WorldWideScience

Sample records for amnesia delayed neuronal

  1. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    International Nuclear Information System (INIS)

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T.

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, [3H]glutamate and [3H]glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of [3H]quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus

  2. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T. (Meijo Univ., Nagoya (Japan))

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, (3H)glutamate and (3H)glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of (3H)quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus.

  3. The neurobiology of thalamic amnesia: Contributions of medial thalamus and prefrontal cortex to delayed conditional discrimination.

    Science.gov (United States)

    Mair, Robert G; Miller, Rikki L A; Wormwood, Benjamin A; Francoeur, Miranda J; Onos, Kristen D; Gibson, Brett M

    2015-07-01

    Although medial thalamus is well established as a site of pathology associated with global amnesia, there is uncertainty about which structures are critical and how they affect memory function. Evidence from human and animal research suggests that damage to the mammillothalamic tract and the anterior, mediodorsal (MD), midline (M), and intralaminar (IL) nuclei contribute to different signs of thalamic amnesia. Here we focus on MD and the adjacent M and IL nuclei, structures identified in animal studies as critical nodes in prefrontal cortex (PFC)-related pathways that are necessary for delayed conditional discrimination. Recordings of PFC neurons in rats performing a dynamic delayed non-matching-to position (DNMTP) task revealed discrete populations encoding information related to planning, execution, and outcome of DNMTP-related actions and delay-related activity signaling previous reinforcement. Parallel studies recording the activity of MD and IL neurons and examining the effects of unilateral thalamic inactivation on the responses of PFC neurons demonstrated a close coupling of central thalamic and PFC neurons responding to diverse aspects of DNMTP and provide evidence that thalamus interacts with PFC neurons to give rise to complex goal-directed behavior exemplified by the DNMTP task. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Anterograde Amnesia

    Directory of Open Access Journals (Sweden)

    Serap Erdogan

    2010-08-01

    Full Text Available Memory can be divided into two categories (i.e. short term memory and long term memory according to time span. Information at our long term memory that can be remembered with conscious effort are placed in declarative memory. Information that can not be remembered conciously are placed in nondeclarative memory. The definition of anterograde amnesia is inability to generate new memories after the event causing amnesia. Episodic and semantic memories are usually unaffected among patients’ who had such amnesia. Anterograde amnesia could mostly result from head trauma but in some cases the cause could be serebrovascular events, Wernicke-Korsakoff Syndrome, santral nervous system enfections, anoxia or various substances. Medial temporal lobe and medial diencephalon are two brain regions mainly related with this condition. Medial temporal lobe is consisted of hippocampus, amygdala, parahippocampal cortex, perirhinal cortex and entorhinal cortex. Hypothalamus, thalamus, mamillary bodies and several thalamic nucleases compose medial diencephalon. Fornix and rarely serebellum damage may also play role in the development of anterograde amnesia. After the famous H.M case, who had anterograde amnesia after an epileptic surgery operation, hippocampus has been placed in the focus of memory researches. In the literature there are several reports evaluating brain tissues of amnesic patients at postmortem stage. Postmortem histological evaluations consistently revealed hippocampal neuronal loss among these patients’ brain tissues. Benzodiazepines usually cause short term anterograde amnesia. Benzodiazepine receptors are allosteric modulatory sites on gamma-aminobutyric acid-A (GABA-A receptors. GABA-A receptors composed of five subunits and anterograde amnesia emerges by means of alfa 1 subunit. Anterograde amnesia has been suggested to occur by the blocking of long term potentiation in hippocampus and piriform cortex. For the treatment of the anterograde

  5. Spiking Activity of a LIF Neuron in Distributed Delay Framework

    Directory of Open Access Journals (Sweden)

    Saket Kumar Choudhary

    2016-06-01

    Full Text Available Evolution of membrane potential and spiking activity for a single leaky integrate-and-fire (LIF neuron in distributed delay framework (DDF is investigated. DDF provides a mechanism to incorporate memory element in terms of delay (kernel function into a single neuron models. This investigation includes LIF neuron model with two different kinds of delay kernel functions, namely, gamma distributed delay kernel function and hypo-exponential distributed delay kernel function. Evolution of membrane potential for considered models is studied in terms of stationary state probability distribution (SPD. Stationary state probability distribution of membrane potential (SPDV for considered neuron models are found asymptotically similar which is Gaussian distributed. In order to investigate the effect of membrane potential delay, rate code scheme for neuronal information processing is applied. Firing rate and Fano-factor for considered neuron models are calculated and standard LIF model is used for comparative study. It is noticed that distributed delay increases the spiking activity of a neuron. Increase in spiking activity of neuron in DDF is larger for hypo-exponential distributed delay function than gamma distributed delay function. Moreover, in case of hypo-exponential delay function, a LIF neuron generates spikes with Fano-factor less than 1.

  6. Synchronization of map-based neurons with memory and synaptic delay

    Energy Technology Data Exchange (ETDEWEB)

    Sausedo-Solorio, J.M. [Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42074 Pachuca, Hidalgo (Mexico); Pisarchik, A.N., E-mail: apisarch@cio.mx [Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Centre for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid (Spain)

    2014-06-13

    Synchronization of two synaptically coupled neurons with memory and synaptic delay is studied using the Rulkov map, one of the simplest neuron models which displays specific features inherent to bursting dynamics. We demonstrate a transition from lag to anticipated synchronization as the relationship between the memory duration and the synaptic delay time changes. The neuron maps synchronize either with anticipation, if the memory is longer than the synaptic delay time, or with lag otherwise. The mean anticipation time is equal to the difference between the memory and synaptic delay independently of the coupling strength. Frequency entrainment and phase-locking phenomena as well as a transition from regular spikes to chaos are demonstrated with respect to the coupling strength. - Highlights: • We study synchronization of neurons with memory and synaptic delay in the map model. • Neurons synchronize either with anticipation or with lag depending on delay time. • Mean anticipation time is equal to the difference between memory and synaptic delay. • Frequency entrainment and phase locking are studied with respect to the coupling.

  7. Determination of relevant neuron-neuron connections for neural prosthetics using time-delayed mutual information: tutorial and preliminary results.

    Science.gov (United States)

    Taghva, Alexander; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W

    2012-12-01

    Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural

  8. Electrical Activity in a Time-Delay Four-Variable Neuron Model under Electromagnetic Induction

    Directory of Open Access Journals (Sweden)

    Keming Tang

    2017-11-01

    Full Text Available To investigate the effect of electromagnetic induction on the electrical activity of neuron, the variable for magnetic flow is used to improve Hindmarsh–Rose neuron model. Simultaneously, due to the existence of time-delay when signals are propagated between neurons or even in one neuron, it is important to study the role of time-delay in regulating the electrical activity of the neuron. For this end, a four-variable neuron model is proposed to investigate the effects of electromagnetic induction and time-delay. Simulation results suggest that the proposed neuron model can show multiple modes of electrical activity, which is dependent on the time-delay and external forcing current. It means that suitable discharge mode can be obtained by selecting the time-delay or external forcing current, which could be helpful for further investigation of electromagnetic radiation on biological neuronal system.

  9. Amnesia

    Science.gov (United States)

    ... amnesia) Most people with amnesia have problems with short-term memory — they can't retain new information. Recent memories ... heart attack, respiratory distress or carbon monoxide poisoning Long-term ... memory Degenerative brain diseases, such as Alzheimer's disease and ...

  10. Psychogenic amnesia: syndromes, outcome, and patterns of retrograde amnesia.

    Science.gov (United States)

    Harrison, Neil A; Johnston, Kate; Corno, Federica; Casey, Sarah J; Friedner, Kimberley; Humphreys, Kate; Jaldow, Eli J; Pitkanen, Mervi; Kopelman, Michael D

    2017-09-01

    There are very few case series of patients with acute psychogenic memory loss (also known as dissociative/functional amnesia), and still fewer studies of outcome, or comparisons with neurological memory-disordered patients. Consequently, the literature on psychogenic amnesia is somewhat fragmented and offers little prognostic value for individual patients. In the present study, we reviewed the case records and neuropsychological findings in 53 psychogenic amnesia cases (ratio of 3:1, males:females), in comparison with 21 consecutively recruited neurological memory-disordered patients and 14 healthy control subjects. In particular, we examined the pattern of retrograde amnesia on an assessment of autobiographical memory (the Autobiographical Memory Interview). We found that our patients with psychogenic memory loss fell into four distinct groups, which we categorized as: (i) fugue state; (ii) fugue-to-focal retrograde amnesia; (iii) psychogenic focal retrograde amnesia following a minor neurological episode; and (iv) patients with gaps in their memories. While neurological cases were characterized by relevant neurological symptoms, a history of a past head injury was actually more common in our psychogenic cases (P = 0.012), perhaps reflecting a 'learning episode' predisposing to later psychological amnesia. As anticipated, loss of the sense of personal identity was confined to the psychogenic group. However, clinical depression, family/relationship problems, financial/employment problems, and failure to recognize the family were also statistically more common in that group. The pattern of autobiographical memory loss differed between the psychogenic groups: fugue cases showed a severe and uniform loss of memories for both facts and events across all time periods, whereas the two focal retrograde amnesia groups showed a 'reversed' temporal gradient with relative sparing of recent memories. After 3-6 months, the fugue patients had improved to normal scores for facts

  11. Delay-enhanced coherence of spiral waves in noisy Hodgkin-Huxley neuronal networks

    International Nuclear Information System (INIS)

    Wang Qingyun; Perc, Matjaz; Duan Zhisheng; Chen Guanrong

    2008-01-01

    We study the spatial dynamics of spiral waves in noisy Hodgkin-Huxley neuronal ensembles evoked by different information transmission delays and network topologies. In classical settings of coherence resonance the intensity of noise is fine-tuned so as to optimize the system's response. Here, we keep the noise intensity constant, and instead, vary the length of information transmission delay amongst coupled neurons. We show that there exists an intermediate transmission delay by which the spiral waves are optimally ordered, hence indicating the existence of delay-enhanced coherence of spatial dynamics in the examined system. Additionally, we examine the robustness of this phenomenon as the diffusive interaction topology changes towards the small-world type, and discover that shortcut links amongst distant neurons hinder the emergence of coherent spiral waves irrespective of transmission delay length. Presented results thus provide insights that could facilitate the understanding of information transmission delay on realistic neuronal networks

  12. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks

    Science.gov (United States)

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  13. Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system

    Science.gov (United States)

    Yu, Wen-Ting; Tang, Jun; Ma, Jun; Yang, Xianqing

    2016-06-01

    A neuronal network often involves time delay caused by the finite signal propagation time in a given biological network. This time delay is not a homogenous fluctuation in a biological system. The heterogeneous delay-induced asynchrony and resonance in a noisy small-world neuronal network system are numerically studied in this work by calculating synchronization measure and spike interval distribution. We focus on three different delay conditions: double-values delay, triple-values delay, and Gaussian-distributed delay. Our results show the following: 1) the heterogeneity in delay results in asynchronous firing in the neuronal network, and 2) maximum synchronization could be achieved through resonance given that the delay values are integer or half-integer times of each other.

  14. Classic and recent advances in understanding amnesia [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Richard J. Allen

    2018-03-01

    Full Text Available Neurological amnesia has been and remains the focus of intense study, motivated by the drive to understand typical and atypical memory function and the underlying brain basis that is involved. There is now a consensus that amnesia associated with hippocampal (and, in many cases, broader medial temporal lobe damage results in deficits in episodic memory, delayed recall, and recollective experience. However, debate continues regarding the patterns of preservation and impairment across a range of abilities, including semantic memory and learning, delayed recognition, working memory, and imagination. This brief review highlights some of the influential and recent advances in these debates and what they may tell us about the amnesic condition and hippocampal function.

  15. Chaos and its synchronization in two-neuron systems with discrete delays

    International Nuclear Information System (INIS)

    Zhou Shangbo; Liao Xiaofeng; Yu Juebang; Wong Kwokwo

    2004-01-01

    It is well known that complex dynamic behaviors exist in time-delayed neural systems. Infinite positive Lyapunov exponents can be found in time-delayed chaotic systems since the dimension of such systems is infinite. However, theoretical and experimental models studied thus far are low dimensional systems with only one positive Lyapunov exponent. Consequently, messages masked by such chaotic systems are shown to be easily extracted in some cases. Therefore, communication system with a higher security level can be design by means of the time-delayed neuron systems. In this paper, we firstly investigate the dynamical behaviors of two-neuron systems with discrete delays. Then, the chaos synchronization in time-delayed neuron system is studied based on the method of designing the coupled system and employing Krasovskii-Lyapunov theory to search the synchronization conditions. Numerical results illustrate the correctness of our theoretical analyses

  16. Psychogenic amnesia: syndromes, outcome, and patterns of retrograde amnesia

    OpenAIRE

    Harrison, Neil A; Johnston, Kate; Corno, Federica; Casey, Sarah J; Friedner, Kimberley; Humphreys, Kate; Jaldow, Eli Joseph; Pitkanen, Mervi; Kopelman, Michael D

    2017-01-01

    There are very few case series of patients with acute psychogenic memory loss (also known as dissociative/functional amnesia), and still fewer studies of outcome, or comparisons with neurological memory-disordered patients. Consequently, the literature on psychogenic amnesia is somewhat fragmented and offers little of prognostic value for individual patients. In the present study, we reviewed the case records and neuropsychological findings in 53 psychogenic amnesia cases (3M:1F), in comparis...

  17. Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks

    Science.gov (United States)

    Yan, Hao; Sun, Xiaojuan

    2017-06-01

    In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.

  18. Feigning Amnesia Moderately Impairs Memory for a Mock Crime Video.

    Science.gov (United States)

    Mangiulli, Ivan; van Oorsouw, Kim; Curci, Antonietta; Merckelbach, Harald; Jelicic, Marko

    2018-01-01

    Previous studies showed that feigning amnesia for a crime impairs actual memory for the target event. Lack of rehearsal has been proposed as an explanation for this memory-undermining effect of feigning. The aim of the present study was to replicate and extend previous research adopting a mock crime video instead of a narrative story. We showed participants a video of a violent crime. Next, they were requested to imagine that they had committed this offense and to either feign amnesia or confess the crime. A third condition was included: Participants in the delayed test-only control condition did not receive any instruction. On subsequent recall tests, participants in all three conditions were instructed to report as much information as possible about the offense. On the free recall test, feigning amnesia impaired memory for the video clip, but participants who were asked to feign crime-related amnesia outperformed controls. However, no differences between simulators and confessors were found on both correct cued recollection or on distortion and commission rates. We also explored whether inner speech might modulate memory for the crime. Inner speech traits were not found to be related to the simulating amnesia effect. Theoretical and practical implications of our results are discussed.

  19. Feigning Amnesia Moderately Impairs Memory for a Mock Crime Video

    Directory of Open Access Journals (Sweden)

    Ivan Mangiulli

    2018-04-01

    Full Text Available Previous studies showed that feigning amnesia for a crime impairs actual memory for the target event. Lack of rehearsal has been proposed as an explanation for this memory-undermining effect of feigning. The aim of the present study was to replicate and extend previous research adopting a mock crime video instead of a narrative story. We showed participants a video of a violent crime. Next, they were requested to imagine that they had committed this offense and to either feign amnesia or confess the crime. A third condition was included: Participants in the delayed test-only control condition did not receive any instruction. On subsequent recall tests, participants in all three conditions were instructed to report as much information as possible about the offense. On the free recall test, feigning amnesia impaired memory for the video clip, but participants who were asked to feign crime-related amnesia outperformed controls. However, no differences between simulators and confessors were found on both correct cued recollection or on distortion and commission rates. We also explored whether inner speech might modulate memory for the crime. Inner speech traits were not found to be related to the simulating amnesia effect. Theoretical and practical implications of our results are discussed.

  20. Transient global amnesia: current perspectives

    Directory of Open Access Journals (Sweden)

    Spiegel DR

    2017-10-01

    Full Text Available David R Spiegel, Justin Smith, Ryan R Wade, Nithya Cherukuru, Aneel Ursani, Yuliya Dobruskina, Taylor Crist, Robert F Busch, Rahim M Dhanani, Nicholas Dreyer Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA Abstract: Transient global amnesia (TGA is a clinical syndrome characterized by the sudden onset of an extraordinarily large reduction of anterograde and a somewhat milder reduction of retrograde episodic long-term memory. Additionally, executive functions are described as diminished. Although it is suggested that various factors, such as migraine, focal ischemia, venous flow abnormalities, and epileptic phenomena, are involved in the pathophysiology and differential diagnosis of TGA, the factors triggering the emergence of these lesions are still elusive. Recent data suggest that the vulnerability of CA1 neurons to metabolic stress plays a pivotal part in the pathophysiological cascade, leading to an impairment of hippocampal function during TGA. In this review, we discuss clinical aspects, new imaging findings, and recent clinical–epidemiological data with regard to the phenotype, functional anatomy, and putative cellular mechanisms of TGA. Keywords: transient global amnesia, vascular, migraines, psychiatric

  1. Stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters

    International Nuclear Information System (INIS)

    Xu, X.; Hu, H.Y.; Wang, H.L.

    2006-01-01

    It is very common that neural network systems usually involve time delays since the transmission of information between neurons is not instantaneous. Because memory intensity of the biological neuron usually depends on time history, some of the parameters may be delay dependent. Yet, little attention has been paid to the dynamics of such systems. In this Letter, a detailed analysis on the stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters is given. Moreover, the direction and the stability of the bifurcating periodic solutions are obtained by the normal form theory and the center manifold theorem. It shows that the dynamics of the neuron model with delay-dependent parameters is quite different from that of systems with delay-independent parameters only

  2. Delay-dependent asymptotic stability of a two-neuron system with different time delays

    International Nuclear Information System (INIS)

    Tu Fenghua; Liao Xiaofeng; Zhang Wei

    2006-01-01

    In this paper, we consider a two-neuron system with time-delayed connections between neurons. Based on the construction of Lyapunov functionals, we obtain sufficient criteria to ensure local and global asymptotic stability of the equilibrium of the neural network. The obtained conditions are shown to be less conservative and restrictive than those reported in the literature. Some examples are included to illustrate our results

  3. Dynamics of Time Delay-Induced Multiple Synchronous Behaviors in Inhibitory Coupled Neurons

    Science.gov (United States)

    Gu, Huaguang; Zhao, Zhiguo

    2015-01-01

    The inhibitory synapse can induce synchronous behaviors different from the anti-phase synchronous behaviors, which have been reported in recent studies. In the present paper, synchronous behaviors are investigated in the motif model composed of reciprocal inhibitory coupled neurons with endogenous bursting and time delay. When coupling strength is weak, synchronous behavior appears at a single interval of time delay within a bursting period. When coupling strength is strong, multiple synchronous behaviors appear at different intervals of time delay within a bursting period. The different bursting patterns of synchronous behaviors, and time delays and coupling strengths that can induce the synchronous bursting patterns can be well interpreted by the dynamics of the endogenous bursting pattern of isolated neuron, which is acquired by the fast-slow dissection method, combined with the inhibitory coupling current. For an isolated neuron, when a negative impulsive current with suitable strength is applied at different phases of the bursting, multiple different bursting patterns can be induced. For a neuron in the motif, the inhibitory coupling current, of which the application time and strength is modulated by time delay and coupling strength, can cause single or multiple synchronous firing patterns like the negative impulsive current when time delay and coupling strength is suitable. The difference compared to the previously reported multiple synchronous behaviors that appear at time delays wider than a period of the endogenous firing is discussed. The results present novel examples of synchronous behaviors in the neuronal network with inhibitory synapses and provide a reasonable explanation. PMID:26394224

  4. Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks

    International Nuclear Information System (INIS)

    Gong Yubing; Wang Li; Xu Bo

    2012-01-01

    In this paper, we study the effect of time delay on the firing behavior and temporal coherence and synchronization in Newman–Watts thermosensitive neuron networks with adaptive coupling. At beginning, the firing exhibit disordered spiking in absence of time delay. As time delay is increased, the neurons exhibit diversity of firing behaviors including bursting with multiple spikes in a burst, spiking, bursting with four, three and two spikes, firing death, and bursting with increasing amplitude. The spiking is the most ordered, exhibiting coherence resonance (CR)-like behavior, and the firing synchronization becomes enhanced with the increase of time delay. As growth rate of coupling strength or network randomness increases, CR-like behavior shifts to smaller time delay and the synchronization of firing increases. These results show that time delay can induce diversity of firing behaviors in adaptive neuronal networks, and can order the chaotic firing by enhancing and optimizing the temporal coherence and enhancing the synchronization of firing. However, the phenomenon of firing death shows that time delay may inhibit the firing of adaptive neuronal networks. These findings provide new insight into the role of time delay in the firing activity of adaptive neuronal networks, and can help to better understand the complex firing phenomena in neural networks.

  5. Transient global amnesia and functional retrograde amnesia: contrasting examples of episodic memory loss.

    OpenAIRE

    Kritchevsky, M; Zouzounis, J; Squire, L R

    1997-01-01

    We studied 11 patients with transient global amnesia (TGA) and ten patients with functional retrograde amnesia (FRA). Patients with TGA had a uniform clinical picture: a severe, relatively isolated amnesic syndrome that started suddenly, persisted for 4-12 h, and then gradually improved to essentially normal over the next 12-24 h. During the episode, the patients had severe anterograde amnesia for verbal and non-verbal material and retrograde amnesia that typically covered at least two decade...

  6. Three dimensions of dissociative amnesia.

    Science.gov (United States)

    Dell, Paul F

    2013-01-01

    Principal axis factor analysis with promax rotation extracted 3 factors from the 42 memory and amnesia items of the Multidimensional Inventory of Dissociation (MID) database (N = 2,569): Discovering Dissociated Actions, Lapses of Recent Memory and Skills, and Gaps in Remote Memory. The 3 factors' shared variance ranged from 36% to 64%. Construed as scales, the 3 factor scales had Cronbach's alpha coefficients of .96, .94, and .93, respectively. The scales correlated strongly with mean Dissociative Experiences Scale scores, mean MID scores, and total scores on the Structured Clinical Interview for DSM-IV Dissociative Disorders-Revised (SCID-D-R). What is interesting is that the 3 amnesia factors exhibited a range of correlations with SCID-D-R Amnesia scores (.52, .63, and .70, respectively), suggesting that the SCID-D-R Amnesia score emphasizes gaps in remote memory over amnesias related to dissociative identity disorder. The 3 amnesia factor scales exhibited a clinically meaningful pattern of significant differences among dissociative identity disorder, dissociative disorder not otherwise specified-1, dissociative amnesia, depersonalization disorder, and nonclinical participants. The 3 amnesia factors may have greater clinical utility for frontline clinicians than (a) amnesia as discussed in the context of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, nosology of the dissociative disorders or (b) P. Janet's (1893/1977 ) 4-fold classification of dissociative amnesia. The author recommends systematic study of the phenomenological differences within specific dissociative symptoms and their differential relationship to specific dissociative disorders.

  7. Ordering chaos and synchronization transitions by chemical delay and coupling on scale-free neuronal networks

    International Nuclear Information System (INIS)

    Gong Yubing; Xie Yanhang; Lin Xiu; Hao Yinghang; Ma Xiaoguang

    2010-01-01

    Research highlights: → Chemical delay and chemical coupling can tame chaotic bursting. → Chemical delay-induced transitions from bursting synchronization to intermittent multiple spiking synchronizations. → Chemical coupling-induced different types of delay-dependent firing transitions. - Abstract: Chemical synaptic connections are more common than electric ones in neurons, and information transmission delay is especially significant for the synapses of chemical type. In this paper, we report a phenomenon of ordering spatiotemporal chaos and synchronization transitions by the delays and coupling through chemical synapses of modified Hodgkin-Huxley (MHH) neurons on scale-free networks. As the delay τ is increased, the neurons exhibit transitions from bursting synchronization (BS) to intermittent multiple spiking synchronizations (SS). As the coupling g syn is increased, the neurons exhibit different types of firing transitions, depending on the values of τ. For a smaller τ, there are transitions from spatiotemporal chaotic bursting (SCB) to BS or SS; while for a larger τ, there are transitions from SCB to intermittent multiple SS. These findings show that the delays and coupling through chemical synapses can tame the chaotic firings and repeatedly enhance the firing synchronization of neurons, and hence could play important roles in the firing activity of the neurons on scale-free networks.

  8. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury.

    Science.gov (United States)

    Li, Guangke; Sang, Nan

    2009-01-01

    Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.

  9. [Transient amnesia in the elderly].

    Science.gov (United States)

    Sellal, François

    2006-03-01

    The two main aetiologies of transient amnesia in the elderly are idiopathic transient global amnesia (TGA) and iatrogenic or toxic amnesia. Vascular and epileptic amnesia are less common. According to the literature, transient psychogenic amnesia, which is a frequent cause of amnesia at age 30 to 50, is very rare in the elderly. TGA is the prototypical picture of transient amnesia. It occurs more often after age 50, with no identified cause, even if some authors accept emotional stress or minor head trauma as occasional precipitants. The mechanism of TGA remains a matter of discussion. It may be the consequence of a spreading depression similar to that described in migraine with aura, but other arguments support an ischemic mechanism. Iatrogenic amnesias are mainly caused by benzodiazepines (BZs) or anticholinergics. The former may occur in a non-anxious subject, who is not a usual consumer of BZ and takes a single dose. The latter are more often due to a hypersensitivity to anticholinergic drugs, in particular in patients presenting with a covert, incipient Alzheimer's disease. A vascular origin must be considered when amnesia is accompanied by other neurological symptoms, and when the regression of the amnesic disorder is slow, lasting several days. It results from lesions involving various mechanisms and locations, mainly subcortical. Partial seizures, most often mesio-temporal, more rarely frontal, may be the cause of transient amnesia in the elderly, in the absence of a past history of epilepsy. The red flag supportive of an epileptic origin is the repetition of stereotyped amnesic episodes. EEG demonstration of seizures may be difficult and the response to antiepileptic drugs effective on partial seizures is usually good.

  10. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms.

    Science.gov (United States)

    Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D

    2017-01-01

    Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS

  11. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms

    Directory of Open Access Journals (Sweden)

    Mohammad Daneshzand

    2017-08-01

    Full Text Available Deep brain stimulation (DBS has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD. Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the

  12. Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks

    International Nuclear Information System (INIS)

    Wang, Baoying; Gong, Yubing; Xie, Huijuan; Wang, Qi

    2016-01-01

    Highlights: • Optimal autaptic delay enhanced synchronization transitions induced by synaptic delay in neuronal networks. • Optimal synaptic delay enhanced synchronization transitions induced by autaptic delay. • Optimal coupling strength enhanced synchronization transitions induced by autaptic or synaptic delay. - Abstract: In this paper, we numerically study the effect of electrical autaptic and synaptic delays on synchronization transitions induced by each other in Newman–Watts Hodgkin–Huxley neuronal networks. It is found that the synchronization transitions induced by synaptic delay vary with varying autaptic delay and become strongest when autaptic delay is optimal. Similarly, the synchronization transitions induced by autaptic delay vary with varying synaptic delay and become strongest at optimal synaptic delay. Also, there is optimal coupling strength by which the synchronization transitions induced by either synaptic or autaptic delay become strongest. These results show that electrical autaptic and synaptic delays can enhance synchronization transitions induced by each other in the neuronal networks. This implies that electrical autaptic and synaptic delays can cooperate with each other and more efficiently regulate the synchrony state of the neuronal networks. These findings could find potential implications for the information transmission in neural systems.

  13. Robust Synchronization of Delayed Chaotic FitzHugh-Nagumo Neurons under External Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Muhammad Rehan

    2012-01-01

    Full Text Available Synchronization of chaotic neurons under external electrical stimulation (EES is studied in order to understand information processing in the brain and to improve the methodologies employed in the treatment of cognitive diseases. This paper investigates the dynamics of uncertain coupled chaotic delayed FitzHugh-Nagumo (FHN neurons under EES for incorporated parametric variations. A global nonlinear control law for synchronization of delayed neurons with known parameters is developed. Based on local and global Lipschitz conditions, knowledge of the bounds on the neuronal states, the Lyapunov-Krasovskii functional, and the L2 gain reduction, a less conservative local robust nonlinear control law is formulated to address the problem of robust asymptotic synchronization of delayed FHN neurons under parametric uncertainties. The proposed local control law guarantees both robust stability and robust performance and provides the L2 bound for uncertainty rejection in the synchronization error dynamics. Separate conditions for single-input and multiple-input control schemes for synchronization of a wide class of FHN systems are provided. The results of the proposed techniques are verified through numerical simulations.

  14. Phase-coherence transitions and communication in the gamma range between delay-coupled neuronal populations.

    Directory of Open Access Journals (Sweden)

    Alessandro Barardi

    2014-07-01

    Full Text Available Synchronization between neuronal populations plays an important role in information transmission between brain areas. In particular, collective oscillations emerging from the synchronized activity of thousands of neurons can increase the functional connectivity between neural assemblies by coherently coordinating their phases. This synchrony of neuronal activity can take place within a cortical patch or between different cortical regions. While short-range interactions between neurons involve just a few milliseconds, communication through long-range projections between different regions could take up to tens of milliseconds. How these heterogeneous transmission delays affect communication between neuronal populations is not well known. To address this question, we have studied the dynamics of two bidirectionally delayed-coupled neuronal populations using conductance-based spiking models, examining how different synaptic delays give rise to in-phase/anti-phase transitions at particular frequencies within the gamma range, and how this behavior is related to the phase coherence between the two populations at different frequencies. We have used spectral analysis and information theory to quantify the information exchanged between the two networks. For different transmission delays between the two coupled populations, we analyze how the local field potential and multi-unit activity calculated from one population convey information in response to a set of external inputs applied to the other population. The results confirm that zero-lag synchronization maximizes information transmission, although out-of-phase synchronization allows for efficient communication provided the coupling delay, the phase lag between the populations, and the frequency of the oscillations are properly matched.

  15. [Crime-related amnesia: real or feigned?].

    Science.gov (United States)

    Giger, P; Merten, T; Merckelbach, H

    2012-07-01

    In the context of criminal forensic evaluations, experts are often confronted with the problem of offenders' claims of crime-related amnesia. Because of the far-reaching legal consequences of the expert opinion, the nature of the suspected memory disorder has to be investigated with special care and due consideration of differential diagnoses. While the diagnosis of organic amnesia is comparatively easy to make, the same is not true for dissociative amnesia. Despite existing theoretical explanations such as stress, peritraumatic dissociation or repression, to date there is no sound, scientifically based and empirically supported explanation for the occurrence of genuine, non-organic crime-related amnesia. In the criminal context of claimed amnesia, secondary gain is usually obvious; thus, possible malingering of memory loss has to be carefully investigated by the forensic expert. To test this hypothesis, the expert has to resort to methods based on a high methodological level. The diagnosis of dissociative amnesia cannot be made by mere exclusion of evidence for organic amnesia; instead, malingering has to be ruled out on an explicit basis. © Georg Thieme Verlag KG Stuttgart · New York.

  16. An electronic implementation for Liao's chaotic delayed neuron model with non-monotonous activation function

    International Nuclear Information System (INIS)

    Duan Shukai; Liao Xiaofeng

    2007-01-01

    A new chaotic delayed neuron model with non-monotonously increasing transfer function, called as chaotic Liao's delayed neuron model, was recently reported and analyzed. An electronic implementation of this model is described in detail. At the same time, some methods in circuit design, especially for circuit with time delayed unit and non-monotonously increasing activation unit, are also considered carefully. We find that the dynamical behaviors of the designed circuits are closely similar to the results predicted by numerical experiments

  17. Impact of delays on the synchronization transitions of modular neuronal networks with hybrid synapses

    Science.gov (United States)

    Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok

    2013-09-01

    The combined effects of the information transmission delay and the ratio of the electrical and chemical synapses on the synchronization transitions in the hybrid modular neuronal network are investigated in this paper. Numerical results show that the synchronization of neuron activities can be either promoted or destroyed as the information transmission delay increases, irrespective of the probability of electrical synapses in the hybrid-synaptic network. Interestingly, when the number of the electrical synapses exceeds a certain level, further increasing its proportion can obviously enhance the spatiotemporal synchronization transitions. Moreover, the coupling strength has a significant effect on the synchronization transition. The dominated type of the synapse always has a more profound effect on the emergency of the synchronous behaviors. Furthermore, the results of the modular neuronal network structures demonstrate that excessive partitioning of the modular network may result in the dramatic detriment of neuronal synchronization. Considering that information transmission delays are inevitable in intra- and inter-neuronal networks communication, the obtained results may have important implications for the exploration of the synchronization mechanism underlying several neural system diseases such as Parkinson's Disease.

  18. Neuregulin-1 is neuroprotective in a rat model of organophosphate-induced delayed neuronal injury

    International Nuclear Information System (INIS)

    Li, Yonggang; Lein, Pamela J.; Liu, Cuimei; Bruun, Donald A.; Giulivi, Cecilia; Ford, Gregory D.; Tewolde, Teclemichael; Ross-Inta, Catherine; Ford, Byron D.

    2012-01-01

    Current medical countermeasures against organophosphate (OP) nerve agents are effective in reducing mortality, but do not sufficiently protect the CNS from delayed brain damage and persistent neurological symptoms. In this study, we examined the efficacy of neuregulin-1 (NRG-1) in protecting against delayed neuronal cell death following acute intoxication with the OP diisopropylflurophosphate (DFP). Adult male Sprague–Dawley rats were pretreated with pyridostigmine (0.1 mg/kg BW, i.m.) and atropine methylnitrate (20 mg/kg BW, i.m.) prior to DFP (9 mg/kg BW, i.p.) intoxication to increase survival and reduce peripheral signs of cholinergic toxicity but not prevent DFP-induced seizures or delayed neuronal injury. Pretreatment with NRG-1 did not protect against seizures in rats exposed to DFP. However, neuronal injury was significantly reduced in most brain regions by pretreatment with NRG-1 isoforms NRG-EGF (3.2 μg/kg BW, i.a) or NRG-GGF2 (48 μg/kg BW, i.a.) as determined by FluroJade-B labeling in multiple brain regions at 24 h post-DFP injection. NRG-1 also blocked apoptosis and oxidative stress-mediated protein damage in the brains of DFP-intoxicated rats. Administration of NRG-1 at 1 h after DFP injection similarly provided significant neuroprotection against delayed neuronal injury. These findings identify NRG-1 as a promising adjuvant therapy to current medical countermeasures for enhancing neuroprotection against acute OP intoxication. -- Highlights: ► NRG-1 blocked DFP induced neuronal injury. ► NRG-1 did not protect against seizures in rats exposed to DFP. ► NRG-1 blocked apoptosis and oxidative stress in the brains of DFP-intoxicated rats. ► Administration of NRG-1 at 1 h after DFP injection prevented delayed neuronal injury.

  19. Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus.

    Science.gov (United States)

    McAlpine, D; Jiang, D; Shackleton, T M; Palmer, A R

    1998-08-01

    Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were studied with binaural beats to assess their mean best interaural phase (BP) to a range of stimulating frequencies. Phase plots (stimulating frequency vs BP) were produced, from which measures of characteristic delay (CD) and characteristic phase (CP) for each neuron were obtained. The CD provides an estimate of the difference in travel time from each ear to coincidence-detector neurons in the brainstem. The CP indicates the mechanism underpinning the coincidence detector responses. A linear phase plot indicates a single, constant delay between the coincidence-detector inputs from the two ears. In more than half (54 of 90) of the neurons, the phase plot was not linear. We hypothesized that neurons with nonlinear phase plots received convergent input from brainstem coincidence detectors with different CDs. Presentation of a second tone with a fixed, unfavorable delay suppressed the response of one input, linearizing the phase plot and revealing other inputs to be relatively simple coincidence detectors. For some neurons with highly complex phase plots, the suppressor tone altered BP values, but did not resolve the nature of the inputs. For neurons with linear phase plots, the suppressor tone either completely abolished their responses or reduced their discharge rate with no change in BP. By selectively suppressing inputs with a second tone, we are able to reveal the nature of underlying binaural inputs to IC neurons, confirming the hypothesis that the complex phase plots of many IC neurons are a result of convergence from simple brainstem coincidence detectors.

  20. Necessary and sufficient conditions for Hopf bifurcation in tri-neuron equation with a delay

    International Nuclear Information System (INIS)

    Liu Xiaoming; Liao Xiaofeng

    2009-01-01

    In this paper, we consider the delayed differential equations modeling three-neuron equations with only a time delay. Using the time delay as a bifurcation parameter, necessary and sufficient conditions for Hopf bifurcation to occur are derived. Numerical results indicate that for this model, Hopf bifurcation is likely to occur at suitable delay parameter values.

  1. Spatiotemporal dynamics on small-world neuronal networks: The roles of two types of time-delayed coupling

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hao; Jiang Huijun [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hou Zhonghuai, E-mail: hzhlj@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-10-15

    Highlights: > We compare neuronal dynamics in dependence on two types of delayed coupling. > Distinct results induced by different delayed coupling can be achieved. > Time delays in type 1 coupling can induce a most spatiotemporal ordered state. > For type 2 coupling, the systems exhibit synchronization transitions with delay. - Abstract: We investigate temporal coherence and spatial synchronization on small-world networks consisting of noisy Terman-Wang (TW) excitable neurons in dependence on two types of time-delayed coupling: {l_brace}x{sub j}(t - {tau}) - x{sub i}(t){r_brace} and {l_brace}x{sub j}(t - {tau}) - x{sub i}(t - {tau}){r_brace}. For the former case, we show that time delay in the coupling can dramatically enhance temporal coherence and spatial synchrony of the noise-induced spike trains. In addition, if the delay time {tau} is tuned to nearly match the intrinsic spike period of the neuronal network, the system dynamics reaches a most ordered state, which is both periodic in time and nearly synchronized in space, demonstrating an interesting resonance phenomenon with delay. For the latter case, however, we cannot achieve a similar spatiotemporal ordered state, but the neuronal dynamics exhibits interesting synchronization transitions with time delay from zigzag fronts of excitations to dynamic clustering anti-phase synchronization (APS), and further to clustered chimera states which have spatially distributed anti-phase coherence separated by incoherence. Furthermore, we also show how these findings are influenced by the change of the noise intensity and the rewiring probability of the small-world networks. Finally, qualitative analysis is given to illustrate the numerical results.

  2. Spatiotemporal dynamics on small-world neuronal networks: The roles of two types of time-delayed coupling

    International Nuclear Information System (INIS)

    Wu Hao; Jiang Huijun; Hou Zhonghuai

    2011-01-01

    Highlights: → We compare neuronal dynamics in dependence on two types of delayed coupling. → Distinct results induced by different delayed coupling can be achieved. → Time delays in type 1 coupling can induce a most spatiotemporal ordered state. → For type 2 coupling, the systems exhibit synchronization transitions with delay. - Abstract: We investigate temporal coherence and spatial synchronization on small-world networks consisting of noisy Terman-Wang (TW) excitable neurons in dependence on two types of time-delayed coupling: {x j (t - τ) - x i (t)} and {x j (t - τ) - x i (t - τ)}. For the former case, we show that time delay in the coupling can dramatically enhance temporal coherence and spatial synchrony of the noise-induced spike trains. In addition, if the delay time τ is tuned to nearly match the intrinsic spike period of the neuronal network, the system dynamics reaches a most ordered state, which is both periodic in time and nearly synchronized in space, demonstrating an interesting resonance phenomenon with delay. For the latter case, however, we cannot achieve a similar spatiotemporal ordered state, but the neuronal dynamics exhibits interesting synchronization transitions with time delay from zigzag fronts of excitations to dynamic clustering anti-phase synchronization (APS), and further to clustered chimera states which have spatially distributed anti-phase coherence separated by incoherence. Furthermore, we also show how these findings are influenced by the change of the noise intensity and the rewiring probability of the small-world networks. Finally, qualitative analysis is given to illustrate the numerical results.

  3. The influence of single neuron dynamics and network topology on time delay-induced multiple synchronous behaviors in inhibitory coupled network

    International Nuclear Information System (INIS)

    Zhao, Zhiguo; Gu, Huaguang

    2015-01-01

    Highlights: • Time delay-induced multiple synchronous behaviors was simulated in neuronal networks. • Multiple behaviors appear at time delays shorter than a bursting period of neurons. • The more spikes per burst of bursting, the more synchronous regions of time delay. • From regular to random via small-world networks, synchronous degree becomes weak. • An interpretation of the multiple behaviors and the influence of network are provided. - Abstract: Time delay induced-multiple synchronous behaviors are simulated in neuronal network composed of many inhibitory neurons and appear at different time delays shorter than a period of endogenous bursting of individual neurons. It is different from previous investigations wherein only one of multiple synchronous behaviors appears at time delay shorter than a period of endogenous firing and others appear at time delay longer than the period duration. The bursting patterns of the synchronous behaviors are identified based on the dynamics of an individual neuron stimulated by a signal similar to the inhibitory coupling current, which is applied at the decaying branch of a spike and suitable phase within the quiescent state of the endogenous bursting. If a burst of endogenous bursting contains more spikes, the synchronous behaviors appear at more regions of time delay. As the coupling strength increases, the multiple synchronous behaviors appear in a sequence because the different threshold of coupling current or strength is needed to achieve synchronous behaviors. From regular, to small-world, and to random networks, synchronous degree of the multiple synchronous behaviors becomes weak, and synchronous bursting patterns with lower spikes per burst disappear, which is properly interpreted by the difference of coupling current between neurons induced by different degree and the high threshold of coupling current to achieve synchronization for the absent synchronous bursting patterns. The results of the influence of

  4. Stranger than fiction: literary and clinical amnesia.

    Science.gov (United States)

    Dieguez, Sebastian; Annoni, Jean-Marie

    2013-01-01

    This chapter broadly covers literary uses of amnesia and memory disorders. Amnesia in fiction offers authors an efficient and dramatic device to tackle themes such as identity, personal liberty, or guilt. We argue against the common complaint that fictional amnesia is scientifically inaccurate, pointing out that the goals of literature are different from those of science, that amnesia is still poorly understood, and that real-life cases can sometimes be stranger than fiction. The chapter provides examples from the neuropsychological literature, media reports, mythology, historical cases, detective stories, war stories, theatrical plays, and other genres. Special attention is given to retrograde and dissociative amnesia, as these are the most frequent types of amnesia portrayed in fiction, while other types of memory disorders are more shortly treated. We argue that the predominance of disorders affecting autobiographical memory in fiction is in itself a revealing fact about the mechanisms of human memory, illustrating how fictional treatments of pathology can inform back neurological and psychological research. Copyright © 2013 S. Karger AG, Basel.

  5. An electronic implementation for Liao's chaotic delayed neuron model with non-monotonous activation function

    Energy Technology Data Exchange (ETDEWEB)

    Duan Shukai [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China); School of Electronic and Information Engineering, Southwest University, Chongqing 400715 (China)], E-mail: duansk@swu.edu.cn; Liao Xiaofeng [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China)], E-mail: xfliao@cqu.edu.cn

    2007-09-10

    A new chaotic delayed neuron model with non-monotonously increasing transfer function, called as chaotic Liao's delayed neuron model, was recently reported and analyzed. An electronic implementation of this model is described in detail. At the same time, some methods in circuit design, especially for circuit with time delayed unit and non-monotonously increasing activation unit, are also considered carefully. We find that the dynamical behaviors of the designed circuits are closely similar to the results predicted by numerical experiments.

  6. The Many Faces of Amnesia

    Science.gov (United States)

    Gold, Paul E.

    2006-01-01

    Results from studies of retrograde amnesia provide much of the evidence for theories of memory consolidation. Retrograde amnesia gradients are often interpreted as revealing the time needed for the formation of long-term memories. The rapid forgetting observed after many amnestic treatments, including protein synthesis inhibitors, and the parallel…

  7. Hopf bifurcation of an (n + 1) -neuron bidirectional associative memory neural network model with delays.

    Science.gov (United States)

    Xiao, Min; Zheng, Wei Xing; Cao, Jinde

    2013-01-01

    Recent studies on Hopf bifurcations of neural networks with delays are confined to simplified neural network models consisting of only two, three, four, five, or six neurons. It is well known that neural networks are complex and large-scale nonlinear dynamical systems, so the dynamics of the delayed neural networks are very rich and complicated. Although discussing the dynamics of networks with a few neurons may help us to understand large-scale networks, there are inevitably some complicated problems that may be overlooked if simplified networks are carried over to large-scale networks. In this paper, a general delayed bidirectional associative memory neural network model with n + 1 neurons is considered. By analyzing the associated characteristic equation, the local stability of the trivial steady state is examined, and then the existence of the Hopf bifurcation at the trivial steady state is established. By applying the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction and stability of the bifurcating periodic solution. Furthermore, the paper highlights situations where the Hopf bifurcations are particularly critical, in the sense that the amplitude and the period of oscillations are very sensitive to errors due to tolerances in the implementation of neuron interconnections. It is shown that the sensitivity is crucially dependent on the delay and also significantly influenced by the feature of the number of neurons. Numerical simulations are carried out to illustrate the main results.

  8. Retrograde amnesia for semantic information in Alzheimer's disease

    OpenAIRE

    Meeter, M.; Kollen, A.; Scheltens, P.

    2005-01-01

    Patients with mild to moderate Alzheimer's disease and normal controls were tested on a retrograde amnesia test with semantic content (Neologism and Vocabulary Test, or NVT), consisting of neologisms to be defined. Patients showed a decrement as compared to normal controls, pointing to retrograde amnesia within semantic memory. No evidence for a gradient within this amnesia was found, although one was present on an autobiographic test of retrograde amnesia that had a wider time scale. Several...

  9. Sensitivity and specificity of the 3-item memory test in the assessment of post traumatic amnesia.

    NARCIS (Netherlands)

    Andriessen, T.M.J.C.; Jong, B. de; Jacobs, B.; Werf, S.P. van der; Vos, P.E.

    2009-01-01

    PRIMARY OBJECTIVE: To investigate how the type of stimulus (pictures or words) and the method of reproduction (free recall or recognition after a short or a long delay) affect the sensitivity and specificity of a 3-item memory test in the assessment of post traumatic amnesia (PTA). METHODS: Daily

  10. Anterograde Amnesia during Electroconvulsive Therapy: A Prospective Pilot-Study in Patients with Major Depressive Disorder.

    Directory of Open Access Journals (Sweden)

    Elvira Boere

    Full Text Available Electroconvulsive therapy (ECT is considered an effective treatment for major depression with melancholic features. However, neurocognitive side-effects such as anterograde amnesia still regularly occur. The present study aims to evaluate the severity and course of anterograde amnesia in severely depressed patients undergoing ECT. In a prospective naturalistic study, anterograde memory function was assessed among inpatients who underwent ECT (n = 11. Subjects met DSM-IV criteria for major depressive disorder. Recruitment took place between March 2010-March 2011 and March 2012-March 2013. Controls treated with antidepressants (n = 9 were matched for age, gender and depression severity. Primary outcome measure was immediate recall; secondary outcome measures were delayed recall, recognition, and visual association. Differences were tested using repeated measures ANOVA and paired t-tests. Correlations with hypothesized covariates were calculated. In patients with major depressive disorder, ECT had a significant effect on delayed memory function (p<0.01 with large effect sizes. Findings on immediate recall were less consistent. Four weeks after treatment discontinuation, these memory functions had recovered. Age was identified as a very important covariate. The main limitations of our study are its naturalistic design, possibly compromising internal validity, and its small sample size. However, if these findings can be reproduced in a more comprehensive study group, then the possible induction of anterograde amnesia is not a justifiable reason for clinicians to disregard ECT as a treatment option.

  11. Role of Delays in Shaping Spatiotemporal Dynamics of Neuronal Activity in Large Networks

    International Nuclear Information System (INIS)

    Roxin, Alex; Brunel, Nicolas; Hansel, David

    2005-01-01

    We study the effect of delays on the dynamics of large networks of neurons. We show that delays give rise to a wealth of bifurcations and to a rich phase diagram, which includes oscillatory bumps, traveling waves, lurching waves, standing waves arising via a period-doubling bifurcation, aperiodic regimes, and regimes of multistability. We study the existence and the stability of the various dynamical patterns analytically and numerically in a simplified rate model as a function of the interaction parameters. The results derived in that framework allow us to understand the origin of the diversity of dynamical states observed in large networks of spiking neurons

  12. Time Delay and Long-Range Connection Induced Synchronization Transitions in Newman-Watts Small-World Neuronal Networks

    Science.gov (United States)

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595

  13. Attribute amnesia is greatly reduced with novel stimuli

    Directory of Open Access Journals (Sweden)

    Weijia Chen

    2017-11-01

    Full Text Available Attribute amnesia is the counterintuitive phenomenon where observers are unable to report a salient aspect of a stimulus (e.g., its colour or its identity immediately after the stimulus was presented, despite both attending to and processing the stimulus. Almost all previous attribute amnesia studies used highly familiar stimuli. Our study investigated whether attribute amnesia would also occur for unfamiliar stimuli. We conducted four experiments using stimuli that were highly familiar (colours or repeated animal images or that were unfamiliar to the observers (unique animal images. Our results revealed that attribute amnesia was present for both sets of familiar stimuli, colour (p < .001 and repeated animals (p = .001; but was greatly attenuated, and possibly eliminated, when the stimuli were unique animals (p = .02. Our data shows that attribute amnesia is greatly reduced for novel stimuli.

  14. Stochastic Wilson–Cowan models of neuronal network dynamics with memory and delay

    International Nuclear Information System (INIS)

    Goychuk, Igor; Goychuk, Andriy

    2015-01-01

    We consider a simple Markovian class of the stochastic Wilson–Cowan type models of neuronal network dynamics, which incorporates stochastic delay caused by the existence of a refractory period of neurons. From the point of view of the dynamics of the individual elements, we are dealing with a network of non-Markovian stochastic two-state oscillators with memory, which are coupled globally in a mean-field fashion. This interrelation of a higher-dimensional Markovian and lower-dimensional non-Markovian dynamics is discussed in its relevance to the general problem of the network dynamics of complex elements possessing memory. The simplest model of this class is provided by a three-state Markovian neuron with one refractory state, which causes firing delay with an exponentially decaying memory within the two-state reduced model. This basic model is used to study critical avalanche dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the excitatory and inhibitory neurons. Such avalanches emerge due to the network size dependent noise (mesoscopic noise). Numerical simulations reveal an intermediate power law in the distribution of avalanche sizes with the critical exponent around −1.16. We show that this power law is robust upon a variation of the refractory time over several orders of magnitude. However, the avalanche time distribution is biexponential. It does not reflect any genuine power law dependence. (paper)

  15. A mathematical model of forgetting and amnesia

    Directory of Open Access Journals (Sweden)

    Jaap M. J. Murre

    2013-02-01

    Full Text Available We describe a mathematical model of learning and memory and apply it to the dynamics of forgetting and amnesia. The model is based on the hypothesis that the neural systems involved in memory at different time-scales share two fundamental properties: (1 representations in a store decline in strength (2 while trying to induce new representations in higher-level more permanent stores. This paper addresses several types of experimental and clinical phenomena: (i the temporal gradient of retrograde amnesia (Ribot's Law, (ii forgetting curves with and without anterograde amnesia, and (iii learning and forgetting curves with impaired cortical plasticity. Results are in the form of closed-form expressions that are applied to studies with mice, rats, and monkeys. In order to analyze human data in a quantitative manner, we also derive a relative measure of retrograde amnesia that removes the effects of non-equal item difficulty for different time periods commonly found with clinical retrograde amnesia tests. Using these analytical tools, we review studies of temporal gradients in the memory of patients with Korsakoff's Disease, Alzheimer's Dementia, Huntington's Disease, and other disorders.

  16. DL-ReSuMe: A Delay Learning-Based Remote Supervised Method for Spiking Neurons.

    Science.gov (United States)

    Taherkhani, Aboozar; Belatreche, Ammar; Li, Yuhua; Maguire, Liam P

    2015-12-01

    Recent research has shown the potential capability of spiking neural networks (SNNs) to model complex information processing in the brain. There is biological evidence to prove the use of the precise timing of spikes for information coding. However, the exact learning mechanism in which the neuron is trained to fire at precise times remains an open problem. The majority of the existing learning methods for SNNs are based on weight adjustment. However, there is also biological evidence that the synaptic delay is not constant. In this paper, a learning method for spiking neurons, called delay learning remote supervised method (DL-ReSuMe), is proposed to merge the delay shift approach and ReSuMe-based weight adjustment to enhance the learning performance. DL-ReSuMe uses more biologically plausible properties, such as delay learning, and needs less weight adjustment than ReSuMe. Simulation results have shown that the proposed DL-ReSuMe approach achieves learning accuracy and learning speed improvements compared with ReSuMe.

  17. Time-delay-induced phase-transition to synchrony in coupled bursting neurons

    Science.gov (United States)

    Adhikari, Bhim Mani; Prasad, Awadhesh; Dhamala, Mukeshwar

    2011-06-01

    Signal transmission time delays in a network of nonlinear oscillators are known to be responsible for a variety of interesting dynamic behaviors including phase-flip transitions leading to synchrony or out of synchrony. Here, we uncover that phase-flip transitions are general phenomena and can occur in a network of coupled bursting neurons with a variety of coupling types. The transitions are marked by nonlinear changes in both temporal and phase-space characteristics of the coupled system. We demonstrate these phase-transitions with Hindmarsh-Rose and Leech-Heart interneuron models and discuss the implications of these results in understanding collective dynamics of bursting neurons in the brain.

  18. Delay selection by spike-timing-dependent plasticity in recurrent networks of spiking neurons receiving oscillatory inputs.

    Directory of Open Access Journals (Sweden)

    Robert R Kerr

    Full Text Available Learning rules, such as spike-timing-dependent plasticity (STDP, change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.

