, suggesting that amnesia can result from impoverished

  3. Storage or Retrieval Deficit: The Yin and Yang of Amnesia

    Science.gov (United States)

    Hardt, Oliver; Wang, Szu-Han; Nader, Karim

    2009-01-01

    To this day, it remains unresolved whether experimental amnesia reflects failed memory storage or the inability to retrieve otherwise intact memory. Methodological as well as conceptual reasons prevented deciding between these two alternatives: The absence of recovery from amnesia is typically taken as supporting storage impairment…

  4. Disrupting circadian rhythms in rats induces retrograde amnesia

    NARCIS (Netherlands)

    Fekete, Mátyás; Ree, J.M. van; Niesink, Raymond J.M.; Wied, D. de

    1985-01-01

    Disrupting circadian organization in rats by phase-shifting the illumination cycle or by exposure to a reversed day/night cycle or to continuous light, resulted in retrograde amnesia for passive avoidance behavior. This retrograde amnesia induced by phase-shifting lasted at least 2 days, and

  5. Attribute amnesia is greatly reduced with novel stimuli

    Directory of Open Access Journals (Sweden)

    Weijia Chen

    2017-11-01

    Full Text Available Attribute amnesia is the counterintuitive phenomenon where observers are unable to report a salient aspect of a stimulus (e.g., its colour or its identity immediately after the stimulus was presented, despite both attending to and processing the stimulus. Almost all previous attribute amnesia studies used highly familiar stimuli. Our study investigated whether attribute amnesia would also occur for unfamiliar stimuli. We conducted four experiments using stimuli that were highly familiar (colours or repeated animal images or that were unfamiliar to the observers (unique animal images. Our results revealed that attribute amnesia was present for both sets of familiar stimuli, colour (p < .001 and repeated animals (p = .001; but was greatly attenuated, and possibly eliminated, when the stimuli were unique animals (p = .02. Our data shows that attribute amnesia is greatly reduced for novel stimuli.

  6. Dissociative amnesia: a case with management challenges

    Directory of Open Access Journals (Sweden)

    Priti Singh

    2015-07-01

    Full Text Available A case of dissociative amnesia with regressed behaviour was diagnosed applying the existing criteria for dissociative disorder in the tenth revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-10. Though there are number of cases of such condition, but when coupled with regressed behaviour it adds to new dimension in the management. An applied strategy in lines with both pharmacological and non pharmacological was used, and we found that it helped our patient to gradually improve her behaviour. This is one of the few cases reported and we hope more such cases should be reported in understanding the psychopathology.

  7. Preserved cumulative semantic interference despite amnesia

    Directory of Open Access Journals (Sweden)

    Gary Michael Oppenheim

    2015-05-01

    As predicted by Oppenheim et al’s (2010 implicit incremental learning account, WRP’s BCN RTs demonstrated strong (and significant repetition priming and semantic blocking effects (Figure 1. Similar to typical results from neurally intact undergraduates, WRP took longer to name pictures presented in semantically homogeneous blocks than in heterogeneous blocks, an effect that increased with each cycle. This result challenges accounts that ascribe cumulative semantic interference in this task to explicit memory mechanisms, instead suggesting that the effect has the sort of implicit learning bases that are typically spared in hippocampal amnesia.

  8. Anterograde and Retrograde Amnesia following Bitemporal Infarction

    Directory of Open Access Journals (Sweden)

    A. Schnider

    1994-01-01

    Full Text Available A patient suffered very severe anterograde and retrograde amnesia following infarction of both medial temporal lobes (hippocampus and adjacent cortex and the left inferior temporo-occipital area. The temporal stem and the amygdala were intact; these structures do not appear to be critical for new learning in humans. Extension of the left-sided infarct into the inferior temporo-occipital lobe, an area critically involved in visual processing, appears to be responsible for our patient's loss of remote memories.

  9. Edaravone, a Free Radical Scavenger, Delayed Symptomatic and Pathological Progression of Motor Neuron Disease in the Wobbler Mouse.

    Directory of Open Access Journals (Sweden)

    Ken Ikeda

    Full Text Available Edaravone, a free radical scavenger is used widely in Japanese patients with acute cerebral infarction. This antioxidant could have therapeutic potentials for other neurological diseases. Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease that affects the upper and the lower motor neuron, leading to death within 3-5 years after onset. A phase III clinical trial of edaravone suggested no significant effects in ALS patients. However, recent 2nd double-blind trial has demonstrated therapeutic benefits of edaravone in definite patients diagnosed by revised El Escorial diagnostic criteria of ALS. Two previous studies showed that edaravone attenuated motor symptoms or motor neuron degeneration in mutant superoxide dismutase 1-transgenic mice or rats, animal models of familial ALS. Herein we examined whether this radical scavenger can retard progression of motor dysfunction and neuropathological changes in wobbler mice, sporadic ALS-like model. After diagnosis of the disease onset at the postnatal age of 3-4 weeks, wobbler mice received edaravone (1 or 10 mg/kg, n = 10/group or vehicle (n = 10, daily for 4 weeks by intraperitoneal administration. Motor symptoms and neuropathological changes were compared among three groups. Higher dose (10 mg/kg of edaravone treatment significantly attenuated muscle weakness and contracture in the forelimbs, and suppressed denervation atrophy in the biceps muscle and degeneration in the cervical motor neurons compared to vehicle. Previous and the present studies indicated neuroprotective effects of edaravone in three rodent ALS-like models. This drug seems to be worth performing the clinical trial in ALS patients in the United States of American and Europe, in addition to Japan.

  10. Edaravone, a Free Radical Scavenger, Delayed Symptomatic and Pathological Progression of Motor Neuron Disease in the Wobbler Mouse.

    Science.gov (United States)

    Ikeda, Ken; Iwasaki, Yasuo

    2015-01-01

    Edaravone, a free radical scavenger is used widely in Japanese patients with acute cerebral infarction. This antioxidant could have therapeutic potentials for other neurological diseases. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the upper and the lower motor neuron, leading to death within 3-5 years after onset. A phase III clinical trial of edaravone suggested no significant effects in ALS patients. However, recent 2nd double-blind trial has demonstrated therapeutic benefits of edaravone in definite patients diagnosed by revised El Escorial diagnostic criteria of ALS. Two previous studies showed that edaravone attenuated motor symptoms or motor neuron degeneration in mutant superoxide dismutase 1-transgenic mice or rats, animal models of familial ALS. Herein we examined whether this radical scavenger can retard progression of motor dysfunction and neuropathological changes in wobbler mice, sporadic ALS-like model. After diagnosis of the disease onset at the postnatal age of 3-4 weeks, wobbler mice received edaravone (1 or 10 mg/kg, n = 10/group) or vehicle (n = 10), daily for 4 weeks by intraperitoneal administration. Motor symptoms and neuropathological changes were compared among three groups. Higher dose (10 mg/kg) of edaravone treatment significantly attenuated muscle weakness and contracture in the forelimbs, and suppressed denervation atrophy in the biceps muscle and degeneration in the cervical motor neurons compared to vehicle. Previous and the present studies indicated neuroprotective effects of edaravone in three rodent ALS-like models. This drug seems to be worth performing the clinical trial in ALS patients in the United States of American and Europe, in addition to Japan.

  11. Disinhibiting neurons in the dorsomedial hypothalamus delays the onset of exertional fatigue and exhaustion in rats exercising in a warm environment.

    Science.gov (United States)

    Zaretsky, Dmitry V; Kline, Hannah; Zaretskaia, Maria V; Brown, Mary Beth; Durant, Pamela J; Alves, Nathan J; Rusyniak, Daniel E

    2018-06-15

    Stimulants cause hyperthermia, in part, by increasing heat generation through exercise. Stimulants also delay the onset of fatigue and exhaustion allowing animals to exercise longer. If used in a warm environment, this combination (increased exercise and decreased fatigue) can cause heat stroke. The dorsomedial hypothalamus (DMH) is involved in mediating locomotion from stimulants. Furthermore, inhibiting the DMH decreases locomotion and prevents hyperthermia in rats given stimulants in a warm environment. Whether the DMH is involved in mediating exercise-induced fatigue and exhaustion is not known. We hypothesized that disinhibiting neurons in the dorsomedial hypothalamus (DMH) would delay the onset of fatigue and exhaustion in animals exercising in a warm environment. To test this hypothesis, we used automated video tracking software to measure fatigue and exhaustion. In rats, using wearable mini-pumps, we demonstrated that disinhibiting the DMH, via bicuculline perfusion (5 µM), increased the duration of exercise in a warm environment as compared to control animals (25 ± 3 min vs 15 ± 2 min). Bicuculline-perfused animals also had higher temperatures at exhaustion (41.4 ± 0.2 °C vs 40.0 ± 0.4 °C). Disinhibiting neurons in the DMH also increased the time to fatigue. Our data show that the same region of the hypothalamus that is involved in mediating locomotion to stimulants, is also involved in controlling exhaustion and fatigue. These findings have implications for understanding the cause and treatment of stimulant-induced-hyperthermia. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The loss of episodic memories in retrograde amnesia: single-case and group studies.

    OpenAIRE

    Kopelman, M D; Kapur, N

    2001-01-01

    Retrograde amnesia in neurological disorders is a perplexing and fascinating research topic. The severity of retrograde amnesia is not well correlated with that of anterograde amnesia, and there can be disproportionate impairments of either. Within retrograde amnesia, there are various dissociations which have been claimed-for example, between the more autobiographical (episodic) and more semantic components of memory. However, the associations of different types of retrograde amnesia are als...

  13. APOEε4 increases trauma induced early apoptosis via reducing delayed rectifier K(+) currents in neuronal/glial co-cultures model.

    Science.gov (United States)

    Chen, Ligang; Sun, Xiaochuan; Jiang, Yong; Kuai, Li

    2015-06-10

    Traumatic brain injury (TBI) is a commonly encountered emergency and severe neurosurgical injury. Previous studies have shown that the presence of the apolipoprotein E (APOE) ε4 allele has adverse outcomes across the spectrum of TBI severity. Our objective was to evaluate the effects of APOE alleles on trauma induced early apoptosis via modification of delayed rectifier K(+) current (Ik(DR)) in neuronal/glial co-cultures model. An ex vivo neuronal/glial co-cultures model carrying individual APOE alleles (ε2, ε3, ε4) of mechanical injury was developed. Flow cytometry and patch clamp recording were performed to analyze the correlations among APOE genotypes, early apoptosis and Ik(DR). We found that APOEε4 increased early apoptosis at 24h (p<0.05) compared to the ones transfected with APOEε3 and APOEε2. Noticeably, APOEε4 significantly reduced the amplitude of the Ik(DR) at 24h compared to the APOEε3 and APOEε2 (p<0.05) which exacerbate Ca(2+) influx. This indicates a possible effect of APOEε4 on early apoptosis via inhibiting Ik(DR) following injury which may adversely affect the outcome of TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Retrograde amnesia after electroconvulsive therapy: a temporary effect?

    NARCIS (Netherlands)

    Meeter, M.; Murre, J.M.J.; Janssen, S.M.J.; Birkenhager, T.; van den Broek, W.W.

    2011-01-01

    Objective: Although electroconvulsive therapy (ECT) is generally considered effective against depression, it remains controversial because of its association with retrograde memory loss. Here, we assessed memory after ECT in circumstances most likely to yield strong retrograde amnesia. Method: A

  15. Transient global amnesia: emergency department evaluation and management [digest].

    Science.gov (United States)

    Faust, Jeremy Samuel; Nemes, Andreea; Zaurova, Milana

    2016-08-22

    Transient global amnesia is a clinically distinct syndrome characterized by the acute inability to form new memories. It can last up to 24 hours. The diagnosis is dependent on eliminating other more serious etiologies including toxic ingestions, acute strokes, complex partial seizures, and central nervous system infections. Transient global amnesia confers no known long-term risks; however, when abnormal signs or symptoms are present, they take precedence and guide the formulation of a differential diagnosis and investigation. In witnessed transient global amnesia with classic features, a minimalist approach is reasonable, avoiding overtesting, inappropriate medication, and medical interventions in favor of observation, ensuring patient safety, and reassuring patients and their families. This review provides a detailed framework for distinguishing transient global amnesia from its dangerous mimics and managing its course in the emergency department. [Points & Pearls is a digest of Emergency Medicine Practice].

  16. Sleep modifications in acute transient global amnesia.

    Science.gov (United States)

    Della Marca, Giacomo; Mazza, Marianna; Losurdo, Anna; Testani, Elisa; Broccolini, Aldobrando; Frisullo, Giovanni; Marano, Giuseppe; Morosetti, Roberta; Pilato, Fabio; Profice, Paolo; Vollono, Catello; Di Lazzaro, Vincenzo

    2013-09-15

    Transient global amnesia (TGA) is a temporary memory loss characterized by an abrupt onset of antero-grade and retrograde amnesia, totally reversible. Since sleep plays a major role in memory consolidation, and in the storage of memory-related traces into the brain cortex, the aims of the present study were: (1) to evaluate changes in sleep macro-structure in TGA; (2) to assess modifications in sleep micro-structure in TGA, with particular reference to the arousal EEG and to cyclic alternating pattern (CAP); (3) to compare sleep parameters in TGA patients with a control group of patients with acute ischemic events ("minor stroke" or transient ischemic attack [TIA]) clinically and neuroradiologically "similar" to the TGA. TGA GROUP: 17 patients, (8 men and 9 women, 60.2 ± 12.5 years). Stroke or TIA (SoT) group: 17 patients hospitalized in the Stroke Unit for recent onset of minor stroke or TIA with hemispheric localization; healthy controls (HC) group: 17 healthy volunteers, matched for age and sex. Patients and controls underwent full-night polysomnography. In the multivariate analysis (conditions TGA, SoT, and HC) a significant effect of the condition was observed for sleep efficiency index, number of awakenings longer 1 min, REM latency, CAP time, and CAP rate. TGA and SoT differed only for CAP time and CAP rate, which were lower in the TGA group. Microstructural modification associated with tga could be consequent to: (1) hippocampal dysfunction and memory impairment; (2) impairment of arousal-related structures (in particular, cholinergic pathways); (3) emotional distress.

  17. Remote semantic memory is impoverished in hippocampal amnesia.

    Science.gov (United States)

    Klooster, Nathaniel B; Duff, Melissa C

    2015-12-01

    The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Transient global amnesia: neuropsychological dysfunction during attack and recovery in two "pure" cases.

    OpenAIRE

    Regard, M; Landis, T

    1984-01-01

    Two patients with transient global amnesia are reported. Comprehensive neuropsychological evaluation, during the amnesic episode, as well as follow-up examinations on memory were performed. The course of the amnesia was exemplified by two comparable memory tests in different modalities. Partial retrograde amnesia and complete anterograde amnesia were demonstrated during the transient episode. Objective recovery was found to be slower than subjectively experienced, but test performance was com...

  19. Transient global amnesia after taking sibutramine: a case report.

    Science.gov (United States)

    Fu, Pin-Kuei; Hsu, Hung-Yi; Wang, Pao-Yu

    2010-03-01

    Sibutramine (Meridia in the United States, Reductil in Europe) is approved for weight reduction and weight maintenance. Although amnesia and seizure is listed as a reported adverse event of sibutramine in the US product information, our literature search in the PubMed website database found no published reports of theses adverse events. We report a 39-year-old healthy woman who had an episode of sudden memory loss lasting for several hours after taking sibutramine for 4 days. Cranial computed tomography scan, magnetic resonance imaging, and magnetic resonance angiography of the head all showed normal results. Electroencephalogram showed spike and wave complexes with phase reversal in the left mesial temporal area. Transient global amnesia was suspected clinically and transient epileptic amnesia provoked by sibutramine was also proposed. Three months after this episode, the follow-up electroencephalogram was normal. This patient did not take any anticonvulsant, and there were no more episodes of memory impairment. This case serves to emphasize that sibutramine which was used for weight reduction might induce transient global amnesia or provoke transient epileptic amnesia. Physicians should be careful to monitor for this adverse effect when sibutramine is prescribed.

  20. Hippocampal and diencephalic pathology in developmental amnesia.

    Science.gov (United States)

    Dzieciol, Anna M; Bachevalier, Jocelyne; Saleem, Kadharbatcha S; Gadian, David G; Saunders, Richard; Chong, W K Kling; Banks, Tina; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2017-01-01

    Developmental amnesia (DA) is a selective episodic memory disorder associated with hypoxia-induced bilateral hippocampal atrophy of early onset. Despite the systemic impact of hypoxia-ischaemia, the resulting brain damage was previously reported to be largely limited to the hippocampus. However, the thalamus and the mammillary bodies are parts of the hippocampal-diencephalic network and are therefore also at risk of injury following hypoxic-ischaemic events. Here, we report a neuroimaging investigation of diencephalic damage in a group of 18 patients with DA (age range 11-35 years), and an equal number of controls. Importantly, we uncovered a marked degree of atrophy in the mammillary bodies in two thirds of our patients. In addition, as a group, patients had mildly reduced thalamic volumes. The size of the anterior-mid thalamic (AMT) segment was correlated with patients' visual memory performance. Thus, in addition to the hippocampus, the diencephalic structures also appear to play a role in the patients' memory deficit. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Sensitivity and specificity of the 3-item memory test in the assessment of post traumatic amnesia.

    Science.gov (United States)

    Andriessen, Teuntje M J C; de Jong, Ben; Jacobs, Bram; van der Werf, Sieberen P; Vos, Pieter E

    2009-04-01

    To investigate how the type of stimulus (pictures or words) and the method of reproduction (free recall or recognition after a short or a long delay) affect the sensitivity and specificity of a 3-item memory test in the assessment of post traumatic amnesia (PTA). Daily testing was performed in 64 consecutively admitted traumatic brain injured patients, 22 orthopedically injured patients and 26 healthy controls until criteria for resolution of PTA were reached. Subjects were randomly assigned to a test with visual or verbal stimuli. Short delay reproduction was tested after an interval of 3-5 minutes, long delay reproduction was tested after 24 hours. Sensitivity and specificity were calculated over the first 4 test days. The 3-word test showed higher sensitivity than the 3-picture test, while specificity of the two tests was equally high. Free recall was a more effortful task than recognition for both patients and controls. In patients, a longer delay between registration and recall resulted in a significant decrease in the number of items reproduced. Presence of PTA is best assessed with a memory test that incorporates the free recall of words after a long delay.

  2. Mere exposure effect can be elicited in transient global amnesia.

    Science.gov (United States)

    Marin-Garcia, Eugenia; Ruiz-Vargas, Jose M; Kapur, Narinder

    2013-01-01

    Transient global amnesia (TGA) is one of the most severe forms of anterograde amnesia seen in clinical practice, yet patients may show evidence of spared learning during the amnesic episode. The scope of spared learning in such a severe form of amnesia remains uncertain, and it is also unclear whether findings from single-case studies hold up in group studies of TGA patients. In this group study, we found evidence that extended the domain of spared learning in TGA to include the mere exposure effect, whereby enhanced preference is primed by prior exposure to stimuli. We demonstrate this effect during an acute episode in a group of TGA patients, where they showed enhanced preference for previously exposed faces, despite markedly impaired performance on standard anterograde memory tests.

  3. Functional MR imaging of psychogenic amnesia: a case report

    International Nuclear Information System (INIS)

    Yang, Jong Chul; Jeong, Gwang Woo; Lee, Moo Suk; Kang, Heoung Keun; Eun, Sung Jong; Lee, Yo Han; Kim, Yong Ku

    2005-01-01

    We present here a case in which functional MR imaging (fMRI) was done for a patient who developed retrograde psychogenic amnesia for a four year period of her life history after a severe stressful event. We performed the fMRI study for a face recognition task using stimulation with three kinds of face photographs: recognizable familiar faces, unrecognizable friends' faces due to the psychogenic amnesia, and unfamiliar control faces. Different activation patterns between the recognizable faces and unrecognizable faces were found in the limbic area, and especially in the amygdala and hippocampus

  4. Functional MR imaging of psychogenic amnesia: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jong Chul; Jeong, Gwang Woo; Lee, Moo Suk; Kang, Heoung Keun; Eun, Sung Jong; Lee, Yo Han [Chonnam National Univeristy Hospital, Chonnam National University Medical School, Kwangju (Korea, Republic of); Kim, Yong Ku [Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2005-09-15

    We present here a case in which functional MR imaging (fMRI) was done for a patient who developed retrograde psychogenic amnesia for a four year period of her life history after a severe stressful event. We performed the fMRI study for a face recognition task using stimulation with three kinds of face photographs: recognizable familiar faces, unrecognizable friends' faces due to the psychogenic amnesia, and unfamiliar control faces. Different activation patterns between the recognizable faces and unrecognizable faces were found in the limbic area, and especially in the amygdala and hippocampus.

  5. Propofol sedation in children: sleep trumps amnesia.

    Science.gov (United States)

    Veselis, Robert; Kelhoffer, Eric; Mehta, Meghana; Root, James C; Robinson, Fay; Mason, Keira P

    Detailed assessments of the effects of propofol on memory in children are lacking. We assessed the feasibility of measuring memory during propofol infusion, as commonly performed in sedation for MRI scanning. In addition, we determined the onset of memory loss in relation to the onset of sedation measured by verbal responsiveness. Children scheduled for sedation for MRI received a 10-min infusion of propofol (3 mg/kg) as they viewed and named 100 simple line drawings, one shown every five seconds, until they were no longer responsive (encoding). A control group receiving no sedation for MRI underwent similar tasks. Sedation was measured as any verbal response, regardless of correctness. After recovery from sedation, recognition memory was tested, with correct yes/no recognitions matched to sedation responses during encoding (subsequent memory paradigm). Of the 48 children who received propofol, 30 could complete all study tasks (6.2 ± 1.6 years, 16 males). Individual responses could be modeled in all 30 children. On average, there was a 50% probability of no verbal response 3.1 min after the start of infusion, with 50% memory loss at 2.7 min. Children receiving propofol recognized 65 ± 16% of the pictures seen, whereas the control group recognized 93 ± 5%. Measurement of memory and sedation is possible in verbal children receiving propofol by infusion in a clinical setting. Despite propofol being an amnestic agent, there was little or no amnestic effect of propofol while the child was verbally responsive. It is important for sedation providers to realize that propofol sedation does not always produce amnesia while the child is responsive. CLINICALTRIALS. NCT02278003. Copyright © 2016. Published by Elsevier B.V.

  6. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia.

    Science.gov (United States)

    Cameron, Stella H; Alwakeel, Amr J; Goddard, Liping; Hobbs, Catherine E; Gowing, Emma K; Barnett, Elizabeth R; Kohe, Sarah E; Sizemore, Rachel J; Oorschot, Dorothy E

    2015-09-01

    Perinatal hypoxia-ischemia is a major cause of striatal injury and may lead to cerebral palsy. This study investigated whether delayed administration of bone marrow-derived mesenchymal stem cells (MSCs), at one week after neonatal rat hypoxia-ischemia, was neurorestorative of striatal medium-spiny projection neurons and improved motor function. The effect of a subcutaneous injection of a high-dose, or a low-dose, of MSCs was investigated in stereological studies. Postnatal day (PN) 7 pups were subjected to hypoxia-ischemia. At PN14, pups received treatment with either MSCs or diluent. A subset of high-dose pups, and their diluent control pups, were also injected intraperitoneally with bromodeoxyuridine (BrdU), every 24h, on PN15, PN16 and PN17. This permitted tracking of the migration and survival of neuroblasts originating from the subventricular zone into the adjacent injured striatum. Pups were euthanized on PN21 and the absolute number of striatal medium-spiny projection neurons was measured after immunostaining for DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32), double immunostaining for BrdU and DARPP-32, and after cresyl violet staining alone. The absolute number of striatal immunostained calretinin interneurons was also measured. There was a statistically significant increase in the absolute number of DARPP-32-positive, BrdU/DARPP-32-positive, and cresyl violet-stained striatal medium-spiny projection neurons, and fewer striatal calretinin interneurons, in the high-dose mesenchymal stem cell (MSC) group compared to their diluent counterparts. A high-dose of MSCs restored the absolute number of these neurons to normal uninjured levels, when compared with previous stereological data on the absolute number of cresyl violet-stained striatal medium-spiny projection neurons in the normal uninjured brain. For the low-dose experiment, in which cresyl violet-stained striatal medium-spiny neurons alone were measured, there was a lower statistically

  7. Retrograde amnesia after electroconvulsive therapy: a temporary effect?

    Science.gov (United States)

    Meeter, Martijn; Murre, Jaap M J; Janssen, Steve M J; Birkenhager, Tom; van den Broek, W W

    2011-07-01

    Although electroconvulsive therapy (ECT) is generally considered effective against depression, it remains controversial because of its association with retrograde memory loss. Here, we assessed memory after ECT in circumstances most likely to yield strong retrograde amnesia. A cohort of patients undergoing ECT for major depression was tested before and after ECT, and again at 3-months follow-up. Included were 21 patients scheduled to undergo bilateral ECT for severe major depression and 135 controls matched for gender, age, education, and media consumption. Two memory tests were used: a verbal learning test to assess anterograde memory function, and a remote memory test that assessed memory for news during the course of one year. Before ECT the patients' scores were lower than those of controls. They were lower again after treatment, suggesting retrograde amnesia. At follow-up, however, memory for events before treatment had returned to the pre-ECT level. Memory for events in the months after treatment was as good as that of controls. The sample size in this study was not large. Moreover, memory impairment did not correlate with level of depression, which may be due to restriction of range. Our results are consistent with the possibility that ECT as currently practiced does not cause significant lasting retrograde amnesia, but that amnesia is mostly temporary and related to the period of impairment immediately following ECT. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Amnesia due to bilateral hippocampal glioblastoma. MRI finding

    Energy Technology Data Exchange (ETDEWEB)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K. (Miyazaki Medical Coll., Kiyotake (Japan). Dept. of Neurosurgery)

    1989-11-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.).

  9. Retrograde amnesia for semantic information in Alzheimer's disease

    NARCIS (Netherlands)

    Meeter, M.; Kollen, A.; Scheltens, P.

    2005-01-01

    Patients with mild to moderate Alzheimer's disease and normal controls were tested on a retrograde amnesia test with semantic content (Neologism and Vocabulary Test, or NVT), consisting of neologisms to be defined. Patients showed a decrement as compared to normal controls, pointing to retrograde

  10. Retrograde amnesia for semantic information in Alzheimer’s disease

    NARCIS (Netherlands)

    Meeter, M.; Knollen, A.; Scheltens, P.

    2005-01-01

    Patients with mild to moderate Alzheimer's disease and normal controls were tested on a retrograde amnesia test with semantic content (Neologism and Vocabulary Test, or NVT), consisting of neologisms to be defined. Patients showed a decrement as compared to normal controls, pointing to retrograde

  11. Delayed onset of changes in soma action potential genesis in nociceptive A-beta DRG neurons in vivo in a rat model of osteoarthritis

    Directory of Open Access Journals (Sweden)

    Henry James L

    2009-09-01

    Full Text Available Abstract Background Clinical data on osteoarthritis (OA suggest widespread changes in sensory function that vary during the progression of OA. In previous studies on a surgically-induced animal model of OA we have observed that changes in structure and gene expression follow a variable trajectory over the initial days and weeks. To investigate mechanisms underlying changes in sensory function in this model, the present electrophysiological study compared properties of primary sensory nociceptive neurons at one and two months after model induction with properties in naïve control animals. Pilot data indicated no difference in C- or Aδ-fiber associated neurons and therefore the focus is on Aβ-fiber nociceptive neurons. Results At one month after unilateral derangement of the knee by cutting the anterior cruciate ligament and removing the medial meniscus, the only changes observed in Aβ-fiber dorsal root ganglion (DRG neurons were in nociceptor-like unresponsive neurons bearing a hump on the repolarization phase; these changes consisted of longer half width, reflecting slowed dynamics of AP genesis, a depolarized Vm and an increased AP amplitude. At two months, changes observed were in Aβ-fiber high threshold mechanoreceptors, which exhibited shorter AP duration at base and half width, shorter rise time and fall time, and faster maximum rising rate/maximum falling rate, reflecting accelerated dynamics of AP genesis. Conclusion These data indicate that Aβ nociceptive neurons undergo significant changes that vary in time and occur later than changes in structure and in nociceptive scores in this surgically induced OA model. Thus, if changes in Aβ-fiber nociceptive neurons in this model reflect a role in OA pain, they may relate to mechanisms underlying pain associated with advanced OA.

  12. Moderately delayed post-insult treatment with normobaric hyperoxia reduces excitotoxin-induced neuronal degeneration but increases ischemia-induced brain damage

    Directory of Open Access Journals (Sweden)

    Haelewyn Benoit

    2011-04-01

    Full Text Available Abstract Background The use and benefits of normobaric oxygen (NBO in patients suffering acute ischemic stroke is still controversial. Results Here we show for the first time to the best of our knowledge that NBO reduces both NMDA-induced calcium influxes in vitro and NMDA-induced neuronal degeneration in vivo, but increases oxygen and glucose deprivation-induced cell injury in vitro and ischemia-induced brain damage produced by middle cerebral artery occlusion in vivo. Conclusions Taken together, these results indicate that NBO reduces excitotoxin-induced calcium influx and subsequent neuronal degeneration but favors ischemia-induced brain damage and neuronal death. These findings highlight the complexity of the mechanisms involved by the use of NBO in patients suffering acute ischemic stroke.

  13. Visual memory-deficit amnesia: A distinct amnesic presentation and etiology

    OpenAIRE

    Rubin, David C.; Greenberg, Daniel L.

    1998-01-01

    We describe a form of amnesia, which we have called visual memory-deficit amnesia, that is caused by damage to areas of the visual system that store visual information. Because it is caused by a deficit in access to stored visual material and not by an impaired ability to encode or retrieve new material, it has the otherwise infrequent properties of a more severe retrograde than anterograde amnesia with no temporal gradient in the retrograde amnesia. Of the 11 cases of long-term visual memory...

  14. Apparent Amnesia : interidentity memory functioning in dissociative identity disdorder

    OpenAIRE

    Huntjens, R.J.C.

    2003-01-01

    Dissociative identity disorder (DID) is characterized by the presence of two or more distinct identities or personality states that recurrently take control of the individual s behavior. Between 95 and 100 % of DID patients report experiences of blank spells for periods of time when other identities are in control of their behavior. In this thesis, the fundamental question of whether objective evidence for the reported interidentity amnesia in DID can be found under rigorous experimental cond...

  15. Transient global amnesia and neurological events: the Framingham Heart Study

    OpenAIRE

    Jose Rafael Romero; Jose Rafael Romero; Melissa eMercado; Alexa S Beiser; Alexa S Beiser; Alexa S Beiser; Aleksandra ePikula; Aleksandra ePikula; Sudha eSeshadri; Sudha eSeshadri; Margaret eKelly-Hayes; Philip A Wolf; Philip A Wolf; Carlos S Kase; Carlos S Kase

    2013-01-01

    Background/ objective: Transient global amnesia (TGA) is a temporary amnestic syndrome characterized by lack of other focal neurological deficits. Cerebrovascular disease, migraine and seizures have been suggested as underlying mechanisms. TGA may be a risk factor for cerebrovascular or other neurological events. We studied the relation of TGA, vascular risk factors, brain magnetic resonance imaging (MRI) indices of subclinical ischemia and neurological events in a community-based sample. Des...

  16. Default network connectivity in medial temporal lobe amnesia.

    Science.gov (United States)

    Hayes, Scott M; Salat, David H; Verfaellie, Mieke

    2012-10-17

    There is substantial overlap between the brain regions supporting episodic memory and the default network. However, in humans, the impact of bilateral medial temporal lobe (MTL) damage on a large-scale neural network such as the default mode network is unknown. To examine this issue, resting fMRI was performed with amnesic patients and control participants. Seed-based functional connectivity analyses revealed robust default network connectivity in amnesia in cortical default network regions such as medial prefrontal cortex, posterior medial cortex, and lateral parietal cortex, as well as evidence of connectivity to residual MTL tissue. Relative to control participants, decreased posterior cingulate cortex connectivity to MTL and increased connectivity to cortical default network regions including lateral parietal and medial prefrontal cortex were observed in amnesic patients. In contrast, somatomotor network connectivity was intact in amnesic patients, indicating that bilateral MTL lesions may selectively impact the default network. Changes in default network connectivity in amnesia were largely restricted to the MTL subsystem, providing preliminary support from MTL amnesic patients that the default network can be fractionated into functionally and structurally distinct components. To our knowledge, this is the first examination of the default network in amnesia.

  17. Amnesia, rehearsal, and temporal distinctiveness models of recall.

    Science.gov (United States)

    Brown, Gordon D A; Della Sala, Sergio; Foster, Jonathan K; Vousden, Janet I

    2007-04-01

    Classical amnesia involves selective memory impairment for temporally distant items in free recall (impaired primacy) together with relative preservation of memory for recency items. This abnormal serial position curve is traditionally taken as evidence for a distinction between different memory processes, with amnesia being associated with selectively impaired long-term memory. However recent accounts of normal serial position curves have emphasized the importance of rehearsal processes in giving rise to primacy effects and have suggested that a single temporal distinctiveness mechanism can account for both primacy and recency effects when rehearsal is considered. Here we explore the pattern of strategic rehearsal in a patient with very severe amnesia. When the patient's rehearsal pattern is taken into account, a temporal distinctiveness model can account for the serial position curve in both amnesic and control free recall. The results are taken as consistent with temporal distinctiveness models of free recall, and they motivate an emphasis on rehearsal patterns in understanding amnesic deficits in free recall.

  18. FLAIR images of mild head trauma with transient amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Wakamoto, Hirooki; Miyazaki, Hiromichi; Inaba, Makoto; Ishiyama, Naomi [Hiratsuka City Hospital, Kanagawa (Japan); Kawase, Takeshi

    1998-11-01

    A newly advanced MRI pulse sequence, the FLAIR (fluid-attenuated inversion recovery) imaging, in which a long TE spin echo sequence is used with suppression of the CSF with an inversion pulse, displays the CSF space as a no signal intensity area. We examined 45 cases of mild head trauma with posttraumatic amnesia by FLAIR images and could detect some findings which could not be detected by CT scan and conventional MR images. These findings could be detected in many patients with long posttraumatic amnesia (over 2 hours), but they could not be detected in patients with short posttraumatic amnesia (within 30 mins). These findings existed surrounding lateral ventricles and we classified them into 3 types: type 1 is anterior horn of lateral ventricle, type 2 is the base of frontal lobe, and type 3 is cerebral deep white matter. Some of them were examined again by FLAIR images a month later, and these findings had disappeared. We suspect that these lesions were brain edema or mild contusion without hemorrhage. (author)

  19. FLAIR images of mild head trauma with transient amnesia

    International Nuclear Information System (INIS)

    Wakamoto, Hirooki; Miyazaki, Hiromichi; Inaba, Makoto; Ishiyama, Naomi; Kawase, Takeshi

    1998-01-01

    A newly advanced MRI pulse sequence, the FLAIR (fluid-attenuated inversion recovery) imaging, in which a long TE spin echo sequence is used with suppression of the CSF with an inversion pulse, displays the CSF space as a no signal intensity area. We examined 45 cases of mild head trauma with posttraumatic amnesia by FLAIR images and could detect some findings which could not be detected by CT scan and conventional MR images. These findings could be detected in many patients with long posttraumatic amnesia (over 2 hours), but they could not be detected in patients with short posttraumatic amnesia (within 30 mins). These findings existed surrounding lateral ventricles and we classified them into 3 types: type 1 is anterior horn of lateral ventricle, type 2 is the base of frontal lobe, and type 3 is cerebral deep white matter. Some of them were examined again by FLAIR images a month later, and these findings had disappeared. We suspect that these lesions were brain edema or mild contusion without hemorrhage. (author)

  20. Neural Correlate of Anterograde Amnesia in Wernicke-Korsakoff Syndrome.

    Science.gov (United States)

    Nahum, Louis; Pignat, Jean-Michel; Bouzerda-Wahlen, Aurélie; Gabriel, Damien; Liverani, Maria Chiara; Lazeyras, François; Ptak, Radek; Richiardi, Jonas; Haller, Sven; Thorens, Gabriel; Zullino, Daniele F; Guggisberg, Adrian G; Schnider, Armin

    2015-09-01

    The neural correlate of anterograde amnesia in Wernicke-Korsakoff syndrome (WKS) is still debated. While the capacity to learn new information has been associated with integrity of the medial temporal lobe (MTL), previous studies indicated that the WKS is associated with diencephalic lesions, mainly in the mammillary bodies and anterior or dorsomedial thalamic nuclei. The present study tested the hypothesis that amnesia in WKS is associated with a disrupted neural circuit between diencephalic and hippocampal structures. High-density evoked potentials were recorded in four severely amnesic patients with chronic WKS, in five patients with chronic alcoholism without WKS, and in ten age matched controls. Participants performed a continuous recognition task of pictures previously shown to induce a left medial temporal lobe dependent positive potential between 250 and 350 ms. In addition, the integrity of the fornix was assessed using diffusion tensor imaging (DTI). WKS, but not alcoholic patients without WKS, showed absence of the early, left MTL dependent positive potential following immediate picture repetitions. DTI indicated disruption of the fornix, which connects diencephalic and hippocampal structures. The findings support an interpretation of anterograde amnesia in WKS as a consequence of a disconnection between diencephalic and MTL structures with deficient contribution of the MTL to rapid consolidation.

  1. Cognitive Improving Effects by Highbush Blueberry (Vaccinium crymbosum L.) Vinegar on Scopolamine-Induced Amnesia Mice Model.

    Science.gov (United States)

    Hong, Seong Min; Soe, Kyong Hee; Lee, Taek Hwan; Kim, In Sook; Lee, Young Min; Lim, Beong Ou

    2018-01-10

    The present study aimed to evaluate the preventive effects of highbush blueberry (Vaccinium corymbosum L.) vinegar (BV) on cognitive functions in a scopolamine (Sco)-induced amnesia model in mice. In this study, Sco (1 mg/kg, intraperitoneal injection) was used to induce amnesia. ICR mice were orally administered donepezil (5 mg/kg), blueberry extract (120 mg/kg), and BV (120 mg/kg) for 7 days. After inducing cognitive impairment by Sco, a behavioral assessment using behavior tests (i.e., Y-maze and passive avoidance tests) was performed. The BV group showed significantly restored cognitive function in the behavioral tests. BV facilitated cholinergic activity by inhibiting acetylcholinesterase activity, and enhanced antioxidant enzyme activity. Furthermore, BV was found to be rehabilitated in the cornu ammonis 1 neurons of hippocampus. In our study, we demonstrated that the memory protection conferred by BV was linked to activation of brain-derived neurotrophic factor (BDNF)/cAMP response element binding protein (CREB)/serine-threonine kinase (AKT) signaling.

  2. A critical review of the literature on early rehabilitation of patients with post-traumatic amnesia in acute care

    DEFF Research Database (Denmark)

    Langhorn, Leanne; Sorensen, Jens C; Pedersen, Preben U

    2010-01-01

    A critical review of the literature on early rehabilitation of patients with post-traumatic amnesia in acute care......A critical review of the literature on early rehabilitation of patients with post-traumatic amnesia in acute care...

  3. Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia.

    Science.gov (United States)

    Batool, Zehra; Sadir, Sadia; Liaquat, Laraib; Tabassum, Saiqa; Madiha, Syeda; Rafiq, Sahar; Tariq, Sumayya; Batool, Tuba Sharf; Saleem, Sadia; Naqvi, Fizza; Perveen, Tahira; Haider, Saida

    2016-01-01

    Dietary nutrients may play a vital role in protecting the brain from age-related memory dysfunction and neurodegenerative diseases. Tree nuts including almonds have shown potential to combat age-associated brain dysfunction. These nuts are an important source of essential nutrients, such as tocopherol, folate, mono- and poly-unsaturated fatty acids, and polyphenols. These components have shown promise as possible dietary supplements to prevent or delay the onset of age-associated cognitive dysfunction. This study investigated possible protective potential of almond against scopolamine induced amnesia in rats. The present study also investigated a role of acetylcholine in almond induced memory enhancement. Rats in test group were orally administrated with almond suspension (400 mg/kg/day) for four weeks. Both control and almond-treated rats were then divided into saline and scopolamine injected groups. Rats in the scopolamine group were injected with scopolamine (0.5 mg/kg) five minutes before the start of each memory test. Memory was assessed by elevated plus maze (EPM), Morris water maze (MWM) and novel object recognition (NOR) task. Cholinergic function was determined in terms of hippocampal and frontal cortical acetylcholine content and acetylcholinesterase activity. Results of the present study suggest that almond administration for 28 days significantly improved memory retention. This memory enhancing effect of almond was also observed in scopolamine induced amnesia model. Present study also suggests a role of acetylcholine in the attenuation of scopolamine induced amnesia by almond. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The effects of ACTH- and vasopressin-analogues on CO2-induced retrograde amnesia in rats

    NARCIS (Netherlands)

    Rigter, H.; Riezen, H. van; Wied, D. de

    Amnesia for a one-trial step-through passive avoidance response was induced in rats by application of CO2 until respiratory arrest occurred. The ACTH-analogue ACTH4–10 alleviated the amnesia when administered 1 hr prior to the retrieval test but not when given 1 hr prior to the acquisition trial.

  5. Child Sexual Abuse Survivors with Dissociative Amnesia: What's the Difference?

    Science.gov (United States)

    Wolf, Molly R.; Nochajski, Thomas H.

    2013-01-01

    Although the issue of dissociative amnesia in adult survivors of child sexual abuse has been contentious, many research studies have shown that there is a subset of child sexual abuse survivors who have forgotten their abuse and later remembered it. Child sexual abuse survivors with dissociative amnesia histories have different formative and…

  6. Reexposure to the Amnestic Agent Alleviates Cycloheximide-Induced Retrograde Amnesia for Reactivated and Extinction Memories

    Science.gov (United States)

    Briggs, James F.; Olson, Brian P.

    2013-01-01

    We investigated whether reexposure to an amnestic agent would reverse amnesia for extinction of learned fear similar to that of a reactivated memory. When cycloheximide (CHX) was administered immediately after a brief cue-induced memory reactivation (15 sec) and an extended extinction session (12 min) rats showed retrograde amnesia for both…

  7. Anterograde amnesia during electroconvulsive therapy: A prospective pilot-study in patients with major depressive disorder

    NARCIS (Netherlands)

    I.A. Boere (Ingrid); A.M. Kamperman (Astrid); Van't Hoog, A.E. (Arianne E.); W.W. van den Broek (Walter); T.K. Birkenhäger (Tom)

    2016-01-01

    textabstractElectroconvulsive therapy (ECT) is considered an effective treatment for major depression with melancholic features. However, neurocognitive side-effects such as anterograde amnesia still regularly occur. The present study aims to evaluate the severity and course of anterograde amnesia

  8. Characterization of the of the Pathological and Biochemical Markers That Correlate to the Clinical Features of Autism. Subproject 2. Contribution of Significant Delay of Neuronal Development and Metabolic Shift of Neurons to Clinical Phenotype of Autism

    Science.gov (United States)

    2013-04-01

    4:e4415 11. Bruce S, Nyberg F, Melén E et al (2009) The protective effect of farm animal exposure on childhood allergy is modified by NPSR1...Rabbit monoclonal (R-m) or polyclonal (R-p), Goat polyclonal (G-p). Immunocytochemistry (ICH), Confocal microscopy (CM), Western blots (WB). doi:10.1371...immunostained with a goat anti-GFAP polyclonal antibody. Projections of the raphe nuclei serotonergic neurons were identified by using mouse mAb ST51-2

  9. TRANSIENT GLOBAL AMNESIA IN A PATIENT WITH HYPERTENSIVE CRISIS

    Directory of Open Access Journals (Sweden)

    E. V. Yakovleva

    2018-01-01

    Full Text Available Transient global amnesia was established by Fisher et Adams is 1964 for phenomena characterized by the sudden onset of all types memory loss, retrograde amnesia and the inability to form new  memories and to recall the recent past. The incidence of TGA is 5  to10 people per 100,000 worldwide but the real incidence is unknown because the episodes of memory loss are temporary and many patients don’t go to see a doctor at the time of attack. The triggers of TAG are physical activity, sexual  intercourse, pain, Valsalva maneuver etc. In routine clinical practice  TAG is more important for neurologists. But this problem is also  interesting for therapeutists because TAG could be developed in  patients with arterial hypertension, foramen ovale, mitral valve  prolapse and heart blocks. We present a 57-year-old female with  TAG. She was admitted to the hospital due to hypertensive crisis and an impaired ability to retain new information that started after  physical activity. The diagnosis of TAG was based on information  from attacks witnesses, the sudden onset of anterograde amnesia,  normal cognition of the patient and short duration of attack. Also,  the patient had no features of stroke, acute hypertensive encephalopathy, epilepsy and alcohol blackout. TAG is more typical for females over 50 years, all symptoms start after physical activity and resolve within 24 hours. It is characterized by reversibility of all symptoms and good prognosis of 2 years of follow-up.