  19. Visual memory-deficit amnesia: A distinct amnesic presentation and etiology

    OpenAIRE

    Rubin, David C.; Greenberg, Daniel L.

    1998-01-01

    We describe a form of amnesia, which we have called visual memory-deficit amnesia, that is caused by damage to areas of the visual system that store visual information. Because it is caused by a deficit in access to stored visual material and not by an impaired ability to encode or retrieve new material, it has the otherwise infrequent properties of a more severe retrograde than anterograde amnesia with no temporal gradient in the retrograde amnesia. Of the 11 cases of long-term visual memory...

  20. The relationship between psychopathy and crime-related amnesia

    NARCIS (Netherlands)

    Cima-Knijff, M.J.; van Oorsouw, K.

    2013-01-01

    The objective of this study was to investigate whether levels of psychopathy predicted claims of crime-related amnesia. Different characteristics of psychopathy were based on the factor structure of the self-report questionnaire Psychopathic Personality Inventory (PPI). Crime-related amnesia claims

  1. Remote semantic memory is impoverished in hippocampal amnesia.

    Science.gov (United States)

    Klooster, Nathaniel B; Duff, Melissa C

    2015-12-01

    The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The loss of episodic memories in retrograde amnesia: single-case and group studies.

    OpenAIRE

    Kopelman, M D; Kapur, N

    2001-01-01

    Retrograde amnesia in neurological disorders is a perplexing and fascinating research topic. The severity of retrograde amnesia is not well correlated with that of anterograde amnesia, and there can be disproportionate impairments of either. Within retrograde amnesia, there are various dissociations which have been claimed-for example, between the more autobiographical (episodic) and more semantic components of memory. However, the associations of different types of retrograde amnesia are als...

  3. Disrupting circadian rhythms in rats induces retrograde amnesia

    NARCIS (Netherlands)

    Fekete, Mátyás; Ree, J.M. van; Niesink, Raymond J.M.; Wied, D. de

    1985-01-01

    Disrupting circadian organization in rats by phase-shifting the illumination cycle or by exposure to a reversed day/night cycle or to continuous light, resulted in retrograde amnesia for passive avoidance behavior. This retrograde amnesia induced by phase-shifting lasted at least 2 days, and

  4. Cognitive Improving Effects by Highbush Blueberry (Vaccinium crymbosum L.) Vinegar on Scopolamine-Induced Amnesia Mice Model.

    Science.gov (United States)

    Hong, Seong Min; Soe, Kyong Hee; Lee, Taek Hwan; Kim, In Sook; Lee, Young Min; Lim, Beong Ou

    2018-01-10

    The present study aimed to evaluate the preventive effects of highbush blueberry (Vaccinium corymbosum L.) vinegar (BV) on cognitive functions in a scopolamine (Sco)-induced amnesia model in mice. In this study, Sco (1 mg/kg, intraperitoneal injection) was used to induce amnesia. ICR mice were orally administered donepezil (5 mg/kg), blueberry extract (120 mg/kg), and BV (120 mg/kg) for 7 days. After inducing cognitive impairment by Sco, a behavioral assessment using behavior tests (i.e., Y-maze and passive avoidance tests) was performed. The BV group showed significantly restored cognitive function in the behavioral tests. BV facilitated cholinergic activity by inhibiting acetylcholinesterase activity, and enhanced antioxidant enzyme activity. Furthermore, BV was found to be rehabilitated in the cornu ammonis 1 neurons of hippocampus. In our study, we demonstrated that the memory protection conferred by BV was linked to activation of brain-derived neurotrophic factor (BDNF)/cAMP response element binding protein (CREB)/serine-threonine kinase (AKT) signaling.

  5. Enhancement of delayed-rectifier potassium conductance by low concentrations of local anaesthetics in spinal sensory neurones

    Science.gov (United States)

    Olschewski, Andrea; Wolff, Matthias; Bräu, Michael E; Hempelmann, Gunter; Vogel, Werner; Safronov, Boris V

    2002-01-01

    Combining the patch-clamp recordings in slice preparation with the ‘entire soma isolation' method we studied action of several local anaesthetics on delayed-rectifier K+ currents in spinal dorsal horn neurones.Bupivacaine, lidocaine and mepivacaine at low concentrations (1–100 μM) enhanced delayed-rectifier K+ current in intact neurones within the spinal cord slice, while exhibiting a partial blocking effect at higher concentrations (>100 μM). In isolated somata 0.1–10 μM bupivacaine enhanced delayed-rectifier K+ current by shifting its steady-state activation characteristic and the voltage-dependence of the activation time constant to more negative potentials by 10–20 mV.Detailed analysis has revealed that bupivacaine also increased the maximum delayed-rectifier K+ conductance by changing the open probability, rather than the unitary conductance, of the channel.It is concluded that local anaesthetics show a dual effect on delayed-rectifier K+ currents by potentiating them at low concentrations and partially suppressing at high concentrations. The phenomenon observed demonstrated the complex action of local anaesthetics during spinal and epidural anaesthesia, which is not restricted to a suppression of Na+ conductance only. PMID:12055132

  6. From Quasiperiodic Partial Synchronization to Collective Chaos in Populations of Inhibitory Neurons with Delay.

    Science.gov (United States)

    Pazó, Diego; Montbrió, Ernest

    2016-06-10

    Collective chaos is shown to emerge, via a period-doubling cascade, from quasiperiodic partial synchronization in a population of identical inhibitory neurons with delayed global coupling. This system is thoroughly investigated by means of an exact model of the macroscopic dynamics, valid in the thermodynamic limit. The collective chaotic state is reproduced numerically with a finite population, and persists in the presence of weak heterogeneities. Finally, the relationship of the model's dynamics with fast neuronal oscillations is discussed.

  7. Persistent Autobiographical Amnesia: A Case Report

    Directory of Open Access Journals (Sweden)

    C. Repetto

    2007-01-01

    Full Text Available We describe a 47-year-old man who referred to the Emergency Department for sudden global amnesia and left mild motor impairment in the setting of increased arterial blood pressure. The acute episode resolved within 24 hours. Despite general recovery and the apparent transitory nature of the event, a persistent selective impairment in recollecting events from some specific topics of his personal life became apparent. Complete neuropsychological tests one week after the acute onset and 2 months later demonstrated a clear retrograde memory deficit contrasting with the preservation of anterograde memory and learning abilities. One year later, the autobiographic memory deficit was unmodified, except for what had been re-learnt. Brain MRI was normal while H20 brain PET scans demonstrated hypometabolism in the right globus pallidus and putamen after 2 weeks from onset, which was no longer present one year later. The absence of a clear pathomechanism underlying focal amnesia lead us to consider this case as an example of functional retrograde amnesia.

  8. Transient global amnesia after taking sibutramine: a case report.

    Science.gov (United States)

    Fu, Pin-Kuei; Hsu, Hung-Yi; Wang, Pao-Yu

    2010-03-01

    Sibutramine (Meridia in the United States, Reductil in Europe) is approved for weight reduction and weight maintenance. Although amnesia and seizure is listed as a reported adverse event of sibutramine in the US product information, our literature search in the PubMed website database found no published reports of theses adverse events. We report a 39-year-old healthy woman who had an episode of sudden memory loss lasting for several hours after taking sibutramine for 4 days. Cranial computed tomography scan, magnetic resonance imaging, and magnetic resonance angiography of the head all showed normal results. Electroencephalogram showed spike and wave complexes with phase reversal in the left mesial temporal area. Transient global amnesia was suspected clinically and transient epileptic amnesia provoked by sibutramine was also proposed. Three months after this episode, the follow-up electroencephalogram was normal. This patient did not take any anticonvulsant, and there were no more episodes of memory impairment. This case serves to emphasize that sibutramine which was used for weight reduction might induce transient global amnesia or provoke transient epileptic amnesia. Physicians should be careful to monitor for this adverse effect when sibutramine is prescribed.

  9. Transient global amnesia: emergency department evaluation and management [digest].

    Science.gov (United States)

    Faust, Jeremy Samuel; Nemes, Andreea; Zaurova, Milana

    2016-08-22

    Transient global amnesia is a clinically distinct syndrome characterized by the acute inability to form new memories. It can last up to 24 hours. The diagnosis is dependent on eliminating other more serious etiologies including toxic ingestions, acute strokes, complex partial seizures, and central nervous system infections. Transient global amnesia confers no known long-term risks; however, when abnormal signs or symptoms are present, they take precedence and guide the formulation of a differential diagnosis and investigation. In witnessed transient global amnesia with classic features, a minimalist approach is reasonable, avoiding overtesting, inappropriate medication, and medical interventions in favor of observation, ensuring patient safety, and reassuring patients and their families. This review provides a detailed framework for distinguishing transient global amnesia from its dangerous mimics and managing its course in the emergency department. [Points & Pearls is a digest of Emergency Medicine Practice].

  10. Synchronization of Coupled FitzHugh-Nagumo Neurons Using Self-Feedback Time Delay

    Science.gov (United States)

    Fan, Denggui; Song, Xinle; Liao, Fucheng

    Many neurological diseases are characterized by abnormally synchronous oscillations of neuronal populations. However, how the neurons can synchronize with each other is still not fully understood, which may have potentially hampered the understanding and diagnosis for these dynamical diseases. In this paper, the self-feedback time delay (SFTD) and adaptive control theory are employed to control the onset of synchronization in the coupled FitzHugh-Nagumo (FHN) neurons. It is found that the larger SFTD can induce the complete synchronization of coupled neuronal system. Further investigation reveals that the reinforcing SFTD can significantly postpone the synchronization onsets. In addition, for the case that synchronization cannot be achieved by adjusting SFTD, the parameter estimation update laws and adaptive controller with respect to SFTD of coupled system are investigated to deduce the sufficient condition for complete synchronization. Simulations are also provided to illustrate the effectiveness of the proposed methods. In particular, we observed the fascinating dynamical synchronization transitions, such as chaotic synchronization and bursting synchronization transitions, as well as the transition from anti-synchronization to complete synchronization.

  11. Neuronal model with distributed delay: analysis and simulation study for gamma distribution memory kernel.

    Science.gov (United States)

    Karmeshu; Gupta, Varun; Kadambari, K V

    2011-06-01

    A single neuronal model incorporating distributed delay (memory)is proposed. The stochastic model has been formulated as a Stochastic Integro-Differential Equation (SIDE) which results in the underlying process being non-Markovian. A detailed analysis of the model when the distributed delay kernel has exponential form (weak delay) has been carried out. The selection of exponential kernel has enabled the transformation of the non-Markovian model to a Markovian model in an extended state space. For the study of First Passage Time (FPT) with exponential delay kernel, the model has been transformed to a system of coupled Stochastic Differential Equations (SDEs) in two-dimensional state space. Simulation studies of the SDEs provide insight into the effect of weak delay kernel on the Inter-Spike Interval(ISI) distribution. A measure based on Jensen-Shannon divergence is proposed which can be used to make a choice between two competing models viz. distributed delay model vis-á-vis LIF model. An interesting feature of the model is that the behavior of (CV(t))((ISI)) (Coefficient of Variation) of the ISI distribution with respect to memory kernel time constant parameter η reveals that neuron can switch from a bursting state to non-bursting state as the noise intensity parameter changes. The membrane potential exhibits decaying auto-correlation structure with or without damped oscillatory behavior depending on the choice of parameters. This behavior is in agreement with empirically observed pattern of spike count in a fixed time window. The power spectral density derived from the auto-correlation function is found to exhibit single and double peaks. The model is also examined for the case of strong delay with memory kernel having the form of Gamma distribution. In contrast to fast decay of damped oscillations of the ISI distribution for the model with weak delay kernel, the decay of damped oscillations is found to be slower for the model with strong delay kernel.

  12. Stability and bifurcation in a simplified four-neuron BAM neural network with multiple delays

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We first study the distribution of the zeros of a fourth-degree exponential polynomial. Then we apply the obtained results to a simplified bidirectional associated memory (BAM neural network with four neurons and multiple time delays. By taking the sum of the delays as the bifurcation parameter, it is shown that under certain assumptions the steady state is absolutely stable. Under another set of conditions, there are some critical values of the delay, when the delay crosses these critical values, the Hopf bifurcation occurs. Furthermore, some explicit formulae determining the stability and the direction of periodic solutions bifurcating from Hopf bifurcations are obtained by applying the normal form theory and center manifold reduction. Numerical simulations supporting the theoretical analysis are also included.

  13. Intact memory for irrelevant information impairs perception in amnesia

    NARCIS (Netherlands)

    Barense, M.D.; Groen, I.I.A.; Lee, A.C.H.; Yeung, L.K.; Brady, S.M.; Gregory, M.; Kapur, N.; Bussey, T.J.; Saksida, L.M.; Henson, R.N.A.

    2012-01-01

    Memory and perception have long been considered separate cognitive processes, and amnesia resulting from medial temporal lobe (MTL) damage is thought to reflect damage to a dedicated memory system. Recent work has questioned these views, suggesting that amnesia can result from impoverished

  14. The effect of hypnotic drug type on anesthetic depth and amnesia: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Amiri HR

    2009-06-01

    .001 in two groups were significant, respectively. No delay in recovery was observed."n"nConclusion: Although the Modified Ramsey Sedation Score and clinical sedation indices were the same, but BIS in patients varied in a wide range. Hypnotic drug was a main determinant of BIS score and amnesia.

  15. Transient Global Amnesia: A Case Report

    Directory of Open Access Journals (Sweden)

    Richard Alan Rison

    2012-08-01

    Full Text Available Introduction: Transient global amnesia is a syndrome of temporary and reversible disruption of short-term memory accompanied by repetitive questioning. Although the etiology is unknown, the prognosis usually benign, and no particular treatment is required, it is important for all involved clinicians to recognize the diagnosis and possess knowledge about the evaluation of these affected patients. Case Presentation: A middle-aged Caucasian woman presented for neurologic evaluation for acute forgetfulness. Neurologic examination disclosed repetitive questioning with preserved orientation and no focal motor, speech, sensory, coordination, or cranial nerve deficits. Neurologic investigations did not reveal any pathologic findings. Her memory improved and reverted to normal baseline over the course of a 24-hour hospital stay. Conclusion: Transient global amnesia is an interesting syndrome of reversible anterograde amnesia associated with repetitive questioning that occurs with an unclear etiology in middle-aged and elderly individuals. Due clinical diligence is required in the investigation of these patients. Treatment is generally not required, and the condition usually does not recur. Clinicians, including neurologists, internists, family practice physicians, and psychiatrists, need awareness of this condition.

  16. Transient global amnesia: neuropsychological dysfunction during attack and recovery in two "pure" cases.

    OpenAIRE

    Regard, M; Landis, T

    1984-01-01

    Two patients with transient global amnesia are reported. Comprehensive neuropsychological evaluation, during the amnesic episode, as well as follow-up examinations on memory were performed. The course of the amnesia was exemplified by two comparable memory tests in different modalities. Partial retrograde amnesia and complete anterograde amnesia were demonstrated during the transient episode. Objective recovery was found to be slower than subjectively experienced, but test performance was com...

  17. Stability and Hopf Bifurcation of Fractional-Order Complex-Valued Single Neuron Model with Time Delay

    Science.gov (United States)

    Wang, Zhen; Wang, Xiaohong; Li, Yuxia; Huang, Xia

    2017-12-01

    In this paper, the problems of stability and Hopf bifurcation in a class of fractional-order complex-valued single neuron model with time delay are addressed. With the help of the stability theory of fractional-order differential equations and Laplace transforms, several new sufficient conditions, which ensure the stability of the system are derived. Taking the time delay as the bifurcation parameter, Hopf bifurcation is investigated and the critical value of the time delay for the occurrence of Hopf bifurcation is determined. Finally, two representative numerical examples are given to show the effectiveness of the theoretical results.

  18. A case of persistent retrograde amnesia following a dissociative fugue: neuropsychological and neurofunctional underpinnings of loss of autobiographical memory and self-awareness.

    Science.gov (United States)

    Hennig-Fast, Kristina; Meister, Franziska; Frodl, Thomas; Beraldi, Anna; Padberg, Frank; Engel, Rolf R; Reiser, Maximilian; Möller, Hans-Jürgen; Meindl, Thomas

    2008-10-01

    Autobiographical memory relies on complex interactions between episodic memory contents, associated emotions and a sense of self-continuity over the course of one's life. This paper reports a study based upon the case of the patient NN who suffered from a complete loss of autobiographical memory and awareness of identity subsequent to a dissociative fugue. Neuropsychological, behavioral, and functional neuroimaging tests converged on the conclusion that NN suffered from a selective retrograde amnesia following an episode of dissociative fugue, during which he had lost explicit knowledge and vivid memory of his personal past. NN's loss of self-related memories was mirrored in neurobiological changes after the fugue whereas his semantic memory remained intact. Although NN still claimed to suffer from a stable loss of autobiographical, self-relevant memories 1 year after the fugue state, a proportionate improvement in underlying fronto-temporal neuronal networks was evident at this point in time. In spite of this improvement in neuronal activation, his anterograde visual memory had been decreased. It is posited that our data provide evidence for the important role of visual processing in autobiographical memory as well as for the efficiency of protective control mechanisms that constitute functional retrograde amnesia.

  19. Episodic memory, semantic memory, and amnesia.

    Science.gov (United States)

    Squire, L R; Zola, S M

    1998-01-01

    Episodic memory and semantic memory are two types of declarative memory. There have been two principal views about how this distinction might be reflected in the organization of memory functions in the brain. One view, that episodic memory and semantic memory are both dependent on the integrity of medial temporal lobe and midline diencephalic structures, predicts that amnesic patients with medial temporal lobe/diencephalic damage should be proportionately impaired in both episodic and semantic memory. An alternative view is that the capacity for semantic memory is spared, or partially spared, in amnesia relative to episodic memory ability. This article reviews two kinds of relevant data: 1) case studies where amnesia has occurred early in childhood, before much of an individual's semantic knowledge has been acquired, and 2) experimental studies with amnesic patients of fact and event learning, remembering and knowing, and remote memory. The data provide no compelling support for the view that episodic and semantic memory are affected differently in medial temporal lobe/diencephalic amnesia. However, episodic and semantic memory may be dissociable in those amnesic patients who additionally have severe frontal lobe damage.

  20. Digital amnesia and the future tourist

    Directory of Open Access Journals (Sweden)

    Chris Greenwood

    2017-04-01

    Full Text Available Purpose – The purpose of this paper is to examine the phenomenon of digital amnesia and its influence on the future tourist. Design/methodology/approach – A trend paper based on environmental scanning and speculative future analysis. Findings – The phenomena of digital amnesia are established. The growth of digital platforms and the consumer’s reliance is exponential. The implications for the future tourist in terms of decision making, the influence of marketing messaging and potentially the recall and reimagining of authentic experience will be significant in the future. Practical implications – Subject to the signals of change, should consumer’s reliance on digital platforms for the storing of information and memories continue to grow this has implications on how tourism businesses engage with their customers, influence and inform their marketing and how destinations would be reimagined based on the recall of their visitors. Originality/value – The trend of digital amnesia is an established and well-documented phenomenon. The development of the trend to consider the implications for the future tourism industry based a growing dependence on digital platforms is the focus of this paper.

  1. Galveston Orientation Amnesia Test (GOAT Galveston Orientation Amnesia Test (GOAT Galveston Orientation Amnesia Test (GOAT

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Fürbringer e Silva

    2009-12-01

    Full Text Available O trauma crânio-encefálico contuso (TCEC é freqüentemente seguido pela amnésia pós-traumática (APT, caracterizada como um estado transitório de confusão e desorientação. Sua duração tem sido utilizada para quantificar a gravidade do TCEC e prever distúrbios nas funções cognitivas, assim como para antever as alterações na capacidade funcional das vítimas pós-trauma. O Galveston Orientation Amnesia Test (GOAT é o primeiro instrumento sistematizado criado e o mais amplamente utilizado para avaliar a APT. Este artigo apresenta esse instrumento, as bases conceituais para seu desenvolvimento e a adaptação e validação do GOAT para cultura brasileira. Além disso, descreve sua aplicação e comenta as restrições do seu uso. Resultados de pesquisas realizadas em nosso meio contribuíram para as evidências sobre a validade do GOAT. Também apontaram os indicadores do momento pós-trauma em que o GOAT deve ser aplicado e destacaram as dificuldades no uso desse instrumento.El trauma cráneo-encefálico contuso (TCEC es frecuentemente seguido por la amnesia pos-traumática (APT, caracterizada como un estado transitorio de confusión y desorientación. Su duración ha sido utilizada para cuantificar la severidad del TCEC y prever alteraciones en las funciones cognitivas, tanto como para antever las dificultades en la capacidad funcional de las víctimas pos-trauma. El Galveston Orientation Amnésia Test (GOAT es la primera encuesta sistematizada que fue creada y el mas ampliamente utilizada para evaluar la APT. Esta publicación presenta esta encuesta, las bases conceptuales para su desarrollo y la adaptación y validación del GOAT para la cultura brasileña. Además, describe su aplicación y limitaciones en el uso. Resultados de pesquisas brasileñas contribuyeron para las evidencias sobre la validad del GOAT. También apuntaron los indicadores del momento pos-trauma en que el GOAT debe ser aplicado y destacaron las dificultades

  2. Inter-identity autobiographical amnesia in patients with dissociative identity disorder.

    Science.gov (United States)

    Huntjens, Rafaële J C; Verschuere, Bruno; McNally, Richard J

    2012-01-01

    A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive of dissociative amnesia. The aim of the current study was to objectively assess transfer of autobiographical information between identities in a larger sample of DID patients. Using a concealed information task, we assessed recognition of autobiographical details in an amnesic identity. Eleven DID patients, 27 normal controls, and 23 controls simulating DID participated. Controls and simulators were matched to patients on age, education level, and type of autobiographical memory tested. Although patients subjectively reported amnesia for the autobiographical details included in the task, the results indicated transfer of information between identities. The results call for a revision of the DID definition. The amnesia criterion should be modified to emphasize its subjective nature.

  3. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability

    Science.gov (United States)

    Speca, David J.; Ogata, Genki; Mandikian, Danielle; Bishop, Hannah I.; Wiler, Steve W.; Eum, Kenneth; Wenzel, H. Jürgen; Doisy, Emily T.; Matt, Lucas; Campi, Katharine L.; Golub, Mari S.; Nerbonne, Jeanne M.; Hell, Johannes W.; Trainor, Brian C.; Sack, Jon T.; Schwartzkroin, Philip A.; Trimmer, James S.

    2014-01-01

    The Kv2.1 delayed rectifier potassium channel exhibits high-level expression in both principal and inhibitory neurons throughout the central nervous system, including prominent expression in hippocampal neurons. Studies of in vitro preparations suggest that Kv2.1 is a key yet conditional regulator of intrinsic neuronal excitability, mediated by changes in Kv2.1 expression, localization and function via activity-dependent regulation of Kv2.1 phosphorylation. Here we identify neurological and behavioral deficits in mutant (Kv2.1−/−) mice lacking this channel. Kv2.1−/− mice have grossly normal characteristics. No impairment in vision or motor coordination was apparent, although Kv2.1−/− mice exhibit reduced body weight. The anatomic structure and expression of related Kv channels in the brains of Kv2.1−/− mice appears unchanged. Delayed rectifier potassium current is diminished in hippocampal neurons cultured from Kv2.1−/− animals. Field recordings from hippocampal slices of Kv2.1−/− mice reveal hyperexcitability in response to the convulsant bicuculline, and epileptiform activity in response to stimulation. In Kv2.1−/− mice, long-term potentiation at the Schaffer collateral – CA1 synapse is decreased. Kv2.1−/− mice are strikingly hyperactive, and exhibit defects in spatial learning, failing to improve performance in a Morris Water Maze task. Kv2.1−/− mice are hypersensitive to the effects of the convulsants flurothyl and pilocarpine, consistent with a role for Kv2.1 as a conditional suppressor of neuronal activity. Although not prone to spontaneous seizures, Kv2.1−/− mice exhibit accelerated seizure progression. Together, these findings suggest homeostatic suppression of elevated neuronal activity by Kv2.1 plays a central role in regulating neuronal network function. PMID:24494598

  4. Stability and Hopf Bifurcation of a Reaction-Diffusion Neutral Neuron System with Time Delay

    Science.gov (United States)

    Dong, Tao; Xia, Linmao

    2017-12-01

    In this paper, a type of reaction-diffusion neutral neuron system with time delay under homogeneous Neumann boundary conditions is considered. By constructing a basis of phase space based on the eigenvectors of the corresponding Laplace operator, the characteristic equation of this system is obtained. Then, by selecting time delay and self-feedback strength as the bifurcating parameters respectively, the dynamic behaviors including local stability and Hopf bifurcation near the zero equilibrium point are investigated when the time delay and self-feedback strength vary. Furthermore, the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are obtained by using the normal form and the center manifold theorem for the corresponding partial differential equation. Finally, two simulation examples are given to verify the theory.

  5. Variational calculation of the limit cycle and its frequency in a two-neuron model with delay

    International Nuclear Information System (INIS)

    Brandt, Sebastian F.; Wessel, Ralf; Pelster, Axel

    2006-01-01

    We consider a model system of two coupled Hopfield neurons, which is described by delay differential equations taking into account the finite signal propagation and processing times. When the delay exceeds a critical value, a limit cycle emerges via a supercritical Hopf bifurcation. First, we calculate its frequency and trajectory perturbatively by applying the Poincare-Lindstedt method. Then, the perturbation series are resummed by means of the Shohat expansion in good agreement with numerical values. However, with increasing delay, the accuracy of the results from the Shohat expansion worsens. We thus apply variational perturbation theory (VPT) to the perturbation expansions to obtain more accurate results, which moreover hold even in the limit of large delays

  6. Application of a polygraph detector in diagnosing symptom simulationof the biographical amnesia

    Directory of Open Access Journals (Sweden)

    Roman S. Ivanov

    2015-12-01

    Full Text Available The paper considers the first case of using polygraph («lie detector» in the history of Russia for diagnosing possible simulation of auto amnesia symptoms (biographical amnesia. In recent years, the number of cases of biographical amnesia have increased greatly. Today there are several scientific concepts to explain the amnesia of biographical information using a number of approaches. Some psychiatrists believe that the existence of specified disorder is false. The appeal of scientists to the method of psychophysiological research using the polygraph to diagnose possible simulation of auto amnesia is due to the fact that the object of such research is human memory, i.e. mental process of influenced by different types of amnesia. This paper describes basic provisions of carrying out technology research for diagnosing possible cases of simulating symptoms of biographical amnesia, highlighting the progress in detail, conditions and results of the performed experiment that showed that the functional status of the patient was unsuitable for using the polygraph. Therefore, to reach a conclusion about the simulation of the symptoms of the disease is not possible. The most probable causes of this result deal with the assumption about patient taking therapeutically potent drugs that produce a pronounced anti-anxiety effect. Reexamination after the expiration of pharmacological drug term is recommended. The paper is of practical interest to psychiatrists, experts in the field of medical and clinical psychology, polygraph practitioners.

  7. A review study on medicinal plants affecting amnesia through cholinergic system

    Directory of Open Access Journals (Sweden)

    Baradaran Azar

    2012-01-01

    Full Text Available Neurotransmitter modification is an important method for the treatment of memory loss or amnesia. Cholinomimetic drugs, particularly, acetylcholine esterase inhibitors are the mainstream in pharmacotherapy of amnesia. Donepezil, tacrine, galantamine, and rivastigmine are cholinesterase inhibitors which are widely used in the treatment of amnesia, however, their therapeutic effects are not significant. Therefore, other possibilities including herbal medicine sources have been considered for memory loss therapy. There are some Medicinal plants with cholinomimetic property which mostly possess antioxidant activity, too. These plants may not only ameliorate amnesia but also can be a good source for drug discovery. In this paper other than introducing the medicinal plants and their components affective on cholinergic system and effective on memory loss, their probable advantages over synthetic drugs are discussed.

  8. Storage or Retrieval Deficit: The Yin and Yang of Amnesia

    Science.gov (United States)

    Hardt, Oliver; Wang, Szu-Han; Nader, Karim

    2009-01-01

    To this day, it remains unresolved whether experimental amnesia reflects failed memory storage or the inability to retrieve otherwise intact memory. Methodological as well as conceptual reasons prevented deciding between these two alternatives: The absence of recovery from amnesia is typically taken as supporting storage impairment…

  9. Inter-Identity Autobiographical Amnesia in Patients with Dissociative Identity Disorder

    Science.gov (United States)

    Huntjens, Rafaële J. C.; Verschuere, Bruno; McNally, Richard J.

    2012-01-01

    Background A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive of dissociative amnesia. The aim of the current study was to objectively assess transfer of autobiographical information between identities in a larger sample of DID patients. Methods Using a concealed information task, we assessed recognition of autobiographical details in an amnesic identity. Eleven DID patients, 27 normal controls, and 23 controls simulating DID participated. Controls and simulators were matched to patients on age, education level, and type of autobiographical memory tested. Findings Although patients subjectively reported amnesia for the autobiographical details included in the task, the results indicated transfer of information between identities. Conclusion The results call for a revision of the DID definition. The amnesia criterion should be modified to emphasize its subjective nature. PMID:22815769

  10. Inter-identity autobiographical amnesia in patients with dissociative identity disorder.

    Directory of Open Access Journals (Sweden)

    Rafaële J C Huntjens

    Full Text Available BACKGROUND: A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive of dissociative amnesia. The aim of the current study was to objectively assess transfer of autobiographical information between identities in a larger sample of DID patients. METHODS: Using a concealed information task, we assessed recognition of autobiographical details in an amnesic identity. Eleven DID patients, 27 normal controls, and 23 controls simulating DID participated. Controls and simulators were matched to patients on age, education level, and type of autobiographical memory tested. FINDINGS: Although patients subjectively reported amnesia for the autobiographical details included in the task, the results indicated transfer of information between identities. CONCLUSION: The results call for a revision of the DID definition. The amnesia criterion should be modified to emphasize its subjective nature.

  11. Dynamics in a Delayed Neural Network Model of Two Neurons with Inertial Coupling

    Directory of Open Access Journals (Sweden)

    Changjin Xu

    2012-01-01

    Full Text Available A delayed neural network model of two neurons with inertial coupling is dealt with in this paper. The stability is investigated and Hopf bifurcation is demonstrated. Applying the normal form theory and the center manifold argument, we derive the explicit formulas for determining the properties of the bifurcating periodic solutions. An illustrative example is given to demonstrate the effectiveness of the obtained results.

  12. Archetypes of memory and amnesia in South African soap opera ...

    African Journals Online (AJOL)

    Archetypes of memory and amnesia in South African soap opera [English] This essay investigates the relationship between memory, or rather amnesia, in the South African context and soap opera. South Africa has only recently celebrated ten years of democracy and the past still affects the lives of its inhabitants.

  13. "Galveston Orientation and Amnesia Test": tradução e validação "Galveston Orientation and Amnesia Test": traducción y validación "Galveston Orientation and Amnesia Test": translation and validation

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Fürbringer e Silva

    2007-03-01

    Full Text Available OBJETIVO: Traduzir e validar o Galveston Orientation and Amnesia Test para uso em nosso meio. MÉTODOS: Esse teste foi traduzido para o português e retro-traduzido para o inglês por diferentes especialistas na língua e por fim, feita a avaliação da equivalência entre o instrumento original e a versão retro-traduzida. Sua aplicação em 73 vítimas de trauma crânio-encefálico contuso e a indicação da gravidade dessa lesão, estabelecida pela Escala de Coma de Glasgow, permitiram verificar as propriedades de medida do instrumento. RESULTADOS: A confiabilidade verificada pelo Alfa de Cronbach resultou em 0,76. Houve indicação de validade convergente e discriminante do instrumento quando os resultados de aplicação do Galveston Orientation and Amnésia Test foram analisados perante a gravidade do trauma crânio-encefálico. CONCLUSÃO: Os resultados observados dão suporte para a aplicação do Galveston Orientation and Amnesia Test em nosso meio como indicador do término da amnésia pós-traumática.OBJETIVO: Traducir y validar el Galveston Orientation and Amnesia Test para su uso en nuestro medio. MÉTODOS: El test fue traducido al portugués retrotraducido al inglés por diferentes especialistas en la lengua y por fin, realizada la evaluación de la equivalencia entre el instrumento original y la versión retrotraducida. Su aplicación en 73 víctimas de traumatismo encéfalo craneano con constusión y la indicación de la gravedad de esa lesión, establecida por la Escala de Coma de Glasgow, permitieron verificar las propiedades de medida del instrumento. RESULTADOS: La confiabilidad verificada por el Alfa de Cronbach fue de 0,76. Hubo indicación de validez convergente y discriminante del instrumento cuando los resultados de aplicación del Galveston Orientation and Amnésia Test fueron analizados frente a la gravedad del traumatismo encéfalo craneano. CONCLUSIÓN: Los resultados observados dan soporte para la aplicación del

  14. National Amnesia of Victims of Torture

    Directory of Open Access Journals (Sweden)

    Julia Estela Monárrez Fragoso

    2017-05-01

    Full Text Available To release from government’s amnesia the torture suffered by a significant proportion of women and men in Mexico, specifically, one segment of Ciudad Juarez’s population, requires an academic commitment. The time frame I analyzed are the years 2006-2015. I make a nexus between two Chicana/ Latina/Feminist theoreticians Nicole Guidotti- Hernández’s narratives of national amnesia; Lisa Marie Cacho’s people ineligible for personhood, and Achille Mbembes’s necropolitics; and Tzvetan Todorov’s governments’ four techniques to control memory. With this theoretical framework I try to comprehend why some women and men are converted into torturable subjects and their torturers remain unknown to the State.

  15. Effects of the network structure and coupling strength on the noise-induced response delay of a neuronal network

    International Nuclear Information System (INIS)

    Ozer, Mahmut; Uzuntarla, Muhammet

    2008-01-01

    The Hodgkin-Huxley (H-H) neuron model driven by stimuli just above threshold shows a noise-induced response delay with respect to time to the first spike for a certain range of noise strengths, an effect called 'noise delayed decay' (NDD). We study the response time of a network of coupled H-H neurons, and investigate how the NDD can be affected by the connection topology of the network and the coupling strength. We show that the NDD effect exists for weak and intermediate coupling strengths, whereas it disappears for strong coupling strength regardless of the connection topology. We also show that although the network structure has very little effect on the NDD for a weak coupling strength, the network structure plays a key role for an intermediate coupling strength by decreasing the NDD effect with the increasing number of random shortcuts, and thus provides an additional operating regime, that is absent in the regular network, in which the neurons may also exploit a spike time code

  16. Relaxation Cycles in a Generalized Neuron Model with Two Delays

    Directory of Open Access Journals (Sweden)

    S. D. Glyzin

    2013-01-01

    Full Text Available A method of modeling the phenomenon of bursting behavior in neural systems based on delay equations is proposed. A singularly perturbed scalar nonlinear differentialdifference equation of Volterra type is a mathematical model of a neuron and a separate pulse containing one function without delay and two functions with different lags. It is established that this equation, for a suitable choice of parameters, has a stable periodic motion with any preassigned number of bursts in the time interval of the period length. To prove this assertion we first go to a relay-type equation and then determine the asymptotic solutions of a singularly perturbed equation. On the basis of this asymptotics the Poincare operator is constructed. The resulting operator carries a closed bounded convex set of initial conditions into itself, which suggests that it has at least one fixed point. The Frechet derivative evaluation of the succession operator, made in the paper, allows us to prove the uniqueness and stability of the resulting relax of the periodic solution.

  17. Amnesia, rehearsal, and temporal distinctiveness models of recall.

    Science.gov (United States)

    Brown, Gordon D A; Della Sala, Sergio; Foster, Jonathan K; Vousden, Janet I

    2007-04-01

    Classical amnesia involves selective memory impairment for temporally distant items in free recall (impaired primacy) together with relative preservation of memory for recency items. This abnormal serial position curve is traditionally taken as evidence for a distinction between different memory processes, with amnesia being associated with selectively impaired long-term memory. However recent accounts of normal serial position curves have emphasized the importance of rehearsal processes in giving rise to primacy effects and have suggested that a single temporal distinctiveness mechanism can account for both primacy and recency effects when rehearsal is considered. Here we explore the pattern of strategic rehearsal in a patient with very severe amnesia. When the patient's rehearsal pattern is taken into account, a temporal distinctiveness model can account for the serial position curve in both amnesic and control free recall. The results are taken as consistent with temporal distinctiveness models of free recall, and they motivate an emphasis on rehearsal patterns in understanding amnesic deficits in free recall.

  18. Anti-Epileptic Drugs Delay Age-Related Loss of Spiral Ganglion Neurons via T-type Calcium Channel

    Science.gov (United States)

    Lei, Debin; Gao, Xia; Perez, Philip; Ohlemiller, Kevin K; Chen, Chien-Chang; Campbell, Kevin P.; Hood, Aizhen Yang; Bao, Jianxin

    2011-01-01

    Loss of spiral ganglion neurons is a major cause of age-related hearing loss (presbycusis). Despite being the third most prevalent condition afflicting elderly persons, there are no known medications to prevent presbycusis. Because calcium signaling has long been implicated in age-related neuronal death, we investigated T-type calcium channels. This family is comprised of three members (Cav3.1, Cav3.2, and Cav3.3), based on their respective main pore-forming alpha subunits: α1G, α1H, and α1I. In the present study, we report a significant delay of age-related loss of cochlear function and preservation of spiral ganglion neurons in α1H null and heterozygous mice, clearly demonstrating an important role for Cav3.2 in age-related neuronal loss. Furthermore, we show that anticonvulsant drugs from a family of T-type calcium channel blockers can significantly preserve spiral ganglion neurons during aging. To our knowledge, this is the first report of drugs capable of diminishing age-related loss of spiral ganglion neurons. PMID:21640179

  19. Reward acts as a signal to control delay-period activity in delayed-response tasks.

    Science.gov (United States)

    Ichihara-Takeda, Satoe; Takeda, Kazuyoshi; Funahashi, Shintaro

    2010-03-31

    Prefrontal delay-period activity represents a neural mechanism for the active maintenance of information and needs to be controlled by some signal to appropriately operate working memory. To examine whether reward-delivery acts as this signal, the effects of delay-period activity in response to unexpected reward-delivery were examined by analyzing single-neuron activity recorded in the primate dorsolateral prefrontal cortex. Among neurons that showed delay-period activity, 34% showed inhibition of this activity in response to unexpected reward-delivery. The delay-period activity of these neurons was affected by the expectation of reward-delivery. The strength of the reward signal in controlling the delay-period activity is related to the strength of the effect of reward information on the delay-period activity. These results indicate that reward-delivery acts as a signal to control delay-period activity.

  20. Retrograde amnesia after electroconvulsive therapy: a temporary effect?

    Science.gov (United States)

    Meeter, Martijn; Murre, Jaap M J; Janssen, Steve M J; Birkenhager, Tom; van den Broek, W W

    2011-07-01

    Although electroconvulsive therapy (ECT) is generally considered effective against depression, it remains controversial because of its association with retrograde memory loss. Here, we assessed memory after ECT in circumstances most likely to yield strong retrograde amnesia. A cohort of patients undergoing ECT for major depression was tested before and after ECT, and again at 3-months follow-up. Included were 21 patients scheduled to undergo bilateral ECT for severe major depression and 135 controls matched for gender, age, education, and media consumption. Two memory tests were used: a verbal learning test to assess anterograde memory function, and a remote memory test that assessed memory for news during the course of one year. Before ECT the patients' scores were lower than those of controls. They were lower again after treatment, suggesting retrograde amnesia. At follow-up, however, memory for events before treatment had returned to the pre-ECT level. Memory for events in the months after treatment was as good as that of controls. The sample size in this study was not large. Moreover, memory impairment did not correlate with level of depression, which may be due to restriction of range. Our results are consistent with the possibility that ECT as currently practiced does not cause significant lasting retrograde amnesia, but that amnesia is mostly temporary and related to the period of impairment immediately following ECT. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Autobiographical Memory for Emotional Events in Amnesia

    Directory of Open Access Journals (Sweden)

    Irene Daum

    1996-01-01

    Full Text Available This study investigated autobiographical memory for emotionally flavoured experiences in amnesia. Ten amnesic patients and 10 matched control subjects completed the Autobiographical Memory Interview and three semi-structured interviews which assessed memory for personal events associated with pain, happiness and fear. Despite retrograde amnesia for autobiographical facts and incidents, amnesics remembered a similar number of emotionally significant personal experiences as control subjects. Their recollections generally lacked elaboration and detail, but pain-related memories appeared to be more mildly impaired than memories associated with happiness and fear. The findings are discussed in relation to recent views on the relationship between affect and memory.

  2. Sensitivity and specificity of the 3-item memory test in the assessment of post traumatic amnesia.

    Science.gov (United States)

    Andriessen, Teuntje M J C; de Jong, Ben; Jacobs, Bram; van der Werf, Sieberen P; Vos, Pieter E

    2009-04-01

    To investigate how the type of stimulus (pictures or words) and the method of reproduction (free recall or recognition after a short or a long delay) affect the sensitivity and specificity of a 3-item memory test in the assessment of post traumatic amnesia (PTA). Daily testing was performed in 64 consecutively admitted traumatic brain injured patients, 22 orthopedically injured patients and 26 healthy controls until criteria for resolution of PTA were reached. Subjects were randomly assigned to a test with visual or verbal stimuli. Short delay reproduction was tested after an interval of 3-5 minutes, long delay reproduction was tested after 24 hours. Sensitivity and specificity were calculated over the first 4 test days. The 3-word test showed higher sensitivity than the 3-picture test, while specificity of the two tests was equally high. Free recall was a more effortful task than recognition for both patients and controls. In patients, a longer delay between registration and recall resulted in a significant decrease in the number of items reproduced. Presence of PTA is best assessed with a memory test that incorporates the free recall of words after a long delay.

  3. Mere exposure effect can be elicited in transient global amnesia.

    Science.gov (United States)

    Marin-Garcia, Eugenia; Ruiz-Vargas, Jose M; Kapur, Narinder

    2013-01-01

    Transient global amnesia (TGA) is one of the most severe forms of anterograde amnesia seen in clinical practice, yet patients may show evidence of spared learning during the amnesic episode. The scope of spared learning in such a severe form of amnesia remains uncertain, and it is also unclear whether findings from single-case studies hold up in group studies of TGA patients. In this group study, we found evidence that extended the domain of spared learning in TGA to include the mere exposure effect, whereby enhanced preference is primed by prior exposure to stimuli. We demonstrate this effect during an acute episode in a group of TGA patients, where they showed enhanced preference for previously exposed faces, despite markedly impaired performance on standard anterograde memory tests.

  4. Transient Global Amnesia Associated With a Unilateral Infarction of the Fornix: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Mihir eGupta

    2015-01-01

    Full Text Available Stroke is an extremely uncommon cause of transient global amnesia. Unilateral lesions of the fornix rarely cause amnesia and have not previously been reported to be associated with the distinctive amnesic picture of transient global amnesia. We describe the case of a 60-year-old woman who presented with acute onset, recent retrograde and anterograde amnesia characteristic of transient global amnesia. Serial magnetic resonance imaging showed a persistent focal infarction of the body and left column of the fornix, without acute lesions in the hippocampus or other structures. Amnesia resolved in 6 hours. Infarction of the fornix should thus be included in the differential diagnosis of transient global amnesia, as it changes the management of this otherwise self-limited syndrome.

  5. Inter-identity autobiographical amnesia in patients with dissociative identity disorder

    OpenAIRE

    Huntjens, Rafaele JC; Verschuere, Bruno; McNally, Richard J

    2012-01-01

    Background: A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive of dissociative amnesia. The aim of the current study was to objectively assess transfer of autobiographical information between identities in a larger sample of DID patients. Methods: Using a c...

  6. Transient global amnesia after cerebral angiography still occurs: Case report and literature review

    DEFF Research Database (Denmark)

    Foss-Skiftesvik, Jon; Snoer, Agneta Henriette; Wagner, Aase

    2014-01-01

    Transient global amnesia is considered a very rare complication of diagnostic cerebral angiography, and has only been reported in a limited number of case reports more than 15 years ago. We describe a patient experiencing transient global amnesia following cerebral digital subtraction angiography....... While the condition by definition is self-limiting, its differential diagnoses may cause severe morbidity and/or mortality if left untreated. It is therefore important to build and maintain awareness of transient global amnesia as a possible complication of cerebral angiography....

  7. Socio-historical amnesia in Ukraine: to statement of the problem

    Directory of Open Access Journals (Sweden)

    A. A. Arkhipova

    2016-12-01

    Full Text Available The article is dedicated to the problem of social memory and social amnesia, represented in socio-cultural phenomena of the Ukrainian society. The specificity of social memory’s functioning has been studied with the use of a systematic approach. Social amnesia is presented in the form of operations, which are included into the integral system network of the reproduction of social oblivion. On the basis of specific examples, theoretical and sociological analysis of the structural and organizational complex of memorial subjects and objects, which are the components of such social institutions: religion, education, government, family, has been conducted. Within the frame of socio-system analysis, the value of social memory defects in the structure of social reality has been determined. The mechanism of the socio-historical amnesia’s construction has been schematically set out as well as the resulting from it tendency to mythologizing/hallucination has been described. The social amnesia is the social script and the characteristic, which forms mentality. The influence of social and historical amnesia in the process of perception of social time has been estimated, a schematic representation of the model of time distortion has been represented. The non-actualization of the experience in this model determines the formation of the imaginable social reality.

  8. Neuromodulatory effects of the dorsal hippocampal endocannabinoid system in dextromethorphan/morphine-induced amnesia.

    Science.gov (United States)

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2017-01-05

    Dextromethorphan which is an active ingredient in many cough medicines has been previously shown to potentiate amnesic effect of morphine in rats. However, the effect of dextromethorphan, that is also a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, in combination with morphine on hippocampus-based long term memory has not been well characterized. The aim of the present study was to assess the possible role of endocannabinoid system of the dorsal hippocampus in dextromethorphan /morphine-induced amnesia. Our results showed that intraperitoneal (i.p.) injection of morphine (5mg/kg) or dextromethorphan (5-15mg/kg) before testing the passive avoidance learning induced amnesia. Combination of ineffective doses of dextromethorphan (7.5mg/kg, i.p.) and morphine (2mg/kg, i.p.) also produced amnesia, suggesting the enhancing effects of the drugs. To assess the effect of the activation or inhibition of the dorsal hippocampal cannabinoid CB 1 receptors on this amnesia, ACPA or AM251 as selective receptor agonists or antagonists were respectively injected into the CA1 regions before systemic injection of dextromethorphan and morphine. Interestingly, intra-CA1 microinjection of ACPA (0.5-1ng/rat) improved the amnesic effect of dextromethorphan /morphine combination. The microinjection of AM251 into the CA1 region enhanced the response of the combination of dextromethorphan /morphine in inducing amnesia. Moreover, Intra-CA1 microinjection of AM251 inhibited the improving effect of ACPA on dextromethorphan /morphine-induced amnesia. It is important to note that intra-CA1 microinjection of the same doses of the agonist or antagonist by itself had no effects on memory formation. Thus, it can be concluded that the dorsal hippocampal endocannabinoid system, via CB 1 receptor-dependent mechanism, may be involved in morphine/dextromethorphan -induced amnesia. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Default network connectivity in medial temporal lobe amnesia.

    Science.gov (United States)

    Hayes, Scott M; Salat, David H; Verfaellie, Mieke

    2012-10-17

    There is substantial overlap between the brain regions supporting episodic memory and the default network. However, in humans, the impact of bilateral medial temporal lobe (MTL) damage on a large-scale neural network such as the default mode network is unknown. To examine this issue, resting fMRI was performed with amnesic patients and control participants. Seed-based functional connectivity analyses revealed robust default network connectivity in amnesia in cortical default network regions such as medial prefrontal cortex, posterior medial cortex, and lateral parietal cortex, as well as evidence of connectivity to residual MTL tissue. Relative to control participants, decreased posterior cingulate cortex connectivity to MTL and increased connectivity to cortical default network regions including lateral parietal and medial prefrontal cortex were observed in amnesic patients. In contrast, somatomotor network connectivity was intact in amnesic patients, indicating that bilateral MTL lesions may selectively impact the default network. Changes in default network connectivity in amnesia were largely restricted to the MTL subsystem, providing preliminary support from MTL amnesic patients that the default network can be fractionated into functionally and structurally distinct components. To our knowledge, this is the first examination of the default network in amnesia.

  10. NMDA or 5-HT receptor antagonists impair memory reconsolidation and induce various types of amnesia.

    Science.gov (United States)

    Nikitin, V P; Solntseva, S V; Kozyrev, S A; Nikitin, P V; Shevelkin, A V

    2018-06-01

    Elucidation of amnesia mechanisms is one of the central problems in neuroscience with immense practical application. Previously, we found that conditioned food presentation combined with injection of a neurotransmitter receptor antagonist or protein synthesis inhibitor led to amnesia induction. In the present study, we investigated the time course and features of two amnesias: induced by impairment of memory reconsolidation using an NMDA glutamate receptor antagonist (MK-801) and a serotonin receptor antagonist (methiothepin, MET) on snails trained with food aversion conditioning. During the early period of amnesia (types of amnesia. Retraining an on 1st or 3rd day of amnesia induction facilitated memory formation, i.e. the number of CS + US pairings was lower than at initial training. On the 10th or 30th day after the MET/reminder, the number of CS + US pairings did not change between initial training and retraining. Retraining on the 10th or 30th day following the MK-801/reminder in the same or a new context of learning resulted in short, but not long-term, memory, and the number of CS + US pairings was higher than at the initial training. This type of amnesia was specific to the CS we used at initial training, since long-term memory for another kind of CS could be formed in the same snails. The attained results suggest that disruption of memory reconsolidation using antagonists of serotonin or NMDA glutamate receptors induced amnesias with different abilities to form long-term memory during the late period of development. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Functional MR imaging of psychogenic amnesia: a case report

    International Nuclear Information System (INIS)

    Yang, Jong Chul; Jeong, Gwang Woo; Lee, Moo Suk; Kang, Heoung Keun; Eun, Sung Jong; Lee, Yo Han; Kim, Yong Ku

    2005-01-01

    We present here a case in which functional MR imaging (fMRI) was done for a patient who developed retrograde psychogenic amnesia for a four year period of her life history after a severe stressful event. We performed the fMRI study for a face recognition task using stimulation with three kinds of face photographs: recognizable familiar faces, unrecognizable friends' faces due to the psychogenic amnesia, and unfamiliar control faces. Different activation patterns between the recognizable faces and unrecognizable faces were found in the limbic area, and especially in the amygdala and hippocampus

  12. Functional MR imaging of psychogenic amnesia: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jong Chul; Jeong, Gwang Woo; Lee, Moo Suk; Kang, Heoung Keun; Eun, Sung Jong; Lee, Yo Han [Chonnam National Univeristy Hospital, Chonnam National University Medical School, Kwangju (Korea, Republic of); Kim, Yong Ku [Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2005-09-15

    We present here a case in which functional MR imaging (fMRI) was done for a patient who developed retrograde psychogenic amnesia for a four year period of her life history after a severe stressful event. We performed the fMRI study for a face recognition task using stimulation with three kinds of face photographs: recognizable familiar faces, unrecognizable friends' faces due to the psychogenic amnesia, and unfamiliar control faces. Different activation patterns between the recognizable faces and unrecognizable faces were found in the limbic area, and especially in the amygdala and hippocampus.

  13. Global existence of periodic solutions in a simplified four-neuron BAM neural network model with multiple delays

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We consider a simplified bidirectional associated memory (BAM neural network model with four neurons and multiple time delays. The global existence of periodic solutions bifurcating from Hopf bifurcations is investigated by applying the global Hopf bifurcation theorem due to Wu and Bendixson's criterion for high-dimensional ordinary differential equations due to Li and Muldowney. It is shown that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of the sum of two delays. Numerical simulations supporting the theoretical analysis are also included.

  14. Child Sexual Abuse Survivors with Dissociative Amnesia: What's the Difference?

    Science.gov (United States)

    Wolf, Molly R.; Nochajski, Thomas H.

    2013-01-01

    Although the issue of dissociative amnesia in adult survivors of child sexual abuse has been contentious, many research studies have shown that there is a subset of child sexual abuse survivors who have forgotten their abuse and later remembered it. Child sexual abuse survivors with dissociative amnesia histories have different formative and…

  15. FLAIR images of mild head trauma with transient amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Wakamoto, Hirooki; Miyazaki, Hiromichi; Inaba, Makoto; Ishiyama, Naomi [Hiratsuka City Hospital, Kanagawa (Japan); Kawase, Takeshi

    1998-11-01

    A newly advanced MRI pulse sequence, the FLAIR (fluid-attenuated inversion recovery) imaging, in which a long TE spin echo sequence is used with suppression of the CSF with an inversion pulse, displays the CSF space as a no signal intensity area. We examined 45 cases of mild head trauma with posttraumatic amnesia by FLAIR images and could detect some findings which could not be detected by CT scan and conventional MR images. These findings could be detected in many patients with long posttraumatic amnesia (over 2 hours), but they could not be detected in patients with short posttraumatic amnesia (within 30 mins). These findings existed surrounding lateral ventricles and we classified them into 3 types: type 1 is anterior horn of lateral ventricle, type 2 is the base of frontal lobe, and type 3 is cerebral deep white matter. Some of them were examined again by FLAIR images a month later, and these findings had disappeared. We suspect that these lesions were brain edema or mild contusion without hemorrhage. (author)

  16. FLAIR images of mild head trauma with transient amnesia

    International Nuclear Information System (INIS)

    Wakamoto, Hirooki; Miyazaki, Hiromichi; Inaba, Makoto; Ishiyama, Naomi; Kawase, Takeshi

    1998-01-01

    A newly advanced MRI pulse sequence, the FLAIR (fluid-attenuated inversion recovery) imaging, in which a long TE spin echo sequence is used with suppression of the CSF with an inversion pulse, displays the CSF space as a no signal intensity area. We examined 45 cases of mild head trauma with posttraumatic amnesia by FLAIR images and could detect some findings which could not be detected by CT scan and conventional MR images. These findings could be detected in many patients with long posttraumatic amnesia (over 2 hours), but they could not be detected in patients with short posttraumatic amnesia (within 30 mins). These findings existed surrounding lateral ventricles and we classified them into 3 types: type 1 is anterior horn of lateral ventricle, type 2 is the base of frontal lobe, and type 3 is cerebral deep white matter. Some of them were examined again by FLAIR images a month later, and these findings had disappeared. We suspect that these lesions were brain edema or mild contusion without hemorrhage. (author)

  17. Ontogeny of memory: An update on 40 years of work on infantile amnesia.

    Science.gov (United States)

    Madsen, Heather Bronwyn; Kim, Jee Hyun

    2016-02-01

    Given the profound influence that early life experiences can have upon psychosocial functioning later in life, it is intriguing that most adults fail to recall autobiographical events from their early childhood years. Infantile amnesia is the term used to describe this phenomenon of accelerated forgetting during infancy, and it is not unique to humans. Over the years, information garnered from animal studies has provided clues as to the neurobiological basis of infantile amnesia. The purpose of this review is to provide a neurobiological update on what we now know about infantile amnesia since the publication of Campbell and Spear's seminal review on the topic more than 40 years ago. We present evidence that infantile amnesia is unlikely to be explained by a unitary theory, with the protracted development of multiple brain regions and neurotransmitter systems important for learning and memory likely to be involved. The recent discovery that exposure to early life stress can alleviate infantile amnesia offers a potential explanation as to how early adversity can so profoundly affect mental health in adulthood, and understanding the neurobiological basis for this early transition may lead to the development of effective therapeutic interventions. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Transient Global Amnesia with Reversible White Matter Lesions: A Variant of Posterior Reversible Encephalopathy Syndrome?

    Directory of Open Access Journals (Sweden)

    Tomoki Nakamizo

    2015-01-01

    Full Text Available Transient global amnesia (TGA is a self-limited disease characterized by isolated amnesia, which resolves within 24 h. In contrast, posterior reversible encephalopathy syndrome (PRES is a potentially life-threatening disease that usually presents with seizures, altered mental status, headache, and visual disturbances. It is characterized by reversible vasogenic edema that predominantly involves the parieto-occipital subcortical white matter as shown by neuroimaging studies. To date, there have been no reported cases of PRES with a clinical course resembling TGA. Here we report the case of a 58-year-old woman who presented with isolated amnesia and headache. On admission, her blood pressure was 187/100 mmHg. She had complete anterograde amnesia and slight retrograde amnesia without other neurological findings. After the treatment of her hypertension, the amnesia resolved within 24 h. Although the initial magnetic resonance image (MRI was almost normal, the fluid attenuation inversion recovery (FLAIR images of the MRI on the next day revealed several small foci of high intensity areas in the fronto-parieto-occipital subcortical white matter, presumed to be vasogenic edema in PRES. The lesions disappeared one month later. This case suggests that PRES can mimic the clinical course of TGA. PRES should be considered in the differential diagnosis for TGA.

  19. Effects of time delays on stability and Hopf bifurcation in a fractional ring-structured network with arbitrary neurons

    Science.gov (United States)

    Huang, Chengdai; Cao, Jinde; Xiao, Min; Alsaedi, Ahmed; Hayat, Tasawar

    2018-04-01

    This paper is comprehensively concerned with the dynamics of a class of high-dimension fractional ring-structured neural networks with multiple time delays. Based on the associated characteristic equation, the sum of time delays is regarded as the bifurcation parameter, and some explicit conditions for describing delay-dependent stability and emergence of Hopf bifurcation of such networks are derived. It reveals that the stability and bifurcation heavily relies on the sum of time delays for the proposed networks, and the stability performance of such networks can be markedly improved by selecting carefully the sum of time delays. Moreover, it is further displayed that both the order and the number of neurons can extremely influence the stability and bifurcation of such networks. The obtained criteria enormously generalize and improve the existing work. Finally, numerical examples are presented to verify the efficiency of the theoretical results.

  20. Galveston Orientation and Amnesia Test: applicability and relation with the Glasgow Coma Scale Galveston Orientation and Amnesia Test: aplicabilidad y relación con la Escala de Coma de Glasgow Galveston Orientation and Amnesia Test: aplicabilidade e relação com a Escala de Coma de Glasgow

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Fürbringer e Silva

    2007-08-01

    Full Text Available Restrictions in the application of the Galveston Orientation and Amnesia Test and questionings about the relationship between conscience and post-traumatic amnesia motivated this study, which aims to identify, through the Glasgow Coma Scale scores, when to initiate the application of this amnesia test, as well to verify the relationship between the results of these two indicators. The longitudinal prospective study was carried at a referral center for trauma care in São Paulo - Brazil. The sample consisted of 73 victims of blunt traumatic brain injury, admitted at this institution between January 03rd and May 03rd 2001. Regarding the applicability, the test could be applied in patients with a Glasgow Coma Scale score > 12; however, the end of post traumatic amnesia was verified in patients who scored > 14 on the scale. A significant relationship (r s = 0.65 was verified between these measures, although different kinds of relationship between the end of the amnesia and changes in consciousness were observed.Restricciones en la aplicación del Galveston Orientation and Amnesia Test y los cuestionamientos sobre la relación entre conciencia y amnesia post-traumática motivaron este estudio que visa identificar, a través de la puntuación de la Escala de Coma de Glasgow, el periodo más adecuado para la aplicación de la prueba de amnesia, y observar la relación entre los resultados de esos dos indicadores. El estudio prospectivo y longitudinal fue realizado en un centro de referencia para traumas en São Paulo - Brasil. El número fue de 73 victimas de trauma craneoencefálico contuso, internadas en esta institución en el periodo de 03/01 a 03/05/2001. Con relación a la aplicabilidad, la prueba puede ser aplicada en los pacientes con la Escala de Coma de Glasgow > 12, pero el término de la amnesia post-traumática fue observado en los pacientes con puntuación > 14 en la escala. Correlación significativa (rs = 0,65 fue observada entre esas

  1. A Cross-Correlated Delay Shift Supervised Learning Method for Spiking Neurons with Application to Interictal Spike Detection in Epilepsy.

    Science.gov (United States)

    Guo, Lilin; Wang, Zhenzhong; Cabrerizo, Mercedes; Adjouadi, Malek

    2017-05-01

    This study introduces a novel learning algorithm for spiking neurons, called CCDS, which is able to learn and reproduce arbitrary spike patterns in a supervised fashion allowing the processing of spatiotemporal information encoded in the precise timing of spikes. Unlike the Remote Supervised Method (ReSuMe), synapse delays and axonal delays in CCDS are variants which are modulated together with weights during learning. The CCDS rule is both biologically plausible and computationally efficient. The properties of this learning rule are investigated extensively through experimental evaluations in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification performance. Results presented show that the CCDS learning method achieves learning accuracy and learning speed comparable with ReSuMe, but improves classification accuracy when compared to both the Spike Pattern Association Neuron (SPAN) learning rule and the Tempotron learning rule. The merit of CCDS rule is further validated on a practical example involving the automated detection of interictal spikes in EEG records of patients with epilepsy. Results again show that with proper encoding, the CCDS rule achieves good recognition performance.

  2. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels.

    Science.gov (United States)

    Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi

    2013-04-01

    Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.

  3. Cholinergic dysfunction and amnesia in patients with Wernicke-Korsakoff syndrome: a transcranial magnetic stimulation study.

    Science.gov (United States)

    Nardone, Raffaele; Bergmann, Jürgen; De Blasi, Pierpaolo; Kronbichler, Martin; Kraus, Jörg; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Golaszewski, Stefan

    2010-03-01

    The specific neurochemical substrate underlying the amnesia in patients with Wernicke-Korsakoff syndrome (WKS) is still poorly defined. Memory impairment has been linked to dysfunction of neurons in the cholinergic system. A transcranial magnetic stimulation (TMS) protocol, the short latency afferent inhibition (SAI), may give direct information about the function of some cholinergic pathways in the human motor cortex. In the present study, we measured SAI in eight alcoholics with WKS and compared the data with those from a group of age-matched healthy individuals; furthermore, we correlated the individual SAI values of the WKS patients with memory and other cognitive functions. Mean SAI was significantly reduced in WKS patients when compared with the controls. SAI was increased after administration of a single dose of donezepil in a subgroup of four patients. The low score obtained in the Rey Complex Figure delayed recall test, the Digit Span subtest of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) and the Corsi's Block Span subtest of the WAIS-R documented a severe impairment in the anterograde memory and short-term memory. None of the correlations between SAI values and these neuropsychological tests reached significance. We provide physiological evidence of cholinergic involvement in WKS. However, this putative marker of central cholinergic activity did not significantly correlate with the memory deficit in our patients. These findings suggest that the cholinergic dysfunction does not account for the memory disorder and that damage to the cholinergic system is not sufficient to cause a persisting amnesic syndrome in WKS.

  4. Profound loss of general knowledge in retrograde amnesia: Evidence from an amnesic artist

    Directory of Open Access Journals (Sweden)

    Emma eGregory

    2014-05-01

    Full Text Available Studies of retrograde amnesia have focused on autobiographical memory, with fewer studies examining how non-autobiographical memory is affected. Those that have done so have focused primarily on memory for famous people and public events—relatively limited aspects of memory that are tied to learning during specific times of life and do not deeply tap into the rich and extensive knowledge structures that are developed over a lifetime. To assess whether retrograde amnesia can also cause impairments to other forms of general world knowledge, we explored losses across a broad range of knowledge domains in a newly-identified amnesic. LSJ is a professional artist, amateur musician and history buff with extensive bilateral medial temporal and left anterior temporal damage. We examined LSJ's knowledge across a range of everyday domains (e.g., sports and domains for which she had premorbid expertise (e.g., famous paintings. Across all domains tested, LSJ showed losses of knowledge at a level of breadth and depth never before documented in retrograde amnesia. These results show that retrograde amnesia can involve broad and deep deficits across a range of general world knowledge domains. Thus, losses that have already been well-documented (famous people and public events may severely underestimate the nature of human knowledge impairment that can occur in retrograde amnesia.

  5. Towards solving the riddle of forgetting in functional amnesia: recent advances and current opinions.

    Science.gov (United States)

    Staniloiu, Angelica; Markowitsch, Hans J

    2012-01-01

    Remembering the past is a core feature of human beings, enabling them to maintain a sense of wholeness and identity and preparing them for the demands of the future. Forgetting operates in a dynamic neural connection with remembering, allowing the elimination of unnecessary or irrelevant information overload and decreasing interference. Stress and traumatic experiences could affect this connection, resulting in memory disturbances, such as functional amnesia. An overview of clinical, epidemiological, neuropsychological, and neurobiological aspects of functional amnesia is presented, by preponderantly resorting to own data from patients with functional amnesia. Patients were investigated medically, neuropsychologically, and neuroradiologically. A detailed report of a new case is included to illustrate the challenges posed by making an accurate differential diagnosis of functional amnesia, a condition that may encroach on the boundaries between psychiatry and neurology. Several mechanisms may play a role in "forgetting" in functional amnesia, such as retrieval impairments, consolidating defects, motivated forgetting, deficits in binding and reassembling details of the past, deficits in establishing a first person autonoetic connection with personal events, and loss of information. In a substantial number of patients, we observed a synchronization abnormality between a frontal lobe system, important for autonoetic consciousness, and a temporo-amygdalar system, important for evaluation and emotions, which provides empirical support for an underlying mechanism of dissociation (a failure of integration between cognition and emotion). This observation suggests a mnestic blockade in functional amnesia that is triggered by psychological or environmental stress and is underpinned by a stress hormone mediated synchronization abnormality during retrieval between processing of affect-laden events and fact-processing.

  6. Irrelevant, Incidental and Core Features in the Retrograde Amnesia Associated with Korsakoff’s Psychosis: A Review

    Directory of Open Access Journals (Sweden)

    P. R. Meudell

    1992-01-01

    Full Text Available A brief review of the literature on retrograde amnesia in Korsakoff's syndrome is presented. Various explanations of the phenomenon are discussed including the notions that it results from the effects of “state-dependency”, that it occurs as a result of a progressive learning problem and that it arises through a failure in contextual processing. None of these hypotheses can satisfactorily account for the length and temporal gradient of alcoholic amnesics retrograde amnesia. Although some evidence points towards the hypothesis that anterograde and retrograde amnesia might result from separate and independent impairments, this view is presently unproven and leaves open what causes the form and duration of Korsakoffs retrograde amnesia.

  7. Effects of dynamic synapses on noise-delayed response latency of a single neuron

    Science.gov (United States)

    Uzuntarla, M.; Ozer, M.; Ileri, U.; Calim, A.; Torres, J. J.

    2015-12-01

    The noise-delayed decay (NDD) phenomenon emerges when the first-spike latency of a periodically forced stochastic neuron exhibits a maximum for a particular range of noise intensity. Here, we investigate the latency response dynamics of a single Hodgkin-Huxley neuron that is subject to both a suprathreshold periodic stimulus and a background activity arriving through dynamic synapses. We study the first-spike latency response as a function of the presynaptic firing rate f . This constitutes a more realistic scenario than previous works, since f provides a suitable biophysically realistic parameter to control the level of activity in actual neural systems. We first report on the emergence of classical NDD behavior as a function of f for the limit of static synapses. Second, we show that when short-term depression and facilitation mechanisms are included at the synapses, different NDD features can be found due to their modulatory effect on synaptic current fluctuations. For example, an intriguing double NDD (DNDD) behavior occurs for different sets of relevant synaptic parameters. Moreover, depending on the balance between synaptic depression and synaptic facilitation, single NDD or DNDD can prevail, in such a way that synaptic facilitation favors the emergence of DNDD whereas synaptic depression favors the existence of single NDD. Here we report the existence of the DNDD effect in the response latency dynamics of a neuron.

  8. Anterograde amnesia during electroconvulsive therapy: A prospective pilot-study in patients with major depressive disorder

    NARCIS (Netherlands)

    I.A. Boere (Ingrid); A.M. Kamperman (Astrid); Van't Hoog, A.E. (Arianne E.); W.W. van den Broek (Walter); T.K. Birkenhäger (Tom)

    2016-01-01

    textabstractElectroconvulsive therapy (ECT) is considered an effective treatment for major depression with melancholic features. However, neurocognitive side-effects such as anterograde amnesia still regularly occur. The present study aims to evaluate the severity and course of anterograde amnesia

  9. Amnesia due to bilateral hippocampal glioblastoma

    International Nuclear Information System (INIS)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K.

    1989-01-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.)

  10. Towards Solving the Riddle of Forgetting in Functional Amnesia: Recent Advances and Current Opinions

    Directory of Open Access Journals (Sweden)

    Angelica eStaniloiu

    2012-11-01

    Full Text Available Remembering the past is a core feature of human beings, enabling them to maintain a sense of wholeness and identity and preparing them for the demands of the future. Forgetting operates in a dynamic neural connection with remembering, allowing the elimination of unnecessary or irrelevant information overload and decreasing interference. Stress and traumatic experiences could affect this connection, resulting in memory disturbances, such as functional amnesia. An overview of clinical, epidemiological, neuropsychological and neurobiological aspects of functional amnesia is presented, by preponderantly resorting to own data from patients with functional amnesia. Patients were investigated medically, neuropsychologically and neuroradiologically. A detailed report of a new case is included to illustrate the challenges posed by making an accurate differential diagnosis of functional amnesia, a condition that may encroach on the boundaries between psychiatry and neurology. Several mechanisms may play a role in forgetting in functional amnesia, such as retrieval impairments, consolidating defects, motivated forgetting, deficits in binding and reassembling details of the past, deficits in establishing a first person autonoetic connection with personal events and loss of information. In a substantial number of patients, we observed a synchronization abnormality between a frontal lobe system, important for autonoetic consciousness, and a temporo-amygdalar system, important for evaluation and emotions, which provides empirical support for an underlying mechanism of dissociation (a failure of integration between cognition and emotion. This observation suggests a mnestic blockade in functional amnesia that is triggered by psychological or environmental stress and is underpinned by a stress hormone mediated synchronization abnormality during retrieval between processing of affect-laden events and fact-processing.

  11. Lidocaine attenuates anisomycin-induced amnesia and release of norepinephrine in the amygdala

    Science.gov (United States)

    Sadowski, Renee N.; Canal, Clint E.; Gold, Paul E.

    2011-01-01

    When administered near the time of training, protein synthesis inhibitors such as anisomycin impair later memory. A common interpretation of these findings is that memory consolidation requires new protein synthesis initiated by training. However, recent findings support an alternative interpretation that abnormally large increases in neurotransmitter release after injections of anisomycin may be responsible for producing amnesia. In the present study, a local anesthetic was administered prior to anisomycin injections in an attempt to mitigate neurotransmitter actions and thereby attenuate the resulting amnesia. Rats received lidocaine and anisomycin injections into the amygdala 130 and 120 min, respectively, prior to inhibitory avoidance training. Memory tests 48 hr later revealed that lidocaine attenuated anisomycin-induced amnesia. In other rats, in vivo microdialysis was performed at the site of amygdala infusion of lidocaine and anisomycin. As seen previously, anisomycin injections produced large increases in release of norepinephrine in the amygdala. Lidocaine attenuated the anisomycin-induced increase in release of norepinephrine but did not reverse anisomycin inhibition of protein synthesis, as assessed by c-Fos immunohistochemistry. These findings are consistent with past evidence suggesting that anisomycin causes amnesia by initiating abnormal release of neurotransmitters in response to the inhibition of protein synthesis. PMID:21453778

  12. Diapause formation and downregulation of insulin-like signaling via DAF-16/FOXO delays axonal degeneration and neuronal loss.

    Directory of Open Access Journals (Sweden)

    Andrea Calixto

    Full Text Available Axonal degeneration is a key event in the pathogenesis of neurodegenerative conditions. We show here that mec-4d triggered axonal degeneration of Caenorhabditis elegans neurons and mammalian axons share mechanistical similarities, as both are rescued by inhibition of calcium increase, mitochondrial dysfunction, and NMNAT overexpression. We then explore whether reactive oxygen species (ROS participate in axonal degeneration and neuronal demise. C. elegans dauers have enhanced anti-ROS systems, and dauer mec-4d worms are completely protected from axonal degeneration and neuronal loss. Mechanistically, downregulation of the Insulin/IGF-1-like signaling (IIS pathway protects neurons from degenerating in a DAF-16/FOXO-dependent manner and is related to superoxide dismutase and catalase-increased expression. Caloric restriction and systemic antioxidant treatment, which decrease oxidative damage, protect C. elegans axons from mec-4d-mediated degeneration and delay Wallerian degeneration in mice. In summary, we show that the IIS pathway is essential in maintaining neuronal homeostasis under pro-degenerative stimuli and identify ROS as a key intermediate of neuronal degeneration in vivo. Since axonal degeneration represents an early pathological event in neurodegeneration, our work identifies potential targets for therapeutic intervention in several conditions characterized by axonal loss and functional impairment.

  13. Multiple coherence resonances and synchronization transitions by time delay in adaptive scale-free neuronal networks with spike-timing-dependent plasticity

    International Nuclear Information System (INIS)

    Xie, Huijuan; Gong, Yubing

    2017-01-01

    In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on multiple coherence resonances (MCR) and synchronization transitions (ST) induced by time delay in adaptive scale-free Hodgkin–Huxley neuronal networks. It is found that STDP has a big influence on MCR and ST induced by time delay and on the effect of network average degree on the MCR and ST. MCR is enhanced or suppressed as the adjusting rate A p of STDP decreases or increases, and there is optimal A p by which ST becomes strongest. As network average degree 〈k〉 increases, ST is enhanced and there is optimal 〈k〉 at which MCR becomes strongest. Moreover, for a larger A p value, ST is enhanced more rapidly with increasing 〈k〉 and the optimal 〈k〉 for MCR increases. These results show that STDP can either enhance or suppress MCR, and there is optimal STDP that can most strongly enhance ST induced by time delay in the adaptive neuronal networks. These findings could find potential implication for the information processing and transmission in neural systems.

  14. Neural Correlate of Anterograde Amnesia in Wernicke-Korsakoff Syndrome.

    Science.gov (United States)

    Nahum, Louis; Pignat, Jean-Michel; Bouzerda-Wahlen, Aurélie; Gabriel, Damien; Liverani, Maria Chiara; Lazeyras, François; Ptak, Radek; Richiardi, Jonas; Haller, Sven; Thorens, Gabriel; Zullino, Daniele F; Guggisberg, Adrian G; Schnider, Armin

    2015-09-01

    The neural correlate of anterograde amnesia in Wernicke-Korsakoff syndrome (WKS) is still debated. While the capacity to learn new information has been associated with integrity of the medial temporal lobe (MTL), previous studies indicated that the WKS is associated with diencephalic lesions, mainly in the mammillary bodies and anterior or dorsomedial thalamic nuclei. The present study tested the hypothesis that amnesia in WKS is associated with a disrupted neural circuit between diencephalic and hippocampal structures. High-density evoked potentials were recorded in four severely amnesic patients with chronic WKS, in five patients with chronic alcoholism without WKS, and in ten age matched controls. Participants performed a continuous recognition task of pictures previously shown to induce a left medial temporal lobe dependent positive potential between 250 and 350 ms. In addition, the integrity of the fornix was assessed using diffusion tensor imaging (DTI). WKS, but not alcoholic patients without WKS, showed absence of the early, left MTL dependent positive potential following immediate picture repetitions. DTI indicated disruption of the fornix, which connects diencephalic and hippocampal structures. The findings support an interpretation of anterograde amnesia in WKS as a consequence of a disconnection between diencephalic and MTL structures with deficient contribution of the MTL to rapid consolidation.

  15. Familial Transient Global Amnesia

    Directory of Open Access Journals (Sweden)

    R.Rhys Davies

    2012-12-01

    Full Text Available Following an episode of typical transient global amnesia (TGA, a female patient reported similar clinical attacks in 2 maternal aunts. Prior reports of familial TGA are few, and no previous account of affected relatives more distant than siblings or parents was discovered in a literature survey. The aetiology of familial TGA is unknown. A pathophysiological mechanism akin to that in migraine attacks, comorbidity reported in a number of the examples of familial TGA, is one possibility. The study of familial TGA cases might facilitate the understanding of TGA aetiology.

  16. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP.

    Science.gov (United States)

    Krashes, Michael J; Shah, Bhavik P; Koda, Shuichi; Lowell, Bradford B

    2013-10-01

    Agouti-related peptide (AgRP) neurons of the hypothalamus release a fast transmitter (GABA) in addition to neuropeptides (neuropeptide Y [NPY] and Agouti-related peptide [AgRP]). This raises questions as to their respective functions. The acute activation of AgRP neurons robustly promotes food intake, while central injections of AgRP, NPY, or GABA agonist results in the marked escalation of food consumption with temporal variance. Given the orexigenic capability of all three of these neuroactive substances in conjunction with their coexpression in AgRP neurons, we looked to unravel their relative temporal role in driving food intake. After the acute stimulation of AgRP neurons with DREADD technology, we found that either GABA or NPY is required for the rapid stimulation of feeding, and the neuropeptide AgRP, through action on MC4 receptors, is sufficient to induce feeding over a delayed yet prolonged period. These studies help to elucidate the neurochemical mechanisms of AgRP neurons in controlling temporally distinct phases of eating. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. A mathematical model of forgetting and amnesia

    NARCIS (Netherlands)

    Murre, J.M.J.; Chessa, A.G.; Meeter, M.

    2013-01-01

    We describe a mathematical model of learning and memory and apply it to the dynamics of forgetting and amnesia. The model is based on the hypothesis that the neural systems involved in memory at different time scales share two fundamental properties: (1) representations in a store decline in

  18. Failure of delayed nonsynaptic neuronal plasticity underlies age-associated long-term associative memory impairment

    Directory of Open Access Journals (Sweden)

    Watson Shawn N

    2012-08-01

    Full Text Available Abstract Background Cognitive impairment associated with subtle changes in neuron and neuronal network function rather than widespread neuron death is a feature of the normal aging process in humans and animals. Despite its broad evolutionary conservation, the etiology of this aging process is not well understood. However, recent evidence suggests the existence of a link between oxidative stress in the form of progressive membrane lipid peroxidation, declining neuronal electrical excitability and functional decline of the normal aging brain. The current study applies a combination of behavioural and electrophysiological techniques and pharmacological interventions to explore this hypothesis in a gastropod model (Lymnaea stagnalis feeding system that allows pinpointing the molecular and neurobiological foundations of age-associated long-term memory (LTM failure at the level of individual identified neurons and synapses. Results Classical appetitive reward-conditioning induced robust LTM in mature animals in the first quartile of their lifespan but failed to do so in animals in the last quartile of their lifespan. LTM failure correlated with reduced electrical excitability of two identified serotonergic modulatory interneurons (CGCs critical in chemosensory integration by the neural network controlling feeding behaviour. Moreover, while behavioural conditioning induced delayed-onset persistent depolarization of the CGCs known to underlie appetitive LTM formation in this model in the younger animals, it failed to do so in LTM-deficient senescent animals. Dietary supplementation of the lipophilic anti-oxidant α-tocopherol reversed the effect of age on CGCs electrophysiological characteristics but failed to restore appetitive LTM function. Treatment with the SSRI fluoxetine reversed both the neurophysiological and behavioural effects of age in senior animals. Conclusions The results identify the CGCs as cellular loci of age-associated appetitive

  19. Retrograde amnesia after electroconvulsive therapy: a temporary effect?

    NARCIS (Netherlands)

    Meeter, M.; Murre, J.M.J.; Janssen, S.M.J.; Birkenhager, T.; van den Broek, W.W.

    2011-01-01

    Objective: Although electroconvulsive therapy (ECT) is generally considered effective against depression, it remains controversial because of its association with retrograde memory loss. Here, we assessed memory after ECT in circumstances most likely to yield strong retrograde amnesia. Method: A

  20. The therapeutic effect of crocin on ketamine-induced retrograde amnesia in rats

    Directory of Open Access Journals (Sweden)

    Namdar Yousefvand

    2016-09-01

    Full Text Available Introduction: The glutamatergic system plays an important role in learning and memory. Administration of crocus sativus (Saffron or its constituent, crocin, facilitates the formation of memory. This research investigated the effect of crocin on antagonizing retrograde amnesia induced by ketamine, a glutamatergic receptor antagonist, in rats by shuttle box. Methods: Male Wistar rats were tested to measure their learning behavior in the passive avoidance task. All animals were trained by a 1 mA shock. The drugs were injected immediately after the training was successfully performed. The animals were tested 24h after training to measure Step Through Latency (STL. Results: On the test day, administration of ketamine (12 mg/kg, ip impaired the memory after training. Different doses of crocin (2, 5 or 10 mg/kg, ip were injected 30 min after ketamine, but only 2 mg/kg crocin could improve retrograde amnesia and 5 and 10 mg/kg doses did not have any significant effect on retrograde amnesia. Moreover, administration of crocin (2, 5 or 10 mg/kg, ip after training had no significant impact on passive avoidance memory by itself. Conclusion: Considering the therapeutic effect of post-training administration of crocin on ketamine-induced retrograde amnesia, it can be argued that crocin has an interaction with glutamatergic system in formation of passive avoidance memory in rats.

  1. Discovery of talatisamine as a novel specific blocker for the delayed rectifier K+ channels in rat hippocampal neurons.

    Science.gov (United States)

    Song, M-K; Liu, H; Jiang, H-L; Yue, J-M; Hu, G-Y; Chen, H-Z

    2008-08-13

    Blocking specific K+ channels has been proposed as a promising strategy for the treatment of neurodegenerative diseases. Using a computational virtual screening approach and electrophysiological testing, we found four Aconitum alkaloids are potent blockers of the delayed rectifier K+ channel in rat hippocampal neurons. In the present study, we first tested the action of the four alkaloids on the voltage-gated K+, Na+ and Ca2+ currents in rat hippocampal neurons, and then identified that talatisamine is a specific blocker for the delayed rectifier K+ channel. External application of talatisamine reversibly inhibited the delayed rectifier K+ current (IK) with an IC50 value of 146.0+/-5.8 microM in a voltage-dependent manner, but exhibited very slight blocking effect on the voltage-gated Na+ and Ca2+ currents even at the high concentration of 1-3 mM. Moreover, talatisamine exerted a significant hyperpolarizing shift of the steady-state activation, but did not influence the steady state inactivation of IK and its recovery from inactivation, suggesting that talatisamine had no allosteric action on IK channel and was a pure blocker binding to the external pore entry of the channel. Our present study made the first discovery of potent and specific IK channel blocker from Aconitum alkaloids. It has been argued that suppressing K+ efflux by blocking IK channel may be favorable for Alzheimer's disease therapy. Talatisamine can therefore be considered as a leading compound worthy of further investigations.

  2. Reexposure to the Amnestic Agent Alleviates Cycloheximide-Induced Retrograde Amnesia for Reactivated and Extinction Memories

    Science.gov (United States)

    Briggs, James F.; Olson, Brian P.

    2013-01-01

    We investigated whether reexposure to an amnestic agent would reverse amnesia for extinction of learned fear similar to that of a reactivated memory. When cycloheximide (CHX) was administered immediately after a brief cue-induced memory reactivation (15 sec) and an extended extinction session (12 min) rats showed retrograde amnesia for both…

  3. Psychological therapy for psychogenic amnesia: Successful treatment in a single case study.

    Science.gov (United States)

    Cassel, Anneli; Humphreys, Kate

    2016-01-01

    Psychogenic amnesia is widely understood to be a memory impairment of psychological origin that occurs as a response to severe stress. However, there is a paucity of evidence regarding the effectiveness of psychological therapy approaches in the treatment of this disorder. The current article describes a single case, "Ben", who was treated with formulation-driven psychological therapy using techniques drawn from cognitive behavioural therapy (CBT) and acceptance and commitment therapy (ACT) for psychogenic amnesia. Before treatment, Ben exhibited isolated retrograde and anterograde memory impairments. He received 12 therapy sessions that targeted experiential avoidance followed by two review sessions, six weeks and five months later. Ben's retrograde and anterograde memory impairments improved following therapy to return to within the "average" to "superior" ranges, which were maintained at follow-up. Further experimental single case study designs and larger group studies are required to advance the understanding of the effectiveness and efficacy of psychological therapy for psychogenic amnesia.

  4. The effects of ACTH- and vasopressin-analogues on CO2-induced retrograde amnesia in rats

    NARCIS (Netherlands)

    Rigter, H.; Riezen, H. van; Wied, D. de

    Amnesia for a one-trial step-through passive avoidance response was induced in rats by application of CO2 until respiratory arrest occurred. The ACTH-analogue ACTH4–10 alleviated the amnesia when administered 1 hr prior to the retrieval test but not when given 1 hr prior to the acquisition trial.

  5. Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia.

    Science.gov (United States)

    Batool, Zehra; Sadir, Sadia; Liaquat, Laraib; Tabassum, Saiqa; Madiha, Syeda; Rafiq, Sahar; Tariq, Sumayya; Batool, Tuba Sharf; Saleem, Sadia; Naqvi, Fizza; Perveen, Tahira; Haider, Saida

    2016-01-01

    Dietary nutrients may play a vital role in protecting the brain from age-related memory dysfunction and neurodegenerative diseases. Tree nuts including almonds have shown potential to combat age-associated brain dysfunction. These nuts are an important source of essential nutrients, such as tocopherol, folate, mono- and poly-unsaturated fatty acids, and polyphenols. These components have shown promise as possible dietary supplements to prevent or delay the onset of age-associated cognitive dysfunction. This study investigated possible protective potential of almond against scopolamine induced amnesia in rats. The present study also investigated a role of acetylcholine in almond induced memory enhancement. Rats in test group were orally administrated with almond suspension (400 mg/kg/day) for four weeks. Both control and almond-treated rats were then divided into saline and scopolamine injected groups. Rats in the scopolamine group were injected with scopolamine (0.5 mg/kg) five minutes before the start of each memory test. Memory was assessed by elevated plus maze (EPM), Morris water maze (MWM) and novel object recognition (NOR) task. Cholinergic function was determined in terms of hippocampal and frontal cortical acetylcholine content and acetylcholinesterase activity. Results of the present study suggest that almond administration for 28 days significantly improved memory retention. This memory enhancing effect of almond was also observed in scopolamine induced amnesia model. Present study also suggests a role of acetylcholine in the attenuation of scopolamine induced amnesia by almond. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Retrograde amnesia for semantic information in Alzheimer's disease

    NARCIS (Netherlands)

    Meeter, M.; Kollen, A.; Scheltens, P.

    2005-01-01

    Patients with mild to moderate Alzheimer's disease and normal controls were tested on a retrograde amnesia test with semantic content (Neologism and Vocabulary Test, or NVT), consisting of neologisms to be defined. Patients showed a decrement as compared to normal controls, pointing to retrograde

  7. Childhood amnesia in the making: different distributions of autobiographical memories in children and adults.

    Science.gov (United States)

    Bauer, Patricia J; Larkina, Marina

    2014-04-01

    Within the memory literature, a robust finding is of childhood amnesia: a relative paucity among adults for autobiographical or personal memories from the first 3 to 4 years of life, and from the first 7 years, a smaller number of memories than would be expected based on normal forgetting. Childhood amnesia is observed in spite of strong evidence that during the period eventually obscured by the amnesia, children construct and preserve autobiographical memories. Why early memories seemingly are lost to recollection is an unanswered question. In the present research, we examined the issue by using the cue word technique to chart the distributions of autobiographical memories in samples of children ages 7 to 11 years and samples of young and middle-aged adults. Among adults, the distributions were best fit by the power function, whereas among children, the exponential function provided a better fit to the distributions of memories. The findings suggest that a major source of childhood amnesia is a constant rate of forgetting in childhood, seemingly resulting from failed consolidation, the outcome of which is a smaller pool of memories available for later retrieval.

  8. Effects of mecamylamine (a nicotinic receptor antagonist on harman induced-amnesia in an inhibitory avoidance test

    Directory of Open Access Journals (Sweden)

    Mohammad Nasehi

    2011-10-01

    Full Text Available Introduction: β-carbolines alkaloids suchv as harmane have been found in common plant-derived foodstuffs (wheat, rice, corn, barley, grape and mushrooms. These alkaloids have many cognitive effects including alteration short and long term memory. In the present study, the effect of intra-CA1 injection of the nicotinic receptor antagonist mecamylamine on amnesia induced by harmane was examined in mice. Materials and Methods: Mice were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus. One week after cannulae implantation, mice were trained in a step-down type inhibitory avoidance task, and were tested 24 h after training to measure step-down latency as a scale of memory. Results: Pre-training or post-training systemic injection of harmane induced amnesia. Pre-testing intra-dorsal hippocampus administration of the high dose of nicotinic receptor antagonist, mecamylamine (4 µg/mice also induced amnesia. On the other hand, pre-test intra-CA1 injection of ineffective doses of mecamylamine (0.5, 1 and 2 µg/mice fully restored harmane induced amnesia. Conclusion: The present finding in this study indicated that a complex interaction exists between nicotinic receptor of dorsal hippocampus and amnesia induced by Harmane.

  9. Profound loss of general knowledge in retrograde amnesia: evidence from an amnesic artist

    OpenAIRE

    Gregory, Emma; McCloskey, Michael; Landau, Barbara

    2014-01-01

    Studies of retrograde amnesia have focused on autobiographical memory, with fewer studies examining how non-autobiographical memory is affected. Those that have done so have focused primarily on memory for famous people and public events—relatively limited aspects of memory that are tied to learning during specific times of life and do not deeply tap into the rich and extensive knowledge structures that are developed over a lifetime. To assess whether retrograde amnesia can also cause impai...

  10. Posttraumatic stress disorder in patients with traumatic brain injury and amnesia for the event?

    Science.gov (United States)

    Warden, D L; Labbate, L A; Salazar, A M; Nelson, R; Sheley, E; Staudenmeier, J; Martin, E

    1997-01-01

    Frequency of DSM-III-R posttraumatic stress disorder (PTSD) was studied in 47 active-duty service members (46 male, 1 female; mean age 27 = 7) with moderate traumatic brain injury and neurogenic amnesia for the event. Patients had attained "oriented and cooperative" recovery level. When evaluated with a modified Present State Examination and other questions at various points from study entry to 24-month follow-up, no patients met full criteria for PTSD or met criterion B (reexperience); 6 (13%) met both C (avoidance) and D (arousal) criteria. Five of these 6 also had organic mood disorder, depressed type, and/or organic anxiety disorder. Posttraumatic amnesia following moderate head injury may protect against recurring memories and the development of PTSD. Some patients with neurogenic amnesia may develop a form of PTSD without the reexperiencing symptoms.

  11. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway.

    Science.gov (United States)

    Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y

    2015-07-09

    We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.

  12. Layer 5 Callosal Parvalbumin-Expressing Neurons: A Distinct Functional Group of GABAergic Neurons.

    Science.gov (United States)

    Zurita, Hector; Feyen, Paul L C; Apicella, Alfonso Junior

    2018-01-01

    Previous studies have shown that parvalbumin-expressing neurons (CC-Parv neurons) connect the two hemispheres of motor and sensory areas via the corpus callosum, and are a functional part of the cortical circuit. Here we test the hypothesis that layer 5 CC-Parv neurons possess anatomical and molecular mechanisms which dampen excitability and modulate the gating of interhemispheric inhibition. In order to investigate this hypothesis we use viral tracing to determine the anatomical and electrophysiological properties of layer 5 CC-Parv and parvalbumin-expressing (Parv) neurons of the mouse auditory cortex (AC). Here we show that layer 5 CC-Parv neurons had larger dendritic fields characterized by longer dendrites that branched farther from the soma, whereas layer 5 Parv neurons had smaller dendritic fields characterized by shorter dendrites that branched nearer to the soma. The layer 5 CC-Parv neurons are characterized by delayed action potential (AP) responses to threshold currents, lower firing rates, and lower instantaneous frequencies compared to the layer 5 Parv neurons. Kv1.1 containing K + channels are the main source of the AP repolarization of the layer 5 CC-Parv and have a major role in determining both the spike delayed response, firing rate and instantaneous frequency of these neurons.

  13. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    OpenAIRE

    Kana Okada; Kayo Nishizawa; Tomoko Kobayashi; Shogo Sakata; Kazuto Kobayashi

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer?s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remai...

  14. Information in small neuronal ensemble activity in the hippocampal CA1 during delayed non-matching to sample performance in rats

    Directory of Open Access Journals (Sweden)

    Takahashi Susumu

    2009-09-01

    Full Text Available Abstract Background The matrix-like organization of the hippocampus, with its several inputs and outputs, has given rise to several theories related to hippocampal information processing. Single-cell electrophysiological studies and studies of lesions or genetically altered animals using recognition memory tasks such as delayed non-matching-to-sample (DNMS tasks support the theories. However, a complete understanding of hippocampal function necessitates knowledge of the encoding of information by multiple neurons in a single trial. The role of neuronal ensembles in the hippocampal CA1 for a DNMS task was assessed quantitatively in this study using multi-neuronal recordings and an artificial neural network classifier as a decoder. Results The activity of small neuronal ensembles (6-18 cells over brief time intervals (2-50 ms contains accurate information specifically related to the matching/non-matching of continuously presented stimuli (stimulus comparison. The accuracy of the combination of neurons pooled over all the ensembles was markedly lower than those of the ensembles over all examined time intervals. Conclusion The results show that the spatiotemporal patterns of spiking activity among cells in the small neuronal ensemble contain much information that is specifically useful for the stimulus comparison. Small neuronal networks in the hippocampal CA1 might therefore act as a comparator during recognition memory tasks.

  15. Complex dynamics of a delayed discrete neural network of two nonidentical neurons.

    Science.gov (United States)

    Chen, Yuanlong; Huang, Tingwen; Huang, Yu

    2014-03-01

    In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291-303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415-432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869-1878 (2013)]. We also give some numeric simulations to verify our theoretical results.

  16. A critical review of the literature on early rehabilitation of patients with post-traumatic amnesia in acute care

    DEFF Research Database (Denmark)

    Langhorn, Leanne; Sorensen, Jens C; Pedersen, Preben U

    2010-01-01

    A critical review of the literature on early rehabilitation of patients with post-traumatic amnesia in acute care......A critical review of the literature on early rehabilitation of patients with post-traumatic amnesia in acute care...

  17. Determination of the rate constant for neuronal and extra-neuronal monoamine oxidase

    International Nuclear Information System (INIS)

    Cassis, L.; Ludwig, J.; Trendelenburg, U.

    1986-01-01

    In the rat vas deferens, neuronal deamination of 3 H-(-) noradrenaline ( 3 H-NA) to 3 H-dihydroxyphenethylglycol ( 3 HDOPEG) cannot be inhibited by pretreatment with a monoamine oxidase (MAO) inhibitor. However, in the extraneuronal compartment of the rat heart, inhibition of MAO abolishes the formation of 3 HDOPEG. To clarify this discrepancy, the authors determined the rate constant for MAO (/sup k/mao/) neuronally (rat vas deferens) and extraneuronally (rat heart). For neuronal /sup k/mao, vasa deferentia were incubated with 3 HNA for 300 minutes, and the cumulative formation of 3 HDOPEG measured. The delay in time before 3 HDOPEG achieves steady state (/sup tau/system), is inversely proportional to /sup k/mao. Because /sup tau/system is very short for neuronal MAO, an appreciable delay was only achieved after partial inhibition of MAO with various parglyline concentrations. To relate to the uninhibited enzyme, the percentage inhibition by pargyline was then determined in homogenate preparations. For extraneuronal MAO, a similar procedure was performed in perfused rat hearts. Results show a significantly greater /sup k/mao of neuronal origin, (/sup k/mao = .57min - 1) which when related to the fractional size of the neuronal compartment suggests a very high activity of neuronal MAO

  18. The synchronization of asymmetric-structured electric coupling neuronal system

    Science.gov (United States)

    Wang, Guanping; Jin, Wuyin; Liu, Hao; Sun, Wei

    2018-02-01

    Based on the Hindmarsh-Rose (HR) model, the synchronization dynamics of asymmetric-structured electric coupling two neuronal system is investigated in this paper. It is discovered that when the time-delay scope and coupling strength for the synchronization are correlated positively under unequal time delay, the time-delay difference does not make a clear distinction between the two individual inter-spike intervals (ISI) bifurcation diagrams of the two coupled neurons. Therefore, the superficial difference of the system synchronization dynamics is not obvious for the unequal time-delay feedback. In the asymmetrical current incentives under asymmetric electric coupled system, the two neurons can only be almost completely synchronized in specific area of the interval which end-pointed with two discharge modes for a single neuron under different stimuli currents before coupling, but the intervention of time-delay feedback, together with the change of the coupling strength, can make the coupled system not only almost completely synchronized within anywhere in the front area, but also outside of it.

  19. Awareness of disease state without explicit knowledge of memory failure in transient global amnesia.

    Science.gov (United States)

    Hainselin, Mathieu; Quinette, Peggy; Desgranges, Béatrice; Martinaud, Olivier; de La Sayette, Vincent; Hannequin, Didier; Viader, Fausto; Eustache, Francis

    2012-09-01

    Transient global amnesia (TGA) is a syndrome characterised by the rapid onset of antero- and retrograde amnesia, accompanied by temporal disorientation and iterative questioning. It is now established that the acute phase is associated with a raised level of anxiety and a depressed mood. We conducted a thorough investigation of patients' perceptions of their disease state, focusing on the links between their lack of explicit knowledge of amnesia during the acute phase and their emotional experience. Explicit knowledge of memory deficits was assessed during TGA by means of an original scale inspired by Bisiach et al. (1986) and self-reported scales measuring patients' perceptions of their current memory and their cognitive and behavioural functioning. At the same time, we probed the patients' emotional experience (sources of worry, and levels of worry, anxiety and depression) via questionnaires. Data were collected from 20 patients in the acute phase, 16 in the peri-acute phase, 16 who were assessed the day after the episode and 14 healthy controls. Each patient underwent a follow-up examination 2 months later. Patients in the acute phase displayed a lack of explicit knowledge of their amnesia and overestimated their memory performances. They also expressed higher levels of worry and anxiety than controls, and a more depressed mood. Although they were aware of their disease state, the TGA patients were unable to identify the nature of their memory deficits and overestimated their memory performances. These memory misperceptions and the inability to acknowledge memory failure occurred concomitantly with changes in the patients' emotional state. This particular pattern of awareness could be regarded as a reaction to the suddenness and massiveness of the amnesia. Copyright © 2012 Elsevier Srl. All rights reserved.

  20. Retrograde amnesia for semantic information in Alzheimer’s disease

    NARCIS (Netherlands)

    Meeter, M.; Knollen, A.; Scheltens, P.

    2005-01-01

    Patients with mild to moderate Alzheimer's disease and normal controls were tested on a retrograde amnesia test with semantic content (Neologism and Vocabulary Test, or NVT), consisting of neologisms to be defined. Patients showed a decrement as compared to normal controls, pointing to retrograde

  1. Complex dynamics of a delayed discrete neural network of two nonidentical neurons

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuanlong [Mathematics Department, GuangDong University of Finance, Guangzhou 510521 (China); Huang, Tingwen [Mathematics Department, Texas A and M University at Qatar, P. O. Box 23874, Doha (Qatar); Huang, Yu, E-mail: stshyu@mail.sysu.edu.cn [Mathematics Department, Sun Yat-Sen University, Guangzhou 510275, People' s Republic China (China)

    2014-03-15

    In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results.

  2. Complex dynamics of a delayed discrete neural network of two nonidentical neurons

    International Nuclear Information System (INIS)

    Chen, Yuanlong; Huang, Tingwen; Huang, Yu

    2014-01-01

    In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results

  3. Spatial memory impairment in Morris water maze after electroconvulsive seizures.

    Science.gov (United States)

    Svensson, Maria; Hallin, Thord; Broms, Jonas; Ekstrand, Joakim; Tingström, Anders

    2017-02-01

    Electroconvulsive therapy (ECT) is one of the most efficient treatments for severe major depression, but some patients suffer from retrograde memory loss after treatment. Electroconvulsive seizures (ECS), an animal model of ECT, have repeatedly been shown to increase hippocampal neurogenesis, and multiple ECS treatments cause retrograde amnesia in hippocampus-dependent memory tasks. Since recent studies propose that addition of newborn hippocampal neurons might degrade existing memories, we investigated whether the memory impairment after multiple ECS treatments is a cumulative effect of repeated treatments, or if it is the result of a delayed effect after a single ECS. We used the hippocampus-dependent memory task Morris water maze (MWM) to evaluate spatial memory. Rats were exposed to an 8-day training paradigm before receiving either a single ECS or sham treatment and tested in the MWM 24 h, 72 h, or 7 days after this treatment, or multiple (four) ECS or sham treatments and tested 7 days after the first treatment. A single ECS treatment was not sufficient to cause retrograde amnesia whereas multiple ECS treatments strongly disrupted spatial memory in the MWM. The retrograde amnesia after multiple ECS is a cumulative effect of repeated treatments rather than a delayed effect after a single ECS.

  4. Transient global amnesia following a whole-body cryotherapy session.

    Science.gov (United States)

    Carrard, Justin; Lambert, Anne Chantal; Genné, Daniel

    2017-10-13

    Whole-body cryotherapy (WBC), which consists of a short exposure to very cold and dry air in special 'cryo-chambers', is believed to reduce inflammation and musculoskeletal pain as well as improve athletes' recovery. This is the case of a 63-year-old male, who presented with transient global amnesia (TGA) after undertaking a WBC session. TGA is a clinical syndrome characterised by a sudden onset of anterograde amnesia, sometimes coupled with a retrograde component, lasting up to 24 hours without other neurological deficits. Even though the patient completely recovered, as expected, in 24 hours, this case highlights that WBC is potentially not as risk free as thought to be initially. To conclude, before WBC can be medically recommended, well-conducted studies investigating the possible adverse events are required. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Prediction of partial synchronization in delay-coupled nonlinear oscillators, with application to Hindmarsh–Rose neurons

    International Nuclear Information System (INIS)

    Ünal, Hakkı Ulaş; Michiels, Wim

    2013-01-01

    The full synchronization of coupled nonlinear oscillators has been widely studied. In this paper we investigate conditions for which partial synchronization of time-delayed diffusively coupled systems arises. The coupling configuration of the systems is described by a directed graph. As a novel quantitative result we first give necessary and sufficient conditions for the presence of forward invariant sets characterized by partially synchronous motion. These conditions can easily be checked from the eigenvalues and eigenvectors of the graph Laplacian. Second, we perform stability analysis of the synchronized equilibria in a (gain,delay) parameter space. For this analysis the coupled nonlinear systems are linearized around the synchronized equilibria and then the resulting characteristic function is factorized. By such a factorization, it is shown that the relation between the behaviour of different agents at the zero of the characteristic function depends on the structure of the eigenvectors of the weighted Laplacian matrix. By determining the structure of the solutions in the unstable manifold, combined with the characterization of invariant sets, we predict which partially synchronous regimes occur and estimate the corresponding coupling gain and delay values. We apply the obtained results to networks of coupled Hindmarsh–Rose neurons and verify the occurrence of the expected partially synchronous regimes by using a numerical simulation. We also make a comparison with an existing approach based on Lyapunov functionals. (paper)

  6. Inter-identity autobiographical amnesia in patients with dissociative identity disorder

    NARCIS (Netherlands)

    Huntjens, R.J.C.; Verschuere, B.; McNally, R.J.

    2012-01-01

    Background A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive

  7. Inter-Identity Autobiographical Amnesia in Patients with Dissociative Identity Disorder

    NARCIS (Netherlands)

    Huntjens, R.J.C.; Verschuere, B.; McNally, R.J.

    2012-01-01

    Background: A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive

  8. Delayed translocation of NGFI-B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid

    International Nuclear Information System (INIS)

    Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U.; Paulsen, Ragnhild E.

    2011-01-01

    Highlights: → NGFI-B and RXR translocate out of the nucleus after glutamate treatment. → Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. → Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXRα were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXRα, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.

  9. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    Science.gov (United States)

    Angel-Chavez, Luis I; Acosta-Gómez, Eduardo I; Morales-Avalos, Mario; Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  10. TRANSIENT GLOBAL AMNESIA IN A PATIENT WITH HYPERTENSIVE CRISIS

    Directory of Open Access Journals (Sweden)

    E. V. Yakovleva

    2018-01-01

    Full Text Available Transient global amnesia was established by Fisher et Adams is 1964 for phenomena characterized by the sudden onset of all types memory loss, retrograde amnesia and the inability to form new  memories and to recall the recent past. The incidence of TGA is 5  to10 people per 100,000 worldwide but the real incidence is unknown because the episodes of memory loss are temporary and many patients don’t go to see a doctor at the time of attack. The triggers of TAG are physical activity, sexual  intercourse, pain, Valsalva maneuver etc. In routine clinical practice  TAG is more important for neurologists. But this problem is also  interesting for therapeutists because TAG could be developed in  patients with arterial hypertension, foramen ovale, mitral valve  prolapse and heart blocks. We present a 57-year-old female with  TAG. She was admitted to the hospital due to hypertensive crisis and an impaired ability to retain new information that started after  physical activity. The diagnosis of TAG was based on information  from attacks witnesses, the sudden onset of anterograde amnesia,  normal cognition of the patient and short duration of attack. Also,  the patient had no features of stroke, acute hypertensive encephalopathy, epilepsy and alcohol blackout. TAG is more typical for females over 50 years, all symptoms start after physical activity and resolve within 24 hours. It is characterized by reversibility of all symptoms and good prognosis of 2 years of follow-up.

  11. Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling.

    Directory of Open Access Journals (Sweden)

    Qingyun Wang

    Full Text Available This paper investigates the dependence of synchronization transitions of bursting oscillations on the information transmission delay over scale-free neuronal networks with attractive and repulsive coupling. It is shown that for both types of coupling, the delay always plays a subtle role in either promoting or impairing synchronization. In particular, depending on the inherent oscillation period of individual neurons, regions of irregular and regular propagating excitatory fronts appear intermittently as the delay increases. These delay-induced synchronization transitions are manifested as well-expressed minima in the measure for spatiotemporal synchrony. For attractive coupling, the minima appear at every integer multiple of the average oscillation period, while for the repulsive coupling, they appear at every odd multiple of the half of the average oscillation period. The obtained results are robust to the variations of the dynamics of individual neurons, the system size, and the neuronal firing type. Hence, they can be used to characterize attractively or repulsively coupled scale-free neuronal networks with delays.

  12. Amnesia due to bilateral hippocampal glioblastoma. MRI finding

    Energy Technology Data Exchange (ETDEWEB)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K. (Miyazaki Medical Coll., Kiyotake (Japan). Dept. of Neurosurgery)

    1989-11-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.).

  13. Deletion of Suppressor of Cytokine Signaling 3 from Forebrain Neurons Delays Infertility and Onset of Hypothalamic Leptin Resistance in Response to a High Caloric Diet.