  10. Losing memories overnight: a unique form of human amnesia.

    Science.gov (United States)

    Smith, Christine N; Frascino, Jennifer C; Kripke, Donald L; McHugh, Paul R; Treisman, Glenn J; Squire, Larry R

    2010-08-01

    Since an automobile accident in 2005, patient FL has reported difficulty retaining information from one day to the next. During the course of any given day, she describes her memory as normal. However, memory for each day disappears during a night of sleep. She reports good memory for events that occurred before the accident. Although this pattern of memory impairment is, to our knowledge, unique to the medical literature, it was depicted in the fictional film "50 First Dates". On formal testing, FL performed moderately well when trying to remember material that she had learned during the same day, but she exhibited no memory at all for material that she knew had been presented on a previous day. For some tests, unbeknownst to FL, material learned on the previous day was intermixed with material learned on the same day as the test. On these occasions, FL's memory was good. Thus, she was able to remember events from earlier days when memory was tested covertly. FL performed differently in a number of ways from individuals who were instructed to consciously feign her pattern of memory impairment. It was also the impression of those who worked with FL that she believed she had the memory impairment that she described and that she was not intentionally feigning amnesia. On the basis of her neuropsychological findings, together with a normal neurological exam, normal MRI findings, and psychiatric evaluation, we suggest that FL exhibits a unique form of functional amnesia and that its characterization may have been influenced by knowledge of how amnesia was depicted in a popular film. She subsequently improved (and began retaining day-to-day memory) at Johns Hopkins University where she was in a supportive in-patient environment and was shown how to take control of her condition by interrupting her sleep at 4-h intervals. Published by Elsevier Ltd.

  11. A review on citation amnesia in depression and inflammation research.

    Science.gov (United States)

    Maes, Michael

    2015-01-01

    Once original scientific results are published the author has the "intellectual property" and may claim ownership. Discovery credit is one of the most important "rewards" for scientists and thus incorrect credits undermine the reward system of science. Scientists who publish should therefore give proper credit and acknowledge the primary sources. Failure to do so is regarded as "citation negligence", "the disregard syndrome", "citation amnesia", "plagiarism by omission", "bibliographic plagiarism" or "citation plagiarism", and may range from an unconscious or conscious "failure to credit a prior discoverer so as to give an improper impression of priority" to "the appropriation of another person's ideas or results without given proper credit". False discovery credit is considered to be "a menace to honest science", "a serious transgression" or "intellectual theft, be it intentional or not". This paper describes some examples of citation amnesia showing that scientists often fail to credit prior sources and give false discovery credit to other scientists. One example is the association between major depression and activated immuno-inflammatory pathways, a discovery by European groups and published in many papers since 1990. Now, 25 years later, it is commonplace that these theories are credited to secondary American sources whose work in "the last decade", did or did not examine these pathways in major depression. This gives an improper impression of priority of American-based scientists. Here it is proposed that this citation amnesia and plagiarism reinforced the wrong science and had negative effects on the development of immune-inflammatory biomarkers and new immune-related treatments for depression. It is concluded that journal editors should improve their citation standards to guarantee correct assignment of discovery credit for example by demanding a signed pledge from the authors that correct citations to the primary sources were made.

  12. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages.

  13. Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice.

    Science.gov (United States)

    Ghumatkar, Priya J; Patil, Sachin P; Jain, Pankaj D; Tambe, Rufi M; Sathaye, Sadhana

    2015-08-01

    Phloretin (PHL), a dihydrochalcone flavonoid usually present in the roots and leaves of apple tree. In vitro study on GT1-7 immortalized hypothalamic neurons exposed to amyloid beta (25-35), demonstrated that PHL significantly influenced membrane fluidity and potential. PHL also significantly decreased excitotoxicity by restoring the calcium homeostasis in the same. Thus, PHL proves to be a promising therapeutic moiety which should be further screened in the treatment of Alzheimer's disease. The objective of the present study was to evaluate the nootropic, neuroprotective and neurotrophic roles of PHL in the subacute scopolamine induced amnesia in mice. In this study, mice were pretreated with PHL 2.5mg/kg, 5mg/kg, 10mg/kg and Donepezil (DON) 1mg/kg intraperitoneally (i.p) for 14days. The last 7days of treatment regimen included daily injection of SCP 1.5mg/kg to induce cognitive deficits. Mice were subjected to behavioral analysis. Biochemical estimation of the brain homogenates for acetylcholinesterase and oxidative stress biomarkers were conducted. Furthermore, immunohistochemical analysis for the brain derived neurotrophic factor (BDNF) was carried out particularly in the hippocampus. PHL was found to significantly improve the performance of mice in Morris water maze test (Pnootropic, neuroprotective and neurotrophic activities in SCP induced memory impaired mice and hence, is a promising therapeutic moiety in the treatment of AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    International Nuclear Information System (INIS)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W.

    2001-01-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages

  15. Transient epileptic amnesia: clinical report of a cohort of patients.

    Science.gov (United States)

    Lapenta, Leonardo; Brunetti, Valerio; Losurdo, Anna; Testani, Elisa; Giannantoni, Nadia Mariagrazia; Quaranta, Davide; Di Lazzaro, Vincenzo; Della Marca, Giacomo

    2014-07-01

    Transient epileptic amnesia is a seizure disorder, usually with onset in the middle-elderly and good response to low dosages of antiepileptic drugs. We describe the clinical, electroencephalography (EEG), and neuroimaging features of 11 patients with a temporal lobe epilepsy characterized by amnesic seizures as the sole or the main symptom. We outline the relevance of a detailed clinical history to recognize amnesic seizures and to avoid the more frequent misdiagnoses. Moreover, the response to monotherapy was usually good, although the epileptic disorder was symptomatic of acquired lesions in the majority of patients.

  16. Semantic amnesia without dementia: documentation of a case.

    Science.gov (United States)

    Rusconi, M L; Zago, S; Basso, A

    1997-06-01

    We described the case of a patient affected by a progressive semantic memory disorder associated with prevalent temporal lobe atrophy. This deficit seems to be "pure" in the sense that it has not been found to overlap with other cognitive deficits (intellectual, linguistic, perceptual, visuo-spatial etc.) for a long time. Furthermore, despite his impaired semantic knowledge, the autobiographical memory of the patient was largely intact. This case therefore represents a form of "semantic amnesia" without dementia, and supports the hypothesis that there is a partial distinction between "semantic" and "episodic" memory.

  17. Transient Global Amnesia Associated With a Unilateral Infarction of the Fornix: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Mihir eGupta

    2015-01-01

    Full Text Available Stroke is an extremely uncommon cause of transient global amnesia. Unilateral lesions of the fornix rarely cause amnesia and have not previously been reported to be associated with the distinctive amnesic picture of transient global amnesia. We describe the case of a 60-year-old woman who presented with acute onset, recent retrograde and anterograde amnesia characteristic of transient global amnesia. Serial magnetic resonance imaging showed a persistent focal infarction of the body and left column of the fornix, without acute lesions in the hippocampus or other structures. Amnesia resolved in 6 hours. Infarction of the fornix should thus be included in the differential diagnosis of transient global amnesia, as it changes the management of this otherwise self-limited syndrome.

  18. A case of persistent retrograde amnesia following a dissociative fugue: neuropsychological and neurofunctional underpinnings of loss of autobiographical memory and self-awareness.

    Science.gov (United States)

    Hennig-Fast, Kristina; Meister, Franziska; Frodl, Thomas; Beraldi, Anna; Padberg, Frank; Engel, Rolf R; Reiser, Maximilian; Möller, Hans-Jürgen; Meindl, Thomas

    2008-10-01

    Autobiographical memory relies on complex interactions between episodic memory contents, associated emotions and a sense of self-continuity over the course of one's life. This paper reports a study based upon the case of the patient NN who suffered from a complete loss of autobiographical memory and awareness of identity subsequent to a dissociative fugue. Neuropsychological, behavioral, and functional neuroimaging tests converged on the conclusion that NN suffered from a selective retrograde amnesia following an episode of dissociative fugue, during which he had lost explicit knowledge and vivid memory of his personal past. NN's loss of self-related memories was mirrored in neurobiological changes after the fugue whereas his semantic memory remained intact. Although NN still claimed to suffer from a stable loss of autobiographical, self-relevant memories 1 year after the fugue state, a proportionate improvement in underlying fronto-temporal neuronal networks was evident at this point in time. In spite of this improvement in neuronal activation, his anterograde visual memory had been decreased. It is posited that our data provide evidence for the important role of visual processing in autobiographical memory as well as for the efficiency of protective control mechanisms that constitute functional retrograde amnesia.

  19. Contribution of Embodiment to Solving the Riddle of Infantile Amnesia

    Directory of Open Access Journals (Sweden)

    Arthur M Glenberg

    2016-01-01

    Full Text Available At least since the late nineteenth century, researchers have sought an explanation for infantile amnesia (IA—the lack of autobiographical memories dating from early childhood—and childhood amnesia (CA, faster forgetting of events up until the age of about seven. Evidence suggests that IA occurs across altricial species, and a number of studies using animal models have converged on the hypothesis that maturation of the hippocampus is an important factor. But why does the hippocampus mature at one time and not another, and how does that maturation relate to memory? Our hypothesis is rooted in theories of embodied cognition, and it provides an explanation both for hippocampal development and the end of IA. Specifically, the onset of locomotion prompts the alignment of hippocampal place cells and grid cells to the environment, which in turn facilitates the ontogeny of long-term episodic memory and the end of IA. That is, because the animal can now reliably discriminate locations, location becomes a stable cue for memories. Furthermore, as the mode of human locomotion shifts from crawling to walking, there is an additional shift in the alignment of the hippocampus that marks the beginning of adult-like episodic memory and the end of CA. Finally, given a reduction in self-locomotion and exploration with aging, the hypothesis suggests a partial explanation for cognitive decline with aging.

  20. Transient global amnesia following a whole-body cryotherapy session.

    Science.gov (United States)

    Carrard, Justin; Lambert, Anne Chantal; Genné, Daniel

    2017-10-13

    Whole-body cryotherapy (WBC), which consists of a short exposure to very cold and dry air in special 'cryo-chambers', is believed to reduce inflammation and musculoskeletal pain as well as improve athletes' recovery. This is the case of a 63-year-old male, who presented with transient global amnesia (TGA) after undertaking a WBC session. TGA is a clinical syndrome characterised by a sudden onset of anterograde amnesia, sometimes coupled with a retrograde component, lasting up to 24 hours without other neurological deficits. Even though the patient completely recovered, as expected, in 24 hours, this case highlights that WBC is potentially not as risk free as thought to be initially. To conclude, before WBC can be medically recommended, well-conducted studies investigating the possible adverse events are required. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Hippocampal declarative memory supports gesture production: Evidence from amnesia.

    Science.gov (United States)

    Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C

    2016-12-01

    Spontaneous co-speech hand gestures provide a visuospatial representation of what is being communicated in spoken language. Although it is clear that gestures emerge from representations in memory for what is being communicated (De Ruiter, 1998; Wesp, Hesse, Keutmann, & Wheaton, 2001), the mechanism supporting the relationship between gesture and memory is unknown. Current theories of gesture production posit that action - supported by motor areas of the brain - is key in determining whether gestures are produced. We propose that when and how gestures are produced is determined in part by hippocampally-mediated declarative memory. We examined the speech and gesture of healthy older adults and of memory-impaired patients with hippocampal amnesia during four discourse tasks that required accessing episodes and information from the remote past. Consistent with previous reports of impoverished spoken language in patients with hippocampal amnesia, we predicted that these patients, who have difficulty generating multifaceted declarative memory representations, may in turn have impoverished gesture production. We found that patients gestured less overall relative to healthy comparison participants, and that this was particularly evident in tasks that may rely more heavily on declarative memory. Thus, gestures do not just emerge from the motor representation activated for speaking, but are also sensitive to the representation available in hippocampal declarative memory, suggesting a direct link between memory and gesture production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Application of a polygraph detector in diagnosing symptom simulationof the biographical amnesia

    Directory of Open Access Journals (Sweden)

    Roman S. Ivanov

    2015-12-01

    Full Text Available The paper considers the first case of using polygraph («lie detector» in the history of Russia for diagnosing possible simulation of auto amnesia symptoms (biographical amnesia. In recent years, the number of cases of biographical amnesia have increased greatly. Today there are several scientific concepts to explain the amnesia of biographical information using a number of approaches. Some psychiatrists believe that the existence of specified disorder is false. The appeal of scientists to the method of psychophysiological research using the polygraph to diagnose possible simulation of auto amnesia is due to the fact that the object of such research is human memory, i.e. mental process of influenced by different types of amnesia. This paper describes basic provisions of carrying out technology research for diagnosing possible cases of simulating symptoms of biographical amnesia, highlighting the progress in detail, conditions and results of the performed experiment that showed that the functional status of the patient was unsuitable for using the polygraph. Therefore, to reach a conclusion about the simulation of the symptoms of the disease is not possible. The most probable causes of this result deal with the assumption about patient taking therapeutically potent drugs that produce a pronounced anti-anxiety effect. Reexamination after the expiration of pharmacological drug term is recommended. The paper is of practical interest to psychiatrists, experts in the field of medical and clinical psychology, polygraph practitioners.

  3. Selective lesion of septal cholinergic neurons in rats impairs acquisition of a delayed matching to position T-maze task by delaying the shift from a response to a place strategy.

    Science.gov (United States)

    Fitz, Nicholas F; Gibbs, Robert B; Johnson, David A

    2008-12-16

    This study tested the hypothesis that septal cholinergic lesions impair acquisition of a delayed matching to position (DMP) T-maze task in male rats by affecting learning strategy. Rats received either the selective cholinergic immunotoxin, 192 IgG-saporin (SAP) or artificial cerebrospinal fluid directly into the medial septum. Two weeks later, animals were trained to acquire the DMP task. SAP-treated rats took significantly longer to acquire the task than corresponding controls. Both SAP-treated and control rats adopted a persistent turn and utilized a response strategy during early periods of training. By the time rats reached criterion the persistent turn was no longer evident, and all rats had shifted to an allocentric strategy, i.e., were relying on extramaze cues to a significant degree. During the acquisition period, SAP-treated rats spent significantly more days showing a persistent turn and using a response strategy than corresponding controls. The added time spent using a response strategy accounted entirely for the added days required to reach criterion among the SAP-treated rats. This suggests that the principal mechanism by which septal cholinergic lesions impair DMP acquisition in male rats is by increasing the predisposition to use a response vs. a place strategy, thereby affecting the ability to switch from one strategy to another.

  4. Ibuprofen or piroxicam protects nigral neurons and delays the development of l-dopa induced dyskinesia in rats with experimental Parkinsonism: Influence on angiogenesis.

    Science.gov (United States)

    Teema, Asmaa M; Zaitone, Sawsan A; Moustafa, Yasser M

    2016-08-01

    Neuroinflammation and angiogenesis have been involved in the pathogenesis of Parkinson's disease (PD). This study investigated the effect of ibuprofen or piroxicam on the motor response to l-dopa and development of dyskinesia in Parkinsonian rats focusing on the anti-angiogenic role of the two non-steroidal anti-inflammatory drugs (NSAIDs). Rats were divided into nine groups as follows: Group I: the vehicle group, Group II: rotenone group, rats were injected with nine doses of rotenone (1 mg/kg/48 h), group III&IV: rats received rotenone + ibuprofen (10 or 30 mg/kg), Group V-VI: rats received rotenone + piroxicam (1 or 3 mg/kg), Group VII: rats received rotenone + l-dopa/carbidopa (100/10 mg/kg), Group VIII-IX: rats received rotenone + l-dopa/carbidopa + ibuprofen (30 mg/kg) or piroxicam (3 mg/kg). In general, drugs were administered daily for ten weeks. Rotenone-treated rats showed motor dysfunction, lower striatal dopamine, lower staining for nigral tyrosine hydroxylase but higher level of striatal cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) compared to vehicle-treated rats (P piroxicam in combination with l-dopa preserved the effect of l-dopa at the end of week 10, delayed the development of dyskinesia and decreased striatal COX-2 and VEGF levels. In conclusion, the current study suggests that ibuprofen and piroxicam are promising candidates for neuroprotection in PD and may have utility in conjunction with l-dopa in order to ensure the longevity of its action and to delay the development of dyskinesia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Transient global amnesia after cerebral angiography still occurs: Case report and literature review

    DEFF Research Database (Denmark)

    Foss-Skiftesvik, Jon; Snoer, Agneta Henriette; Wagner, Aase

    2014-01-01

    Transient global amnesia is considered a very rare complication of diagnostic cerebral angiography, and has only been reported in a limited number of case reports more than 15 years ago. We describe a patient experiencing transient global amnesia following cerebral digital subtraction angiography....... While the condition by definition is self-limiting, its differential diagnoses may cause severe morbidity and/or mortality if left untreated. It is therefore important to build and maintain awareness of transient global amnesia as a possible complication of cerebral angiography....

  6. Inter-Identity Autobiographical Amnesia in Patients with Dissociative Identity Disorder

    Science.gov (United States)

    Huntjens, Rafaële J. C.; Verschuere, Bruno; McNally, Richard J.

    2012-01-01

    Background A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive of dissociative amnesia. The aim of the current study was to objectively assess transfer of autobiographical information between identities in a larger sample of DID patients. Methods Using a concealed information task, we assessed recognition of autobiographical details in an amnesic identity. Eleven DID patients, 27 normal controls, and 23 controls simulating DID participated. Controls and simulators were matched to patients on age, education level, and type of autobiographical memory tested. Findings Although patients subjectively reported amnesia for the autobiographical details included in the task, the results indicated transfer of information between identities. Conclusion The results call for a revision of the DID definition. The amnesia criterion should be modified to emphasize its subjective nature. PMID:22815769

  7. A review study on medicinal plants affecting amnesia through cholinergic system

    Directory of Open Access Journals (Sweden)

    Baradaran Azar

    2012-01-01

    Full Text Available Neurotransmitter modification is an important method for the treatment of memory loss or amnesia. Cholinomimetic drugs, particularly, acetylcholine esterase inhibitors are the mainstream in pharmacotherapy of amnesia. Donepezil, tacrine, galantamine, and rivastigmine are cholinesterase inhibitors which are widely used in the treatment of amnesia, however, their therapeutic effects are not significant. Therefore, other possibilities including herbal medicine sources have been considered for memory loss therapy. There are some Medicinal plants with cholinomimetic property which mostly possess antioxidant activity, too. These plants may not only ameliorate amnesia but also can be a good source for drug discovery. In this paper other than introducing the medicinal plants and their components affective on cholinergic system and effective on memory loss, their probable advantages over synthetic drugs are discussed.

  8. Inter-identity autobiographical amnesia in patients with dissociative identity disorder.

    Science.gov (United States)

    Huntjens, Rafaële J C; Verschuere, Bruno; McNally, Richard J

    2012-01-01

    A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive of dissociative amnesia. The aim of the current study was to objectively assess transfer of autobiographical information between identities in a larger sample of DID patients. Using a concealed information task, we assessed recognition of autobiographical details in an amnesic identity. Eleven DID patients, 27 normal controls, and 23 controls simulating DID participated. Controls and simulators were matched to patients on age, education level, and type of autobiographical memory tested. Although patients subjectively reported amnesia for the autobiographical details included in the task, the results indicated transfer of information between identities. The results call for a revision of the DID definition. The amnesia criterion should be modified to emphasize its subjective nature.

  9. Inter-identity autobiographical amnesia in patients with dissociative identity disorder

    NARCIS (Netherlands)

    Huntjens, R.J.C.; Verschuere, B.; McNally, R.J.

    2012-01-01

    Background A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive

  10. Inter-identity autobiographical amnesia in patients with dissociative identity disorder.

    Directory of Open Access Journals (Sweden)

    Rafaële J C Huntjens

    Full Text Available BACKGROUND: A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive of dissociative amnesia. The aim of the current study was to objectively assess transfer of autobiographical information between identities in a larger sample of DID patients. METHODS: Using a concealed information task, we assessed recognition of autobiographical details in an amnesic identity. Eleven DID patients, 27 normal controls, and 23 controls simulating DID participated. Controls and simulators were matched to patients on age, education level, and type of autobiographical memory tested. FINDINGS: Although patients subjectively reported amnesia for the autobiographical details included in the task, the results indicated transfer of information between identities. CONCLUSION: The results call for a revision of the DID definition. The amnesia criterion should be modified to emphasize its subjective nature.

  11. Inter-Identity Autobiographical Amnesia in Patients with Dissociative Identity Disorder

    NARCIS (Netherlands)

    Huntjens, R.J.C.; Verschuere, B.; McNally, R.J.

    2012-01-01

    Background: A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive

  12. Personal semantic memory: insights from neuropsychological research on amnesia.

    Science.gov (United States)

    Grilli, Matthew D; Verfaellie, Mieke

    2014-08-01

    This paper provides insight into the cognitive and neural mechanisms of personal semantic memory, knowledge that is specific and unique to individuals, by reviewing neuropsychological research on stable amnesia secondary to medial temporal lobe damage. The results reveal that personal semantic memory does not depend on a unitary set of cognitive and neural mechanisms. Findings show that autobiographical fact knowledge reflects an experience-near type of personal semantic memory that relies on the medial temporal lobe for retrieval, albeit less so than personal episodic memory. Additional evidence demonstrates that new autobiographical fact learning likely relies on the medial temporal lobe, but the extent to which remains unclear. Other findings show that retrieval of personal traits/roles and new learning of personal traits/roles and thoughts/beliefs are independent of the medial temporal lobe and thus may represent highly conceptual types of personal semantic memory that are stored in the neocortex. Published by Elsevier Ltd.

  13. Intact and impaired conceptual memory processes in amnesia.

    Science.gov (United States)

    Keane, M M; Gabrieli, J D; Monti, L A; Fleischman, D A; Cantor, J M; Noland, J S

    1997-01-01

    To examine the status of conceptual memory processes in amnesia, a conceptual memory task with implicit or explicit task instructions was given to amnesic and control groups. After studying a list of category exemplars, participants saw category labels and were asked to generate as many exemplars as possible (an implicit memory task) or to generate exemplars that had been in the prior study list (an explicit memory task). After incidental deep or shallow encoding of exemplars, amnesic patients showed normal implicit memory performance (priming), a normal levels-of-processing effect on priming, and impaired explicit memory performance. After intentional encoding of exemplars, amnesic patients showed impaired implicit and explicit memory performance. Results suggest that although amnesic patients can show impairments on implicit and explicit conceptual memory tasks, their deficit does not generalize to all conceptual memory tasks.

  14. Dissociation between recognition and recall in developmental amnesia

    Science.gov (United States)

    Adlam, Anna-Lynne R.; Malloy, Megan; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2009-01-01

    Developmental amnesia (DA) is a memory disorder due to hypoxia/ischaemia-induced damage to the hippocampus early in life. To test the hypothesis that this disorder is associated with a disproportionate impairment in recall vis-à-vis recognition, we examined a group of 10 patients with DA on the Doors and People test, which affords a quantitative comparison between measures of the two memory processes. The results supported the hypothesis in that the patients showed a sharp, though not complete, recall-recognition dissociation, exhibiting impairment on both measures relative to their matched controls, but with a far greater loss in recall than in recognition. Whether their relatively spared recognition ability is due to restriction of their medial temporal lobe damage to the hippocampus or whether it is due instead to their early age at injury is still uncertain. PMID:19524088

  15. Diffusion magnetic resonance imaging in transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Godeiro-Junior, Clecio; Miranda-Alves, Maramelia Araujo de [Federal University of Sao Paulo (UNIFESP-EPM), Sao Paulo SP (Brazil). Dept. of Neurology and Neurosurgery], e-mail: cleciojunior@yahoo.com.br; Massaro, Ayrton Roberto [Fleury Diagnostic Center, Sao Paulo SP (Brazil)

    2009-03-15

    Transient global amnesia (TGA) is a well known clinical entity characterized by anterograde memory disturbance of sudden onset that lasts 1 to 24 hours. Orientation in space and time is impaired while consciousness remains undisturbed. TGA may refer to a single expression of several physiopathological phenomena. Conceptually, cerebral ischemia, epileptic discharge, and migraine constitute the main pathogenic hypothesis. Diffusion-weighted imaging (DWI) has become a powerful tool in the evaluation of patients with suspected stroke owing to its high sensitivity and specificity, even for small areas of acute ischemia. Consequently, this method has also been applied to TGA to gain further insights into the ischemic hypothesis of this condition. We report a patient with a typical TGA presentation and MRI findings suggestive of an ischemic insult. We further discuss the ischemic hypothesis of TGA. (author)

  16. Parent-child relationship quality and infantile amnesia in adults.

    Science.gov (United States)

    Peterson, Carole; Nguyen, Duyen T K

    2010-11-01

    The first years of life are typically shrouded by infantile amnesia, but there is enormous variability between adults in how early and how much they can remember from this period. This study examined one possible factor affecting this variability: whether the perceived quality of parent-child relationships is associated with the number of early memories young adults can retrieve, and their age at the time of their first memory. We found such associations but they were qualified by parent gender. Mother-child relationships that were more affectively intense (greater social support but also more negative interchanges) were associated with recalling more early memories, although paternal companionship was most associated with how early an individual's first memory was. Affective tone of retrieved memories was also assessed, and a greater proportion of affectively positive memories (as well as fewer affectively neutral memories for males) was associated with high parental involvement in children's lives.

  17. Non-declarative memory in the rehabilitation of amnesia.

    Science.gov (United States)

    Cavaco, S; Malec, J F; Bergquist, T

    2005-09-01

    The ability of amnesic patients to learn and retain non-declarative information has been consistently demonstrated in the literature. This knowledge provided by basic cognitive neuroscience studies has been widely neglected in neuropsychological rehabilitation of memory impaired patients. This study reports the case of a 43 year old man with severe amnesia following an anterior communicating artery (ACoA) aneurysm rupture. The patient integrated a comprehensive (holistic) day treatment programme for rehabilitation of brain injury. The programme explored the advantages of using preserved non-declarative memory capacities, in the context of commonly used rehabilitation approaches (i.e. compensation for lost function and domain-specific learning). The patient's ability to learn and retain new cognitive and perceptual-motor skills was found to be critical for the patient's improved independence and successful return to work.

  18. Cognitive rehabilitation of amnesia after virus encephalitis: a case report.

    Science.gov (United States)

    Miotto, Eliane Correa

    2007-01-01

    A number of memory rehabilitation techniques have targeted people with various degrees of memory impairments. However, few studies have shown the contribution of preserved non-declarative memory capacity and errorless learning in the treatment of amnesic patients. The current case report describes the memory rehabilitation of a 44-year-old man with amnesia following viral encephalitis. The patient's procedural memory capacity had an important role in the use of a motor imagery strategy to remember people's names. It was further demonstrated that the application of a verbal learning technique was helpful in recalling new verbal information. These different memory rehabilitation techniques are discussed in terms of alternative possibilities in the rehabilitation of amnesic patients.

  19. Diffusion magnetic resonance imaging in transient global amnesia

    International Nuclear Information System (INIS)

    Godeiro-Junior, Clecio; Miranda-Alves, Maramelia Araujo de

    2009-01-01

    Transient global amnesia (TGA) is a well known clinical entity characterized by anterograde memory disturbance of sudden onset that lasts 1 to 24 hours. Orientation in space and time is impaired while consciousness remains undisturbed. TGA may refer to a single expression of several physiopathological phenomena. Conceptually, cerebral ischemia, epileptic discharge, and migraine constitute the main pathogenic hypothesis. Diffusion-weighted imaging (DWI) has become a powerful tool in the evaluation of patients with suspected stroke owing to its high sensitivity and specificity, even for small areas of acute ischemia. Consequently, this method has also been applied to TGA to gain further insights into the ischemic hypothesis of this condition. We report a patient with a typical TGA presentation and MRI findings suggestive of an ischemic insult. We further discuss the ischemic hypothesis of TGA. (author)

  20. Inter-identity autobiographical amnesia in patients with dissociative identity disorder

    OpenAIRE

    Huntjens, Rafaele JC; Verschuere, Bruno; McNally, Richard J

    2012-01-01

    Background: A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive of dissociative amnesia. The aim of the current study was to objectively assess transfer of autobiographical information between identities in a larger sample of DID patients. Methods: Using a c...

  1. NMDA or 5-HT receptor antagonists impair memory reconsolidation and induce various types of amnesia.

    Science.gov (United States)

    Nikitin, V P; Solntseva, S V; Kozyrev, S A; Nikitin, P V; Shevelkin, A V

    2018-06-01

    Elucidation of amnesia mechanisms is one of the central problems in neuroscience with immense practical application. Previously, we found that conditioned food presentation combined with injection of a neurotransmitter receptor antagonist or protein synthesis inhibitor led to amnesia induction. In the present study, we investigated the time course and features of two amnesias: induced by impairment of memory reconsolidation using an NMDA glutamate receptor antagonist (MK-801) and a serotonin receptor antagonist (methiothepin, MET) on snails trained with food aversion conditioning. During the early period of amnesia (types of amnesia. Retraining an on 1st or 3rd day of amnesia induction facilitated memory formation, i.e. the number of CS + US pairings was lower than at initial training. On the 10th or 30th day after the MET/reminder, the number of CS + US pairings did not change between initial training and retraining. Retraining on the 10th or 30th day following the MK-801/reminder in the same or a new context of learning resulted in short, but not long-term, memory, and the number of CS + US pairings was higher than at the initial training. This type of amnesia was specific to the CS we used at initial training, since long-term memory for another kind of CS could be formed in the same snails. The attained results suggest that disruption of memory reconsolidation using antagonists of serotonin or NMDA glutamate receptors induced amnesias with different abilities to form long-term memory during the late period of development. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Profound loss of general knowledge in retrograde amnesia: evidence from an amnesic artist

    OpenAIRE

    Gregory, Emma; McCloskey, Michael; Landau, Barbara

    2014-01-01

    Studies of retrograde amnesia have focused on autobiographical memory, with fewer studies examining how non-autobiographical memory is affected. Those that have done so have focused primarily on memory for famous people and public events—relatively limited aspects of memory that are tied to learning during specific times of life and do not deeply tap into the rich and extensive knowledge structures that are developed over a lifetime. To assess whether retrograde amnesia can also cause impai...

  3. Patients with hippocampal amnesia successfully integrate gesture and speech.

    Science.gov (United States)

    Hilverman, Caitlin; Clough, Sharice; Duff, Melissa C; Cook, Susan Wagner

    2018-06-19

    During conversation, people integrate information from co-speech hand gestures with information in spoken language. For example, after hearing the sentence, "A piece of the log flew up and hit Carl in the face" while viewing a gesture directed at the nose, people tend to later report that the log hit Carl in the nose (information only in gesture) rather than in the face (information in speech). The cognitive and neural mechanisms that support the integration of gesture with speech are unclear. One possibility is that the hippocampus - known for its role in relational memory and information integration - is necessary for integrating gesture and speech. To test this possibility, we examined how patients with hippocampal amnesia and healthy and brain-damaged comparison participants express information from gesture in a narrative retelling task. Participants watched videos of an experimenter telling narratives that included hand gestures that contained supplementary information. Participants were asked to retell the narratives and their spoken retellings were assessed for the presence of information from gesture. For features that had been accompanied by supplementary gesture, patients with amnesia retold fewer of these features overall and fewer retellings that matched the speech from the narrative. Yet their retellings included features that contained information that had been present uniquely in gesture in amounts that were not reliably different from comparison groups. Thus, a functioning hippocampus is not necessary for gesture-speech integration over short timescales. Providing unique information in gesture may enhance communication for individuals with declarative memory impairment, possibly via non-declarative memory mechanisms. Copyright © 2018. Published by Elsevier Ltd.

  4. Transient Global Amnesia with Reversible White Matter Lesions: A Variant of Posterior Reversible Encephalopathy Syndrome?

    Directory of Open Access Journals (Sweden)

    Tomoki Nakamizo

    2015-01-01

    Full Text Available Transient global amnesia (TGA is a self-limited disease characterized by isolated amnesia, which resolves within 24 h. In contrast, posterior reversible encephalopathy syndrome (PRES is a potentially life-threatening disease that usually presents with seizures, altered mental status, headache, and visual disturbances. It is characterized by reversible vasogenic edema that predominantly involves the parieto-occipital subcortical white matter as shown by neuroimaging studies. To date, there have been no reported cases of PRES with a clinical course resembling TGA. Here we report the case of a 58-year-old woman who presented with isolated amnesia and headache. On admission, her blood pressure was 187/100 mmHg. She had complete anterograde amnesia and slight retrograde amnesia without other neurological findings. After the treatment of her hypertension, the amnesia resolved within 24 h. Although the initial magnetic resonance image (MRI was almost normal, the fluid attenuation inversion recovery (FLAIR images of the MRI on the next day revealed several small foci of high intensity areas in the fronto-parieto-occipital subcortical white matter, presumed to be vasogenic edema in PRES. The lesions disappeared one month later. This case suggests that PRES can mimic the clinical course of TGA. PRES should be considered in the differential diagnosis for TGA.

  5. Reward acts as a signal to control delay-period activity in delayed-response tasks.

    Science.gov (United States)

    Ichihara-Takeda, Satoe; Takeda, Kazuyoshi; Funahashi, Shintaro

    2010-03-31

    Prefrontal delay-period activity represents a neural mechanism for the active maintenance of information and needs to be controlled by some signal to appropriately operate working memory. To examine whether reward-delivery acts as this signal, the effects of delay-period activity in response to unexpected reward-delivery were examined by analyzing single-neuron activity recorded in the primate dorsolateral prefrontal cortex. Among neurons that showed delay-period activity, 34% showed inhibition of this activity in response to unexpected reward-delivery. The delay-period activity of these neurons was affected by the expectation of reward-delivery. The strength of the reward signal in controlling the delay-period activity is related to the strength of the effect of reward information on the delay-period activity. These results indicate that reward-delivery acts as a signal to control delay-period activity.

  6. False recognition in behavioural variant frontotemporal dementia and Alzheimer’s disease – disinhibition or amnesia?

    Directory of Open Access Journals (Sweden)

    Emma C Flanagan

    2016-07-01

    Full Text Available Episodic memory recall processes in Alzheimer’s disease (AD and behavioural variant frontotemporal dementia (bvFTD can be similarly impaired, whereas recognition performance is more variable. A potential reason for this variability could be false-positive errors made on recognition trials and whether these errors are due to amnesia per se or a general over-endorsement of recognition items regardless of memory. The current study addressed this issue by analysing recognition performance on the Rey Auditory Verbal Learning Test (RAVLT in 39 bvFTD, 77 AD and 61 control participants from two centres (India, Australia, as well as disinhibition assessed using the Hayling test. Whereas both AD and bvFTD patients were comparably impaired on delayed recall, bvFTD patients showed intact recognition performance in terms of the number of correct hits. However, both patient groups endorsed significantly more false-positives than controls, and bvFTD and AD patients scored equally poorly on a sensitivity index (correct hits - false-positives. Furthermore, measures of disinhibition were significantly associated with false positives in both groups, with a stronger relationship with false-positives in bvFTD. Voxel-based morphometry analyses revealed similar neural correlates of false positive endorsement across bvFTD and AD, with both patient groups showing involvement of prefrontal and Papez circuitry regions, such as medial temporal and thalamic regions, and a DTI analysis detected an emerging but non-significant trend between false positives and decreased fornix integrity in bvFTD only. These findings suggest that false-positive errors on recognition tests relate to similar mechanisms in bvFTD and AD, reflecting deficits in episodic memory processes and disinhibition. These findings highlight that current memory tests are not sufficient to accurately distinguish between bvFTD and AD patients.

  7. Neuromodulatory effects of the dorsal hippocampal endocannabinoid system in dextromethorphan/morphine-induced amnesia.

    Science.gov (United States)

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2017-01-05

    Dextromethorphan which is an active ingredient in many cough medicines has been previously shown to potentiate amnesic effect of morphine in rats. However, the effect of dextromethorphan, that is also a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, in combination with morphine on hippocampus-based long term memory has not been well characterized. The aim of the present study was to assess the possible role of endocannabinoid system of the dorsal hippocampus in dextromethorphan /morphine-induced amnesia. Our results showed that intraperitoneal (i.p.) injection of morphine (5mg/kg) or dextromethorphan (5-15mg/kg) before testing the passive avoidance learning induced amnesia. Combination of ineffective doses of dextromethorphan (7.5mg/kg, i.p.) and morphine (2mg/kg, i.p.) also produced amnesia, suggesting the enhancing effects of the drugs. To assess the effect of the activation or inhibition of the dorsal hippocampal cannabinoid CB 1 receptors on this amnesia, ACPA or AM251 as selective receptor agonists or antagonists were respectively injected into the CA1 regions before systemic injection of dextromethorphan and morphine. Interestingly, intra-CA1 microinjection of ACPA (0.5-1ng/rat) improved the amnesic effect of dextromethorphan /morphine combination. The microinjection of AM251 into the CA1 region enhanced the response of the combination of dextromethorphan /morphine in inducing amnesia. Moreover, Intra-CA1 microinjection of AM251 inhibited the improving effect of ACPA on dextromethorphan /morphine-induced amnesia. It is important to note that intra-CA1 microinjection of the same doses of the agonist or antagonist by itself had no effects on memory formation. Thus, it can be concluded that the dorsal hippocampal endocannabinoid system, via CB 1 receptor-dependent mechanism, may be involved in morphine/dextromethorphan -induced amnesia. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. "Galveston Orientation and Amnesia Test": tradução e validação "Galveston Orientation and Amnesia Test": traducción y validación "Galveston Orientation and Amnesia Test": translation and validation

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Fürbringer e Silva

    2007-03-01

    Full Text Available OBJETIVO: Traduzir e validar o Galveston Orientation and Amnesia Test para uso em nosso meio. MÉTODOS: Esse teste foi traduzido para o português e retro-traduzido para o inglês por diferentes especialistas na língua e por fim, feita a avaliação da equivalência entre o instrumento original e a versão retro-traduzida. Sua aplicação em 73 vítimas de trauma crânio-encefálico contuso e a indicação da gravidade dessa lesão, estabelecida pela Escala de Coma de Glasgow, permitiram verificar as propriedades de medida do instrumento. RESULTADOS: A confiabilidade verificada pelo Alfa de Cronbach resultou em 0,76. Houve indicação de validade convergente e discriminante do instrumento quando os resultados de aplicação do Galveston Orientation and Amnésia Test foram analisados perante a gravidade do trauma crânio-encefálico. CONCLUSÃO: Os resultados observados dão suporte para a aplicação do Galveston Orientation and Amnesia Test em nosso meio como indicador do término da amnésia pós-traumática.OBJETIVO: Traducir y validar el Galveston Orientation and Amnesia Test para su uso en nuestro medio. MÉTODOS: El test fue traducido al portugués retrotraducido al inglés por diferentes especialistas en la lengua y por fin, realizada la evaluación de la equivalencia entre el instrumento original y la versión retrotraducida. Su aplicación en 73 víctimas de traumatismo encéfalo craneano con constusión y la indicación de la gravedad de esa lesión, establecida por la Escala de Coma de Glasgow, permitieron verificar las propiedades de medida del instrumento. RESULTADOS: La confiabilidad verificada por el Alfa de Cronbach fue de 0,76. Hubo indicación de validez convergente y discriminante del instrumento cuando los resultados de aplicación del Galveston Orientation and Amnésia Test fueron analizados frente a la gravedad del traumatismo encéfalo craneano. CONCLUSIÓN: Los resultados observados dan soporte para la aplicación del

  9. Ontogeny of memory: An update on 40 years of work on infantile amnesia.

    Science.gov (United States)

    Madsen, Heather Bronwyn; Kim, Jee Hyun

    2016-02-01

    Given the profound influence that early life experiences can have upon psychosocial functioning later in life, it is intriguing that most adults fail to recall autobiographical events from their early childhood years. Infantile amnesia is the term used to describe this phenomenon of accelerated forgetting during infancy, and it is not unique to humans. Over the years, information garnered from animal studies has provided clues as to the neurobiological basis of infantile amnesia. The purpose of this review is to provide a neurobiological update on what we now know about infantile amnesia since the publication of Campbell and Spear's seminal review on the topic more than 40 years ago. We present evidence that infantile amnesia is unlikely to be explained by a unitary theory, with the protracted development of multiple brain regions and neurotransmitter systems important for learning and memory likely to be involved. The recent discovery that exposure to early life stress can alleviate infantile amnesia offers a potential explanation as to how early adversity can so profoundly affect mental health in adulthood, and understanding the neurobiological basis for this early transition may lead to the development of effective therapeutic interventions. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Profound loss of general knowledge in retrograde amnesia: Evidence from an amnesic artist

    Directory of Open Access Journals (Sweden)

    Emma eGregory

    2014-05-01

    Full Text Available Studies of retrograde amnesia have focused on autobiographical memory, with fewer studies examining how non-autobiographical memory is affected. Those that have done so have focused primarily on memory for famous people and public events—relatively limited aspects of memory that are tied to learning during specific times of life and do not deeply tap into the rich and extensive knowledge structures that are developed over a lifetime. To assess whether retrograde amnesia can also cause impairments to other forms of general world knowledge, we explored losses across a broad range of knowledge domains in a newly-identified amnesic. LSJ is a professional artist, amateur musician and history buff with extensive bilateral medial temporal and left anterior temporal damage. We examined LSJ's knowledge across a range of everyday domains (e.g., sports and domains for which she had premorbid expertise (e.g., famous paintings. Across all domains tested, LSJ showed losses of knowledge at a level of breadth and depth never before documented in retrograde amnesia. These results show that retrograde amnesia can involve broad and deep deficits across a range of general world knowledge domains. Thus, losses that have already been well-documented (famous people and public events may severely underestimate the nature of human knowledge impairment that can occur in retrograde amnesia.

  11. Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABA(A) receptor δ subunit in cerebellar granule neurons and delays motor development in rats.

    Science.gov (United States)

    Diaz, Marvin R; Vollmer, Cyndel C; Zamudio-Bulcock, Paula A; Vollmer, William; Blomquist, Samantha L; Morton, Russell A; Everett, Julie C; Zurek, Agnieszka A; Yu, Jieying; Orser, Beverley A; Valenzuela, C Fernando

    2014-04-01

    Exposure to ethanol (EtOH) during fetal development can lead to long-lasting alterations, including deficits in fine motor skills and motor learning. Studies suggest that these are, in part, a consequence of cerebellar damage. Cerebellar granule neurons (CGNs) are the gateway of information into the cerebellar cortex. Functionally, CGNs are heavily regulated by phasic and tonic GABAergic inhibition from Golgi cell interneurons; however, the effect of EtOH exposure on the development of GABAergic transmission in immature CGNs has not been investigated. To model EtOH exposure during the 3rd trimester-equivalent of human pregnancy, neonatal pups were exposed intermittently to high levels of vaporized EtOH from postnatal day (P) 2 to P12. This exposure gradually increased pup serum EtOH concentrations (SECs) to ∼60 mM (∼0.28 g/dl) during the 4 h of exposure. EtOH levels gradually decreased to baseline 8 h after the end of exposure. Surprisingly, basal tonic and phasic GABAergic currents in CGNs were not significantly affected by postnatal alcohol exposure (PAE). However, PAE increased δ subunit expression at P28 as detected by immunohistochemical and western blot analyses. Also, electrophysiological studies with an agonist that is highly selective for δ-containing GABA(A) receptors, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP), showed an increase in THIP-induced tonic current. Behavioral studies of PAE rats did not reveal any deficits in motor coordination, except for a delay in the acquisition of the mid-air righting reflex that was apparent at P15 to P18. These findings demonstrate that repeated intermittent exposure to high levels of EtOH during the equivalent of the last trimester of human pregnancy has significant but relatively subtle effects on motor coordination and GABAergic transmission in CGNs in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Supporting the self-concept with memory: insight from amnesia.

    Science.gov (United States)

    Grilli, Matthew D; Verfaellie, Mieke

    2015-12-01

    We investigated the extent to which personal semantic memory supports the self-concept in individuals with medial temporal lobe amnesia and healthy adults. Participants completed eight 'I Am' self-statements. For each of the four highest ranked self-statements, participants completed an open-ended narrative task, during which they provided supporting information indicating why the I Am statement was considered self-descriptive. Participants then completed an episodic probe task, during which they attempted to retrieve six episodic memories for each of these self-statements. Supporting information was scored as episodic, personal semantic or general semantic. In the narrative task, personal semantic memory predominated as self-supporting information in both groups. The amnesic participants generated fewer personal semantic memories than controls to support their self-statements, a deficit that was more pronounced for trait relative to role self-statements. In the episodic probe task, the controls primarily generated unique event memories, but the amnesic participants did not. These findings demonstrate that personal semantic memory, in particular autobiographical fact knowledge, plays a critical role in supporting the self-concept, regardless of the accessibility of episodic memories, and they highlight potential differences in the way traits and roles are supported by personal memory. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Transient global amnesia and neurological events: the Framingham Heart Study

    Directory of Open Access Journals (Sweden)

    Jose Rafael Romero

    2013-05-01

    Full Text Available Background/ objective: Transient global amnesia (TGA is a temporary amnestic syndrome characterized by lack of other focal neurological deficits. Cerebrovascular disease, migraine and seizures have been suggested as underlying mechanisms. TGA may be a risk factor for cerebrovascular or other neurological events. We studied the relation of TGA, vascular risk factors, brain magnetic resonance imaging (MRI indices of subclinical ischemia and neurological events in a community-based sample. Design/setting: A total of 12 TGA cases were ascertained using standard criteria by experienced neurologists, and matched to 41 stroke- and seizure-free controls. Vascular risk factors, brain MRI findings, and subsequent cerebrovascular or seizure events were compared in cases and controls. Participants: Framingham Heart Study (FHS original and offspring cohort participants were included.Results: No significant differences between the groups were observed in the prevalence of vascular risk factors, or brain MRI measures. Few incident stroke/transient ischemic attacks (TIA (1 event among the cases and 4 in controls or subsequent seizures occurred in either group. Head CT during the acute event (n=11 and brain MRI (n=7 were negative for acute abnormalities. Electroencephalograms (EEG (n=5 were negative for epileptiform activity. Extracranial vascular studies were negative for significant stenosis in all cases.Conclusions: In our community-based study TGA was not related to traditional vascular risk factors, or cerebrovascular disease. However, our study is limited by small sample size and power, and larger studies are required to exclude an association.

  14. Supporting the self-concept with memory: insight from amnesia

    Science.gov (United States)

    Verfaellie, Mieke

    2015-01-01

    We investigated the extent to which personal semantic memory supports the self-concept in individuals with medial temporal lobe amnesia and healthy adults. Participants completed eight ‘I Am’ self-statements. For each of the four highest ranked self-statements, participants completed an open-ended narrative task, during which they provided supporting information indicating why the I Am statement was considered self-descriptive. Participants then completed an episodic probe task, during which they attempted to retrieve six episodic memories for each of these self-statements. Supporting information was scored as episodic, personal semantic or general semantic. In the narrative task, personal semantic memory predominated as self-supporting information in both groups. The amnesic participants generated fewer personal semantic memories than controls to support their self-statements, a deficit that was more pronounced for trait relative to role self-statements. In the episodic probe task, the controls primarily generated unique event memories, but the amnesic participants did not. These findings demonstrate that personal semantic memory, in particular autobiographical fact knowledge, plays a critical role in supporting the self-concept, regardless of the accessibility of episodic memories, and they highlight potential differences in the way traits and roles are supported by personal memory. PMID:25964501

  15. The Remains of the Day in Dissociative Amnesia

    Directory of Open Access Journals (Sweden)

    Angelica Staniloiu

    2012-04-01

    Full Text Available Memory is not a unity, but is divided along a content axis and a time axis, respectively. Along the content dimension, five long-term memory systems are described, according to their hierarchical ontogenetic and phylogenetic organization. These memory systems are assumed to be accompanied by different levels of consciousness. While encoding is based on a hierarchical arrangement of memory systems from procedural to episodic-autobiographical memory, retrieval allows independence in the sense that no matter how information is encoded, it can be retrieved in any memory system. Thus, we illustrate the relations between various long-term memory systems by reviewing the spectrum of abnormalities in mnemonic processing that may arise in the dissociative amnesia—a condition that is usually characterized by a retrieval blockade of episodic-autobiographical memories and occurs in the context of psychological trauma, without evidence of brain damage on conventional structural imaging. Furthermore, we comment on the functions of implicit memories in guiding and even adaptively molding the behavior of patients with dissociative amnesia and preserving, in the absence of autonoetic consciousness, the so-called “internal coherence of life”.

  16. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)

  17. Psychological therapy for psychogenic amnesia: Successful treatment in a single case study.

    Science.gov (United States)

    Cassel, Anneli; Humphreys, Kate

    2016-01-01

    Psychogenic amnesia is widely understood to be a memory impairment of psychological origin that occurs as a response to severe stress. However, there is a paucity of evidence regarding the effectiveness of psychological therapy approaches in the treatment of this disorder. The current article describes a single case, "Ben", who was treated with formulation-driven psychological therapy using techniques drawn from cognitive behavioural therapy (CBT) and acceptance and commitment therapy (ACT) for psychogenic amnesia. Before treatment, Ben exhibited isolated retrograde and anterograde memory impairments. He received 12 therapy sessions that targeted experiential avoidance followed by two review sessions, six weeks and five months later. Ben's retrograde and anterograde memory impairments improved following therapy to return to within the "average" to "superior" ranges, which were maintained at follow-up. Further experimental single case study designs and larger group studies are required to advance the understanding of the effectiveness and efficacy of psychological therapy for psychogenic amnesia.

  18. Posttraumatic stress disorder in patients with traumatic brain injury and amnesia for the event?

    Science.gov (United States)

    Warden, D L; Labbate, L A; Salazar, A M; Nelson, R; Sheley, E; Staudenmeier, J; Martin, E

    1997-01-01

    Frequency of DSM-III-R posttraumatic stress disorder (PTSD) was studied in 47 active-duty service members (46 male, 1 female; mean age 27 = 7) with moderate traumatic brain injury and neurogenic amnesia for the event. Patients had attained "oriented and cooperative" recovery level. When evaluated with a modified Present State Examination and other questions at various points from study entry to 24-month follow-up, no patients met full criteria for PTSD or met criterion B (reexperience); 6 (13%) met both C (avoidance) and D (arousal) criteria. Five of these 6 also had organic mood disorder, depressed type, and/or organic anxiety disorder. Posttraumatic amnesia following moderate head injury may protect against recurring memories and the development of PTSD. Some patients with neurogenic amnesia may develop a form of PTSD without the reexperiencing symptoms.

  19. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    OpenAIRE

    Kana Okada; Kayo Nishizawa; Tomoko Kobayashi; Shogo Sakata; Kazuto Kobayashi

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer?s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remai...

  20. Towards solving the riddle of forgetting in functional amnesia: recent advances and current opinions.

    Science.gov (United States)

    Staniloiu, Angelica; Markowitsch, Hans J

    2012-01-01

    Remembering the past is a core feature of human beings, enabling them to maintain a sense of wholeness and identity and preparing them for the demands of the future. Forgetting operates in a dynamic neural connection with remembering, allowing the elimination of unnecessary or irrelevant information overload and decreasing interference. Stress and traumatic experiences could affect this connection, resulting in memory disturbances, such as functional amnesia. An overview of clinical, epidemiological, neuropsychological, and neurobiological aspects of functional amnesia is presented, by preponderantly resorting to own data from patients with functional amnesia. Patients were investigated medically, neuropsychologically, and neuroradiologically. A detailed report of a new case is included to illustrate the challenges posed by making an accurate differential diagnosis of functional amnesia, a condition that may encroach on the boundaries between psychiatry and neurology. Several mechanisms may play a role in "forgetting" in functional amnesia, such as retrieval impairments, consolidating defects, motivated forgetting, deficits in binding and reassembling details of the past, deficits in establishing a first person autonoetic connection with personal events, and loss of information. In a substantial number of patients, we observed a synchronization abnormality between a frontal lobe system, important for autonoetic consciousness, and a temporo-amygdalar system, important for evaluation and emotions, which provides empirical support for an underlying mechanism of dissociation (a failure of integration between cognition and emotion). This observation suggests a mnestic blockade in functional amnesia that is triggered by psychological or environmental stress and is underpinned by a stress hormone mediated synchronization abnormality during retrieval between processing of affect-laden events and fact-processing.

  1. Towards Solving the Riddle of Forgetting in Functional Amnesia: Recent Advances and Current Opinions

    Directory of Open Access Journals (Sweden)

    Angelica eStaniloiu

    2012-11-01

    Full Text Available Remembering the past is a core feature of human beings, enabling them to maintain a sense of wholeness and identity and preparing them for the demands of the future. Forgetting operates in a dynamic neural connection with remembering, allowing the elimination of unnecessary or irrelevant information overload and decreasing interference. Stress and traumatic experiences could affect this connection, resulting in memory disturbances, such as functional amnesia. An overview of clinical, epidemiological, neuropsychological and neurobiological aspects of functional amnesia is presented, by preponderantly resorting to own data from patients with functional amnesia. Patients were investigated medically, neuropsychologically and neuroradiologically. A detailed report of a new case is included to illustrate the challenges posed by making an accurate differential diagnosis of functional amnesia, a condition that may encroach on the boundaries between psychiatry and neurology. Several mechanisms may play a role in forgetting in functional amnesia, such as retrieval impairments, consolidating defects, motivated forgetting, deficits in binding and reassembling details of the past, deficits in establishing a first person autonoetic connection with personal events and loss of information. In a substantial number of patients, we observed a synchronization abnormality between a frontal lobe system, important for autonoetic consciousness, and a temporo-amygdalar system, important for evaluation and emotions, which provides empirical support for an underlying mechanism of dissociation (a failure of integration between cognition and emotion. This observation suggests a mnestic blockade in functional amnesia that is triggered by psychological or environmental stress and is underpinned by a stress hormone mediated synchronization abnormality during retrieval between processing of affect-laden events and fact-processing.

  2. Effectiveness of lorazepam-assisted interviews in an adolescent with dissociative amnesia: A case report★

    Science.gov (United States)

    Seo, Yuna; Shin, Mi-Hee; Kim, Sung-Gon; Kim, Ji-Hoon

    2013-01-01

    To facilitate gathering information during a psychiatric interview, some psychiatrists advocate augmenting the interview using drugs. Rather than barbiturates, benzodiazepines have been used for drug-assisted interviews. Dissociative amnesia is one of the indications for these interviews. Herein, we present the case of a 15-year-old female who was diagnosed as having dissociative amnesia because of conflicts with her friends. She was administered a lorazepam-assisted interview to aid recovery of her memories. In this case, a small dose of lorazepam was sufficient to recover her memories without any adverse effects. PMID:25206490

  3. Jugular veins in transient global amnesia: innocent bystanders.

    Science.gov (United States)

    Baracchini, Claudio; Tonello, Simone; Farina, Filippo; Viaro, Federica; Atzori, Matteo; Ballotta, Enzo; Manara, Renzo

    2012-09-01

    Transient global amnesia (TGA) has been associated with an increased prevalence of internal jugular valve insufficiency and many patients report Valsalva-associated maneuvers before TGA onset. These findings have led to the assumption of hemodynamic alterations in intracranial veins inducing focal hippocampal ischemia. We investigated this hypothesis in patients with TGA and control subjects. Seventy-five patients with TGA and 75 age- and sex-matched healthy subjects were enrolled into a cross-sectional study. Extracranial and transcranial high-resolution venous echo-color-Doppler sonography was performed blindly in all patients and control subjects. Blood flow direction and velocities were recorded at the internal jugular veins, basal veins of Rosenthal, and vein of Galen, both at rest and during Valsalva-associated maneuvers. Mean age of patients with TGA was 60.3±8.0 years (median, 60 years; range, 44-78 years); 44 (59%) were female (female/male ratio: 1.42). Internal jugular valve insufficiency (left, right, or bilateral) was found to be more frequent in patients with TGA than in control subjects: 53 (70.7%) versus 22 (29.3%; P<0.05). Blood flow velocities in the deep cerebral veins of patients with TGA did not differ from control subjects both at rest and during Valsalva-associated maneuvers. Intracranial venous reflux was neither observed in patients with TGA nor in control subjects despite unilateral or bilateral internal jugular valve insufficiency during prolonged and maximal Valsalva-associated maneuvers. This study, although confirming the association between TGA and internal jugular valve insufficiency, challenges the hypothesis that cerebral venous congestion plays a significant role in the pathogenesis of TGA.

  4. Delayed Ejaculation

    Science.gov (United States)

    ... cases, it is due to a combination of physical and psychological concerns. Psychological causes of delayed ejaculation include: Depression, anxiety or other mental health conditions Relationship problems due to stress, poor communication ...

  5. Delayed growth

    Science.gov (United States)

    ... Slow rate of growth; Retarded growth and development; Growth delay Images Toddler development References Cooke DW, Divall SA, Radovick S. Normal and aberrant growth in children. In: Melmed S, Polonsky KS, Larsen PR, ...

  6. Differential expression of molecular markers of synaptic plasticity in the hippocampus, prefrontal cortex, and amygdala in response to spatial learning, predator exposure, and stress-induced amnesia.

    Science.gov (United States)

    Zoladz, Phillip R; Park, Collin R; Halonen, Joshua D; Salim, Samina; Alzoubi, Karem H; Srivareerat, Marisa; Fleshner, Monika; Alkadhi, Karim A; Diamond, David M

    2012-03-01

    We have studied the effects of spatial learning and predator stress-induced amnesia on the expression of calcium/calmodulin-dependent protein kinase II (CaMKII), brain-derived neurotrophic factor (BDNF) and calcineurin in the hippocampus, basolateral amygdala (BLA), and medial prefrontal cortex (mPFC). Adult male rats were given a single training session in the radial-arm water maze (RAWM) composed of 12 trials followed by a 30-min delay period, during which rats were either returned to their home cages or given inescapable exposure to a cat. Immediately following the 30-min delay period, the rats were given a single test trial in the RAWM to assess their memory for the hidden platform location. Under control (no stress) conditions, rats exhibited intact spatial memory and an increase in phosphorylated CaMKII (p-CaMKII), total CaMKII, and BDNF in dorsal CA1. Under stress conditions, rats exhibited impaired spatial memory and a suppression of all measured markers of molecular plasticity in dorsal CA1. The molecular profiles observed in the BLA, mPFC, and ventral CA1 were markedly different from those observed in dorsal CA1. Stress exposure increased p-CaMKII in the BLA, decreased p-CaMKII in the mPFC, and had no effect on any of the markers of molecular plasticity in ventral CA1. These findings provide novel observations regarding rapidly induced changes in the expression of molecular plasticity in response to spatial learning, predator exposure, and stress-induced amnesia in brainregions involved in different aspects of memory processing. Copyright © 2011 Wiley Periodicals, Inc.

  7. Memory for Items and Relationships among Items Embedded in Realistic Scenes: Disproportionate Relational Memory Impairments in Amnesia

    Science.gov (United States)

    Hannula, Deborah E.; Tranel, Daniel; Allen, John S.; Kirchhoff, Brenda A.; Nickel, Allison E.; Cohen, Neal J.

    2014-01-01

    Objective The objective of this study was to examine the dependence of item memory and relational memory on medial temporal lobe (MTL) structures. Patients with amnesia, who either had extensive MTL damage or damage that was relatively restricted to the hippocampus, were tested, as was a matched comparison group. Disproportionate relational memory impairments were predicted for both patient groups, and those with extensive MTL damage were also expected to have impaired item memory. Method Participants studied scenes, and were tested with interleaved two-alternative forced-choice probe trials. Probe trials were either presented immediately after the corresponding study trial (lag 1), five trials later (lag 5), or nine trials later (lag 9) and consisted of the studied scene along with a manipulated version of that scene in which one item was replaced with a different exemplar (item memory test) or was moved to a new location (relational memory test). Participants were to identify the exact match of the studied scene. Results As predicted, patients were disproportionately impaired on the test of relational memory. Item memory performance was marginally poorer among patients with extensive MTL damage, but both groups were impaired relative to matched comparison participants. Impaired performance was evident at all lags, including the shortest possible lag (lag 1). Conclusions The results are consistent with the proposed role of the hippocampus in relational memory binding and representation, even at short delays, and suggest that the hippocampus may also contribute to successful item memory when items are embedded in complex scenes. PMID:25068665

  8. Synchronization in networks with heterogeneous coupling delays

    Science.gov (United States)

    Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor

    2018-01-01

    Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.

  9. Lidocaine attenuates anisomycin-induced amnesia and release of norepinephrine in the amygdala

    Science.gov (United States)

    Sadowski, Renee N.; Canal, Clint E.; Gold, Paul E.

    2011-01-01

    When administered near the time of training, protein synthesis inhibitors such as anisomycin impair later memory. A common interpretation of these findings is that memory consolidation requires new protein synthesis initiated by training. However, recent findings support an alternative interpretation that abnormally large increases in neurotransmitter release after injections of anisomycin may be responsible for producing amnesia. In the present study, a local anesthetic was administered prior to anisomycin injections in an attempt to mitigate neurotransmitter actions and thereby attenuate the resulting amnesia. Rats received lidocaine and anisomycin injections into the amygdala 130 and 120 min, respectively, prior to inhibitory avoidance training. Memory tests 48 hr later revealed that lidocaine attenuated anisomycin-induced amnesia. In other rats, in vivo microdialysis was performed at the site of amygdala infusion of lidocaine and anisomycin. As seen previously, anisomycin injections produced large increases in release of norepinephrine in the amygdala. Lidocaine attenuated the anisomycin-induced increase in release of norepinephrine but did not reverse anisomycin inhibition of protein synthesis, as assessed by c-Fos immunohistochemistry. These findings are consistent with past evidence suggesting that anisomycin causes amnesia by initiating abnormal release of neurotransmitters in response to the inhibition of protein synthesis. PMID:21453778

  10. Childhood amnesia in the making: different distributions of autobiographical memories in children and adults.

    Science.gov (United States)

    Bauer, Patricia J; Larkina, Marina

    2014-04-01

    Within the memory literature, a robust finding is of childhood amnesia: a relative paucity among adults for autobiographical or personal memories from the first 3 to 4 years of life, and from the first 7 years, a smaller number of memories than would be expected based on normal forgetting. Childhood amnesia is observed in spite of strong evidence that during the period eventually obscured by the amnesia, children construct and preserve autobiographical memories. Why early memories seemingly are lost to recollection is an unanswered question. In the present research, we examined the issue by using the cue word technique to chart the distributions of autobiographical memories in samples of children ages 7 to 11 years and samples of young and middle-aged adults. Among adults, the distributions were best fit by the power function, whereas among children, the exponential function provided a better fit to the distributions of memories. The findings suggest that a major source of childhood amnesia is a constant rate of forgetting in childhood, seemingly resulting from failed consolidation, the outcome of which is a smaller pool of memories available for later retrieval.

  11. Gudden's Ventral Tegmental Nucleus Is Vital for Memory: Re-Evaluating Diencephalic Inputs for Amnesia

    Science.gov (United States)

    Vann, Seralynne D.

    2009-01-01

    Mammillary body atrophy is present in a number of neurological conditions and recent clinical findings highlight the importance of these nuclei for memory. While most accounts of diencephalic amnesia emphasize the functional importance of the hippocampal projections to the mammillary bodies, the present study tested the importance of the other…

  12. A Patient with Difficulty of Object Recognition: Semantic Amnesia for Manipulable Objects

    Directory of Open Access Journals (Sweden)

    A. Yamadori

    1992-01-01

    Full Text Available We studied a patient who had recognition difficulty for manipulable objects. MRI showed a lesion in the left occipito-parietotemporal area. Differential diagnosis of agnosia, aphasia and apraxia is discussed. We believe this “object meaning amnesia” constitutes a distinct subtype of semantic amnesia.

  13. Contribution of Prior Semantic Knowledge to New Episodic Learning in Amnesia

    Science.gov (United States)

    Kan, Irene P.; Alexander, Michael P.; Verfaellie, Mieke

    2009-01-01

    We evaluated whether prior semantic knowledge would enhance episodic learning in amnesia. Subjects studied prices that are either congruent or incongruent with prior price knowledge for grocery and household items and then performed a forced-choice recognition test for the studied prices. Consistent with a previous report, healthy controls'…

  14. Introduction of the Abbreviated Westmead Post-Traumatic Amnesia Scale and Impact on Length of Stay

    NARCIS (Netherlands)

    Watson, C. E.; Clous, E. A.; Jaeger, M.; D'Amours, S. K.

    2017-01-01

    Mild traumatic brain injury is a common presentation to Emergency Departments. Early identification of patients with cognitive deficits and provision of discharge advice are important. The Abbreviated Westmead Post-traumatic Amnesia Scale provides an early and efficient assessment of post-traumatic

  15. ‘Becoming Mozambicanised’: Nostalgic amnesia among Zimbabweans adapting to ‘disorder’ in Mozambique

    DEFF Research Database (Denmark)

    Hammar, Amanda

    2017-01-01

    -simplifications and stereotypes. It suggests that rememberings and representations of an ‘ordered’ past in Zimbabwe set in contrast to a ‘disordered’ Mozambique, are part of a nostalgic amnesia that assists these ambivalent migrants to deal with (or deny) their displacement and losses, and helps them adapt to the new and strange...

  16. MK-801 induced amnesia for the elevated plus-maze in mice

    Czech Academy of Sciences Publication Activity Database

    Hliňák, Zdeněk; Krejčí, I.

    2002-01-01

    Roč. 131, 1-2 (2002), s. 221-225 ISSN 0166-4328 R&D Projects: GA ČR GA309/00/1644 Institutional research plan: CEZ:AV0Z5011922 Keywords : amnesia * elevated plus-maze * MK-801 Subject RIV: FH - Neurology Impact factor: 2.791, year: 2002

  17. The therapeutic effect of crocin on ketamine-induced retrograde amnesia in rats

    Directory of Open Access Journals (Sweden)

    Namdar Yousefvand

    2016-09-01

    Full Text Available Introduction: The glutamatergic system plays an important role in learning and memory. Administration of crocus sativus (Saffron or its constituent, crocin, facilitates the formation of memory. This research investigated the effect of crocin on antagonizing retrograde amnesia induced by ketamine, a glutamatergic receptor antagonist, in rats by shuttle box. Methods: Male Wistar rats were tested to measure their learning behavior in the passive avoidance task. All animals were trained by a 1 mA shock. The drugs were injected immediately after the training was successfully performed. The animals were tested 24h after training to measure Step Through Latency (STL. Results: On the test day, administration of ketamine (12 mg/kg, ip impaired the memory after training. Different doses of crocin (2, 5 or 10 mg/kg, ip were injected 30 min after ketamine, but only 2 mg/kg crocin could improve retrograde amnesia and 5 and 10 mg/kg doses did not have any significant effect on retrograde amnesia. Moreover, administration of crocin (2, 5 or 10 mg/kg, ip after training had no significant impact on passive avoidance memory by itself. Conclusion: Considering the therapeutic effect of post-training administration of crocin on ketamine-induced retrograde amnesia, it can be argued that crocin has an interaction with glutamatergic system in formation of passive avoidance memory in rats.

  18. The importance of mammillary body efferents for recency memory: towards a better understanding of diencephalic amnesia.

    Science.gov (United States)

    Nelson, Andrew J D; Vann, Seralynne D

    2017-07-01

    Despite being historically one of the first brain regions linked to memory loss, there remains controversy over the core features of diencephalic amnesia as well as the critical site for amnesia to occur. The mammillary bodies and thalamus appear to be the primary locus of pathology in the cases of diencephalic amnesia, but the picture is complicated by the lack of patients with circumscribed damage. Impaired temporal memory is a consistent neuropsychological finding in Korsakoff syndrome patients, but again, it is unclear whether this deficit is attributable to pathology within the diencephalon or concomitant frontal lobe dysfunction. To address these issues, we used an animal model of diencephalic amnesia and examined the effect of mammillothalamic tract lesions on tests of recency memory. The mammillothalamic tract lesions severely disrupted recency judgements involving multiple items but left intact both recency and familiarity judgements for single items. Subsequently, we used disconnection procedures to assess whether this deficit reflects the indirect involvement of the prefrontal cortex. Crossed-lesion rats, with unilateral lesions of the mammillothalamic tract and medial prefrontal cortex in contralateral hemispheres, were unimpaired on the same recency tests. These results provide the first evidence for the selective importance of mammillary body efferents for recency memory. Moreover, this contribution to recency memory is independent of the prefrontal cortex. More broadly, these findings identify how specific diencephalic structures are vital for key elements of event memory.

  19. Socio-historical amnesia in Ukraine: to statement of the problem

    Directory of Open Access Journals (Sweden)

    A. A. Arkhipova

    2016-12-01

    Full Text Available The article is dedicated to the problem of social memory and social amnesia, represented in socio-cultural phenomena of the Ukrainian society. The specificity of social memory’s functioning has been studied with the use of a systematic approach. Social amnesia is presented in the form of operations, which are included into the integral system network of the reproduction of social oblivion. On the basis of specific examples, theoretical and sociological analysis of the structural and organizational complex of memorial subjects and objects, which are the components of such social institutions: religion, education, government, family, has been conducted. Within the frame of socio-system analysis, the value of social memory defects in the structure of social reality has been determined. The mechanism of the socio-historical amnesia’s construction has been schematically set out as well as the resulting from it tendency to mythologizing/hallucination has been described. The social amnesia is the social script and the characteristic, which forms mentality. The influence of social and historical amnesia in the process of perception of social time has been estimated, a schematic representation of the model of time distortion has been represented. The non-actualization of the experience in this model determines the formation of the imaginable social reality.

  20. Post-traumatic amnesia predicts intelligence impairment following traumatic brain injury: a meta-analysis

    NARCIS (Netherlands)

    Konigs, M.; de Kieviet, J.F.; Oosterlaan, J.

    2012-01-01

    Context: Worldwide, millions of patients with traumatic brain injury (TBI) suffer from persistent and disabling intelligence impairment. Post-traumatic amnesia (PTA) duration is a promising predictor of intelligence following TBI. Objectives: To determine (1) the impact of TBI on intelligence

  1. Infantile Amnesia across the Years: A 2-Year Follow-Up of Children's Earliest Memories

    Science.gov (United States)

    Peterson, Carole; Warren, Kelly L.; Short, Megan M.

    2011-01-01

    Although infantile amnesia has been investigated for many years in adults, only recently has it been investigated in children. This study was a 2-year follow-up and extension of an earlier study. Children (4-13 years old) were asked initially and 2 years later for their earliest 3 memories. At follow-up, their age at the time of these memories…

  2. Can We Remember Future Actions yet Forget the Last Two Minutes? Study in Transient Global Amnesia

    Science.gov (United States)

    Hainselin, Mathieu; Quinette, Peggy; Desgranges, Beatrice; Martinaud, Olivier; Hannequin, Didier; de La Sayette, Vincent; Viader, Fausto; Eustache, Francis

    2011-01-01

    Transient global amnesia (TGA) is a clinical syndrome characterized by the abrupt onset of a massive episodic memory deficit that spares other cognitive functions. If the anterograde dimension is known to be impaired in TGA, researchers have yet to investigate prospective memory (PM)--which involves remembering to perform an intended action at…

  3. Synchronization of Coupled Neurons Controlled by a Pacemaker

    International Nuclear Information System (INIS)

    Li Mei-Sheng; Zhang Hong-Hui; Zhao Yong; Shi Xia

    2011-01-01

    We investigate synchronization of Hindmarsh—Rose neurons with gap junctions under the control of a pacemaker. In a ring Hindmarsh—Rose neuronal network, the coupled neurons with the pacemaker can occur in synchronization more easily than those without the pacemaker. Furthermore, the pacemaker can induce phase synchronization or nearly-complete synchronization of nonidentical neurons. This synchronization can occur more easily when time delay is considered. Theses results can be helpful to understand the activities of the real neuronal system. (general)

  4. Awareness of disease state without explicit knowledge of memory failure in transient global amnesia.

    Science.gov (United States)

    Hainselin, Mathieu; Quinette, Peggy; Desgranges, Béatrice; Martinaud, Olivier; de La Sayette, Vincent; Hannequin, Didier; Viader, Fausto; Eustache, Francis

    2012-09-01

    Transient global amnesia (TGA) is a syndrome characterised by the rapid onset of antero- and retrograde amnesia, accompanied by temporal disorientation and iterative questioning. It is now established that the acute phase is associated with a raised level of anxiety and a depressed mood. We conducted a thorough investigation of patients' perceptions of their disease state, focusing on the links between their lack of explicit knowledge of amnesia during the acute phase and their emotional experience. Explicit knowledge of memory deficits was assessed during TGA by means of an original scale inspired by Bisiach et al. (1986) and self-reported scales measuring patients' perceptions of their current memory and their cognitive and behavioural functioning. At the same time, we probed the patients' emotional experience (sources of worry, and levels of worry, anxiety and depression) via questionnaires. Data were collected from 20 patients in the acute phase, 16 in the peri-acute phase, 16 who were assessed the day after the episode and 14 healthy controls. Each patient underwent a follow-up examination 2 months later. Patients in the acute phase displayed a lack of explicit knowledge of their amnesia and overestimated their memory performances. They also expressed higher levels of worry and anxiety than controls, and a more depressed mood. Although they were aware of their disease state, the TGA patients were unable to identify the nature of their memory deficits and overestimated their memory performances. These memory misperceptions and the inability to acknowledge memory failure occurred concomitantly with changes in the patients' emotional state. This particular pattern of awareness could be regarded as a reaction to the suddenness and massiveness of the amnesia. Copyright © 2012 Elsevier Srl. All rights reserved.

  5. Developmental delay

    Science.gov (United States)

    Nutrition support is essential for the care of the child with developmental delay. After a thorough evaluation, an individualized intervention plan that accounts for the child’s nutrition status, feeding ability, and medical condition may be determined. Nutrition assessments may be performed at leas...

  6. Irrelevant, Incidental and Core Features in the Retrograde Amnesia Associated with Korsakoff’s Psychosis: A Review

    Directory of Open Access Journals (Sweden)

    P. R. Meudell

    1992-01-01

    Full Text Available A brief review of the literature on retrograde amnesia in Korsakoff's syndrome is presented. Various explanations of the phenomenon are discussed including the notions that it results from the effects of “state-dependency”, that it occurs as a result of a progressive learning problem and that it arises through a failure in contextual processing. None of these hypotheses can satisfactorily account for the length and temporal gradient of alcoholic amnesics retrograde amnesia. Although some evidence points towards the hypothesis that anterograde and retrograde amnesia might result from separate and independent impairments, this view is presently unproven and leaves open what causes the form and duration of Korsakoffs retrograde amnesia.

  7. A Case of Persistent Generalized Retrograde Autobiographical Amnesia Subsequent to the Great East Japan Earthquake in 2011

    OpenAIRE

    Odagaki, Yuji

    2017-01-01

    Functional retrograde autobiographical amnesia is often associated with physical and/or psychological trauma. On 11 March 2011, the largest earthquake on record in Japan took place, and subsequent huge tsunami devastated the Pacific coast of northern Japan. This case report describes a patient suffering from retrograde episodic-autobiographical amnesia for whole life, persisting for even more than five years after the disaster. A Japanese man, presumably in his 40s, got police protection in A...

  8. Irrelevant, Incidental and Core Features in the Retrograde Amnesia Associated with Korsakoff’s Psychosis: A Review

    OpenAIRE

    Meudell, P. R.

    1992-01-01

    A brief review of the literature on retrograde amnesia in Korsakoff's syndrome is presented. Various explanations of the phenomenon are discussed including the notions that it results from the effects of “state-dependency”, that it occurs as a result of a progressive learning problem and that it arises through a failure in contextual processing. None of these hypotheses can satisfactorily account for the length and temporal gradient of alcoholic amnesics retrograde amnesia. Although some evid...

  9. Firing dynamics of an autaptic neuron

    International Nuclear Information System (INIS)

    Wang Heng-Tong; Chen Yong

    2015-01-01

    Autapses are synapses that connect a neuron to itself in the nervous system. Previously, both experimental and theoretical studies have demonstrated that autaptic connections in the nervous system have a significant physiological function. Autapses in nature provide self-delayed feedback, thus introducing an additional timescale to neuronal activities and causing many dynamic behaviors in neurons. Recently, theoretical studies have revealed that an autapse provides a control option for adjusting the response of a neuron: e.g., an autaptic connection can cause the electrical activities of the Hindmarsh–Rose neuron to switch between quiescent, periodic, and chaotic firing patterns; an autapse can enhance or suppress the mode-locking status of a neuron injected with sinusoidal current; and the firing frequency and interspike interval distributions of the response spike train can also be modified by the autapse. In this paper, we review recent studies that showed how an autapse affects the response of a single neuron. (topical review)

  10. Lidocaine attenuates anisomycin-induced amnesia and release of norepinephrine in the amygdala

    OpenAIRE

    Sadowski, Renee N.; Canal, Clint E.; Gold, Paul E.

    2011-01-01

    When administered near the time of training, protein synthesis inhibitors such as anisomycin impair later memory. A common interpretation of these findings is that memory consolidation requires new protein synthesis initiated by training. However, recent findings support an alternative interpretation that abnormally large increases in neurotransmitter release after injections of anisomycin may be responsible for producing amnesia. In the present study, a local anesthetic was administered prio...

  11. Impairment of recollection but not familiarity in a case of developmental amnesia

    Science.gov (United States)

    Brandt, Karen R.; Gardiner, John M.; Vargha-Khadem, Faraneh; Baddeley, Alan D.; Mishkin, Mortimer

    2010-01-01

    In a re-examination of the recognition memory of Jon, a young adult with developmental amnesia due to perinatal hippocampal damage, we used a test procedure that provides estimates of the separate contributions to recognition of recollection and familiarity. Comparison between Jon and his controls revealed that, whereas he was unimpaired in the familiarity process, he showed abnormally low levels of recollection, supporting the view that the hippocampus mediates the latter process selectively. PMID:19090415

  12. Low-dose Propofol–induced Amnesia Is Not due to a Failure of Encoding

    OpenAIRE

    Veselis, Robert A.; Pryor, Kane O.; Reinsel, Ruth A.; Mehta, Meghana; Pan, Hong; Johnson, Ray

    2008-01-01

    Background—Propofol may produce amnesia by affecting encoding. The hypothesis that propofol weakens encoding was tested by measuring regional cerebral blood flow during verbal encoding. Methods—17 volunteer participants (12 M, 30.4±6.5 years old) had regional cerebral blood flow measured using H2O15 positron emission tomography during complex and simple encoding tasks (deep vs. shallow level of processing), to identify a region of interest in the left inferior prefrontal cortex...

  13. Recovery from anterograde and retrograde amnesia after percutaneous drainage of a cystic craniopharyngioma.

    Science.gov (United States)

    Ignelzi, R J; Squire, L R

    1976-01-01

    A case is reported of a cystic craniopharyngioma involving the floor and walls of the third ventricle. Pronounced anterograde and retrograde amnesia were documented preoperatively by formal testing. Rapid improvement in both new learning capacity and remote memory occurred after percutaneous twist drill drainage of the cystic portion of the tumour. The relevance of these observations to the amnesic syndrome and its neuropathological basis is discussed. Images PMID:1011035

  14. Clinical and neuropsychological changes after the disappearance of seizures in a case of transient epileptic amnesia

    OpenAIRE

    Sekimoto, Masanori; Muramatsu, Reimi; Kato, Masaaki; Onuma, Teiichi

    2017-01-01

    We encountered a female patient with late-onset temporal lobe epilepsy who presented with transient amnesia as the sole ictal manifestation, an accelerated rate of forgetting daily life events, and a retrograde memory deficit. We describe the memory function of the patient both before and after the administration of antiseizure medication. After the patient's seizures were controlled with antiseizure drugs, her neuropsychological memory performance scores showed improvement. We presumed that ...

  15. Impairment of recollection but not familiarity in a case of developmental amnesia.

    Science.gov (United States)

    Brandt, Karen R; Gardiner, John M; Vargha-Khadem, Faraneh; Baddeley, Alan D; Mishkin, Mortimer

    2008-01-01

    In a re-examination of the recognition memory of Jon, a young adult with developmental amnesia due to perinatal hippocampal damage, we used a test procedure that provides estimates of the separate contributions to recognition of recollection and familiarity. Comparison between Jon and his controls revealed that, whereas he was unimpaired in the familiarity process, he showed abnormally low levels of recollection, supporting the view that the hippocampus mediates the latter process selectively.

  16. Transient global amnesia following cerebral angiography with non-ionic contrast medium

    International Nuclear Information System (INIS)

    Schamschula, R.G.; Soo, M.Y.S.

    1994-01-01

    Transit global amnesia (TGA) is an uncommon syndrome of recent memory deficit and inability to learn new data, usually resolving within 24 hours. Two cases following use of non-ionic contrast media in cerebral angiography are presented. The neuroanatomy of memory is reviewed. Possible aetiologies of TGA in relation to cerebral angiography include ischemia (embolic, arterial spasm), epilepsy that may be primary or tumour-related and direct toxic effects of contrast media. 19 refs., 1 fig

  17. Measuring retrograde autobiographical amnesia following electroconvulsive therapy: historical perspective and current issues.

    Science.gov (United States)

    Semkovska, Maria; McLoughlin, Declan M

    2013-06-01

    Retrograde amnesia following electroconvulsive therapy (ECT) is a major concern for both patients and clinicians. In contemporary ECT research, retrograde autobiographical amnesia (RAA) is commonly measured with instruments assessing autobiographical memory (AM) consistency over time. However, normal AM recall loses in consistency with the passage of time, and time has a differential effect on stability of personal memories. In addition, experiencing depression is associated with a decreased ability to recall specific AMs, and this difficulty may persist in the euthymic phase of recurrent depression. Despite these scientific facts, relatively few attempts have been made to accurately measure the specific effect of ECT on AM independent of both normal and mood-associated forgetting over time. This major gap in our knowledge prevents us at present from objectively quantifying the nature and extent of RAA associated with ECT. In turn, this hinders our identifying and implementing strategies for prevention or remediation of AM deficits. The present article aims to provide an up-to-date review and historical perspective of this major methodological conundrum for ECT research, highlight current issues in retrograde amnesia assessment following ECT, and propose directions for future studies. In conclusion, we suggest methods to reliably and specifically measure the extent and progression over time of ECT-associated RAA independently from persistent depressive symptoms' contribution and normal loss in AM consistency over time.

  18. Retrograde episodic memory and emotion: a perspective from patients with dissociative amnesia.

    Science.gov (United States)

    Reinhold, Nadine; Markowitsch, Hans J

    2009-09-01

    With his recent definition of episodic memory Tulving [Tulving, E. (2005). Episodic memory and autonoesis: Uniquely human? In H. Terrace & J. Metcalfe (Eds.), The missing link in cognition: Evolution of self-knowing consciousness (pp. 3-56). New York: Oxford University Press] claims that this memory system is uniquely human and thereby distinguishes human beings from other, even highly developed, mammals. First we will define the term episodic memory as it is currently used in neuropsychological research by specifying the three underlying concepts of subjective time, autonoëtic consciousness, and the self. By doing so, we will strongly focus on retrograde episodic memory and its relation to emotion and self-referential processing. We support this relation with a discussion of autobiographical memory functions in psychiatric disorders such as dissociative amnesia. To illustrate the connection of emotion and retrograde episodic memory we shortly present neuropsychological data of two cases of dissociative amnesia. Both cases serve to point to the protective mechanism of a block of self-endangering memories from the episodic memory system, often described as the mnestic block syndrome. On the basis of these cases and supportive results from further cases we will conclude by pointing out similarities and differences of patients with organic and dissociative (psychogenic) amnesia.

  19. A single-system model predicts recognition memory and repetition priming in amnesia.

    Science.gov (United States)

    Berry, Christopher J; Kessels, Roy P C; Wester, Arie J; Shanks, David R

    2014-08-13

    We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with amnesia categorized pictures of objects at study and then, at test, identified fragmented versions of studied (old) and nonstudied (new) objects (providing a measure of priming), and made a recognition memory judgment (old vs new) for each object. Numerous results in the amnesic patients were predicted in advance by the single-system model, as follows: (1) deficits in recognition memory and priming were evident relative to a control group; (2) items judged as old were identified at greater levels of fragmentation than items judged new, regardless of whether the items were actually old or new; and (3) the magnitude of the priming effect (the identification advantage for old vs new items) overall was greater than that of items judged new. Model evidence measures also favored the single-system model over two formal multiple-systems models. The findings support the single-system model, which explains the pattern of recognition and priming in amnesia primarily as a reduction in the strength of a single dimension of memory strength, rather than a selective explicit memory system deficit. Copyright © 2014 the authors 0270-6474/14/3410963-12$15.00/0.

  20. Delayed Puberty

    DEFF Research Database (Denmark)

    Kolby, Nanna; Busch, Alexander Siegfried; Juul, Anders

    2017-01-01

    . The underlying reasons for the large variation in the age at pubertal onset are not fully established; however, nutritional status and socioeconomic and environmental factors are known to be influencing, and a significant amount of influencing genetic factors have also been identified. The challenges...... optimal in discriminating especially CDGP from HH. Management of the delayed puberty depends on the etiology. For boys with CDGP an observational period will often reveal imminent puberty. If puberty is not progressing spontaneously, sex steroid replacement is effective in stimulating the development...

  1. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  2. Inhibition of Notch Signaling in Human Embryonic Stem Cell-Derived Neural Stem Cells Delays G1/S Phase Transition and Accelerates Neuronal Differentiation In Vitro and In Vivo

    Czech Academy of Sciences Publication Activity Database

    Borghese, L.; Doležalová, Dáša; Opitz, T.; Haupt, S.; Leinhaas, A.; Steinfarz, B.; Koch, P.; Edenhofer, F.; Hampl, Aleš; Brüstle, O.

    2010-01-01

    Roč. 28, č. 5 (2010), s. 955-964 ISSN 1066-5099 Grant - others:GA MŠk(CZ) 1M0538; EC FP6 project ESTOOLS(XE) LSHG-CT-2006-018739; EC FP7 project NeuroStemcell(XE) HEALTH-2007-B-22943 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : neural stem cells * notch * neuron Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.871, year: 2010

  3. Autapse-induced synchronization in a coupled neuronal network

    International Nuclear Information System (INIS)

    Ma, Jun; Song, Xinlin; Jin, Wuyin; Wang, Chuni

    2015-01-01

    Highlights: • The functional effect of autapse on neuronal activity is detected. • Autapse driving plays active role in regulating electrical activities as pacemaker. • It confirms biological experimental results for rhythm synchronization between heterogeneous cells. - Abstract: The effect of autapse on coupled neuronal network is detected. In our studies, three identical neurons are connected with ring type and autapse connected to one neuron of the network. The autapse connected to neuron can impose time-delayed feedback in close loop on the neuron thus the dynamics of membrane potentials can be changed. Firstly, the effect of autapse driving on single neuron is confirmed that negative feedback can calm down the neuronal activity while positive feedback can excite the neuronal activity. Secondly, the collective electrical behaviors of neurons are regulated by a pacemaker, which associated with the autapse forcing. By using appropriate gain and time delay in the autapse, the neurons can reach synchronization and the membrane potentials of all neurons can oscillate with the same rhythm under mutual coupling. It indicates that autapse forcing plays an important role in changing the collective electric activities of neuronal network, and appropriate electric modes can be selected due to the switch of feedback type(positive or negative) in autapse. And the autapse-induced synchronization in network is also consistent with some biological experiments about synchronization between nonidentical neurons.