    Science.gov (United States)

    McEwen, Hayden J L; Inglis, Megan A; Quennell, Janette H; Grattan, David R; Anderson, Greg M

    2016-07-06

    The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the

  14. Functional MRI study of diencephalic amnesia in Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Caulo, M; Van Hecke, J; Toma, L; Ferretti, A; Tartaro, A; Colosimo, C; Romani, G L; Uncini, A

    2005-07-01

    Anterograde amnesia in Wernicke-Korsakoff syndrome is associated with diencephalic lesions, mainly in the anterior thalamic nuclei. Whether diencephalic and temporal lobe amnesias are distinct entities is still not clear. We investigated episodic memory for faces using functional MRI (fMRI) in eight controls and in a 34-year-old man with Wernicke-Korsakoff syndrome and diencephalic lesions but without medial temporal lobe (MTL) involvement at MRI. fMRI was performed with a 1.5 tesla unit. Three dual-choice tasks were employed: (i) face encoding (18 faces were randomly presented three times and subjects were asked to memorize the faces); (ii) face perception (subjects indicated which of two faces matched a third face); and (iii) face recognition (subjects indicated which of two faces belonged to the group they had been asked to memorize during encoding). All activation was greater in the right hemisphere. In controls both the encoding and recognition tasks activated two hippocampal regions (anterior and posterior). The anterior hippocampal region was more activated during recognition. Activation in the prefrontal cortex was greater during recognition. In the subject with Wernicke-Korsakoff syndrome, fMRI did not show hippocampal activation during either encoding or recognition. During recognition, although behavioural data showed defective retrieval, the prefrontal regions were activated as in controls, except for the ventrolateral prefrontal cortex. fMRI activation of the visual cortices and the behavioural score on the perception task indicated that the subject with Wernicke-Korsakoff syndrome perceived the faces, paid attention to the task and demonstrated accurate judgement. In the subject with Wernicke-Korsakoff syndrome, although the anatomical damage does not involve the MTL, the hippocampal memory encoding has been lost, possibly as a consequence of the hippocampal-anterior thalamic axis involvement. Anterograde amnesia could therefore be the expression of

  15. Effectiveness of lorazepam-assisted interviews in an adolescent with dissociative amnesia: A case report★

    Science.gov (United States)

    Seo, Yuna; Shin, Mi-Hee; Kim, Sung-Gon; Kim, Ji-Hoon

    2013-01-01

    To facilitate gathering information during a psychiatric interview, some psychiatrists advocate augmenting the interview using drugs. Rather than barbiturates, benzodiazepines have been used for drug-assisted interviews. Dissociative amnesia is one of the indications for these interviews. Herein, we present the case of a 15-year-old female who was diagnosed as having dissociative amnesia because of conflicts with her friends. She was administered a lorazepam-assisted interview to aid recovery of her memories. In this case, a small dose of lorazepam was sufficient to recover her memories without any adverse effects. PMID:25206490

  16. Preserved cumulative semantic interference despite amnesia

    Directory of Open Access Journals (Sweden)

    Gary Michael Oppenheim

    2015-05-01

    As predicted by Oppenheim et al’s (2010 implicit incremental learning account, WRP’s BCN RTs demonstrated strong (and significant repetition priming and semantic blocking effects (Figure 1. Similar to typical results from neurally intact undergraduates, WRP took longer to name pictures presented in semantically homogeneous blocks than in heterogeneous blocks, an effect that increased with each cycle. This result challenges accounts that ascribe cumulative semantic interference in this task to explicit memory mechanisms, instead suggesting that the effect has the sort of implicit learning bases that are typically spared in hippocampal amnesia.

  17. Retrograde episodic memory and emotion: a perspective from patients with dissociative amnesia.

    Science.gov (United States)

    Reinhold, Nadine; Markowitsch, Hans J

    2009-09-01

    With his recent definition of episodic memory Tulving [Tulving, E. (2005). Episodic memory and autonoesis: Uniquely human? In H. Terrace & J. Metcalfe (Eds.), The missing link in cognition: Evolution of self-knowing consciousness (pp. 3-56). New York: Oxford University Press] claims that this memory system is uniquely human and thereby distinguishes human beings from other, even highly developed, mammals. First we will define the term episodic memory as it is currently used in neuropsychological research by specifying the three underlying concepts of subjective time, autonoëtic consciousness, and the self. By doing so, we will strongly focus on retrograde episodic memory and its relation to emotion and self-referential processing. We support this relation with a discussion of autobiographical memory functions in psychiatric disorders such as dissociative amnesia. To illustrate the connection of emotion and retrograde episodic memory we shortly present neuropsychological data of two cases of dissociative amnesia. Both cases serve to point to the protective mechanism of a block of self-endangering memories from the episodic memory system, often described as the mnestic block syndrome. On the basis of these cases and supportive results from further cases we will conclude by pointing out similarities and differences of patients with organic and dissociative (psychogenic) amnesia.

  18. Losing memories overnight: a unique form of human amnesia.

    Science.gov (United States)

    Smith, Christine N; Frascino, Jennifer C; Kripke, Donald L; McHugh, Paul R; Treisman, Glenn J; Squire, Larry R

    2010-08-01

    Since an automobile accident in 2005, patient FL has reported difficulty retaining information from one day to the next. During the course of any given day, she describes her memory as normal. However, memory for each day disappears during a night of sleep. She reports good memory for events that occurred before the accident. Although this pattern of memory impairment is, to our knowledge, unique to the medical literature, it was depicted in the fictional film "50 First Dates". On formal testing, FL performed moderately well when trying to remember material that she had learned during the same day, but she exhibited no memory at all for material that she knew had been presented on a previous day. For some tests, unbeknownst to FL, material learned on the previous day was intermixed with material learned on the same day as the test. On these occasions, FL's memory was good. Thus, she was able to remember events from earlier days when memory was tested covertly. FL performed differently in a number of ways from individuals who were instructed to consciously feign her pattern of memory impairment. It was also the impression of those who worked with FL that she believed she had the memory impairment that she described and that she was not intentionally feigning amnesia. On the basis of her neuropsychological findings, together with a normal neurological exam, normal MRI findings, and psychiatric evaluation, we suggest that FL exhibits a unique form of functional amnesia and that its characterization may have been influenced by knowledge of how amnesia was depicted in a popular film. She subsequently improved (and began retaining day-to-day memory) at Johns Hopkins University where she was in a supportive in-patient environment and was shown how to take control of her condition by interrupting her sleep at 4-h intervals. Published by Elsevier Ltd.

  19. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    Directory of Open Access Journals (Sweden)

    Luis I Angel-Chavez

    Full Text Available In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV. Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  20. Differential expression of molecular markers of synaptic plasticity in the hippocampus, prefrontal cortex, and amygdala in response to spatial learning, predator exposure, and stress-induced amnesia.

    Science.gov (United States)

    Zoladz, Phillip R; Park, Collin R; Halonen, Joshua D; Salim, Samina; Alzoubi, Karem H; Srivareerat, Marisa; Fleshner, Monika; Alkadhi, Karim A; Diamond, David M

    2012-03-01

    We have studied the effects of spatial learning and predator stress-induced amnesia on the expression of calcium/calmodulin-dependent protein kinase II (CaMKII), brain-derived neurotrophic factor (BDNF) and calcineurin in the hippocampus, basolateral amygdala (BLA), and medial prefrontal cortex (mPFC). Adult male rats were given a single training session in the radial-arm water maze (RAWM) composed of 12 trials followed by a 30-min delay period, during which rats were either returned to their home cages or given inescapable exposure to a cat. Immediately following the 30-min delay period, the rats were given a single test trial in the RAWM to assess their memory for the hidden platform location. Under control (no stress) conditions, rats exhibited intact spatial memory and an increase in phosphorylated CaMKII (p-CaMKII), total CaMKII, and BDNF in dorsal CA1. Under stress conditions, rats exhibited impaired spatial memory and a suppression of all measured markers of molecular plasticity in dorsal CA1. The molecular profiles observed in the BLA, mPFC, and ventral CA1 were markedly different from those observed in dorsal CA1. Stress exposure increased p-CaMKII in the BLA, decreased p-CaMKII in the mPFC, and had no effect on any of the markers of molecular plasticity in ventral CA1. These findings provide novel observations regarding rapidly induced changes in the expression of molecular plasticity in response to spatial learning, predator exposure, and stress-induced amnesia in brainregions involved in different aspects of memory processing. Copyright © 2011 Wiley Periodicals, Inc.

  1. Delay-slope-dependent stability results of recurrent neural networks.

    Science.gov (United States)

    Li, Tao; Zheng, Wei Xing; Lin, Chong

    2011-12-01

    By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.

  2. Delayed switching applied to memristor neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Frank Z.; Yang Xiao; Lim Guan [Future Computing Group, School of Computing, University of Kent, Canterbury (United Kingdom); Helian Na [School of Computer Science, University of Hertfordshire, Hatfield (United Kingdom); Wu Sining [Xyratex, Havant (United Kingdom); Guo Yike [Department of Computing, Imperial College, London (United Kingdom); Rashid, Md Mamunur [CERN, Geneva (Switzerland)

    2012-04-01

    Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the ''delayed switching effect.'' In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.

  3. Delayed switching applied to memristor neural networks

    International Nuclear Information System (INIS)

    Wang, Frank Z.; Yang Xiao; Lim Guan; Helian Na; Wu Sining; Guo Yike; Rashid, Md Mamunur

    2012-01-01

    Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the ''delayed switching effect.'' In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.

  4. Anterograde and Retrograde Amnesia following Bitemporal Infarction

    Directory of Open Access Journals (Sweden)

    A. Schnider

    1994-01-01

    Full Text Available A patient suffered very severe anterograde and retrograde amnesia following infarction of both medial temporal lobes (hippocampus and adjacent cortex and the left inferior temporo-occipital area. The temporal stem and the amygdala were intact; these structures do not appear to be critical for new learning in humans. Extension of the left-sided infarct into the inferior temporo-occipital lobe, an area critically involved in visual processing, appears to be responsible for our patient's loss of remote memories.

  5. Irrelevant, Incidental and Core Features in the Retrograde Amnesia Associated with Korsakoff’s Psychosis: A Review

    OpenAIRE

    Meudell, P. R.

    1992-01-01

    A brief review of the literature on retrograde amnesia in Korsakoff's syndrome is presented. Various explanations of the phenomenon are discussed including the notions that it results from the effects of “state-dependency”, that it occurs as a result of a progressive learning problem and that it arises through a failure in contextual processing. None of these hypotheses can satisfactorily account for the length and temporal gradient of alcoholic amnesics retrograde amnesia. Although some evid...

  6. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages.

  7. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    International Nuclear Information System (INIS)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W.

    2001-01-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages

  8. Sensory-specific amnesia and hypoemotionality in humans and monkeys: gateway for developing a hodology of memory.

    Science.gov (United States)

    Ross, Elliott D

    2008-09-01

    Amnesia is a dramatic clinical syndrome caused by diverse pathologies and lesion localizations. Although amnesia is typically screened for by clinicians using verbal stimuli, amnestic syndromes have been described that do not impair verbal memory and may be confined to a single sensory system or a dominant or highly lateralized sensory function. Thus, the functional-anatomic basis for various types of amnestic disorders is complex and, in most instances, better understood as a disconnection syndrome rather than a primary processing deficit. Using the clinical disorder of sensory-specific visual amnesia in humans as a springboard, a hodological model for understanding the various types of amnestic syndromes encountered in the clinic and those produced by discrete experimental lesions in monkeys is offered. The model is then expanded to encompass memory functions, in general, including agnostic deficits and the role of prefrontal cortex in learning and remembering.

  9. A single-system model predicts recognition memory and repetition priming in amnesia.

    Science.gov (United States)

    Berry, Christopher J; Kessels, Roy P C; Wester, Arie J; Shanks, David R

    2014-08-13

    We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with amnesia categorized pictures of objects at study and then, at test, identified fragmented versions of studied (old) and nonstudied (new) objects (providing a measure of priming), and made a recognition memory judgment (old vs new) for each object. Numerous results in the amnesic patients were predicted in advance by the single-system model, as follows: (1) deficits in recognition memory and priming were evident relative to a control group; (2) items judged as old were identified at greater levels of fragmentation than items judged new, regardless of whether the items were actually old or new; and (3) the magnitude of the priming effect (the identification advantage for old vs new items) overall was greater than that of items judged new. Model evidence measures also favored the single-system model over two formal multiple-systems models. The findings support the single-system model, which explains the pattern of recognition and priming in amnesia primarily as a reduction in the strength of a single dimension of memory strength, rather than a selective explicit memory system deficit. Copyright © 2014 the authors 0270-6474/14/3410963-12$15.00/0.

  10. Measuring retrograde autobiographical amnesia following electroconvulsive therapy: historical perspective and current issues.

    Science.gov (United States)

    Semkovska, Maria; McLoughlin, Declan M

    2013-06-01

    Retrograde amnesia following electroconvulsive therapy (ECT) is a major concern for both patients and clinicians. In contemporary ECT research, retrograde autobiographical amnesia (RAA) is commonly measured with instruments assessing autobiographical memory (AM) consistency over time. However, normal AM recall loses in consistency with the passage of time, and time has a differential effect on stability of personal memories. In addition, experiencing depression is associated with a decreased ability to recall specific AMs, and this difficulty may persist in the euthymic phase of recurrent depression. Despite these scientific facts, relatively few attempts have been made to accurately measure the specific effect of ECT on AM independent of both normal and mood-associated forgetting over time. This major gap in our knowledge prevents us at present from objectively quantifying the nature and extent of RAA associated with ECT. In turn, this hinders our identifying and implementing strategies for prevention or remediation of AM deficits. The present article aims to provide an up-to-date review and historical perspective of this major methodological conundrum for ECT research, highlight current issues in retrograde amnesia assessment following ECT, and propose directions for future studies. In conclusion, we suggest methods to reliably and specifically measure the extent and progression over time of ECT-associated RAA independently from persistent depressive symptoms' contribution and normal loss in AM consistency over time.

  11. What does a comparison of the alcoholic Korsakoff syndrome and thalamic infarction tell us about thalamic amnesia?

    Science.gov (United States)

    Kopelman, Michael D

    2015-07-01

    In this review, the clinical, neuropsychological, and neuroimaging findings in the alcoholic Korsakoff syndrome and in thalamic amnesia, resulting from focal infarction, are compared. In both disorders, there is controversy over what is the critical site for anterograde amnesia to occur-damage to the anterior thalamus/mammillo-thalamic tract has most commonly been cited, but damage to the medio-dorsal nuclei has also been advocated. Both syndromes show 'core' features of an anterograde amnesic syndrome; but retrograde amnesia is generally much more extensive (going back many years or decades) in the Korsakoff syndrome. Likewise, spontaneous confabulation occurs more commonly in the Korsakoff syndrome, although seen in only a minority of chronic cases. These differences are attributed to the greater prevalence of frontal atrophy and frontal damage in Korsakoff cases. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  12. A Case of Persistent Generalized Retrograde Autobiographical Amnesia Subsequent to the Great East Japan Earthquake in 2011

    OpenAIRE

    Odagaki, Yuji

    2017-01-01

    Functional retrograde autobiographical amnesia is often associated with physical and/or psychological trauma. On 11 March 2011, the largest earthquake on record in Japan took place, and subsequent huge tsunami devastated the Pacific coast of northern Japan. This case report describes a patient suffering from retrograde episodic-autobiographical amnesia for whole life, persisting for even more than five years after the disaster. A Japanese man, presumably in his 40s, got police protection in A...

  13. Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia).

    Science.gov (United States)

    Johnston, Melissa; Anderson, Catrona; Colombo, Michael

    2017-01-15

    We recorded neuronal activity from the nidopallium caudolaterale, the avian equivalent of mammalian prefrontal cortex, and the entopallium, the avian equivalent of the mammalian visual cortex, in four birds trained on a differential outcomes delayed matching-to-sample procedure in which one sample stimulus was followed by reward and the other was not. Despite similar incidence of reward-specific and reward-unspecific delay cell types across the two areas, overall entopallium delay activity occurred following both rewarded and non-rewarded stimuli, whereas nidopallium caudolaterale delay activity tended to occur following the rewarded stimulus but not the non-rewarded stimulus. These findings are consistent with the view that delay activity in entopallium represents a code of the sample stimulus whereas delay activity in nidopallium caudolaterale represents a code of the possibility of an upcoming reward. However, based on the types of delay cells encountered, cells in NCL also code the sample stimulus and cells in ENTO are influenced by reward. We conclude that both areas support the retention of information, but that the activity in each area is differentially modulated by factors such as reward and attentional mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Autapse-induced synchronization in a coupled neuronal network

    International Nuclear Information System (INIS)

    Ma, Jun; Song, Xinlin; Jin, Wuyin; Wang, Chuni

    2015-01-01

    Highlights: • The functional effect of autapse on neuronal activity is detected. • Autapse driving plays active role in regulating electrical activities as pacemaker. • It confirms biological experimental results for rhythm synchronization between heterogeneous cells. - Abstract: The effect of autapse on coupled neuronal network is detected. In our studies, three identical neurons are connected with ring type and autapse connected to one neuron of the network. The autapse connected to neuron can impose time-delayed feedback in close loop on the neuron thus the dynamics of membrane potentials can be changed. Firstly, the effect of autapse driving on single neuron is confirmed that negative feedback can calm down the neuronal activity while positive feedback can excite the neuronal activity. Secondly, the collective electrical behaviors of neurons are regulated by a pacemaker, which associated with the autapse forcing. By using appropriate gain and time delay in the autapse, the neurons can reach synchronization and the membrane potentials of all neurons can oscillate with the same rhythm under mutual coupling. It indicates that autapse forcing plays an important role in changing the collective electric activities of neuronal network, and appropriate electric modes can be selected due to the switch of feedback type(positive or negative) in autapse. And the autapse-induced synchronization in network is also consistent with some biological experiments about synchronization between nonidentical neurons.

  15. SIP-Based Single Neuron Stochastic Predictive Control for Non-Gaussian Networked Control Systems with Uncertain Metrology Delays

    Directory of Open Access Journals (Sweden)

    Xinying Xu

    2018-06-01

    Full Text Available In this paper, a novel data-driven single neuron predictive control strategy is proposed for non-Gaussian networked control systems with metrology delays in the information theory framework. Firstly, survival information potential (SIP, instead of minimum entropy, is used to formulate the performance index to characterize the randomness of the considered systems, which is calculated by oversampling method. Then the minimum values can be computed by optimizing the SIP-based performance index. Finally, the proposed strategy, minimum entropy method and mean square error (MSE are applied to a networked motor control system, and results demonstrated the effectiveness of the proposed strategy.

  16. Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus.

    Science.gov (United States)

    Sommer, M A; Wurtz, R H

    2001-04-01

    Many neurons within prefrontal cortex exhibit a tonic discharge between visual stimulation and motor response. This delay activity may contribute to movement, memory, and vision. We studied delay activity sent from the frontal eye field (FEF) in prefrontal cortex to the superior colliculus (SC). We evaluated whether this efferent delay activity was related to movement, memory, or vision, to establish its possible functions. Using antidromic stimulation, we identified 66 FEF neurons projecting to the SC and we recorded from them while monkeys performed a Go/Nogo task. Early in every trial, a monkey was instructed as to whether it would have to make a saccade (Go) or not (Nogo) to a target location, which permitted identification of delay activity related to movement. In half of the trials (memory trials), the target disappeared, which permitted identification of delay activity related to memory. In the remaining trials (visual trials), the target remained visible, which permitted identification of delay activity related to vision. We found that 77% (51/66) of the FEF output neurons had delay activity. In 53% (27/51) of these neurons, delay activity was modulated by Go/Nogo instructions. The modulation preceded saccades made into only part of the visual field, indicating that the modulation was movement-related. In some neurons, delay activity was modulated by Go/Nogo instructions in both memory and visual trials and seemed to represent where to move in general. In other neurons, delay activity was modulated by Go/Nogo instructions only in memory trials, which suggested that it was a correlate of working memory, or only in visual trials, which suggested that it was a correlate of visual attention. In 47% (24/51) of FEF output neurons, delay activity was unaffected by Go/Nogo instructions, which indicated that the activity was related to the visual stimulus. In some of these neurons, delay activity occurred in both memory and visual trials and seemed to represent a

  17. A review on citation amnesia in depression and inflammation research.

    Science.gov (United States)

    Maes, Michael

    2015-01-01

    Once original scientific results are published the author has the "intellectual property" and may claim ownership. Discovery credit is one of the most important "rewards" for scientists and thus incorrect credits undermine the reward system of science. Scientists who publish should therefore give proper credit and acknowledge the primary sources. Failure to do so is regarded as "citation negligence", "the disregard syndrome", "citation amnesia", "plagiarism by omission", "bibliographic plagiarism" or "citation plagiarism", and may range from an unconscious or conscious "failure to credit a prior discoverer so as to give an improper impression of priority" to "the appropriation of another person's ideas or results without given proper credit". False discovery credit is considered to be "a menace to honest science", "a serious transgression" or "intellectual theft, be it intentional or not". This paper describes some examples of citation amnesia showing that scientists often fail to credit prior sources and give false discovery credit to other scientists. One example is the association between major depression and activated immuno-inflammatory pathways, a discovery by European groups and published in many papers since 1990. Now, 25 years later, it is commonplace that these theories are credited to secondary American sources whose work in "the last decade", did or did not examine these pathways in major depression. This gives an improper impression of priority of American-based scientists. Here it is proposed that this citation amnesia and plagiarism reinforced the wrong science and had negative effects on the development of immune-inflammatory biomarkers and new immune-related treatments for depression. It is concluded that journal editors should improve their citation standards to guarantee correct assignment of discovery credit for example by demanding a signed pledge from the authors that correct citations to the primary sources were made.

  18. The importance of mammillary body efferents for recency memory: towards a better understanding of diencephalic amnesia.

    Science.gov (United States)

    Nelson, Andrew J D; Vann, Seralynne D

    2017-07-01

    Despite being historically one of the first brain regions linked to memory loss, there remains controversy over the core features of diencephalic amnesia as well as the critical site for amnesia to occur. The mammillary bodies and thalamus appear to be the primary locus of pathology in the cases of diencephalic amnesia, but the picture is complicated by the lack of patients with circumscribed damage. Impaired temporal memory is a consistent neuropsychological finding in Korsakoff syndrome patients, but again, it is unclear whether this deficit is attributable to pathology within the diencephalon or concomitant frontal lobe dysfunction. To address these issues, we used an animal model of diencephalic amnesia and examined the effect of mammillothalamic tract lesions on tests of recency memory. The mammillothalamic tract lesions severely disrupted recency judgements involving multiple items but left intact both recency and familiarity judgements for single items. Subsequently, we used disconnection procedures to assess whether this deficit reflects the indirect involvement of the prefrontal cortex. Crossed-lesion rats, with unilateral lesions of the mammillothalamic tract and medial prefrontal cortex in contralateral hemispheres, were unimpaired on the same recency tests. These results provide the first evidence for the selective importance of mammillary body efferents for recency memory. Moreover, this contribution to recency memory is independent of the prefrontal cortex. More broadly, these findings identify how specific diencephalic structures are vital for key elements of event memory.

  19. MK-801 induced amnesia for the elevated plus-maze in mice

    Czech Academy of Sciences Publication Activity Database

    Hliňák, Zdeněk; Krejčí, I.

    2002-01-01

    Roč. 131, 1-2 (2002), s. 221-225 ISSN 0166-4328 R&D Projects: GA ČR GA309/00/1644 Institutional research plan: CEZ:AV0Z5011922 Keywords : amnesia * elevated plus-maze * MK-801 Subject RIV: FH - Neurology Impact factor: 2.791, year: 2002

  20. Clinical characteristics and brain PET findings in 3 cases of dissociative amnesia: disproportionate retrograde deficit and posterior middle temporal gyrus hypometabolism.

    Science.gov (United States)

    Thomas-Antérion, C; Dubas, F; Decousus, M; Jeanguillaume, C; Guedj, E

    2014-10-01

    Precipitated by psychological stress, dissociative amnesia occurs in the absence of identifiable brain damage. Its clinical characteristics and functional neural basis are still a matter of controversy. In the present paper, we report 3 cases of retrograde autobiographical amnesia, characterized by an acute onset concomitant with emotional/neurological precipitants. We present 2 cases of dissociative amnesia with fugue (cases 1 and 2), and one case of focal dissociative amnesia after a minor head trauma (case 3). The individual case histories and neuropsychological characteristics are reported, as well as the whole-brain voxel-based 18FDG-PET metabolic findings obtained at group-level in comparison to 15 healthy subjects. All patients suffered from autobiographical memory loss, in the absence of structural lesion. They had no significant impairment of anterograde memory or of executive function. Impairment of autobiographical memory was complete for two of the three patients, with loss of personal identity (cases 1 and 2). A clinical recovery was found for the two patients in whom follow-up was available (cases 2 and 3). Voxel-based group analysis highlighted a metabolic impairment of the right posterior middle temporal gyrus. 18FDG-PET was repeated in case 3, and showed a complete functional brain recovery. The situation of dissociative amnesia with disproportionate retrograde amnesia is clinically heterogeneous between individuals. Our findings may suggest that impairment of high-level integration of visual and/or emotional information processing involving dysfunction of the right posterior middle temporal gyrus could reduce triggering of multi-modal visual memory traces, thus impeding reactivation of aversive memories. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Delayed Administration of VEGF Rescues Spinal Motor Neurons from Death with a Short Effective Time Frame in Excitotoxic Experimental Models in Vivo

    Directory of Open Access Journals (Sweden)

    Luis B Tovar-y-Romo

    2012-02-01

    Full Text Available VEGF (vascular endothelial growth factor prevents neuronal death in different models of ALS (amyotrophic lateral sclerosis, but few studies have addressed the efficacy of VEGF to protect motor neurons after the onset of symptoms, a critical point when considering VEGF as a potential therapeutic target for ALS. We studied the capability of VEGF to protect motor neurons after an excitotoxic challenge in two models of spinal neurodegeneration in rats induced by AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid administered either chronically with osmotic minipumps or acutely by microdialysis. VEGF was administered through osmotic minipumps in the chronic model or injected intracerebroventricularly in the acute model, and its effects were assessed by immunohistochemical and histological analyses and motor performance tests. In the chronic model, VEGF stopped the progression of the paralysis and protected motor neurons when administered after AMPA before the onset of the motor symptoms, whereas no protection was observed when administered after the onset. VEGF was also protective in the acute model, but with a short time window, since the protection was effective when administered 1 h but not 2 h after AMPA. Our results indicate that while VEGF has an indubitable neuroprotective effect, its therapeutic potential for halting or delaying the progression of motor neuron loss in ALS would likely have a short effective time frame.

  2. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia.

    Science.gov (United States)

    Cameron, Stella H; Alwakeel, Amr J; Goddard, Liping; Hobbs, Catherine E; Gowing, Emma K; Barnett, Elizabeth R; Kohe, Sarah E; Sizemore, Rachel J; Oorschot, Dorothy E

    2015-09-01

    Perinatal hypoxia-ischemia is a major cause of striatal injury and may lead to cerebral palsy. This study investigated whether delayed administration of bone marrow-derived mesenchymal stem cells (MSCs), at one week after neonatal rat hypoxia-ischemia, was neurorestorative of striatal medium-spiny projection neurons and improved motor function. The effect of a subcutaneous injection of a high-dose, or a low-dose, of MSCs was investigated in stereological studies. Postnatal day (PN) 7 pups were subjected to hypoxia-ischemia. At PN14, pups received treatment with either MSCs or diluent. A subset of high-dose pups, and their diluent control pups, were also injected intraperitoneally with bromodeoxyuridine (BrdU), every 24h, on PN15, PN16 and PN17. This permitted tracking of the migration and survival of neuroblasts originating from the subventricular zone into the adjacent injured striatum. Pups were euthanized on PN21 and the absolute number of striatal medium-spiny projection neurons was measured after immunostaining for DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32), double immunostaining for BrdU and DARPP-32, and after cresyl violet staining alone. The absolute number of striatal immunostained calretinin interneurons was also measured. There was a statistically significant increase in the absolute number of DARPP-32-positive, BrdU/DARPP-32-positive, and cresyl violet-stained striatal medium-spiny projection neurons, and fewer striatal calretinin interneurons, in the high-dose mesenchymal stem cell (MSC) group compared to their diluent counterparts. A high-dose of MSCs restored the absolute number of these neurons to normal uninjured levels, when compared with previous stereological data on the absolute number of cresyl violet-stained striatal medium-spiny projection neurons in the normal uninjured brain. For the low-dose experiment, in which cresyl violet-stained striatal medium-spiny neurons alone were measured, there was a lower statistically

  3. Sleep modifications in acute transient global amnesia.

    Science.gov (United States)

    Della Marca, Giacomo; Mazza, Marianna; Losurdo, Anna; Testani, Elisa; Broccolini, Aldobrando; Frisullo, Giovanni; Marano, Giuseppe; Morosetti, Roberta; Pilato, Fabio; Profice, Paolo; Vollono, Catello; Di Lazzaro, Vincenzo

    2013-09-15

    Transient global amnesia (TGA) is a temporary memory loss characterized by an abrupt onset of antero-grade and retrograde amnesia, totally reversible. Since sleep plays a major role in memory consolidation, and in the storage of memory-related traces into the brain cortex, the aims of the present study were: (1) to evaluate changes in sleep macro-structure in TGA; (2) to assess modifications in sleep micro-structure in TGA, with particular reference to the arousal EEG and to cyclic alternating pattern (CAP); (3) to compare sleep parameters in TGA patients with a control group of patients with acute ischemic events ("minor stroke" or transient ischemic attack [TIA]) clinically and neuroradiologically "similar" to the TGA. TGA GROUP: 17 patients, (8 men and 9 women, 60.2 ± 12.5 years). Stroke or TIA (SoT) group: 17 patients hospitalized in the Stroke Unit for recent onset of minor stroke or TIA with hemispheric localization; healthy controls (HC) group: 17 healthy volunteers, matched for age and sex. Patients and controls underwent full-night polysomnography. In the multivariate analysis (conditions TGA, SoT, and HC) a significant effect of the condition was observed for sleep efficiency index, number of awakenings longer 1 min, REM latency, CAP time, and CAP rate. TGA and SoT differed only for CAP time and CAP rate, which were lower in the TGA group. Microstructural modification associated with tga could be consequent to: (1) hippocampal dysfunction and memory impairment; (2) impairment of arousal-related structures (in particular, cholinergic pathways); (3) emotional distress.

  4. Contribution of Prior Semantic Knowledge to New Episodic Learning in Amnesia

    Science.gov (United States)

    Kan, Irene P.; Alexander, Michael P.; Verfaellie, Mieke

    2009-01-01

    We evaluated whether prior semantic knowledge would enhance episodic learning in amnesia. Subjects studied prices that are either congruent or incongruent with prior price knowledge for grocery and household items and then performed a forced-choice recognition test for the studied prices. Consistent with a previous report, healthy controls'…

  5. Intrinsic modulation of pulse-coupled integrate-and-fire neurons

    Science.gov (United States)

    Coombes, S.; Lord, G. J.

    1997-11-01

    Intrinsic neuromodulation is observed in sensory and neuromuscular circuits and in biological central pattern generators. We model a simple neuronal circuit with a system of two pulse-coupled integrate-and-fire neurons and explore the parameter regimes for periodic firing behavior. The inclusion of biologically realistic features shows that the speed and onset of neuronal response plays a crucial role in determining the firing phase for periodic rhythms. We explore the neurophysiological function of distributed delays arising from both the synaptic transmission process and dendritic structure as well as discrete delays associated with axonal communication delays. Bifurcation and stability diagrams are constructed with a mixture of simple analysis, numerical continuation and the Kuramoto phase-reduction technique. Moreover, we show that, for asynchronous behavior, the strength of electrical synapses can control the firing rate of the system.

  6. Novelty preference in patients with developmental amnesia.

    Science.gov (United States)

    Munoz, M; Chadwick, M; Perez-Hernandez, E; Vargha-Khadem, F; Mishkin, M

    2011-12-01

    To re-examine whether or not selective hippocampal damage reduces novelty preference in visual paired comparison (VPC), we presented two different versions of the task to a group of patients with developmental amnesia (DA), each of whom sustained this form of pathology early in life. Compared with normal control participants, the DA group showed a delay-dependent reduction in novelty preference on one version of the task and an overall reduction on both versions combined. Because VPC is widely considered to be a measure of incidental recognition, the results appear to support the view that the hippocampus contributes to recognition memory. A difficulty for this conclusion, however, is that according to one current view the hippocampal contribution to recognition is limited to task conditions that encourage recollection of an item in some associated context, and according to another current view, to recognition of an item with the high confidence judgment that reflects a strong memory. By contrast, VPC, throughout which the participant remains entirely uninstructed other than to view the stimuli, would seem to lack such task conditions and so would likely lead to recognition based on familiarity rather than recollection or, alternatively, weak memories rather than strong. However, before concluding that the VPC impairment therefore contradicts both current views regarding the role of the hippocampus in recognition memory, two possibilities that would resolve this issue need to be investigated. One is that some variable in VPC, such as the extended period of stimulus encoding during familiarization, overrides its incidental nature, and, because this condition promotes either recollection- or strength-based recognition, renders the task hippocampal-dependent. The other possibility is that VPC, rather than providing a measure of incidental recognition, actually assesses an implicit, information-gathering process modulated by habituation, for which the hippocampus is

  7. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling

    International Nuclear Information System (INIS)

    Hao Yinghang; Gong, Yubing; Wang Li; Ma Xiaoguang; Yang Chuanlu

    2011-01-01

    Research highlights: → Single synchronization transition for gap-junctional coupling. → Multiple synchronization transitions for chemical synaptic coupling. → Gap junctions and chemical synapses have different impacts on synchronization transition. → Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.

  8. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hao Yinghang [School of Physics, Ludong University, Yantai 264025 (China); Gong, Yubing, E-mail: gongyubing09@hotmail.co [School of Physics, Ludong University, Yantai 264025 (China); Wang Li; Ma Xiaoguang; Yang Chuanlu [School of Physics, Ludong University, Yantai 264025 (China)

    2011-04-15

    Research highlights: Single synchronization transition for gap-junctional coupling. Multiple synchronization transitions for chemical synaptic coupling. Gap junctions and chemical synapses have different impacts on synchronization transition. Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.

  9. Bifurcation analysis for a discrete-time Hopfield neural network of two neurons with two delays and self-connections

    International Nuclear Information System (INIS)

    Kaslik, E.; Balint, St.

    2009-01-01

    In this paper, a bifurcation analysis is undertaken for a discrete-time Hopfield neural network of two neurons with two different delays and self-connections. Conditions ensuring the asymptotic stability of the null solution are found, with respect to two characteristic parameters of the system. It is shown that for certain values of these parameters, Fold or Neimark-Sacker bifurcations occur, but Flip and codimension 2 (Fold-Neimark-Sacker, double Neimark-Sacker, resonance 1:1 and Flip-Neimark-Sacker) bifurcations may also be present. The direction and the stability of the Neimark-Sacker bifurcations are investigated by applying the center manifold theorem and the normal form theory

  10. Synchronization of Coupled Neurons Controlled by a Pacemaker

    International Nuclear Information System (INIS)

    Li Mei-Sheng; Zhang Hong-Hui; Zhao Yong; Shi Xia

    2011-01-01

    We investigate synchronization of Hindmarsh—Rose neurons with gap junctions under the control of a pacemaker. In a ring Hindmarsh—Rose neuronal network, the coupled neurons with the pacemaker can occur in synchronization more easily than those without the pacemaker. Furthermore, the pacemaker can induce phase synchronization or nearly-complete synchronization of nonidentical neurons. This synchronization can occur more easily when time delay is considered. Theses results can be helpful to understand the activities of the real neuronal system. (general)

  11. Endogenous fields enhanced stochastic resonance in a randomly coupled neuronal network

    International Nuclear Information System (INIS)

    Deng, Bin; Wang, Lin; Wang, Jiang; Wei, Xi-le; Yu, Hai-tao

    2014-01-01

    Highlights: • We study effects of endogenous fields on stochastic resonance in a neural network. • Stochastic resonance can be notably enhanced by endogenous field feedback. • Endogenous field feedback delay plays a vital role in stochastic resonance. • The parameters of low-passed filter play a subtle role in SR. - Abstract: Endogenous field, evoked by structured neuronal network activity in vivo, is correlated with many vital neuronal processes. In this paper, the effects of endogenous fields on stochastic resonance (SR) in a randomly connected neuronal network are investigated. The network consists of excitatory and inhibitory neurons and the axonal conduction delays between neurons are also considered. Numerical results elucidate that endogenous field feedback results in more rhythmic macroscope activation of the network for proper time delay and feedback coefficient. The response of the network to the weak periodic stimulation can be notably enhanced by endogenous field feedback. Moreover, the endogenous field feedback delay plays a vital role in SR. We reveal that appropriately tuned delays of the feedback can either induce the enhancement of SR, appearing at every integer multiple of the weak input signal’s oscillation period, or the depression of SR, appearing at every integer multiple of half the weak input signal’s oscillation period for the same feedback coefficient. Interestingly, the parameters of low-passed filter which is used in obtaining the endogenous field feedback signal play a subtle role in SR

  12. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    Science.gov (United States)

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.

  13. A Patient with Difficulty of Object Recognition: Semantic Amnesia for Manipulable Objects

    Directory of Open Access Journals (Sweden)

    A. Yamadori

    1992-01-01

    Full Text Available We studied a patient who had recognition difficulty for manipulable objects. MRI showed a lesion in the left occipito-parietotemporal area. Differential diagnosis of agnosia, aphasia and apraxia is discussed. We believe this “object meaning amnesia” constitutes a distinct subtype of semantic amnesia.

  14. Toward heterogeneity in feedforward network with synaptic delays based on FitzHugh-Nagumo model

    Science.gov (United States)

    Qin, Ying-Mei; Men, Cong; Zhao, Jia; Han, Chun-Xiao; Che, Yan-Qiu

    2018-01-01

    We focus on the role of heterogeneity on the propagation of firing patterns in feedforward network (FFN). Effects of heterogeneities both in parameters of neuronal excitability and synaptic delays are investigated systematically. Neuronal heterogeneity is found to modulate firing rates and spiking regularity by changing the excitability of the network. Synaptic delays are strongly related with desynchronized and synchronized firing patterns of the FFN, which indicate that synaptic delays may play a significant role in bridging rate coding and temporal coding. Furthermore, quasi-coherence resonance (quasi-CR) phenomenon is observed in the parameter domain of connection probability and delay-heterogeneity. All these phenomena above enable a detailed characterization of neuronal heterogeneity in FFN, which may play an indispensable role in reproducing the important properties of in vivo experiments.

  15. Preserved memory in retrograde amnesia: sparing of a recently acquired skill.

    Science.gov (United States)

    Squire, L R; Cohen, N J; Zouzounis, J A

    1984-01-01

    Recent work with amnesic patients has revealed a preserved capacity for acquiring and retaining new skills despite otherwise profound anterograde impairment. In addition to their anterograde impairment, amnesic patients also have retrograde memory loss for some information acquired prior to the amnesic event. The present experiment addresses for the first time the question of whether preservation of memory for skills is also a feature memory impairment. To determine the susceptibility of a recently learned skill to retrograde amnesia, we taught patients to read mirror-reversed words before and during the early part of a prescribed course of electroconvulsive therapy (ECT) and then tested retention of the skill after the course of treatment had been completed. Patients prescribed bilateral or right unilateral ECT and depressed patients not receiving ECT acquired the mirror-reading skill at the same rate and then retained it at the same level. For the patients prescribed ECT, intact learning and retention of the skill occurred despite retrograde amnesia for the previous testing sessions and for the words that they had read previously.

  16. Dissociative amnesia in dissociative disorders and borderline personality disorder: self-rating assessment in a college population.

    Science.gov (United States)

    Sar, Vedat; Alioğlu, Firdevs; Akyuz, Gamze; Karabulut, Sercan

    2014-01-01

    Dissociative amnesia (DA) among subjects with a dissociative disorder and/or borderline personality disorder (BPD) recruited from a nonclinical population was examined. The Steinberg Dissociative Amnesia Questionnaire (SDAQ), the Childhood Trauma Questionnaire, and the self-report screening tool of the BPD section of the Structured Clinical Interview for DSM-IV(SCID-BPD) were administered to 1,301 college students. A total of 80 participants who were diagnosed with BPD according to the clinician-administered SCID-BPD and 111 nonborderline controls were evaluated using the Structured Clinical Interview for DSM-IV Dissociative Disorders (SCID-D) by a psychiatrist blind to diagnosis and scale scores. Internal consistency analyses and test-retest evaluations suggested that the SDAQ is a reliable instrument for the population studied. Of the participants, 20.6% reported an SDAQ score of 20 or above and impairment by DA. Those who had both dissociative disorder and BPD (n = 78) had the highest SDAQ scores. Both disorders had significant effects on the SCID-D total and amnesia scores in the variance analysis. On SDAQ scores, however, only BPD had this effect. There was a significant interaction between the 2 disorders for the SCID-D total but not for the SDAQ or SCID-D amnesia scores. BPD represented the severity of dissociation and childhood trauma in this study group. However, in contrast to the dissociative disorders, BPD was characterized by better awareness of DA in self-report. The discrepancies between self-report and clinical interview associated with BPD and dissociative disorders are discussed in the context of betrayal theory (J. J. Freyd, 1994) of BPD and perceptual theory (D. B. Beere, 2009) of dissociative disorders.

  17. Using attribute amnesia to test the limits of hyper-binding and associative deficits in working memory.

    Science.gov (United States)

    McCormick-Huhn, John M; Chen, Hui; Wyble, Bradley P; Dennis, Nancy A

    2018-02-01

    Previous work has shown mixed evidence regarding age-related deficits for binding in working memory. The current study used the newly developed attribute amnesia effect (H. Chen & Wyble, 2015a) to test the associative-deficit hypothesis during working memory and to probe whether hyper-binding extends to include binding of de-selected information. In studies of attribute amnesia, participants use target attributes (e.g., identity, color) to demonstrate near ceiling levels of reporting of a second target attribute (e.g., location) across a series of trials (H. Chen & Wyble, 2015a, 2016). Yet, despite having just processed the target-defining attribute, they have difficulty reporting it on a surprise trial. This effect provides several predictions for associative binding in aging. The associative-deficit hypothesis predicts age-related decline on the surprise trial, whereas an extension of hyper-binding predicts age-related increase in performance in older adults. In Experiment 1, when working memory load was low, older adults demonstrated attribute amnesia equal to that found in younger adults. When load increased in Experiment 2, older adults again demonstrated attribute amnesia as well as an age deficit for reporting target attributes. In lieu of spontaneous binding, results suggest that expectancy plays a critical role in older adults' propensity to encode and bind target attributes in working memory. Results further suggest that expectancy alone is not enough for older adults to form bound representations when task demands are high. Taken together results revealed a boundary condition of hyper-binding and further provided conditional support for the associative-deficit hypothesis in working memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Post-traumatic amnesia predicts intelligence impairment following traumatic brain injury: a meta-analysis

    NARCIS (Netherlands)

    Konigs, M.; de Kieviet, J.F.; Oosterlaan, J.

    2012-01-01

    Context: Worldwide, millions of patients with traumatic brain injury (TBI) suffer from persistent and disabling intelligence impairment. Post-traumatic amnesia (PTA) duration is a promising predictor of intelligence following TBI. Objectives: To determine (1) the impact of TBI on intelligence

  19. Semantic amnesia without dementia: documentation of a case.

    Science.gov (United States)

    Rusconi, M L; Zago, S; Basso, A

    1997-06-01

    We described the case of a patient affected by a progressive semantic memory disorder associated with prevalent temporal lobe atrophy. This deficit seems to be "pure" in the sense that it has not been found to overlap with other cognitive deficits (intellectual, linguistic, perceptual, visuo-spatial etc.) for a long time. Furthermore, despite his impaired semantic knowledge, the autobiographical memory of the patient was largely intact. This case therefore represents a form of "semantic amnesia" without dementia, and supports the hypothesis that there is a partial distinction between "semantic" and "episodic" memory.

  20. Apparent Amnesia : interidentity memory functioning in dissociative identity disdorder

    OpenAIRE

    Huntjens, R.J.C.

    2003-01-01

    Dissociative identity disorder (DID) is characterized by the presence of two or more distinct identities or personality states that recurrently take control of the individual s behavior. Between 95 and 100 % of DID patients report experiences of blank spells for periods of time when other identities are in control of their behavior. In this thesis, the fundamental question of whether objective evidence for the reported interidentity amnesia in DID can be found under rigorous experimental cond...

  1. Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice.

    Science.gov (United States)

    Sironi, Francesca; Vallarola, Antonio; Violatto, Martina Bruna; Talamini, Laura; Freschi, Mattia; De Gioia, Roberta; Capelli, Chiara; Agostini, Azzurra; Moscatelli, Davide; Tortarolo, Massimo; Bigini, Paolo; Introna, Martino; Bendotti, Caterina

    2017-12-01

    Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1β) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression. Copyright © 2017. Published by Elsevier B.V.

  2. Dissociative amnesia: a case with management challenges

    Directory of Open Access Journals (Sweden)

    Priti Singh

    2015-07-01

    Full Text Available A case of dissociative amnesia with regressed behaviour was diagnosed applying the existing criteria for dissociative disorder in the tenth revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-10. Though there are number of cases of such condition, but when coupled with regressed behaviour it adds to new dimension in the management. An applied strategy in lines with both pharmacological and non pharmacological was used, and we found that it helped our patient to gradually improve her behaviour. This is one of the few cases reported and we hope more such cases should be reported in understanding the psychopathology.

  3. Synchronization in networks with heterogeneous coupling delays

    Science.gov (United States)

    Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor

    2018-01-01

    Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.

  4. Effect of Phase Response Curve Skew on Synchronization with and without Conduction Delays

    Directory of Open Access Journals (Sweden)

    Carmen eCanavier

    2013-12-01

    Full Text Available A central problem in cortical processing including sensory binding and attentional gating is how neurons can synchronize their responses with zero or near-zero time lag. For a spontaneously firing neuron, an input from another neuron can delay or advance the next spike by different amounts depending upon the timing of the input relative to the previous spike. This information constitutes the phase response curve (PRC. We present a simple graphical method for determining the effect of PRC shape on synchronization tendencies and illustrate it using type 1 PRCs, which consist entirely of advances (delays in response to excitation (inhibition. We obtained the following generic solutions for type 1 PRCs, which include the pulse coupled leaky integrate and fire model. For pairs with mutual excitation, exact synchrony can be stable for strong coupling because of the stabilizing effect of the causal limit region of the PRC in which an input triggers a spike immediately upon arrival. However, synchrony is unstable for short delays, because delayed inputs arrive during a refractory period and cannot trigger an immediate spike. Right skew destabilizes antiphase and enables modes with time lags that grow as the conduction delay is increased. Therefore, right skew favors near-synchrony at short conduction delays and a gradual transition between synchrony and antiphase for pairs coupled by mutual excitation. For pairs with mutual inhibition, zero time lag synchrony is stable for conduction delays ranging from zero to a substantial fraction of the period for pairs. However, for right skew there is a preferred antiphase mode at short delays. In contrast to mutual excitation, left skew destabilizes antiphase for mutual inhibition so that synchrony dominates at short delays as well. These pairwise synchronization tendencies constrain the synchronization properties of neurons embedded in larger networks.

  5. Hippocampal declarative memory supports gesture production: Evidence from amnesia.

    Science.gov (United States)

    Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C

    2016-12-01

    Spontaneous co-speech hand gestures provide a visuospatial representation of what is being communicated in spoken language. Although it is clear that gestures emerge from representations in memory for what is being communicated (De Ruiter, 1998; Wesp, Hesse, Keutmann, & Wheaton, 2001), the mechanism supporting the relationship between gesture and memory is unknown. Current theories of gesture production posit that action - supported by motor areas of the brain - is key in determining whether gestures are produced. We propose that when and how gestures are produced is determined in part by hippocampally-mediated declarative memory. We examined the speech and gesture of healthy older adults and of memory-impaired patients with hippocampal amnesia during four discourse tasks that required accessing episodes and information from the remote past. Consistent with previous reports of impoverished spoken language in patients with hippocampal amnesia, we predicted that these patients, who have difficulty generating multifaceted declarative memory representations, may in turn have impoverished gesture production. We found that patients gestured less overall relative to healthy comparison participants, and that this was particularly evident in tasks that may rely more heavily on declarative memory. Thus, gestures do not just emerge from the motor representation activated for speaking, but are also sensitive to the representation available in hippocampal declarative memory, suggesting a direct link between memory and gesture production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Transient global amnesia and neurological events: the Framingham Heart Study

    OpenAIRE

    Jose Rafael Romero; Jose Rafael Romero; Melissa eMercado; Alexa S Beiser; Alexa S Beiser; Alexa S Beiser; Aleksandra ePikula; Aleksandra ePikula; Sudha eSeshadri; Sudha eSeshadri; Margaret eKelly-Hayes; Philip A Wolf; Philip A Wolf; Carlos S Kase; Carlos S Kase

    2013-01-01

    Background/ objective: Transient global amnesia (TGA) is a temporary amnestic syndrome characterized by lack of other focal neurological deficits. Cerebrovascular disease, migraine and seizures have been suggested as underlying mechanisms. TGA may be a risk factor for cerebrovascular or other neurological events. We studied the relation of TGA, vascular risk factors, brain magnetic resonance imaging (MRI) indices of subclinical ischemia and neurological events in a community-based sample. Des...

  7. Regenerative memory in time-delayed neuromorphic photonic resonators

    Science.gov (United States)

    Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.

    2016-01-01

    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals.

  8. O(t-α)-synchronization and Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations.

    Science.gov (United States)

    Chen, Jiejie; Chen, Boshan; Zeng, Zhigang

    2018-04-01

    This paper investigates O(t -α )-synchronization and adaptive Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations. Firstly, based on the framework of Filippov solution and differential inclusion theory, using a Razumikhin-type method, some sufficient conditions ensuring the global O(t -α )-synchronization of considered networks are established via a linear-type discontinuous control. Next, a new fractional differential inequality is established and two new discontinuous adaptive controller is designed to achieve Mittag-Leffler synchronization between the drive system and the response systems using this inequality. Finally, two numerical simulations are given to show the effectiveness of the theoretical results. Our approach and theoretical results have a leading significance in the design of synchronized fractional-order memristive neural networks circuits involving discontinuous activations and time-varying delays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Population density models of integrate-and-fire neurons with jumps: well-posedness.

    Science.gov (United States)

    Dumont, Grégory; Henry, Jacques

    2013-09-01

    In this paper we study the well-posedness of different models of population of leaky integrate-and-fire neurons with a population density approach. The synaptic interaction between neurons is modeled by a potential jump at the reception of a spike. We study populations that are self excitatory or self inhibitory. We distinguish the cases where this interaction is instantaneous from the one where there is a repartition of conduction delays. In the case of a bounded density of delays both excitatory and inhibitory population models are shown to be well-posed. But without conduction delay the solution of the model of self excitatory neurons may blow up. We analyze the different behaviours of the model with jumps compared to its diffusion approximation.

  10. Modular networks with delayed coupling: Synchronization and frequency control

    Science.gov (United States)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2014-07-01

    We study the collective dynamics of modular networks consisting of map-based neurons which generate irregular spike sequences. Three types of intramodule topology are considered: a random Erdös-Rényi network, a small-world Watts-Strogatz network, and a scale-free Barabási-Albert network. The interaction between the neurons of different modules is organized by relatively sparse connections with time delay. For all the types of the network topology considered, we found that with increasing delay two regimes of module synchronization alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual role of the time delay is thus established: controlling a synchronization mode and degree and controlling an average network frequency. Furthermore, we investigate the influence on the modular synchronization by other parameters: the strength of intermodule coupling and the individual firing rate.

  11. Spiking neuron devices consisting of single-flux-quantum circuits

    International Nuclear Information System (INIS)

    Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito

    2006-01-01

    Single-flux-quantum (SFQ) circuits can be used for making spiking neuron devices, which are useful elements for constructing intelligent, brain-like computers. The device we propose is based on the leaky integrate-and-fire neuron (IFN) model and uses a SFQ pulse as an action signal or a spike of neurons. The operation of the neuron device is confirmed by computer simulator. It can operate with a short delay of 100 ps or less and is the highest-speed neuron device ever reported

  12. Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice.