  4. Spared unconscious influences of spatial memory in diencephalic amnesia

    Science.gov (United States)

    Antonides, Rémy; Wester, Arie J.; Kessels, Roy P. C.

    2008-01-01

    Spatial memory is crucial to our daily lives and in part strongly depends on automatic, implicit memory processes. This study investigates the neurocognitive basis of conscious and unconscious influences of object–location memory in amnesic patients with Korsakoff’s syndrome (N = 23) and healthy controls (N = 18) using a process-dissociation procedure in a computerized spatial memory task. As expected, the patients performed substantially worse on the conscious memory measures but showed even slightly stronger effects of unconscious influences than the controls. Moreover, a delayed test administered after 1 week revealed a strong decline in conscious influences in the patients, while unconscious influences were not affected. The presented results suggest that conscious and unconscious influences of spatial memory can be clearly dissociated in Korsakoff’s syndrome. PMID:18560813

  5. Effects of mecamylamine (a nicotinic receptor antagonist on harman induced-amnesia in an inhibitory avoidance test

    Directory of Open Access Journals (Sweden)

    Mohammad Nasehi

    2011-10-01

    Full Text Available Introduction: β-carbolines alkaloids suchv as harmane have been found in common plant-derived foodstuffs (wheat, rice, corn, barley, grape and mushrooms. These alkaloids have many cognitive effects including alteration short and long term memory. In the present study, the effect of intra-CA1 injection of the nicotinic receptor antagonist mecamylamine on amnesia induced by harmane was examined in mice. Materials and Methods: Mice were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus. One week after cannulae implantation, mice were trained in a step-down type inhibitory avoidance task, and were tested 24 h after training to measure step-down latency as a scale of memory. Results: Pre-training or post-training systemic injection of harmane induced amnesia. Pre-testing intra-dorsal hippocampus administration of the high dose of nicotinic receptor antagonist, mecamylamine (4 µg/mice also induced amnesia. On the other hand, pre-test intra-CA1 injection of ineffective doses of mecamylamine (0.5, 1 and 2 µg/mice fully restored harmane induced amnesia. Conclusion: The present finding in this study indicated that a complex interaction exists between nicotinic receptor of dorsal hippocampus and amnesia induced by Harmane.

  6. [Mirror neurons].

    Science.gov (United States)

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  7. Hand gestures support word learning in patients with hippocampal amnesia.

    Science.gov (United States)

    Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C

    2018-06-01

    Co-speech hand gesture facilitates learning and memory, yet the cognitive and neural mechanisms supporting this remain unclear. One possibility is that motor information in gesture may engage procedural memory representations. Alternatively, iconic information from gesture may contribute to declarative memory representations mediated by the hippocampus. To investigate these alternatives, we examined gesture's effects on word learning in patients with hippocampal damage and declarative memory impairment, with intact procedural memory, and in healthy and in brain-damaged comparison groups. Participants learned novel label-object pairings while producing gesture, observing gesture, or observing without gesture. After a delay, recall and object identification were assessed. Unsurprisingly, amnesic patients were unable to recall the labels at test. However, they correctly identified objects at above chance levels, but only if they produced a gesture at encoding. Comparison groups performed well above chance at both recall and object identification regardless of gesture. These findings suggest that gesture production may support word learning by engaging nondeclarative (procedural) memory. © 2018 Wiley Periodicals, Inc.

  8. What does a comparison of the alcoholic Korsakoff syndrome and thalamic infarction tell us about thalamic amnesia?

    Science.gov (United States)

    Kopelman, Michael D

    2015-07-01

    In this review, the clinical, neuropsychological, and neuroimaging findings in the alcoholic Korsakoff syndrome and in thalamic amnesia, resulting from focal infarction, are compared. In both disorders, there is controversy over what is the critical site for anterograde amnesia to occur-damage to the anterior thalamus/mammillo-thalamic tract has most commonly been cited, but damage to the medio-dorsal nuclei has also been advocated. Both syndromes show 'core' features of an anterograde amnesic syndrome; but retrograde amnesia is generally much more extensive (going back many years or decades) in the Korsakoff syndrome. Likewise, spontaneous confabulation occurs more commonly in the Korsakoff syndrome, although seen in only a minority of chronic cases. These differences are attributed to the greater prevalence of frontal atrophy and frontal damage in Korsakoff cases. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  9. Sensory-specific amnesia and hypoemotionality in humans and monkeys: gateway for developing a hodology of memory.

    Science.gov (United States)

    Ross, Elliott D

    2008-09-01

    Amnesia is a dramatic clinical syndrome caused by diverse pathologies and lesion localizations. Although amnesia is typically screened for by clinicians using verbal stimuli, amnestic syndromes have been described that do not impair verbal memory and may be confined to a single sensory system or a dominant or highly lateralized sensory function. Thus, the functional-anatomic basis for various types of amnestic disorders is complex and, in most instances, better understood as a disconnection syndrome rather than a primary processing deficit. Using the clinical disorder of sensory-specific visual amnesia in humans as a springboard, a hodological model for understanding the various types of amnestic syndromes encountered in the clinic and those produced by discrete experimental lesions in monkeys is offered. The model is then expanded to encompass memory functions, in general, including agnostic deficits and the role of prefrontal cortex in learning and remembering.

  10. The relationship between working memory and episodic memory disorders in transient global amnesia.

    Science.gov (United States)

    Quinette, Peggy; Guillery-Girard, Bérengère; Noël, Audrey; de la Sayette, Vincent; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2006-01-01

    In a previous study, we investigated the relationship between the disorders of both episodic memory and working memory in the acute phase of transient global amnesia (TGA). Since executive functions were spared, another dysfunction may be responsible for the binding and maintenance of multimodal informations and contribute to the encoding disorders observed in some patients [Quinette, P., Guillery, B., Desgranges, B., de la Sayette, V., Viader, F., & Eustache, F. (2003). Working memory and executive functions in transient global amnesia. Brain, 126, 1917-1934.]. The aim of this present study was to assess the functions of binding and maintenance of multimodal information during TGA and explore their involvement in episodic memory disorders. We therefore conducted a more thorough investigation of working memory in 16 new patients during the acute phase of TGA using two tasks designed to assess the binding process and both dimensions of the maintenance, namely the active storage and the memory load ability. We also investigated the nature of the episodic memory impairment in distinguishing between the performance of patients with preferential encoding deficits and those of patients with preferential storage disorders on the episodic memory task. This distinction was closely related to the severity of amnesia, i.e. an encoding disorder was observed rather in the early phase of TGA. The results showed that while the functions of binding and maintenance of multimodal information were intact in patients with storage disorders, they were impaired in the case of encoding deficits. These results are interpreted in the recent framework of episodic buffer proposed by Baddeley [Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417-423] that represents an interface between working memory and episodic memory.

  11. The effect of CA1 dopaminergic system on amnesia induced by harmane in mice.

    Science.gov (United States)

    Nasehi, Mohammad; Hasanvand, Simin; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2018-05-16

    In the present study, the effects of bilateral injections of dopaminergic drugs into the hippocampal CA1 regions (intra-CA1) on harmane-induced amnesia were examined in mice. We used a single-trial step-down inhibitory avoidance task for the assessment of memory acquisition in adult male mice. Our data indicated that pre-training intra-peritoneal (i.p.) administration of harmane (12 mg/kg) impaired memory acquisition. Moreover, intra-CA1 administration of dopamine D1 receptor agonist, SKF38393 (0.25 µg/mouse), dopamine D1 receptor antagonist, SCH23390 (0.25 µg/mouse), dopamine D2 receptor agonist, quinpirole (0.125 and 0.25 µg/mouse) and dopamine D2 receptor antagonist, sulpiride (0.2 and 0.4 µg/mouse) decreased the learning of a single-trial inhibitory avoidance task. Furthermore, pre-training intra-CA1 injection of sub-threshold doses of SKF38393 (0.0625 µg/mouse) or sulpiride (0.1 µg/mouse) increased pre-training harmane (4 and 8 mg/kg, i.p.)-induced amnesia. On the other hand, pre-training intra-CA1 injection of a sub-threshold dose of SCH23390 (0.0625 µg/mouse) reversed amnesia induced by an effective dose of harmane (12 mg/kg; i.p.). In addition, Pre-training intra-CA1 injection of quinpirole (0.0625 µg/mouse) had no effect on memory impairment induced by harmane. These findings indicate the involvement of CA1 dopaminergic system on harmane-induced impairment of memory acquisition.

  12. Right ventral frontal hypometabolism and abnormal sense of self in a case of disproportionate retrograde amnesia.

    Science.gov (United States)

    Piolino, Pascale; Hannequin, Didier; Desgranges, Beatrice; Girard, Carole; Beaunieux, Helene; Giffard, Benedicte; Lebreton, Karine; Eustache, Francis

    2005-01-01

    We report the case of a 42-year-old man (patient CL) who developed a particular profile of amnesia with two dates of onset. At the first onset, the patient suffered a mild/lmoderate injury that accounts for an initial anterograde and mild retrograde memory impairment. At the second onset, 8 months later, he suffered a sudden and persistent loss of personal identity and severe retrograde amnesia. We report an extensive neuropsychological investigation of his memory systems carried out 18 months after the second onset. Results indicated mild executive dysfunction (primary memory), intact procedural skills and perceptual representational system. In accordance with Kopelman's methodological recommendations, we have reliably compared post- and pre-onset semantic and episodic memory using strict matched procedures. We found that post-onset, though not pre-onset semantic (autobiographical and nonautobiographical) memory was entirely preserved. Post-onset episodic autobiographical memory was not intact, however, although it was clearly less affected compared with the total absence of the pre-onset memory. Moreover, a novel and high standard investigation of the subjective states of consciousness, which accompanied retrieval of autobiographical memories via the Remember/lKnow (R/lK) paradigm with a long time interval from the present, demonstrated a deterioration of R responses compared to matched controls. Interestingly, this result showed deficient autonoetic consciousness and suggested an underlying accelerated forgetting rate for post-onset autobiographical episodic memories. Last, a [18F] fluorodeoxyglucose resting PET study revealed a significant right-sided ventral frontal lobe hypometabolism in the absence of overt structural lesions. The involvement of this region is consistent with CL's autobiographical retrograde amnesia and his inability to re-experience information concerning the self across time. In our particular case, characterised by two dates of onset, the

  13. Delayed switching applied to memristor neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Frank Z.; Yang Xiao; Lim Guan [Future Computing Group, School of Computing, University of Kent, Canterbury (United Kingdom); Helian Na [School of Computer Science, University of Hertfordshire, Hatfield (United Kingdom); Wu Sining [Xyratex, Havant (United Kingdom); Guo Yike [Department of Computing, Imperial College, London (United Kingdom); Rashid, Md Mamunur [CERN, Geneva (Switzerland)

    2012-04-01

    Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the ''delayed switching effect.'' In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.

  14. Delayed switching applied to memristor neural networks

    International Nuclear Information System (INIS)

    Wang, Frank Z.; Yang Xiao; Lim Guan; Helian Na; Wu Sining; Guo Yike; Rashid, Md Mamunur

    2012-01-01

    Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the ''delayed switching effect.'' In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.

  15. Charting the acquisition of semantic knowledge in a case of developmental amnesia

    Science.gov (United States)

    Gardiner, John M.; Brandt, Karen R.; Baddeley, Alan D.; Vargha-Khadem, Faraneh; Mishkin, Mortimer

    2009-01-01

    We report the acquisition and recall of novel facts by Jon, a young adult with early onset developmental amnesia whose episodic memory is gravely impaired due to selective bilateral hippocampal damage. Jon succeeded in learning some novel facts but compared with a control group his intertrial retention was impaired during acquisition and, except for the most frequently repeated facts, he was also less accurate in correctly sourcing these facts to the experiment. The results further support the hypothesis that despite a severely compromised episodic memory and hippocampal system, there is nevertheless the capacity to accrue semantic knowledge available to recall. PMID:18589461

  16. Clinical and neuropsychological changes after the disappearance of seizures in a case of transient epileptic amnesia

    Directory of Open Access Journals (Sweden)

    Masanori Sekimoto

    2017-01-01

    Full Text Available We encountered a female patient with late-onset temporal lobe epilepsy who presented with transient amnesia as the sole ictal manifestation, an accelerated rate of forgetting daily life events, and a retrograde memory deficit. We describe the memory function of the patient both before and after the administration of antiseizure medication. After the patient's seizures were controlled with antiseizure drugs, her neuropsychological memory performance scores showed improvement. We presumed that the disappearance of seizures was associated with a decrease in the accelerated rate of forgetting medication. However, her lost memories were not recovered after the seizures were controlled by antiseizure medication.

  17. Charting the acquisition of semantic knowledge in a case of developmental amnesia.

    Science.gov (United States)

    Gardiner, John M; Brandt, Karen R; Baddeley, Alan D; Vargha-Khadem, Faraneh; Mishkin, Mortimer

    2008-09-01

    We report the acquisition and recall of novel facts by Jon, a young adult with early onset developmental amnesia whose episodic memory is gravely impaired due to selective bilateral hippocampal damage. Jon succeeded in learning some novel facts but compared with a control group his intertrial retention was impaired during acquisition and, except for the most frequently repeated facts, he was also less accurate in correctly sourcing these facts to the experiment. The results further support the hypothesis that despite a severely compromised episodic memory and hippocampal system, there is nevertheless the capacity to accrue semantic knowledge available to recall.

  18. Functional MRI study of diencephalic amnesia in Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Caulo, M; Van Hecke, J; Toma, L; Ferretti, A; Tartaro, A; Colosimo, C; Romani, G L; Uncini, A

    2005-07-01

    Anterograde amnesia in Wernicke-Korsakoff syndrome is associated with diencephalic lesions, mainly in the anterior thalamic nuclei. Whether diencephalic and temporal lobe amnesias are distinct entities is still not clear. We investigated episodic memory for faces using functional MRI (fMRI) in eight controls and in a 34-year-old man with Wernicke-Korsakoff syndrome and diencephalic lesions but without medial temporal lobe (MTL) involvement at MRI. fMRI was performed with a 1.5 tesla unit. Three dual-choice tasks were employed: (i) face encoding (18 faces were randomly presented three times and subjects were asked to memorize the faces); (ii) face perception (subjects indicated which of two faces matched a third face); and (iii) face recognition (subjects indicated which of two faces belonged to the group they had been asked to memorize during encoding). All activation was greater in the right hemisphere. In controls both the encoding and recognition tasks activated two hippocampal regions (anterior and posterior). The anterior hippocampal region was more activated during recognition. Activation in the prefrontal cortex was greater during recognition. In the subject with Wernicke-Korsakoff syndrome, fMRI did not show hippocampal activation during either encoding or recognition. During recognition, although behavioural data showed defective retrieval, the prefrontal regions were activated as in controls, except for the ventrolateral prefrontal cortex. fMRI activation of the visual cortices and the behavioural score on the perception task indicated that the subject with Wernicke-Korsakoff syndrome perceived the faces, paid attention to the task and demonstrated accurate judgement. In the subject with Wernicke-Korsakoff syndrome, although the anatomical damage does not involve the MTL, the hippocampal memory encoding has been lost, possibly as a consequence of the hippocampal-anterior thalamic axis involvement. Anterograde amnesia could therefore be the expression of

  19. Layer 5 Callosal Parvalbumin-Expressing Neurons: A Distinct Functional Group of GABAergic Neurons.

    Science.gov (United States)

    Zurita, Hector; Feyen, Paul L C; Apicella, Alfonso Junior

    2018-01-01

    Previous studies have shown that parvalbumin-expressing neurons (CC-Parv neurons) connect the two hemispheres of motor and sensory areas via the corpus callosum, and are a functional part of the cortical circuit. Here we test the hypothesis that layer 5 CC-Parv neurons possess anatomical and molecular mechanisms which dampen excitability and modulate the gating of interhemispheric inhibition. In order to investigate this hypothesis we use viral tracing to determine the anatomical and electrophysiological properties of layer 5 CC-Parv and parvalbumin-expressing (Parv) neurons of the mouse auditory cortex (AC). Here we show that layer 5 CC-Parv neurons had larger dendritic fields characterized by longer dendrites that branched farther from the soma, whereas layer 5 Parv neurons had smaller dendritic fields characterized by shorter dendrites that branched nearer to the soma. The layer 5 CC-Parv neurons are characterized by delayed action potential (AP) responses to threshold currents, lower firing rates, and lower instantaneous frequencies compared to the layer 5 Parv neurons. Kv1.1 containing K + channels are the main source of the AP repolarization of the layer 5 CC-Parv and have a major role in determining both the spike delayed response, firing rate and instantaneous frequency of these neurons.

  20. Delay-slope-dependent stability results of recurrent neural networks.

    Science.gov (United States)

    Li, Tao; Zheng, Wei Xing; Lin, Chong

    2011-12-01

    By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.

  1. Delayed puberty in girls

    Science.gov (United States)

    ... sexual development - girls; Pubertal delay - girls; Constitutional delayed puberty ... In most cases of delayed puberty, growth changes just begin later than usual, sometimes called a late bloomer. Once puberty begins, it progresses normally. This pattern runs ...

  2. Delayed Puberty (For Teens)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Delayed Puberty KidsHealth / For Teens / Delayed Puberty What's in this ... wonder if there's anything wrong. What Is Delayed Puberty? Puberty is the time when your body grows ...

  3. A case of dissociative fugue and general amnesia with an 11-year follow-up.

    Science.gov (United States)

    Helmes, Edward; Brown, Julie-May; Elliott, Linda

    2015-01-01

    Dissociative fugue refers to loss of personal identity, often with the associated loss of memories of events (general amnesia). Here we report on the psychological assessment of a 54-year-old woman with loss of identity and memories of 33 years of her life attributed to dissociative fugue, along with a follow-up 11 years later. Significant levels of personal injury and stress preceded the onset of the amnesia. A detailed neuropsychological assessment was completed at a university psychology clinic, with a follow-up assessment there about 11 years later with an intent to determine whether changes in her cognitive status were associated with better recall of her life and with her emotional state. Psychomotor slowing and low scores on measures of attention and both verbal and visual memory were present initially, along with significant psychological distress associated with the diagnosis of posttraumatic stress disorder. Although memories of her life had not returned by follow-up, distress had abated and memory test scores had improved. The passage of time and a better emotional state did not lead to recovery of lost memories. Contrary to expectations, performance on tests of executive functions was good on both occasions. Multiple stressful events are attributed as having a role in maintaining the loss of memories.

  4. Inter-identity amnesia in dissociative identity disorder: a simulated memory impairment?

    Science.gov (United States)

    Huntjens, Rafaële J C; Peters, Madelon L; Woertman, Liesbeth; Bovenschen, Loes M; Martin, Roy C; Postma, Albert

    2006-06-01

    Although included in the current edition of the DSM, there does not seem to be consensus among mental health professionals regarding the diagnostic status and scientific validity of dissociative identity disorder (DID). This study was aimed at the detection of simulation of inter-identity amnesia in DID. A sample of 22 DID patients was included, together with a matched control sample of subjects instructed to simulate inter-identity amnesia, a guessor group that had no knowledge of the stimulus material and a normal control group. A multiple-choice recognition test was included. The rate of incorrect answers was determined. Moreover, the specific simulation strategy used was examined by providing subjects with a range of choices that varied in extent of disagreement with the correct answer and determining whether plausible or implausible answer alternatives were selected. On the recognition test DID patients selected incorrect answers above chance like simulators. Patients thus seem to use their knowledge of the correct answer in determining their given answer. They were not characterized by a well-thought-out simulating behaviour style, as indicated by the differences in selection of specific answer alternatives found between patients and simulators. DID patients were found not to be characterized by an actual memory retrieval inability, in contrast to their subjective reports. Instead, it is suggested that DID may more accurately be considered a disorder characterized by meta-memory problems, holding incorrect beliefs about their own memory functioning.

  5. Preserved memory in retrograde amnesia: sparing of a recently acquired skill.

    Science.gov (United States)

    Squire, L R; Cohen, N J; Zouzounis, J A

    1984-01-01

    Recent work with amnesic patients has revealed a preserved capacity for acquiring and retaining new skills despite otherwise profound anterograde impairment. In addition to their anterograde impairment, amnesic patients also have retrograde memory loss for some information acquired prior to the amnesic event. The present experiment addresses for the first time the question of whether preservation of memory for skills is also a feature memory impairment. To determine the susceptibility of a recently learned skill to retrograde amnesia, we taught patients to read mirror-reversed words before and during the early part of a prescribed course of electroconvulsive therapy (ECT) and then tested retention of the skill after the course of treatment had been completed. Patients prescribed bilateral or right unilateral ECT and depressed patients not receiving ECT acquired the mirror-reading skill at the same rate and then retained it at the same level. For the patients prescribed ECT, intact learning and retention of the skill occurred despite retrograde amnesia for the previous testing sessions and for the words that they had read previously.

  6. Using New Approaches in Neurobiology to Rethink Stress-Induced Amnesia.

    Science.gov (United States)

    Radulovic, Jelena

    2017-03-01

    Psychological stress can impact memory systems in several different ways. In individuals with healthy defense and coping systems, stress results in the formation of negatively valenced memories whose ability to induce emotional and somatic distress subsides with time. Vulnerable individuals, however, go on to develop stress-related disorders such as post-traumatic stress disorder (PTSD) and suffer from significant memory abnormalities. Whether expressed as intrusive trauma memories, partial amnesia, or dissociative amnesia, such abnormalities are thought to be the core source of patients' symptoms, which are often debilitating and implicate an entire socio-cognitive-affective spectrum. With this in mind, and focusing on stress-responsive hippocampal microcircuits, this article highlights recent advances in the neurobiology of memory that allow us to (1) isolate and visualize memory circuits, (2) change their activity using genetic tools and state-dependent manipulations, and (3) directly examine their impact on socio-affective circuits and global network connectivity. By integrating these approaches, we are now in a position to address important questions that have troubled psychiatry for a long time-questions such as are traumatic memories special, and why are stress effects on memory diverse. Furthering our fundamental understanding of memory in the framework of adaptive and maladaptive stress responses has the potential to boost the development of new treatments that can benefit patients suffering from psychological trauma.

  7. Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Yun; Kim, Jae Hyoung; Weon, Young-Cheol; Youn, Sung Won; Kim, Sung Hyun [Seoul National University Bundang Hospital, Department of Radiology, Seoul National University College of Medicine, Seongnam-si (Korea); Lee, Jung Seok; Kim, Sang Yun [Seoul National University Bundang Hospital, Department of Neurology, Seoul National University College of Medicine, Seongnam-si (Korea)

    2007-06-15

    Transient global amnesia (TGA) is characterized by a sudden onset of anterograde amnesia without alteration of consciousness or personal identity. Interestingly, recent studies have reported a high frequency of small high-signal abnormalities in the hippocampus with diffusion-weighted (DW) imaging, and ischemia has been proposed as an etiology of TGA. We hypothesized that TGA lesions occur preferentially in the CA1 region of the hippocampus, known to be susceptible to ischemia. Over a 30-month period 34 patients with TGA underwent MRI including DW imaging within 4 days of symptom onset. Patients with high-signal abnormalities in the hippocampus on the initial DW images underwent subsequent DW and T2-weighted imaging in the coronal plane to identify the precise lesion locations. Fourteen patients had small (1-3 mm) high-signal abnormalities in the hippocampus unilaterally on DW images. One of these patients had two lesions in one hippocampus and therefore in total 15 lesions were identified: four in the hippocampal head, and 11 in the body. Eleven lesions in ten patients with available coronal images were clearly demonstrated on both coronal DW and T2-weighted images and were localized to the lateral portion of the hippocampus, corresponding to the CA1 region. Lesions associated with TGA were localized exclusively to the lateral portion of the hippocampus corresponding to the CA1 region. This finding supports the ischemic etiology of TGA; however, the pathophysiological mechanism involved requires further study. (orig.)

  8. Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus

    International Nuclear Information System (INIS)

    Lee, Ho Yun; Kim, Jae Hyoung; Weon, Young-Cheol; Youn, Sung Won; Kim, Sung Hyun; Lee, Jung Seok; Kim, Sang Yun

    2007-01-01

    Transient global amnesia (TGA) is characterized by a sudden onset of anterograde amnesia without alteration of consciousness or personal identity. Interestingly, recent studies have reported a high frequency of small high-signal abnormalities in the hippocampus with diffusion-weighted (DW) imaging, and ischemia has been proposed as an etiology of TGA. We hypothesized that TGA lesions occur preferentially in the CA1 region of the hippocampus, known to be susceptible to ischemia. Over a 30-month period 34 patients with TGA underwent MRI including DW imaging within 4 days of symptom onset. Patients with high-signal abnormalities in the hippocampus on the initial DW images underwent subsequent DW and T2-weighted imaging in the coronal plane to identify the precise lesion locations. Fourteen patients had small (1-3 mm) high-signal abnormalities in the hippocampus unilaterally on DW images. One of these patients had two lesions in one hippocampus and therefore in total 15 lesions were identified: four in the hippocampal head, and 11 in the body. Eleven lesions in ten patients with available coronal images were clearly demonstrated on both coronal DW and T2-weighted images and were localized to the lateral portion of the hippocampus, corresponding to the CA1 region. Lesions associated with TGA were localized exclusively to the lateral portion of the hippocampus corresponding to the CA1 region. This finding supports the ischemic etiology of TGA; however, the pathophysiological mechanism involved requires further study. (orig.)

  9. Recovery from Transient Global Amnesia Following Restoration of Hippocampal and Fronto–Cingulate Perfusion

    Directory of Open Access Journals (Sweden)

    Paolo Caffarra

    2010-01-01

    Full Text Available A patient who suffered a transient global amnesia (TGA attack underwent regional cerebral blood flow (rCBF SPECT imaging and neuropsychological testing in the acute phase, after one month and after one year. Neuropsychological testing in the acute phase showed a pattern of anterograde and retrograde amnesia, whereas memory was within age normal limits at follow up. SPECT data were analysed with a within subject comparison and also compared with those of a group of healthy controls. Within subject comparison between the one month follow up and the acute phase detected increases in rCBF in the hippocampus bilaterally; further rCBF increases in the right hippocampus were detected after one year. Compared to controls, significant hypoperfusion was found in the right precentral, cingulate and medial frontal gyri in the acute phase; after one month significant hypoperfusion was detected in the right precentral and cingulate gyri and the left postcentral gyrus; after one year no significant hypoperfusion appeared. The restoration of memory was paralleled by rCBF increases in the hippocampus and fronto-limbic-parietal cortex; after one year neither significant rCBF differences nor cognitive deficits were detectable. In conclusion, these data indicate that TGA had no long lasting cognitive and neural alterations in this patient.

  10. Focal retrograde amnesia: voxel-based morphometry findings in a case without MRI lesions.

    Directory of Open Access Journals (Sweden)

    Bernhard Sehm

    Full Text Available Focal retrograde amnesia (FRA is a rare neurocognitive disorder presenting with an isolated loss of retrograde memory. In the absence of detectable brain lesions, a differentiation of FRA from psychogenic causes is difficult. Here we report a case study of persisting FRA after an epileptic seizure. A thorough neuropsychological assessment confirmed severe retrograde memory deficits while anterograde memory abilities were completely normal. Neurological and psychiatric examination were unremarkable and high-resolution MRI showed no neuroradiologically apparent lesion. However, voxel-based morphometry (VBM-comparing the MRI to an education-, age-and sex-matched control group (n = 20 disclosed distinct gray matter decreases in left temporopolar cortex and a region between right posterior parahippocampal and lingual cortex. Although the results of VBM-based comparisons between a single case and a healthy control group are generally susceptible to differences unrelated to the specific symptoms of the case, we believe that our data suggest a causal role of the cortical areas detected since the retrograde memory deficit is the preeminent neuropsychological difference between patient and controls. This was paralleled by grey matter differences in central nodes of the retrograde memory network. We therefore suggest that these subtle alterations represent structural correlates of the focal retrograde amnesia in our patient. Beyond the implications for the diagnosis and etiology of FRA, our results advocate the use of VBM in conditions that do not show abnormalities in clinical radiological assessment, but show distinct neuropsychological deficits.

  11. Isoflurane causes anterograde but not retrograde amnesia for pavlovian fear conditioning.

    Science.gov (United States)

    Dutton, Robert C; Maurer, Anya J; Sonner, James M; Fanselow, Michael S; Laster, Michael J; Eger, Edmond I

    2002-05-01

    Production of retrograde amnesia by anesthetics would indicate that these drugs can disrupt mechanisms that stabilize memory. Such disruption would allow suppression of memory of previous untoward events. The authors examined whether isoflurane provides retrograde amnesia for classic (Pavlovian) fear conditioning. Rats were trained to fear tone by applying three (three-trial) or one (one-trial) tone-shock pairs while breathing various constant concentrations of isoflurane. Immediately after training, isoflurane administration was either discontinued, maintained unchanged, or rapidly increased to 1.0 minimum alveolar concentration for 1 h longer. Groups of rats were similarly trained to fear context while breathing isoflurane by applying shocks (without tones) in a distinctive environment. The next day, memory for the conditioned stimuli was determined by presenting the tone or context (without shock) and measuring the proportion of time each rat froze (appeared immobile). For each conditioning procedure, the effects of the three posttraining isoflurane treatments were compared. Rapid increases in posttraining isoflurane administration did not suppress conditioned fear for any of the training procedures. In contrast, isoflurane administration during conditioning dose-dependently suppressed conditioning (P conditioning. Isoflurane appears to disrupt memory processes that occur at or within a few minutes of the conditioning procedure.

  12. Spiking neuron devices consisting of single-flux-quantum circuits

    International Nuclear Information System (INIS)

    Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito

    2006-01-01

    Single-flux-quantum (SFQ) circuits can be used for making spiking neuron devices, which are useful elements for constructing intelligent, brain-like computers. The device we propose is based on the leaky integrate-and-fire neuron (IFN) model and uses a SFQ pulse as an action signal or a spike of neurons. The operation of the neuron device is confirmed by computer simulator. It can operate with a short delay of 100 ps or less and is the highest-speed neuron device ever reported

  13. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  14. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, M.; Sakamoto, S.; Ishii, K. [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (Japan); Imamura, T.; Kazui, H.; Mori, E. [Division of Clinical Neurosciences, Hyogo Institute for Aging Brain and Cognitive Disorders, Hyogo (Japan)

    2002-03-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  15. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Matsui, M.; Sakamoto, S.; Ishii, K.; Imamura, T.; Kazui, H.; Mori, E.

    2002-01-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  16. Large cerebral perfusion defects observed in brain perfusion SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients

    International Nuclear Information System (INIS)

    So, Young; Kim, Hahn Young; Roh, Hong Gee; Han, Seol Heui

    2007-01-01

    Transient global amnesia (TGA) is a memory disorder characterized by an episode of antegrade amnesia and bewilderment which persists for several hours. We analyzed brain perfusion SPECT findings and clinical outcome of patients who suffered from TGA. From September 2005 to August 2007, 12 patients underwent Tc-99m ECD brain perfusion SPECT for neuroimaging of TGA. All patients also underwent MRI and MRA including DWI (MRI). Among them, 10 patients who could be chased more than 6 months were included in this study. Their average age was 60.74.0 yrs (M: F = 2: 8) and the average duration of amnesia was 4.42.2 hrs (1 hr ∼ 7 hrs). Duration from episode of amnesia to SPECT was 4.32.4 days (1∼9 days). Precipitating factors could be identified in 6 patients: emotional stress 3, hair dyeing 1, taking a nap 1 and angioplasty 1. SPECT and MRI was visually assessed, No cerebral perfusion defect was observed on SPECT in 3 patients and their clinical outcome was all good. Among 7 patients who had cerebral perfusion defects on SPECT, 3 patients had good clinical outcome, while others did not: one had hypercholesterolemia, another had depression, and 2 patients with cerebral perfusion defects at both temporoparetal cortex was later diagnosed as early Alzheimer's disease (AD) and mild cognitive impairment (MCI). MRI was negative in 6 patients and 3 of them had excellent clinical outcome while other 3 were diagnosed as hypercholesterolemia, early AD and MCI. Among 4 patients with positive MRI, 3 showed good clinical outcome and their MRI showed lesions at medial temporal cortex and/or vertebral artery. One patient with microcalcification at left putamen was diagnosed to have depression. Large cerebral perfusion defects on SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients which usually shows negative MRI

  17. Large cerebral perfusion defects observed in brain perfusion SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients

    Energy Technology Data Exchange (ETDEWEB)

    So, Young; Kim, Hahn Young; Roh, Hong Gee; Han, Seol Heui [Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Transient global amnesia (TGA) is a memory disorder characterized by an episode of antegrade amnesia and bewilderment which persists for several hours. We analyzed brain perfusion SPECT findings and clinical outcome of patients who suffered from TGA. From September 2005 to August 2007, 12 patients underwent Tc-99m ECD brain perfusion SPECT for neuroimaging of TGA. All patients also underwent MRI and MRA including DWI (MRI). Among them, 10 patients who could be chased more than 6 months were included in this study. Their average age was 60.74.0 yrs (M: F = 2: 8) and the average duration of amnesia was 4.42.2 hrs (1 hr {approx} 7 hrs). Duration from episode of amnesia to SPECT was 4.32.4 days (1{approx}9 days). Precipitating factors could be identified in 6 patients: emotional stress 3, hair dyeing 1, taking a nap 1 and angioplasty 1. SPECT and MRI was visually assessed, No cerebral perfusion defect was observed on SPECT in 3 patients and their clinical outcome was all good. Among 7 patients who had cerebral perfusion defects on SPECT, 3 patients had good clinical outcome, while others did not: one had hypercholesterolemia, another had depression, and 2 patients with cerebral perfusion defects at both temporoparetal cortex was later diagnosed as early Alzheimer's disease (AD) and mild cognitive impairment (MCI). MRI was negative in 6 patients and 3 of them had excellent clinical outcome while other 3 were diagnosed as hypercholesterolemia, early AD and MCI. Among 4 patients with positive MRI, 3 showed good clinical outcome and their MRI showed lesions at medial temporal cortex and/or vertebral artery. One patient with microcalcification at left putamen was diagnosed to have depression. Large cerebral perfusion defects on SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients which usually shows negative MRI.

  18. Speech and Language Delay

    Science.gov (United States)

    ... OTC Relief for Diarrhea Home Diseases and Conditions Speech and Language Delay Condition Speech and Language Delay Share Print Table of Contents1. ... Treatment6. Everyday Life7. Questions8. Resources What is a speech and language delay? A speech and language delay ...

  19. Effects of 5-HT5A receptor blockade on amnesia or forgetting.

    Science.gov (United States)

    Aparicio-Nava, L; Márquez-García, L A; Meneses, A

    2018-01-09

    Previously the effects (0.01-3.0 mg/kg) of post-training SB-699551 (a 5-HT 5A receptor antagonist) were reported in the associative learning task of autoshaping, showing that SB-699551 (0.1 mg/kg) decreased lever-press conditioned responses (CR) during short-term (STM; 1.5-h) or (3.0 mg/kg) long-term memory (LTM; 24-h); relative to the vehicle animals. Moreover, as pro-cognitive efficacy of SB-699551 was reported in the ketamine-model of schizophrenia. Hence, firstly aiming improving performance (conditioned response, CR), in this work autoshaping lever-press vs. nose-poke response was compared; secondly, new set of animals were randomly assigned to SB-699551 plus forgetting or amnesia protocols. Results show that the nose-poke operandum reduced inter-individual variance, increased CR and produced a progressive CR until 48-h. After one week of no training/testing sessions (i.e., interruption of 216 h), the forgetting was observed; i.e., the CR% of control-saline group significantly decreased. In contrast, SB-699551 at 0.3 and 3.0 mg/kg prevents forgetting. Additionally, as previously reported the non-competitive NMDA receptor antagonist dizocilpine (0.2 mg/kg) or the non-selective cholinergic antagonist scopolamine (0.3 mg/kg) decreased CR in STM. SB-699551 (0.3 mg/kg) alone also produced amnesia-like effect. Co-administration of SB-699551-dizocilpine or SB-699551-scopolamine reversed the SB-699551 induced-amnesic effects in LTM (24-h). Nose-poke seems to be a reliable operandum. The anti-amnesic and anti-forgetting mechanisms of amnesic SB-699551-dose remain unclear. The present findings are consistent with the notion that low doses of 5-HT 5A receptor antagonists might be useful for reversing memory deficits associated to forgetting and amnesia. Of course, further experiments are necessary. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Transient Global Amnesia Associated with an Acute Infarction at the Cingulate Gyrus

    Directory of Open Access Journals (Sweden)

    Alejandro Gallardo-Tur

    2014-01-01

    Full Text Available Background. Transient global amnesia (TGA is a syndrome of sudden, unexplained isolated short-term memory loss. In the majority of TGA cases, no causes can be identified and neuroimaging, CSF studies and EEG are usually normal. We present a patient with TGA associated with a small acute infarct at the cingulate gyrus. Case Report. The patient, a 62 year-old man, developed two episodes of TGA. He had hypertension and hypercholesterolemia. He was found to have an acute ischemic stroke of small size (15 mm of maximal diameter at the right cerebral cingulate gyrus diagnosed on brain magnetic resonance imaging. No lesions involving other limbic system structures such as thalamus, fornix, corpus callosum, or hippocampal structures were seen. The remainder of the examination was normal. Conclusion. Unilateral ischemic lesions of limbic system structures may result in TGA. We must bear in mind that TGA can be an associated clinical disorder of cingulate gyrus infarct.

  1. Postencephalitic amnesia with long term-working memory impairment: A case report

    Directory of Open Access Journals (Sweden)

    Beatriz Baldivia

    Full Text Available Abstract Herpes simplex virus encephalitis (HSVE is an inflammation of the brain parenchyma caused by virus, leading to focal necrosis in medial temporal lobes, hippocampal complex and basal forebrain. Cognitively, HSVE is associated to many dysfunctions which vary according to the extent of the lesion. Episodic memory impairment is the most common sequelae following HSVE episodes, although others can occur. The aim of this case report was to describe the cognitive profile of a 42 year-old man who had extensive bilateral damage to the medial temporal lobe, insular bilateral and orbitofrontal cortices due to HSVE. Severe anterograde and retrograde amnesia, naming deficits, perseverative behaviors and confabulations were observed on neuropsychological assessment. We discussed the concept of long term-working memory based on this evaluation. These cognitive impairments corroborated HSVE previous findings in the literature.

  2. Sustained experience of emotion after loss of memory in patients with amnesia.

    Science.gov (United States)

    Feinstein, Justin S; Duff, Melissa C; Tranel, Daniel

    2010-04-27

    Can the experience of an emotion persist once the memory for what induced the emotion has been forgotten? We capitalized on a rare opportunity to study this question directly using a select group of patients with severe amnesia following circumscribed bilateral damage to the hippocampus. The amnesic patients underwent a sadness induction procedure (using affectively-laden film clips) to ascertain whether their experience of sadness would persist beyond their memory for the sadness-inducing films. The experiment showed that the patients continued to experience elevated levels of sadness well beyond the point in time at which they had lost factual memory for the film clips. A second experiment using a happiness induction procedure yielded similar results, suggesting that both positive and negative emotional experiences can persist independent of explicit memory for the inducing event. These findings provide direct evidence that a feeling of emotion can endure beyond the conscious recollection for the events that initially triggered the emotion.

  3. Levels-of-processing effects on recollection and familiarity during transient global amnesia and after recovery.

    Science.gov (United States)

    Thoma, Patrizia; Schwarz, Michael; Daum, Irene

    2010-11-01

    The aim of the present study was to investigate the pattern of recollection and familiarity deficits and the modulation of recognition memory performance by the depth of encoding (deep vs. shallow) in transient global amnesia (TGA). Ten patients with TGA and 11 control subjects were assessed during the acute stage and after recovery 7 to 19 days later. Both recollection and familiarity were impaired in the acute stage and showed significant, albeit not complete, recovery by the time of the postacute assessment. The patients did, however, show a significant levels-of-processing effect, which was significantly reduced in acute TGA, but not at follow-up. The significant levels-of-processing effect during acute TGA might be linked to recruitment of the prefrontal cortex. (c) 2010 APA, all rights reserved

  4. Synergistic effects of galantamine and memantine in attenuating scopolamine-induced amnesia in mice.

    Science.gov (United States)

    Busquet, Perrine; Capurro, Valeria; Cavalli, Andrea; Piomelli, Daniele; Reggiani, Angelo; Bertorelli, Rosalia

    2012-01-01

    We investigated a possible drug efficacy enhancement obtained by combining inactive doses of galantamine and memantine in the scopolamine-induced amnesia model in mice. We evaluated the effects of the two drugs, either alone or in combination, using the spontaneous alternation and object recognition tasks. In both tests, combination of low doses of galantamine (0.1 mg/kg, s.c.) and memantine (0.5 mg/kg, i.p.), which were sub-active per se, rescued the memory impairment induced by scopolamine (1 mg/kg, i.p.). The results suggest that combinations of galantamine and memantine might provide a more effective treatment of memory impairments in cognitive disorders than either drug used alone.

  5. Retrograde amnesia produced by electron beam exposure: causal parameters and duration of memory loss

    International Nuclear Information System (INIS)

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron beam exposure has been investigated. RA production was evaluated using a single-trial avoidance task across a 10 4 dose range for 10-, 1-, and 0.1-μsec pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 10 6 rad/sec. By employing a 10 rad (10 6 rad/sec) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory activation which provided a novel stimulus that masked previous stimuli

  6. Retrograde amnesia produced by electron beam exposure: causal parameters and duration of memory loss. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron beam exposure has been investigated. RA production was evaluated using a single-trial avoidance task across a 10/sup 4/ dose range for 10-, 1-, and 0.1-..mu..sec pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 10/sup 6/ rad/sec. By employing a 10 rad (10/sup 6/ rad/sec) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory activation which provided a novel stimulus that masked previous stimuli.

  7. Sudden amnesia resulting in pain relief: the relationship between memory and pain.

    Science.gov (United States)

    Choi, Daniel S; Choi, Deborah Y; Whittington, Robert A; Nedeljković, Srdjan S

    2007-11-01

    Nociceptive pain and its emotional component can result in the development of a "chronic pain memory". This report describes two patients who had long histories of chronic pain and opioid dependence. Both patients experienced sudden memory loss that was followed by significant pain reduction and an eradication of their need for opioid management. Neural centers involved in sensory pain, its affective component, opioid dependence, and memory overlap in the brain and share common pathways. The anterior cingulate cortex, the insular cortex, and the amygdala are examples of regions implicated in both pain and memory. One of the patients in the report experienced multiple seizure episodes, which may have contributed to memory loss and pain relief. The role of electroconvulsive therapy as it relates to amnesia and pain is reviewed. Questions are raised regarding whether therapies that address the memory component of pain may have a role in the treatment of long-term chronic pain patients.

  8. [Posttraumatic stress disorder in patients with neurogenic amnesia for the traumatic event].

    Science.gov (United States)

    Podoll, K; Kunert, H J; Sass, H

    2000-10-01

    The development of symptoms of posttraumatic stress disorder (PTSD) in patients with neurogenic amnesia for the traumatic event is recorded in 2 own patients and in 19 cases from the clinical literature. With a single exception, all patients were accident victims with closed head injuries. Only about three quarters of the patients completely fulfilled DSM-III-R criteria of PTSD. Nineteen patients displayed involuntary conscious memories of aspects of the traumatic event (presenting as recurrent intrusive thoughts, images or dreams) co-existent with a complete or partial lack of voluntary conscious memories of the trauma, suggesting that different memory systems and distinct brain mechanisms subserve these phenomena. The said clinical observations are discussed against the background of current neuropsychological models of multiple memory systems. The recorded cases demonstrate that declarative episodic memory is not necessary for symptoms of PTSD to emerge, whereas preserved functions of non-declarative memory systems represent a sufficient condition for the development of PTSD symptoms.