    Science.gov (United States)

    Ghumatkar, Priya J; Patil, Sachin P; Jain, Pankaj D; Tambe, Rufi M; Sathaye, Sadhana

    2015-08-01

    Phloretin (PHL), a dihydrochalcone flavonoid usually present in the roots and leaves of apple tree. In vitro study on GT1-7 immortalized hypothalamic neurons exposed to amyloid beta (25-35), demonstrated that PHL significantly influenced membrane fluidity and potential. PHL also significantly decreased excitotoxicity by restoring the calcium homeostasis in the same. Thus, PHL proves to be a promising therapeutic moiety which should be further screened in the treatment of Alzheimer's disease. The objective of the present study was to evaluate the nootropic, neuroprotective and neurotrophic roles of PHL in the subacute scopolamine induced amnesia in mice. In this study, mice were pretreated with PHL 2.5mg/kg, 5mg/kg, 10mg/kg and Donepezil (DON) 1mg/kg intraperitoneally (i.p) for 14days. The last 7days of treatment regimen included daily injection of SCP 1.5mg/kg to induce cognitive deficits. Mice were subjected to behavioral analysis. Biochemical estimation of the brain homogenates for acetylcholinesterase and oxidative stress biomarkers were conducted. Furthermore, immunohistochemical analysis for the brain derived neurotrophic factor (BDNF) was carried out particularly in the hippocampus. PHL was found to significantly improve the performance of mice in Morris water maze test (Pnootropic, neuroprotective and neurotrophic activities in SCP induced memory impaired mice and hence, is a promising therapeutic moiety in the treatment of AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Large cerebral perfusion defects observed in brain perfusion SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients

    Energy Technology Data Exchange (ETDEWEB)

    So, Young; Kim, Hahn Young; Roh, Hong Gee; Han, Seol Heui [Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Transient global amnesia (TGA) is a memory disorder characterized by an episode of antegrade amnesia and bewilderment which persists for several hours. We analyzed brain perfusion SPECT findings and clinical outcome of patients who suffered from TGA. From September 2005 to August 2007, 12 patients underwent Tc-99m ECD brain perfusion SPECT for neuroimaging of TGA. All patients also underwent MRI and MRA including DWI (MRI). Among them, 10 patients who could be chased more than 6 months were included in this study. Their average age was 60.74.0 yrs (M: F = 2: 8) and the average duration of amnesia was 4.42.2 hrs (1 hr {approx} 7 hrs). Duration from episode of amnesia to SPECT was 4.32.4 days (1{approx}9 days). Precipitating factors could be identified in 6 patients: emotional stress 3, hair dyeing 1, taking a nap 1 and angioplasty 1. SPECT and MRI was visually assessed, No cerebral perfusion defect was observed on SPECT in 3 patients and their clinical outcome was all good. Among 7 patients who had cerebral perfusion defects on SPECT, 3 patients had good clinical outcome, while others did not: one had hypercholesterolemia, another had depression, and 2 patients with cerebral perfusion defects at both temporoparetal cortex was later diagnosed as early Alzheimer's disease (AD) and mild cognitive impairment (MCI). MRI was negative in 6 patients and 3 of them had excellent clinical outcome while other 3 were diagnosed as hypercholesterolemia, early AD and MCI. Among 4 patients with positive MRI, 3 showed good clinical outcome and their MRI showed lesions at medial temporal cortex and/or vertebral artery. One patient with microcalcification at left putamen was diagnosed to have depression. Large cerebral perfusion defects on SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients which usually shows negative MRI.

  14. Large cerebral perfusion defects observed in brain perfusion SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients

    International Nuclear Information System (INIS)

    So, Young; Kim, Hahn Young; Roh, Hong Gee; Han, Seol Heui

    2007-01-01

    Transient global amnesia (TGA) is a memory disorder characterized by an episode of antegrade amnesia and bewilderment which persists for several hours. We analyzed brain perfusion SPECT findings and clinical outcome of patients who suffered from TGA. From September 2005 to August 2007, 12 patients underwent Tc-99m ECD brain perfusion SPECT for neuroimaging of TGA. All patients also underwent MRI and MRA including DWI (MRI). Among them, 10 patients who could be chased more than 6 months were included in this study. Their average age was 60.74.0 yrs (M: F = 2: 8) and the average duration of amnesia was 4.42.2 hrs (1 hr ∼ 7 hrs). Duration from episode of amnesia to SPECT was 4.32.4 days (1∼9 days). Precipitating factors could be identified in 6 patients: emotional stress 3, hair dyeing 1, taking a nap 1 and angioplasty 1. SPECT and MRI was visually assessed, No cerebral perfusion defect was observed on SPECT in 3 patients and their clinical outcome was all good. Among 7 patients who had cerebral perfusion defects on SPECT, 3 patients had good clinical outcome, while others did not: one had hypercholesterolemia, another had depression, and 2 patients with cerebral perfusion defects at both temporoparetal cortex was later diagnosed as early Alzheimer's disease (AD) and mild cognitive impairment (MCI). MRI was negative in 6 patients and 3 of them had excellent clinical outcome while other 3 were diagnosed as hypercholesterolemia, early AD and MCI. Among 4 patients with positive MRI, 3 showed good clinical outcome and their MRI showed lesions at medial temporal cortex and/or vertebral artery. One patient with microcalcification at left putamen was diagnosed to have depression. Large cerebral perfusion defects on SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients which usually shows negative MRI

  15. APOEε4 increases trauma induced early apoptosis via reducing delayed rectifier K(+) currents in neuronal/glial co-cultures model.

    Science.gov (United States)

    Chen, Ligang; Sun, Xiaochuan; Jiang, Yong; Kuai, Li

    2015-06-10

    Traumatic brain injury (TBI) is a commonly encountered emergency and severe neurosurgical injury. Previous studies have shown that the presence of the apolipoprotein E (APOE) ε4 allele has adverse outcomes across the spectrum of TBI severity. Our objective was to evaluate the effects of APOE alleles on trauma induced early apoptosis via modification of delayed rectifier K(+) current (Ik(DR)) in neuronal/glial co-cultures model. An ex vivo neuronal/glial co-cultures model carrying individual APOE alleles (ε2, ε3, ε4) of mechanical injury was developed. Flow cytometry and patch clamp recording were performed to analyze the correlations among APOE genotypes, early apoptosis and Ik(DR). We found that APOEε4 increased early apoptosis at 24h (p<0.05) compared to the ones transfected with APOEε3 and APOEε2. Noticeably, APOEε4 significantly reduced the amplitude of the Ik(DR) at 24h compared to the APOEε3 and APOEε2 (p<0.05) which exacerbate Ca(2+) influx. This indicates a possible effect of APOEε4 on early apoptosis via inhibiting Ik(DR) following injury which may adversely affect the outcome of TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses

    International Nuclear Information System (INIS)

    Liu, Chen; Wang, Jiang; Wang, Lin; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok

    2014-01-01

    Highlights: • Synchronization transitions in hybrid scale-free neuronal networks are investigated. • Multiple synchronization transitions can be induced by the time delay. • Effect of synchronization transitions depends on the ratio of the electrical and chemical synapses. • Coupling strength and the density of inter-neuronal links can enhance the synchronization. -- Abstract: The impacts of information transmission delay on the synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses are investigated. Numerical results show that multiple appearances of synchronization regions transitions can be induced by different information transmission delays. With the time delay increasing, the synchronization of neuronal activities can be enhanced or destroyed, irrespective of the probability of chemical synapses in the whole hybrid neuronal network. In particular, for larger probability of electrical synapses, the regions of synchronous activities appear broader with stronger synchronization ability of electrical synapses compared with chemical ones. Moreover, it can be found that increasing the coupling strength can promote synchronization monotonously, playing the similar role of the increasing the probability of the electrical synapses. Interestingly, the structures and parameters of the scale-free neuronal networks, especially the structural evolvement plays a more subtle role in the synchronization transitions. In the network formation process, it is found that every new vertex is attached to the more old vertices already present in the network, the more synchronous activities will be emerge

  17. Disinhibiting neurons in the dorsomedial hypothalamus delays the onset of exertional fatigue and exhaustion in rats exercising in a warm environment.

    Science.gov (United States)

    Zaretsky, Dmitry V; Kline, Hannah; Zaretskaia, Maria V; Brown, Mary Beth; Durant, Pamela J; Alves, Nathan J; Rusyniak, Daniel E

    2018-06-15

    Stimulants cause hyperthermia, in part, by increasing heat generation through exercise. Stimulants also delay the onset of fatigue and exhaustion allowing animals to exercise longer. If used in a warm environment, this combination (increased exercise and decreased fatigue) can cause heat stroke. The dorsomedial hypothalamus (DMH) is involved in mediating locomotion from stimulants. Furthermore, inhibiting the DMH decreases locomotion and prevents hyperthermia in rats given stimulants in a warm environment. Whether the DMH is involved in mediating exercise-induced fatigue and exhaustion is not known. We hypothesized that disinhibiting neurons in the dorsomedial hypothalamus (DMH) would delay the onset of fatigue and exhaustion in animals exercising in a warm environment. To test this hypothesis, we used automated video tracking software to measure fatigue and exhaustion. In rats, using wearable mini-pumps, we demonstrated that disinhibiting the DMH, via bicuculline perfusion (5 µM), increased the duration of exercise in a warm environment as compared to control animals (25 ± 3 min vs 15 ± 2 min). Bicuculline-perfused animals also had higher temperatures at exhaustion (41.4 ± 0.2 °C vs 40.0 ± 0.4 °C). Disinhibiting neurons in the DMH also increased the time to fatigue. Our data show that the same region of the hypothalamus that is involved in mediating locomotion to stimulants, is also involved in controlling exhaustion and fatigue. These findings have implications for understanding the cause and treatment of stimulant-induced-hyperthermia. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Firing dynamics of an autaptic neuron

    International Nuclear Information System (INIS)

    Wang Heng-Tong; Chen Yong

    2015-01-01

    Autapses are synapses that connect a neuron to itself in the nervous system. Previously, both experimental and theoretical studies have demonstrated that autaptic connections in the nervous system have a significant physiological function. Autapses in nature provide self-delayed feedback, thus introducing an additional timescale to neuronal activities and causing many dynamic behaviors in neurons. Recently, theoretical studies have revealed that an autapse provides a control option for adjusting the response of a neuron: e.g., an autaptic connection can cause the electrical activities of the Hindmarsh–Rose neuron to switch between quiescent, periodic, and chaotic firing patterns; an autapse can enhance or suppress the mode-locking status of a neuron injected with sinusoidal current; and the firing frequency and interspike interval distributions of the response spike train can also be modified by the autapse. In this paper, we review recent studies that showed how an autapse affects the response of a single neuron. (topical review)

  19. The effect of CA1 dopaminergic system on amnesia induced by harmane in mice.

    Science.gov (United States)

    Nasehi, Mohammad; Hasanvand, Simin; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2018-05-16

    In the present study, the effects of bilateral injections of dopaminergic drugs into the hippocampal CA1 regions (intra-CA1) on harmane-induced amnesia were examined in mice. We used a single-trial step-down inhibitory avoidance task for the assessment of memory acquisition in adult male mice. Our data indicated that pre-training intra-peritoneal (i.p.) administration of harmane (12 mg/kg) impaired memory acquisition. Moreover, intra-CA1 administration of dopamine D1 receptor agonist, SKF38393 (0.25 µg/mouse), dopamine D1 receptor antagonist, SCH23390 (0.25 µg/mouse), dopamine D2 receptor agonist, quinpirole (0.125 and 0.25 µg/mouse) and dopamine D2 receptor antagonist, sulpiride (0.2 and 0.4 µg/mouse) decreased the learning of a single-trial inhibitory avoidance task. Furthermore, pre-training intra-CA1 injection of sub-threshold doses of SKF38393 (0.0625 µg/mouse) or sulpiride (0.1 µg/mouse) increased pre-training harmane (4 and 8 mg/kg, i.p.)-induced amnesia. On the other hand, pre-training intra-CA1 injection of a sub-threshold dose of SCH23390 (0.0625 µg/mouse) reversed amnesia induced by an effective dose of harmane (12 mg/kg; i.p.). In addition, Pre-training intra-CA1 injection of quinpirole (0.0625 µg/mouse) had no effect on memory impairment induced by harmane. These findings indicate the involvement of CA1 dopaminergic system on harmane-induced impairment of memory acquisition.

  20. Learning Recruits Neurons Representing Previously Established Associations in the Corvid Endbrain.

    Science.gov (United States)

    Veit, Lena; Pidpruzhnykova, Galyna; Nieder, Andreas

    2017-10-01

    Crows quickly learn arbitrary associations. As a neuronal correlate of this behavior, single neurons in the corvid endbrain area nidopallium caudolaterale (NCL) change their response properties during association learning. In crows performing a delayed association task that required them to map both familiar and novel sample pictures to the same two choice pictures, NCL neurons established a common, prospective code for associations. Here, we report that neuronal tuning changes during learning were not distributed equally in the recorded population of NCL neurons. Instead, such learning-related changes relied almost exclusively on neurons which were already encoding familiar associations. Only in such neurons did behavioral improvements during learning of novel associations coincide with increasing selectivity over the learning process. The size and direction of selectivity for familiar and newly learned associations were highly correlated. These increases in selectivity for novel associations occurred only late in the delay period. Moreover, NCL neurons discriminated correct from erroneous trial outcome based on feedback signals at the end of the trial, particularly in newly learned associations. Our results indicate that task-relevant changes during association learning are not distributed within the population of corvid NCL neurons but rather are restricted to a specific group of association-selective neurons. Such association neurons in the multimodal cognitive integration area NCL likely play an important role during highly flexible behavior in corvids.

  1. Mutations in KPTN Cause Macrocephaly, Neurodevelopmental Delay, and Seizures

    Science.gov (United States)

    Baple, Emma L.; Maroofian, Reza; Chioza, Barry A.; Izadi, Maryam; Cross, Harold E.; Al-Turki, Saeed; Barwick, Katy; Skrzypiec, Anna; Pawlak, Robert; Wagner, Karin; Coblentz, Roselyn; Zainy, Tala; Patton, Michael A.; Mansour, Sahar; Rich, Phillip; Qualmann, Britta; Hurles, Matt E.; Kessels, Michael M.; Crosby, Andrew H.

    2014-01-01

    The proper development of neuronal circuits during neuromorphogenesis and neuronal-network formation is critically dependent on a coordinated and intricate series of molecular and cellular cues and responses. Although the cortical actin cytoskeleton is known to play a key role in neuromorphogenesis, relatively little is known about the specific molecules important for this process. Using linkage analysis and whole-exome sequencing on samples from families from the Amish community of Ohio, we have demonstrated that mutations in KPTN, encoding kaptin, cause a syndrome typified by macrocephaly, neurodevelopmental delay, and seizures. Our immunofluorescence analyses in primary neuronal cell cultures showed that endogenous and GFP-tagged kaptin associates with dynamic actin cytoskeletal structures and that this association is lost upon introduction of the identified mutations. Taken together, our studies have identified kaptin alterations responsible for macrocephaly and neurodevelopmental delay and define kaptin as a molecule crucial for normal human neuromorphogenesis. PMID:24239382

  2. Using New Approaches in Neurobiology to Rethink Stress-Induced Amnesia.

    Science.gov (United States)

    Radulovic, Jelena

    2017-03-01

    Psychological stress can impact memory systems in several different ways. In individuals with healthy defense and coping systems, stress results in the formation of negatively valenced memories whose ability to induce emotional and somatic distress subsides with time. Vulnerable individuals, however, go on to develop stress-related disorders such as post-traumatic stress disorder (PTSD) and suffer from significant memory abnormalities. Whether expressed as intrusive trauma memories, partial amnesia, or dissociative amnesia, such abnormalities are thought to be the core source of patients' symptoms, which are often debilitating and implicate an entire socio-cognitive-affective spectrum. With this in mind, and focusing on stress-responsive hippocampal microcircuits, this article highlights recent advances in the neurobiology of memory that allow us to (1) isolate and visualize memory circuits, (2) change their activity using genetic tools and state-dependent manipulations, and (3) directly examine their impact on socio-affective circuits and global network connectivity. By integrating these approaches, we are now in a position to address important questions that have troubled psychiatry for a long time-questions such as are traumatic memories special, and why are stress effects on memory diverse. Furthering our fundamental understanding of memory in the framework of adaptive and maladaptive stress responses has the potential to boost the development of new treatments that can benefit patients suffering from psychological trauma.

  3. Contribution of Embodiment to Solving the Riddle of Infantile Amnesia

    Directory of Open Access Journals (Sweden)

    Arthur M Glenberg

    2016-01-01

    Full Text Available At least since the late nineteenth century, researchers have sought an explanation for infantile amnesia (IA—the lack of autobiographical memories dating from early childhood—and childhood amnesia (CA, faster forgetting of events up until the age of about seven. Evidence suggests that IA occurs across altricial species, and a number of studies using animal models have converged on the hypothesis that maturation of the hippocampus is an important factor. But why does the hippocampus mature at one time and not another, and how does that maturation relate to memory? Our hypothesis is rooted in theories of embodied cognition, and it provides an explanation both for hippocampal development and the end of IA. Specifically, the onset of locomotion prompts the alignment of hippocampal place cells and grid cells to the environment, which in turn facilitates the ontogeny of long-term episodic memory and the end of IA. That is, because the animal can now reliably discriminate locations, location becomes a stable cue for memories. Furthermore, as the mode of human locomotion shifts from crawling to walking, there is an additional shift in the alignment of the hippocampus that marks the beginning of adult-like episodic memory and the end of CA. Finally, given a reduction in self-locomotion and exploration with aging, the hypothesis suggests a partial explanation for cognitive decline with aging.

  4. Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons

    Science.gov (United States)

    Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen

    2013-01-01

    Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337

  5. ‘Becoming Mozambicanised’: Nostalgic amnesia among Zimbabweans adapting to ‘disorder’ in Mozambique

    DEFF Research Database (Denmark)

    Hammar, Amanda

    2017-01-01

    -simplifications and stereotypes. It suggests that rememberings and representations of an ‘ordered’ past in Zimbabwe set in contrast to a ‘disordered’ Mozambique, are part of a nostalgic amnesia that assists these ambivalent migrants to deal with (or deny) their displacement and losses, and helps them adapt to the new and strange...

  6. A Case of Persistent Generalized Retrograde Autobiographical Amnesia Subsequent to the Great East Japan Earthquake in 2011.

    Science.gov (United States)

    Odagaki, Yuji

    2017-01-01

    Functional retrograde autobiographical amnesia is often associated with physical and/or psychological trauma. On 11 March 2011, the largest earthquake on record in Japan took place, and subsequent huge tsunami devastated the Pacific coast of northern Japan. This case report describes a patient suffering from retrograde episodic-autobiographical amnesia for whole life, persisting for even more than five years after the disaster. A Japanese man, presumably in his 40s, got police protection in April 2016 but was unable to respond to question about his own name. He lost all information about his personal identity, and his memory was wholly lost until the disaster on 11 March 2011. He was able to recall his life after the disaster, and semantic memories and social abilities were largely preserved. A medical examination performed on 1 November 2016 verified that he was awake, alert, and oriented to time, place, and person (except for himself). General physical and neurological examinations revealed no pathological findings. He also experienced some symptoms associated with posttraumatic stress disorder (PTSD), such as intrusive thoughts, flashbacks, and nightmares. No abnormalities were detected by biochemical test and brain magnetic resonance imaging (MRI). Physicians and other professionals who take care of victims of disaster should be aware of dissociative spectrum disorders, such as psychogenic amnesia.

  7. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  8. Isoflurane causes anterograde but not retrograde amnesia for pavlovian fear conditioning.

    Science.gov (United States)

    Dutton, Robert C; Maurer, Anya J; Sonner, James M; Fanselow, Michael S; Laster, Michael J; Eger, Edmond I

    2002-05-01

    Production of retrograde amnesia by anesthetics would indicate that these drugs can disrupt mechanisms that stabilize memory. Such disruption would allow suppression of memory of previous untoward events. The authors examined whether isoflurane provides retrograde amnesia for classic (Pavlovian) fear conditioning. Rats were trained to fear tone by applying three (three-trial) or one (one-trial) tone-shock pairs while breathing various constant concentrations of isoflurane. Immediately after training, isoflurane administration was either discontinued, maintained unchanged, or rapidly increased to 1.0 minimum alveolar concentration for 1 h longer. Groups of rats were similarly trained to fear context while breathing isoflurane by applying shocks (without tones) in a distinctive environment. The next day, memory for the conditioned stimuli was determined by presenting the tone or context (without shock) and measuring the proportion of time each rat froze (appeared immobile). For each conditioning procedure, the effects of the three posttraining isoflurane treatments were compared. Rapid increases in posttraining isoflurane administration did not suppress conditioned fear for any of the training procedures. In contrast, isoflurane administration during conditioning dose-dependently suppressed conditioning (P conditioning. Isoflurane appears to disrupt memory processes that occur at or within a few minutes of the conditioning procedure.

  9. The relationship between working memory and episodic memory disorders in transient global amnesia.

    Science.gov (United States)

    Quinette, Peggy; Guillery-Girard, Bérengère; Noël, Audrey; de la Sayette, Vincent; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2006-01-01

    In a previous study, we investigated the relationship between the disorders of both episodic memory and working memory in the acute phase of transient global amnesia (TGA). Since executive functions were spared, another dysfunction may be responsible for the binding and maintenance of multimodal informations and contribute to the encoding disorders observed in some patients [Quinette, P., Guillery, B., Desgranges, B., de la Sayette, V., Viader, F., & Eustache, F. (2003). Working memory and executive functions in transient global amnesia. Brain, 126, 1917-1934.]. The aim of this present study was to assess the functions of binding and maintenance of multimodal information during TGA and explore their involvement in episodic memory disorders. We therefore conducted a more thorough investigation of working memory in 16 new patients during the acute phase of TGA using two tasks designed to assess the binding process and both dimensions of the maintenance, namely the active storage and the memory load ability. We also investigated the nature of the episodic memory impairment in distinguishing between the performance of patients with preferential encoding deficits and those of patients with preferential storage disorders on the episodic memory task. This distinction was closely related to the severity of amnesia, i.e. an encoding disorder was observed rather in the early phase of TGA. The results showed that while the functions of binding and maintenance of multimodal information were intact in patients with storage disorders, they were impaired in the case of encoding deficits. These results are interpreted in the recent framework of episodic buffer proposed by Baddeley [Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417-423] that represents an interface between working memory and episodic memory.

  10. Introduction of the Abbreviated Westmead Post-Traumatic Amnesia Scale and Impact on Length of Stay

    NARCIS (Netherlands)

    Watson, C. E.; Clous, E. A.; Jaeger, M.; D'Amours, S. K.

    2017-01-01

    Mild traumatic brain injury is a common presentation to Emergency Departments. Early identification of patients with cognitive deficits and provision of discharge advice are important. The Abbreviated Westmead Post-traumatic Amnesia Scale provides an early and efficient assessment of post-traumatic

  11. Patients with hippocampal amnesia successfully integrate gesture and speech.

    Science.gov (United States)

    Hilverman, Caitlin; Clough, Sharice; Duff, Melissa C; Cook, Susan Wagner

    2018-06-19

    During conversation, people integrate information from co-speech hand gestures with information in spoken language. For example, after hearing the sentence, "A piece of the log flew up and hit Carl in the face" while viewing a gesture directed at the nose, people tend to later report that the log hit Carl in the nose (information only in gesture) rather than in the face (information in speech). The cognitive and neural mechanisms that support the integration of gesture with speech are unclear. One possibility is that the hippocampus - known for its role in relational memory and information integration - is necessary for integrating gesture and speech. To test this possibility, we examined how patients with hippocampal amnesia and healthy and brain-damaged comparison participants express information from gesture in a narrative retelling task. Participants watched videos of an experimenter telling narratives that included hand gestures that contained supplementary information. Participants were asked to retell the narratives and their spoken retellings were assessed for the presence of information from gesture. For features that had been accompanied by supplementary gesture, patients with amnesia retold fewer of these features overall and fewer retellings that matched the speech from the narrative. Yet their retellings included features that contained information that had been present uniquely in gesture in amounts that were not reliably different from comparison groups. Thus, a functioning hippocampus is not necessary for gesture-speech integration over short timescales. Providing unique information in gesture may enhance communication for individuals with declarative memory impairment, possibly via non-declarative memory mechanisms. Copyright © 2018. Published by Elsevier Ltd.

  12. Bifurcation and synchronization of synaptically coupled FHN models with time delay

    International Nuclear Information System (INIS)

    Wang Qingyun; Lu Qishao; Chen Guanrong; Feng Zhaosheng; Duan Lixia

    2009-01-01

    This paper presents an investigation of dynamics of the coupled nonidentical FHN models with synaptic connection, which can exhibit rich bifurcation behavior with variation of the coupling strength. With the time delay being introduced, the coupled neurons may display a transition from the original chaotic motions to periodic ones, which is accompanied by complex bifurcation scenario. At the same time, synchronization of the coupled neurons is studied in terms of their mean frequencies. We also find that the small time delay can induce new period windows with the coupling strength increasing. Moreover, it is found that synchronization of the coupled neurons can be achieved in some parameter ranges and related to their bifurcation transition. Bifurcation diagrams are obtained numerically or analytically from the mathematical model and the parameter regions of different behavior are clarified.

  13. Browse Title Index

    African Journals Online (AJOL)

    Items 101 - 150 of 400 ... ... childhood amnesia amnesia among medical students on surgery ... prevention of mother-to-child transmission(PMTCT)interventions in ... Factors associated with delay in presentation of breast cancer in Benin, Abstract.

  14. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity

    International Nuclear Information System (INIS)

    Han Fang; Wang Zhi-Jie; Gong Tao; Fan Hong

    2015-01-01

    It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synchronization can be found in an excitatory/inhibitory (E/I) neuronal network with medium synaptic delay and high level of heterogeneity, which often occurs in real neuronal networks. Two effects of post-synaptic potentials (PSP) to network synchronization are presented, and the synaptic contribution of excitatory and inhibitory neurons to robust synchronization in this E/I network is investigated. It is found that both excitatory and inhibitory neurons may contribute to robust synchronization in E/I networks, especially the excitatory PSP has a more positive effect on synchronization in E/I networks than that in excitatory networks. This may explain the strong robustness of synchronization in E/I neuronal networks. (paper)

  15. Lidocaine attenuates anisomycin-induced amnesia and release of norepinephrine in the amygdala

    OpenAIRE

    Sadowski, Renee N.; Canal, Clint E.; Gold, Paul E.

    2011-01-01

    When administered near the time of training, protein synthesis inhibitors such as anisomycin impair later memory. A common interpretation of these findings is that memory consolidation requires new protein synthesis initiated by training. However, recent findings support an alternative interpretation that abnormally large increases in neurotransmitter release after injections of anisomycin may be responsible for producing amnesia. In the present study, a local anesthetic was administered prio...

  16. Effects of 5-HT5A receptor blockade on amnesia or forgetting.

    Science.gov (United States)

    Aparicio-Nava, L; Márquez-García, L A; Meneses, A

    2018-01-09

    Previously the effects (0.01-3.0 mg/kg) of post-training SB-699551 (a 5-HT 5A receptor antagonist) were reported in the associative learning task of autoshaping, showing that SB-699551 (0.1 mg/kg) decreased lever-press conditioned responses (CR) during short-term (STM; 1.5-h) or (3.0 mg/kg) long-term memory (LTM; 24-h); relative to the vehicle animals. Moreover, as pro-cognitive efficacy of SB-699551 was reported in the ketamine-model of schizophrenia. Hence, firstly aiming improving performance (conditioned response, CR), in this work autoshaping lever-press vs. nose-poke response was compared; secondly, new set of animals were randomly assigned to SB-699551 plus forgetting or amnesia protocols. Results show that the nose-poke operandum reduced inter-individual variance, increased CR and produced a progressive CR until 48-h. After one week of no training/testing sessions (i.e., interruption of 216 h), the forgetting was observed; i.e., the CR% of control-saline group significantly decreased. In contrast, SB-699551 at 0.3 and 3.0 mg/kg prevents forgetting. Additionally, as previously reported the non-competitive NMDA receptor antagonist dizocilpine (0.2 mg/kg) or the non-selective cholinergic antagonist scopolamine (0.3 mg/kg) decreased CR in STM. SB-699551 (0.3 mg/kg) alone also produced amnesia-like effect. Co-administration of SB-699551-dizocilpine or SB-699551-scopolamine reversed the SB-699551 induced-amnesic effects in LTM (24-h). Nose-poke seems to be a reliable operandum. The anti-amnesic and anti-forgetting mechanisms of amnesic SB-699551-dose remain unclear. The present findings are consistent with the notion that low doses of 5-HT 5A receptor antagonists might be useful for reversing memory deficits associated to forgetting and amnesia. Of course, further experiments are necessary. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Delayed neuronal cell death in brainstem after transient brainstem ischemia in gerbils

    Directory of Open Access Journals (Sweden)

    Hakuba Nobuhiro

    2010-09-01

    Full Text Available Abstract Background Because of the lack of reproducible brainstem ischemia models in rodents, the temporal profile of ischemic lesions in the brainstem after transient brainstem ischemia has not been evaluated intensively. Previously, we produced a reproducible brainstem ischemia model of Mongolian gerbils. Here, we showed the temporal profile of ischemic lesions after transient brainstem ischemia. Results Brainstem ischemia was produced by occlusion of the bilateral vertebral arteries just before their entry into the transverse foramina of the cervical vertebrae of Mongolian gerbils. Animals were subjected to brainstem ischemia for 15 min, and then reperfused for 0 d (just after ischemia, 1 d, 3 d and 7 d (n = 4 in each group. Sham-operated animals (n = 4 were used as control. After deep anesthesia, the gerbils were perfused with fixative for immunohistochemical investigation. Ischemic lesions were detected by immunostaining for microtubule-associated protein 2 (MAP2. Just after 15-min brainstem ischemia, ischemic lesions were detected in the lateral vestibular nucleus and the ventral part of the spinal trigeminal nucleus, and these ischemic lesions disappeared one day after reperfusion in all animals examined. However, 3 days and 7 days after reperfusion, ischemic lesions appeared again and clusters of ionized calcium-binding adapter molecule-1(IBA-1-positive cells were detected in the same areas in all animals. Conclusion These results suggest that delayed neuronal cell death took place in the brainstem after transient brainstem ischemia in gerbils.

  18. Detecting dependencies between spike trains of pairs of neurons through copulas

    DEFF Research Database (Denmark)

    Sacerdote, Laura; Tamborrino, Massimiliano; Zucca, Cristina

    2011-01-01

    The dynamics of a neuron are influenced by the connections with the network where it lies. Recorded spike trains exhibit patterns due to the interactions between neurons. However, the structure of the network is not known. A challenging task is to investigate it from the analysis of simultaneously...... the two neurons. Furthermore, the method recognizes the presence of delays in the spike propagation....

  19. Gudden's Ventral Tegmental Nucleus Is Vital for Memory: Re-Evaluating Diencephalic Inputs for Amnesia

    Science.gov (United States)

    Vann, Seralynne D.

    2009-01-01

    Mammillary body atrophy is present in a number of neurological conditions and recent clinical findings highlight the importance of these nuclei for memory. While most accounts of diencephalic amnesia emphasize the functional importance of the hippocampal projections to the mammillary bodies, the present study tested the importance of the other…

  20. Transient global amnesia following cerebral angiography with non-ionic contrast medium

    International Nuclear Information System (INIS)

    Schamschula, R.G.; Soo, M.Y.S.

    1994-01-01

    Transit global amnesia (TGA) is an uncommon syndrome of recent memory deficit and inability to learn new data, usually resolving within 24 hours. Two cases following use of non-ionic contrast media in cerebral angiography are presented. The neuroanatomy of memory is reviewed. Possible aetiologies of TGA in relation to cerebral angiography include ischemia (embolic, arterial spasm), epilepsy that may be primary or tumour-related and direct toxic effects of contrast media. 19 refs., 1 fig

  1. A Case of Persistent Generalized Retrograde Autobiographical Amnesia Subsequent to the Great East Japan Earthquake in 2011

    Directory of Open Access Journals (Sweden)

    Yuji Odagaki

    2017-01-01

    Full Text Available Functional retrograde autobiographical amnesia is often associated with physical and/or psychological trauma. On 11 March 2011, the largest earthquake on record in Japan took place, and subsequent huge tsunami devastated the Pacific coast of northern Japan. This case report describes a patient suffering from retrograde episodic-autobiographical amnesia for whole life, persisting for even more than five years after the disaster. A Japanese man, presumably in his 40s, got police protection in April 2016 but was unable to respond to question about his own name. He lost all information about his personal identity, and his memory was wholly lost until the disaster on 11 March 2011. He was able to recall his life after the disaster, and semantic memories and social abilities were largely preserved. A medical examination performed on 1 November 2016 verified that he was awake, alert, and oriented to time, place, and person (except for himself. General physical and neurological examinations revealed no pathological findings. He also experienced some symptoms associated with posttraumatic stress disorder (PTSD, such as intrusive thoughts, flashbacks, and nightmares. No abnormalities were detected by biochemical test and brain magnetic resonance imaging (MRI. Physicians and other professionals who take care of victims of disaster should be aware of dissociative spectrum disorders, such as psychogenic amnesia.

  2. Transient epileptic amnesia: clinical report of a cohort of patients.

    Science.gov (United States)

    Lapenta, Leonardo; Brunetti, Valerio; Losurdo, Anna; Testani, Elisa; Giannantoni, Nadia Mariagrazia; Quaranta, Davide; Di Lazzaro, Vincenzo; Della Marca, Giacomo

    2014-07-01

    Transient epileptic amnesia is a seizure disorder, usually with onset in the middle-elderly and good response to low dosages of antiepileptic drugs. We describe the clinical, electroencephalography (EEG), and neuroimaging features of 11 patients with a temporal lobe epilepsy characterized by amnesic seizures as the sole or the main symptom. We outline the relevance of a detailed clinical history to recognize amnesic seizures and to avoid the more frequent misdiagnoses. Moreover, the response to monotherapy was usually good, although the epileptic disorder was symptomatic of acquired lesions in the majority of patients.

  3. Role of Mitochondrial Dynamics in Neuronal Development: Mechanism for Wolfram Syndrome.

    Science.gov (United States)

    Cagalinec, Michal; Liiv, Mailis; Hodurova, Zuzana; Hickey, Miriam Ann; Vaarmann, Annika; Mandel, Merle; Zeb, Akbar; Choubey, Vinay; Kuum, Malle; Safiulina, Dzhamilja; Vasar, Eero; Veksler, Vladimir; Kaasik, Allen

    2016-07-01

    Deficiency of the protein Wolfram syndrome 1 (WFS1) is associated with multiple neurological and psychiatric abnormalities similar to those observed in pathologies showing alterations in mitochondrial dynamics. The aim of this study was to examine the hypothesis that WFS1 deficiency affects neuronal function via mitochondrial abnormalities. We show that down-regulation of WFS1 in neurons leads to dramatic changes in mitochondrial dynamics (inhibited mitochondrial fusion, altered mitochondrial trafficking, and augmented mitophagy), delaying neuronal development. WFS1 deficiency induces endoplasmic reticulum (ER) stress, leading to inositol 1,4,5-trisphosphate receptor (IP3R) dysfunction and disturbed cytosolic Ca2+ homeostasis, which, in turn, alters mitochondrial dynamics. Importantly, ER stress, impaired Ca2+ homeostasis, altered mitochondrial dynamics, and delayed neuronal development are causatively related events because interventions at all these levels improved the downstream processes. Our data shed light on the mechanisms of neuronal abnormalities in Wolfram syndrome and point out potential therapeutic targets. This work may have broader implications for understanding the role of mitochondrial dynamics in neuropsychiatric diseases.

  4. Role of Mitochondrial Dynamics in Neuronal Development: Mechanism for Wolfram Syndrome.

    Directory of Open Access Journals (Sweden)

    Michal Cagalinec

    2016-07-01

    Full Text Available Deficiency of the protein Wolfram syndrome 1 (WFS1 is associated with multiple neurological and psychiatric abnormalities similar to those observed in pathologies showing alterations in mitochondrial dynamics. The aim of this study was to examine the hypothesis that WFS1 deficiency affects neuronal function via mitochondrial abnormalities. We show that down-regulation of WFS1 in neurons leads to dramatic changes in mitochondrial dynamics (inhibited mitochondrial fusion, altered mitochondrial trafficking, and augmented mitophagy, delaying neuronal development. WFS1 deficiency induces endoplasmic reticulum (ER stress, leading to inositol 1,4,5-trisphosphate receptor (IP3R dysfunction and disturbed cytosolic Ca2+ homeostasis, which, in turn, alters mitochondrial dynamics. Importantly, ER stress, impaired Ca2+ homeostasis, altered mitochondrial dynamics, and delayed neuronal development are causatively related events because interventions at all these levels improved the downstream processes. Our data shed light on the mechanisms of neuronal abnormalities in Wolfram syndrome and point out potential therapeutic targets. This work may have broader implications for understanding the role of mitochondrial dynamics in neuropsychiatric diseases.

  5. Development of rat telencephalic neurons after prenatal x-irradiation

    International Nuclear Information System (INIS)

    Norton, S.

    1979-01-01

    Telencephalic neurons of rats, irradiated at day 15 of gestation with 125 R, develop synaptic connections on dendrites during maturation which appear to be normal spines in Golgi-stained light microscope preparations. At six weeks of postnatal age both control and irradiated rats have spiny dendritic processes on cortical pyramidal cells and caudate Golgi type II neurons. However, when the rats are 6 months old the irradiated rats have more neurons with beaded dendritic processes that lack spines or neurons and are likely to be degenerating neurons. The apparently normal development of the neurons followed by degeneration in the irradiated rat has a parallel in previous reports of the delayed hyperactivity which develops in rats irradiated on the fifteenth gestational day

  6. Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus

    Directory of Open Access Journals (Sweden)

    Eun Joo Bae

    2015-01-01

    Full Text Available The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not been addressed yet. In this study, we first compared ischemia-induced effects on p63 expression in the hippocampal regions (CA1- 3 between the young and adult gerbils subjected to 5 minutes of transient global cerebral ischemia. Neuronal death in the hippocampal CA1 region of young gerbils was significantly slow compared with that in the adult gerbils after transient global cerebral ischemia. p63 immunoreactivity in the hippocampal CA1 pyramidal neurons in the sham-operated young group was significantly low compared with that in the sham-operated adult group. p63 immunoreactivity was apparently changed in ischemic hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. In the ischemia-operated adult groups, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons was significantly decreased at 4 days post-ischemia; however, p63 immunoreactivity in the ischemia-operated young group was significantly higher than that in the ischemia-operated adult group. At 7 days post-ischemia, p63 immunoreactivity was decreased in the hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. Change patterns of p63 level in the hippocampal CA1 region of adult and young gerbils after ischemic damage were similar to those observed in the immunohistochemical results. These findings indicate that higher and longer-term expression of p63 in the hippocampal CA1 region of the young gerbils after ischemia/reperfusion may be related to more delayed neuronal death compared to that in the adults.

  7. Impairment of recollection but not familiarity in a case of developmental amnesia.

    Science.gov (United States)

    Brandt, Karen R; Gardiner, John M; Vargha-Khadem, Faraneh; Baddeley, Alan D; Mishkin, Mortimer

    2008-01-01

    In a re-examination of the recognition memory of Jon, a young adult with developmental amnesia due to perinatal hippocampal damage, we used a test procedure that provides estimates of the separate contributions to recognition of recollection and familiarity. Comparison between Jon and his controls revealed that, whereas he was unimpaired in the familiarity process, he showed abnormally low levels of recollection, supporting the view that the hippocampus mediates the latter process selectively.

  8. Impairment of recollection but not familiarity in a case of developmental amnesia

    Science.gov (United States)

    Brandt, Karen R.; Gardiner, John M.; Vargha-Khadem, Faraneh; Baddeley, Alan D.; Mishkin, Mortimer

    2010-01-01

    In a re-examination of the recognition memory of Jon, a young adult with developmental amnesia due to perinatal hippocampal damage, we used a test procedure that provides estimates of the separate contributions to recognition of recollection and familiarity. Comparison between Jon and his controls revealed that, whereas he was unimpaired in the familiarity process, he showed abnormally low levels of recollection, supporting the view that the hippocampus mediates the latter process selectively. PMID:19090415

  9. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function.

    Science.gov (United States)

    Zuure, Wieteke A; Roberts, Amy L; Quennell, Janette H; Anderson, Greg M

    2013-11-06

    The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.

  10. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    Science.gov (United States)

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  11. Characterization of neuronal intrinsic properties and synaptic transmission in layer I of anterior cingulate cortex from adult mice

    Directory of Open Access Journals (Sweden)

    Li Xiang-Yao

    2012-07-01

    Full Text Available Abstract The neurons in neocortex layer I (LI provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC, a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors, and inhibitory inputs (which were mediated by GABAA receptors. Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice.

  12. Amnesia and future thinking: Exploring the role of memory in the quantity and quality of episodic future thoughts.

    Science.gov (United States)

    Cole, Scott N; Morrison, Catriona M; Barak, Ohr; Pauly-Takacs, Katalin; Conway, Martin A

    2016-06-01

    To examine the impact of memory accessibility on episodic future thinking. Single-case study of neurological patient HCM and an age-matched comparison group of neurologically Healthy Controls. We administered a full battery of tests assessing general intelligence, memory, and executive functioning. To assess autobiographical memory, the Autobiographical Memory Interview (Kopelman, Wilson, & Baddeley, 1990. The Autobiographical Memory Interview. Bury St. Edmunds, UK: Thames Valley Test Company) was administered. The Past Episodic and Future Episodic sections of Dalla Barba's Confabulation Battery (Dalla Barba, 1993, Cogn. Neuropsychol., 1, 1) and a specifically tailored Mental Time Travel Questionnaire were administered to assess future thinking in HCM and age-matched controls. HCM presented with a deficit in forming new memories (anterograde amnesia) and recalling events from before the onset of neurological impairment (retrograde amnesia). HCM's autobiographical memory impairments are characterized by a paucity of memories from Recent Life. In comparison with controls, two features of his future thoughts are apparent: Reduced episodic future thinking and outdated content of his episodic future thoughts. This article suggests neuropsychologists should look beyond popular conceptualizations of the past-future relation in amnesia via focussing on reduced future thinking. Investigating both the quantity and quality of future thoughts produced by amnesic patients may lead to developments in understanding the complex nature of future thinking disorders resulting from memory impairments. We highlight the clinical importance of examining the content of future thoughts in amnesic patients, rather than only its quantitative reduction. We propose an explanation of how quantitative and qualitative aspects of future thinking could be affected by amnesia. This could provide a useful approach to understand clinical cases of impaired prospection. Systematic group investigations

  13. The role of 12/15-lipoxygenases in ROS-mediated neuronal cell death

    OpenAIRE

    Tobaben, Svenja

    2011-01-01

    Oxidative stress has been established as a key trigger of neuronal dysfunction and death in age-related neurodegenerative diseases and in delayed neuronal death after acute brain injury by ischemic stroke or brain trauma. Despite increasing knowledge on the toxicity of reactive oxygen species (ROS) and oxidized reaction products that may further accelerate neuronal cell death, the major sources of ROS formation and the mechanisms ...

  14. Global Hopf bifurcation analysis on a BAM neural network with delays

    Science.gov (United States)

    Sun, Chengjun; Han, Maoan; Pang, Xiaoming

    2007-01-01

    A delayed differential equation that models a bidirectional associative memory (BAM) neural network with four neurons is considered. By using a global Hopf bifurcation theorem for FDE and a Bendixon's criterion for high-dimensional ODE, a group of sufficient conditions for the system to have multiple periodic solutions are obtained when the sum of delays is sufficiently large.

  15. Global Hopf bifurcation analysis on a BAM neural network with delays

    International Nuclear Information System (INIS)

    Sun Chengjun; Han Maoan; Pang Xiaoming

    2007-01-01

    A delayed differential equation that models a bidirectional associative memory (BAM) neural network with four neurons is considered. By using a global Hopf bifurcation theorem for FDE and a Bendixon's criterion for high-dimensional ODE, a group of sufficient conditions for the system to have multiple periodic solutions are obtained when the sum of delays is sufficiently large

  16. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.

    Science.gov (United States)

    Li, Ling-Yun; Xiong, Xiaorui R; Ibrahim, Leena A; Yuan, Wei; Tao, Huizhong W; Zhang, Li I

    2015-07-01

    Cortical inhibitory circuits play important roles in shaping sensory processing. In auditory cortex, however, functional properties of genetically identified inhibitory neurons are poorly characterized. By two-photon imaging-guided recordings, we specifically targeted 2 major types of cortical inhibitory neuron, parvalbumin (PV) and somatostatin (SOM) expressing neurons, in superficial layers of mouse auditory cortex. We found that PV cells exhibited broader tonal receptive fields with lower intensity thresholds and stronger tone-evoked spike responses compared with SOM neurons. The latter exhibited similar frequency selectivity as excitatory neurons. The broader/weaker frequency tuning of PV neurons was attributed to a broader range of synaptic inputs and stronger subthreshold responses elicited, which resulted in a higher efficiency in the conversion of input to output. In addition, onsets of both the input and spike responses of SOM neurons were significantly delayed compared with PV and excitatory cells. Our results suggest that PV and SOM neurons engage in auditory cortical circuits in different manners: while PV neurons may provide broadly tuned feedforward inhibition for a rapid control of ascending inputs to excitatory neurons, the delayed and more selective inhibition from SOM neurons may provide a specific modulation of feedback inputs on their distal dendrites. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Inter-identity amnesia in dissociative identity disorder: a simulated memory impairment?

    Science.gov (United States)

    Huntjens, Rafaële J C; Peters, Madelon L; Woertman, Liesbeth; Bovenschen, Loes M; Martin, Roy C; Postma, Albert

    2006-06-01

    Although included in the current edition of the DSM, there does not seem to be consensus among mental health professionals regarding the diagnostic status and scientific validity of dissociative identity disorder (DID). This study was aimed at the detection of simulation of inter-identity amnesia in DID. A sample of 22 DID patients was included, together with a matched control sample of subjects instructed to simulate inter-identity amnesia, a guessor group that had no knowledge of the stimulus material and a normal control group. A multiple-choice recognition test was included. The rate of incorrect answers was determined. Moreover, the specific simulation strategy used was examined by providing subjects with a range of choices that varied in extent of disagreement with the correct answer and determining whether plausible or implausible answer alternatives were selected. On the recognition test DID patients selected incorrect answers above chance like simulators. Patients thus seem to use their knowledge of the correct answer in determining their given answer. They were not characterized by a well-thought-out simulating behaviour style, as indicated by the differences in selection of specific answer alternatives found between patients and simulators. DID patients were found not to be characterized by an actual memory retrieval inability, in contrast to their subjective reports. Instead, it is suggested that DID may more accurately be considered a disorder characterized by meta-memory problems, holding incorrect beliefs about their own memory functioning.

  18. Infantile Amnesia across the Years: A 2-Year Follow-Up of Children's Earliest Memories

    Science.gov (United States)

    Peterson, Carole; Warren, Kelly L.; Short, Megan M.

    2011-01-01

    Although infantile amnesia has been investigated for many years in adults, only recently has it been investigated in children. This study was a 2-year follow-up and extension of an earlier study. Children (4-13 years old) were asked initially and 2 years later for their earliest 3 memories. At follow-up, their age at the time of these memories…

  19. Recovery from anterograde and retrograde amnesia after percutaneous drainage of a cystic craniopharyngioma.

    Science.gov (United States)

    Ignelzi, R J; Squire, L R

    1976-01-01

    A case is reported of a cystic craniopharyngioma involving the floor and walls of the third ventricle. Pronounced anterograde and retrograde amnesia were documented preoperatively by formal testing. Rapid improvement in both new learning capacity and remote memory occurred after percutaneous twist drill drainage of the cystic portion of the tumour. The relevance of these observations to the amnesic syndrome and its neuropathological basis is discussed. Images PMID:1011035

  20. Disrupting astrocyte–neuron lactate transfer persistently reduces conditioned responses to cocaine

    KAUST Repository

    Boury-Jamot, B

    2015-10-27

    A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte–neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine.

  1. Disrupting astrocyte–neuron lactate transfer persistently reduces conditioned responses to cocaine

    KAUST Repository

    Boury-Jamot, B; Carrard, A; Martin, J L; Halfon, O; Magistretti, Pierre J.; Boutrel, B

    2015-01-01

    A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte–neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine.

  2. Diffusion magnetic resonance imaging in transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Godeiro-Junior, Clecio; Miranda-Alves, Maramelia Araujo de [Federal University of Sao Paulo (UNIFESP-EPM), Sao Paulo SP (Brazil). Dept. of Neurology and Neurosurgery], e-mail: cleciojunior@yahoo.com.br; Massaro, Ayrton Roberto [Fleury Diagnostic Center, Sao Paulo SP (Brazil)

    2009-03-15

    Transient global amnesia (TGA) is a well known clinical entity characterized by anterograde memory disturbance of sudden onset that lasts 1 to 24 hours. Orientation in space and time is impaired while consciousness remains undisturbed. TGA may refer to a single expression of several physiopathological phenomena. Conceptually, cerebral ischemia, epileptic discharge, and migraine constitute the main pathogenic hypothesis. Diffusion-weighted imaging (DWI) has become a powerful tool in the evaluation of patients with suspected stroke owing to its high sensitivity and specificity, even for small areas of acute ischemia. Consequently, this method has also been applied to TGA to gain further insights into the ischemic hypothesis of this condition. We report a patient with a typical TGA presentation and MRI findings suggestive of an ischemic insult. We further discuss the ischemic hypothesis of TGA. (author)

  3. Diffusion magnetic resonance imaging in transient global amnesia

    International Nuclear Information System (INIS)

    Godeiro-Junior, Clecio; Miranda-Alves, Maramelia Araujo de

    2009-01-01

    Transient global amnesia (TGA) is a well known clinical entity characterized by anterograde memory disturbance of sudden onset that lasts 1 to 24 hours. Orientation in space and time is impaired while consciousness remains undisturbed. TGA may refer to a single expression of several physiopathological phenomena. Conceptually, cerebral ischemia, epileptic discharge, and migraine constitute the main pathogenic hypothesis. Diffusion-weighted imaging (DWI) has become a powerful tool in the evaluation of patients with suspected stroke owing to its high sensitivity and specificity, even for small areas of acute ischemia. Consequently, this method has also been applied to TGA to gain further insights into the ischemic hypothesis of this condition. We report a patient with a typical TGA presentation and MRI findings suggestive of an ischemic insult. We further discuss the ischemic hypothesis of TGA. (author)

  4. Non-declarative memory in the rehabilitation of amnesia.

    Science.gov (United States)

    Cavaco, S; Malec, J F; Bergquist, T

    2005-09-01

    The ability of amnesic patients to learn and retain non-declarative information has been consistently demonstrated in the literature. This knowledge provided by basic cognitive neuroscience studies has been widely neglected in neuropsychological rehabilitation of memory impaired patients. This study reports the case of a 43 year old man with severe amnesia following an anterior communicating artery (ACoA) aneurysm rupture. The patient integrated a comprehensive (holistic) day treatment programme for rehabilitation of brain injury. The programme explored the advantages of using preserved non-declarative memory capacities, in the context of commonly used rehabilitation approaches (i.e. compensation for lost function and domain-specific learning). The patient's ability to learn and retain new cognitive and perceptual-motor skills was found to be critical for the patient's improved independence and successful return to work.

  5. Hydrogen peroxide-induced reduction of delayed rectifier potassium current in hippocampal neurons involves oxidation of sulfhydryl groups.

    Science.gov (United States)

    Hasan, Sonia M K; Redzic, Zoran B; Alshuaib, Waleed B

    2013-07-03

    This study examined the effect of H2O2 on the delayed rectifier potassium current (IKDR) in isolated hippocampal neurons. Whole-cell voltage-clamp experiments were performed on freshly dissociated hippocampal CA1 neurons of SD rats before and after treatment with H2O2. To reveal the mechanism behind H2O2-induced changes in IKDR, cells were treated with different oxidizing and reducing agents. External application of membrane permeable H2O2 reduced the amplitude and voltage-dependence of IKDR in a concentration dependent manner. Desferoxamine (DFO), an iron-chelator that prevents hydroxyl radical (OH) generation, prevented H2O2-induced reduction in IKDR. Application of the sulfhydryl-oxidizing agent 5,5 dithio-bis-nitrobenzoic acid (DTNB) mimicked the effect of H2O2. Sulfhydryl-reducing agents dithiothreitol (DTT) and glutathione (GSH) alone did not affect IKDR; however, DTT and GSH reversed and prevented the H2O2-induced inhibition of IKDR, respectively. Membrane impermeable agents GSH and DTNB showed effects only when added intracellularly identifying intracellular sulfhydryl groups as potential targets for hydroxyl-mediated oxidation. However, the inhibitory effects of DTNB and H2O2 at the positive test potentials were completely and partially abolished by DTT, respectively, suggesting an additional mechanism of action for H2O2, that is not shared by DTNB. In summary, this study provides evidence for the redox modulation of IKDR, identifies hydroxyl radical as an intermediate oxidant responsible for the H2O2-induced decrease in current amplitude and identifies intracellular sulfhydryl groups as an oxidative target. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Recovery from Transient Global Amnesia Following Restoration of Hippocampal and Fronto–Cingulate Perfusion

    Directory of Open Access Journals (Sweden)

    Paolo Caffarra

    2010-01-01

    Full Text Available A patient who suffered a transient global amnesia (TGA attack underwent regional cerebral blood flow (rCBF SPECT imaging and neuropsychological testing in the acute phase, after one month and after one year. Neuropsychological testing in the acute phase showed a pattern of anterograde and retrograde amnesia, whereas memory was within age normal limits at follow up. SPECT data were analysed with a within subject comparison and also compared with those of a group of healthy controls. Within subject comparison between the one month follow up and the acute phase detected increases in rCBF in the hippocampus bilaterally; further rCBF increases in the right hippocampus were detected after one year. Compared to controls, significant hypoperfusion was found in the right precentral, cingulate and medial frontal gyri in the acute phase; after one month significant hypoperfusion was detected in the right precentral and cingulate gyri and the left postcentral gyrus; after one year no significant hypoperfusion appeared. The restoration of memory was paralleled by rCBF increases in the hippocampus and fronto-limbic-parietal cortex; after one year neither significant rCBF differences nor cognitive deficits were detectable. In conclusion, these data indicate that TGA had no long lasting cognitive and neural alterations in this patient.

  7. Curcumin protects microglia and primary rat cortical neurons against HIV-1 gp120-mediated inflammation and apoptosis.

    Directory of Open Access Journals (Sweden)

    Luyan Guo

    Full Text Available Curcumin is a molecule found in turmeric root that has anti-inflammatory, antioxidant, and anti-tumor properties and has been widely used as both an herbal drug and a food additive to treat or prevent neurodegenerative diseases. To explore whether curcumin is able to ameliorate HIV-1-associated neurotoxicity, we treated a murine microglial cell line (N9 and primary rat cortical neurons with curcumin in the presence or absence of neurotoxic HIV-1 gp120 (V3 loop protein. We found that HIV-1 gp120 profoundly induced N9 cells to produce reactive oxygen species (ROS, tumor necrosis factor-α (TNF-α and monocyte chemoattractant protein-1 (MCP-1. HIV-1 gp120 also induced apoptosis of primary rat cortical neurons. Curcumin exerted a powerful inhibitory effect against HIV-1 gp120-induced neuronal damage, reducing the production of ROS, TNF-α and MCP-1 by N9 cells and inhibiting apoptosis of primary rat cortical neurons. Curcumin may exert its biological activities through inhibition of the delayed rectification and transient outward potassium (K(+ current, as curcumin effectively reduced HIV-1 gp120-mediated elevation of the delayed rectification and transient outward K(+ channel current in neurons. We conclude that HIV-1 gp120 increases ROS, TNF-α and MCP-1 production in microglia, and induces cortical neuron apoptosis by affecting the delayed rectification and transient outward K(+ channel current. Curcumin reduces production of ROS and inflammatory mediators in HIV-1-gp120-stimulated microglia, and protects cortical neurons against HIV-1-mediated apoptosis, most likely through inhibition of HIV-1 gp120-induced elevation of the delayed rectification and transient outward K(+ current.

  8. Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats.

    Science.gov (United States)

    Elzinga, Kate; Tyreman, Neil; Ladak, Adil; Savaryn, Bohdan; Olson, Jaret; Gordon, Tessa

    2015-07-01

    Functional recovery after peripheral nerve injury and surgical repair declines with time and distance because the injured neurons without target contacts (chronic axotomy) progressively lose their regenerative capacity and chronically denervated Schwann cells (SCs) atrophy and fail to support axon regeneration. Findings that brief low frequency electrical stimulation (ES) accelerates axon outgrowth and muscle reinnervation after immediate nerve surgery in rats and human patients suggest that ES might improve regeneration after delayed nerve repair. To test this hypothesis, common peroneal (CP) neurons were chronically axotomized and/or tibial (TIB) SCs and ankle extensor muscles were chronically denervated by transection and ligation in rats. The CP and TIB nerves were cross-sutured after three months and subjected to either sham or one hour 20Hz ES. Using retrograde tracing, we found that ES significantly increased the numbers of both motor and sensory neurons that regenerated their axons after a three month period of chronic CP axotomy and/or chronic TIB SC denervation. Muscle and motor unit forces recorded to determine the numbers of neurons that reinnervated gastrocnemius muscle demonstrated that ES significantly increased the numbers of motoneurons that reinnervated chronically denervated muscles. We conclude that electrical stimulation of chronically axotomized motor and sensory neurons is effective in accelerating axon outgrowth into chronically denervated nerve stumps and improving target reinnervation after delayed nerve repair. Possible mechanisms for the efficacy of ES in promoting axon regeneration and target reinnervation after delayed nerve repair include the upregulation of neurotrophic factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death.

    Science.gov (United States)

    Calderone, Agata; Jover, Teresa; Mashiko, Toshihiro; Noh, Kyung-min; Tanaka, Hidenobu; Bennett, Michael V L; Zukin, R Suzanne

    2004-11-03

    Transient global ischemia induces a delayed rise in intracellular Zn2+, which may be mediated via glutamate receptor 2 (GluR2)-lacking AMPA receptors (AMPARs), and selective, delayed death of hippocampal CA1 neurons. The molecular mechanisms underlying Zn2+ toxicity in vivo are not well delineated. Here we show the striking finding that intraventricular injection of the high-affinity Zn2+ chelator calcium EDTA (CaEDTA) at 30 min before ischemia (early CaEDTA) or at 48-60 hr (late CaEDTA), but not 3-6 hr, after ischemia, afforded robust protection of CA1 neurons in approximately 50% (late CaEDTA) to 75% (early CaEDTA) of animals. We also show that Zn2+ acts via temporally distinct mechanisms to promote neuronal death. Early CaEDTA attenuated ischemia-induced GluR2 mRNA and protein downregulation (and, by inference, formation of Zn2+-permeable AMPARs), the delayed rise in Zn2+, and neuronal death. These findings suggest that Zn2+ acts at step(s) upstream from GluR2 gene downregulation and implicate Zn2+ in transcriptional regulation and/or GluR2 mRNA stability. Early CaEDTA also blocked mitochondrial release of cytochrome c and Smac/DIABLO (second mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein-binding protein with low pI), caspase-3 activity (but not procaspase-3 cleavage), p75NTR induction, and DNA fragmentation. These findings indicate that CaEDTA preserves the functional integrity of the mitochondrial outer membrane and arrests the caspase death cascade. Late injection of CaEDTA at a time when GluR2 is downregulated and caspase is activated inhibited the delayed rise in Zn2+, p75NTR induction, DNA fragmentation, and cell death. The finding of neuroprotection by late CaEDTA administration has striking implications for intervention in the delayed neuronal death associated with global ischemia.

  10. Autapse-induced multiple stochastic resonances in a modular neuronal network

    Science.gov (United States)

    Yang, XiaoLi; Yu, YanHu; Sun, ZhongKui

    2017-08-01

    This study investigates the nontrivial effects of autapse on stochastic resonance in a modular neuronal network subjected to bounded noise. The resonance effect of autapse is detected by imposing a self-feedback loop with autaptic strength and autaptic time delay to each constituent neuron. Numerical simulations have demonstrated that bounded noise with the proper level of amplitude can induce stochastic resonance; moreover, the noise induced resonance dynamics can be significantly shaped by the autapse. In detail, for a specific range of autaptic strength, multiple stochastic resonances can be induced when the autaptic time delays are appropriately adjusted. These appropriately adjusted delays are detected to nearly approach integer multiples of the period of the external weak signal when the autaptic strength is very near zero; otherwise, they do not match the period of the external weak signal when the autaptic strength is slightly greater than zero. Surprisingly, in both cases, the differences between arbitrary two adjacent adjusted autaptic delays are always approximately equal to the period of the weak signal. The phenomenon of autaptic delay induced multiple stochastic resonances is further confirmed to be robust against the period of the external weak signal and the intramodule probability of subnetwork. These findings could have important implications for weak signal detection and information propagation in realistic neural systems.

  11. The effects of low dose ionizing radiation on the development of rat cerebral cortex, (2); In vitro study with regards to neuronal migration

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Koji [Kyoto Prefectural Univ. of Medicine (Japan)

    1993-03-01

    In order to study the molecular mechanisms of neuronal migration on developing rat cerebral cortex, we need a tissue culture system in which neuronal migration can be observed. We prepared a tissue culture system of embryonic rat cerebral cortex starting on embryonic day 16 and cultivating it for 48 hours. The autoradiographic study in this system revealed not only the migration of [sup 3]H-thymidine labeled neurons but also neuronal migration delays from low doses of ionizing radiation of more than 10 cGy. In addition, on immunohistochemical study, cell-cell adhesion molecule N-CAM staining was remarkably decreased in the matrix cell layer. In the tissue culture system where monoclonal anti-N-CAM antibodies were added, neuronal migration delay comparable to that of 20 cGy radiation was found. In conclusion, it was speculated that neuronal migration delay might be caused by disturbed N-CAM synthesis in matrix cells after low dose ionizing radiation. (author).

  12. Complex Dynamics of Delay-Coupled Neural Networks

    Science.gov (United States)

    Mao, Xiaochen

    2016-09-01

    This paper reveals the complicated dynamics of a delay-coupled system that consists of a pair of sub-networks and multiple bidirectional couplings. Time delays are introduced into the internal connections and network-couplings, respectively. The stability and instability of the coupled network are discussed. The sufficient conditions for the existence of oscillations are given. Case studies of numerical simulations are given to validate the analytical results. Interesting and complicated neuronal activities are observed numerically, such as rest states, periodic oscillations, multiple switches of rest states and oscillations, and the coexistence of different types of oscillations.

  13. Delay-distribution-dependent H∞ state estimation for delayed neural networks with (x,v)-dependent noises and fading channels.

    Science.gov (United States)

    Sheng, Li; Wang, Zidong; Tian, Engang; Alsaadi, Fuad E

    2016-12-01

    This paper deals with the H ∞ state estimation problem for a class of discrete-time neural networks with stochastic delays subject to state- and disturbance-dependent noises (also called (x,v)-dependent noises) and fading channels. The time-varying stochastic delay takes values on certain intervals with known probability distributions. The system measurement is transmitted through fading channels described by the Rice fading model. The aim of the addressed problem is to design a state estimator such that the estimation performance is guaranteed in the mean-square sense against admissible stochastic time-delays, stochastic noises as well as stochastic fading signals. By employing the stochastic analysis approach combined with the Kronecker product, several delay-distribution-dependent conditions are derived to ensure that the error dynamics of the neuron states is stochastically stable with prescribed H ∞ performance. Finally, a numerical example is provided to illustrate the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Can We Remember Future Actions yet Forget the Last Two Minutes? Study in Transient Global Amnesia

    Science.gov (United States)

    Hainselin, Mathieu; Quinette, Peggy; Desgranges, Beatrice; Martinaud, Olivier; Hannequin, Didier; de La Sayette, Vincent; Viader, Fausto; Eustache, Francis

    2011-01-01

    Transient global amnesia (TGA) is a clinical syndrome characterized by the abrupt onset of a massive episodic memory deficit that spares other cognitive functions. If the anterograde dimension is known to be impaired in TGA, researchers have yet to investigate prospective memory (PM)--which involves remembering to perform an intended action at…

  15. Dissociation between recognition and recall in developmental amnesia

    Science.gov (United States)

    Adlam, Anna-Lynne R.; Malloy, Megan; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2009-01-01

    Developmental amnesia (DA) is a memory disorder due to hypoxia/ischaemia-induced damage to the hippocampus early in life. To test the hypothesis that this disorder is associated with a disproportionate impairment in recall vis-à-vis recognition, we examined a group of 10 patients with DA on the Doors and People test, which affords a quantitative comparison between measures of the two memory processes. The results supported the hypothesis in that the patients showed a sharp, though not complete, recall-recognition dissociation, exhibiting impairment on both measures relative to their matched controls, but with a far greater loss in recall than in recognition. Whether their relatively spared recognition ability is due to restriction of their medial temporal lobe damage to the hippocampus or whether it is due instead to their early age at injury is still uncertain. PMID:19524088

  16. Intact and impaired conceptual memory processes in amnesia.

    Science.gov (United States)

    Keane, M M; Gabrieli, J D; Monti, L A; Fleischman, D A; Cantor, J M; Noland, J S

    1997-01-01

    To examine the status of conceptual memory processes in amnesia, a conceptual memory task with implicit or explicit task instructions was given to amnesic and control groups. After studying a list of category exemplars, participants saw category labels and were asked to generate as many exemplars as possible (an implicit memory task) or to generate exemplars that had been in the prior study list (an explicit memory task). After incidental deep or shallow encoding of exemplars, amnesic patients showed normal implicit memory performance (priming), a normal levels-of-processing effect on priming, and impaired explicit memory performance. After intentional encoding of exemplars, amnesic patients showed impaired implicit and explicit memory performance. Results suggest that although amnesic patients can show impairments on implicit and explicit conceptual memory tasks, their deficit does not generalize to all conceptual memory tasks.

  17. Delayed puberty but normal fertility in mice with selective deletion of insulin receptors from Kiss1 cells.

    Science.gov (United States)

    Qiu, Xiaoliang; Dowling, Abigail R; Marino, Joseph S; Faulkner, Latrice D; Bryant, Benjamin; Brüning, Jens C; Elias, Carol F; Hill, Jennifer W

    2013-03-01

    Pubertal onset only occurs in a favorable, anabolic hormonal environment. The neuropeptide kisspeptin, encoded by the Kiss1 gene, modifies GnRH neuronal activity to initiate puberty and maintain fertility, but the factors that regulate Kiss1 neurons and permit pubertal maturation remain to be clarified. The anabolic factor insulin may signal nutritional status to these neurons. To determine whether insulin sensing plays an important role in Kiss1 neuron function, we generated mice lacking insulin receptors in Kiss1 neurons (IR(ΔKiss) mice). IR(ΔKiss) females showed a delay in vaginal opening and in first estrus, whereas IR(ΔKiss) males also exhibited late sexual maturation. Correspondingly, LH levels in IR(ΔKiss) mice were reduced in early puberty in both sexes. Adult reproductive capacity, body weight, fat composition, food intake, and glucose regulation were comparable between the 2 groups. These data suggest that impaired insulin sensing by Kiss1 neurons delays the initiation of puberty but does not affect adult fertility. These studies provide insight into the mechanisms regulating pubertal timing in anabolic states.

  18. Low-dose Propofol–induced Amnesia Is Not due to a Failure of Encoding

    OpenAIRE

    Veselis, Robert A.; Pryor, Kane O.; Reinsel, Ruth A.; Mehta, Meghana; Pan, Hong; Johnson, Ray

    2008-01-01

    Background—Propofol may produce amnesia by affecting encoding. The hypothesis that propofol weakens encoding was tested by measuring regional cerebral blood flow during verbal encoding. Methods—17 volunteer participants (12 M, 30.4±6.5 years old) had regional cerebral blood flow measured using H2O15 positron emission tomography during complex and simple encoding tasks (deep vs. shallow level of processing), to identify a region of interest in the left inferior prefrontal cortex...

  19. Inhibition delay increases neural network capacity through Stirling transform

    Science.gov (United States)

    Nogaret, Alain; King, Alastair

    2018-03-01

    Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2) -N-fold increase in capacity for an N -neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.

  20. Ginseng Rb fraction protects glia, neurons and cognitive function in a rat model of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Kangning Xu

    Full Text Available The loss and injury of neurons play an important role in the onset of various neurodegenerative diseases, while both microgliosis and astrocyte loss or dysfunction are significant causes of neuronal degeneration. Previous studies have suggested that an extract enriched panaxadiol saponins from ginseng has more neuroprotective potential than the total saponins of ginseng. The present study investigated whether a fraction of highly purified panaxadiol saponins (termed as Rb fraction was protective for both glia and neurons, especially GABAergic interneurons, against kainic acid (KA-induced excitotoxicity in rats. Rats received Rb fraction at 30 mg/kg (i.p., 40 mg/kg (i.p. or saline followed 40 min later by an intracerebroventricular injection of KA. Acute hippocampal injury was determined at 48 h after KA, and impairment of hippocampus-dependent learning and memory as well as delayed neuronal injury was determined 16 to 21 days later. KA injection produced significant acute hippocampal injuries, including GAD67-positive GABAergic interneuron loss in CA1, paralbumin (PV-positive GABAergic interneuron loss, pyramidal neuron degeneration and astrocyte damage accompanied with reactive microglia in both CA1 and CA3 regions of the hippocampus. There was also a delayed loss of GAD67-positive interneurons in CA1, CA3, hilus and dentate gyrus. Microgliosis also became more severe 21 days later. Accordingly, KA injection resulted in hippocampus-dependent spatial memory impairment. Interestingly, the pretreatment with Rb fraction at 30 or 40 mg/kg significantly protected the pyramidal neurons and GABAergic interneurons against KA-induced acute excitotoxicity and delayed injury. Rb fraction also prevented memory impairments and protected astrocytes from KA-induced acute excitotoxicity. Additionally, microglial activation, especially the delayed microgliosis, was inhibited by Rb fraction. Overall, this study demonstrated that Rb fraction protected both

  1. Right ventral frontal hypometabolism and abnormal sense of self in a case of disproportionate retrograde amnesia.

    Science.gov (United States)

    Piolino, Pascale; Hannequin, Didier; Desgranges, Beatrice; Girard, Carole; Beaunieux, Helene; Giffard, Benedicte; Lebreton, Karine; Eustache, Francis

    2005-01-01

    We report the case of a 42-year-old man (patient CL) who developed a particular profile of amnesia with two dates of onset. At the first onset, the patient suffered a mild/lmoderate injury that accounts for an initial anterograde and mild retrograde memory impairment. At the second onset, 8 months later, he suffered a sudden and persistent loss of personal identity and severe retrograde amnesia. We report an extensive neuropsychological investigation of his memory systems carried out 18 months after the second onset. Results indicated mild executive dysfunction (primary memory), intact procedural skills and perceptual representational system. In accordance with Kopelman's methodological recommendations, we have reliably compared post- and pre-onset semantic and episodic memory using strict matched procedures. We found that post-onset, though not pre-onset semantic (autobiographical and nonautobiographical) memory was entirely preserved. Post-onset episodic autobiographical memory was not intact, however, although it was clearly less affected compared with the total absence of the pre-onset memory. Moreover, a novel and high standard investigation of the subjective states of consciousness, which accompanied retrieval of autobiographical memories via the Remember/lKnow (R/lK) paradigm with a long time interval from the present, demonstrated a deterioration of R responses compared to matched controls. Interestingly, this result showed deficient autonoetic consciousness and suggested an underlying accelerated forgetting rate for post-onset autobiographical episodic memories. Last, a [18F] fluorodeoxyglucose resting PET study revealed a significant right-sided ventral frontal lobe hypometabolism in the absence of overt structural lesions. The involvement of this region is consistent with CL's autobiographical retrograde amnesia and his inability to re-experience information concerning the self across time. In our particular case, characterised by two dates of onset, the

  2. Monaural and binaural response properties of neurons in the inferior colliculus of the rabbit: effects of sodium pentobarbital.

    Science.gov (United States)

    Kuwada, S; Batra, R; Stanford, T R

    1989-02-01

    1. We studied the effects of sodium pentobarbital on 22 neurons in the inferior colliculus (IC) of the rabbit. We recorded changes in the sensitivity of these neurons to monaural stimulation and to ongoing interaural time differences (ITDs). Monaural stimuli were tone bursts at or near the neuron's best frequency. The ITD was varied by delivering tones that differed by 1 Hz to the two ears, resulting in a 1-Hz binaural beat. 2. We assessed a neuron's ITD sensitivity by calculating three measures from the responses to binaural beats: composite delay, characteristic delay (CD), and characteristic phase (CP). To obtain the composite delay, we first derived period histograms by averaging, showing the response at each stimulating frequency over one period of the beat frequency. Second, the period histograms were replotted as a function of their equivalent interaural delay and then averaged together to yield the composite delay curve. Last, we calculated the composite peak or trough delay by fitting a parabola to the peak or trough of this composite curve. The composite delay curve represents the average response to all frequencies within the neuron's responsive range, and the peak reflects the interaural delay that produces the maximum response. The CD and CP were estimated from a weighted fit of a regression line to the plot of the mean interaural phase of the response versus the stimulating frequency. The slope and phase intercept of this regression line yielded estimates of CD and CP, respectively. These two quantities are thought to reflect the mechanism of ITD sensitivity, which involves the convergence of phase-locked inputs on a binaural cell. The CD estimates the difference in the time required for the two inputs to travel from either ear to this cell, whereas the CP reflects the interaural phase difference of the inputs at this cell. 3. Injections of sodium pentobarbital at subsurgical dosages (less than 25 mg/kg) almost invariably altered the neuron's response

  3. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, M.; Sakamoto, S.; Ishii, K. [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (Japan); Imamura, T.; Kazui, H.; Mori, E. [Division of Clinical Neurosciences, Hyogo Institute for Aging Brain and Cognitive Disorders, Hyogo (Japan)

    2002-03-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  4. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Matsui, M.; Sakamoto, S.; Ishii, K.; Imamura, T.; Kazui, H.; Mori, E.

    2002-01-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  5. Synchronization of coupled different chaotic FitzHugh-Nagumo neurons with unknown parameters under communication-direction-dependent coupling.

    Science.gov (United States)

    Iqbal, Muhammad; Rehan, Muhammad; Khaliq, Abdul; Saeed-ur-Rehman; Hong, Keum-Shik

    2014-01-01

    This paper investigates the chaotic behavior and synchronization of two different coupled chaotic FitzHugh-Nagumo (FHN) neurons with unknown parameters under external electrical stimulation (EES). The coupled FHN neurons of different parameters admit unidirectional and bidirectional gap junctions in the medium between them. Dynamical properties, such as the increase in synchronization error as a consequence of the deviation of neuronal parameters for unlike neurons, the effect of difference in coupling strengths caused by the unidirectional gap junctions, and the impact of large time-delay due to separation of neurons, are studied in exploring the behavior of the coupled system. A novel integral-based nonlinear adaptive control scheme, to cope with the infeasibility of the recovery variable, for synchronization of two coupled delayed chaotic FHN neurons of different and unknown parameters under uncertain EES is derived. Further, to guarantee robust synchronization of different neurons against disturbances, the proposed control methodology is modified to achieve the uniformly ultimately bounded synchronization. The parametric estimation errors can be reduced by selecting suitable control parameters. The effectiveness of the proposed control scheme is illustrated via numerical simulations.

  6. Ablation of the Ferroptosis Inhibitor Glutathione Peroxidase 4 in Neurons Results in Rapid Motor Neuron Degeneration and Paralysis.

    Science.gov (United States)

    Chen, Liuji; Hambright, William Sealy; Na, Ren; Ran, Qitao

    2015-11-20

    Glutathione peroxidase 4 (GPX4), an antioxidant defense enzyme active in repairing oxidative damage to lipids, is a key inhibitor of ferroptosis, a non-apoptotic form of cell death involving lipid reactive oxygen species. Here we show that GPX4 is essential for motor neuron health and survival in vivo. Conditional ablation of Gpx4 in neurons of adult mice resulted in rapid onset and progression of paralysis and death. Pathological inspection revealed that the paralyzed mice had a dramatic degeneration of motor neurons in the spinal cord but had no overt neuron degeneration in the cerebral cortex. Consistent with the role of GPX4 as a ferroptosis inhibitor, spinal motor neuron degeneration induced by Gpx4 ablation exhibited features of ferroptosis, including no caspase-3 activation, no TUNEL staining, activation of ERKs, and elevated spinal inflammation. Supplementation with vitamin E, another inhibitor of ferroptosis, delayed the onset of paralysis and death induced by Gpx4 ablation. Also, lipid peroxidation and mitochondrial dysfunction appeared to be involved in ferroptosis of motor neurons induced by Gpx4 ablation. Taken together, the dramatic motor neuron degeneration and paralysis induced by Gpx4 ablation suggest that ferroptosis inhibition by GPX4 is essential for motor neuron health and survival in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons.

    Directory of Open Access Journals (Sweden)

    Josef Ladenbauer

    Full Text Available The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency

  8. The Dynamics of Networks of Identical Theta Neurons.

    Science.gov (United States)

    Laing, Carlo R

    2018-02-05

    We consider finite and infinite all-to-all coupled networks of identical theta neurons. Two types of synaptic interactions are investigated: instantaneous and delayed (via first-order synaptic processing). Extensive use is made of the Watanabe/Strogatz (WS) ansatz for reducing the dimension of networks of identical sinusoidally-coupled oscillators. As well as the degeneracy associated with the constants of motion of the WS ansatz, we also find continuous families of solutions for instantaneously coupled neurons, resulting from the reversibility of the reduced model and the form of the synaptic input. We also investigate a number of similar related models. We conclude that the dynamics of networks of all-to-all coupled identical neurons can be surprisingly complicated.

  9. Chimera states in a multilayer network of coupled and uncoupled neurons

    Science.gov (United States)

    Majhi, Soumen; Perc, Matjaž; Ghosh, Dibakar

    2017-07-01

    We study the emergence of chimera states in a multilayer neuronal network, where one layer is composed of coupled and the other layer of uncoupled neurons. Through the multilayer structure, the layer with coupled neurons acts as the medium by means of which neurons in the uncoupled layer share information in spite of the absence of physical connections among them. Neurons in the coupled layer are connected with electrical synapses, while across the two layers, neurons are connected through chemical synapses. In both layers, the dynamics of each neuron is described by the Hindmarsh-Rose square wave bursting dynamics. We show that the presence of two different types of connecting synapses within and between the two layers, together with the multilayer network structure, plays a key role in the emergence of between-layer synchronous chimera states and patterns of synchronous clusters. In particular, we find that these chimera states can emerge in the coupled layer regardless of the range of electrical synapses. Even in all-to-all and nearest-neighbor coupling within the coupled layer, we observe qualitatively identical between-layer chimera states. Moreover, we show that the role of information transmission delay between the two layers must not be neglected, and we obtain precise parameter bounds at which chimera states can be observed. The expansion of the chimera region and annihilation of cluster and fully coherent states in the parameter plane for increasing values of inter-layer chemical synaptic time delay are illustrated using effective range measurements. These results are discussed in the light of neuronal evolution, where the coexistence of coherent and incoherent dynamics during the developmental stage is particularly likely.

  10. STICK: Spike Time Interval Computational Kernel, a Framework for General Purpose Computation Using Neurons, Precise Timing, Delays, and Synchrony.

    Science.gov (United States)

    Lagorce, Xavier; Benosman, Ryad

    2015-11-01

    There has been significant research over the past two decades in developing new platforms for spiking neural computation. Current neural computers are primarily developed to mimic biology. They use neural networks, which can be trained to perform specific tasks to mainly solve pattern recognition problems. These machines can do more than simulate biology; they allow us to rethink our current paradigm of computation. The ultimate goal is to develop brain-inspired general purpose computation architectures that can breach the current bottleneck introduced by the von Neumann architecture. This work proposes a new framework for such a machine. We show that the use of neuron-like units with precise timing representation, synaptic diversity, and temporal delays allows us to set a complete, scalable compact computation framework. The framework provides both linear and nonlinear operations, allowing us to represent and solve any function. We show usability in solving real use cases from simple differential equations to sets of nonlinear differential equations leading to chaotic attractors.

  11. A case of dissociative fugue and general amnesia with an 11-year follow-up.

    Science.gov (United States)

    Helmes, Edward; Brown, Julie-May; Elliott, Linda

    2015-01-01

    Dissociative fugue refers to loss of personal identity, often with the associated loss of memories of events (general amnesia). Here we report on the psychological assessment of a 54-year-old woman with loss of identity and memories of 33 years of her life attributed to dissociative fugue, along with a follow-up 11 years later. Significant levels of personal injury and stress preceded the onset of the amnesia. A detailed neuropsychological assessment was completed at a university psychology clinic, with a follow-up assessment there about 11 years later with an intent to determine whether changes in her cognitive status were associated with better recall of her life and with her emotional state. Psychomotor slowing and low scores on measures of attention and both verbal and visual memory were present initially, along with significant psychological distress associated with the diagnosis of posttraumatic stress disorder. Although memories of her life had not returned by follow-up, distress had abated and memory test scores had improved. The passage of time and a better emotional state did not lead to recovery of lost memories. Contrary to expectations, performance on tests of executive functions was good on both occasions. Multiple stressful events are attributed as having a role in maintaining the loss of memories.

  12. Phase models and clustering in networks of oscillators with delayed coupling

    Science.gov (United States)

    Campbell, Sue Ann; Wang, Zhen

    2018-01-01

    We consider a general model for a network of oscillators with time delayed coupling where the coupling matrix is circulant. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to determine model independent existence and stability results for symmetric cluster solutions. Our results extend previous work to systems with time delay and a more general coupling matrix. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies.

  13. H2O2 INDUCES DELAYED HYPEREXCITABILITY IN NUCLEUS TRACTUS SOLITARII NEURONS

    Science.gov (United States)

    Ostrowski, Tim D.; Hasser, Eileen M.; Heesch, Cheryl M.; Kline, David D.

    2014-01-01

    Hydrogen peroxide (H2O2) is a stable reactive oxygen species and potent neuromodulator of cellular and synaptic activity. Centrally, endogenous H2O2 is elevated during bouts of hypoxia-reoxygenation, a variety of disease states, and aging. The nucleus tractus solitarii (nTS) is the central termination site of visceral afferents for homeostatic reflexes and contributes to reflex alterations during these conditions. We determined the extent to which H2O2 modulates synaptic and membrane properties in nTS neurons in rat brainstem slices. Stimulation of the tractus solitarii (which contains the sensory afferent fibers) evoked synaptic currents that were not altered by 10 – 500 μM H2O2. However, 500 μM H2O2 modulated several intrinsic membrane properties of nTS neurons, including a decrease in input resistance, hyperpolarization of resting membrane potential (RMP) and action potential (AP) threshold (THR), and an initial reduction in AP discharge to depolarizing current. H2O2 increased conductance of barium-sensitive potassium currents, and block of these currents ablated H2O2-induced changes in RMP, input resistance and AP discharge. Following washout of H2O2 AP discharge was enhanced due to depolarization of RMP and a partially maintained hyperpolarization of THR. Hyperexcitability persisted with repeated H2O2 exposure. H2O2 effects on RMP and THR were ablated by intracellular administration of the antioxidant catalase, which was immunohistochemically identified in neurons throughout the nTS. Thus, H2O2 initially reduces excitability of nTS neurons that is followed by sustained hyperexcitability, which may play a profound role in cardiorespiratory reflexes. PMID:24397952

  14. Cognitive rehabilitation of amnesia after virus encephalitis: a case report.

    Science.gov (United States)

    Miotto, Eliane Correa

    2007-01-01

    A number of memory rehabilitation techniques have targeted people with various degrees of memory impairments. However, few studies have shown the contribution of preserved non-declarative memory capacity and errorless learning in the treatment of amnesic patients. The current case report describes the memory rehabilitation of a 44-year-old man with amnesia following viral encephalitis. The patient's procedural memory capacity had an important role in the use of a motor imagery strategy to remember people's names. It was further demonstrated that the application of a verbal learning technique was helpful in recalling new verbal information. These different memory rehabilitation techniques are discussed in terms of alternative possibilities in the rehabilitation of amnesic patients.

  15. Axonal Conduction Delays, Brain State, and Corticogeniculate Communication.

    Science.gov (United States)

    Stoelzel, Carl R; Bereshpolova, Yulia; Alonso, Jose-Manuel; Swadlow, Harvey A

    2017-06-28

    Thalamocortical conduction times are short, but layer 6 corticothalamic axons display an enormous range of conduction times, some exceeding 40-50 ms. Here, we investigate (1) how axonal conduction times of corticogeniculate (CG) neurons are related to the visual information conveyed to the thalamus, and (2) how alert versus nonalert awake brain states affect visual processing across the spectrum of CG conduction times. In awake female Dutch-Belted rabbits, we found 58% of CG neurons to be visually responsive, and 42% to be unresponsive. All responsive CG neurons had simple, orientation-selective receptive fields, and generated sustained responses to stationary stimuli. CG axonal conduction times were strongly related to modulated firing rates (F1 values) generated by drifting grating stimuli, and their associated interspike interval distributions, suggesting a continuum of visual responsiveness spanning the spectrum of axonal conduction times. CG conduction times were also significantly related to visual response latency, contrast sensitivity (C-50 values), directional selectivity, and optimal stimulus velocity. Increasing alertness did not cause visually unresponsive CG neurons to become responsive and did not change the response linearity (F1/F0 ratios) of visually responsive CG neurons. However, for visually responsive CG neurons, increased alertness nearly doubled the modulated response amplitude to optimal visual stimulation (F1 values), significantly shortened response latency, and dramatically increased response reliability. These effects of alertness were uniform across the broad spectrum of CG axonal conduction times. SIGNIFICANCE STATEMENT Corticothalamic neurons of layer 6 send a dense feedback projection to thalamic nuclei that provide input to sensory neocortex. While sensory information reaches the cortex after brief thalamocortical axonal delays, corticothalamic axons can exhibit conduction delays of <2 ms to 40-50 ms. Here, in the corticogeniculate

  16. Chronic Ca2+ influx through voltage-dependent Ca2+ channels enhance delayed rectifier K+ currents via activating Src family tyrosine kinase in rat hippocampal neurons.

    Science.gov (United States)

    Yang, Yoon-Sil; Jeon, Sang-Chan; Kim, Dong-Kwan; Eun, Su-Yong; Jung, Sung-Cherl

    2017-03-01

    Excessive influx and the subsequent rapid cytosolic elevation of Ca 2+ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic Ca 2+ level in normal as well as pathological conditions. Delayed rectifier K + channels (I DR channels) play a role to suppress membrane excitability by inducing K + outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under Ca 2+ -mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of I DR channels to hyperexcitable conditions induced by high Ca 2+ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high Ca 2+ -treatment significantly increased the amplitude of I DR without changes of gating kinetics. Nimodipine but not APV blocked Ca 2+ -induced I DR enhancement, confirming that the change of I DR might be targeted by Ca 2+ influx through voltage-dependent Ca 2+ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated I DR enhancement was not affected by either Ca 2+ -induced Ca 2+ release (CICR) or small conductance Ca 2+ -activated K + channels (SK channels). Furthermore, PP2 but not H89 completely abolished I DR enhancement under high Ca 2+ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for Ca 2+ -mediated I DR enhancement. Thus, SFKs may be sensitive to excessive Ca 2+ influx through VDCCs and enhance I DR to activate a neuroprotective mechanism against Ca 2+ -mediated hyperexcitability in neurons.

  17. Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injury.

    Directory of Open Access Journals (Sweden)

    Hey-Kyeong Jeong

    Full Text Available BACKGROUND: Brain inflammation is accompanied by brain injury. However, it is controversial whether inflammatory responses are harmful or beneficial to neurons. Because many studies have been performed using cultured microglia and neurons, it has not been possible to assess the influence of multiple cell types and diverse factors that dynamically and continuously change in vivo. Furthermore, behavior of microglia and other inflammatory cells could have been overlooked since most studies have focused on neuronal death. Therefore, it is essential to analyze the precise roles of microglia and brain inflammation in the injured brain, and determine their contribution to neuronal damage in vivo from the onset of injury. METHODS AND FINDINGS: Acute neuronal damage was induced by stereotaxic injection of ATP into the substantia nigra pars compacta (SNpc and the cortex of the rat brain. Inflammatory responses and their effects on neuronal damage were investigated by immunohistochemistry, electron microscopy, quantitative RT-PCR, and stereological counting, etc. ATP acutely caused death of microglia as well as neurons in a similar area within 3 h. We defined as the core region the area where both TH(+ and Iba-1(+ cells acutely died, and as the penumbra the area surrounding the core where Iba-1(+ cells showed activated morphology. In the penumbra region, morphologically activated microglia arranged around the injury sites. Monocytes filled the damaged core after neurons and microglia died. Interestingly, neither activated microglia nor monocytes expressed iNOS, a major neurotoxic inflammatory mediator. Monocytes rather expressed CD68, a marker of phagocytic activity. Importantly, the total number of dopaminergic neurons in the SNpc at 3 h (∼80% of that in the contralateral side did not decrease further at 7 d. Similarly, in the cortex, ATP-induced neuron-damage area detected at 3 h did not increase for up to 7 d. CONCLUSIONS: Different cellular

  18. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators

    Science.gov (United States)

    Yao, Chenggui; Yi, Ming; Shuai, Jianwei

    2013-09-01

    Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.

  19. Delayed Dopamine Signaling of Energy Level Builds Appetitive Long-Term Memory in Drosophila

    Directory of Open Access Journals (Sweden)

    Pierre-Yves Musso

    2015-02-01

    Full Text Available Sensory cues relevant to a food source, such as odors, can be associated with post-ingestion signals related either to food energetic value or toxicity. Despite numerous behavioral studies, a global understanding of the mechanisms underlying these long delay associations remains out of reach. Here, we demonstrate in Drosophila that the long-term association between an odor and a nutritious sugar depends on delayed post-ingestion signaling of energy level. We show at the neural circuit level that the activity of two pairs of dopaminergic neurons is necessary and sufficient to signal energy level to the olfactory memory center. Accordingly, we have identified in these dopaminergic neurons a delayed calcium trace that correlates with appetitive long-term memory formation. Altogether, these findings demonstrate that the Drosophila brain remembers food quality through a two-step mechanism that consists of the integration of olfactory and gustatory sensory information and then post-ingestion energetic value.

  20. Delayed dopamine signaling of energy level builds appetitive long-term memory in Drosophila.

    Science.gov (United States)

    Musso, Pierre-Yves; Tchenio, Paul; Preat, Thomas

    2015-02-24

    Sensory cues relevant to a food source, such as odors, can be associated with post-ingestion signals related either to food energetic value or toxicity. Despite numerous behavioral studies, a global understanding of the mechanisms underlying these long delay associations remains out of reach. Here, we demonstrate in Drosophila that the long-term association between an odor and a nutritious sugar depends on delayed post-ingestion signaling of energy level. We show at the neural circuit level that the activity of two pairs of dopaminergic neurons is necessary and sufficient to signal energy level to the olfactory memory center. Accordingly, we have identified in these dopaminergic neurons a delayed calcium trace that correlates with appetitive long-term memory formation. Altogether, these findings demonstrate that the Drosophila brain remembers food quality through a two-step mechanism that consists of the integration of olfactory and gustatory sensory information and then post-ingestion energetic value. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Hippocampal and diencephalic pathology in developmental amnesia.

    Science.gov (United States)

    Dzieciol, Anna M; Bachevalier, Jocelyne; Saleem, Kadharbatcha S; Gadian, David G; Saunders, Richard; Chong, W K Kling; Banks, Tina; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2017-01-01

    Developmental amnesia (DA) is a selective episodic memory disorder associated with hypoxia-induced bilateral hippocampal atrophy of early onset. Despite the systemic impact of hypoxia-ischaemia, the resulting brain damage was previously reported to be largely limited to the hippocampus. However, the thalamus and the mammillary bodies are parts of the hippocampal-diencephalic network and are therefore also at risk of injury following hypoxic-ischaemic events. Here, we report a neuroimaging investigation of diencephalic damage in a group of 18 patients with DA (age range 11-35 years), and an equal number of controls. Importantly, we uncovered a marked degree of atrophy in the mammillary bodies in two thirds of our patients. In addition, as a group, patients had mildly reduced thalamic volumes. The size of the anterior-mid thalamic (AMT) segment was correlated with patients' visual memory performance. Thus, in addition to the hippocampus, the diencephalic structures also appear to play a role in the patients' memory deficit. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. [Interaction between neurons of the frontal cortex and hippocampus during the realization of choice of food reinforcement quality in cats].

    Science.gov (United States)

    Merzhanova, G Kh; Dolbakian, E E; Khokhlova, V N

    2003-01-01

    Six cats were subjected to the procedure of appetitive instrumental conditioning (with light as a conditioned stimuls) by the method of the "active choice" of reinforcement quality. Short-delay conditioned bar-press responses were rewarded with bread-meat mixture, and the delayed responses were reinforced by meat. The animals differed in behavior strategy: four animals preferred the bar-pressing with a long delay (the so-called "self-control" group), and two cats preferred the bar-pressing with a short delay (the so-called "impulsive" group). Multiunit activity in the frontal cortex and hippocampus (CA3) was recorded via chronically implanted nichrome wire semimicroelectrodes. An interaction between the neighboring neurons in the frontal cortex and hippocampus (within local neural networks) and between the neurons of the frontal cortex and hippocampus (distributed neural networks in frontal-hippocampal and hippocampal-frontal directions) was evaluated by means of statistical crosscorrelation analysis of spike trains. Crosscorrelations between neuronal spike trains in the delay range of 0-100 ms were explored. It was shown that the number of crosscorrelations between the neuronal discharges both in the local and distributed networks was significantly higher in the "self-control" cats. It was suggested that the local and distributed neural networks of the frontal cortex and hippocampus are involved in the system of brain structures which determine the behavioral strategy of animals in the "self-control" group.

  3. Competitor suppresses neuronal representation of food reward in the nucleus accumbens/medial striatum of domestic chicks.

    Science.gov (United States)

    Amita, Hidetoshi; Matsushima, Toshiya

    2014-07-15

    To investigate the role of social contexts in controlling the neuronal representation of food reward, we recorded single neuron activity in the medial striatum/nucleus accumbens of domestic chicks and examined whether activities differed between two blocks with different contexts. Chicks were trained in an operant task to associate light-emitting diode color cues with three trial types that differed in the type of food reward: no reward (S-), a small reward/short-delay option (SS), and a large reward/long-delay alternative (LL). Amount and duration of reward were set such that both of SS and LL were chosen roughly equally. Neurons showing distinct cue-period activity in rewarding trials (SS and LL) were identified during an isolation block, and activity patterns were compared with those recorded from the same neuron during a subsequent pseudo-competition block in which another chick was allowed to forage in the same area, but was separated by a transparent window. In some neurons, cue-period activity was lower in the pseudo-competition block, and the difference was not ascribed to the number of repeated trials. Comparison at neuronal population level revealed statistically significant suppression in the pseudo-competition block in both SS and LL trials, suggesting that perceived competition generally suppressed the representation of cue-associated food reward. The delay- and reward-period activities, however, did not significantly different between blocks. These results demonstrate that visual perception of a competitive forager per se weakens the neuronal representation of predicted food reward. Possible functional links to impulse control are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Synchronization of Coupled Different Chaotic FitzHugh-Nagumo Neurons with Unknown Parameters under Communication-Direction-Dependent Coupling

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2014-01-01

    Full Text Available This paper investigates the chaotic behavior and synchronization of two different coupled chaotic FitzHugh-Nagumo (FHN neurons with unknown parameters under external electrical stimulation (EES. The coupled FHN neurons of different parameters admit unidirectional and bidirectional gap junctions in the medium between them. Dynamical properties, such as the increase in synchronization error as a consequence of the deviation of neuronal parameters for unlike neurons, the effect of difference in coupling strengths caused by the unidirectional gap junctions, and the impact of large time-delay due to separation of neurons, are studied in exploring the behavior of the coupled system. A novel integral-based nonlinear adaptive control scheme, to cope with the infeasibility of the recovery variable, for synchronization of two coupled delayed chaotic FHN neurons of different and unknown parameters under uncertain EES is derived. Further, to guarantee robust synchronization of different neurons against disturbances, the proposed control methodology is modified to achieve the uniformly ultimately bounded synchronization. The parametric estimation errors can be reduced by selecting suitable control parameters. The effectiveness of the proposed control scheme is illustrated via numerical simulations.

  5. Retrospective analysis of the recovery of orientation and memory during posttraumatic amnesia.

    Science.gov (United States)

    Roberts, Caroline M; Spitz, Gershon; Ponsford, Jennie L

    2015-07-01

    Prospective monitoring of posttraumatic amnesia (PTA) is recommended following moderate to severe traumatic brain injury (TBI). However, few studies have examined the typical order in which items recover on PTA scales. Different methods have been used to define recovery, and the order reported is not consistent across the literature. The purpose of this study was to improve understanding of the progression of PTA by reporting the duration to recovery of items and categories on the Westmead Post-Traumatic Amnesia Scale (WPTAS) according to different criteria. A retrospective analysis was conducted of 66 patients with TBI who were administered the WPTAS during hospital admission. The duration to recovery of items and categories was determined according to 3 criteria: first correct, correct 3 times in a row, and consistently correct. On the basis of the sample mean, date of birth (DOB), year, age, place, month, day, name, and memory for the 3 pictures recovered in this order according to all 3 criteria. However, the significance of differences between items and the order of recovery of categories depended on the criterion adopted. Although DOB recovered first in 74% of cases and the 3 pictures last in 63% of cases, there was a high degree of individual variability in the precise sequence of recovery. The traditional view of PTA recovering in the order of person, place, time, and memory does not adequately describe the profile of recovery on the WPTAS. Considering the recovery of individual items is necessary to understand and account for individuals differences in the order of recovery. (c) 2015 APA, all rights reserved).

  6. Human amnesia and the medial temporal lobe illuminated by neuropsychological and neurohistological findings for patient E.P.

    Science.gov (United States)

    Insausti, Ricardo; Annese, Jacopo; Amaral, David G.; Squire, Larry R.

    2013-01-01

    We present neurohistological information for a case of bilateral, symmetrical damage to the medial temporal lobe and well-documented memory impairment. E.P. developed profound memory impairment at age 70 y and then was studied for 14 y He had no capacity for learning facts and events and had retrograde amnesia covering several decades. He also had a modest impairment of semantic knowledge. Neurohistological analysis revealed bilaterally symmetrical lesions of the medial temporal lobe that eliminated the temporal pole, the amygdala, the entorhinal cortex, the hippocampus, the perirhinal cortex, and rostral parahippocampal cortex. The lesion also extended laterally to involve the fusiform gyrus substantially. Last, the superior, inferior, and middle temporal gyri were atrophic, and subjacent white matter was gliotic. Several considerations indicate that E.P.’s severe memory impairment was caused by his medial temporal lesions, whereas his impaired semantic knowledge was caused by lateral temporal damage. His lateral temporal damage also may have contributed to his extensive retrograde amnesia. The findings illuminate the anatomical relationship between memory, perception, and semantic knowledge. PMID:23620517

  7. Mediodorsal Thalamic Neurons Mirror the Activity of Medial Prefrontal Neurons Responding to Movement and Reinforcement during a Dynamic DNMTP Task.

    Science.gov (United States)

    Miller, Rikki L A; Francoeur, Miranda J; Gibson, Brett M; Mair, Robert G

    2017-01-01

    The mediodorsal nucleus (MD) interacts with medial prefrontal cortex (mPFC) to support learning and adaptive decision-making. MD receives driver (layer 5) and modulatory (layer 6) projections from PFC and is the main source of driver thalamic projections to middle cortical layers of PFC. Little is known about the activity of MD neurons and their influence on PFC during decision-making. We recorded MD neurons in rats performing a dynamic delayed nonmatching to position (dDNMTP) task and compared results to a previous study of mPFC with the same task (Onos et al., 2016). Criterion event-related responses were observed for 22% (254/1179) of neurons recorded in MD, 237 (93%) of which exhibited activity consistent with mPFC response types. More MD than mPFC neurons exhibited responses related to movement (45% vs. 29%) and reinforcement (51% vs. 27%). MD had few responses related to lever presses, and none related to preparation or memory delay, which constituted 43% of event-related activity in mPFC. Comparison of averaged normalized population activity and population response times confirmed the broad similarity of common response types in MD and mPFC and revealed differences in the onset and offset of some response types. Our results show that MD represents information about actions and outcomes essential for decision-making during dDNMTP, consistent with evidence from lesion studies that MD supports reward-based learning and action-selection. These findings support the hypothesis that MD reinforces task-relevant neural activity in PFC that gives rise to adaptive behavior.

  8. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration.

    Science.gov (United States)

    Kaplan, Artem; Spiller, Krista J; Towne, Christopher; Kanning, Kevin C; Choe, Ginn T; Geber, Adam; Akay, Turgay; Aebischer, Patrick; Henderson, Christopher E

    2014-01-22

    Selective neuronal loss is the hallmark of neurodegenerative diseases. In patients with amyotrophic lateral sclerosis (ALS), most motor neurons die but those innervating extraocular, pelvic sphincter, and slow limb muscles exhibit selective resistance. We identified 18 genes that show >10-fold differential expression between resistant and vulnerable motor neurons. One of these, matrix metalloproteinase-9 (MMP-9), is expressed only by fast motor neurons, which are selectively vulnerable. In ALS model mice expressing mutant superoxide dismutase (SOD1), reduction of MMP-9 function using gene ablation, viral gene therapy, or pharmacological inhibition significantly delayed muscle denervation. In the presence of mutant SOD1, MMP-9 expressed by fast motor neurons themselves enhances activation of ER stress and is sufficient to trigger axonal die-back. These findings define MMP-9 as a candidate therapeutic target for ALS. The molecular basis of neuronal diversity thus provides significant insights into mechanisms of selective vulnerability to neurodegeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita

    Science.gov (United States)

    Miyashita, Yasushi; Chang, Han Soo

    1988-01-01

    It has been proposed that visual-memory traces are located in the temporal lobes of the cerebral cortex, as electric stimulation of this area in humans results in recall of imagery1. Lesions in this area also affect recognition of an object after a delay in both humans2,3 and monkeys4-7 indicating a role in short-term memory of images8. Single-unit recordings from the temporal cortex have shown that some neurons continue to fire when one of two or four colours are to be remembered temporarily9. But neuronal responses selective to specific complex objects10-18 , including hands10,13 and faces13,16,17, cease soon after the offset of stimulus presentation10-18. These results led to the question of whether any of these neurons could serve the memory of complex objects. We report here a group of shape-selective neurons in an anterior ventral part of the temporal cortex of monkeys that exhibited sustained activity during the delay period of a visual short-term memory task. The activity was highly selective for the pictorial information to be memorized and was independent of the physical attributes such as size, orientation, colour or position of the object. These observations show that the delay activity represents the short-term memory of the categorized percept of a picture.

  10. Type a niemann-pick disease. Description of three cases with delayed myelination.

    Science.gov (United States)

    D'Amico, A; Sibilio, M; Caranci, F; Bartiromo, F; Taurisano, R; Balivo, F; Melis, D; Parenti, G; Cirillo, S; Elefante, R; Brunetti, A

    2008-06-03

    We describe three patients with type A Niemann-Pick disease (NPD-A). NPD-A is an autosomal recessive neuronal storage disease classified among the sphingolipidoses, characterized by accumulation of sphingomyelin in various tissues and in the brain. Magnetic Resonance imaging (MRI) of our three patients showed a marked delay of myelination with frontal atrophy. Few descriptions of this MRI pattern of delayed myelination have been published to date.

  11. Effect of midazolam on memory during fiberoptic gastroscopy under conscious sedation.

    Science.gov (United States)

    Hong, Yun Jeong; Jang, Eun Hye; Hwang, Jihye; Roh, Jee Hoon; Kwon, Miseon; Lee, Don; Lee, Jae-Hong

    2015-01-01

    As the fiberoptic gastroscopy using midazolam is being in widespread use, the exact nature of midazolam on memory should be clarified. We intended to examine whether midazolam causes selective anterograde amnesia and what impact it has on other aspects of memory and general cognitive function. We recruited healthy subjects undergoing fiberoptic gastroscopy under conscious sedation. At baseline, history taking for retrograde amnesia and the Korean version of the Montreal Cognitive Assessment were performed. A man's name and address were given immediately after intravenous midazolam administration. After gastroscopy, the subjects were asked to recall those items. By the time they had fully recovered consciousness, the same test was repeated along with the Korean version of the Montreal Cognitive Assessment and a test for retrograde amnesia. A total of 30 subjects were enrolled in this study. Subjects with high-dose midazolam showed lower scores in the immediate and delayed recall of "a man's name and address" compared with those with low-dose midazolam. The midazolam dose was inversely correlated with the delayed recall scores of "a man's name and address." On full recovery of consciousness, the subjects did not exhibit any of anterograde or retrograde amnesia. These findings suggest that midazolam causes transient selective anterograde amnesia in a dose-dependent manner.

  12. Charting the acquisition of semantic knowledge in a case of developmental amnesia.

    Science.gov (United States)

    Gardiner, John M; Brandt, Karen R; Baddeley, Alan D; Vargha-Khadem, Faraneh; Mishkin, Mortimer

    2008-09-01

    We report the acquisition and recall of novel facts by Jon, a young adult with early onset developmental amnesia whose episodic memory is gravely impaired due to selective bilateral hippocampal damage. Jon succeeded in learning some novel facts but compared with a control group his intertrial retention was impaired during acquisition and, except for the most frequently repeated facts, he was also less accurate in correctly sourcing these facts to the experiment. The results further support the hypothesis that despite a severely compromised episodic memory and hippocampal system, there is nevertheless the capacity to accrue semantic knowledge available to recall.

  13. Charting the acquisition of semantic knowledge in a case of developmental amnesia

    Science.gov (United States)

    Gardiner, John M.; Brandt, Karen R.; Baddeley, Alan D.; Vargha-Khadem, Faraneh; Mishkin, Mortimer

    2009-01-01

    We report the acquisition and recall of novel facts by Jon, a young adult with early onset developmental amnesia whose episodic memory is gravely impaired due to selective bilateral hippocampal damage. Jon succeeded in learning some novel facts but compared with a control group his intertrial retention was impaired during acquisition and, except for the most frequently repeated facts, he was also less accurate in correctly sourcing these facts to the experiment. The results further support the hypothesis that despite a severely compromised episodic memory and hippocampal system, there is nevertheless the capacity to accrue semantic knowledge available to recall. PMID:18589461

  14. Focal retrograde amnesia: voxel-based morphometry findings in a case without MRI lesions.

    Directory of Open Access Journals (Sweden)

    Bernhard Sehm

    Full Text Available Focal retrograde amnesia (FRA is a rare neurocognitive disorder presenting with an isolated loss of retrograde memory. In the absence of detectable brain lesions, a differentiation of FRA from psychogenic causes is difficult. Here we report a case study of persisting FRA after an epileptic seizure. A thorough neuropsychological assessment confirmed severe retrograde memory deficits while anterograde memory abilities were completely normal. Neurological and psychiatric examination were unremarkable and high-resolution MRI showed no neuroradiologically apparent lesion. However, voxel-based morphometry (VBM-comparing the MRI to an education-, age-and sex-matched control group (n = 20 disclosed distinct gray matter decreases in left temporopolar cortex and a region between right posterior parahippocampal and lingual cortex. Although the results of VBM-based comparisons between a single case and a healthy control group are generally susceptible to differences unrelated to the specific symptoms of the case, we believe that our data suggest a causal role of the cortical areas detected since the retrograde memory deficit is the preeminent neuropsychological difference between patient and controls. This was paralleled by grey matter differences in central nodes of the retrograde memory network. We therefore suggest that these subtle alterations represent structural correlates of the focal retrograde amnesia in our patient. Beyond the implications for the diagnosis and etiology of FRA, our results advocate the use of VBM in conditions that do not show abnormalities in clinical radiological assessment, but show distinct neuropsychological deficits.