  9. Detecting dependencies between spike trains of pairs of neurons through copulas

    DEFF Research Database (Denmark)

    Sacerdote, Laura; Tamborrino, Massimiliano; Zucca, Cristina

    2011-01-01

    The dynamics of a neuron are influenced by the connections with the network where it lies. Recorded spike trains exhibit patterns due to the interactions between neurons. However, the structure of the network is not known. A challenging task is to investigate it from the analysis of simultaneously...... the two neurons. Furthermore, the method recognizes the presence of delays in the spike propagation....

  10. Retrospective analysis of the recovery of orientation and memory during posttraumatic amnesia.

    Science.gov (United States)

    Roberts, Caroline M; Spitz, Gershon; Ponsford, Jennie L

    2015-07-01

    Prospective monitoring of posttraumatic amnesia (PTA) is recommended following moderate to severe traumatic brain injury (TBI). However, few studies have examined the typical order in which items recover on PTA scales. Different methods have been used to define recovery, and the order reported is not consistent across the literature. The purpose of this study was to improve understanding of the progression of PTA by reporting the duration to recovery of items and categories on the Westmead Post-Traumatic Amnesia Scale (WPTAS) according to different criteria. A retrospective analysis was conducted of 66 patients with TBI who were administered the WPTAS during hospital admission. The duration to recovery of items and categories was determined according to 3 criteria: first correct, correct 3 times in a row, and consistently correct. On the basis of the sample mean, date of birth (DOB), year, age, place, month, day, name, and memory for the 3 pictures recovered in this order according to all 3 criteria. However, the significance of differences between items and the order of recovery of categories depended on the criterion adopted. Although DOB recovered first in 74% of cases and the 3 pictures last in 63% of cases, there was a high degree of individual variability in the precise sequence of recovery. The traditional view of PTA recovering in the order of person, place, time, and memory does not adequately describe the profile of recovery on the WPTAS. Considering the recovery of individual items is necessary to understand and account for individuals differences in the order of recovery. (c) 2015 APA, all rights reserved).

  11. SPM analysis and cognitive dysfunctions in patients with transient global amnesia

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Kang, Do Young; Yun, Go Un; Park, Kyung Won; Kim, Jae Woo

    2004-01-01

    Transient global amnesia (TGA) is known as a disease of benign nature characterized with clinically transient global antegrade amnesia and a variable degree of global retrograde memory impairment, but it usually resolved within 24 hours. The aims of this study are to assess the alterations in regional cerebral blood flow (rCBF) by Tc-99m HMPAO SPECT imaging with statistical parametric mapping (SPM) analysis and to verify the cognitive deficits by neuropsychological test in TGA patients. Twelve patients with TGA and age-matched normal control subjects participated in this study. Tc-99m HMPAO SPECT was performed within 1 to 19 days (mean duration: 7.3:±5.2 days) after the events to measure the rCBF. SPECT images were analyzed using SPM (SPM99) with Matlab 5.3. Seoul Neuropsychological Screening Battery test was also done within 2 to 8 days (mean duration 3.8±2.2 days) for cognitive functions in 8 of 12 patients with TGA. The SPM analysis of SPECT images showed significantly decreased rCBF in the left inferior frontal gyrus (Brodmann area 9), the left supramarginal gyrus (Brodmann area 40), the left postcentral gyrus (Brodmann area 40) and the left precentral gyrus (Brodmann area 4) in patients with TGA (uncorrected p<0.01). Neuropsychological test findings represented that several cognitive functions. such as, verbal memory, visual memory, phonemic fluency and confrontational naming, were impaired in patients with TGA compared with normal control. Additionally, on SPM analysis, we found lesions of hyperperfusion in contralateral cerebral hemisphere. Our study shows perfusion deficits in the left cerebral hemisphere in patients with TGA and several cognitive dysfunctions. And we found after clinical symptoms were completely resolved, the lesions of hypoperfusion were still remained. We found that functional quantitative neuroimaging study and neuropsychological test are useful to understand underlying pathomachanism of TGA

  12. A dissociation between anterograde and retrograde amnesia after treatment with electroconvulsive therapy: a naturalistic investigation.

    Science.gov (United States)

    O'Connor, Margaret; Lebowitz, Brian K; Ly, Jenny; Panizzon, Matthew S; Elkin-Frankston, Seth; Dey, Sangeeta; Bloomingdale, Kerry; Thall, Mark; Pearlman, Chester

    2008-06-01

    The aim of the present study is to investigate the cumulative effects of a clinically determined course of electroconvulsive therapy (ECT) on anterograde and retrograde amnesia. In this study, mood and memory were examined in the context of a protocol driven by therapeutic response, rather than by preordained research criteria. Twenty-two patients with major depressive disorder and 18 nondepressed controls were taught a series of faces and names before the initiation of ECT, and their retention of this information was examined after the end of treatment. Anterograde (ie, new learning) and retrograde memory (ie, recall of information learned before ECT) were assessed. Eleven ECT patients underwent unilateral (UL) stimulation, and 11 had a combination of UL and bilateral stimulation. Major depressive disorder patients and nondepressed controls participants were matched according to baseline memory abilities. Unilateral and unilateral/bilateral (UB) ECT patients were matched according to baseline depression and memory abilities. Treatment with ECT resulted in a dissociation between anterograde and retrograde memory; after treatment, major depressive disorder patients demonstrated significant retrograde amnesia, whereas there was no change in their anterograde memory. Unilateral and UB ECT patients performed equally well on tasks of anterograde memory. Contrary to our expectation, UB ECT was not associated with greater retrograde memory loss than was UL ECT treatment. However, a trend toward a group difference was present on 1 memory measure. Results of the study suggest that a clinical course of ECT is associated with isolated impairment for information learned before treatment (ie, retrograde memory), whereas there was no effect of ECT on posttreatment learning abilities (ie, anterograde memory).

  13. SPM analysis and cognitive dysfunctions in patients with transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Kang, Do Young; Yun, Go Un; Park, Kyung Won; Kim, Jae Woo [School of Medicine, Donga University, Busan (Korea, Republic of)

    2004-07-01

    Transient global amnesia (TGA) is known as a disease of benign nature characterized with clinically transient global antegrade amnesia and a variable degree of global retrograde memory impairment, but it usually resolved within 24 hours. The aims of this study are to assess the alterations in regional cerebral blood flow (rCBF) by Tc-99m HMPAO SPECT imaging with statistical parametric mapping (SPM) analysis and to verify the cognitive deficits by neuropsychological test in TGA patients. Twelve patients with TGA and age-matched normal control subjects participated in this study. Tc-99m HMPAO SPECT was performed within 1 to 19 days (mean duration: 7.3:{+-}5.2 days) after the events to measure the rCBF. SPECT images were analyzed using SPM (SPM99) with Matlab 5.3. Seoul Neuropsychological Screening Battery test was also done within 2 to 8 days (mean duration 3.8{+-}2.2 days) for cognitive functions in 8 of 12 patients with TGA. The SPM analysis of SPECT images showed significantly decreased rCBF in the left inferior frontal gyrus (Brodmann area 9), the left supramarginal gyrus (Brodmann area 40), the left postcentral gyrus (Brodmann area 40) and the left precentral gyrus (Brodmann area 4) in patients with TGA (uncorrected p<0.01). Neuropsychological test findings represented that several cognitive functions. such as, verbal memory, visual memory, phonemic fluency and confrontational naming, were impaired in patients with TGA compared with normal control. Additionally, on SPM analysis, we found lesions of hyperperfusion in contralateral cerebral hemisphere. Our study shows perfusion deficits in the left cerebral hemisphere in patients with TGA and several cognitive dysfunctions. And we found after clinical symptoms were completely resolved, the lesions of hypoperfusion were still remained. We found that functional quantitative neuroimaging study and neuropsychological test are useful to understand underlying pathomachanism of TGA.

  14. A Case of Bariatric Surgery-related Wernicke-Korsakoff Syndrome with Persisting Anterograde Amnesia.

    Science.gov (United States)

    Gasquoine, Philip Gerard

    2017-08-01

    To describe the theoretical and clinical implications of the neuropsychological evaluation of a case of bariatric surgery-related Wernicke-Korsakoff syndrome. The patient was a 37-year old, female, bilingual, bachelor's degree educated, Mexican American public relations consultant without preexisting psychiatric, neurological, or substance abuse history. Recovery from laparoscopic sleeve gastrectomy surgery for morbid obesity was complicated by intraabdominal abscess, multibacterial infection, and prolonged nausea and vomiting. About 15 weeks post-surgery she was diagnosed with Wernicke's encephalopathy. She had a positive response to thiamine supplement but was left with persisting self-reported memory problems that were confirmed by family members. Multiple neuroimaging studies were all normal. A neuropsychological evaluation at 14 months post-surgery revealed anterograde amnesia for verbal and visual-perceptual material. There was no clear period of temporally graded retrograde amnesia. Scores on tests of visual-perceptual, language, fine motor, and executive functions were unimpaired. She had awareness of her neurocognitive impairment, but did not exhibit emotional distress. Follow-up neuropsychological evaluation at 17 months showed a similar neurocognitive profile with increased emotional distress. Her preserved executive functioning is theoretically important as it supports arguments that such impairment in alcohol use-related Korsakoff syndrome derives from the toxic effects of the prolonged misuse of alcohol and not vitamin deficiency. From a clinical perspective, neuropsychological evaluation of thiamine treated, bariatric surgery-related, Wernicke's encephalopathy cases is indicated if there is suspicion of residual memory impairment. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Stress-related factors in the emergence of transient global amnesia with hippocampal lesion

    Directory of Open Access Journals (Sweden)

    Juliane eDöhring

    2014-08-01

    Full Text Available The transient global amnesia (TGA is a rare amnesic syndrome that is characterized by an acute onset episode of an anterograde and retrograde amnesia. Its origin is still debated, but there is evidence for psychological factors involved in TGA. In neuroimaging, selective lesions in the CA1 fields of the hippocampus can be detected, a region that is particularly involved in the processing of memory, stress and emotion. The aim of this study was to assess the role of psychological stress in TGA by studying the prevalence of stress related precipitating events and individual stress-related personality profiles as well as coping strategies in patients. The hypothesis of a functional differentiation of the hippocampus in mnemonic and stress-related compartments was also evaluated. From all 113 patients, 18 % (n= 24 patients experienced emotional and psychological stress episodes directly before the TGA. In a cohort of 21 acute patients, TGA patients tend to cope with stress less efficiently and less constructively than controls. Patients who experienced a stress related precipitant event exhibited a higher level of anxiety in comparison to non-stress patients and controls. However, there was no difference between the general experience of stress and the number of stress inducing life events. The majority of patients (73% did show typical MRI lesions in the CA1 region of the hippocampal cornu ammonis. There was no clear association between stressful events, distribution of hippocampal CA1 lesions and behavioral patterns during the TGA. Disadvantageous coping strategies and an elevated anxiety level may increase the susceptibility to psychological stress which may facilitate the pathophysiological cascade in TGA. The findings suggest a role of emotional stress factors in the manifestation of TGA in a subgroup of patients. Stress may be one trigger involved in the emergence of transient lesions in the hippocampal CA1 region, which are thought to be the

  16. Value of dynamic susceptibility contrast perfusion MRI in the acute phase of transient global amnesia.

    Directory of Open Access Journals (Sweden)

    Alex Förster

    Full Text Available Transient global amnesia (TGA is a transitory, short-lasting neurological disorder characterized by a sudden onset of antero- and retrograde amnesia. Perfusion abnormalities in TGA have been evaluated mainly by use of positron emission tomography (PET or single-photon emission computed tomography (SPECT. In the present study we explore the value of dynamic susceptibility contrast perfusion-weighted MRI (PWI in TGA in the acute phase.From a MRI report database we identified TGA patients who underwent MRI including PWI in the acute phase and compared these to control subjects. Quantitative perfusion maps (cerebral blood flow (CBF and volume (CBV were generated and analyzed by use of Signal Processing In NMR-Software (SPIN. CBF and CBV values in subcortical brain regions were assessed by use of VOI created in FIRST, a model-based segmentation tool in the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB Software Library (FSL.Five TGA patients were included (2 men, 3 women. On PWI, no relevant perfusion alterations were found by visual inspection in TGA patients. Group comparisons for possible differences between TGA patients and control subjects showed significant lower rCBF values bilaterally in the hippocampus, in the left thalamus and globus pallidus as well as bilaterally in the putamen and the left caudate nucleus. Correspondingly, significant lower rCBV values were observed bilaterally in the hippocampus and the putamen as well as in the left caudate nucleus. Group comparisons for possible side differences in rCBF and rCBV values in TGA patients revealed a significant lower rCBV value in the left caudate nucleus.Mere visual inspection of PWI is not sufficient for the assessment of perfusion changes in TGA in the acute phase. Group comparisons with healthy control subjects might be useful to detect subtle perfusion changes on PWI in TGA patients. However, this should be confirmed in larger data sets and serial PWI

  17. Dynamics in a delayed-neural network

    International Nuclear Information System (INIS)

    Yuan Yuan

    2007-01-01

    In this paper, we consider a neural network of four identical neurons with time-delayed connections. Some parameter regions are given for global, local stability and synchronization using the theory of functional differential equations. The root distributions in the corresponding characteristic transcendental equation are analyzed, Pitchfork bifurcation, Hopf and equivariant Hopf bifurcations are investigated by revealing the center manifolds and normal forms. Numerical simulations are shown the agreements with the theoretical results

  18. Determination of the rate constant for neuronal and extra-neuronal monoamine oxidase

    International Nuclear Information System (INIS)

    Cassis, L.; Ludwig, J.; Trendelenburg, U.

    1986-01-01

    In the rat vas deferens, neuronal deamination of 3 H-(-) noradrenaline ( 3 H-NA) to 3 H-dihydroxyphenethylglycol ( 3 HDOPEG) cannot be inhibited by pretreatment with a monoamine oxidase (MAO) inhibitor. However, in the extraneuronal compartment of the rat heart, inhibition of MAO abolishes the formation of 3 HDOPEG. To clarify this discrepancy, the authors determined the rate constant for MAO (/sup k/mao/) neuronally (rat vas deferens) and extraneuronally (rat heart). For neuronal /sup k/mao, vasa deferentia were incubated with 3 HNA for 300 minutes, and the cumulative formation of 3 HDOPEG measured. The delay in time before 3 HDOPEG achieves steady state (/sup tau/system), is inversely proportional to /sup k/mao. Because /sup tau/system is very short for neuronal MAO, an appreciable delay was only achieved after partial inhibition of MAO with various parglyline concentrations. To relate to the uninhibited enzyme, the percentage inhibition by pargyline was then determined in homogenate preparations. For extraneuronal MAO, a similar procedure was performed in perfused rat hearts. Results show a significantly greater /sup k/mao of neuronal origin, (/sup k/mao = .57min - 1) which when related to the fractional size of the neuronal compartment suggests a very high activity of neuronal MAO

  19. UAVs and Control Delays

    National Research Council Canada - National Science Library

    de Vries, S. C

    2005-01-01

    .... Delays of about 250-300 ms often lead to unacceptable airplane handling qualities. Techniques such as filtering and predictive displays may extend the range of acceptable delays up to about 400 ms...

  20. Delayed puberty in boys

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007695.htm Delayed puberty in boys To use the sharing features on this page, please enable JavaScript. Delayed puberty in boys is when puberty does not begin ...

  1. Spiking Neurons for Analysis of Patterns

    Science.gov (United States)

    Huntsberger, Terrance

    2008-01-01

    Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern-analysis and pattern-recognition computational systems. These neurons are represented by a mathematical model denoted the state-variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets. Spiking neurons imitate biological neurons more closely than do the neurons of traditional artificial neural networks. A spiking neuron includes a central cell body (soma) surrounded by a tree-like interconnection network (dendrites). Spiking neurons are so named because they generate trains of output pulses (spikes) in response to inputs received from sensors or from other neurons. They gain their speed advantage over traditional neural networks by using the timing of individual spikes for computation, whereas traditional artificial neurons use averages of activity levels over time. Moreover, spiking neurons use the delays inherent in dendritic processing in order to efficiently encode the information content of incoming signals. Because traditional artificial neurons fail to capture this encoding, they have less processing capability, and so it is necessary to use more gates when implementing traditional artificial neurons in electronic circuitry. Such higher-order functions as dynamic tasking are effected by use of pools (collections) of spiking neurons interconnected by spike-transmitting fibers. The SVM includes adaptive thresholds and submodels of transport of ions (in imitation of such transport in biological

  2. Delayed Orgasm and Anorgasmia

    OpenAIRE

    Jenkins, Lawrence C.; Mulhall, John P.

    2015-01-01

    Delayed orgasm/anorgasmia defined as the persistent or recurrent difficulty, delay in, or absence of attaining orgasm after sufficient sexual stimulation, which causes personal distress. Delayed orgasm and anorgasmia are associated with significant sexual dissatisfaction. A focused medical history can shed light on the potential etiologies; which include: medications, penile sensation loss, endocrinopathies, penile hyperstimulation and psychological etiologies, amongst others. Unfortunately, ...

  3. Dissociative amnesia in dissociative disorders and borderline personality disorder: self-rating assessment in a college population.

    Science.gov (United States)

    Sar, Vedat; Alioğlu, Firdevs; Akyuz, Gamze; Karabulut, Sercan

    2014-01-01

    Dissociative amnesia (DA) among subjects with a dissociative disorder and/or borderline personality disorder (BPD) recruited from a nonclinical population was examined. The Steinberg Dissociative Amnesia Questionnaire (SDAQ), the Childhood Trauma Questionnaire, and the self-report screening tool of the BPD section of the Structured Clinical Interview for DSM-IV(SCID-BPD) were administered to 1,301 college students. A total of 80 participants who were diagnosed with BPD according to the clinician-administered SCID-BPD and 111 nonborderline controls were evaluated using the Structured Clinical Interview for DSM-IV Dissociative Disorders (SCID-D) by a psychiatrist blind to diagnosis and scale scores. Internal consistency analyses and test-retest evaluations suggested that the SDAQ is a reliable instrument for the population studied. Of the participants, 20.6% reported an SDAQ score of 20 or above and impairment by DA. Those who had both dissociative disorder and BPD (n = 78) had the highest SDAQ scores. Both disorders had significant effects on the SCID-D total and amnesia scores in the variance analysis. On SDAQ scores, however, only BPD had this effect. There was a significant interaction between the 2 disorders for the SCID-D total but not for the SDAQ or SCID-D amnesia scores. BPD represented the severity of dissociation and childhood trauma in this study group. However, in contrast to the dissociative disorders, BPD was characterized by better awareness of DA in self-report. The discrepancies between self-report and clinical interview associated with BPD and dissociative disorders are discussed in the context of betrayal theory (J. J. Freyd, 1994) of BPD and perceptual theory (D. B. Beere, 2009) of dissociative disorders.

  4. Amnesia and future thinking: Exploring the role of memory in the quantity and quality of episodic future thoughts.

    Science.gov (United States)

    Cole, Scott N; Morrison, Catriona M; Barak, Ohr; Pauly-Takacs, Katalin; Conway, Martin A

    2016-06-01

    To examine the impact of memory accessibility on episodic future thinking. Single-case study of neurological patient HCM and an age-matched comparison group of neurologically Healthy Controls. We administered a full battery of tests assessing general intelligence, memory, and executive functioning. To assess autobiographical memory, the Autobiographical Memory Interview (Kopelman, Wilson, & Baddeley, 1990. The Autobiographical Memory Interview. Bury St. Edmunds, UK: Thames Valley Test Company) was administered. The Past Episodic and Future Episodic sections of Dalla Barba's Confabulation Battery (Dalla Barba, 1993, Cogn. Neuropsychol., 1, 1) and a specifically tailored Mental Time Travel Questionnaire were administered to assess future thinking in HCM and age-matched controls. HCM presented with a deficit in forming new memories (anterograde amnesia) and recalling events from before the onset of neurological impairment (retrograde amnesia). HCM's autobiographical memory impairments are characterized by a paucity of memories from Recent Life. In comparison with controls, two features of his future thoughts are apparent: Reduced episodic future thinking and outdated content of his episodic future thoughts. This article suggests neuropsychologists should look beyond popular conceptualizations of the past-future relation in amnesia via focussing on reduced future thinking. Investigating both the quantity and quality of future thoughts produced by amnesic patients may lead to developments in understanding the complex nature of future thinking disorders resulting from memory impairments. We highlight the clinical importance of examining the content of future thoughts in amnesic patients, rather than only its quantitative reduction. We propose an explanation of how quantitative and qualitative aspects of future thinking could be affected by amnesia. This could provide a useful approach to understand clinical cases of impaired prospection. Systematic group investigations

  5. Using attribute amnesia to test the limits of hyper-binding and associative deficits in working memory.

    Science.gov (United States)

    McCormick-Huhn, John M; Chen, Hui; Wyble, Bradley P; Dennis, Nancy A

    2018-02-01

    Previous work has shown mixed evidence regarding age-related deficits for binding in working memory. The current study used the newly developed attribute amnesia effect (H. Chen & Wyble, 2015a) to test the associative-deficit hypothesis during working memory and to probe whether hyper-binding extends to include binding of de-selected information. In studies of attribute amnesia, participants use target attributes (e.g., identity, color) to demonstrate near ceiling levels of reporting of a second target attribute (e.g., location) across a series of trials (H. Chen & Wyble, 2015a, 2016). Yet, despite having just processed the target-defining attribute, they have difficulty reporting it on a surprise trial. This effect provides several predictions for associative binding in aging. The associative-deficit hypothesis predicts age-related decline on the surprise trial, whereas an extension of hyper-binding predicts age-related increase in performance in older adults. In Experiment 1, when working memory load was low, older adults demonstrated attribute amnesia equal to that found in younger adults. When load increased in Experiment 2, older adults again demonstrated attribute amnesia as well as an age deficit for reporting target attributes. In lieu of spontaneous binding, results suggest that expectancy plays a critical role in older adults' propensity to encode and bind target attributes in working memory. Results further suggest that expectancy alone is not enough for older adults to form bound representations when task demands are high. Taken together results revealed a boundary condition of hyper-binding and further provided conditional support for the associative-deficit hypothesis in working memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    Science.gov (United States)

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Regenerative memory in time-delayed neuromorphic photonic resonators

    Science.gov (United States)

    Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.

    2016-01-01

    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals.

  8. A Case of Persistent Generalized Retrograde Autobiographical Amnesia Subsequent to the Great East Japan Earthquake in 2011.

    Science.gov (United States)

    Odagaki, Yuji

    2017-01-01

    Functional retrograde autobiographical amnesia is often associated with physical and/or psychological trauma. On 11 March 2011, the largest earthquake on record in Japan took place, and subsequent huge tsunami devastated the Pacific coast of northern Japan. This case report describes a patient suffering from retrograde episodic-autobiographical amnesia for whole life, persisting for even more than five years after the disaster. A Japanese man, presumably in his 40s, got police protection in April 2016 but was unable to respond to question about his own name. He lost all information about his personal identity, and his memory was wholly lost until the disaster on 11 March 2011. He was able to recall his life after the disaster, and semantic memories and social abilities were largely preserved. A medical examination performed on 1 November 2016 verified that he was awake, alert, and oriented to time, place, and person (except for himself). General physical and neurological examinations revealed no pathological findings. He also experienced some symptoms associated with posttraumatic stress disorder (PTSD), such as intrusive thoughts, flashbacks, and nightmares. No abnormalities were detected by biochemical test and brain magnetic resonance imaging (MRI). Physicians and other professionals who take care of victims of disaster should be aware of dissociative spectrum disorders, such as psychogenic amnesia.

  9. A Case of Persistent Generalized Retrograde Autobiographical Amnesia Subsequent to the Great East Japan Earthquake in 2011

    Directory of Open Access Journals (Sweden)

    Yuji Odagaki

    2017-01-01

    Full Text Available Functional retrograde autobiographical amnesia is often associated with physical and/or psychological trauma. On 11 March 2011, the largest earthquake on record in Japan took place, and subsequent huge tsunami devastated the Pacific coast of northern Japan. This case report describes a patient suffering from retrograde episodic-autobiographical amnesia for whole life, persisting for even more than five years after the disaster. A Japanese man, presumably in his 40s, got police protection in April 2016 but was unable to respond to question about his own name. He lost all information about his personal identity, and his memory was wholly lost until the disaster on 11 March 2011. He was able to recall his life after the disaster, and semantic memories and social abilities were largely preserved. A medical examination performed on 1 November 2016 verified that he was awake, alert, and oriented to time, place, and person (except for himself. General physical and neurological examinations revealed no pathological findings. He also experienced some symptoms associated with posttraumatic stress disorder (PTSD, such as intrusive thoughts, flashbacks, and nightmares. No abnormalities were detected by biochemical test and brain magnetic resonance imaging (MRI. Physicians and other professionals who take care of victims of disaster should be aware of dissociative spectrum disorders, such as psychogenic amnesia.

  10. Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus.

    Science.gov (United States)

    Sommer, M A; Wurtz, R H

    2001-04-01

    Many neurons within prefrontal cortex exhibit a tonic discharge between visual stimulation and motor response. This delay activity may contribute to movement, memory, and vision. We studied delay activity sent from the frontal eye field (FEF) in prefrontal cortex to the superior colliculus (SC). We evaluated whether this efferent delay activity was related to movement, memory, or vision, to establish its possible functions. Using antidromic stimulation, we identified 66 FEF neurons projecting to the SC and we recorded from them while monkeys performed a Go/Nogo task. Early in every trial, a monkey was instructed as to whether it would have to make a saccade (Go) or not (Nogo) to a target location, which permitted identification of delay activity related to movement. In half of the trials (memory trials), the target disappeared, which permitted identification of delay activity related to memory. In the remaining trials (visual trials), the target remained visible, which permitted identification of delay activity related to vision. We found that 77% (51/66) of the FEF output neurons had delay activity. In 53% (27/51) of these neurons, delay activity was modulated by Go/Nogo instructions. The modulation preceded saccades made into only part of the visual field, indicating that the modulation was movement-related. In some neurons, delay activity was modulated by Go/Nogo instructions in both memory and visual trials and seemed to represent where to move in general. In other neurons, delay activity was modulated by Go/Nogo instructions only in memory trials, which suggested that it was a correlate of working memory, or only in visual trials, which suggested that it was a correlate of visual attention. In 47% (24/51) of FEF output neurons, delay activity was unaffected by Go/Nogo instructions, which indicated that the activity was related to the visual stimulus. In some of these neurons, delay activity occurred in both memory and visual trials and seemed to represent a

  11. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function.

    Science.gov (United States)

    Zuure, Wieteke A; Roberts, Amy L; Quennell, Janette H; Anderson, Greg M

    2013-11-06

    The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.

  12. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration.

    Science.gov (United States)

    Kaplan, Artem; Spiller, Krista J; Towne, Christopher; Kanning, Kevin C; Choe, Ginn T; Geber, Adam; Akay, Turgay; Aebischer, Patrick; Henderson, Christopher E

    2014-01-22

    Selective neuronal loss is the hallmark of neurodegenerative diseases. In patients with amyotrophic lateral sclerosis (ALS), most motor neurons die but those innervating extraocular, pelvic sphincter, and slow limb muscles exhibit selective resistance. We identified 18 genes that show >10-fold differential expression between resistant and vulnerable motor neurons. One of these, matrix metalloproteinase-9 (MMP-9), is expressed only by fast motor neurons, which are selectively vulnerable. In ALS model mice expressing mutant superoxide dismutase (SOD1), reduction of MMP-9 function using gene ablation, viral gene therapy, or pharmacological inhibition significantly delayed muscle denervation. In the presence of mutant SOD1, MMP-9 expressed by fast motor neurons themselves enhances activation of ER stress and is sufficient to trigger axonal die-back. These findings define MMP-9 as a candidate therapeutic target for ALS. The molecular basis of neuronal diversity thus provides significant insights into mechanisms of selective vulnerability to neurodegeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Development of rat telencephalic neurons after prenatal x-irradiation

    International Nuclear Information System (INIS)

    Norton, S.

    1979-01-01

    Telencephalic neurons of rats, irradiated at day 15 of gestation with 125 R, develop synaptic connections on dendrites during maturation which appear to be normal spines in Golgi-stained light microscope preparations. At six weeks of postnatal age both control and irradiated rats have spiny dendritic processes on cortical pyramidal cells and caudate Golgi type II neurons. However, when the rats are 6 months old the irradiated rats have more neurons with beaded dendritic processes that lack spines or neurons and are likely to be degenerating neurons. The apparently normal development of the neurons followed by degeneration in the irradiated rat has a parallel in previous reports of the delayed hyperactivity which develops in rats irradiated on the fifteenth gestational day

  14. Medial Temporal Lobe Contributions to Future Thinking: Evidence from Neuroimaging and Amnesia

    Directory of Open Access Journals (Sweden)

    Mieke Verfaellie

    2012-09-01

    Full Text Available Following early amnesic case reports, there is now considerable evidence suggesting a link between remembering the past and envisioning the future. This link is evident in the overlap in neural substrates as well as cognitive processes involved in both kinds of tasks. While constructing a future narrative requires multiple processes, neuroimaging and lesion data converge on a critical role for the medial temporal lobes (MTL in retrieving and recombining details from memory in the service of novel simulations. Deficient detail retrieval and recombination may lead to impairments not only in episodic, but also in semantic prospection. MTL contributions to scene construction and mental time travel may further compound impairments in amnesia on tasks that pose additional demands on these processes, but are unlikely to form the core deficit underlying amnesics' cross-domain future thinking impairment. Future studies exploring the role of episodic memory in other forms of self-projection or future-oriented behaviour may elucidate further the adaptive role of memory.

  15. [Neuropsychological study of false memory in patients with amnesia mild cognitive impairment].

    Science.gov (United States)

    Xie, Dan-dan; Cheng, Huai-dong; Yin, Chang-lin; Lü, Xin-yi; Wang, Kai

    2011-01-18

    To explore the profile of false memory in aMCI (amnesia mild cognitive impairment) and to elucidate the neuropsychological mechanism of false memory. False memory provoked by pictures and feeling-of-knowing (FOK) test in episodic memory (EM) were conducted in 25 aMCI patients at our hospital from October 2009 to May 2010. And 25 age and education level-matched healthy patients were recruited into the healthy control (HC) group. As compared with HC group, the rate of false memory was higher in the aMCI group. The rate of false memory in recall stage was 26% ± 7% and that of questionnaire stage 28% ± 12%. And the difference between two group was significant (t = 14.437, 7.597, P false recognition in the aMCI group (41% ± 10%) was higher than the HC group. And the difference was significant (t = 4.207, P false memory in recall and questionnaire stages were positively correlated with FOK-EM in aMCI group (r = 0.563, 0.705, P false memory provoked by pictures. The deficit of memory monitoring in aMCI may be the foundation of false memory.

  16. Is there a positive bias in false recognition? Evidence from confabulating amnesia patients.

    Science.gov (United States)

    Alkathiri, Nura H; Morris, Robin G; Kopelman, Michael D

    2015-10-01

    Although there is some evidence for a positive emotional bias in the content of confabulations in brain damaged patients, findings have been inconsistent. The present study used the semantic-associates procedure to induce false recall and false recognition in order to examine whether a positive bias would be found in confabulating amnesic patients, relative to non-confabulating amnesic patients and healthy controls. Lists of positive, negative and neutral words were presented in order to induce false recall or false recognition of non-presented (but semantically associated) words. The latter were termed 'critical intrusions'. Thirteen confabulating amnesic patients, 13 non-confabulating amnesic patients and 13 healthy controls were investigated. Confabulating patients falsely recognised a higher proportion of positive (but unrelated) words, compared with non-confabulating patients and healthy controls. No differences were found for recall memory. Signal detection analysis, however, indicated that the positive bias for false recognition memory might reflect weaker memory in the confabulating amnesic group. This suggested that amnesia patients with weaker memory are more likely to confabulate and the content of these confabulations are more likely to be positive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Prominent and persistent loss of past awareness in amnesia: delusion, impaired consciousness or coping strategy?

    Science.gov (United States)

    Wilson, Barbara A; Kopelman, Michael; Kapur, Narinder

    2008-01-01

    Profound loss of awareness for the past in amnesia has implications for our understanding of memory and belief systems, and how they may become disrupted in neurological conditions. We report the case of CW, a professional musician who became severely amnesic in 1985 following herpes simplex viral encephalitis (HSVE) at the age of 46 years. For many years CW stated several times a day that he had just woken up. He frequently wrote this in his diary too. When shown examples of his diary entries or videos of himself playing or conducting music, he recognised both his handwriting and himself on the video screen but stated vehemently that he "was not conscious then". In a previous paper (Wilson, Baddeley, & Kapur 1995), it was suggested that this lack of awareness for the past was a delusion, defined as a strongly held belief in the face of contradictory evidence (rather than implying any kind of psychiatric disorder per se). As a contribution to the academic debate regarding theories of "self", in the present paper we will review this explanation of CW's state as it had been in those early years, and we will also consider two other possibilities - namely, that CW had suffered from a loss of "autobiographical self" or "extended consciousness" (see Damasio, 2000, pp. 198-199), and that his verbal reports simply reflected a form of coping strategy to help him deal with the limited evidence he had available in "declarative" memory.

  18. Medial temporal and neocortical contributions to remote memory for semantic narratives: evidence from amnesia.

    Science.gov (United States)

    Verfaellie, Mieke; Bousquet, Kathryn; Keane, Margaret M

    2014-08-01

    Studies of remote memory for semantic facts and concepts suggest that hippocampal lesions lead to a temporally graded impairment that extends no more than ten years prior to the onset of amnesia. Such findings have led to the notion that once consolidated, semantic memories are represented neocortically and are no longer dependent on the hippocampus. Here, we examined the fate of well-established semantic narratives following medial temporal lobe (MTL) lesions. Seven amnesic patients, five with lesions restricted to the MTL and two with lesions extending into lateral temporal cortex (MTL+), were asked to recount fairy tales and bible stories that they rated as familiar. Narratives were scored for number and type of details, number of main thematic elements, and order in which the main thematic elements were recounted. In comparison to controls, patients with MTL lesions produced fewer details, but the number and order of main thematic elements generated was intact. By contrast, patients with MTL+ lesions showed a pervasive impairment, affecting not only the generation of details, but also the generation and ordering of main steps. These findings challenge the notion that, once consolidated, semantic memories are no longer dependent on the hippocampus for retrieval. Possible hippocampal contributions to the retrieval of detailed semantic narratives are discussed. Published by Elsevier Ltd.

  19. Speech pathologists' current practice with cognitive-communication assessment during post-traumatic amnesia: a survey.

    Science.gov (United States)

    Steel, Joanne; Ferguson, Alison; Spencer, Elizabeth; Togher, Leanne

    2013-01-01

    To investigate speech pathologists' current practice with adults who are in post-traumatic amnesia (PTA). Speech pathologists with experience of adults in PTA were invited to take part in an online survey through Australian professional email/internet-based interest groups. Forty-five speech pathologists responded to the online survey. The majority of respondents (78%) reported using informal, observational assessment methods commencing at initial contact with people in PTA or when patients' level of alertness allowed and initiating formal assessment on emergence from PTA. Seven respondents (19%) reported undertaking no assessment during PTA. Clinicians described using a range of techniques to monitor cognitive-communication during PTA, including static, dynamic, functional and impairment-based methods. The study confirmed that speech pathologists have a key role in the multidisciplinary team caring for the person in PTA, especially with family education and facilitating interactions with the rehabilitation team and family. Decision-making around timing and means of assessment of cognitive-communication during PTA appeared primarily reliant on speech pathologists' professional experience and the culture of their workplace. The findings support the need for further research into the nature of cognitive-communication disorder and resolution over this period.

  20. Transient Global Amnesia following Neural and Cardiac Angiography May Be Related to Ischemia

    Directory of Open Access Journals (Sweden)

    Hongzhou Duan

    2016-01-01

    Full Text Available Introduction. Transient global amnesia (TGA following angiography is rare, and the pathogenesis has not been illustrated clearly till now. The aim of this research is to explore the pathogenesis of TGA following angiography by analyzing our data and reviewing the literature. Methods. We retrospectively studied 20836 cases with angiography in our hospital between 2007 and 2015 and found 9 cases with TGA following angiography. The data of these 9 cases were analyzed. Results. We found all 9 cases with TGA following neural angiography (5 in 4360 or cardiac angiography (4 in 8817 and no case with TGA following peripheral angiography (0 in 7659. Statistical difference was found when comparing the neural and cardiac angiography group with peripheral group (p=0.022. Two cases with TGA were confirmed with small acute infarctions in hippocampus after angiography. This might be related to the microemboli which were rushed into vertebral artery following blood flow during neural angiography or cardiac angiography. There was no statistical difference when comparing the different approaches for angiography (p=0.82 and different contrast agents (p=0.619. Conclusion. Based on the positive findings of imaging study and our analysis, we speculate that ischemia in the medial temporal lobe with the involvement of the hippocampus might be an important reason of TGA following angiography.

  1. Cognitive enhancing of pineapple extract and juice in scopolamine-induced amnesia in mice

    Science.gov (United States)

    Momtazi-borojeni, Amir Abbas; Sadeghi-Aliabadi, Hojjat; Rabbani, Mohammed; Ghannadi, Alireza; Abdollahi, Elham

    2017-01-01

    The objective of the present study was to evaluate the cognitive enhancing of pineapple juice and ethanolic extract in scopolamine-induced cognitive deficit mice. The ethanolic extract of pineapple (Ananas comosus (L.) Merr.) was prepared by maceration method and its juice was obtained by a homogenizer. Object recognition task was used to evaluate the mice memory. Exploration time in the first and second trial was recorded. The differences in exploration time between a familiar and a novel object in the second trial were taken as a memory index. Animals were randomly assigned into 15 groups of 6 each including: control group (normal saline + vehicle), positive control group (scopolamine + rivastigmine), seven experimental groups (received scopolamine alone or scopolamine + ethanolic extract of pineapple in different doses), six other experimental groups were treated by ethanolic extract or juice of pineapple in different doses. Scopolamine (100 μL, 1 mg/kg, i.p.) and pineapple juice or extract (50, 75 and 100 mg/kg, i.p.) were administered 40 and 30 min before starting the second trial in the experimental groups. Object discrimination was impaired after scopolamine administration. Results showed that juice and ethanolic extract of pineapple significantly restored object recognition ability in mice treated with scopolamine. These finding suggested that pineapple had a protective role against scopolamine-induced amnesia, indicating its ability in management of cognitive disorders. PMID:28626484

  2. Isolated amnesia following a bilateral paramedian thalamic infarct. Possible etiologic role of a whiplash injury.

    Science.gov (United States)

    Barontini, F; Maurri, S

    1992-04-01

    A previously healthy 45 years old carpenter suffered a whiplash injury in a road accident on July, 18th, 1990. He continued to work in spite of occipital headache, episodic sweatening and slight hypersomnia. On August, 8th, 1990 while parking his car into the deck of a ferry-boat he was found slightly confuse and markedly amnestic. A post-traumatic subdural haematoma was suspected. As a CT-scan of the brain was normal, a toxic encephalopathy or an hysterical amnesia were proposed. However, a MRI performed on August, 22th, 1990, apart from a small infarct in the white matter of the left occipital lobe, showed two small bilateral paramedian thalamic infarcts. The last lesions usually follow a thrombotic or embolic occlusion of the "basilar communicating artery" (BCA) belonging to the vertebro-basilar system. The possible etiologic relationship between this syndrome and the previous whiplash injury has been considered. Six months later, while a control MRI showed a reduction of the brain lesions, a neuropsychological examination revealed a slight improvement of memory dysfunction evident also at a distance of further 6 months. This case is interesting because it tests the high sensitivity of MRI in amnestic syndromes and because of the possible role of a whiplash injury in the etiology of BPTI.

  3. Effects of prior aversive experience upon retrograde amnesia induced by hypothermia.

    Science.gov (United States)

    Jensen, R A; Riccio, D C; Gehres, L

    1975-08-01

    Two experiments examined the extent to which retrograde amnesia (RA) is attenuated by prior learning experiences. In Experiment 1, rats initially received either passive avoidance training in a step-through apparatus, exposure to the apparatus, or noncontingent footshock. When training on a second but different passive avoidance task was followed by hypothermia treatment, RA was obtained only in the latter two groups. In Experiment 2, one-way active avoidance training, yoked noncontingent shocks, or apparatus exposure constituted the initial experience. Subsequent step-down passive avoidance training and amnestic treatment resulted in memory loss for the prior apparatus exposure group, but not for either of the preshocked conditions. These experiments demonstrate that certain types of prior aversive experience can substantially modify the magnitude of RA, and, in conjunction with other familiarization studies, emphasize a paradox for interpretations of RA based solely upon CNS disruption. The possibility that hypothermia treatment serves as an important contextual or encoding cue necessary for memory retrieval was considered. It was suggested that prior experience may block RA by enabling rats to differentiate training and treatment conditions.

  4. Amnesia induced by morphine in spatial memory retrieval inhibited in morphine-sensitized rats.

    Science.gov (United States)

    Farahmandfar, Maryam; Naghdi, Nasser; Karimian, Seyed Morteza; Kadivar, Mehdi; Zarrindast, Mohammad-Reza

    2012-05-15

    The present study investigated the effect of morphine sensitization on the impairment of spatial memory retrieval induced by acute morphine in adult male rats. Spatial memory was assessed by 2-day Morris water maze task which included training and test day. On the training day, rats were trained by a single training session of 8 trials. On the test day, a probe trial consisting of 60s free swim period without a platform and the visible test were administered. Morphine sensitization was induced by subcutaneous (s.c.) injection of morphine, once daily for 3 days followed by 5 days without drug treatment before training. The results indicated that acute administration of morphine (7.5mg/kg, s.c.) before testing impaired spatial memory on the test day. Pre-test morphine-induced amnesia decreased in morphine-sensitized (15 and 20mg/kg, s.c.) rats. Improvement in spatial memory retrieval in morphine-sensitized rats was inhibited by once daily administration of naloxone (1 and 2mg/kg, s.c.) 30 min prior to the injection of morphine for three days. The results suggest that morphine sensitization reverses the impairment of spatial memory retrieval induced by acute morphine and it is implied that mu-opioid receptors may play an important role in this effect. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Talker-specific learning in amnesia: Insight into mechanisms of adaptive speech perception.

    Science.gov (United States)

    Trude, Alison M; Duff, Melissa C; Brown-Schmidt, Sarah

    2014-05-01

    A hallmark of human speech perception is the ability to comprehend speech quickly and effortlessly despite enormous variability across talkers. However, current theories of speech perception do not make specific claims about the memory mechanisms involved in this process. To examine whether declarative memory is necessary for talker-specific learning, we tested the ability of amnesic patients with severe declarative memory deficits to learn and distinguish the accents of two unfamiliar talkers by monitoring their eye-gaze as they followed spoken instructions. Analyses of the time-course of eye fixations showed that amnesic patients rapidly learned to distinguish these accents and tailored perceptual processes to the voice of each talker. These results demonstrate that declarative memory is not necessary for this ability and points to the involvement of non-declarative memory mechanisms. These results are consistent with findings that other social and accommodative behaviors are preserved in amnesia and contribute to our understanding of the interactions of multiple memory systems in the use and understanding of spoken language. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Galveston Orientation and Amnesia Test: applicability and relation with the Glasgow Coma Scale Galveston Orientation and Amnesia Test: aplicabilidad y relación con la Escala de Coma de Glasgow Galveston Orientation and Amnesia Test: aplicabilidade e relação com a Escala de Coma de Glasgow

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Fürbringer e Silva

    2007-08-01

    Full Text Available Restrictions in the application of the Galveston Orientation and Amnesia Test and questionings about the relationship between conscience and post-traumatic amnesia motivated this study, which aims to identify, through the Glasgow Coma Scale scores, when to initiate the application of this amnesia test, as well to verify the relationship between the results of these two indicators. The longitudinal prospective study was carried at a referral center for trauma care in São Paulo - Brazil. The sample consisted of 73 victims of blunt traumatic brain injury, admitted at this institution between January 03rd and May 03rd 2001. Regarding the applicability, the test could be applied in patients with a Glasgow Coma Scale score > 12; however, the end of post traumatic amnesia was verified in patients who scored > 14 on the scale. A significant relationship (r s = 0.65 was verified between these measures, although different kinds of relationship between the end of the amnesia and changes in consciousness were observed.Restricciones en la aplicación del Galveston Orientation and Amnesia Test y los cuestionamientos sobre la relación entre conciencia y amnesia post-traumática motivaron este estudio que visa identificar, a través de la puntuación de la Escala de Coma de Glasgow, el periodo más adecuado para la aplicación de la prueba de amnesia, y observar la relación entre los resultados de esos dos indicadores. El estudio prospectivo y longitudinal fue realizado en un centro de referencia para traumas en São Paulo - Brasil. El número fue de 73 victimas de trauma craneoencefálico contuso, internadas en esta institución en el periodo de 03/01 a 03/05/2001. Con relación a la aplicabilidad, la prueba puede ser aplicada en los pacientes con la Escala de Coma de Glasgow > 12, pero el término de la amnesia post-traumática fue observado en los pacientes con puntuación > 14 en la escala. Correlación significativa (rs = 0,65 fue observada entre esas

  7. Delayed orgasm and anorgasmia.

    Science.gov (United States)

    Jenkins, Lawrence C; Mulhall, John P

    2015-11-01

    Delayed orgasm/anorgasmia defined as the persistent or recurrent difficulty, delay in, or absence of attaining orgasm after sufficient sexual stimulation, which causes personal distress. Delayed orgasm and anorgasmia are associated with significant sexual dissatisfaction. A focused medical history can shed light on the potential etiologies, which include medications, penile sensation loss, endocrinopathies, penile hyperstimulation, and psychological etiologies. Unfortunately, there are no excellent pharmacotherapies for delayed orgasm/anorgasmia, and treatment revolves largely around addressing potential causative factors and psychotherapy. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Neuronal Migration Disorders

    Science.gov (United States)

    ... Understanding Sleep The Life and Death of a Neuron Genes At Work In The Brain Order Publications ... birth defects caused by the abnormal migration of neurons in the developing brain and nervous system. In ...

  9. Motor Neuron Diseases

    Science.gov (United States)

    ... and other neurodegenerative diseases to better understand the function of neurons and other support cells and identify candidate therapeutic ... and other neurodegenerative diseases to better understand the function of neurons and other support cells and identify candidate therapeutic ...

  10. American Dream Delayed

    DEFF Research Database (Denmark)

    Khorunzhina, Natalia; Miller, Robert A.

    This paper investigates the delay in homeownership and a subsequent reduction in homeownership rate observed over the past decades. We focus on the delay in giving birth to children and increased labor market participation as contributing factors to homeownership dynamics for prime-age female hou...

  11. Mutations in KPTN Cause Macrocephaly, Neurodevelopmental Delay, and Seizures

    Science.gov (United States)

    Baple, Emma L.; Maroofian, Reza; Chioza, Barry A.; Izadi, Maryam; Cross, Harold E.; Al-Turki, Saeed; Barwick, Katy; Skrzypiec, Anna; Pawlak, Robert; Wagner, Karin; Coblentz, Roselyn; Zainy, Tala; Patton, Michael A.; Mansour, Sahar; Rich, Phillip; Qualmann, Britta; Hurles, Matt E.; Kessels, Michael M.; Crosby, Andrew H.

    2014-01-01

    The proper development of neuronal circuits during neuromorphogenesis and neuronal-network formation is critically dependent on a coordinated and intricate series of molecular and cellular cues and responses. Although the cortical actin cytoskeleton is known to play a key role in neuromorphogenesis, relatively little is known about the specific molecules important for this process. Using linkage analysis and whole-exome sequencing on samples from families from the Amish community of Ohio, we have demonstrated that mutations in KPTN, encoding kaptin, cause a syndrome typified by macrocephaly, neurodevelopmental delay, and seizures. Our immunofluorescence analyses in primary neuronal cell cultures showed that endogenous and GFP-tagged kaptin associates with dynamic actin cytoskeletal structures and that this association is lost upon introduction of the identified mutations. Taken together, our studies have identified kaptin alterations responsible for macrocephaly and neurodevelopmental delay and define kaptin as a molecule crucial for normal human neuromorphogenesis. PMID:24239382

  12. MR imaging of neuronal migration anomaly

    International Nuclear Information System (INIS)

    Hong, Hyun Sook; Choi, Eun Wan; Kim, Dae Ho; Chung, Moo Chan; Kwon, Kuy Hyang; Kim, Ki Jung

    1991-01-01

    Abnormalities of neuronal migration are characterized by anectopic location of neurons in the cerebral cortex. This broad group of anomalies includes agyria, pachygyria, schizencephaly, unilateral megalencephaly, and gray matter heterotopia. Patients with this anomaly present clinically with a variety of symptoms which are proportional to the extent of the brain involved. These abnormalities have characterized pathologically in vivo by sonography and CT scan. MR appears to be an imaging technique of choice in evaluating these anomalies because it is capable of exceptionally good differentiation between gray and white matter, high contrast resolution, multiplanar display of the anatomy, and lack of overlying bone artifac. The purpose of this paper is to describe the MR findings of neuronal migration anomaly. The results of our study support that MR appears to be the imaging method of choice for diagnosing migration anomalies and the primary screening method for infants or children who have seisure/and delayed development

  13. Clinical characteristics and brain PET findings in 3 cases of dissociative amnesia: disproportionate retrograde deficit and posterior middle temporal gyrus hypometabolism.

    Science.gov (United States)

    Thomas-Antérion, C; Dubas, F; Decousus, M; Jeanguillaume, C; Guedj, E

    2014-10-01

    Precipitated by psychological stress, dissociative amnesia occurs in the absence of identifiable brain damage. Its clinical characteristics and functional neural basis are still a matter of controversy. In the present paper, we report 3 cases of retrograde autobiographical amnesia, characterized by an acute onset concomitant with emotional/neurological precipitants. We present 2 cases of dissociative amnesia with fugue (cases 1 and 2), and one case of focal dissociative amnesia after a minor head trauma (case 3). The individual case histories and neuropsychological characteristics are reported, as well as the whole-brain voxel-based 18FDG-PET metabolic findings obtained at group-level in comparison to 15 healthy subjects. All patients suffered from autobiographical memory loss, in the absence of structural lesion. They had no significant impairment of anterograde memory or of executive function. Impairment of autobiographical memory was complete for two of the three patients, with loss of personal identity (cases 1 and 2). A clinical recovery was found for the two patients in whom follow-up was available (cases 2 and 3). Voxel-based group analysis highlighted a metabolic impairment of the right posterior middle temporal gyrus. 18FDG-PET was repeated in case 3, and showed a complete functional brain recovery. The situation of dissociative amnesia with disproportionate retrograde amnesia is clinically heterogeneous between individuals. Our findings may suggest that impairment of high-level integration of visual and/or emotional information processing involving dysfunction of the right posterior middle temporal gyrus could reduce triggering of multi-modal visual memory traces, thus impeding reactivation of aversive memories. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Global Hopf bifurcation analysis on a BAM neural network with delays

    Science.gov (United States)

    Sun, Chengjun; Han, Maoan; Pang, Xiaoming

    2007-01-01

    A delayed differential equation that models a bidirectional associative memory (BAM) neural network with four neurons is considered. By using a global Hopf bifurcation theorem for FDE and a Bendixon's criterion for high-dimensional ODE, a group of sufficient conditions for the system to have multiple periodic solutions are obtained when the sum of delays is sufficiently large.

  15. Global Hopf bifurcation analysis on a BAM neural network with delays

    International Nuclear Information System (INIS)

    Sun Chengjun; Han Maoan; Pang Xiaoming

    2007-01-01

    A delayed differential equation that models a bidirectional associative memory (BAM) neural network with four neurons is considered. By using a global Hopf bifurcation theorem for FDE and a Bendixon's criterion for high-dimensional ODE, a group of sufficient conditions for the system to have multiple periodic solutions are obtained when the sum of delays is sufficiently large

  16. The synchronization of asymmetric-structured electric coupling neuronal system

    Science.gov (United States)

    Wang, Guanping; Jin, Wuyin; Liu, Hao; Sun, Wei

    2018-02-01

    Based on the Hindmarsh-Rose (HR) model, the synchronization dynamics of asymmetric-structured electric coupling two neuronal system is investigated in this paper. It is discovered that when the time-delay scope and coupling strength for the synchronization are correlated positively under unequal time delay, the time-delay difference does not make a clear distinction between the two individual inter-spike intervals (ISI) bifurcation diagrams of the two coupled neurons. Therefore, the superficial difference of the system synchronization dynamics is not obvious for the unequal time-delay feedback. In the asymmetrical current incentives under asymmetric electric coupled system, the two neurons can only be almost completely synchronized in specific area of the interval which end-pointed with two discharge modes for a single neuron under different stimuli currents before coupling, but the intervention of time-delay feedback, together with the change of the coupling strength, can make the coupled system not only almost completely synchronized within anywhere in the front area, but also outside of it.

  17. On the nose: Olfactory disturbances in patients with transient epileptic amnesia.

    Science.gov (United States)

    Savage, Sharon A; Butler, Christopher R; Milton, Fraser; Han, Yang; Zeman, Adam Z

    2017-01-01

    While olfactory hallucinations are relatively rare in epilepsy, a high prevalence (up to 42%) has been reported in one form - Transient Epileptic Amnesia (TEA). TEA is characterized by recurring amnestic seizures and is commonly associated with persistent interictal memory deficits. Despite reports of changes in smell, olfactory ability has not been objectively assessed in this group. The aim of this study was to measure olfactory ability in patients with TEA and explore whether olfactory symptoms relate to other clinical variables. Fifty-five participants with TEA were recruited from The Impairment of Memory in Epilepsy project database. The presence of olfactory symptoms was obtained via case notes and clinical interview. Participants completed questionnaires to evaluate their olfaction and memory function subjectively. Olfactory ability was measured using the University of Pennsylvania Smell Identification Test (UPSIT). TEA participants' performance was compared to 50 matched healthy control participants. A subset of TEA participants (n=26) also completed a battery of memory tests including standard neuropsychological measures, and assessment of accelerated long-term forgetting and autobiographical memory. Olfactory hallucinations were reported in 55% of patients with TEA. A significant reduction in smell identification (UPSIT) was found between patients with TEA and healthy controls (polfactory hallucinations, were not predictive of olfactory ability. Patients reported ongoing memory difficulties and performed below normative values on objective tests. While no correlation was found between objective measures of memory and olfactory performance, subjective complaints of route finding difficulty was associated with UPSIT score. Impairments in odor identification are common in patients with TEA and exceed changes that occur in normal aging. Olfactory hallucinations occurs in approximately half of patients with TEA, but do not always coincide with reduced sense of

  18. Between Truth and Amnesia: State Terrorism, Human Rights Violations and Transitional Justice in Brazil

    Directory of Open Access Journals (Sweden)

    Iasmin Goes

    2013-04-01

    Full Text Available Abstract:The military rule in Brazil between 1964 and 1985 employed less violence than similar authoritarian regimes in neighbouring countries, and attempted to maintain a façade of legitimacy by allowing for a consented opposition. Nevertheless, Brazil was the last Latin American nation to establish a truth commission. Ever since the Amnesty Law was passed in 1979, authorities and citizens have both struggled to come to terms with the human rights violations committed in the past. The Brazilian government went as far as offering material reparations to the presumed victims without disclosing official information to establish what the reparations were being paid for. Is it better to remember or forget? This Exploration discusses transitional justice strategies, and documents recent developments in Brazil's political history.Resumen: Entre la verdad y la amnesia. Terrorismo de Estado, violaciones de derechos humanos y justicia transicional en BrasilEntre 1964 y 1985, el régimen militar en Brasil empleó menos violencia que regímenes autoritarios de países vecinos, e intentó mantener una fachada de legitimidad. Sin embargo, Brasil fue el último país latinoamericano en establecer una comisión de la verdad. Desde la aprobación de la Ley de Amnistía en 1979, tanto las autoridades como los ciudadanos luchan para hacer justicia a las violaciones de derechos humanos cometidas en el pasado. El gobierno brasileño llegó al extremo de ofrecer reparaciones materiales a las presuntas víctimas, sin revelar informaciones oficiales para establecer por qué las estaba pagando. ¿Es mejor recordar u olvidar? Esta Exploración analiza las estrategias de justicia transicional y documenta evoluciones recientes en la política histórica brasileña.

  19. Memory integration in amnesia: prior knowledge supports verbal short-term memory.

    Science.gov (United States)

    Race, Elizabeth; Palombo, Daniela J; Cadden, Margaret; Burke, Keely; Verfaellie, Mieke

    2015-04-01

    Short-term memory (STM) and long-term memory (LTM) have traditionally been considered cognitively distinct. However, it is known that STM can improve when to-be-remembered information appears in contexts that make contact with prior knowledge, suggesting a more interactive relationship between STM and LTM. The current study investigated whether the ability to leverage LTM in support of STM critically depends on the integrity of the hippocampus. Specifically, we investigated whether the hippocampus differentially supports between-domain versus within-domain STM-LTM integration given prior evidence that the representational domain of the elements being integrated in memory is a critical determinant of whether memory performance depends on the hippocampus. In Experiment 1, we investigated hippocampal contributions to within-domain STM-LTM integration by testing whether immediate verbal recall of words improves in MTL amnesic patients when words are presented in familiar verbal contexts (meaningful sentences) compared to unfamiliar verbal contexts (random word lists). Patients demonstrated a robust sentence superiority effect, whereby verbal STM performance improved in familiar compared to unfamiliar verbal contexts, and the magnitude of this effect did not differ from that in controls. In Experiment 2, we investigated hippocampal contributions to between-domain STM-LTM integration by testing whether immediate verbal recall of digits improves in MTL amnesic patients when digits are presented in a familiar visuospatial context (a typical keypad layout) compared to an unfamiliar visuospatial context (a random keypad layout). Immediate verbal recall improved in both patients and controls when digits were presented in the familiar compared to the unfamiliar keypad array, indicating a preserved ability to integrate activated verbal information with stored visuospatial knowledge. Together, these results demonstrate that immediate verbal recall in amnesia can benefit from two

  20. Cerebral blood flow SPET in transient global amnesia with automated ROI analysis by 3DSRT

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Ryo [Division of Nuclear Medicine, Nishi-Kobe Medical Center, Kohjidai 5-7-1, 651-2273, Nishi-ku, Kobe-City, Hyogo (Japan); Matsuda, Hiroshi [Department of Radiology, National Center Hospital for Mental, Nervous and Muscular Disorders, National Center of Neurology and Psychiatry, Tokyo (Japan); Yoshioka, Katsunori [Daiichi Radioisotope Laboratories, Ltd., Tokyo (Japan); Yonekura, Yoshiharu [Biomedical Imaging Research Center, University of Fukui, Fukui (Japan)

    2004-04-01

    The aim of this study was to determine the areas involved in episodes of transient global amnesia (TGA) by calculation of cerebral blood flow (CBF) using 3DSRT, fully automated ROI analysis software which we recently developed. Technetium-99m l,l-ethyl cysteinate dimer single-photon emission tomography ({sup 99m}Tc-ECD SPET) was performed during and after TGA attacks on eight patients (four men and four women; mean study interval, 34 days). The SPET images were anatomically standardized using SPM99 followed by quantification of 318 constant ROIs, grouped into 12 segments (callosomarginal, precentral, central, parietal, angular, temporal, posterior cerebral, pericallosal, lenticular nucleus, thalamus, hippocampus and cerebellum), in each hemisphere to calculate segmental CBF (sCBF) as the area-weighted mean value for each of the respective 12 segments based on the regional CBF in each ROI. Correlation of the intra- and post-episodic sCBF of each of the 12 segments of the eight patients was estimated by scatter-plot graphical analysis and Pearson's correlation test with Fisher's Z-transformation. For the control, {sup 99m}Tc-ECD SPET was performed on eight subjects (three men and five women) and repeated within 1 month; the correlation between the first and second sCBF values of each of the 12 segments was evaluated in the same way as for patients with TGA. Excellent reproducibility between the two sCBF values was found in all 12 segments of the control subjects. However, a significant correlation between intra- and post-episodic sCBF was not shown in the thalamus or angular segments of TGA patients. The present study was preliminary, but at least suggested that thalamus and angular regions are closely involved in the symptoms of TGA. (orig.)

  1. Cerebral blood flow SPET in transient global amnesia with automated ROI analysis by 3DSRT

    International Nuclear Information System (INIS)

    Takeuchi, Ryo; Matsuda, Hiroshi; Yoshioka, Katsunori; Yonekura, Yoshiharu

    2004-01-01

    The aim of this study was to determine the areas involved in episodes of transient global amnesia (TGA) by calculation of cerebral blood flow (CBF) using 3DSRT, fully automated ROI analysis software which we recently developed. Technetium-99m l,l-ethyl cysteinate dimer single-photon emission tomography ( 99m Tc-ECD SPET) was performed during and after TGA attacks on eight patients (four men and four women; mean study interval, 34 days). The SPET images were anatomically standardized using SPM99 followed by quantification of 318 constant ROIs, grouped into 12 segments (callosomarginal, precentral, central, parietal, angular, temporal, posterior cerebral, pericallosal, lenticular nucleus, thalamus, hippocampus and cerebellum), in each hemisphere to calculate segmental CBF (sCBF) as the area-weighted mean value for each of the respective 12 segments based on the regional CBF in each ROI. Correlation of the intra- and post-episodic sCBF of each of the 12 segments of the eight patients was estimated by scatter-plot graphical analysis and Pearson's correlation test with Fisher's Z-transformation. For the control, 99m Tc-ECD SPET was performed on eight subjects (three men and five women) and repeated within 1 month; the correlation between the first and second sCBF values of each of the 12 segments was evaluated in the same way as for patients with TGA. Excellent reproducibility between the two sCBF values was found in all 12 segments of the control subjects. However, a significant correlation between intra- and post-episodic sCBF was not shown in the thalamus or angular segments of TGA patients. The present study was preliminary, but at least suggested that thalamus and angular regions are closely involved in the symptoms of TGA. (orig.)

  2. Transient Global Amnesia Deteriorates the Network Efficiency of the Theta Band.

    Directory of Open Access Journals (Sweden)

    Young Ho Park

    Full Text Available Acute perturbation of the hippocampus, one of the connector hubs in the brain, is a key step in the pathophysiological cascade of transient global amnesia (TGA. We tested the hypothesis that network efficiency, meaning the efficiency of information exchange over a network, is impaired during the acute stage of TGA. Graph theoretical analysis was applied to resting-state EEG data collected from 21 patients with TGA. The EEG data were obtained twice, once during the acute stage ( 2 months after symptom onset of TGA. Characteristic path lengths and clustering coefficients of functional networks constructed using phase-locking values were computed and normalized as a function of the degree in the delta, theta, alpha, beta 1, beta 2 and gamma frequency bands of the EEG. We investigated whether the normalized characteristic path length (nCPL and normalized clustering coefficients (nCC differed significantly between the acute and resolved stages of TGA at each frequency band using the Wilcoxon signed-rank test. For networks where the nCPL or nCC differed significantly between the two stages, we also evaluated changes in the connections of the brain networks. During the acute stage of TGA, the nCPL of the theta band networks with mean degrees of 8, 8.5, 9 and 9.5 significantly increased (P < 0.05. During the acute stage, the lost edges for these networks were mostly found between the anterior (frontal and anterior temporal and posterior (parieto-occipital and posterior temporal brain regions, whereas newly developed edges were primarily found between the left and right frontotemporal regions. The nCC of the theta band with a mean degree of 5.5 significantly decreased during the acute stage (P < 0.05. Our results indicate that TGA deteriorates the network efficiency of the theta frequency band. This effect might be related to the desynchronization between the anterior and posterior brain areas.

  3. Suggesting a possible role of CA1 histaminergic system in harmane-induced amnesia.

    Science.gov (United States)

    Nasehi, Mohammad; Mashaghi, Elham; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2013-11-27

    A number of tremorogenic β-carboline alkaloids such as harmane are naturally present in the human food chain. They are derived from medicinal plants such as Peganum harmala that have been used as folk medicine in anticancer therapy. In the present study, effects of the histaminergic system of the dorsal hippocampus (CA1) on harmane-induced amnesia were examined. One-trial step-down was used to assess memory retention in adult male mice. The results showed that pre-training intra-CA1 administration of histamine (5μg/mouse), ranitidine (H2 receptor antagonist; at the doses of 0.25 and 0.5μg/mouse) and pyrilamine (H1 receptor antagonist; at the dose of 5μg/mouse) decreased memory formation. Pre-training intraperitoneal (i.p.) administration of harmane (12mg/kg) also decreased memory formation. Moreover, pre-training intra-CA1 injection of a sub-threshold dose of histamine (2.5μg/mouse) could reverse harmane (12mg/kg, i.p.)-induced impairment of memory. On the other hand, pre-training intra-CA1 injection of sub-threshold doses of ranitidine (0.0625μg/mouse) and pyrilamine (2.5μg/mouse) increased harmane-induced impairment of memory. In conclusion, the present findings suggest the involvement of the CA1 histaminergic system in harmane-induced impairment of memory formation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Delayed power analysis

    International Nuclear Information System (INIS)

    Adamovich, L.A.; Azarov, V.V.

    1999-01-01

    Time dependent core power behavior in a nuclear reactor is described with well-known neutron kinetics equations. At the same time, two portions are distinguished in energy released from uranium nuclei fission; one released directly at fission and another delayed (residual) portion produced during radioactive decay of fission products. While prompt power is definitely described with kinetics equations, the delayed power presentation still remains outstanding. Since in operation the delayed power part is relatively small (about 6%) operation, it can be neglected for small reactivity disturbances assuming that entire power obeys neutron kinetics equations. In case of a high negative reactivity rapidly inserted in core (e.g. reactor scram initiation) the prompt and delayed components can be calculated separately with practically no impact on each other, employing kinetics equations for prompt power and known approximation formulas for delayed portion, named residual in this specific case. Under substantial disturbances the prompt component in the dynamic process becomes commensurable with delayed portion, thus making necessary to take into account their cross impact. A system of differential equations to describe time-dependent behavior of delayed power is presented. Specific NPP analysis shows a way to significantly simplify the task formulation. (author)

  5. Convergent dynamics for multistable delayed neural networks

    International Nuclear Information System (INIS)

    Shih, Chih-Wen; Tseng, Jui-Pin

    2008-01-01

    This investigation aims at developing a methodology to establish convergence of dynamics for delayed neural network systems with multiple stable equilibria. The present approach is general and can be applied to several network models. We take the Hopfield-type neural networks with both instantaneous and delayed feedbacks to illustrate the idea. We shall construct the complete dynamical scenario which comprises exactly 2 n stable equilibria and exactly (3 n − 2 n ) unstable equilibria for the n-neuron network. In addition, it is shown that every solution of the system converges to one of the equilibria as time tends to infinity. The approach is based on employing the geometrical structure of the network system. Positively invariant sets and componentwise dynamical properties are derived under the geometrical configuration. An iteration scheme is subsequently designed to confirm the convergence of dynamics for the system. Two examples with numerical simulations are arranged to illustrate the present theory

  6. What Infant Memory Tells Us about Infantile Amnesia: Long-Term Recall and Deferred Imitation

    OpenAIRE

    Meltzoff, Andrew N.

    1995-01-01

    Long-term recall memory was assessed using a nonverbal method requiring subjects to reenact a past event from memory (deferred imitation). A large sample of infants (N = 192), evenly divided between 14- and 16-months old, was tested across two experiments. A delay of 2 months was used in Experiment 1 and a delay of 4 months in Experiment 2. In both experiments two treatment groups were used, In one treatment group, motor practice (immediate imitation) was allowed before the delay was imposed;...

  7. Neutron delayed choice experiments

    International Nuclear Information System (INIS)

    Bernstein, H.J.

    1986-01-01

    Delayed choice experiments for neutrons can help extend the interpretation of quantum mechanical phenomena. They may also rule out alternative explanations which static interference experiments allow. A simple example of a feasible neutron test is presented and discussed. (orig.)

  8. Quad nanosecond delay module

    International Nuclear Information System (INIS)

    McDonald, R.J.; Hunter, J.B.; Wozniak, G.J.

    1986-04-01

    Four nanosecond (ns) delay units have been designed to fit in a single-width NIM module. This module is particularly suited for use in conjunction with quad constant fraction timing discriminators (CFTDs) since it has four delay units that can be placed adjacent to the four units of the CFTD. A series of different length cables connected via DIP toggle switches provide delays of 0.60 ns in 4 ns increments. Thus, the CFTD delay can be optimized for pulses of different rise times from approx.10-100 ns. Design work for the PC board and silkscreening of the front panel were done with the MacDraw program on the Apple Mackintosh computer and printed with the Lasewriter printer. 6 refs

  9. Delayed rule following

    OpenAIRE

    Schmitt, David R.

    2001-01-01

    Although the elements of a fully stated rule (discriminative stimulus [SD], some behavior, and a consequence) can occur nearly contemporaneously with the statement of the rule, there is often a delay between the rule statement and the SD. The effects of this delay on rule following have not been studied in behavior analysis, but they have been investigated in rule-like settings in the areas of prospective memory (remembering to do something in the future) and goal pursuit. Discriminative even...

  10. Vernier Delay Unit

    International Nuclear Information System (INIS)

    Pierce, W.B.

    1984-10-01

    This module will accept differential ECL pulses from the auxiliary rear panel or NIM level pulses from the front panel. The pulses are produced at the output with a fixed delay that is software programmable in steps of 0.1 ns over the range of 0.1 to 10.5 ns. Multiple outputs are available at the front panel. Minimum delay through the module is 9 ns

  11. Quad precision delay generator

    International Nuclear Information System (INIS)

    Krishnan, Shanti; Gopalakrishnan, K.R.; Marballi, K.R.

    1997-01-01

    A Quad Precision Delay Generator delays a digital edge by a programmed amount of time, varying from nanoseconds to microseconds. The output of this generator has an amplitude of the order of tens of volts and rise time of the order of nanoseconds. This was specifically designed and developed to meet the stringent requirements of the plasma focus experiments. Plasma focus is a laboratory device for producing and studying nuclear fusion reactions in hot deuterium plasma. 3 figs

  12. Modelling delays in pharmacokinetics

    International Nuclear Information System (INIS)

    Farooqi, Z.H.; Lambrecht, R.M.

    1990-01-01

    Linear system analysis has come to form the backbone of pharmacokinetics. Natural systems usually involve time delays, thus models incorporating them would be an order closer approximation to the real world compared to those that do not. Delays may be modelled in several ways. The approach considered in this study is to have a discrete-time delay dependent rate with the delay respresenting the duration between the entry of a drug into a compartment and its release in some form (may be as a metabolite) from the compartment. Such a delay may be because of one or more of several physiological reasons, like, formation of a reservoir, slow metabolism, or receptor binding. The mathematical structure this gives rise to is a system of delay-differential equations. Examples are given of simple one and two compartment systems with drugs like bumetanide, carbamazepine, and quinolone-caffeine interaction. In these examples generally a good fit is obtained and the suggested models form a good approximation. 21 refs., 6 figs

  13. Route learning in amnesia: a comparison of trial-and-error and errorless learning in patients with the Korsakoff syndrome.

    Science.gov (United States)

    Kessels, Roy P C; van Loon, Eke; Wester, Arie J

    2007-10-01

    To examine the errorless learning approach using a procedural memory task (i.e. learning of actual routes) in patients with amnesia, as compared to trial-and-error learning. Counterbalanced self-controlled cases series. Psychiatric hospital (Korsakoff clinic). A convenience sample of 10 patients with the Korsakoff amnestic syndrome. All patients learned a route in four sessions on separate days using an errorless approach and a different route using trial-and-error. Error rate was scored during route learning and standard neuro-psychological tests were administered (i.e. subtest route recall of the Rivermead Behavioural Memory Test (RBMT) and the Dutch version of the California Verbal Learning Test (VLGT)). A significant learning effect was found in the trial-and-error condition over consecutive sessions (P = 0.006), but no performance difference was found between errorless and trial-and-error learning of the routes. VLGT performance was significantly correlated with a trial-and-error advantage (P Korsakoff syndrome (severe amnesia).

  14. Human amnesia and the medial temporal lobe illuminated by neuropsychological and neurohistological findings for patient E.P.

    Science.gov (United States)

    Insausti, Ricardo; Annese, Jacopo; Amaral, David G.; Squire, Larry R.

    2013-01-01

    We present neurohistological information for a case of bilateral, symmetrical damage to the medial temporal lobe and well-documented memory impairment. E.P. developed profound memory impairment at age 70 y and then was studied for 14 y He had no capacity for learning facts and events and had retrograde amnesia covering several decades. He also had a modest impairment of semantic knowledge. Neurohistological analysis revealed bilaterally symmetrical lesions of the medial temporal lobe that eliminated the temporal pole, the amygdala, the entorhinal cortex, the hippocampus, the perirhinal cortex, and rostral parahippocampal cortex. The lesion also extended laterally to involve the fusiform gyrus substantially. Last, the superior, inferior, and middle temporal gyri were atrophic, and subjacent white matter was gliotic. Several considerations indicate that E.P.’s severe memory impairment was caused by his medial temporal lesions, whereas his impaired semantic knowledge was caused by lateral temporal damage. His lateral temporal damage also may have contributed to his extensive retrograde amnesia. The findings illuminate the anatomical relationship between memory, perception, and semantic knowledge. PMID:23620517

  15. Resveratrol stimulates AMP kinase activity in neurons.

    Science.gov (United States)

    Dasgupta, Biplab; Milbrandt, Jeffrey

    2007-04-24

    Resveratrol is a polyphenol produced by plants that has multiple beneficial activities similar to those associated with caloric restriction (CR), such as increased life span and delay in the onset of diseases associated with aging. CR improves neuronal health, and the global beneficial effects of CR have been postulated to be mediated by the nervous system. One key enzyme thought to be activated during CR is the AMP-activated kinase (AMPK), a sensor of cellular energy levels. AMPK is activated by increases in the cellular AMP:ATP ratio, whereupon it functions to help preserve cellular energy. In this regard, the regulation of dietary food intake by hypothalamic neurons is mediated by AMPK. The suppression of nonessential energy expenditure by activated AMPK along with the CR mimetic and neuroprotective properties of resveratrol led us to hypothesize that neuronal activation of AMPK could be an important component of resveratrol activity. Here, we show that resveratrol activated AMPK in Neuro2a cells and primary neurons in vitro as well as in the brain. Resveratrol and the AMPK-activating compound 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) promoted robust neurite outgrowth in Neuro2a cells, which was blocked by genetic and pharmacologic inhibition of AMPK. Resveratrol also stimulated mitochondrial biogenesis in an AMPK-dependent manner. Resveratrol-stimulated AMPK activity in neurons depended on LKB1 activity but did not require the NAD-dependent protein deacetylase SIRT1 during this time frame. These findings suggest that neuronal activation of AMPK by resveratrol could affect neuronal energy homeostasis and contribute to the neuroprotective effects of resveratrol.

  16. Bax regulates neuronal Ca2+ homeostasis.

    Science.gov (United States)

    D'Orsi, Beatrice; Kilbride, Seán M; Chen, Gang; Perez Alvarez, Sergio; Bonner, Helena P; Pfeiffer, Shona; Plesnila, Nikolaus; Engel, Tobias; Henshall, David C; Düssmann, Heiko; Prehn, Jochen H M

    2015-01-28

    Excessive Ca(2+) entry during glutamate receptor overactivation ("excitotoxicity") induces acute or delayed neuronal death. We report here that deficiency in bax exerted broad neuroprotection against excitotoxic injury and oxygen/glucose deprivation in mouse neocortical neuron cultures and reduced infarct size, necrotic injury, and cerebral edema formation after middle cerebral artery occlusion in mice. Neuronal Ca(2+) and mitochondrial membrane potential (Δψm) analysis during excitotoxic injury revealed that bax-deficient neurons showed significantly reduced Ca(2+) transients during the NMDA excitation period and did not exhibit the deregulation of Δψm that was observed in their wild-type (WT) counterparts. Reintroduction of bax or a bax mutant incapable of proapoptotic oligomerization equally restored neuronal Ca(2+) dynamics during NMDA excitation, suggesting that Bax controlled Ca(2+) signaling independently of its role in apoptosis execution. Quantitative confocal imaging of intracellular ATP or mitochondrial Ca(2+) levels using FRET-based sensors indicated that the effects of bax deficiency on Ca(2+) handling were not due to enhanced cellular bioenergetics or increased Ca(2+) uptake into mitochondria. We also observed that mitochondria isolated from WT or bax-deficient cells similarly underwent Ca(2+)-induced permeability transition. However, when Ca(2+) uptake into the sarco/endoplasmic reticulum was blocked with the Ca(2+)-ATPase inhibitor thapsigargin, bax-deficient neurons showed strongly elevated cytosolic Ca(2+) levels during NMDA excitation, suggesting that the ability of Bax to support dynamic ER Ca(2+) handling is critical for cell death signaling during periods of neuronal overexcitation. Copyright © 2015 the authors 0270-6474/15/351706-17$15.00/0.

  17. Delayed habituation in Behcet's disease.

    Science.gov (United States)

    Gulturk, Sefa; Akyol, Melih; Kececi, Hulusi; Ozcelik, Sedat; Cinar, Ziynet; Demirkazik, Ayse

    2008-01-01

    The autonomic nervous system in Behcet's patients may be affected due to various reasons. This entity may be detected with the measurement of the electrodermal activities, heart rate variability and pupillometric methods. Habituation is one of the implicit forms of learning and memory and the loss of habituation can reveal pathological changes in the synaptic regions. To determine whether there is a functional decrease in the synaptic effectiveness (habituation) of the pathways to sympathetic neurons that had been repeatedly activated in Behcet's. Twelve patients with Behcet's disease and 12 healthy controls were included in the study. Sympathetic skin potential (SSP) records were taken at normal room temperature in a quiet place within a Faraday cage. Sixteen square wave single shock impulses (duration: 1200 ms, strength: 5 mA) were applied on each case. After the 1st stimulus, the SSP amplitudes were lower in the patients compared to the controls (P0.05). Whereas there was no significant differences among the SSP amplitudes after the 9th impulse in the controls (P>0.05). The habituation rate of the SSP after consecutive impulses was slowest in the patients compared to controls (P<0.001, t value=12.39). There is a delayed habituation in Behcet's disease and that may due to pathologic changes with vasculitis through their peripheral nerves.

  18. Toward heterogeneity in feedforward network with synaptic delays based on FitzHugh-Nagumo model

    Science.gov (United States)

    Qin, Ying-Mei; Men, Cong; Zhao, Jia; Han, Chun-Xiao; Che, Yan-Qiu

    2018-01-01

    We focus on the role of heterogeneity on the propagation of firing patterns in feedforward network (FFN). Effects of heterogeneities both in parameters of neuronal excitability and synaptic delays are investigated systematically. Neuronal heterogeneity is found to modulate firing rates and spiking regularity by changing the excitability of the network. Synaptic delays are strongly related with desynchronized and synchronized firing patterns of the FFN, which indicate that synaptic delays may play a significant role in bridging rate coding and temporal coding. Furthermore, quasi-coherence resonance (quasi-CR) phenomenon is observed in the parameter domain of connection probability and delay-heterogeneity. All these phenomena above enable a detailed characterization of neuronal heterogeneity in FFN, which may play an indispensable role in reproducing the important properties of in vivo experiments.

  19. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling

    International Nuclear Information System (INIS)

    Hao Yinghang; Gong, Yubing; Wang Li; Ma Xiaoguang; Yang Chuanlu

    2011-01-01

    Research highlights: → Single synchronization transition for gap-junctional coupling. → Multiple synchronization transitions for chemical synaptic coupling. → Gap junctions and chemical synapses have different impacts on synchronization transition. → Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.

  20. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hao Yinghang [School of Physics, Ludong University, Yantai 264025 (China); Gong, Yubing, E-mail: gongyubing09@hotmail.co [School of Physics, Ludong University, Yantai 264025 (China); Wang Li; Ma Xiaoguang; Yang Chuanlu [School of Physics, Ludong University, Yantai 264025 (China)

    2011-04-15

    Research highlights: Single synchronization transition for gap-junctional coupling. Multiple synchronization transitions for chemical synaptic coupling. Gap junctions and chemical synapses have different impacts on synchronization transition. Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.

  1. The role of 12/15-lipoxygenases in ROS-mediated neuronal cell death

    OpenAIRE

    Tobaben, Svenja

    2011-01-01

    Oxidative stress has been established as a key trigger of neuronal dysfunction and death in age-related neurodegenerative diseases and in delayed neuronal death after acute brain injury by ischemic stroke or brain trauma. Despite increasing knowledge on the toxicity of reactive oxygen species (ROS) and oxidized reaction products that may further accelerate neuronal cell death, the major sources of ROS formation and the mechanisms ...

  2. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.

    Science.gov (United States)

    Li, Ling-Yun; Xiong, Xiaorui R; Ibrahim, Leena A; Yuan, Wei; Tao, Huizhong W; Zhang, Li I

    2015-07-01

    Cortical inhibitory circuits play important roles in shaping sensory processing. In auditory cortex, however, functional properties of genetically identified inhibitory neurons are poorly characterized. By two-photon imaging-guided recordings, we specifically targeted 2 major types of cortical inhibitory neuron, parvalbumin (PV) and somatostatin (SOM) expressing neurons, in superficial layers of mouse auditory cortex. We found that PV cells exhibited broader tonal receptive fields with lower intensity thresholds and stronger tone-evoked spike responses compared with SOM neurons. The latter exhibited similar frequency selectivity as excitatory neurons. The broader/weaker frequency tuning of PV neurons was attributed to a broader range of synaptic inputs and stronger subthreshold responses elicited, which resulted in a higher efficiency in the conversion of input to output. In addition, onsets of both the input and spike responses of SOM neurons were significantly delayed compared with PV and excitatory cells. Our results suggest that PV and SOM neurons engage in auditory cortical circuits in different manners: while PV neurons may provide broadly tuned feedforward inhibition for a rapid control of ascending inputs to excitatory neurons, the delayed and more selective inhibition from SOM neurons may provide a specific modulation of feedback inputs on their distal dendrites. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Learning Recruits Neurons Representing Previously Established Associations in the Corvid Endbrain.

    Science.gov (United States)

    Veit, Lena; Pidpruzhnykova, Galyna; Nieder, Andreas

    2017-10-01

    Crows quickly learn arbitrary associations. As a neuronal correlate of this behavior, single neurons in the corvid endbrain area nidopallium caudolaterale (NCL) change their response properties during association learning. In crows performing a delayed association task that required them to map both familiar and novel sample pictures to the same two choice pictures, NCL neurons established a common, prospective code for associations. Here, we report that neuronal tuning changes during learning were not distributed equally in the recorded population of NCL neurons. Instead, such learning-related changes relied almost exclusively on neurons which were already encoding familiar associations. Only in such neurons did behavioral improvements during learning of novel associations coincide with increasing selectivity over the learning process. The size and direction of selectivity for familiar and newly learned associations were highly correlated. These increases in selectivity for novel associations occurred only late in the delay period. Moreover, NCL neurons discriminated correct from erroneous trial outcome based on feedback signals at the end of the trial, particularly in newly learned associations. Our results indicate that task-relevant changes during association learning are not distributed within the population of corvid NCL neurons but rather are restricted to a specific group of association-selective neurons. Such association neurons in the multimodal cognitive integration area NCL likely play an important role during highly flexible behavior in corvids.

  4. Evidence of an amnesia-like cued-recall memory impairment in nondementing idiopathic Parkinson's disease.

    Science.gov (United States)

    Edelstyn, Nicola M J; John, Christopher M; Shepherd, Thomas A; Drakeford, Justine L; Clark-Carter, David; Ellis, Simon J; Mayes, Andrew R

    2015-10-01

    Medicated, non-dementing mild-to-moderate Parkinson's disease (PD) patients usually show recall/recollection impairments but have only occasionally shown familiarity impairments. We aimed to assess two explanations of this pattern of impairment. Recollection typically improves when effortful planning of encoding and retrieval processing is engaged. This depends on prefrontally-dependent executive processes, which are often disrupted in PD. Relative to an unguided encoding and retrieval of words condition (C1), giving suitable guidance at encoding alone (C2) or at encoding and retrieval (C3) should, if executive processes are disrupted, improve PD recollection more than control recollection and perhaps raise it to normal levels. Familiarity, being a relatively automatic kind of memory, whether impaired or intact, should be unaffected by guidance. According to the second explanation, PD deficits are amnesia-like and caused by medial temporal lobe dysfunction and although poorer recollection, which is caused by hippocampal disruption, may be improved by guidance, it should not improve more than control recollection. Familiarity impairment will also occur if the perirhinal cortex is disrupted, but will be unimproved by guidance. Without guidance, recollection/recall was impaired in thirty PD patients relative to twenty-two healthy controls and remained relatively equally impaired when full guidance was provided (C1 vs C3), both groups improving to broadly the same extent. Although impaired, and markedly less so than recollection, familiarity was not improved by guidance in both groups. The patients showed elevated rates of subclinical depressive symptoms, which weakly correlated with recall/recollection in all three conditions. PD executive function was also deficient and correlated with unguided/C1 recollection only. Our results are consistent with a major cause of the patients' recall/recollection impairments being hippocampal disruption, probably exacerbated by

  5. Implicit learning in transient global amnesia and the role of stress

    Directory of Open Access Journals (Sweden)

    Frauke Nees

    2016-11-01

    Full Text Available Transient global amnesia (TGA is a disorder with reversible anterograde disturbance of explicit memory, frequently preceded by an emotionally or physically stressful event. By using magnetic resonance imaging (MRI following an episode of TGA, small hippocampal lesions have been observed. Hence it has been postulated that the disorder is caused by the stress-related transient inhibition of memory formation in the hippocampus. In experimental studies, stress has been shown to affect both explicit and implicit learning – the latter defined as learning and memory processes that lack conscious awareness of the information acquired. To test the hypothesis that impairment of implicit learning in TGA is present and related to stress, we determined the effect of experimental exposure to stress on hippocampal activation patterns during an implicit learning paradigm in patients who suffered a recent TGA and healthy matched control subjects. We used a hippocampus-dependent aversive learning procedure (context conditioning with the phases habituation, acquisition, and extinction during functional MRI following experimental stress exposure (socially evaluated cold pressor test. After a control procedure, controls showed successful learning during the acquisition phase, indicated by increased valence, arousal and contingency ratings to the paired (CON+ versus the non-paired (CON- conditioned stimulus, and successful extinction of the conditioned responses. Following stress, acquisition was still successful, however extinction was impaired with persistently increased contingency ratings. In contrast, TGA patients showed impairment of conditioned responses and insufficient extinction after the control procedure, indicated by a lack of significant differences between CON+ and CON- for valence and arousal ratings after the acquisition phase and by significantly increased contingency ratings after the extinction. After stress, aversive learning was not successful

  6. Neurovascular coupling protects neurons against hypoxic injury via inhibition of potassium currents by generation of nitric oxide in direct neuron and endothelium cocultures.

    Science.gov (United States)

    Wu, Kun-Wei; Kou, Zeng-Wei; Mo, Jia-Lin; Deng, Xu-Xu; Sun, Feng-Yan

    2016-10-15

    This study examined the effect of neuron-endothelial coupling on the survival of neurons after ischemia and the possible mechanism underlying that effect. Whole-cell patch-clamp experiments were performed on cortical neurons cultured alone or directly cocultured with brain microvascular endothelial cells (BMEC). Propidium iodide (PI) and NeuN staining were performed to examine neuronal death following oxygen and glucose deprivation (OGD). We found that the neuronal transient outward potassium currents (I A ) decreased in the coculture system, whereas the outward delayed-rectifier potassium currents (I K ) did not. Sodium nitroprusside, a NO donor, enhanced BMEC-induced I A inhibition and nitro-l-arginine methylester, a NOS inhibitor, partially prevented this inhibition. Moreover, the neurons directly cocultured with BMEC showed more resistance to OGD-induced injury compared with the neurons cultured alone, and that neuroprotective effect was abolished by treatment with NS5806, an activator of the I A . These results indicate that vascular endothelial cells assist neurons to prevent hypoxic injury via inhibiting neuronal I A by production of NO in the direct neuron-BMEC coculture system. These results further provide direct evidence of functional coupling between neurons and vascular endothelial cells. This study clearly demonstrates that vascular endothelial cells play beneficial roles in the pathophysiological processes of neurons after hypoxic injury, suggesting that the improvement of neurovascular coupling or functional remodeling may become an important therapeutic target for preventing brain injury. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Spectral components of cytosolic [Ca2+] spiking in neurons

    DEFF Research Database (Denmark)

    Kardos, J; Szilágyi, N; Juhász, G

    1998-01-01

    . Delayed complex responses of large [Ca2+]c spiking observed in cells from a different set of cultures were synthesized by a set of frequencies within the range 0.018-0.117 Hz. Differential frequency patterns are suggested as characteristics of the [Ca2+]c spiking responses of neurons under different...