  15. Dynamics in a delayed-neural network

    International Nuclear Information System (INIS)

    Yuan Yuan

    2007-01-01

    In this paper, we consider a neural network of four identical neurons with time-delayed connections. Some parameter regions are given for global, local stability and synchronization using the theory of functional differential equations. The root distributions in the corresponding characteristic transcendental equation are analyzed, Pitchfork bifurcation, Hopf and equivariant Hopf bifurcations are investigated by revealing the center manifolds and normal forms. Numerical simulations are shown the agreements with the theoretical results

  16. MR findings of congenital craniocerebral anomaly: correlation with seizures and development delay

    International Nuclear Information System (INIS)

    Ko, Seog Wan; Seo, Jeong Jin; Kim, Yun Hyeon; Yoon, Jong Hun; Kim, Hyun Ju; Kim, Hyeong Kil; Kang, Heoung Keun; Chung, Hyon De

    1995-01-01

    To evaluate characteristic MR findings of craniocerebral anomaly and its relationship with neurologic manifestations. We retrospectively reviewed MR images of 36 patients with craniocerebral anomaly diagnosed by MRI and clinical courses. We correlated the characteristic MR findings in 41 lesions with neurologic manifestations focusing on seizures and developmental delay. Twenty-three patients with seizures consisted of 14 patients(60%) with neuronal migration disorders and seven(30%) with phakomatosis, among which 18 patients(78%) had generalized type of seizures. Locations of the lesions were the parietal lobes in 11 patients(52%) and the subependymal or periventricular regions in seven(33%). Two patients with tuberous sclerosis had the lesions in both parietal and subependymal areas. Nine patients had the signs of developmental delay that were seen in the four(44%) with schizencephaly, two (22%) with tuberous sclerosis, two(22%) with heterotopia, and noe(11%) with pachygyria. Neuronal migration anomaly was relatively common lesion that presented neurologic festations such as seizures and developmental delay. Generalized type of seizures were common. We were able to diagnose these anomalies using the MRI that helped establish therapeutic plans

  17. SPM analysis and cognitive dysfunctions in patients with transient global amnesia

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Kang, Do Young; Yun, Go Un; Park, Kyung Won; Kim, Jae Woo

    2004-01-01

    Transient global amnesia (TGA) is known as a disease of benign nature characterized with clinically transient global antegrade amnesia and a variable degree of global retrograde memory impairment, but it usually resolved within 24 hours. The aims of this study are to assess the alterations in regional cerebral blood flow (rCBF) by Tc-99m HMPAO SPECT imaging with statistical parametric mapping (SPM) analysis and to verify the cognitive deficits by neuropsychological test in TGA patients. Twelve patients with TGA and age-matched normal control subjects participated in this study. Tc-99m HMPAO SPECT was performed within 1 to 19 days (mean duration: 7.3:±5.2 days) after the events to measure the rCBF. SPECT images were analyzed using SPM (SPM99) with Matlab 5.3. Seoul Neuropsychological Screening Battery test was also done within 2 to 8 days (mean duration 3.8±2.2 days) for cognitive functions in 8 of 12 patients with TGA. The SPM analysis of SPECT images showed significantly decreased rCBF in the left inferior frontal gyrus (Brodmann area 9), the left supramarginal gyrus (Brodmann area 40), the left postcentral gyrus (Brodmann area 40) and the left precentral gyrus (Brodmann area 4) in patients with TGA (uncorrected p<0.01). Neuropsychological test findings represented that several cognitive functions. such as, verbal memory, visual memory, phonemic fluency and confrontational naming, were impaired in patients with TGA compared with normal control. Additionally, on SPM analysis, we found lesions of hyperperfusion in contralateral cerebral hemisphere. Our study shows perfusion deficits in the left cerebral hemisphere in patients with TGA and several cognitive dysfunctions. And we found after clinical symptoms were completely resolved, the lesions of hypoperfusion were still remained. We found that functional quantitative neuroimaging study and neuropsychological test are useful to understand underlying pathomachanism of TGA

  18. SPM analysis and cognitive dysfunctions in patients with transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Kang, Do Young; Yun, Go Un; Park, Kyung Won; Kim, Jae Woo [School of Medicine, Donga University, Busan (Korea, Republic of)

    2004-07-01

    Transient global amnesia (TGA) is known as a disease of benign nature characterized with clinically transient global antegrade amnesia and a variable degree of global retrograde memory impairment, but it usually resolved within 24 hours. The aims of this study are to assess the alterations in regional cerebral blood flow (rCBF) by Tc-99m HMPAO SPECT imaging with statistical parametric mapping (SPM) analysis and to verify the cognitive deficits by neuropsychological test in TGA patients. Twelve patients with TGA and age-matched normal control subjects participated in this study. Tc-99m HMPAO SPECT was performed within 1 to 19 days (mean duration: 7.3:{+-}5.2 days) after the events to measure the rCBF. SPECT images were analyzed using SPM (SPM99) with Matlab 5.3. Seoul Neuropsychological Screening Battery test was also done within 2 to 8 days (mean duration 3.8{+-}2.2 days) for cognitive functions in 8 of 12 patients with TGA. The SPM analysis of SPECT images showed significantly decreased rCBF in the left inferior frontal gyrus (Brodmann area 9), the left supramarginal gyrus (Brodmann area 40), the left postcentral gyrus (Brodmann area 40) and the left precentral gyrus (Brodmann area 4) in patients with TGA (uncorrected p<0.01). Neuropsychological test findings represented that several cognitive functions. such as, verbal memory, visual memory, phonemic fluency and confrontational naming, were impaired in patients with TGA compared with normal control. Additionally, on SPM analysis, we found lesions of hyperperfusion in contralateral cerebral hemisphere. Our study shows perfusion deficits in the left cerebral hemisphere in patients with TGA and several cognitive dysfunctions. And we found after clinical symptoms were completely resolved, the lesions of hypoperfusion were still remained. We found that functional quantitative neuroimaging study and neuropsychological test are useful to understand underlying pathomachanism of TGA.

  19. Route learning in amnesia: a comparison of trial-and-error and errorless learning in patients with the Korsakoff syndrome.

    Science.gov (United States)

    Kessels, Roy P C; van Loon, Eke; Wester, Arie J

    2007-10-01

    To examine the errorless learning approach using a procedural memory task (i.e. learning of actual routes) in patients with amnesia, as compared to trial-and-error learning. Counterbalanced self-controlled cases series. Psychiatric hospital (Korsakoff clinic). A convenience sample of 10 patients with the Korsakoff amnestic syndrome. All patients learned a route in four sessions on separate days using an errorless approach and a different route using trial-and-error. Error rate was scored during route learning and standard neuro-psychological tests were administered (i.e. subtest route recall of the Rivermead Behavioural Memory Test (RBMT) and the Dutch version of the California Verbal Learning Test (VLGT)). A significant learning effect was found in the trial-and-error condition over consecutive sessions (P = 0.006), but no performance difference was found between errorless and trial-and-error learning of the routes. VLGT performance was significantly correlated with a trial-and-error advantage (P Korsakoff syndrome (severe amnesia).

  20. Neurovascular coupling protects neurons against hypoxic injury via inhibition of potassium currents by generation of nitric oxide in direct neuron and endothelium cocultures.

    Science.gov (United States)

    Wu, Kun-Wei; Kou, Zeng-Wei; Mo, Jia-Lin; Deng, Xu-Xu; Sun, Feng-Yan

    2016-10-15

    This study examined the effect of neuron-endothelial coupling on the survival of neurons after ischemia and the possible mechanism underlying that effect. Whole-cell patch-clamp experiments were performed on cortical neurons cultured alone or directly cocultured with brain microvascular endothelial cells (BMEC). Propidium iodide (PI) and NeuN staining were performed to examine neuronal death following oxygen and glucose deprivation (OGD). We found that the neuronal transient outward potassium currents (I A ) decreased in the coculture system, whereas the outward delayed-rectifier potassium currents (I K ) did not. Sodium nitroprusside, a NO donor, enhanced BMEC-induced I A inhibition and nitro-l-arginine methylester, a NOS inhibitor, partially prevented this inhibition. Moreover, the neurons directly cocultured with BMEC showed more resistance to OGD-induced injury compared with the neurons cultured alone, and that neuroprotective effect was abolished by treatment with NS5806, an activator of the I A . These results indicate that vascular endothelial cells assist neurons to prevent hypoxic injury via inhibiting neuronal I A by production of NO in the direct neuron-BMEC coculture system. These results further provide direct evidence of functional coupling between neurons and vascular endothelial cells. This study clearly demonstrates that vascular endothelial cells play beneficial roles in the pathophysiological processes of neurons after hypoxic injury, suggesting that the improvement of neurovascular coupling or functional remodeling may become an important therapeutic target for preventing brain injury. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. MR imaging of neuronal migration anomaly

    International Nuclear Information System (INIS)

    Hong, Hyun Sook; Choi, Eun Wan; Kim, Dae Ho; Chung, Moo Chan; Kwon, Kuy Hyang; Kim, Ki Jung

    1991-01-01

    Abnormalities of neuronal migration are characterized by anectopic location of neurons in the cerebral cortex. This broad group of anomalies includes agyria, pachygyria, schizencephaly, unilateral megalencephaly, and gray matter heterotopia. Patients with this anomaly present clinically with a variety of symptoms which are proportional to the extent of the brain involved. These abnormalities have characterized pathologically in vivo by sonography and CT scan. MR appears to be an imaging technique of choice in evaluating these anomalies because it is capable of exceptionally good differentiation between gray and white matter, high contrast resolution, multiplanar display of the anatomy, and lack of overlying bone artifac. The purpose of this paper is to describe the MR findings of neuronal migration anomaly. The results of our study support that MR appears to be the imaging method of choice for diagnosing migration anomalies and the primary screening method for infants or children who have seisure/and delayed development

  2. Autaptic effects on synchrony of neurons coupled by electrical synapses

    Science.gov (United States)

    Kim, Youngtae

    2017-07-01

    In this paper, we numerically study the effects of a special synapse known as autapse on synchronization of population of Morris-Lecar (ML) neurons coupled by electrical synapses. Several configurations of the ML neuronal populations such as a pair or a ring or a globally coupled network with and without autapses are examined. While most of the papers on the autaptic effects on synchronization have used networks of neurons of same spiking rate, we use the network of neurons of different spiking rates. We find that the optimal autaptic coupling strength and the autaptic time delay enhance synchronization in our neural networks. We use the phase response curve analysis to explain the enhanced synchronization by autapses. Our findings reveal the important relationship between the intraneuronal feedback loop and the interneuronal coupling.

  3. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    Science.gov (United States)

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects. Copyright © 2012 S. Karger AG, Basel.

  4. Impacts of hybrid synapses on the noise-delayed decay in scale-free neural networks

    International Nuclear Information System (INIS)

    Yilmaz, Ergin

    2014-01-01

    Highlights: • We investigate the NDD phenomenon in a hybrid scale-free network. • Electrical synapses are more impressive on the emergence of NDD. • Electrical synapses are more efficient in suppressing of the NDD. • Average degree has two opposite effects on the appearance time of the first spike. - Abstract: We study the phenomenon of noise-delayed decay in a scale-free neural network consisting of excitable FitzHugh–Nagumo neurons. In contrast to earlier works, where only electrical synapses are considered among neurons, we primarily examine the effects of hybrid synapses on the noise-delayed decay in this study. We show that the electrical synaptic coupling is more impressive than the chemical coupling in determining the appearance time of the first-spike and more efficient on the mitigation of the delay time in the detection of a suprathreshold input signal. We obtain that hybrid networks including inhibitory chemical synapses have higher signal detection capabilities than those of including excitatory ones. We also find that average degree exhibits two different effects, which are strengthening and weakening the noise-delayed decay effect depending on the noise intensity

  5. Stability and attractive basins of multiple equilibria in delayed two-neuron networks

    International Nuclear Information System (INIS)

    Huang Yu-Jiao; Zhang Hua-Guang; Wang Zhan-Shan

    2012-01-01

    Multiple stability for two-dimensional delayed recurrent neural networks with piecewise linear activation functions of 2r (r ≥ 1) corner points is studied. Sufficient conditions are established for checking the existence of (2r + 1) 2 equilibria in delayed recurrent neural networks. Under these conditions, (r + 1) 2 equilibria are locally exponentially stable, and (2r + 1) 2 — (r + 1) 2 — r 2 equilibria are unstable. Attractive basins of stable equilibria are estimated, which are larger than invariant sets derived by decomposing state space. One example is provided to illustrate the effectiveness of our results. (general)

  6. Intrinsic Membrane Hyperexcitability of Amyotrophic Lateral Sclerosis Patient-Derived Motor Neurons

    Directory of Open Access Journals (Sweden)

    Brian J. Wainger

    2014-04-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease of the motor nervous system. We show using multielectrode array and patch-clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 (SOD1, C9orf72, and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected but otherwise isogenic SOD1+/+ stem cell line do not display the hyperexcitability phenotype. SOD1A4V/+ ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival in vitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates.

  7. Two cases of cervical disc disease with intramedullary pathological changes, which are responsible for their neurological syndromes, on delayed CT myelography

    International Nuclear Information System (INIS)

    Isu, Toyohiko; Iwasaki, Yoshinobu; Abe, Hiroshi; Tashiro, Kunio; Murai, Hiroshi; Miyasaka, Kazuo

    1987-01-01

    We report two cases of cervical disc disease with myelopathy classified as of motor system syndrome type showing small contrast accumulation within the spinal cord on delayed CT myelography. In our two cases, high density spots on delayed CT myelography were bilaterally localized within the spinal cord, and believed represent pathological changes of the spinal cord, such as collection of microcavities or cystic necrosis. In case 1, the high density areas seemed to be localized in the anterior horn and corticospinal tract, and in case 2, they seemed to be localized in the corticospinal tract. The patient in case 1 produced signs and symptoms resembling motor neurone disease and lesion could not be differentiated from the latter. Delayed CT myelography showed that the cause of the upper limb amyotrophy was attributed to an anterior horn disorder and that of pyramidal tract sign to a corticospinal tract disorder. Therefore, we could differentiate the lesion from motor neurone disease on delayed CT myelography in case 1. In conclusion, we emphasize that delayed CT myelography can demonstrate the intramedullary pathological changes in the cervical disc disease and is useful in distinguishing between cervical disc disease simulating motor neurone disease and the latter. (author)

  8. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards.

    Science.gov (United States)

    Miyazaki, Kayoko W; Miyazaki, Katsuhiko; Tanaka, Kenji F; Yamanaka, Akihiro; Takahashi, Aki; Tabuchi, Sawako; Doya, Kenji

    2014-09-08

    Serotonin is a neuromodulator that is involved extensively in behavioral, affective, and cognitive functions in the brain. Previous recording studies of the midbrain dorsal raphe nucleus (DRN) revealed that the activation of putative serotonin neurons correlates with the levels of behavioral arousal [1], rhythmic motor outputs [2], salient sensory stimuli [3-6], reward, and conditioned cues [5-8]. The classic theory on serotonin states that it opposes dopamine and inhibits behaviors when aversive events are predicted [9-14]. However, the therapeutic effects of serotonin signal-enhancing medications have been difficult to reconcile with this theory [15, 16]. In contrast, a more recent theory states that serotonin facilitates long-term optimal behaviors and suppresses impulsive behaviors [17-21]. To test these theories, we developed optogenetic mice that selectively express channelrhodopsin in serotonin neurons and tested how the activation of serotonergic neurons in the DRN affects animal behavior during a delayed reward task. The activation of serotonin neurons reduced the premature cessation of waiting for conditioned cues and food rewards. In reward omission trials, serotonin neuron stimulation prolonged the time animals spent waiting. This effect was observed specifically when the animal was engaged in deciding whether to keep waiting and was not due to motor inhibition. Control experiments showed that the prolonged waiting times observed with optogenetic stimulation were not due to behavioral inhibition or the reinforcing effects of serotonergic activation. These results show, for the first time, that the timed activation of serotonin neurons during waiting promotes animals' patience to wait for a delayed reward. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Clinical and neuropsychological changes after the disappearance of seizures in a case of transient epileptic amnesia

    OpenAIRE

    Sekimoto, Masanori; Muramatsu, Reimi; Kato, Masaaki; Onuma, Teiichi

    2017-01-01

    We encountered a female patient with late-onset temporal lobe epilepsy who presented with transient amnesia as the sole ictal manifestation, an accelerated rate of forgetting daily life events, and a retrograde memory deficit. We describe the memory function of the patient both before and after the administration of antiseizure medication. After the patient's seizures were controlled with antiseizure drugs, her neuropsychological memory performance scores showed improvement. We presumed that ...

  10. Parent-child relationship quality and infantile amnesia in adults.

    Science.gov (United States)

    Peterson, Carole; Nguyen, Duyen T K

    2010-11-01

    The first years of life are typically shrouded by infantile amnesia, but there is enormous variability between adults in how early and how much they can remember from this period. This study examined one possible factor affecting this variability: whether the perceived quality of parent-child relationships is associated with the number of early memories young adults can retrieve, and their age at the time of their first memory. We found such associations but they were qualified by parent gender. Mother-child relationships that were more affectively intense (greater social support but also more negative interchanges) were associated with recalling more early memories, although paternal companionship was most associated with how early an individual's first memory was. Affective tone of retrieved memories was also assessed, and a greater proportion of affectively positive memories (as well as fewer affectively neutral memories for males) was associated with high parental involvement in children's lives.

  11. Periodic synchronization control of discontinuous delayed networks by using extended Filippov-framework.

    Science.gov (United States)

    Cai, Zuowei; Huang, Lihong; Guo, Zhenyuan; Zhang, Lingling; Wan, Xuting

    2015-08-01

    This paper is concerned with the periodic synchronization problem for a general class of delayed neural networks (DNNs) with discontinuous neuron activation. One of the purposes is to analyze the problem of periodic orbits. To do so, we introduce new tools including inequality techniques and Kakutani's fixed point theorem of set-valued maps to derive the existence of periodic solution. Another purpose is to design a switching state-feedback control for realizing global exponential synchronization of the drive-response network system with periodic coefficients. Unlike the previous works on periodic synchronization of neural network, both the neuron activations and controllers in this paper are allowed to be discontinuous. Moreover, owing to the occurrence of delays in neuron signal, the neural network model is described by the functional differential equation. So we introduce extended Filippov-framework to deal with the basic issues of solutions for discontinuous DNNs. Finally, two examples and simulation experiments are given to illustrate the proposed method and main results which have an important instructional significance in the design of periodic synchronized DNNs circuits involving discontinuous or switching factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A Case of Bariatric Surgery-related Wernicke-Korsakoff Syndrome with Persisting Anterograde Amnesia.

    Science.gov (United States)

    Gasquoine, Philip Gerard

    2017-08-01

    To describe the theoretical and clinical implications of the neuropsychological evaluation of a case of bariatric surgery-related Wernicke-Korsakoff syndrome. The patient was a 37-year old, female, bilingual, bachelor's degree educated, Mexican American public relations consultant without preexisting psychiatric, neurological, or substance abuse history. Recovery from laparoscopic sleeve gastrectomy surgery for morbid obesity was complicated by intraabdominal abscess, multibacterial infection, and prolonged nausea and vomiting. About 15 weeks post-surgery she was diagnosed with Wernicke's encephalopathy. She had a positive response to thiamine supplement but was left with persisting self-reported memory problems that were confirmed by family members. Multiple neuroimaging studies were all normal. A neuropsychological evaluation at 14 months post-surgery revealed anterograde amnesia for verbal and visual-perceptual material. There was no clear period of temporally graded retrograde amnesia. Scores on tests of visual-perceptual, language, fine motor, and executive functions were unimpaired. She had awareness of her neurocognitive impairment, but did not exhibit emotional distress. Follow-up neuropsychological evaluation at 17 months showed a similar neurocognitive profile with increased emotional distress. Her preserved executive functioning is theoretically important as it supports arguments that such impairment in alcohol use-related Korsakoff syndrome derives from the toxic effects of the prolonged misuse of alcohol and not vitamin deficiency. From a clinical perspective, neuropsychological evaluation of thiamine treated, bariatric surgery-related, Wernicke's encephalopathy cases is indicated if there is suspicion of residual memory impairment. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons

    International Nuclear Information System (INIS)

    Birinyi-Strachan, Liesl C.; Gunning, Simon J.; Lewis, Richard J.; Nicholson, Graham M.

    2005-01-01

    The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na v ) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na v channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons, P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na v currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP, and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na v channel gating, observed clinically in response to ciguatera poisoning

  14. Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure

    International Nuclear Information System (INIS)

    Samardak, A. S.; Nogaret, A.; Janson, N. B.; Balanov, A.; Farrer, I.; Ritchie, D. A.

    2011-01-01

    We have demonstrated the proof of principle of a semiconductor neuron, which has dendrites, axon, and a soma and computes information encoded in electrical pulses in the same way as biological neurons. Electrical impulses applied to dendrites diffuse along microwires to the soma. The soma is the active part of the neuron, which regenerates input pulses above a voltage threshold and transmits them into the axon. Our concept of neuron is a major step forward because its spatial structure controls the timing of pulses, which arrive at the soma. Dendrites and axon act as transmission delay lines, which modify the information, coded in the timing of pulses. We have finally shown that noise enhances the detection sensitivity of the neuron by helping the transmission of weak periodic signals. A maximum enhancement of signal transmission was observed at an optimum noise level known as stochastic resonance. The experimental results are in excellent agreement with simulations of the FitzHugh-Nagumo model. Our neuron is therefore extremely well suited to providing feedback on the various mathematical approximations of neurons and building functional networks.

  15. Auditory stimuli elicit hippocampal neuronal responses during sleep

    Directory of Open Access Journals (Sweden)

    Ekaterina eVinnik

    2012-06-01

    Full Text Available To investigate how hippocampal neurons code behaviorally salient stimuli, we recorded from neurons in the CA1 region of hippocampus in rats while they learned to associate the presence of sound with water reward. Rats learned to alternate between two reward ports at which, in 50 percent of the trials, sound stimuli were presented followed by water reward after a 3-second delay. Sound at the water port predicted subsequent reward delivery in 100 percent of the trials and the absence of sound predicted reward omission. During this task, 40% of recorded neurons fired differently according to which of the 2 reward ports the rat was visiting. A smaller fraction of neurons demonstrated onset response to sound/nosepoke (19% and reward delivery (24%. When the sounds were played during passive wakefulness, 8% of neurons responded with short latency onset responses; 25% of neurons responded to sounds when they were played during sleep. Based on the current findings and the results of previous experiments we propose the existence of two types of hippocampal neuronal responses to sounds: sound-onset responses with very short latency and longer-lasting sound-specific responses that are likely to be present when the animal is actively engaged in the task. During sleep the short-latency responses in hippocampus are intermingled with sustained activity which in the current experiment was detected for 1-2 seconds.

  16. Identifying Chaotic FitzHugh–Nagumo Neurons Using Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Ri-Qi Su

    2014-07-01

    Full Text Available We develop a completely data-driven approach to reconstructing coupled neuronal networks that contain a small subset of chaotic neurons. Such chaotic elements can be the result of parameter shift in their individual dynamical systems and may lead to abnormal functions of the network. To accurately identify the chaotic neurons may thus be necessary and important, for example, applying appropriate controls to bring the network to a normal state. However, due to couplings among the nodes, the measured time series, even from non-chaotic neurons, would appear random, rendering inapplicable traditional nonlinear time-series analysis, such as the delay-coordinate embedding method, which yields information about the global dynamics of the entire network. Our method is based on compressive sensing. In particular, we demonstrate that identifying chaotic elements can be formulated as a general problem of reconstructing the nodal dynamical systems, network connections and all coupling functions, as well as their weights. The working and efficiency of the method are illustrated by using networks of non-identical FitzHugh–Nagumo neurons with randomly-distributed coupling weights.

  17. Study on cognition disorder and morphologic change of neurons in hippocampus area following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    洪军; 崔建忠; 周云涛; 高俊玲

    2002-01-01

    Objective: To explore the correlation between cognition disorder and morphologic change of hippocampal neurons after traumatic brain injury (TBI).   Methods: Wistar rat models with severe TBI were made by Marmarous method. The histopathological change of the neurons in the hippocampus area were studied with hematoxylin-eosin (HE) staining and terminal deoxynucleotidyl transferase-mediated X-dUPT nick end labeling (TUNEL), respectively. The cognitive function was evaluated with the Morris water maze test.   Results: The comprehensive neuronal degeneration and necrosis could be observed in CA2-3 regions of hippocampus at 3 days after injury. Apoptotic positive neurons in CA2-4 regions of hippocampus and dentate gyrus increased in the injured group at 24 hours following TBI. They peaked at 7 days and then declined. Significant impairment of spatial learning and memory was observed after injury in the rats.   Conclusions: The rats have obvious disorders in spatial learning and memory after severe TBI. Meanwhile, delayed neuronal necrosis and apoptosis can be observed in the neurons in the hippocampus area. It suggests that delayed hippocampal cell death may contribute to the functional deficit.

  18. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays

    International Nuclear Information System (INIS)

    Arik, Sabri

    2006-01-01

    This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature

  19. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays

    Science.gov (United States)

    Arik, Sabri

    2006-02-01

    This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature.

  20. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  1. Bax regulates neuronal Ca2+ homeostasis.

    Science.gov (United States)

    D'Orsi, Beatrice; Kilbride, Seán M; Chen, Gang; Perez Alvarez, Sergio; Bonner, Helena P; Pfeiffer, Shona; Plesnila, Nikolaus; Engel, Tobias; Henshall, David C; Düssmann, Heiko; Prehn, Jochen H M

    2015-01-28

    Excessive Ca(2+) entry during glutamate receptor overactivation ("excitotoxicity") induces acute or delayed neuronal death. We report here that deficiency in bax exerted broad neuroprotection against excitotoxic injury and oxygen/glucose deprivation in mouse neocortical neuron cultures and reduced infarct size, necrotic injury, and cerebral edema formation after middle cerebral artery occlusion in mice. Neuronal Ca(2+) and mitochondrial membrane potential (Δψm) analysis during excitotoxic injury revealed that bax-deficient neurons showed significantly reduced Ca(2+) transients during the NMDA excitation period and did not exhibit the deregulation of Δψm that was observed in their wild-type (WT) counterparts. Reintroduction of bax or a bax mutant incapable of proapoptotic oligomerization equally restored neuronal Ca(2+) dynamics during NMDA excitation, suggesting that Bax controlled Ca(2+) signaling independently of its role in apoptosis execution. Quantitative confocal imaging of intracellular ATP or mitochondrial Ca(2+) levels using FRET-based sensors indicated that the effects of bax deficiency on Ca(2+) handling were not due to enhanced cellular bioenergetics or increased Ca(2+) uptake into mitochondria. We also observed that mitochondria isolated from WT or bax-deficient cells similarly underwent Ca(2+)-induced permeability transition. However, when Ca(2+) uptake into the sarco/endoplasmic reticulum was blocked with the Ca(2+)-ATPase inhibitor thapsigargin, bax-deficient neurons showed strongly elevated cytosolic Ca(2+) levels during NMDA excitation, suggesting that the ability of Bax to support dynamic ER Ca(2+) handling is critical for cell death signaling during periods of neuronal overexcitation. Copyright © 2015 the authors 0270-6474/15/351706-17$15.00/0.

  2. Spectral components of cytosolic [Ca2+] spiking in neurons

    DEFF Research Database (Denmark)

    Kardos, J; Szilágyi, N; Juhász, G

    1998-01-01

    . Delayed complex responses of large [Ca2+]c spiking observed in cells from a different set of cultures were synthesized by a set of frequencies within the range 0.018-0.117 Hz. Differential frequency patterns are suggested as characteristics of the [Ca2+]c spiking responses of neurons under different...

  3. Personal semantic memory: insights from neuropsychological research on amnesia.

    Science.gov (United States)

    Grilli, Matthew D; Verfaellie, Mieke

    2014-08-01

    This paper provides insight into the cognitive and neural mechanisms of personal semantic memory, knowledge that is specific and unique to individuals, by reviewing neuropsychological research on stable amnesia secondary to medial temporal lobe damage. The results reveal that personal semantic memory does not depend on a unitary set of cognitive and neural mechanisms. Findings show that autobiographical fact knowledge reflects an experience-near type of personal semantic memory that relies on the medial temporal lobe for retrieval, albeit less so than personal episodic memory. Additional evidence demonstrates that new autobiographical fact learning likely relies on the medial temporal lobe, but the extent to which remains unclear. Other findings show that retrieval of personal traits/roles and new learning of personal traits/roles and thoughts/beliefs are independent of the medial temporal lobe and thus may represent highly conceptual types of personal semantic memory that are stored in the neocortex. Published by Elsevier Ltd.

  4. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  5. Synchronization of the small-world neuronal network with unreliable synapses

    International Nuclear Information System (INIS)

    Li, Chunguang; Zheng, Qunxian

    2010-01-01

    As is well known, synchronization phenomena are ubiquitous in neuronal systems. Recently a lot of work concerning the synchronization of the neuronal network has been accomplished. In these works, the synapses are usually considered reliable, but experimental results show that, in biological neuronal networks, synapses are usually unreliable. In our previous work, we have studied the synchronization of the neuronal network with unreliable synapses; however, we have not paid attention to the effect of topology on the synchronization of the neuronal network. Several recent studies have found that biological neuronal networks have typical properties of small-world networks, characterized by a short path length and high clustering coefficient. In this work, mainly based on the small-world neuronal network (SWNN) with inhibitory neurons, we study the effect of network topology on the synchronization of the neuronal network with unreliable synapses. Together with the network topology, the effects of the GABAergic reversal potential, time delay and noise are also considered. Interestingly, we found a counter-intuitive phenomenon for the SWNN with specific shortcut adding probability, that is, the less reliable the synapses, the better the synchronization performance of the SWNN. We also consider the effects of both local noise and global noise in this work. It is shown that these two different types of noise have distinct effects on the synchronization: one is negative and the other is positive

  6. Impact of morphometry, myelinization and synaptic current strength on spike conduction in human and cat spiral ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Frank Rattay

    Full Text Available Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction.Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA synaptic stimuli.Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat cochlea.

  7. Impact of Morphometry, Myelinization and Synaptic Current Strength on Spike Conduction in Human and Cat Spiral Ganglion Neurons

    Science.gov (United States)

    Rattay, Frank; Potrusil, Thomas; Wenger, Cornelia; Wise, Andrew K.; Glueckert, Rudolf; Schrott-Fischer, Anneliese

    2013-01-01

    Background Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction. Methodology/Principal Findings Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs) along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA) synaptic stimuli. Conclusions/Significance Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat

  8. Introduction to Focus Issue: Time-delay dynamics

    Science.gov (United States)

    Erneux, Thomas; Javaloyes, Julien; Wolfrum, Matthias; Yanchuk, Serhiy

    2017-11-01

    The field of dynamical systems with time delay is an active research area that connects practically all scientific disciplines including mathematics, physics, engineering, biology, neuroscience, physiology, economics, and many others. This Focus Issue brings together contributions from both experimental and theoretical groups and emphasizes a large variety of applications. In particular, lasers and optoelectronic oscillators subject to time-delayed feedbacks have been explored by several authors for their specific dynamical output, but also because they are ideal test-beds for experimental studies of delay induced phenomena. Topics include the control of cavity solitons, as light spots in spatially extended systems, new devices for chaos communication or random number generation, higher order locking phenomena between delay and laser oscillation period, and systematic bifurcation studies of mode-locked laser systems. Moreover, two original theoretical approaches are explored for the so-called Low Frequency Fluctuations, a particular chaotical regime in laser output which has attracted a lot of interest for more than 30 years. Current hot problems such as the synchronization properties of networks of delay-coupled units, novel stabilization techniques, and the large delay limit of a delay differential equation are also addressed in this special issue. In addition, analytical and numerical tools for bifurcation problems with or without noise and two reviews on concrete questions are proposed. The first review deals with the rich dynamics of simple delay climate models for El Nino Southern Oscillations, and the second review concentrates on neuromorphic photonic circuits where optical elements are used to emulate spiking neurons. Finally, two interesting biological problems are considered in this Focus Issue, namely, multi-strain epidemic models and the interaction of glucose and insulin for more effective treatment.

  9. Imidazenil, a non-sedating anticonvulsant benzodiazepine, is more potent than diazepam in protecting against DFP-induced seizures and neuronal damage

    Energy Technology Data Exchange (ETDEWEB)

    Kadriu, Bashkim; Guidotti, Alessandro; Costa, Erminio [Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612 (United States); Auta, James [Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612 (United States)

    2009-02-27

    Organophosphate (OP)-nerve agent poisoning may lead to prolonged epileptiform seizure activity, which can result in irreversible neuronal brain damage. A timely and effective control of seizures with pharmacological agents can minimize the secondary and long-term neuropathology that may result from this damage. Diazepam, the current anticonvulsant of choice in the management of OP poisoning, is associated with unwanted effects such as sedation, amnesia, cardio-respiratory depression, anticonvulsant tolerance, and dependence liabilities. In search for an efficacious and safer anticonvulsant benzodiazepine, we studied imidazenil, a potent anticonvulsant that is devoid of sedative action and has a low intrinsic efficacy at {alpha}1- but is a high efficacy positive allosteric modulator at {alpha}5-containing GABA{sub A} receptors. We compared the potency of a combination of 2 mg/kg, i.p. atropine with: (a) imidazenil 0.05-0.5 mg/kg i.p. or (b) equipotent anti-bicuculline doses of diazepam (0.5-5 mg/kg, i.p.), against diisopropyl fluorophosphate (DFP; 1.5 mg/kg, s.c.)-induced status epilepticus and its associated neuronal damage. The severity and frequency of seizure activities were determined by continuous radio telemetry recordings while the extent of neuronal damage and neuronal degeneration were assessed using the TUNEL-based cleaved DNA end-labeling technique or neuron-specific nuclear protein (NeuN)-immunolabeling and Fluoro-Jade B (FJB) staining, respectively. We report here that the combination of atropine and imidazenil is at least 10-fold more potent and longer lasting than the combination with diazepam at protecting rats from DFP-induced seizures and the associated neuronal damage or ongoing degeneration in the anterior cingulate cortex, CA1 hippocampus, and dentate gyrus. While 0.5 mg/kg imidazenil effectively attenuated DFP-induced neuronal damage and the ongoing neuronal degeneration in the anterior cingulate cortex, dentate gyrus, and CA1 hippocampus, 5

  10. Imidazenil, a non-sedating anticonvulsant benzodiazepine, is more potent than diazepam in protecting against DFP-induced seizures and neuronal damage

    International Nuclear Information System (INIS)

    Kadriu, Bashkim; Guidotti, Alessandro; Costa, Erminio; Auta, James

    2009-01-01

    Organophosphate (OP)-nerve agent poisoning may lead to prolonged epileptiform seizure activity, which can result in irreversible neuronal brain damage. A timely and effective control of seizures with pharmacological agents can minimize the secondary and long-term neuropathology that may result from this damage. Diazepam, the current anticonvulsant of choice in the management of OP poisoning, is associated with unwanted effects such as sedation, amnesia, cardio-respiratory depression, anticonvulsant tolerance, and dependence liabilities. In search for an efficacious and safer anticonvulsant benzodiazepine, we studied imidazenil, a potent anticonvulsant that is devoid of sedative action and has a low intrinsic efficacy at α1- but is a high efficacy positive allosteric modulator at α5-containing GABA A receptors. We compared the potency of a combination of 2 mg/kg, i.p. atropine with: (a) imidazenil 0.05-0.5 mg/kg i.p. or (b) equipotent anti-bicuculline doses of diazepam (0.5-5 mg/kg, i.p.), against diisopropyl fluorophosphate (DFP; 1.5 mg/kg, s.c.)-induced status epilepticus and its associated neuronal damage. The severity and frequency of seizure activities were determined by continuous radio telemetry recordings while the extent of neuronal damage and neuronal degeneration were assessed using the TUNEL-based cleaved DNA end-labeling technique or neuron-specific nuclear protein (NeuN)-immunolabeling and Fluoro-Jade B (FJB) staining, respectively. We report here that the combination of atropine and imidazenil is at least 10-fold more potent and longer lasting than the combination with diazepam at protecting rats from DFP-induced seizures and the associated neuronal damage or ongoing degeneration in the anterior cingulate cortex, CA1 hippocampus, and dentate gyrus. While 0.5 mg/kg imidazenil effectively attenuated DFP-induced neuronal damage and the ongoing neuronal degeneration in the anterior cingulate cortex, dentate gyrus, and CA1 hippocampus, 5 mg/kg or a

  11. Global robust stability of bidirectional associative memory neural networks with multiple time delays.

    Science.gov (United States)

    Senan, Sibel; Arik, Sabri

    2007-10-01

    This correspondence presents a sufficient condition for the existence, uniqueness, and global robust asymptotic stability of the equilibrium point for bidirectional associative memory neural networks with discrete time delays. The results impose constraint conditions on the network parameters of the neural system independently of the delay parameter, and they are applicable to all bounded continuous nonmonotonic neuron activation functions. Some numerical examples are given to compare our results with the previous robust stability results derived in the literature.

  12. [Functional organization and structure of the serotonergic neuronal network of terrestrial snail].

    Science.gov (United States)

    Nikitin, E S; Balaban, P M

    2011-01-01

    The extension of knowledge how the brain works requires permanent improvement of methods of recording of neuronal activity and increase in the number of neurons recorded simultaneously to better understand the collective work of neuronal networks and assemblies. Conventional methods allow simultaneous intracellular recording up to 2-5 neurons and their membrane potentials, currents or monosynaptic connections or observation of spiking of neuronal groups with subsequent discrimination of individual spikes with loss of details of the dynamics of membrane potential. We recorded activity of a compact group of serotonergic neurons (up to 56 simultaneously) in the ganglion of a terrestrial mollusk using the method of optical recording of membrane potential that allowed to record individual action potentials in details with action potential parameters and to reveal morphology of the neurons rcorded. We demonstrated clear clustering in the group in relation with the dynamics of action potentials and phasic or tonic components in the neuronal responses to external electrophysiological and tactile stimuli. Also, we showed that identified neuron Pd2 could induce activation of a significant number of neurons in the group whereas neuron Pd4 did not induce any activation. However, its activation is delayed with regard to activation of the reacting group of neurons. Our data strongly support the concept of possible delegation of the integrative function by the network to a single neuron.

  13. Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks

    Science.gov (United States)

    Yilmaz, Ergin; Baysal, Veli; Ozer, Mahmut; Perc, Matjaž

    2016-02-01

    We study the effects of an autapse, which is mathematically described as a self-feedback loop, on the propagation of weak, localized pacemaker activity across a Newman-Watts small-world network consisting of stochastic Hodgkin-Huxley neurons. We consider that only the pacemaker neuron, which is stimulated by a subthreshold periodic signal, has an electrical autapse that is characterized by a coupling strength and a delay time. We focus on the impact of the coupling strength, the network structure, the properties of the weak periodic stimulus, and the properties of the autapse on the transmission of localized pacemaker activity. Obtained results indicate the existence of optimal channel noise intensity for the propagation of the localized rhythm. Under optimal conditions, the autapse can significantly improve the propagation of pacemaker activity, but only for a specific range of the autaptic coupling strength. Moreover, the autaptic delay time has to be equal to the intrinsic oscillation period of the Hodgkin-Huxley neuron or its integer multiples. We analyze the inter-spike interval histogram and show that the autapse enhances or suppresses the propagation of the localized rhythm by increasing or decreasing the phase locking between the spiking of the pacemaker neuron and the weak periodic signal. In particular, when the autaptic delay time is equal to the intrinsic period of oscillations an optimal phase locking takes place, resulting in a dominant time scale of the spiking activity. We also investigate the effects of the network structure and the coupling strength on the propagation of pacemaker activity. We find that there exist an optimal coupling strength and an optimal network structure that together warrant an optimal propagation of the localized rhythm.

  14. Kramers-Moyal expansion for stochastic differential equations with single and multiple delays: Applications to financial physics and neurophysics

    International Nuclear Information System (INIS)

    Frank, T.D.

    2007-01-01

    We present a generalized Kramers-Moyal expansion for stochastic differential equations with single and multiple delays. In particular, we show that the delay Fokker-Planck equation derived earlier in the literature is a special case of the proposed Kramers-Moyal expansion. Applications for bond pricing and a self-inhibitory neuron model are discussed

  15. Selective disruption of acetylcholine synthesis in subsets of motor neurons: a new model of late-onset motor neuron disease.

    Science.gov (United States)

    Lecomte, Marie-José; Bertolus, Chloé; Santamaria, Julie; Bauchet, Anne-Laure; Herbin, Marc; Saurini, Françoise; Misawa, Hidemi; Maisonobe, Thierry; Pradat, Pierre-François; Nosten-Bertrand, Marika; Mallet, Jacques; Berrard, Sylvie

    2014-05-01

    Motor neuron diseases are characterized by the selective chronic dysfunction of a subset of motor neurons and the subsequent impairment of neuromuscular function. To reproduce in the mouse these hallmarks of diseases affecting motor neurons, we generated a mouse line in which ~40% of motor neurons in the spinal cord and the brainstem become unable to sustain neuromuscular transmission. These mice were obtained by conditional knockout of the gene encoding choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine. The mutant mice are viable and spontaneously display abnormal phenotypes that worsen with age including hunched back, reduced lifespan, weight loss, as well as striking deficits in muscle strength and motor function. This slowly progressive neuromuscular dysfunction is accompanied by muscle fiber histopathological features characteristic of neurogenic diseases. Unexpectedly, most changes appeared with a 6-month delay relative to the onset of reduction in ChAT levels, suggesting that compensatory mechanisms preserve muscular function for several months and then are overwhelmed. Deterioration of mouse phenotype after ChAT gene disruption is a specific aging process reminiscent of human pathological situations, particularly among survivors of paralytic poliomyelitis. These mutant mice may represent an invaluable tool to determine the sequence of events that follow the loss of function of a motor neuron subset as the disease progresses, and to evaluate therapeutic strategies. They also offer the opportunity to explore fundamental issues of motor neuron biology. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Temporal Information Processing and Stability Analysis of the MHSN Neuron Model in DDF

    Directory of Open Access Journals (Sweden)

    Saket Kumar Choudhary

    2016-12-01

    Full Text Available Implementation of a neuron like information processing structure at hardware level is a burning research problem. In this article, we analyze the modified hybrid spiking neuron model (the MHSN model in distributed delay framework (DDF for hardware level implementation point of view. We investigate its temporal information processing capability in term of inter-spike-interval (ISI distribution. We also perform the stability analysis of the MHSN model, in which, we compute nullclines, steady state solution, eigenvalues corresponding the MHSN model. During phase plane analysis, we notice that the MHSN model generates limit cycle oscillations which is an important phenomenon in many biological processes. Qualitative behavior of these limit cycle does not changes due to the variation in applied input stimulus, however, delay effect the spiking activity and duration of cycle get altered.

  17. Pattern of childhood neuronal migrational disorders in Oman

    International Nuclear Information System (INIS)

    Koul, Roshan L.; Alfuitasi, Amna M.; Javad, Hashim; Sankhla, Dilip K.; William, Ranjan R.

    2009-01-01

    To record the pattern of different neuronal migrational disorders (NMD) and their associated neurological conditions. The data were collected at the Child Neurology Services of Sultan Qaboos University Hospital, Oman, from January 1993 to September 2006 from all children with psychomotor delay and epilepsy, who underwent brain imaging (mostly MRI). The MR imaging was used for the diagnosis of a neuronal migration anomaly. There were 86 cases of NMD. Corpus callosum agenesis and lissencephaly/pachygyria formed the major group. There were 48 cases of corpus callosum agenesis, and 16 cases of lissencephaly/pachygyria. Other disorders were 10 cases of heterotopias, 5 schizencephaly, 3 holoprosencephaly, 2 polymicrogyria, and one each of hemimegalencephaly, and hydranencephaly. Developmental delay was the most common associated finding noted in 80 (93%) cases. Sixty-seven (77.9%) cases had motor deficit. Forty out of 86 (46.5%) cases had epilepsy. Partial/partial complex seizures were the most common at 13 out of 40 (32.5%). Syndromic seizures were seen in 11 out of 40 (27.5%) cases. The seizures were controlled in only 3/40 (7.5%) cases. The NMD constitute a significant number of child neurology patients with psychomotor delay and intractable epilepsy. Exogenic and genetic factors affecting the early embryonic and fetal development from sixth to twenty-sixth weeks of gestation result in NMD. Recent genetic studies are defining the underlying mechanism and these studies will help in early diagnosis and possible prevention of NMD. (author)

  18. Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Liu, Kevin X; Edwards, Benjamin; Lee, Sheena; Finelli, Mattéa J; Davies, Ben; Davies, Kay E; Oliver, Peter L

    2015-05-01

    Amyotrophic lateral sclerosis is a devastating neurodegenerative disorder characterized by the progressive loss of spinal motor neurons. While the aetiological mechanisms underlying the disease remain poorly understood, oxidative stress is a central component of amyotrophic lateral sclerosis and contributes to motor neuron injury. Recently, oxidation resistance 1 (OXR1) has emerged as a critical regulator of neuronal survival in response to oxidative stress, and is upregulated in the spinal cord of patients with amyotrophic lateral sclerosis. Here, we tested the hypothesis that OXR1 is a key neuroprotective factor during amyotrophic lateral sclerosis pathogenesis by crossing a new transgenic mouse line that overexpresses OXR1 in neurons with the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Interestingly, we report that overexpression of OXR1 significantly extends survival, improves motor deficits, and delays pathology in the spinal cord and in muscles of SOD1(G93A) mice. Furthermore, we find that overexpression of OXR1 in neurons significantly delays non-cell-autonomous neuroinflammatory response, classic complement system activation, and STAT3 activation through transcriptomic analysis of spinal cords of SOD1(G93A) mice. Taken together, these data identify OXR1 as the first neuron-specific antioxidant modulator of pathogenesis and disease progression in SOD1-mediated amyotrophic lateral sclerosis, and suggest that OXR1 may serve as a novel target for future therapeutic strategies. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  19. Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Yun; Kim, Jae Hyoung; Weon, Young-Cheol; Youn, Sung Won; Kim, Sung Hyun [Seoul National University Bundang Hospital, Department of Radiology, Seoul National University College of Medicine, Seongnam-si (Korea); Lee, Jung Seok; Kim, Sang Yun [Seoul National University Bundang Hospital, Department of Neurology, Seoul National University College of Medicine, Seongnam-si (Korea)

    2007-06-15

    Transient global amnesia (TGA) is characterized by a sudden onset of anterograde amnesia without alteration of consciousness or personal identity. Interestingly, recent studies have reported a high frequency of small high-signal abnormalities in the hippocampus with diffusion-weighted (DW) imaging, and ischemia has been proposed as an etiology of TGA. We hypothesized that TGA lesions occur preferentially in the CA1 region of the hippocampus, known to be susceptible to ischemia. Over a 30-month period 34 patients with TGA underwent MRI including DW imaging within 4 days of symptom onset. Patients with high-signal abnormalities in the hippocampus on the initial DW images underwent subsequent DW and T2-weighted imaging in the coronal plane to identify the precise lesion locations. Fourteen patients had small (1-3 mm) high-signal abnormalities in the hippocampus unilaterally on DW images. One of these patients had two lesions in one hippocampus and therefore in total 15 lesions were identified: four in the hippocampal head, and 11 in the body. Eleven lesions in ten patients with available coronal images were clearly demonstrated on both coronal DW and T2-weighted images and were localized to the lateral portion of the hippocampus, corresponding to the CA1 region. Lesions associated with TGA were localized exclusively to the lateral portion of the hippocampus corresponding to the CA1 region. This finding supports the ischemic etiology of TGA; however, the pathophysiological mechanism involved requires further study. (orig.)

  20. Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus

    International Nuclear Information System (INIS)

    Lee, Ho Yun; Kim, Jae Hyoung; Weon, Young-Cheol; Youn, Sung Won; Kim, Sung Hyun; Lee, Jung Seok; Kim, Sang Yun

    2007-01-01

    Transient global amnesia (TGA) is characterized by a sudden onset of anterograde amnesia without alteration of consciousness or personal identity. Interestingly, recent studies have reported a high frequency of small high-signal abnormalities in the hippocampus with diffusion-weighted (DW) imaging, and ischemia has been proposed as an etiology of TGA. We hypothesized that TGA lesions occur preferentially in the CA1 region of the hippocampus, known to be susceptible to ischemia. Over a 30-month period 34 patients with TGA underwent MRI including DW imaging within 4 days of symptom onset. Patients with high-signal abnormalities in the hippocampus on the initial DW images underwent subsequent DW and T2-weighted imaging in the coronal plane to identify the precise lesion locations. Fourteen patients had small (1-3 mm) high-signal abnormalities in the hippocampus unilaterally on DW images. One of these patients had two lesions in one hippocampus and therefore in total 15 lesions were identified: four in the hippocampal head, and 11 in the body. Eleven lesions in ten patients with available coronal images were clearly demonstrated on both coronal DW and T2-weighted images and were localized to the lateral portion of the hippocampus, corresponding to the CA1 region. Lesions associated with TGA were localized exclusively to the lateral portion of the hippocampus corresponding to the CA1 region. This finding supports the ischemic etiology of TGA; however, the pathophysiological mechanism involved requires further study. (orig.)

  1. Standardized extract of Lactuca sativa Linn. and its fractions abrogates scopolamine-induced amnesia in mice: A possible cholinergic and antioxidant mechanism.

    Science.gov (United States)

    Malik, Jai; Kaur, Jagpreet; Choudhary, Sunayna

    2018-06-01

    The present study was designed to evaluate the efficacy of Lactuca sativa (LS) Linn. (Asteraceae) against scopolamine-induced amnesia and to validate its traditional claim as memory enhancer. Ethanol extract of fresh LS leaves (LSEE), standardized on the basis of quercetin content, was successively partitioned using various solvents viz., hexane, ethyl acetate, and n-butanol in increasing order of polarity. LSEE (50, 100, and 200 mg/kg) and its various fractions (at a dose equivalent to dose of LSEE exhibiting maximum activity), administered orally for 14 days, were evaluated for their memory enhancing effect against scopolamine-induced (1 mg/kg, i.p.) amnesia in 3-4 months old male Laca mice (n = 6 in each group). The memory enhancing effect was evaluated using behavioural (elevated plus maze, novel object recognition and Morris water maze tests) and biochemical parameters (acetylcholinesterase activity, malonaldehyde, superoxide dismutase, nitrite, catalase, and reduced gultathione content). The results of the test substances were compared with both scopolamine and donepezil that was used as a standard memory enhancer and acetylcholinesterase inhibitor. Scopolamine elicit marked deterioration of memory and alteration in biochemical parameters in comparison to the control group. LSEE and its n-butanol and aqueous fractions significantly (P < 0.05) attenuated the scopolamine-induced amnesia that was evident in all the behavioural and biochemical test parameters. LSEE (200 mg/kg) and n-butanol fraction (15 mg/kg) exhibited maximum anti-amnesic effect among various tested dose levels. The results exhibited that LS prophylaxis attenuated scopolamine-induced memory impairment through its acetylcholinesterase inhibitory and antioxidant activity validating its traditional claim.

  2. Regenerative memory in time-delayed neuromorphic photonic resonators

    OpenAIRE

    Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.

    2016-01-01

    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the...

  3. How to induce multiple delays in coupled chaotic oscillators?

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Sourav K. [CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India); Department of Electronics, Asutosh College, Kolkata 700026 (India); Ghosh, Dibakar [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India); Roy, Prodyot K. [Department of Physics, Presidency University, Kolkata 700073 (India); Kurths, Jürgen [Potsdam Institute for Climate Impact Research, 14473 Potsdam (Germany); Institute for Physics, Humboldt University, 12489 Berlin (Germany); Dana, Syamal K. [CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India)

    2013-12-15

    Lag synchronization is a basic phenomenon in mismatched coupled systems, delay coupled systems, and time-delayed systems. It is characterized by a lag configuration that identifies a unique time shift between all pairs of similar state variables of the coupled systems. In this report, an attempt is made how to induce multiple lag configurations in coupled systems when different pairs of state variables attain different time shift. A design of coupling is presented to realize this multiple lag synchronization. Numerical illustration is given using examples of the Rössler system and the slow-fast Hindmarsh-Rose neuron model. The multiple lag scenario is physically realized in an electronic circuit of two Sprott systems.

  4. Resveratrol stimulates AMP kinase activity in neurons.

    Science.gov (United States)

    Dasgupta, Biplab; Milbrandt, Jeffrey

    2007-04-24

    Resveratrol is a polyphenol produced by plants that has multiple beneficial activities similar to those associated with caloric restriction (CR), such as increased life span and delay in the onset of diseases associated with aging. CR improves neuronal health, and the global beneficial effects of CR have been postulated to be mediated by the nervous system. One key enzyme thought to be activated during CR is the AMP-activated kinase (AMPK), a sensor of cellular energy levels. AMPK is activated by increases in the cellular AMP:ATP ratio, whereupon it functions to help preserve cellular energy. In this regard, the regulation of dietary food intake by hypothalamic neurons is mediated by AMPK. The suppression of nonessential energy expenditure by activated AMPK along with the CR mimetic and neuroprotective properties of resveratrol led us to hypothesize that neuronal activation of AMPK could be an important component of resveratrol activity. Here, we show that resveratrol activated AMPK in Neuro2a cells and primary neurons in vitro as well as in the brain. Resveratrol and the AMPK-activating compound 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) promoted robust neurite outgrowth in Neuro2a cells, which was blocked by genetic and pharmacologic inhibition of AMPK. Resveratrol also stimulated mitochondrial biogenesis in an AMPK-dependent manner. Resveratrol-stimulated AMPK activity in neurons depended on LKB1 activity but did not require the NAD-dependent protein deacetylase SIRT1 during this time frame. These findings suggest that neuronal activation of AMPK by resveratrol could affect neuronal energy homeostasis and contribute to the neuroprotective effects of resveratrol.