  8. Optimal Joint Expected Delay Forwarding in Delay Tolerant Networks

    OpenAIRE

    Jia Xu; Xin Feng; Wen Jun Yang; Ru Chuan Wang; Bing Qing Han

    2013-01-01

    Multicopy forwarding schemes have been employed in delay tolerant network (DTN) to improve the delivery delay and delivery rate. Much effort has been focused on reducing the routing cost while retaining high performance. This paper aims to provide an optimal joint expected delay forwarding (OJEDF) protocol which minimizes the expected delay while satisfying a certain constant on the number of forwardings per message. We propose a comprehensive forwarding metric called joint expected delay (JE...

  9. Kappe neurons, a novel population of olfactory sensory neurons

    OpenAIRE

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...

  10. [Functional organization and structure of the serotonergic neuronal network of terrestrial snail].

    Science.gov (United States)

    Nikitin, E S; Balaban, P M

    2011-01-01

    The extension of knowledge how the brain works requires permanent improvement of methods of recording of neuronal activity and increase in the number of neurons recorded simultaneously to better understand the collective work of neuronal networks and assemblies. Conventional methods allow simultaneous intracellular recording up to 2-5 neurons and their membrane potentials, currents or monosynaptic connections or observation of spiking of neuronal groups with subsequent discrimination of individual spikes with loss of details of the dynamics of membrane potential. We recorded activity of a compact group of serotonergic neurons (up to 56 simultaneously) in the ganglion of a terrestrial mollusk using the method of optical recording of membrane potential that allowed to record individual action potentials in details with action potential parameters and to reveal morphology of the neurons rcorded. We demonstrated clear clustering in the group in relation with the dynamics of action potentials and phasic or tonic components in the neuronal responses to external electrophysiological and tactile stimuli. Also, we showed that identified neuron Pd2 could induce activation of a significant number of neurons in the group whereas neuron Pd4 did not induce any activation. However, its activation is delayed with regard to activation of the reacting group of neurons. Our data strongly support the concept of possible delegation of the integrative function by the network to a single neuron.

  11. Prose recall and amnesia: implications for the structure of working memory.

    Science.gov (United States)

    Baddeley, Alan; Wilson, Barbara A

    2002-01-01

    Two densely amnesic patients are shown to have good immediate but poor delayed prose recall, a result that presents problems for the current multi-component model of working memory. Examination of a wide sample of memory impaired patients suggests that this pattern occurs in densely amnesic patients who have well-preserved intelligence and good executive capacities. Patients suffering from Alzheimer's disease typically show poor immediate and delayed prose recall, reflecting their combined intellectual and memory deficits. The results are interpreted in terms of a proposed new component of working memory, the episodic buffer.

  12. Amnésia retrógrada funcional grave: relato de caso Severe functional retrograde amnesia: case report

    Directory of Open Access Journals (Sweden)

    Maila de Castro L. Neves

    2008-01-01

    Full Text Available CONTEXTO: Uma síndrome amnésica clássica caracteriza-se por evidente prejuízo da memória anterógrada, variável e temporária amnésia retrógrada, sendo as formas não-declarativas da memória poupadas. Entretanto, publicações recentes relataram casos de prejuízo desproporcional da memória retrógrada em relação à anterógrada. OBJETIVOS: Relatar o caso de um paciente de 26 anos de idade com um quadro grave de amnésia retrógrada, aparentemente sem fatores desencadeantes. MÉTODOS: Entrevista psiquiátrica e avaliação neuropsicológica. RESULTADOS: A perda de memória do paciente se estendia por toda sua vida, mas ele era capaz de adquirir e reter novas informações. Ele também apresentava prejuízos na produção e na compreensão de palavras, assim como no reconhecimento e no uso de objetos. CONCLUSÃO: A formulação diagnóstica final do caso é difícil, apontando possivelmente o contínuo existente entre a amnésia retrógrada psicogênica e a orgânica.BACKGROUND: A classic amnestic syndrome is characterized by a significant impairment of the anterograde memory, a variable and transitory retrograde amnesia with preserved non-declarative memory. However, case reports of patients with disproportionate compromise of the retrograde memory have been described in the recent literature. OBJECTIVES: To report a 26-year-old patient with a severe global retrograde amnesia with no evident triggering factor. METHODS: Psychiatric interview and neuropsychological evaluation. RESULTS: His memory loss compromised all domains of his life, although he could acquire and retain new information. He also exhibited prominent deficits in production and comprehension of common words as well as in recognition and use of objects. DISCUSSION: The final diagnostic formulation of the present case is difficult possibly indicating a continuum between psychogenic and organic retrograde amnesia.

  13. NEURON and Python.

    Science.gov (United States)

    Hines, Michael L; Davison, Andrew P; Muller, Eilif

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  14. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity

    International Nuclear Information System (INIS)

    Han Fang; Wang Zhi-Jie; Gong Tao; Fan Hong

    2015-01-01

    It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synchronization can be found in an excitatory/inhibitory (E/I) neuronal network with medium synaptic delay and high level of heterogeneity, which often occurs in real neuronal networks. Two effects of post-synaptic potentials (PSP) to network synchronization are presented, and the synaptic contribution of excitatory and inhibitory neurons to robust synchronization in this E/I network is investigated. It is found that both excitatory and inhibitory neurons may contribute to robust synchronization in E/I networks, especially the excitatory PSP has a more positive effect on synchronization in E/I networks than that in excitatory networks. This may explain the strong robustness of synchronization in E/I neuronal networks. (paper)

  15. Assessing delay discounting in mice

    OpenAIRE

    Mitchell, Suzanne H.

    2014-01-01

    Delay discounting (also intertemporal choice or impulsive choice) is the process by which delayed outcomes, such as delayed food delivery, are valued less than the same outcomes delivered immediately or with a shorter delay. This process is of interest because many psychopathologies, including substance dependence, pathological gambling, attention deficit hyperactivity disorder and conduct disorder, are characterized by heightened levels of delay discounting. Some of these disorders are herit...

  16. Spinal cord: motor neuron diseases.

    Science.gov (United States)

    Rezania, Kourosh; Roos, Raymond P

    2013-02-01

    Spinal cord motor neuron diseases affect lower motor neurons in the ventral horn. This article focuses on the most common spinal cord motor neuron disease, amyotrophic lateral sclerosis, which also affects upper motor neurons. Also discussed are other motor neuron diseases that only affect the lower motor neurons. Despite the identification of several genes associated with familial amyotrophic lateral sclerosis, the pathogenesis of this complex disease remains elusive. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Complex Dynamics of Delay-Coupled Neural Networks

    Science.gov (United States)

    Mao, Xiaochen

    2016-09-01

    This paper reveals the complicated dynamics of a delay-coupled system that consists of a pair of sub-networks and multiple bidirectional couplings. Time delays are introduced into the internal connections and network-couplings, respectively. The stability and instability of the coupled network are discussed. The sufficient conditions for the existence of oscillations are given. Case studies of numerical simulations are given to validate the analytical results. Interesting and complicated neuronal activities are observed numerically, such as rest states, periodic oscillations, multiple switches of rest states and oscillations, and the coexistence of different types of oscillations.

  18. Inhibition delay increases neural network capacity through Stirling transform

    Science.gov (United States)

    Nogaret, Alain; King, Alastair

    2018-03-01

    Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2) -N-fold increase in capacity for an N -neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.

  19. Amnesia in Frontotemporal Dementia with Amyotrophic Lateral Sclerosis, Masquerading Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    A. Yamanami-Irioka

    2011-10-01

    Full Text Available A 68-year-old man with a clinical diagnosis of Alzheimer’s disease (AD later developed amyotrophic lateral sclerosis (ALS, which was confirmed at autopsy at age 72 years. Because neuronal loss and AD-type pathologies (Braak stage II for neurofibrillary tangles were scant, TDP-43-positive intracytoplasmic inclusions in hippocampal dentate granular cells and in neurons in the subiculum and amygdala, even though small in amount, may represent the earliest lesions of ALS-related dementia and could be the cause of dementia in this patient. Although the persistent elevation of creatine kinase from the onset could be a pointer to the presence of motor involvement, more accurate characterization of dementia, which may differentiate ALS-related dementia and AD, is necessary.

  20. Ablation of the Ferroptosis Inhibitor Glutathione Peroxidase 4 in Neurons Results in Rapid Motor Neuron Degeneration and Paralysis.

    Science.gov (United States)

    Chen, Liuji; Hambright, William Sealy; Na, Ren; Ran, Qitao

    2015-11-20

    Glutathione peroxidase 4 (GPX4), an antioxidant defense enzyme active in repairing oxidative damage to lipids, is a key inhibitor of ferroptosis, a non-apoptotic form of cell death involving lipid reactive oxygen species. Here we show that GPX4 is essential for motor neuron health and survival in vivo. Conditional ablation of Gpx4 in neurons of adult mice resulted in rapid onset and progression of paralysis and death. Pathological inspection revealed that the paralyzed mice had a dramatic degeneration of motor neurons in the spinal cord but had no overt neuron degeneration in the cerebral cortex. Consistent with the role of GPX4 as a ferroptosis inhibitor, spinal motor neuron degeneration induced by Gpx4 ablation exhibited features of ferroptosis, including no caspase-3 activation, no TUNEL staining, activation of ERKs, and elevated spinal inflammation. Supplementation with vitamin E, another inhibitor of ferroptosis, delayed the onset of paralysis and death induced by Gpx4 ablation. Also, lipid peroxidation and mitochondrial dysfunction appeared to be involved in ferroptosis of motor neurons induced by Gpx4 ablation. Taken together, the dramatic motor neuron degeneration and paralysis induced by Gpx4 ablation suggest that ferroptosis inhibition by GPX4 is essential for motor neuron health and survival in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    Science.gov (United States)

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects. Copyright © 2012 S. Karger AG, Basel.

  2. Estimating Delays In ASIC's

    Science.gov (United States)

    Burke, Gary; Nesheiwat, Jeffrey; Su, Ling

    1994-01-01

    Verification is important aspect of process of designing application-specific integrated circuit (ASIC). Design must not only be functionally accurate, but must also maintain correct timing. IFA, Intelligent Front Annotation program, assists in verifying timing of ASIC early in design process. This program speeds design-and-verification cycle by estimating delays before layouts completed. Written in C language.

  3. Permissible Delay in Payments

    Directory of Open Access Journals (Sweden)

    Yung-Fu Huang

    2007-01-01

    Full Text Available The main purpose of this paper wants to investigate the optimal retailer's lot-sizing policy with two warehouses under partially permissible delay in payments within the economic order quantity (EOQ framework. In this paper, we want to extend that fully permissible delay in payments to the supplier would offer the retailer partially permissible delay in payments. That is, the retailer must make a partial payment to the supplier when the order is received. Then the retailer must pay off the remaining balance at the end of the permissible delay period. In addition, we want to add the assumption that the retailer's storage space is limited. That is, the retailer will rent the warehouse to store these exceeding items when the order quantity is larger than retailer's storage space. Under these conditions, we model the retailer's inventory system as a cost minimization problem to determine the retailer's optimal cycle time and optimal order quantity. Three theorems are developed to efficiently determine the optimal replenishment policy for the retailer. Finally, numerical examples are given to illustrate these theorems and obtained a lot of managerial insights.

  4. Delayed neutrons in ANSTO

    International Nuclear Information System (INIS)

    Wall, T.

    1988-01-01

    Delayed neutron analysis carried out at the Australian Nuclear Scientific and Technology Organization facilities, provides a fast, high sensitivity, low cost, reliable method, particularly suitable for large batches of samples, and for non destructive analysis of a range of materials. While its main use has been in uranium exploration, other applications include archeological investigations, agriculture, oceanography and biology

  5. Historical Amnesia? The Politics of Textbooks in Post-Apartheid South Africa.

    Science.gov (United States)

    Polakow-Suransky, Sasha S.

    The issue of history, specifically history textbooks, has been at the center of South Africa's educational reform debates for years. One of the consequences of South Africa's delayed curricular reform is the continued use of apartheid-era history textbooks, which, among other things, deny European colonization and conquest and claim that whites…

  6. What Infant Memory Tells Us about Infantile Amnesia: Long-Term Recall and Deferred Imitation.

    Science.gov (United States)

    Meltzoff, Andrew N.

    1995-01-01

    Long-term recall memory was assessed in 14- and 16 month-olds using a nonverbal method requiring subjects to reenact a past event from memory. The results demonstrated significant deferred imitation after delays of two and four months, and that the toddlers retained and imitated multiple acts. (MDM)

  7. Neuronal-glial trafficking

    International Nuclear Information System (INIS)

    Bachelard, H.S.

    2001-01-01

    Full text: The name 'glia' originates from the Greek word for glue, because astro glia (or astrocytes) were thought only to provide an anatomical framework for the electrically-excitable neurones. However, awareness that astrocytes perform vital roles in protecting the neurones, which they surround, emerged from evidence that they act as neuroprotective K + -sinks, and that they remove potentially toxic extracellular glutamate from the vicinity of the neurones. The astrocytes convert the glutamate to non-toxic glutamine which is returned to the neurones and used to replenish transmitter glutamate. This 'glutamate-glutamine cycle' (established in the 1960s by Berl and his colleagues) also contributes to protecting the neurones against a build-up of toxic ammonia. Glial cells also supply the neurones with components for free-radical scavenging glutathione. Recent studies have revealed that glial cells play a more positive interactive role in furnishing the neurones with fuels. Studies using radioactive 14 C, 13 C-MRS and 15 N-GCMS have revealed that glia produce alanine, lactate and proline for consumption by neurones, with increased formation of neurotransmitter glutamate. On neuronal activation the release of NH 4 + and glutamate from the neurones stimulates glucose uptake and glycolysis in the glia to produce more alanine, which can be regarded as an 'alanine-glutamate cycle' Use of 14 C-labelled precursors provided early evidence that neurotransmitter GABA may be partly derived from glial glutamine, and this has been confirmed recently in vivo by MRS isotopomer analysis of the GABA and glutamine labelled from 13 C-acetate. Relative rates of intermediary metabolism in glia and neurones can be calculated using a combination of [1- 13 C] glucose and [1,2- 13 C] acetate. When glutamate is released by neurones there is a net neuronal loss of TCA intermediates which have to be replenished. Part of this is derived from carboxylation of pyruvate, (pyruvate carboxylase

  8. Effects of level of processing but not of task enactment on recognition memory in a case of developmental amnesia.

    Science.gov (United States)

    Gardiner, John M; Brandt, Karen R; Vargha-Khadem, Faraneh; Baddeley, Alan; Mishkin, Mortimer

    2006-09-01

    We report the performance in four recognition memory experiments of Jon, a young adult with early-onset developmental amnesia whose episodic memory is gravely impaired in tests of recall, but seems relatively preserved in tests of recognition, and who has developed normal levels of performance in tests of intelligence and general knowledge. Jon's recognition performance was enhanced by deeper levels of processing in comparing a more meaningful study task with a less meaningful one, but not by task enactment in comparing performance of an action with reading an action phrase. Both of these variables normally enhance episodic remembering, which Jon claimed to experience. But Jon was unable to support that claim by recollecting what it was that he remembered. Taken altogether, the findings strongly imply that Jon's recognition performance entailed little genuine episodic remembering and that the levels-of-processing effects in Jon reflected semantic, not episodic, memory.

  9. Retrograde amnesia produced by electron beam exposure: casual parameters and duration of memory loss. Final report for November 84

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron-beam exposure was investigated. RA production was evaluated using a single-trial avoidance task for 10, 1, and 0.1 microsecond pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 1,000,000 rad/sec. By employing a 10 rad (1,000,000 rad/s) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory system activation which provided a novel stimulus that masked previous stimuli.

  10. Treating dysarthria following traumatic brain injury: investigating the benefits of commencing treatment during post-traumatic amnesia in two participants.

    Science.gov (United States)

    McGhee, Hannah; Cornwell, Petrea; Addis, Paula; Jarman, Carly

    2006-11-01

    The aims of this preliminary study were to explore the suitability for and benefits of commencing dysarthria treatment for people with traumatic brain injury (TBI) while in post-traumatic amnesia (PTA). It was hypothesized that behaviours in PTA don't preclude participation and dysarthria characteristics would improve post-treatment. A series of comprehensive case analyses. Two participants with severe TBI received dysarthria treatment focused on motor speech deficits until emergence from PTA. A checklist of neurobehavioural sequelae of TBI was rated during therapy and perceptual and motor speech assessments were administered before and after therapy. Results revealed that certain behaviours affected the quality of therapy but didn't preclude the provision of therapy. Treatment resulted in physiological improvements in some speech sub-systems for both participants, with varying functional speech outcomes. These findings suggest that dysarthria treatment can begin and provide short-term benefits to speech production during the late stages of PTA post-TBI.

  11. Persistent anterograde amnesia following limbic encephalitis associated with antibodies to the voltage-gated potassium channel complex.

    Science.gov (United States)

    Butler, Christopher R; Miller, Thomas D; Kaur, Manveer S; Baker, Ian W; Boothroyd, Georgie D; Illman, Nathan A; Rosenthal, Clive R; Vincent, Angela; Buckley, Camilla J

    2014-04-01

    Limbic encephalitis (LE) associated with antibodies to the voltage-gated potassium channel complex (VGKC) is a potentially reversible cause of cognitive impairment. Despite the prominence of cognitive dysfunction in this syndrome, little is known about patients' neuropsychological profile at presentation or their long-term cognitive outcome. We used a comprehensive neuropsychological test battery to evaluate cognitive function longitudinally in 19 patients with VGKC-LE. Before immunotherapy, the group had significant impairment of memory, processing speed and executive function, whereas language and perceptual organisation were intact. At follow-up, cognitive impairment was restricted to the memory domain, with processing speed and executive function having returned to the normal range. Residual memory function was predicted by the antibody titre at presentation. The results show that, despite broad cognitive dysfunction in the acute phase, patients with VGKC-LE often make a substantial recovery with immunotherapy but may be left with permanent anterograde amnesia.

  12. Social Cognition Deficits: The Key to Discriminate Behavioral Variant Frontotemporal Dementia from Alzheimer's Disease Regardless of Amnesia?

    Science.gov (United States)

    Bertoux, Maxime; de Souza, Leonardo Cruz; O'Callaghan, Claire; Greve, Andrea; Sarazin, Marie; Dubois, Bruno; Hornberger, Michael

    2016-01-01

    Relative sparing of episodic memory is a diagnostic criterion of behavioral variant frontotemporal dementia (bvFTD). However, increasing evidence suggests that bvFTD patients can show episodic memory deficits at a similar level as Alzheimer's disease (AD). Social cognition tasks have been proposed to distinguish bvFTD, but no study to date has explored the utility of such tasks for the diagnosis of amnestic bvFTD. Here, we contrasted social cognition performance of amnestic and non-amnestic bvFTD from AD, with a subgroup having confirmed in vivo pathology markers. Ninety-six participants (38 bvFTD and 28 AD patients as well as 30 controls) performed the short Social-cognition and Emotional Assessment (mini-SEA). BvFTD patients were divided into amnestic versus non-amnestic presentation using the validated Free and Cued Selective Reminding Test (FCSRT) assessing episodic memory. As expected, the accuracy of the FCSRT to distinguish the overall bvFTD group from AD was low (69.7% ) with ∼50% of bvFTD patients being amnestic. By contrast, the diagnostic accuracy of the mini-SEA was high (87.9% ). When bvFTD patients were split on the level of amnesia, mini-SEA diagnostic accuracy remained high (85.1% ) for amnestic bvFTD versus AD and increased to very high (93.9% ) for non-amnestic bvFTD versus AD. Social cognition deficits can distinguish bvFTD and AD regardless of amnesia to a high degree and provide a simple way to distinguish both diseases at presentation. These findings have clear implications for the diagnostic criteria of bvFTD. They suggest that the emphasis should be on social cognition deficits with episodic memory deficits not being a helpful diagnostic criterion in bvFTD.

  13. Comparison of the serial position effect in very mild Alzheimer's disease, mild Alzheimer's disease, and amnesia associated with electroconvulsive therapy.

    Science.gov (United States)

    Bayley, P J; Salmon, D P; Bondi, M W; Bui, B K; Olichney, J; Delis, D C; Thomas, R G; Thal, L J

    2000-03-01

    Individuals given a series of words to memorize normally show better immediate recall for items from the beginning and end of the list than for mid-list items. This phenomenon, known as the serial position effect, is thought to reflect the concurrent contributions of secondary and primary memory, respectively, to recall performance. The present study compared the serial position effects produced on Trial 1 of the California Verbal Learning Test (CVLT) in mildly demented (N = 25; M MMSE = 20.0) and very mildly demented (N = 25; M MMSE = 25.5) patients with Alzheimer's disease (AD), and age- and education-matched normal control (NC) participants (N = 50). In addition, the serial position effects of the very mildly demented AD patients were compared to those of patients with a transient, circumscribed amnesia arising from a prescribed series of electroconvulsive therapy (ECT) treatments for the relief of depressive illness (N = 11). While the NC group exhibited the typical serial position effect, AD patients recalled significantly fewer words than NC participants overall, and exhibited a significantly reduced primacy effect (i.e., recall of the first 2 list items) with a normal recency effect (i.e., recall of the last 2 list items). Patients with circumscribed amnesia due to ECT were as impaired as the very mildly demented AD patients on most standard CVLT measures of learning and memory, but exhibited primacy and recency effects, which were within normal limits. These results suggest that a reduction in the primacy effect, but not the recency effect, is an early and ubiquitous feature of the memory impairment of AD. It is not, however, a necessary feature of all causes of memory impairment.

  14. Autaptic effects on synchrony of neurons coupled by electrical synapses

    Science.gov (United States)

    Kim, Youngtae

    2017-07-01

    In this paper, we numerically study the effects of a special synapse known as autapse on synchronization of population of Morris-Lecar (ML) neurons coupled by electrical synapses. Several configurations of the ML neuronal populations such as a pair or a ring or a globally coupled network with and without autapses are examined. While most of the papers on the autaptic effects on synchronization have used networks of neurons of same spiking rate, we use the network of neurons of different spiking rates. We find that the optimal autaptic coupling strength and the autaptic time delay enhance synchronization in our neural networks. We use the phase response curve analysis to explain the enhanced synchronization by autapses. Our findings reveal the important relationship between the intraneuronal feedback loop and the interneuronal coupling.

  15. Regenerative memory in time-delayed neuromorphic photonic resonators

    OpenAIRE

    Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.

    2016-01-01

    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the...

  16. Destabilizing Effects of Impulse in Delayed Bam Neural Networks

    Science.gov (United States)

    Li, Chuandong; Li, Chaojie; Liu, Chao

    This paper further studies the global exponential stability of the equilibrium point of the delayed bidirectional associative memory (DBAM) neural networks with impulse effects. Several results characterizing the aggregated effects of impulse and dynamical property of the impulse-free DBAM on the exponential stability of the considered DBAM have been established. It is shown that the impulsive DBAM will preserve the global exponential stability of the impulse-free DBAM even if the impulses have enlarging effects on the states of neurons.

  17. Single neuron computation

    CERN Document Server

    McKenna, Thomas M; Zornetzer, Steven F

    1992-01-01

    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  18. Mesmerising mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. Copyright 2010 Elsevier Inc. All rights reserved.

  19. The mirror neuron system.

    Science.gov (United States)

    Cattaneo, Luigi; Rizzolatti, Giacomo

    2009-05-01

    Mirror neurons are a class of neurons, originally discovered in the premotor cortex of monkeys, that discharge both when individuals perform a given motor act and when they observe others perform that same motor act. Ample evidence demonstrates the existence of a cortical network with the properties of mirror neurons (mirror system) in humans. The human mirror system is involved in understanding others' actions and their intentions behind them, and it underlies mechanisms of observational learning. Herein, we will discuss the clinical implications of the mirror system.

  20. Topological Acoustic Delay Line

    Science.gov (United States)

    Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan

    2018-03-01

    Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.

  1. Delayed traumatic intracranial hematoma

    International Nuclear Information System (INIS)

    Tomita, Hiroki

    1984-01-01

    CT was performed serially within 24 hours after head injury in 64 patients having Glasgow Coma Scale of 14 or less or cranial fracture shown on roentgenogram. Delayed traumatic extradural hematoma was observed within 7-12 hours after head injury in 6 cases (9.4%). This was prominent in the frontal and occipital regions (67%). Good recovery was seen in 83.3%. Delayed traumatic intracerebral hematoma was observed within 6-24 hours after head injury in 17 cases (26.6%). This higher incidence was related to contre coup injury. Conservative treatment was possible in 14 of the 17 patients (82.4%), showing good recovery in 70%. (Namekawa, K.)

  2. Characterization of neuronal intrinsic properties and synaptic transmission in layer I of anterior cingulate cortex from adult mice

    Directory of Open Access Journals (Sweden)

    Li Xiang-Yao

    2012-07-01

    Full Text Available Abstract The neurons in neocortex layer I (LI provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC, a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors, and inhibitory inputs (which were mediated by GABAA receptors. Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice.

  3. Time-Delay Interferometry

    Directory of Open Access Journals (Sweden)

    Massimo Tinto

    2014-08-01

    Full Text Available Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI. This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.

  4. Kramers-Moyal expansion for stochastic differential equations with single and multiple delays: Applications to financial physics and neurophysics

    International Nuclear Information System (INIS)

    Frank, T.D.

    2007-01-01

    We present a generalized Kramers-Moyal expansion for stochastic differential equations with single and multiple delays. In particular, we show that the delay Fokker-Planck equation derived earlier in the literature is a special case of the proposed Kramers-Moyal expansion. Applications for bond pricing and a self-inhibitory neuron model are discussed

  5. Neuromorphic Silicon Neuron Circuits

    Science.gov (United States)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  6. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  7. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  8. Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons.

    Science.gov (United States)

    Tepper, James M; Wilson, Charles J; Koós, Tibor

    2008-08-01

    There are two distinct inhibitory GABAergic circuits in the neostriatum. The feedforward circuit consists of a relatively small population of GABAergic interneurons that receives excitatory input from the neocortex and exerts monosynaptic inhibition onto striatal spiny projection neurons. The feedback circuit comprises the numerous spiny projection neurons and their interconnections via local axon collaterals. This network has long been assumed to provide the majority of striatal GABAergic inhibition and to sharpen and shape striatal output through lateral inhibition, producing increased activity in the most strongly excited spiny cells at the expense of their less strongly excited neighbors. Recent results, mostly from recording experiments of synaptically connected pairs of neurons, have revealed that the two GABAergic circuits differ markedly in terms of the total number of synapses made by each, the strength of the postsynaptic response detected at the soma, the extent of presynaptic convergence and divergence and the net effect of the activation of each circuit on the postsynaptic activity of the spiny neuron. These data have revealed that the feedforward inhibition is powerful and widespread, with spiking in a single interneuron being capable of significantly delaying or even blocking the generation of spikes in a large number of postsynaptic spiny neurons. In contrast, the postsynaptic effects of spiking in a single presynaptic spiny neuron on postsynaptic spiny neurons are weak when measured at the soma, and unable to significantly affect spike timing or generation. Further, reciprocity of synaptic connections between spiny neurons is only rarely observed. These results suggest that the bulk of the fast inhibition that has the strongest effects on spiny neuron spike timing comes from the feedforward interneuronal system whereas the axon collateral feedback system acts principally at the dendrites to control local excitability as well as the overall level of

  9. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    Science.gov (United States)

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  10. Effect of Phase Response Curve Skew on Synchronization with and without Conduction Delays

    Directory of Open Access Journals (Sweden)

    Carmen eCanavier

    2013-12-01

    Full Text Available A central problem in cortical processing including sensory binding and attentional gating is how neurons can synchronize their responses with zero or near-zero time lag. For a spontaneously firing neuron, an input from another neuron can delay or advance the next spike by different amounts depending upon the timing of the input relative to the previous spike. This information constitutes the phase response curve (PRC. We present a simple graphical method for determining the effect of PRC shape on synchronization tendencies and illustrate it using type 1 PRCs, which consist entirely of advances (delays in response to excitation (inhibition. We obtained the following generic solutions for type 1 PRCs, which include the pulse coupled leaky integrate and fire model. For pairs with mutual excitation, exact synchrony can be stable for strong coupling because of the stabilizing effect of the causal limit region of the PRC in which an input triggers a spike immediately upon arrival. However, synchrony is unstable for short delays, because delayed inputs arrive during a refractory period and cannot trigger an immediate spike. Right skew destabilizes antiphase and enables modes with time lags that grow as the conduction delay is increased. Therefore, right skew favors near-synchrony at short conduction delays and a gradual transition between synchrony and antiphase for pairs coupled by mutual excitation. For pairs with mutual inhibition, zero time lag synchrony is stable for conduction delays ranging from zero to a substantial fraction of the period for pairs. However, for right skew there is a preferred antiphase mode at short delays. In contrast to mutual excitation, left skew destabilizes antiphase for mutual inhibition so that synchrony dominates at short delays as well. These pairwise synchronization tendencies constrain the synchronization properties of neurons embedded in larger networks.

  11. Auditory stimuli elicit hippocampal neuronal responses during sleep

    Directory of Open Access Journals (Sweden)

    Ekaterina eVinnik

    2012-06-01

    Full Text Available To investigate how hippocampal neurons code behaviorally salient stimuli, we recorded from neurons in the CA1 region of hippocampus in rats while they learned to associate the presence of sound with water reward. Rats learned to alternate between two reward ports at which, in 50 percent of the trials, sound stimuli were presented followed by water reward after a 3-second delay. Sound at the water port predicted subsequent reward delivery in 100 percent of the trials and the absence of sound predicted reward omission. During this task, 40% of recorded neurons fired differently according to which of the 2 reward ports the rat was visiting. A smaller fraction of neurons demonstrated onset response to sound/nosepoke (19% and reward delivery (24%. When the sounds were played during passive wakefulness, 8% of neurons responded with short latency onset responses; 25% of neurons responded to sounds when they were played during sleep. Based on the current findings and the results of previous experiments we propose the existence of two types of hippocampal neuronal responses to sounds: sound-onset responses with very short latency and longer-lasting sound-specific responses that are likely to be present when the animal is actively engaged in the task. During sleep the short-latency responses in hippocampus are intermingled with sustained activity which in the current experiment was detected for 1-2 seconds.

  12. NeuronBank: a tool for cataloging neuronal circuitry

    Directory of Open Access Journals (Sweden)

    Paul S Katz

    2010-04-01

    Full Text Available The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  13. A global amnesia associated with the specific variant of posterior reversible encephalopathy syndrome (PRES) that developed due to severe preeclampsia and malignant hypertension.

    Science.gov (United States)

    Borovac, Josip Anđelo; Božić, Joško; Žaja, Nikola; Kolić, Krešimir; Hrboka, Vedran

    2016-04-01

    A case is reported of a 26-year-old primiparous woman in the 32nd week of gestation who presented to the emergency department with the symptoms of a severe headache, nausea and vomiting. The patient was diagnosed with preeclampsia that later progressed to eclampsia. This state was characterized by a sudden onset of a headache and diplopia that advanced to cortical blindness and precipitated significant alterations in mental status, most notable being global amnesia that resolved within 48 h. A post-partum magnetic resonance imaging of the brain in FLAIR mode revealed multiple cortico-subcortical areas of hyperintense signals suggestive of edematous lesions that chiefly involved occipital and parietal lobes with additional atypical manifestations. Such radiologic findings suggested a posterior reversible encephalopathy syndrome variant with the global amnesia as an extraordinary constituent. This unique feature should be acknowledged when treating a preeclamptic or hypertensive patient that exhibits neurological symptomatology and vision disturbances.

  14. Modular networks with delayed coupling: Synchronization and frequency control

    Science.gov (United States)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2014-07-01

    We study the collective dynamics of modular networks consisting of map-based neurons which generate irregular spike sequences. Three types of intramodule topology are considered: a random Erdös-Rényi network, a small-world Watts-Strogatz network, and a scale-free Barabási-Albert network. The interaction between the neurons of different modules is organized by relatively sparse connections with time delay. For all the types of the network topology considered, we found that with increasing delay two regimes of module synchronization alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual role of the time delay is thus established: controlling a synchronization mode and degree and controlling an average network frequency. Furthermore, we investigate the influence on the modular synchronization by other parameters: the strength of intermodule coupling and the individual firing rate.

  15. Delayed child-bearing.

    Science.gov (United States)

    Johnson, Jo-Ann; Tough, Suzanne

    2012-01-01

    To provide an overview of delayed child-bearing and to describe the implications for women and health care providers. Delayed child-bearing, which has increased greatly in recent decades, is associated with an increased risk of infertility, pregnancy complications, and adverse pregnancy outcome. This guideline provides information that will optimize the counselling and care of Canadian women with respect to their reproductive choices. Maternal age is the most important determinant of fertility, and obstetric and perinatal risks increase with maternal age. Many women are unaware of the success rates or limitations of assisted reproductive technology and of the increased medical risks of delayed child-bearing, including multiple births, preterm delivery, stillbirth, and Caesarean section. This guideline provides a framework to address these issues. Studies published between 2000 and August 2010 were retrieved through searches of PubMed and the Cochrane Library using appropriate key words (delayed child-bearing, deferred pregnancy, maternal age, assisted reproductive technology, infertility, and multiple births) and MeSH terms (maternal age, reproductive behaviour, fertility). The Internet was also searched using similar key words, and national and international medical specialty societies were searched for clinical practice guidelines and position statements. Data were extracted based on the aims, sample, authors, year, and results. The quality of evidence was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table 1). The Society of Obstetricians and Gynaecologists of Canada. RECOMMENDATIONS 1. Women who delay child-bearing are at increased risk of infertility. Prospective parents, especially women, should know that their fecundity and fertility begin to decline significantly after 32 years of age. Prospective parents should know that assisted reproductive technologies cannot guarantee a live birth or completely

  16. Neuronal avalanches and learning

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, Lucilla de, E-mail: dearcangelis@na.infn.it [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  17. Neuronal avalanches and learning

    International Nuclear Information System (INIS)

    Arcangelis, Lucilla de

    2011-01-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  18. Delaying information search

    Directory of Open Access Journals (Sweden)

    Yaniv Shani

    2012-11-01

    Full Text Available In three studies, we examined factors that may temporarily attenuate information search. People are generally curious and dislike uncertainty, which typically encourages them to look for relevant information. Despite these strong forces that promote information search, people sometimes deliberately delay obtaining valuable information. We find they may do so when they are concerned that the information might interfere with future pleasurable activities. Interestingly, the decision to search or to postpone searching for information is influenced not only by the value and importance of the information itself but also by well-being maintenance goals related to possible detrimental effects that negative knowledge may have on unrelated future plans.

  19. Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses

    International Nuclear Information System (INIS)

    Liu, Chen; Wang, Jiang; Wang, Lin; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok

    2014-01-01

    Highlights: • Synchronization transitions in hybrid scale-free neuronal networks are investigated. • Multiple synchronization transitions can be induced by the time delay. • Effect of synchronization transitions depends on the ratio of the electrical and chemical synapses. • Coupling strength and the density of inter-neuronal links can enhance the synchronization. -- Abstract: The impacts of information transmission delay on the synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses are investigated. Numerical results show that multiple appearances of synchronization regions transitions can be induced by different information transmission delays. With the time delay increasing, the synchronization of neuronal activities can be enhanced or destroyed, irrespective of the probability of chemical synapses in the whole hybrid neuronal network. In particular, for larger probability of electrical synapses, the regions of synchronous activities appear broader with stronger synchronization ability of electrical synapses compared with chemical ones. Moreover, it can be found that increasing the coupling strength can promote synchronization monotonously, playing the similar role of the increasing the probability of the electrical synapses. Interestingly, the structures and parameters of the scale-free neuronal networks, especially the structural evolvement plays a more subtle role in the synchronization transitions. In the network formation process, it is found that every new vertex is attached to the more old vertices already present in the network, the more synchronous activities will be emerge

  20. Vehicle barrier with access delay

    Science.gov (United States)

    Swahlan, David J; Wilke, Jason

    2013-09-03

    An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

  1. Distinct neuronal interactions in anterior inferotemporal areas of macaque monkeys during retrieval of object association memory.

    Science.gov (United States)

    Hirabayashi, Toshiyuki; Tamura, Keita; Takeuchi, Daigo; Takeda, Masaki; Koyano, Kenji W; Miyashita, Yasushi

    2014-07-09

    In macaque monkeys, the anterior inferotemporal cortex, a region crucial for object memory processing, is composed of two adjacent, hierarchically distinct areas, TE and 36, for which different functional roles and neuronal responses in object memory tasks have been characterized. However, it remains unknown how the neuronal interactions differ between these areas during memory retrieval. Here, we conducted simultaneous recordings from multiple single-units in each of these areas while monkeys performed an object association memory task and examined the inter-area differences in neuronal interactions during the delay period. Although memory neurons showing sustained activity for the presented cue stimulus, cue-holding (CH) neurons, interacted with each other in both areas, only those neurons in area 36 interacted with another type of memory neurons coding for the to-be-recalled paired associate (pair-recall neurons) during memory retrieval. Furthermore, pairs of CH neurons in area TE showed functional coupling in response to each individual object during memory retention, whereas the same class of neuron pairs in area 36 exhibited a comparable strength of coupling in response to both associated objects. These results suggest predominant neuronal interactions in area 36 during the mnemonic processing, which may underlie the pivotal role of this brain area in both storage and retrieval of object association memory. Copyright © 2014 the authors 0270-6474/14/349377-12$15.00/0.

  2. Endogenous fields enhanced stochastic resonance in a randomly coupled neuronal network

    International Nuclear Information System (INIS)

    Deng, Bin; Wang, Lin; Wang, Jiang; Wei, Xi-le; Yu, Hai-tao

    2014-01-01

    Highlights: • We study effects of endogenous fields on stochastic resonance in a neural network. • Stochastic resonance can be notably enhanced by endogenous field feedback. • Endogenous field feedback delay plays a vital role in stochastic resonance. • The parameters of low-passed filter play a subtle role in SR. - Abstract: Endogenous field, evoked by structured neuronal network activity in vivo, is correlated with many vital neuronal processes. In this paper, the effects of endogenous fields on stochastic resonance (SR) in a randomly connected neuronal network are investigated. The network consists of excitatory and inhibitory neurons and the axonal conduction delays between neurons are also considered. Numerical results elucidate that endogenous field feedback results in more rhythmic macroscope activation of the network for proper time delay and feedback coefficient. The response of the network to the weak periodic stimulation can be notably enhanced by endogenous field feedback. Moreover, the endogenous field feedback delay plays a vital role in SR. We reveal that appropriately tuned delays of the feedback can either induce the enhancement of SR, appearing at every integer multiple of the weak input signal’s oscillation period, or the depression of SR, appearing at every integer multiple of half the weak input signal’s oscillation period for the same feedback coefficient. Interestingly, the parameters of low-passed filter which is used in obtaining the endogenous field feedback signal play a subtle role in SR

  3. Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling.

    Directory of Open Access Journals (Sweden)

    Qingyun Wang

    Full Text Available This paper investigates the dependence of synchronization transitions of bursting oscillations on the information transmission delay over scale-free neuronal networks with attractive and repulsive coupling. It is shown that for both types of coupling, the delay always plays a subtle role in either promoting or impairing synchronization. In particular, depending on the inherent oscillation period of individual neurons, regions of irregular and regular propagating excitatory fronts appear intermittently as the delay increases. These delay-induced synchronization transitions are manifested as well-expressed minima in the measure for spatiotemporal synchrony. For attractive coupling, the minima appear at every integer multiple of the average oscillation period, while for the repulsive coupling, they appear at every odd multiple of the half of the average oscillation period. The obtained results are robust to the variations of the dynamics of individual neurons, the system size, and the neuronal firing type. Hence, they can be used to characterize attractively or repulsively coupled scale-free neuronal networks with delays.

  4. Delayed rule following.

    Science.gov (United States)

    Schmitt, D R

    2001-01-01

    Although the elements of a fully stated rule (discriminative stimulus [S(D)], some behavior, and a consequence) can occur nearly contemporaneously with the statement of the rule, there is often a delay between the rule statement and the S(D). The effects of this delay on rule following have not been studied in behavior analysis, but they have been investigated in rule-like settings in the areas of prospective memory (remembering to do something in the future) and goal pursuit. Discriminative events for some behavior can be event based (a specific setting stimulus) or time based. The latter are more demanding with respect to intention following and show age-related deficits. Studies suggest that the specificity with which the components of a rule (termed intention) are stated has a substantial effect on intention following, with more detailed specifications increasing following. Reminders of an intention, too, are most effective when they refer specifically to both the behavior and its occasion. Covert review and written notes are two effective strategies for remembering everyday intentions, but people who use notes appear not to be able to switch quickly to covert review. By focusing on aspects of the setting and rule structure, research on prospective memory and goal pursuit expands the agenda for a more complete explanation of rule effects.

  5. Pseudotumoral delayed cerebral radionecrosis

    International Nuclear Information System (INIS)

    Ciaudo-Lacroix, C.; Lapresle, J.

    1985-01-01

    A 60 year-old woman with a scalp epithelioma underwent radiotherapy, the dose being 57 Gray. A first epileptic seizure occurred twenty months later. Neurological examination revealed signs of left hemisphere involvement. γEG, angiography, CT scans, demonstrated a pseudotumoral avascular process. On account of the localisation, the patient being right-handed, no surgical procedure was performed. In spite of corticotherapy and anticonvulsive treatment, seizures recurred and neurological signs slowly progressed. The patient died, 22 months after the first seizure, of an associated disseminated carcinoma with cachexia. Neuropathological examination showed a massive lesion presenting all the features of delayed radionecrosis in the left hemisphere: situated mainly in the white matter; numerous vascular abnormalities; wide-spread demyelination; disappearance of oligoglial cells. The Authors recall the clinical and anatomical aspects of this condition for which the only successful treatment is surgical removal when location and size of the lesion permit. Finally, the mechanisms which have been proposed to explain this delayed cerebral radionecrosis are discussed [fr

  6. Pseudotumoral delayed cerebral radionecrosis

    Energy Technology Data Exchange (ETDEWEB)

    Ciaudo-Lacroix, C; Lapresle, J [Centre Hospitalier de Bicetre, 94 - Le Kremlin-Bicetre (France)

    1985-01-01

    A 60 year-old woman with a scalp epithelioma underwent radiotherapy, the dose being 57 Gray. A first epileptic seizure occurred twenty months later. Neurological examination revealed signs of left hemisphere involvement. ..gamma..EG, angiography, CT scans, demonstrated a pseudotumoral avascular process. On account of the localisation, the patient being right-handed, no surgical procedure was performed. In spite of corticotherapy and anticonvulsive treatment, seizures recurred and neurological signs slowly progressed. The patient died, 22 months after the first seizure, of an associated disseminated carcinoma with cachexia. Neuropathological examination showed a massive lesion presenting all the features of delayed radionecrosis in the left hemisphere: situated mainly in the white matter; numerous vascular abnormalities; wide-spread demyelination; disappearance of oligoglial cells. The Authors recall the clinical and anatomical aspects of this condition for which the only successful treatment is surgical removal when location and size of the lesion permit. Finally, the mechanisms which have been proposed to explain this delayed cerebral radionecrosis are discussed.

  7. Electroconvulsive therapy, hypertensive surge, blood-brain barrier breach, and amnesia

    DEFF Research Database (Denmark)

    Andrade, Chittaranjan; Bolwig, Tom G

    2014-01-01

    Preclinical and clinical evidence show that electroconvulsive therapy (ECT)-induced intraictal surge in blood pressure may result in a small, transient breach in the blood-brain barrier, leading to mild cerebral edema and a possible leach of noxious substances from blood into brain tissues...... convincing evidence of benefits. It is concluded that there is insufficient support, at present, for the hypothesis that the hypertensive surge during ECT and the resultant blood-brain barrier breach contribute meaningfully to ECT-induced cognitive deficits. Future research should address the subset....... These changes may impair neuronal functioning and contribute to the mechanisms underlying ECT-induced cognitive deficits. Some but not all clinical data on the subject suggest that blood pressure changes during ECT correlate with indices of cognitive impairment. In animal models, pharmacological manipulations...

  8. Type a niemann-pick disease. Description of three cases with delayed myelination.

    Science.gov (United States)

    D'Amico, A; Sibilio, M; Caranci, F; Bartiromo, F; Taurisano, R; Balivo, F; Melis, D; Parenti, G; Cirillo, S; Elefante, R; Brunetti, A

    2008-06-03

    We describe three patients with type A Niemann-Pick disease (NPD-A). NPD-A is an autosomal recessive neuronal storage disease classified among the sphingolipidoses, characterized by accumulation of sphingomyelin in various tissues and in the brain. Magnetic Resonance imaging (MRI) of our three patients showed a marked delay of myelination with frontal atrophy. Few descriptions of this MRI pattern of delayed myelination have been published to date.

  9. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays

    International Nuclear Information System (INIS)

    Arik, Sabri

    2006-01-01

    This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature

  10. Global robust stability of bidirectional associative memory neural networks with multiple time delays.

    Science.gov (United States)

    Senan, Sibel; Arik, Sabri

    2007-10-01

    This correspondence presents a sufficient condition for the existence, uniqueness, and global robust asymptotic stability of the equilibrium point for bidirectional associative memory neural networks with discrete time delays. The results impose constraint conditions on the network parameters of the neural system independently of the delay parameter, and they are applicable to all bounded continuous nonmonotonic neuron activation functions. Some numerical examples are given to compare our results with the previous robust stability results derived in the literature.

  11. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays

    Science.gov (United States)

    Arik, Sabri

    2006-02-01

    This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature.

  12. Kappe neurons, a novel population of olfactory sensory neurons.

    Science.gov (United States)

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  13. Stochastic neuron models

    CERN Document Server

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  14. Stability and delay sensitivity of neutral fractional-delay systems.

    Science.gov (United States)

    Xu, Qi; Shi, Min; Wang, Zaihua

    2016-08-01

    This paper generalizes the stability test method via integral estimation for integer-order neutral time-delay systems to neutral fractional-delay systems. The key step in stability test is the calculation of the number of unstable characteristic roots that is described by a definite integral over an interval from zero to a sufficient large upper limit. Algorithms for correctly estimating the upper limits of the integral are given in two concise ways, parameter dependent or independent. A special feature of the proposed method is that it judges the stability of fractional-delay systems simply by using rough integral estimation. Meanwhile, the paper shows that for some neutral fractional-delay systems, the stability is extremely sensitive to the change of time delays. Examples are given for demonstrating the proposed method as well as the delay sensitivity.

  15. Introduction to Focus Issue: Time-delay dynamics

    Science.gov (United States)

    Erneux, Thomas; Javaloyes, Julien; Wolfrum, Matthias; Yanchuk, Serhiy

    2017-11-01

    The field of dynamical systems with time delay is an active research area that connects practically all scientific disciplines including mathematics, physics, engineering, biology, neuroscience, physiology, economics, and many others. This Focus Issue brings together contributions from both experimental and theoretical groups and emphasizes a large variety of applications. In particular, lasers and optoelectronic oscillators subject to time-delayed feedbacks have been explored by several authors for their specific dynamical output, but also because they are ideal test-beds for experimental studies of delay induced phenomena. Topics include the control of cavity solitons, as light spots in spatially extended systems, new devices for chaos communication or random number generation, higher order locking phenomena between delay and laser oscillation period, and systematic bifurcation studies of mode-locked laser systems. Moreover, two original theoretical approaches are explored for the so-called Low Frequency Fluctuations, a particular chaotical regime in laser output which has attracted a lot of interest for more than 30 years. Current hot problems such as the synchronization properties of networks of delay-coupled units, novel stabilization techniques, and the large delay limit of a delay differential equation are also addressed in this special issue. In addition, analytical and numerical tools for bifurcation problems with or without noise and two reviews on concrete questions are proposed. The first review deals with the rich dynamics of simple delay climate models for El Nino Southern Oscillations, and the second review concentrates on neuromorphic photonic circuits where optical elements are used to emulate spiking neurons. Finally, two interesting biological problems are considered in this Focus Issue, namely, multi-strain epidemic models and the interaction of glucose and insulin for more effective treatment.

  16. Delayed breast implant reconstruction

    DEFF Research Database (Denmark)

    Hvilsom, Gitte B.; Hölmich, Lisbet R.; Steding-Jessen, Marianne

    2012-01-01

    We evaluated the association between radiation therapy and severe capsular contracture or reoperation after 717 delayed breast implant reconstruction procedures (288 1- and 429 2-stage procedures) identified in the prospective database of the Danish Registry for Plastic Surgery of the Breast during...... of radiation therapy was associated with a non-significantly increased risk of reoperation after both 1-stage (HR = 1.4; 95% CI: 0.7-2.5) and 2-stage (HR = 1.6; 95% CI: 0.9-3.1) procedures. Reconstruction failure was highest (13.2%) in the 2-stage procedures with a history of radiation therapy. Breast...... reconstruction approaches other than implants should be seriously considered among women who have received radiation therapy....

  17. Delay tolerant networks

    CERN Document Server

    Gao, Longxiang; Luan, Tom H

    2015-01-01

    This brief presents emerging and promising communication methods for network reliability via delay tolerant networks (DTNs). Different from traditional networks, DTNs possess unique features, such as long latency and unstable network topology. As a result, DTNs can be widely applied to critical applications, such as space communications, disaster rescue, and battlefield communications. The brief provides a complete investigation of DTNs and their current applications, from an overview to the latest development in the area. The core issue of data forward in DTNs is tackled, including the importance of social characteristics, which is an essential feature if the mobile devices are used for human communication. Security and privacy issues in DTNs are discussed, and future work is also discussed.

  18. Neuronal Migration and Neuronal Migration Disorder in Cerebral Cortex

    OpenAIRE

    SUN, Xue-Zhi; TAKAHASHI, Sentaro; GUI, Chun; ZHANG, Rui; KOGA, Kazuo; NOUYE, Minoru; MURATA, Yoshiharu

    2002-01-01

    Neuronal cell migration is one of the most significant features during cortical development. After final mitosis, neurons migrate from the ventricular zone into the cortical plate, and then establish neuronal lamina and settle onto the outermost layer, forming an "inside-out" gradient of maturation. Neuronal migration is guided by radial glial fibers and also needs proper receptors, ligands, and other unknown extracellular factors, requests local signaling (e.g. some emitted by the Cajal-Retz...

  19. Disrupting astrocyte–neuron lactate transfer persistently reduces conditioned responses to cocaine

    KAUST Repository

    Boury-Jamot, B

    2015-10-27

    A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte–neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine.

  20. Disrupting astrocyte–neuron lactate transfer persistently reduces conditioned responses to cocaine

    KAUST Repository

    Boury-Jamot, B; Carrard, A; Martin, J L; Halfon, O; Magistretti, Pierre J.; Boutrel, B

    2015-01-01

    A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte–neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine.

  1. Investing in amnesia, or fantasy and forgetfulness in the World Bank's approach to healthcare reform in sub-Saharan Africa.

    Science.gov (United States)

    Epprecht, M

    1997-01-01

    "Investing in Health," the World Bank's 1993 World Development Report, and a follow-up report, "Better Health in Africa," advocate investments in Third World health sectors as a means of increasing individual productivity and strengthening economic growth. Both reports maintain that structural adjustment policies have enhanced the physical health of low-income populations by improving the fiscal health of business elites. This essay critiques the World Bank's approach through a historical analysis of health care problems in sub-Saharan Africa with an emphasis on the devastating effects of colonialism, patriarchy, and imperialism. Although these documents contain many useful recommendations for Western donors (e.g., recognition of the destructive potential of alcohol and tobacco, the need for state regulation over key parts of the health sector, and the effects of gender on health status), they reflect an "investment in amnesia" regarding historical evidence on health care reform in Africa and an erroneous assumption that Western biomedicine is politically neutral. Foreign aid has tended to serve the needs of multinational corporations rather than African populations. Recommended, in place of structural adjustment policies, are measures such as a massive rebuilding of Africa's urban infrastructure, the enforcement of minimum wage laws, the preservation of ecosystems that supply traditional medicines, attention to the ecologic and health consequences of economic growth, and a feminist-led reproductive rights movement.

  2. Time of flight MR angiography assessment casts doubt on the association between transient global amnesia and intracranial jugular venous reflux

    International Nuclear Information System (INIS)

    Kang, Yeonah; Kim, Eunhee; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheolkyu; Bae, Yun Jung; Lee, Kyung Mi; Lee, Dong Hoon

    2015-01-01

    Evidence of intracranial venous reflux flow due to jugular venous reflux (JVR) on time of flight (TOF) MR angiography (MRA) is thought to be highly associated with transient global amnesia (TGA) - evidence that supports the venous congestion theory of TGA pathophysiology. However, recent studies indicate that intracranial JVR on TOF MRA is occasionally observed in normal elderly. Therefore, the purpose of this study was to compare the prevalence of intracranial JVR on TOF MRA in patients with TGA and two control groups. Three age- and sex-matched groups of subjects that received MRI and MRA were enrolled. The groups comprised 167 patients with TGA, 167 visitors to the emergency room (ER) and 167 visitors to a health promotion centre (HPC). Intracranial JVR was defined as abnormal venous signals in the inferior petrosal, sigmoid and/or transverse sinuses on TOF MRA. The prevalence of intracranial JVR was assessed across the three groups. Intracranial JVR was seen in seven (4.2 %) TGA patients, eight (4.8 %) ER visitors and three (1.8 %) HPC visitors, respectively. No statistically significant differences were observed among the three groups. TGA patients showed a low prevalence of intracranial JVR on TOF MRA, and no statistical differences were found in comparison with control groups. (orig.)

  3. Accelerated long-term forgetting (ALF) and transient epileptic amnesia (TEA): two cases of epilepsy-related memory disorder.

    Science.gov (United States)

    Kemp, Steven; Illman, Nathan A; Moulin, Chris J A; Baddeley, Alan D

    2012-07-01

    Temporal lobe epilepsy (TLE) has long been associated with memory impairment. Recently, two specific forms of memory complaint in this population have been identified: accelerated long-term forgetting (ALF) and transient epileptic amnesia (TEA). This paper presents neuropsychological data (standard neuropsychological tests and experimental measures) on two patients who presented in the epilepsy clinic with seemingly similar subjective reports of profound memory difficulties. This paper illustrates the differences between TEA and ALF. Our focus was on measuring long-term forgetting utilizing a novel visual and verbal test protocol, with responses elicited via verbal prompts over the telephone at intervals up to 30 days. Whereas patient SK had neuropsychological test evidence of problems with learning plus ALF at short and long intervals without clinical evidence of TEA, patient EB had clinically convincing TEA without neuropsychological test evidence of ALF. In particular, SK showed accelerated forgetting while EB did not. This detailed case work develops our understanding of ALF measurement and demonstrates that ALF and TEA can be dissociated. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. The value of the identification of predisposing factors for post-traumatic amnesia in management of mild traumatic brain injury.

    Science.gov (United States)

    Fotakopoulos, George; Makris, Demosthenes; Tsianaka, Eleni; Kotlia, Polikceni; Karakitsios, Paulos; Gatos, Charalabos; Tzannis, Alkiviadis; Fountas, Kostas

    2018-01-01

    To identify the risk factors for post-traumatic amnesia (PTA) and to document the incidence of PTA after mild traumatic brain injuries. This was a prospective study, affecting mild TBI (mTBI) (Glasgow Coma Scale 14-15) cases attending to the Emergency Department between January 2009 and April 2012 (40 months duration). Patients were divided into two groups (Group A: without PTA, and Group B: with PTA, and they were assessed according to the risk factors. A total of 1762 patients (males: 1002, 56.8%) were meeting study inclusion criteria [Group A: n = 1678 (83.8%), Group B: n = 84 (4.2%)]. Age, CT findings: (traumatic focal HCs in the frontal and temporal lobes or more diffuse punctate HCs, and skull base fractures), anticoagulation therapy and seizures were independent factors of PTA. There was no statistically significant correlation between PTA and sex, convexity fractures, stroke event, mechanism of mTBI (fall +/or beating), hypertension, coronary heart disease, chronic smokers and diabetes (p > 0.005). CT findings: (traumatic focal HCs in the frontal and temporal lobes or more diffuse punctate HCs and skull base fractures), age, seizures and anticoagulation/antiplatelet therapy, were independent factors of PTA and could be used as predictive factors after mTBI.

  5. Time of flight MR angiography assessment casts doubt on the association between transient global amnesia and intracranial jugular venous reflux

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeonah; Kim, Eunhee; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheolkyu; Bae, Yun Jung; Lee, Kyung Mi [Seoul National University College of Medicine, Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Lee, Dong Hoon [Seoul Medical Center, Department of Radiology, Seoul (Korea, Republic of)

    2014-10-03

    Evidence of intracranial venous reflux flow due to jugular venous reflux (JVR) on time of flight (TOF) MR angiography (MRA) is thought to be highly associated with transient global amnesia (TGA) - evidence that supports the venous congestion theory of TGA pathophysiology. However, recent studies indicate that intracranial JVR on TOF MRA is occasionally observed in normal elderly. Therefore, the purpose of this study was to compare the prevalence of intracranial JVR on TOF MRA in patients with TGA and two control groups. Three age- and sex-matched groups of subjects that received MRI and MRA were enrolled. The groups comprised 167 patients with TGA, 167 visitors to the emergency room (ER) and 167 visitors to a health promotion centre (HPC). Intracranial JVR was defined as abnormal venous signals in the inferior petrosal, sigmoid and/or transverse sinuses on TOF MRA. The prevalence of intracranial JVR was assessed across the three groups. Intracranial JVR was seen in seven (4.2 %) TGA patients, eight (4.8 %) ER visitors and three (1.8 %) HPC visitors, respectively. No statistically significant differences were observed among the three groups. TGA patients showed a low prevalence of intracranial JVR on TOF MRA, and no statistical differences were found in comparison with control groups. (orig.)

  6. Ebselen inhibits the activity of acetylcholinesterase globular isoform G4 in vitro and attenuates scopolamine-induced amnesia in mice.

    Science.gov (United States)

    Martini, Franciele; Pesarico, Ana P; Brüning, César A; Zeni, Gilson; Nogueira, Cristina W

    2018-02-05

    There is a well-known relationship between the cholinergic system and learning, memory, and other common cognitive processes. The process for researching and developing new drugs has lead researchers to repurpose older ones. This study investigated the effects of ebselen on the activity of acethylcholinesterase (AChE) isoforms in vitro and in an amnesia model induced by scopolamine in Swiss mice. In vitro, ebselen at concentrations equal or higher than 10 μM inhibited the activity of cortical and hippocampal G4/AChE, but not G1/AChE isoform. Treatment of mice with ebselen (50 mg/kg, i.p.) was effective against impairment of spatial recognition memory in both Y-maze and novel object recognition tests induced by scopolamine (1 mg/kg, i.p.). Ebselen (50 mg/kg) inhibited hippocampal AChE activity in mice. The present study demonstrates that ebselen inhibited the G4/AChE isoform in vitro and elicited an anti-amnesic effect in a mouse model induced by scopolamine. These findings reveal ebselen as a potential compound in terms of opening up valid therapeutic avenues for the treatment of memory impairment diseases. © 2018 Wiley Periodicals, Inc.

  7. Intrinsic modulation of pulse-coupled integrate-and-fire neurons

    Science.gov (United States)

    Coombes, S.; Lord, G. J.

    1997-11-01

    Intrinsic neuromodulation is observed in sensory and neuromuscular circuits and in biological central pattern generators. We model a simple neuronal circuit with a system of two pulse-coupled integrate-and-fire neurons and explore the parameter regimes for periodic firing behavior. The inclusion of biologically realistic features shows that the speed and onset of neuronal response plays a crucial role in determining the firing phase for periodic rhythms. We explore the neurophysiological function of distributed delays arising from both the synaptic transmission process and dendritic structure as well as discrete delays associated with axonal communication delays. Bifurcation and stability diagrams are constructed with a mixture of simple analysis, numerical continuation and the Kuramoto phase-reduction technique. Moreover, we show that, for asynchronous behavior, the strength of electrical synapses can control the firing rate of the system.

  8. Population density models of integrate-and-fire neurons with jumps: well-posedness.

    Science.gov (United States)

    Dumont, Grégory; Henry, Jacques

    2013-09-01

    In this paper we study the well-posedness of different models of population of leaky integrate-and-fire neurons with a population density approach. The synaptic interaction between neurons is modeled by a potential jump at the reception of a spike. We study populations that are self excitatory or self inhibitory. We distinguish the cases where this interaction is instantaneous from the one where there is a repartition of conduction delays. In the case of a bounded density of delays both excitatory and inhibitory population models are shown to be well-posed. But without conduction delay the solution of the model of self excitatory neurons may blow up. We analyze the different behaviours of the model with jumps compared to its diffusion approximation.

  9. Neuronal nets in robotics

    International Nuclear Information System (INIS)

    Jimenez Sanchez, Raul

    1999-01-01

    The paper gives a generic idea of the solutions that the neuronal nets contribute to the robotics. The advantages and the inconveniences are exposed that have regarding the conventional techniques. It also describe the more excellent applications as the pursuit of trajectories, the positioning based on images, the force control or of the mobile robots management, among others

  10. Location Estimation using Delayed Measurements

    DEFF Research Database (Denmark)

    Bak, Martin; Larsen, Thomas Dall; Nørgård, Peter Magnus

    1998-01-01

    When combining data from various sensors it is vital to acknowledge possible measurement delays. Furthermore, the sensor fusion algorithm, often a Kalman filter, should be modified in order to handle the delay. The paper examines different possibilities for handling delays and applies a new techn...... technique to a sensor fusion system for estimating the location of an autonomous guided vehicle. The system fuses encoder and vision measurements in an extended Kalman filter. Results from experiments in a real environment are reported...

  11. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  12. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  13. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    International Nuclear Information System (INIS)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

    2014-01-01

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

  14. Selective disruption of acetylcholine synthesis in subsets of motor neurons: a new model of late-onset motor neuron disease.

    Science.gov (United States)

    Lecomte, Marie-José; Bertolus, Chloé; Santamaria, Julie; Bauchet, Anne-Laure; Herbin, Marc; Saurini, Françoise; Misawa, Hidemi; Maisonobe, Thierry; Pradat, Pierre-François; Nosten-Bertrand, Marika; Mallet, Jacques; Berrard, Sylvie

    2014-05-01

    Motor neuron diseases are characterized by the selective chronic dysfunction of a subset of motor neurons and the subsequent impairment of neuromuscular function. To reproduce in the mouse these hallmarks of diseases affecting motor neurons, we generated a mouse line in which ~40% of motor neurons in the spinal cord and the brainstem become unable to sustain neuromuscular transmission. These mice were obtained by conditional knockout of the gene encoding choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine. The mutant mice are viable and spontaneously display abnormal phenotypes that worsen with age including hunched back, reduced lifespan, weight loss, as well as striking deficits in muscle strength and motor function. This slowly progressive neuromuscular dysfunction is accompanied by muscle fiber histopathological features characteristic of neurogenic diseases. Unexpectedly, most changes appeared with a 6-month delay relative to the onset of reduction in ChAT levels, suggesting that compensatory mechanisms preserve muscular function for several months and then are overwhelmed. Deterioration of mouse phenotype after ChAT gene disruption is a specific aging process reminiscent of human pathological situations, particularly among survivors of paralytic poliomyelitis. These mutant mice may represent an invaluable tool to determine the sequence of events that follow the loss of function of a motor neuron subset as the disease progresses, and to evaluate therapeutic strategies. They also offer the opportunity to explore fundamental issues of motor neuron biology. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. A review of the methods for neuronal response latency estimation

    DEFF Research Database (Denmark)

    Levakovaa, Marie; Tamborrino, Massimiliano; Ditlevsen, Susanne

    2015-01-01

    Neuronal response latency is usually vaguely defined as the delay between the stimulus onset and the beginning of the response. It contains important information for the understanding of the temporal code. For this reason, the detection of the response latency has been extensively studied in the ...... by the stimulation using interspike intervals and spike times. The aim of this paper is to present a review of the main techniques proposed in both classes, highlighting their advantages and shortcomings....

  16. Curtailing effect of awakening on visual responses of cortical neurons by cholinergic activation of inhibitory circuits.

    Science.gov (United States)

    Kimura, Rui; Safari, Mir-Shahram; Mirnajafi-Zadeh, Javad; Kimura, Rie; Ebina, Teppei; Yanagawa, Yuchio; Sohya, Kazuhiro; Tsumoto, Tadaharu

    2014-07-23

    Visual responsiveness of cortical neurons changes depending on the brain state. Neural circuit mechanism underlying this change is unclear. By applying the method of in vivo two-photon functional calcium imaging to transgenic rats in which GABAergic neurons express fluorescent protein, we analyzed changes in visual response properties of cortical neurons when animals became awakened from anesthesia. In the awake state, the magnitude and reliability of visual responses of GABAergic neurons increased whereas the decay of responses of excitatory neurons became faster. To test whether the basal forebrain (BF) cholinergic projection is involved in these changes, we analyzed effects of electrical and optogenetic activation of BF on visual responses of mouse cortical neurons with in vivo imaging and whole-cell recordings. Electrical BF stimulation in anesthetized animals induced the same direction of changes in visual responses of both groups of neurons as awakening. Optogenetic activation increased the frequency of visually evoked action potentials in GABAergic neurons but induced the delayed hyperpolarization that ceased the late generation of action potentials in excitatory neurons. Pharmacological analysis in slice preparations revealed that photoactivation-induced depolarization of layer 1 GABAergic neurons was blocked by a nicotinic receptor antagonist, whereas non-fast-spiking layer 2/3 GABAergic neurons was blocked only by the application of both nicotinic and muscarinic receptor antagonists. These results suggest that the effect of awakening is mediated mainly through nicotinic activation of layer 1 GABAergic neurons and mixed nicotinic/muscarinic activation of layer 2/3 non-fast-spiking GABAergic neurons, which together curtails the visual responses of excitatory neurons. Copyright © 2014 the authors 0270-6474/14/3410122-12$15.00/0.

  17. Systematic of delayed neutron parameters

    International Nuclear Information System (INIS)

    Isaev, S.G.; Piksaikin, V.M.

    2000-01-01

    The experimental studies of the energy dependence of the delayed neutron (DN) parameters for various fission systems has shown that the behaviour of a some combination of delayed neutron parameters has a similar features. On the basis of this findings the systematics of delayed neutron experimental data for thorium, uranium, plutonium and americium isotopes have been investigated with the purpose to find a correlation of DN parameters with characteristics of fissioning system as well as a correlation between the delayed neutron parameters themselves. It was presented the preliminary results which were obtained during study the physics interpretation of the results [ru

  18. Time Delay of CGM Sensors

    Science.gov (United States)

    Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Kirchsteiger, Harald; Freckmann, Guido; Heinemann, Lutz; del Re, Luigi

    2015-01-01

    Background: Continuous glucose monitoring (CGM) is a powerful tool to support the optimization of glucose control of patients with diabetes. However, CGM systems measure glucose in interstitial fluid but not in blood. Rapid changes in one compartment are not accompanied by similar changes in the other, but follow with some delay. Such time delays hamper detection of, for example, hypoglycemic events. Our aim is to discuss the causes and extent of time delays and approaches to compensate for these. Methods: CGM data were obtained in a clinical study with 37 patients with a prototype glucose sensor. The study was divided into 5 phases over 2 years. In all, 8 patients participated in 2 phases separated by 8 months. A total number of 108 CGM data sets including raw signals were used for data analysis and were processed by statistical methods to obtain estimates of the time delay. Results: Overall mean (SD) time delay of the raw signals with respect to blood glucose was 9.5 (3.7) min, median was 9 min (interquartile range 4 min). Analysis of time delays observed in the same patients separated by 8 months suggests a patient dependent delay. No significant correlation was observed between delay and anamnestic or anthropometric data. The use of a prediction algorithm reduced the delay by 4 minutes on average. Conclusions: Prediction algorithms should be used to provide real-time CGM readings more consistent with simultaneous measurements by SMBG. Patient specificity may play an important role in improving prediction quality. PMID:26243773

  19. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    Science.gov (United States)

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron

  20. The Dynamics of Networks of Identical Theta Neurons.

    Science.gov (United States)

    Laing, Carlo R

    2018-02-05

    We consider finite and infinite all-to-all coupled networks of identical theta neurons. Two types of synaptic interactions are investigated: instantaneous and delayed (via first-order synaptic processing). Extensive use is made of the Watanabe/Strogatz (WS) ansatz for reducing the dimension of networks of identical sinusoidally-coupled oscillators. As well as the degeneracy associated with the constants of motion of the WS ansatz, we also find continuous families of solutions for instantaneously coupled neurons, resulting from the reversibility of the reduced model and the form of the synaptic input. We also investigate a number of similar related models. We conclude that the dynamics of networks of all-to-all coupled identical neurons can be surprisingly complicated.

  1. Wallerian degeneration slow mouse neurons are protected against cell death caused by mechanisms involving mitochondrial electron transport dysfunction.

    Science.gov (United States)

    Tokunaga, Shinji; Araki, Toshiyuki

    2012-03-01

    Ischemia elicits a variety of stress responses in neuronal cells, which result in cell death. wld(S) Mice bear a mutation that significantly delays Wallerian degeneration. This mutation also protects all neuronal cells against other types of stresses resulting in cell death, including ischemia. To clarify the types of stresses that neuronal cell bodies derived from wld(S) mice are protected from, we exposed primary cultured neurons derived from wld(S) mice to various components of hypoxic stress. We found that wld(S) mouse neurons are protected against cellular injury induced by reoxygenation following hypoxic stress. Furthermore, we found that wld(S) mouse neurons are protected against functional impairment of the mitochondrial electron transport chain. These data suggest that Wld(S) protein expression may provide protection against neuronal cell death caused by mechanisms involving mitochondrial electron transport dysfunction. Copyright © 2011 Wiley Periodicals, Inc.

  2. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  3. Neuronal survival in the brain: neuron type-specific mechanisms

    DEFF Research Database (Denmark)

    Pfisterer, Ulrich Gottfried; Khodosevich, Konstantin

    2017-01-01

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial...... numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether...... for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various...

  4. Normal Patterns of Deja Experience in a Healthy, Blind Male: Challenging Optical Pathway Delay Theory

    Science.gov (United States)

    O'Connor, Akira R.; Moulin, Christopher J. A.

    2006-01-01

    We report the case of a 25-year-old healthy, blind male, MT, who experiences normal patterns of deja vu. The optical pathway delay theory of deja vu formation assumes that neuronal input from the optical pathways is necessary for the formation of the experience. Surprisingly, although the sensation of deja vu is known to be experienced by blind…

  5. Axonal Conduction Delays, Brain State, and Corticogeniculate Communication.

    Science.gov (United States)

    Stoelzel, Carl R; Bereshpolova, Yulia; Alonso, Jose-Manuel; Swadlow, Harvey A

    2017-06-28

    Thalamocortical conduction times are short, but layer 6 corticothalamic axons display an enormous range of conduction times, some exceeding 40-50 ms. Here, we investigate (1) how axonal conduction times of corticogeniculate (CG) neurons are related to the visual information conveyed to the thalamus, and (2) how alert versus nonalert awake brain states affect visual processing across the spectrum of CG conduction times. In awake female Dutch-Belted rabbits, we found 58% of CG neurons to be visually responsive, and 42% to be unresponsive. All responsive CG neurons had simple, orientation-selective receptive fields, and generated sustained responses to stationary stimuli. CG axonal conduction times were strongly related to modulated firing rates (F1 values) generated by drifting grating stimuli, and their associated interspike interval distributions, suggesting a continuum of visual responsiveness spanning the spectrum of axonal conduction times. CG conduction times were also significantly related to visual response latency, contrast sensitivity (C-50 values), directional selectivity, and optimal stimulus velocity. Increasing alertness did not cause visually unresponsive CG neurons to become responsive and did not change the response linearity (F1/F0 ratios) of visually responsive CG neurons. However, for visually responsive CG neurons, increased alertness nearly doubled the modulated response amplitude to optimal visual stimulation (F1 values), significantly shortened response latency, and dramatically increased response reliability. These effects of alertness were uniform across the broad spectrum of CG axonal conduction times. SIGNIFICANCE STATEMENT Corticothalamic neurons of layer 6 send a dense feedback projection to thalamic nuclei that provide input to sensory neocortex. While sensory information reaches the cortex after brief thalamocortical axonal delays, corticothalamic axons can exhibit conduction delays of <2 ms to 40-50 ms. Here, in the corticogeniculate

  6. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons

    International Nuclear Information System (INIS)

    Birinyi-Strachan, Liesl C.; Gunning, Simon J.; Lewis, Richard J.; Nicholson, Graham M.

    2005-01-01

    The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na v ) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na v channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons, P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na v currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP, and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na v channel gating, observed clinically in response to ciguatera poisoning

  7. Delayed Auditory Feedback and Movement

    Science.gov (United States)

    Pfordresher, Peter Q.; Dalla Bella, Simone

    2011-01-01

    It is well known that timing of rhythm production is disrupted by delayed auditory feedback (DAF), and that disruption varies with delay length. We tested the hypothesis that disruption depends on the state of the movement trajectory at the onset of DAF. Participants tapped isochronous rhythms at a rate specified by a metronome while hearing DAF…

  8. #FakeNobelDelayReasons

    CERN Multimedia

    2013-01-01

    Tuesday’s hour-long delay of the Nobel Prize in Physics announcement was (and still is) quite the cause for speculation. But on the Twittersphere, it was simply the catalyst for some fantastic puns, so-bad-they're-good physics jokes and other shenanigans. Here are some of our favourite #FakeNobelDelayReasons.    

  9. Picosecond resolution programmable delay line

    International Nuclear Information System (INIS)

    Suchenek, Mariusz

    2009-01-01

    The note presents implementation of a programmable delay line for digital signals. The tested circuit has a subnanosecond delay range programmable with a resolution of picoseconds. Implementation of the circuit was based on low-cost components, easily available on the market. (technical design note)

  10. Bifurcation and synchronization of synaptically coupled FHN models with time delay

    International Nuclear Information System (INIS)

    Wang Qingyun; Lu Qishao; Chen Guanrong; Feng Zhaosheng; Duan Lixia

    2009-01-01

    This paper presents an investigation of dynamics of the coupled nonidentical FHN models with synaptic connection, which can exhibit rich bifurcation behavior with variation of the coupling strength. With the time delay being introduced, the coupled neurons may display a transition from the original chaotic motions to periodic ones, which is accompanied by complex bifurcation scenario. At the same time, synchronization of the coupled neurons is studied in terms of their mean frequencies. We also find that the small time delay can induce new period windows with the coupling strength increasing. Moreover, it is found that synchronization of the coupled neurons can be achieved in some parameter ranges and related to their bifurcation transition. Bifurcation diagrams are obtained numerically or analytically from the mathematical model and the parameter regions of different behavior are clarified.

  11. Neuronal synchrony: peculiarity and generality.

    Science.gov (United States)

    Nowotny, Thomas; Huerta, Ramon; Rabinovich, Mikhail I

    2008-09-01

    Synchronization in neuronal systems is a new and intriguing application of dynamical systems theory. Why are neuronal systems different as a subject for synchronization? (1) Neurons in themselves are multidimensional nonlinear systems that are able to exhibit a wide variety of different activity patterns. Their "dynamical repertoire" includes regular or chaotic spiking, regular or chaotic bursting, multistability, and complex transient regimes. (2) Usually, neuronal oscillations are the result of the cooperative activity of many synaptically connected neurons (a neuronal circuit). Thus, it is necessary to consider synchronization between different neuronal circuits as well. (3) The synapses that implement the coupling between neurons are also dynamical elements and their intrinsic dynamics influences the process of synchronization or entrainment significantly. In this review we will focus on four new problems: (i) the synchronization in minimal neuronal networks with plastic synapses (synchronization with activity dependent coupling), (ii) synchronization of bursts that are generated by a group of nonsymmetrically coupled inhibitory neurons (heteroclinic synchronization), (iii) the coordination of activities of two coupled neuronal networks (partial synchronization of small composite structures), and (iv) coarse grained synchronization in larger systems (synchronization on a mesoscopic scale). (c) 2008 American Institute of Physics.

  12. Project delay analysis of HRSG

    Science.gov (United States)

    Silvianita; Novega, A. S.; Rosyid, D. M.; Suntoyo

    2017-08-01

    Completion of HRSG (Heat Recovery Steam Generator) fabrication project sometimes is not sufficient with the targeted time written on the contract. The delay on fabrication process can cause some disadvantages for fabricator, including forfeit payment, delay on HRSG construction process up until HRSG trials delay. In this paper, the author is using semi quantitative on HRSG pressure part fabrication delay with configuration plant 1 GT (Gas Turbine) + 1 HRSG + 1 STG (Steam Turbine Generator) using bow-tie analysis method. Bow-tie analysis method is a combination from FTA (Fault tree analysis) and ETA (Event tree analysis) to develop the risk matrix of HRSG. The result from FTA analysis is use as a threat for preventive measure. The result from ETA analysis is use as impact from fabrication delay.

  13. Phase models and clustering in networks of oscillators with delayed coupling

    Science.gov (United States)

    Campbell, Sue Ann; Wang, Zhen

    2018-01-01

    We consider a general model for a network of oscillators with time delayed coupling where the coupling matrix is circulant. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to determine model independent existence and stability results for symmetric cluster solutions. Our results extend previous work to systems with time delay and a more general coupling matrix. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies.

  14. From Neurons to Newtons

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2001-01-01

    proteins generate forces, to the macroscopic levels where overt arm movements are vol- untarily controlled within an unpredictable environment by legions of neurons¯ring in orderly fashion. An extensive computer simulation system has been developed for this thesis, which at present contains a neural...... network scripting language for specifying arbitrary neural architectures, de¯nition ¯les for detailed spinal networks, various biologically realistic models of neurons, and dynamic synapses. Also included are structurally accurate models of intrafusal and extra-fusal muscle ¯bers and a general body...... that an explicit function may be derived which expresses the force that the spindle contractile elements must produce to exactly counter spindle unloading during muscle shortening. This information was used to calculate the corresponding "optimal" °-motoneuronal activity level. For some simple arm movement tasks...

  15. Criticality in Neuronal Networks

    Science.gov (United States)

    Friedman, Nir; Ito, Shinya; Brinkman, Braden A. W.; Shimono, Masanori; Deville, R. E. Lee; Beggs, John M.; Dahmen, Karin A.; Butler, Tom C.

    2012-02-01

    In recent years, experiments detecting the electrical firing patterns in slices of in vitro brain tissue have been analyzed to suggest the presence of scale invariance and possibly criticality in the brain. Much of the work done however has been limited in two ways: 1) the data collected is from local field potentials that do not represent the firing of individual neurons; 2) the analysis has been primarily limited to histograms. In our work we examine data based on the firing of individual neurons (spike data), and greatly extend the analysis by considering shape collapse and exponents. Our results strongly suggest that the brain operates near a tuned critical point of a highly distinctive universality class.

  16. Delayed radiation neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, T.; Miyamoto, K.; Beppu, H.; Hirose, K.; Yamada, K. (Tokyo Metropolitan Neurological Hospital (Japan))

    1981-07-01

    A case of cervical plexus neuropathy was reported in association with chronic radio-dermatitis, myxedema with thyroid adenoma and epiglottic tumor. A 38-year-old man has noticed muscle weakness and wasting of the right shoulder girdle since age 33. A detailed history taking revealed a previous irradiation to the neck because of the cervical lymphadenopathy at age 10 (X-ray 3,000 rads), keroid skin change at age 19, obesity and edema since 26, and hoarseness at 34. Laryngoscopic examination revealed a tumor on the right vocal cord, diagnosed as benign papilloma by histological study. In addition, there were chronic radio-dermatitis around the neck, primary hypothyroidism with a benign functioning adenoma on the right lobe of the thyroid, the right phrenic nerve palsy and the right recurrent nerve palsy. All these lesions were considered to be the late sequellae of radiation to the neck in childhood. Other neurological signs were weakness and amyotrophy of the right shoulder girdle with patchy sensory loss, and areflexia of the right arm. Gross power was fairly well preserved in the right hand. EMG showed neurogenic changes in the tested muscles, suggesting a peripheral nerve lesion. Nerve conduction velocities were normal. No abnormal findings were revealed by myelography and spinal CT. The neurological findings of the patient were compatible with the diagnosis of middle cervical plexus palsy apparently due to late radiation effect. In the literature eight cases of post-radiation neuropathy with a long latency have been reported. The present case with the longest latency after the radiation should be included in the series of the reported cases of ''delayed radiation neuropathy.'' (author).

  17. Delayed radiation neuropathy

    International Nuclear Information System (INIS)

    Nagashima, Toshiko; Miyamoto, Kazuto; Beppu, Hirokuni; Hirose, Kazuhiko; Yamada, Katsuhiro

    1981-01-01

    A case of cervical plexus neuropathy was reported in association with chronic radio-dermatitis, myxedema with thyroid adenoma and epiglottic tumor. A 38-year-old man has noticed muscle weakness and wasting of the right shoulder girdle since age 33. A detailed history taking revealed a previous irradiation to the neck because of the cervical lymphadenopathy at age 10 (X-ray 3,000 rads), keroid skin change at age 19, obesity and edema since 26, and hoarseness at 34. Laryngoscopic examination revealed a tumor on the right vocal cord, diagnosed as benign papilloma by histological study. In addition, there were chronic radio-dermatitis around the neck, primary hypothyroidism with a benign functioning adenoma on the right lobe of the thyroid, the right phrenic nerve palsy and the right recurrent nerve palsy. All these lesions were considered to be the late sequellae of radiation to the neck in childhood. Other neurological signs were weakness and amyotrophy of the right shoulder girdle with patchy sensory loss, and areflexia of the right arm. Gross power was fairly well preserved in the right hand. EMG showed neurogenic changes in the tested muscles, suggesting a peripheral nerve lesion. Nerve conduction velocities were normal. No abnormal findings were revealed by myelography and spinal CT. The neurological findings of the patient were compatible with the diagnosis of middle cervical plexus palsy apparently due to late radiation effect. In the literature eight cases of post-radiation neuropathy with a long latency have been reported. The present case with the longest latency after the radiation should be included in the series of the reported cases of ''delayed radiation neuropathy.'' (author)

  18. Short-term Retention of Relational Memory in Amnesia Revisited: Accurate Performance Depends on Hippocampal Integrity

    Directory of Open Access Journals (Sweden)

    Lydia T.S. Yee

    2014-01-01

    Full Text Available Traditionally, it has been proposed that the hippocampus and adjacent medial temporal lobe cortical structures are selectively critical for long-term declarative memory, which entails memory for inter-item and item-context relationships. Whether the hippocampus might also contribute to short-term retention of relational memory representations has remained controversial. In two experiments, we revisit this question by testing memory for relationships among items embedded in scenes using a standard working memory trial structure in which a sample stimulus is followed by a brief delay and the corresponding test stimulus. In each experimental block, eight trials using different exemplars of the same scene were presented. The exemplars contained the same items but with different spatial relationships among them. By repeating the pictures across trials, any potential contributions of item or scene memory to performance were minimized, and relational memory could be assessed more directly than has been done previously. When test displays were presented, participants indicated whether any of the item-location relationships had changed. Then, regardless of their responses (and whether any item did change its location, participants indicated on a forced-choice test, which item might have moved, guessing if necessary. Amnesic patients were impaired on the change detection test, and were frequently unable to specify the change after having reported correctly that a change had taken place. Comparison participants, by contrast, frequently identified the change even when they failed to report the mismatch, an outcome that speaks to the sensitivity of the change specification measure. These results confirm past reports of hippocampal contributions to short-term retention of relational memory representations, and suggest that the role of the hippocampus in memory has more to do with relational memory requirements than the length of a retention interval.

  19. Standardized extract of Lactuca sativa Linn. and its fractions abrogates scopolamine-induced amnesia in mice: A possible cholinergic and antioxidant mechanism.

    Science.gov (United States)

    Malik, Jai; Kaur, Jagpreet; Choudhary, Sunayna

    2018-06-01

    The present study was designed to evaluate the efficacy of Lactuca sativa (LS) Linn. (Asteraceae) against scopolamine-induced amnesia and to validate its traditional claim as memory enhancer. Ethanol extract of fresh LS leaves (LSEE), standardized on the basis of quercetin content, was successively partitioned using various solvents viz., hexane, ethyl acetate, and n-butanol in increasing order of polarity. LSEE (50, 100, and 200 mg/kg) and its various fractions (at a dose equivalent to dose of LSEE exhibiting maximum activity), administered orally for 14 days, were evaluated for their memory enhancing effect against scopolamine-induced (1 mg/kg, i.p.) amnesia in 3-4 months old male Laca mice (n = 6 in each group). The memory enhancing effect was evaluated using behavioural (elevated plus maze, novel object recognition and Morris water maze tests) and biochemical parameters (acetylcholinesterase activity, malonaldehyde, superoxide dismutase, nitrite, catalase, and reduced gultathione content). The results of the test substances were compared with both scopolamine and donepezil that was used as a standard memory enhancer and acetylcholinesterase inhibitor. Scopolamine elicit marked deterioration of memory and alteration in biochemical parameters in comparison to the control group. LSEE and its n-butanol and aqueous fractions significantly (P < 0.05) attenuated the scopolamine-induced amnesia that was evident in all the behavioural and biochemical test parameters. LSEE (200 mg/kg) and n-butanol fraction (15 mg/kg) exhibited maximum anti-amnesic effect among various tested dose levels. The results exhibited that LS prophylaxis attenuated scopolamine-induced memory impairment through its acetylcholinesterase inhibitory and antioxidant activity validating its traditional claim.

  20. Physiological Characterization of Vestibular Efferent Brainstem Neurons Using a Transgenic Mouse Model

    Science.gov (United States)

    Leijon, Sara; Magnusson, Anna K.

    2014-01-01

    The functional role of efferent innervation of the vestibular end-organs in the inner ear remains elusive. This study provides the first physiological characterization of the cholinergic vestibular efferent (VE) neurons in the brainstem by utilizing a transgenic mouse model, expressing eGFP under a choline-acetyltransferase (ChAT)-locus spanning promoter in combination with targeted patch clamp recordings. The intrinsic electrical properties of the eGFP-positive VE neurons were compared to the properties of the lateral olivocochlear (LOC) brainstem neurons, which gives rise to efferent innervation of the cochlea. Both VE and the LOC neurons were marked by their negative resting membrane potential neurons differed significantly in the depolarizing range. When injected with positive currents, VE neurons fired action potentials faithfully to the onset of depolarization followed by sparse firing with long inter-spike intervals. This response gave rise to a low response gain. The LOC neurons, conversely, responded with a characteristic delayed tonic firing upon depolarizing stimuli, giving rise to higher response gain than the VE neurons. Depolarization triggered large TEA insensitive outward currents with fast inactivation kinetics, indicating A-type potassium currents, in both the inner ear-projecting neuronal types. Immunohistochemistry confirmed expression of Kv4.3 and 4.2 ion channel subunits in both the VE and LOC neurons. The difference in spiking responses to depolarization is related to a two-fold impact of these transient outward currents on somatic integration in the LOC neurons compared to in VE neurons. It is speculated that the physiological properties of the VE neurons might be compatible with a wide-spread control over motion and gravity sensation in the inner ear, providing likewise feed-back amplification of abrupt and strong phasic signals from the semi-circular canals and of tonic signals from the gravito-sensitive macular organs. PMID:24867596