  5. On control of Hopf bifurcation in time-delayed neural network system

    International Nuclear Information System (INIS)

    Zhou Shangbo; Liao Xiaofeng; Yu Juebang; Wong Kwokwo

    2005-01-01

    The control of Hopf bifurcations in neural network systems is studied in this Letter. The asymptotic stability theorem and the relevant corollary for linearized nonlinear dynamical systems are proven. In particular, a novel method for analyzing the local stability of a dynamical system with time-delay is suggested. For the time-delayed system consisting of one or two neurons, a washout filter based control model is proposed and analyzed. By employing the stability theorems derived, we investigate the stability of a control system and state the relevant theorems for choosing the parameters of the stabilized control system

  6. Spiking Neurons for Analysis of Patterns

    Science.gov (United States)

    Huntsberger, Terrance

    2008-01-01

    Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern-analysis and pattern-recognition computational systems. These neurons are represented by a mathematical model denoted the state-variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets. Spiking neurons imitate biological neurons more closely than do the neurons of traditional artificial neural networks. A spiking neuron includes a central cell body (soma) surrounded by a tree-like interconnection network (dendrites). Spiking neurons are so named because they generate trains of output pulses (spikes) in response to inputs received from sensors or from other neurons. They gain their speed advantage over traditional neural networks by using the timing of individual spikes for computation, whereas traditional artificial neurons use averages of activity levels over time. Moreover, spiking neurons use the delays inherent in dendritic processing in order to efficiently encode the information content of incoming signals. Because traditional artificial neurons fail to capture this encoding, they have less processing capability, and so it is necessary to use more gates when implementing traditional artificial neurons in electronic circuitry. Such higher-order functions as dynamic tasking are effected by use of pools (collections) of spiking neurons interconnected by spike-transmitting fibers. The SVM includes adaptive thresholds and submodels of transport of ions (in imitation of such transport in biological

  7. The Remains of the Day in Dissociative Amnesia

    Directory of Open Access Journals (Sweden)

    Angelica Staniloiu

    2012-04-01

    Full Text Available Memory is not a unity, but is divided along a content axis and a time axis, respectively. Along the content dimension, five long-term memory systems are described, according to their hierarchical ontogenetic and phylogenetic organization. These memory systems are assumed to be accompanied by different levels of consciousness. While encoding is based on a hierarchical arrangement of memory systems from procedural to episodic-autobiographical memory, retrieval allows independence in the sense that no matter how information is encoded, it can be retrieved in any memory system. Thus, we illustrate the relations between various long-term memory systems by reviewing the spectrum of abnormalities in mnemonic processing that may arise in the dissociative amnesia—a condition that is usually characterized by a retrieval blockade of episodic-autobiographical memories and occurs in the context of psychological trauma, without evidence of brain damage on conventional structural imaging. Furthermore, we comment on the functions of implicit memories in guiding and even adaptively molding the behavior of patients with dissociative amnesia and preserving, in the absence of autonoetic consciousness, the so-called “internal coherence of life”.

  8. Hebbian learning and predictive mirror neurons for actions, sensations and emotions.

    Science.gov (United States)

    Keysers, Christian; Gazzola, Valeria

    2014-01-01

    Spike-timing-dependent plasticity is considered the neurophysiological basis of Hebbian learning and has been shown to be sensitive to both contingency and contiguity between pre- and postsynaptic activity. Here, we will examine how applying this Hebbian learning rule to a system of interconnected neurons in the presence of direct or indirect re-afference (e.g. seeing/hearing one's own actions) predicts the emergence of mirror neurons with predictive properties. In this framework, we analyse how mirror neurons become a dynamic system that performs active inferences about the actions of others and allows joint actions despite sensorimotor delays. We explore how this system performs a projection of the self onto others, with egocentric biases to contribute to mind-reading. Finally, we argue that Hebbian learning predicts mirror-like neurons for sensations and emotions and review evidence for the presence of such vicarious activations outside the motor system.

  9. Memory-enhancing effect of a supercritical carbon dioxide fluid extract of the needles of Abies koreana on scopolamine-induced amnesia in mice.

    Science.gov (United States)

    Kim, Kanghyun; Bu, Youngmin; Jeong, Seungil; Lim, Jongpil; Kwon, Youngan; Cha, Dong Seok; Kim, Jinmo; Jeon, Sora; Eun, Jaesoon; Jeon, Hoon

    2006-08-01

    Abies koreana Wilson (A. koreana) is a shrub or broadly pyramidal evergreen tree endemic in the mountainous regions of South Korea. We obtained the essential oil (EO) from alpine needle leaves of A. koreana by the supercritical fluid extraction (SFE) method. EO was analyzed by gas chromatography-mass spectrometry (GC-MS), and 68 compounds were identified constituting 95.66% of the oil. The major components were elemol (11.17%), terpinen-4-ol (9.77%), sabinene (8.86%), 10(15)-cadien-4-ol (7.16%), alpha-terpineol (6.13%), alpha-pinene (6.07%) and gamma-terpinene (4.71%). To investigate the memory-enhancing effects, we conducted a passive avoidance test using a scopolamine (1 mg/kg, ip)-induced amnesia mouse model. A peritoneal injection of EO from A. koreana (100 mg/kg) showed a memory enhancing effect of 72.7% compared with the control. These results suggest that EO of A. koreana may be a useful therapeutic agent against such amnesia-inducing diseases as Alzheimer and vascular dementia.

  10. Amnésia retrógrada funcional grave: relato de caso Severe functional retrograde amnesia: case report

    Directory of Open Access Journals (Sweden)

    Maila de Castro L. Neves

    2008-01-01

    Full Text Available CONTEXTO: Uma síndrome amnésica clássica caracteriza-se por evidente prejuízo da memória anterógrada, variável e temporária amnésia retrógrada, sendo as formas não-declarativas da memória poupadas. Entretanto, publicações recentes relataram casos de prejuízo desproporcional da memória retrógrada em relação à anterógrada. OBJETIVOS: Relatar o caso de um paciente de 26 anos de idade com um quadro grave de amnésia retrógrada, aparentemente sem fatores desencadeantes. MÉTODOS: Entrevista psiquiátrica e avaliação neuropsicológica. RESULTADOS: A perda de memória do paciente se estendia por toda sua vida, mas ele era capaz de adquirir e reter novas informações. Ele também apresentava prejuízos na produção e na compreensão de palavras, assim como no reconhecimento e no uso de objetos. CONCLUSÃO: A formulação diagnóstica final do caso é difícil, apontando possivelmente o contínuo existente entre a amnésia retrógrada psicogênica e a orgânica.BACKGROUND: A classic amnestic syndrome is characterized by a significant impairment of the anterograde memory, a variable and transitory retrograde amnesia with preserved non-declarative memory. However, case reports of patients with disproportionate compromise of the retrograde memory have been described in the recent literature. OBJECTIVES: To report a 26-year-old patient with a severe global retrograde amnesia with no evident triggering factor. METHODS: Psychiatric interview and neuropsychological evaluation. RESULTS: His memory loss compromised all domains of his life, although he could acquire and retain new information. He also exhibited prominent deficits in production and comprehension of common words as well as in recognition and use of objects. DISCUSSION: The final diagnostic formulation of the present case is difficult possibly indicating a continuum between psychogenic and organic retrograde amnesia.

  11. Early MEK1/2 Inhibition after Global Cerebral Ischemia in Rats Reduces Brain Damage and Improves Outcome by Preventing Delayed Vasoconstrictor Receptor Upregulation

    DEFF Research Database (Denmark)

    Johansson, Sara Ellinor; Larsen, Stine Schmidt; Povlsen, Gro Klitgaard

    2014-01-01

    BACKGROUND: Global cerebral ischemia following cardiac arrest is associated with increased cerebral vasoconstriction and decreased cerebral blood flow, contributing to delayed neuronal cell death and neurological detriments in affected patients. We hypothesize that upregulation of contractile ETB...... and 5-HT1B receptors, previously demonstrated in cerebral arteries after experimental global ischemia, are a key mechanism behind insufficient perfusion of the post-ischemic brain, proposing blockade of this receptor upregulation as a novel target for prevention of cerebral hypoperfusion and delayed...... neuronal cell death after global cerebral ischemia. The aim was to characterize the time-course of receptor upregulation and associated neuronal damage after global ischemia and investigate whether treatment with the MEK1/2 inhibitor U0126 can prevent cerebrovascular receptor upregulation and thereby...

  12. Memory for Items and Relationships among Items Embedded in Realistic Scenes: Disproportionate Relational Memory Impairments in Amnesia

    Science.gov (United States)

    Hannula, Deborah E.; Tranel, Daniel; Allen, John S.; Kirchhoff, Brenda A.; Nickel, Allison E.; Cohen, Neal J.

    2014-01-01

    Objective The objective of this study was to examine the dependence of item memory and relational memory on medial temporal lobe (MTL) structures. Patients with amnesia, who either had extensive MTL damage or damage that was relatively restricted to the hippocampus, were tested, as was a matched comparison group. Disproportionate relational memory impairments were predicted for both patient groups, and those with extensive MTL damage were also expected to have impaired item memory. Method Participants studied scenes, and were tested with interleaved two-alternative forced-choice probe trials. Probe trials were either presented immediately after the corresponding study trial (lag 1), five trials later (lag 5), or nine trials later (lag 9) and consisted of the studied scene along with a manipulated version of that scene in which one item was replaced with a different exemplar (item memory test) or was moved to a new location (relational memory test). Participants were to identify the exact match of the studied scene. Results As predicted, patients were disproportionately impaired on the test of relational memory. Item memory performance was marginally poorer among patients with extensive MTL damage, but both groups were impaired relative to matched comparison participants. Impaired performance was evident at all lags, including the shortest possible lag (lag 1). Conclusions The results are consistent with the proposed role of the hippocampus in relational memory binding and representation, even at short delays, and suggest that the hippocampus may also contribute to successful item memory when items are embedded in complex scenes. PMID:25068665

  13. Cochlear spike synchronization and neuron coincidence detection model

    Science.gov (United States)

    Bader, Rolf

    2018-02-01

    Coincidence detection of a spike pattern fed from the cochlea into a single neuron is investigated using a physical Finite-Difference model of the cochlea and a physiologically motivated neuron model. Previous studies have shown experimental evidence of increased spike synchronization in the nucleus cochlearis and the trapezoid body [Joris et al., J. Neurophysiol. 71(3), 1022-1036 and 1037-1051 (1994)] and models show tone partial phase synchronization at the transition from mechanical waves on the basilar membrane into spike patterns [Ch. F. Babbs, J. Biophys. 2011, 435135]. Still the traveling speed of waves on the basilar membrane cause a frequency-dependent time delay of simultaneously incoming sound wavefronts up to 10 ms. The present model shows nearly perfect synchronization of multiple spike inputs as neuron outputs with interspike intervals (ISI) at the periodicity of the incoming sound for frequencies from about 30 to 300 Hz for two different amounts of afferent nerve fiber neuron inputs. Coincidence detection serves here as a fusion of multiple inputs into one single event enhancing pitch periodicity detection for low frequencies, impulse detection, or increased sound or speech intelligibility due to dereverberation.

  14. Postencephalitic amnesia with long term-working memory impairment: A case report

    Directory of Open Access Journals (Sweden)

    Beatriz Baldivia

    Full Text Available Abstract Herpes simplex virus encephalitis (HSVE is an inflammation of the brain parenchyma caused by virus, leading to focal necrosis in medial temporal lobes, hippocampal complex and basal forebrain. Cognitively, HSVE is associated to many dysfunctions which vary according to the extent of the lesion. Episodic memory impairment is the most common sequelae following HSVE episodes, although others can occur. The aim of this case report was to describe the cognitive profile of a 42 year-old man who had extensive bilateral damage to the medial temporal lobe, insular bilateral and orbitofrontal cortices due to HSVE. Severe anterograde and retrograde amnesia, naming deficits, perseverative behaviors and confabulations were observed on neuropsychological assessment. We discussed the concept of long term-working memory based on this evaluation. These cognitive impairments corroborated HSVE previous findings in the literature.

  15. Synergistic effects of galantamine and memantine in attenuating scopolamine-induced amnesia in mice.

    Science.gov (United States)

    Busquet, Perrine; Capurro, Valeria; Cavalli, Andrea; Piomelli, Daniele; Reggiani, Angelo; Bertorelli, Rosalia

    2012-01-01

    We investigated a possible drug efficacy enhancement obtained by combining inactive doses of galantamine and memantine in the scopolamine-induced amnesia model in mice. We evaluated the effects of the two drugs, either alone or in combination, using the spontaneous alternation and object recognition tasks. In both tests, combination of low doses of galantamine (0.1 mg/kg, s.c.) and memantine (0.5 mg/kg, i.p.), which were sub-active per se, rescued the memory impairment induced by scopolamine (1 mg/kg, i.p.). The results suggest that combinations of galantamine and memantine might provide a more effective treatment of memory impairments in cognitive disorders than either drug used alone.

  16. Investigating the molecular pathway through which L-Lactate interacts with synaptic NMDAR to modulate neuronal plasticity

    KAUST Repository

    Ibrahim, Engy

    2016-12-01

    In the brain, glycogen, the storage form of glucose, is exclusively localized in astrocytes (Magistretti and Allaman, 2015). Glycogenolysis leads to the production of L-lactate, which is shuttled to neurons for ATP production. Interestingly, L-lactate was recently shown to be not only a source of energy, but also a signaling molecule to neurons. This was demonstrated through the inhibition of L-lactate production or transport in an inhibitory avoidance paradigm, where the rodents developed amnesia. This inhibition of memory consolidation was rescued by L-lactate and not by equicaloric glucose emphasizing that L-lactate acts as a signaling molecule as well (Suzuki et al., 2011). A recent study in our laboratory suggests that the action of L-lactate takes place through a cascade of molecular events via the modulation of N-methyl-D-aspartate receptor (NMDAR) activity (Yang et al., 2014). Since NADH produced similar results to those seen with L-lactate, it was hypothesized that the action of the latter is based on altering the redox state of the cell, in particular in view of the fact that redox-sensitive sites are present on the NMDAR. However, the precise molecular mechanism underlying the apparent change in the NMDAR activity is not fully elucidated. The objective of this study is to explore those mechanisms.

  17. Effects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Chengdong Yuan

    2016-07-01

    Full Text Available Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex by using the whole-cell patch-clamp method. Methods: Sprague-Dawley rats (11–19 postnatal days, n=36 were used to obtain brain slices (300 μM. Spontaneous excitatory postsynaptic currents (data from 40 neurons were recorded at a command potential of -70 mV in the presence of bicuculline (a competitive antagonist of GABAA receptors, 30 μM and strychnine (glycine receptor antagonist, 30 μM. Miniature excitatory postsynaptic currents (data from 40 neurons were also recorded when 1 μM of tetrodotoxin was added into the artificial cerebrospinal fluid. We used GraphPad Prism5for statistical analysis. Significant differences in the mean amplitude and frequency were tested using the Student paired 2-tailed t test. Values of P<0.05 were considered significant. Results: Different concentrations of ketamine inhibited the frequency and amplitude of the spontaneous excitatory postsynaptic currents as well as the amplitude of the miniature excitatory postsynaptic currents in a concentration-dependent manner, but they exerted no significant effect on the frequency of the miniature excitatory postsynaptic currents. Conclusion: Ketamine inhibited the excitatory synaptic transmission of the neurons in the primary somatosensory cortex. The inhibition may have been mediated by a reduction in the sensitivity of the postsynaptic glutamatergic receptors.

  18. [Effect of pulse magnetic field on distribution of neuronal action potential].

    Science.gov (United States)

    Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling

    2014-08-25

    The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.

  19. Fatores associados à amnésia pós-traumática de longa duração Fatores asociados a la amnesia post-traumática de larga duración Factors associated with long-term post-traumatic amnesia

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Fürbringer e Silva

    2011-01-01

    Full Text Available OBJETIVO: Identificar fatores relacionados à amnésia pós-traumática de longa duração. MÉTODO: Estudo prospectivo, longitudinal, com 187 vítimas de trauma cranioencefálico contuso, idade >14 anos, atendidos em hospital de referência para trauma. As variáveis independentes foram: idade, sexo, gravidade do trauma cranioencefálico, local e tipo de lesão, número de lesões encefálicas e uso de medicação com atividade em sistema nervoso central ou corticoides. RESULTADO: O modelo de regressão logística múltipla ajustado pela variável área de lesão (intra/extra axial evidenciou: Escala de Coma de Glasgow inicial 3 (OR=2,80 e uso de Fenitoína (OR=2,60, Midazolan (OR=2,83 ou ambas as drogas (OR=3,83. CONCLUSÃO: O uso do Midazolan e da Fenitoína, além da gravidade do trauma cranioencefálico, destacaram-se como fatores relacionados à amnésia de longa duração.OBJETIVO: Identificar factores relacionados a la amnesia post-traumática de larga duración. MÉTODO: Estudio prospectivo, longitudinal, realizado con 187 víctimas de trauma craneoencefálico contuso, edad >14 años, atendidos en un hospital de referencia para trauma. Las variables independientes fueron: edad, sexo, gravedad del trauma craneoencefálico, local y tipo de lesión, número de lesiones encefálicas y uso de medicación con actividad en el sistema nervioso central o corticoides. RESULTADO: El modelo de regresión logística múltiple ajustado por la variable área de lesión (intra/extra axial evidenció: Escala de Coma de Glasgow inicial 3 (OR=2,80 y uso de Fenitoína (OR=2,60, Midazolan (OR=2,83 o ambas drogas (OR=3,83. CONCLUSIÓN: El uso del Midazolan y de Fenitoína, además de la gravedad del trauma craneoencefálico, se destacaron como factores relacionados a la amnesia de larga duración.OBJECTIVE: To identify factors related to post-traumatic amnesia of long duration. METHOD: A prospective, longitudinal study, with 187 victims of blunt head trauma

  20. Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons.

    Science.gov (United States)

    Tepper, James M; Wilson, Charles J; Koós, Tibor

    2008-08-01

    There are two distinct inhibitory GABAergic circuits in the neostriatum. The feedforward circuit consists of a relatively small population of GABAergic interneurons that receives excitatory input from the neocortex and exerts monosynaptic inhibition onto striatal spiny projection neurons. The feedback circuit comprises the numerous spiny projection neurons and their interconnections via local axon collaterals. This network has long been assumed to provide the majority of striatal GABAergic inhibition and to sharpen and shape striatal output through lateral inhibition, producing increased activity in the most strongly excited spiny cells at the expense of their less strongly excited neighbors. Recent results, mostly from recording experiments of synaptically connected pairs of neurons, have revealed that the two GABAergic circuits differ markedly in terms of the total number of synapses made by each, the strength of the postsynaptic response detected at the soma, the extent of presynaptic convergence and divergence and the net effect of the activation of each circuit on the postsynaptic activity of the spiny neuron. These data have revealed that the feedforward inhibition is powerful and widespread, with spiking in a single interneuron being capable of significantly delaying or even blocking the generation of spikes in a large number of postsynaptic spiny neurons. In contrast, the postsynaptic effects of spiking in a single presynaptic spiny neuron on postsynaptic spiny neurons are weak when measured at the soma, and unable to significantly affect spike timing or generation. Further, reciprocity of synaptic connections between spiny neurons is only rarely observed. These results suggest that the bulk of the fast inhibition that has the strongest effects on spiny neuron spike timing comes from the feedforward interneuronal system whereas the axon collateral feedback system acts principally at the dendrites to control local excitability as well as the overall level of

  1. Global asymptotic stability analysis of bidirectional associative memory neural networks with time delays.

    Science.gov (United States)

    Arik, Sabri

    2005-05-01

    This paper presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all continuous nonmonotonic neuron activation functions. It is shown that in some special cases of the results, the stability criteria can be easily checked. Some examples are also given to compare the results with the previous results derived in the literature.

  2. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity

    DEFF Research Database (Denmark)

    Decressac, Mickael; Mattsson, Bengt; Weikop, Pia

    2013-01-01

    that the PD-like neurodegenerative changes induced by excess cellular levels of α-synuclein in nigral dopamine neurons are closely linked to a progressive decline in markers of lysosome function, accompanied by cytoplasmic retention of transcription factor EB (TFEB), a major transcriptional regulator...... in both A9 and A10 dopamine neurons. Delayed activation of TFEB function through inhibition of mammalian target of rapamycin blocked α-synuclein induced neurodegeneration and further disease progression. The results provide a mechanistic link between α-synuclein toxicity and impaired TFEB function......The aggregation of α-synuclein plays a major role in Parkinson disease (PD) pathogenesis. Recent evidence suggests that defects in the autophagy-mediated clearance of α-synuclein contribute to the progressive loss of nigral dopamine neurons. Using an in vivo model of α-synuclein toxicity, we show...

  3. A global amnesia associated with the specific variant of posterior reversible encephalopathy syndrome (PRES) that developed due to severe preeclampsia and malignant hypertension.

    Science.gov (United States)

    Borovac, Josip Anđelo; Božić, Joško; Žaja, Nikola; Kolić, Krešimir; Hrboka, Vedran

    2016-04-01

    A case is reported of a 26-year-old primiparous woman in the 32nd week of gestation who presented to the emergency department with the symptoms of a severe headache, nausea and vomiting. The patient was diagnosed with preeclampsia that later progressed to eclampsia. This state was characterized by a sudden onset of a headache and diplopia that advanced to cortical blindness and precipitated significant alterations in mental status, most notable being global amnesia that resolved within 48 h. A post-partum magnetic resonance imaging of the brain in FLAIR mode revealed multiple cortico-subcortical areas of hyperintense signals suggestive of edematous lesions that chiefly involved occipital and parietal lobes with additional atypical manifestations. Such radiologic findings suggested a posterior reversible encephalopathy syndrome variant with the global amnesia as an extraordinary constituent. This unique feature should be acknowledged when treating a preeclamptic or hypertensive patient that exhibits neurological symptomatology and vision disturbances.

  4. False recognition in behavioural variant frontotemporal dementia and Alzheimer’s disease – disinhibition or amnesia?

    Directory of Open Access Journals (Sweden)

    Emma C Flanagan

    2016-07-01

    Full Text Available Episodic memory recall processes in Alzheimer’s disease (AD and behavioural variant frontotemporal dementia (bvFTD can be similarly impaired, whereas recognition performance is more variable. A potential reason for this variability could be false-positive errors made on recognition trials and whether these errors are due to amnesia per se or a general over-endorsement of recognition items regardless of memory. The current study addressed this issue by analysing recognition performance on the Rey Auditory Verbal Learning Test (RAVLT in 39 bvFTD, 77 AD and 61 control participants from two centres (India, Australia, as well as disinhibition assessed using the Hayling test. Whereas both AD and bvFTD patients were comparably impaired on delayed recall, bvFTD patients showed intact recognition performance in terms of the number of correct hits. However, both patient groups endorsed significantly more false-positives than controls, and bvFTD and AD patients scored equally poorly on a sensitivity index (correct hits - false-positives. Furthermore, measures of disinhibition were significantly associated with false positives in both groups, with a stronger relationship with false-positives in bvFTD. Voxel-based morphometry analyses revealed similar neural correlates of false positive endorsement across bvFTD and AD, with both patient groups showing involvement of prefrontal and Papez circuitry regions, such as medial temporal and thalamic regions, and a DTI analysis detected an emerging but non-significant trend between false positives and decreased fornix integrity in bvFTD only. These findings suggest that false-positive errors on recognition tests relate to similar mechanisms in bvFTD and AD, reflecting deficits in episodic memory processes and disinhibition. These findings highlight that current memory tests are not sufficient to accurately distinguish between bvFTD and AD patients.

  5. Glutamate as a neurotransmitter in the brain: review of physiology and pathology.

    Science.gov (United States)

    Meldrum, B S

    2000-04-01

    Glutamate is the principal excitatory neurotransmitter in brain. Our knowledge of the glutamatergic synapse has advanced enormously in the last 10 years, primarily through application of molecular biological techniques to the study of glutamate receptors and transporters. There are three families of ionotropic receptors with intrinsic cation permeable channels [N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate]. There are three groups of metabotropic, G protein-coupled glutamate receptors (mGluR) that modify neuronal and glial excitability through G protein subunits acting on membrane ion channels and second messengers such as diacylglycerol and cAMP. There are also two glial glutamate transporters and three neuronal transporters in the brain. Glutamate is the most abundant amino acid in the diet. There is no evidence for brain damage in humans resulting from dietary glutamate. A kainate analog, domoate, is sometimes ingested accidentally in blue mussels; this potent toxin causes limbic seizures, which can lead to hippocampal and related pathology and amnesia. Endogenous glutamate, by activating NMDA, AMPA or mGluR1 receptors, may contribute to the brain damage occurring acutely after status epilepticus, cerebral ischemia or traumatic brain injury. It may also contribute to chronic neurodegeneration in such disorders as amyotrophic lateral sclerosis and Huntington's chorea. In animal models of cerebral ischemia and traumatic brain injury, NMDA and AMPA receptor antagonists protect against acute brain damage and delayed behavioral deficits. Such compounds are undergoing testing in humans, but therapeutic efficacy has yet to be established. Other clinical conditions that may respond to drugs acting on glutamatergic transmission include epilepsy, amnesia, anxiety, hyperalgesia and psychosis.

  6. Monkey prefrontal neurons during Sternberg task performance: full contents of working memory or most recent item?

    Science.gov (United States)

    Konecky, R O; Smith, M A; Olson, C R

    2017-06-01

    To explore the brain mechanisms underlying multi-item working memory, we monitored the activity of neurons in the dorsolateral prefrontal cortex while macaque monkeys performed spatial and chromatic versions of a Sternberg working-memory task. Each trial required holding three sequentially presented samples in working memory so as to identify a subsequent probe matching one of them. The monkeys were able to recall all three samples at levels well above chance, exhibiting modest load and recency effects. Prefrontal neurons signaled the identity of each sample during the delay period immediately following its presentation. However, as each new sample was presented, the representation of antecedent samples became weak and shifted to an anomalous code. A linear classifier operating on the basis of population activity during the final delay period was able to perform at approximately the level of the monkeys on trials requiring recall of the third sample but showed a falloff in performance on trials requiring recall of the first or second sample much steeper than observed in the monkeys. We conclude that delay-period activity in the prefrontal cortex robustly represented only the most recent item. The monkeys apparently based performance of this classic working-memory task on some storage mechanism in addition to the prefrontal delay-period firing rate. Possibilities include delay-period activity in areas outside the prefrontal cortex and changes within the prefrontal cortex not manifest at the level of the firing rate. NEW & NOTEWORTHY It has long been thought that items held in working memory are encoded by delay-period activity in the dorsolateral prefrontal cortex. Here we describe evidence contrary to that view. In monkeys performing a serial multi-item working memory task, dorsolateral prefrontal neurons encode almost exclusively the identity of the sample presented most recently. Information about earlier samples must be encoded outside the prefrontal cortex or

  7. Monkey pulvinar neurons fire differentially to snake postures.

    Science.gov (United States)

    Le, Quan Van; Isbell, Lynne A; Matsumoto, Jumpei; Le, Van Quang; Hori, Etsuro; Tran, Anh Hai; Maior, Rafael S; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2014-01-01

    There is growing evidence from both behavioral and neurophysiological approaches that primates are able to rapidly discriminate visually between snakes and innocuous stimuli. Recent behavioral evidence suggests that primates are also able to discriminate the level of threat posed by snakes, by responding more intensely to a snake model poised to strike than to snake models in coiled or sinusoidal postures (Etting and Isbell 2014). In the present study, we examine the potential for an underlying neurological basis for this ability. Previous research indicated that the pulvinar is highly sensitive to snake images. We thus recorded pulvinar neurons in Japanese macaques (Macaca fuscata) while they viewed photos of snakes in striking and non-striking postures in a delayed non-matching to sample (DNMS) task. Of 821 neurons recorded, 78 visually responsive neurons were tested with the all snake images. We found that pulvinar neurons in the medial and dorsolateral pulvinar responded more strongly to snakes in threat displays poised to strike than snakes in non-threat-displaying postures with no significant difference in response latencies. A multidimensional scaling analysis of the 78 visually responsive neurons indicated that threat-displaying and non-threat-displaying snakes were separated into two different clusters in the first epoch of 50 ms after stimulus onset, suggesting bottom-up visual information processing. These results indicate that pulvinar neurons in primates discriminate between poised to strike from those in non-threat-displaying postures. This neuronal ability likely facilitates behavioral discrimination and has clear adaptive value. Our results are thus consistent with the Snake Detection Theory, which posits that snakes were instrumental in the evolution of primate visual systems.

  8. Assessment of the upper motor neuron in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Huynh, William; Simon, Neil G; Grosskreutz, Julian; Turner, Martin R; Vucic, Steve; Kiernan, Matthew C

    2016-07-01

    Clinical signs of upper motor neuron (UMN) involvement are an important component in supporting the diagnosis of amyotrophic lateral sclerosis (ALS), but are often not easily appreciated in a limb that is concurrently affected by muscle wasting and lower motor neuron degeneration, particularly in the early symptomatic stages of ALS. Whilst recent criteria have been proposed to facilitate improved detection of lower motor neuron impairment through electrophysiological features that have improved diagnostic sensitivity, assessment of upper motor neuron involvement remains essentially clinical. As a result, there is often a significant diagnostic delay that in turn may impact institution of disease-modifying therapy and access to other optimal patient management. Biomarkers of pathological UMN involvement are also required to ensure patients with suspected ALS have timely access to appropriate therapeutic trials. The present review provides an analysis of current and recently developed assessment techniques, including novel imaging and electrophysiological approaches used to study corticomotoneuronal pathology in ALS. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Nicotinic α4β2 Cholinergic Receptor Influences on Dorsolateral Prefrontal Cortical Neuronal Firing during a Working Memory Task.

    Science.gov (United States)

    Sun, Yongan; Yang, Yang; Galvin, Veronica C; Yang, Shengtao; Arnsten, Amy F; Wang, Min

    2017-05-24

    The primate dorsolateral prefrontal cortex (dlPFC) subserves top-down regulation of attention and working memory abilities. Depletion studies show that the neuromodulator acetylcholine (ACh) is essential to dlPFC working memory functions, but the receptor and cellular bases for cholinergic actions are just beginning to be understood. The current study found that nicotinic receptors comprised of α4 and β2 subunits (α4β2-nAChR) enhance the task-related firing of delay and fixation cells in the dlPFC of monkeys performing a working memory task. Iontophoresis of α4β2-nAChR agonists increased the neuronal firing and enhanced the spatial tuning of delay cells, neurons that represent visual space in the absence of sensory stimulation. These enhancing effects were reversed by coapplication of a α4β2-nAChR antagonist, consistent with actions at α4β2-nAChR. Delay cell firing was reduced when distractors were presented during the delay epoch, whereas stimulation of α4β2-nAChR protected delay cells from these deleterious effects. Iontophoresis of α4β2-nAChR agonists also enhanced the firing of fixation cells, neurons that increase firing when the monkey initiates a trial, and maintain firing until the trial is completed. These neurons are thought to contribute to sustained attention and top-down motor control and have never before been the subject of pharmacological inquiry. These findings begin to build a picture of the cellular actions underlying the beneficial effects of ACh on attention and working memory. The data may also help to explain why genetic insults to α4 subunits are associated with working memory and attentional deficits and why α4β2-nAChR agonists may have therapeutic potential. SIGNIFICANCE STATEMENT The acetylcholine (ACh) arousal system in the brain is needed for robust attention and working memory functions, but the receptor and cellular bases for its beneficial effects are poorly understood in the newly evolved primate brain. The current

  10. Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications

    Science.gov (United States)

    Romeira, Bruno; Figueiredo, José M. L.; Javaloyes, Julien

    2017-11-01

    With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.

  11. Valproic Acid Arrests Proliferation but Promotes Neuronal Differentiation of Adult Spinal NSPCs from SCI Rats.

    Science.gov (United States)

    Chu, Weihua; Yuan, Jichao; Huang, Lei; Xiang, Xin; Zhu, Haitao; Chen, Fei; Chen, Yanyan; Lin, Jiangkai; Feng, Hua

    2015-07-01

    Although the adult spinal cord contains a population of multipotent neural stem/precursor cells (NSPCs) exhibiting the potential to replace neurons, endogenous neurogenesis is very limited after spinal cord injury (SCI) because the activated NSPCs primarily differentiate into astrocytes rather than neurons. Valproic acid (VPA), a histone deacetylase inhibitor, exerts multiple pharmacological effects including fate regulation of stem cells. In this study, we cultured adult spinal NSPCs from chronic compressive SCI rats and treated with VPA. In spite of inhibiting the proliferation and arresting in the G0/G1 phase of NSPCs, VPA markedly promoted neuronal differentiation (β-tubulin III(+) cells) as well as decreased astrocytic differentiation (GFAP(+) cells). Cell cycle regulator p21(Cip/WAF1) and proneural genes Ngn2 and NeuroD1 were increased in the two processes respectively. In vivo, to minimize the possible inhibitory effects of VPA to the proliferation of NSPCs as well as avoid other neuroprotections of VPA in acute phase of SCI, we carried out a delayed intraperitoneal injection of VPA (150 mg/kg/12 h) to SCI rats from day 15 to day 22 after injury. Both of the newborn neuron marker doublecortin and the mature neuron marker neuron-specific nuclear protein were significantly enhanced after VPA treatment in the epicenter and adjacent segments of the injured spinal cord. Although the impaired corticospinal tracks had not significantly improved, Basso-Beattie-Bresnahan scores in VPA treatment group were better than control. Our study provide the first evidence that administration of VPA enhances the neurogenic potential of NSPCs after SCI and reveal the therapeutic value of delayed treatment of VPA to SCI.

  12. Telling the truth: Don DeLillo in an age of amnesia and redressDOI:10.5007/2175-8026.2010n59p176

    Directory of Open Access Journals (Sweden)

    Marni Gauthier

    2010-03-01

    Full Text Available The December 2006 Iran Holocaust denial Conference and the international excoriation of it reveal a paradox of two cultural strands that are emblematic of the legacy of the twentieth century: official denial and historical amnesia on the one hand; and (international attempts at truth telling and historical redress on the other. Massive violence–and associative denial—punctuate the entire twentieth century. Yet coordinated tenacious efforts at public acknowledgment of “what really happened”–a recurrent and insistent emphasis in this context of trials, reparations, and above all, truth commissions—and concomitant historical redress for state-sanctioned crimes is a particularly recent phenomenon, unique, in fact, to the 1990s. But it is not only political readers who address what Priscilla B. Hayner, in her exhaustive study of truth commissions calls, “unspeakable truths.” This essay addresses the incongruity between the recent global concern with truth telling, official apology, memory and historical redress on the one hand–an obsession that certainly includes the US—and American amnesia on the other. It is in the interstices of these two apposite late twentieth century phenomena–amnesia and truth telling; “history” distinct from “the truth of the past”; “official” opposed to “vernacular” memory — that, I argue, a new genre of historical novel develops and performs a vital cultural work: telling the truth in an age of amnesia and redress. Such novels engage the recalcitrant materials of historical experience to assert truth claims that in turn challenge nationalist histories and revise traditional mythologies. Among the foremost authors of this new “truth-telling” historical novel is Don DeLillo. Americana, the vital precursor to Libra and especially to Underworld, is the definitive harbinger of DeLillo’s third century of work that writes both within and against postmodernism. In these Cold-War era

  13. A computational paradigm for dynamic logic-gates in neuronal activity

    Directory of Open Access Journals (Sweden)

    Amir eGoldental

    2014-04-01

    Full Text Available In 1943 McCulloch and Pitts suggested that the brain is composed of reliable logic-gates similar to the logic at the core of today's computers. This framework had a limited impact on neuroscience, since neurons exhibit far richer dynamics. Here we propose a new experimentally corroborated paradigm in which the truth tables of the brain's logic-gates are time dependent, i.e. dynamic logic-gates (DLGs. The truth tables of the DLGs depend on the history of their activity and the stimulation frequencies of their input neurons. Our experimental results are based on a procedure where conditioned stimulations were enforced on circuits of neurons embedded within a large-scale network of cortical cells in-vitro. We demonstrate that the underlying biological mechanism is the unavoidable increase of neuronal response latencies to ongoing stimulations, which imposes a non-uniform gradual stretching of network delays. The limited experimental results are confirmed and extended by simulations and theoretical arguments based on identical neurons with a fixed increase of the neuronal response latency per evoked spike. We anticipate our results to lead to better understanding of the suitability of this computational paradigm to account for the brain's functionalities and will require the development of new systematic mathematical methods beyond the methods developed for traditional Boolean algebra.

  14. Retrograde amnesia produced by electron beam exposure: causal parameters and duration of memory loss

    International Nuclear Information System (INIS)

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron beam exposure has been investigated. RA production was evaluated using a single-trial avoidance task across a 10 4 dose range for 10-, 1-, and 0.1-μsec pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 10 6 rad/sec. By employing a 10 rad (10 6 rad/sec) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory activation which provided a novel stimulus that masked previous stimuli

  15. A dissociation between anterograde and retrograde amnesia after treatment with electroconvulsive therapy: a naturalistic investigation.

    Science.gov (United States)

    O'Connor, Margaret; Lebowitz, Brian K; Ly, Jenny; Panizzon, Matthew S; Elkin-Frankston, Seth; Dey, Sangeeta; Bloomingdale, Kerry; Thall, Mark; Pearlman, Chester

    2008-06-01

    The aim of the present study is to investigate the cumulative effects of a clinically determined course of electroconvulsive therapy (ECT) on anterograde and retrograde amnesia. In this study, mood and memory were examined in the context of a protocol driven by therapeutic response, rather than by preordained research criteria. Twenty-two patients with major depressive disorder and 18 nondepressed controls were taught a series of faces and names before the initiation of ECT, and their retention of this information was examined after the end of treatment. Anterograde (ie, new learning) and retrograde memory (ie, recall of information learned before ECT) were assessed. Eleven ECT patients underwent unilateral (UL) stimulation, and 11 had a combination of UL and bilateral stimulation. Major depressive disorder patients and nondepressed controls participants were matched according to baseline memory abilities. Unilateral and unilateral/bilateral (UB) ECT patients were matched according to baseline depression and memory abilities. Treatment with ECT resulted in a dissociation between anterograde and retrograde memory; after treatment, major depressive disorder patients demonstrated significant retrograde amnesia, whereas there was no change in their anterograde memory. Unilateral and UB ECT patients performed equally well on tasks of anterograde memory. Contrary to our expectation, UB ECT was not associated with greater retrograde memory loss than was UL ECT treatment. However, a trend toward a group difference was present on 1 memory measure. Results of the study suggest that a clinical course of ECT is associated with isolated impairment for information learned before treatment (ie, retrograde memory), whereas there was no effect of ECT on posttreatment learning abilities (ie, anterograde memory).

  16. Convergent dynamics for multistable delayed neural networks

    International Nuclear Information System (INIS)

    Shih, Chih-Wen; Tseng, Jui-Pin

    2008-01-01

    This investigation aims at developing a methodology to establish convergence of dynamics for delayed neural network systems with multiple stable equilibria. The present approach is general and can be applied to several network models. We take the Hopfield-type neural networks with both instantaneous and delayed feedbacks to illustrate the idea. We shall construct the complete dynamical scenario which comprises exactly 2 n stable equilibria and exactly (3 n − 2 n ) unstable equilibria for the n-neuron network. In addition, it is shown that every solution of the system converges to one of the equilibria as time tends to infinity. The approach is based on employing the geometrical structure of the network system. Positively invariant sets and componentwise dynamical properties are derived under the geometrical configuration. An iteration scheme is subsequently designed to confirm the convergence of dynamics for the system. Two examples with numerical simulations are arranged to illustrate the present theory

  17. Design of time-pulse coded optoelectronic neuronal elements for nonlinear transformation and integration

    Science.gov (United States)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lazareva, Maria V.

    2008-03-01

    In the paper the actuality of neurophysiologically motivated neuron arrays with flexibly programmable functions and operations with possibility to select required accuracy and type of nonlinear transformation and learning are shown. We consider neurons design and simulation results of multichannel spatio-time algebraic accumulation - integration of optical signals. Advantages for nonlinear transformation and summation - integration are shown. The offered circuits are simple and can have intellectual properties such as learning and adaptation. The integrator-neuron is based on CMOS current mirrors and comparators. The performance: consumable power - 100...500 μW, signal period- 0.1...1ms, input optical signals power - 0.2...20 μW time delays - less 1μs, the number of optical signals - 2...10, integration time - 10...100 of signal periods, accuracy or integration error - about 1%. Various modifications of the neuron-integrators with improved performance and for different applications are considered in the paper.

  18. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks.

    Science.gov (United States)

    Wang, Zhen; Campbell, Sue Ann

    2017-11-01

    We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with Z N symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.

  19. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks

    Science.gov (United States)

    Wang, Zhen; Campbell, Sue Ann

    2017-11-01

    We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with ZN symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.

  20. Wallerian degeneration slow mouse neurons are protected against cell death caused by mechanisms involving mitochondrial electron transport dysfunction.

    Science.gov (United States)

    Tokunaga, Shinji; Araki, Toshiyuki

    2012-03-01

    Ischemia elicits a variety of stress responses in neuronal cells, which result in cell death. wld(S) Mice bear a mutation that significantly delays Wallerian degeneration. This mutation also protects all neuronal cells against other types of stresses resulting in cell death, including ischemia. To clarify the types of stresses that neuronal cell bodies derived from wld(S) mice are protected from, we exposed primary cultured neurons derived from wld(S) mice to various components of hypoxic stress. We found that wld(S) mouse neurons are protected against cellular injury induced by reoxygenation following hypoxic stress. Furthermore, we found that wld(S) mouse neurons are protected against functional impairment of the mitochondrial electron transport chain. These data suggest that Wld(S) protein expression may provide protection against neuronal cell death caused by mechanisms involving mitochondrial electron transport dysfunction. Copyright © 2011 Wiley Periodicals, Inc.

  1. State estimation for neural neutral-type networks with mixed time-varying delays and Markovian jumping parameters

    International Nuclear Information System (INIS)

    Lakshmanan, S.; Park, Ju H.; Jung, H. Y.; Balasubramaniam, P.

    2012-01-01

    This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed time-varying delays and Markovian jumping parameters. The addressed neural networks have a finite number of modes, and the modes may jump from one to another according to a Markov process. By construction of a suitable Lyapunov—Krasovskii functional, a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square. The criterion is formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages

  2. Optogenetic delay of status epilepticus onset in an in vivo rodent epilepsy model.

    Directory of Open Access Journals (Sweden)

    Inna Sukhotinsky

    Full Text Available Epilepsy is a devastating disease, currently treated with medications, surgery or electrical stimulation. None of these approaches is totally effective and our ability to control seizures remains limited and complicated by frequent side effects. The emerging revolutionary technique of optogenetics enables manipulation of the activity of specific neuronal populations in vivo with exquisite spatiotemporal resolution using light. We used optogenetic approaches to test the role of hippocampal excitatory neurons in the lithium-pilocarpine model of acute elicited seizures in awake behaving rats. Hippocampal pyramidal neurons were transduced in vivo with a virus carrying an enhanced halorhodopsin (eNpHR, a yellow light activated chloride pump, and acute seizure progression was then monitored behaviorally and electrophysiologically in the presence and absence of illumination delivered via an optical fiber. Inhibition of those neurons with illumination prior to seizure onset significantly delayed electrographic and behavioral initiation of status epilepticus, and altered the dynamics of ictal activity development. These results reveal an essential role of hippocampal excitatory neurons in this model of ictogenesis and illustrate the power of optogenetic approaches for elucidation of seizure mechanisms. This early success in controlling seizures also suggests future therapeutic avenues.

  3. Stress-related factors in the emergence of transient global amnesia with hippocampal lesion

    Directory of Open Access Journals (Sweden)

    Juliane eDöhring

    2014-08-01

    Full Text Available The transient global amnesia (TGA is a rare amnesic syndrome that is characterized by an acute onset episode of an anterograde and retrograde amnesia. Its origin is still debated, but there is evidence for psychological factors involved in TGA. In neuroimaging, selective lesions in the CA1 fields of the hippocampus can be detected, a region that is particularly involved in the processing of memory, stress and emotion. The aim of this study was to assess the role of psychological stress in TGA by studying the prevalence of stress related precipitating events and individual stress-related personality profiles as well as coping strategies in patients. The hypothesis of a functional differentiation of the hippocampus in mnemonic and stress-related compartments was also evaluated. From all 113 patients, 18 % (n= 24 patients experienced emotional and psychological stress episodes directly before the TGA. In a cohort of 21 acute patients, TGA patients tend to cope with stress less efficiently and less constructively than controls. Patients who experienced a stress related precipitant event exhibited a higher level of anxiety in comparison to non-stress patients and controls. However, there was no difference between the general experience of stress and the number of stress inducing life events. The majority of patients (73% did show typical MRI lesions in the CA1 region of the hippocampal cornu ammonis. There was no clear association between stressful events, distribution of hippocampal CA1 lesions and behavioral patterns during the TGA. Disadvantageous coping strategies and an elevated anxiety level may increase the susceptibility to psychological stress which may facilitate the pathophysiological cascade in TGA. The findings suggest a role of emotional stress factors in the manifestation of TGA in a subgroup of patients. Stress may be one trigger involved in the emergence of transient lesions in the hippocampal CA1 region, which are thought to be the

  4. Muscle Mitochondrial Uncoupling Dismantles Neuromuscular Junction and Triggers Distal Degeneration of Motor Neurons

    Science.gov (United States)

    Dupuis, Luc; Gonzalez de Aguilar, Jose-Luis; Echaniz-Laguna, Andoni; Eschbach, Judith; Rene, Frédérique; Oudart, Hugues; Halter, Benoit; Huze, Caroline; Schaeffer, Laurent; Bouillaud, Frédéric; Loeffler, Jean-Philippe

    2009-01-01

    Background Amyotrophic lateral sclerosis (ALS), the most frequent adult onset motor neuron disease, is associated with hypermetabolism linked to defects in muscle mitochondrial energy metabolism such as ATP depletion and increased oxygen consumption. It remains unknown whether muscle abnormalities in energy metabolism are causally involved in the destruction of neuromuscular junction (NMJ) and subsequent motor neuron degeneration during ALS. Methodology/Principal Findings We studied transgenic mice with muscular overexpression of uncoupling protein 1 (UCP1), a potent mitochondrial uncoupler, as a model of muscle restricted hypermetabolism. These animals displayed age-dependent deterioration of the NMJ that correlated with progressive signs of denervation and a mild late-onset motor neuron pathology. NMJ regeneration and functional recovery were profoundly delayed following injury of the sciatic nerve and muscle mitochondrial uncoupling exacerbated the pathology of an ALS animal model. Conclusions/Significance These findings provide the proof of principle that a muscle restricted mitochondrial defect is sufficient to generate motor neuron degeneration and suggest that therapeutic strategies targeted at muscle metabolism might prove useful for motor neuron diseases. PMID:19404401

  5. Physiological Characterization of Vestibular Efferent Brainstem Neurons Using a Transgenic Mouse Model

    Science.gov (United States)

    Leijon, Sara; Magnusson, Anna K.

    2014-01-01

    The functional role of efferent innervation of the vestibular end-organs in the inner ear remains elusive. This study provides the first physiological characterization of the cholinergic vestibular efferent (VE) neurons in the brainstem by utilizing a transgenic mouse model, expressing eGFP under a choline-acetyltransferase (ChAT)-locus spanning promoter in combination with targeted patch clamp recordings. The intrinsic electrical properties of the eGFP-positive VE neurons were compared to the properties of the lateral olivocochlear (LOC) brainstem neurons, which gives rise to efferent innervation of the cochlea. Both VE and the LOC neurons were marked by their negative resting membrane potential neurons differed significantly in the depolarizing range. When injected with positive currents, VE neurons fired action potentials faithfully to the onset of depolarization followed by sparse firing with long inter-spike intervals. This response gave rise to a low response gain. The LOC neurons, conversely, responded with a characteristic delayed tonic firing upon depolarizing stimuli, giving rise to higher response gain than the VE neurons. Depolarization triggered large TEA insensitive outward currents with fast inactivation kinetics, indicating A-type potassium currents, in both the inner ear-projecting neuronal types. Immunohistochemistry confirmed expression of Kv4.3 and 4.2 ion channel subunits in both the VE and LOC neurons. The difference in spiking responses to depolarization is related to a two-fold impact of these transient outward currents on somatic integration in the LOC neurons compared to in VE neurons. It is speculated that the physiological properties of the VE neurons might be compatible with a wide-spread control over motion and gravity sensation in the inner ear, providing likewise feed-back amplification of abrupt and strong phasic signals from the semi-circular canals and of tonic signals from the gravito-sensitive macular organs. PMID:24867596

  6. Destabilizing Effects of Impulse in Delayed Bam Neural Networks

    Science.gov (United States)

    Li, Chuandong; Li, Chaojie; Liu, Chao

    This paper further studies the global exponential stability of the equilibrium point of the delayed bidirectional associative memory (DBAM) neural networks with impulse effects. Several results characterizing the aggregated effects of impulse and dynamical property of the impulse-free DBAM on the exponential stability of the considered DBAM have been established. It is shown that the impulsive DBAM will preserve the global exponential stability of the impulse-free DBAM even if the impulses have enlarging effects on the states of neurons.

  7. Mutant TDP-43 within motor neurons drives disease onset but not progression in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ditsworth, Dara; Maldonado, Marcus; McAlonis-Downes, Melissa; Sun, Shuying; Seelman, Amanda; Drenner, Kevin; Arnold, Eveline; Ling, Shuo-Chien; Pizzo, Donald; Ravits, John; Cleveland, Don W; Da Cruz, Sandrine

    2017-06-01

    Mutations in TDP-43 cause amyotrophic lateral sclerosis (ALS), a fatal paralytic disease characterized by degeneration and premature death of motor neurons. The contribution of mutant TDP-43-mediated damage within motor neurons was evaluated using mice expressing a conditional allele of an ALS-causing TDP-43 mutant (Q331K) whose broad expression throughout the central nervous system mimics endogenous TDP-43. TDP-43 Q331K mice develop age- and mutant-dependent motor deficits from degeneration and death of motor neurons. Cre-recombinase-mediated excision of the TDP-43 Q331K gene from motor neurons is shown to delay onset of motor symptoms and appearance of TDP-43-mediated aberrant nuclear morphology, and abrogate subsequent death of motor neurons. However, reduction of mutant TDP-43 selectively in motor neurons did not prevent age-dependent degeneration of axons and neuromuscular junction loss, nor did it attenuate astrogliosis or microgliosis. Thus, disease mechanism is non-cell autonomous with mutant TDP-43 expressed in motor neurons determining disease onset but progression defined by mutant acting within other cell types.

  8. Spin-neurons: A possible path to energy-efficient neuromorphic computers

    Energy Technology Data Exchange (ETDEWEB)

    Sharad, Mrigank; Fan, Deliang; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2013-12-21

    Recent years have witnessed growing interest in the field of brain-inspired computing based on neural-network architectures. In order to translate the related algorithmic models into powerful, yet energy-efficient cognitive-computing hardware, computing-devices beyond CMOS may need to be explored. The suitability of such devices to this field of computing would strongly depend upon how closely their physical characteristics match with the essential computing primitives employed in such models. In this work, we discuss the rationale of applying emerging spin-torque devices for bio-inspired computing. Recent spin-torque experiments have shown the path to low-current, low-voltage, and high-speed magnetization switching in nano-scale magnetic devices. Such magneto-metallic, current-mode spin-torque switches can mimic the analog summing and “thresholding” operation of an artificial neuron with high energy-efficiency. Comparison with CMOS-based analog circuit-model of a neuron shows that “spin-neurons” (spin based circuit model of neurons) can achieve more than two orders of magnitude lower energy and beyond three orders of magnitude reduction in energy-delay product. The application of spin-neurons can therefore be an attractive option for neuromorphic computers of future.

  9. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations

    Directory of Open Access Journals (Sweden)

    Jan eHahne

    2015-09-01

    Full Text Available Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy...

  10. A small population of hypothalamic neurons govern fertility: the critical role of VAX1 in GnRH neuron development and fertility maintenance.

    Science.gov (United States)

    Hoffmann, Hanne M; Mellon, Pamela L

    2016-01-01

    Fertility depends on the correct maturation and function of approximately 800 gonadotropin-releasing hormone (GnRH) neurons in the brain. GnRH neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates fertility. In adulthood, GnRH neurons are scattered throughout the anterior hypothalamic area and project to the median eminence, where GnRH is released into the portal vasculature to stimulate release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary. LH and FSH then regulate gonadal steroidogenesis and gametogenesis. Absence of GnRH neurons or inappropriate GnRH release leads to infertility. Despite the critical role of GnRH neurons in fertility, we still have a limited understanding of the genes responsible for proper GnRH neuron development and function in adulthood. GnRH neurons originate in the olfactory placode then migrate into the brain. Homeodomain transcription factors expressed within GnRH neurons or along their migratory path are candidate genes for inherited infertility. Using a combined in vitro and in vivo approach, we have identified Ventral Anterior Homeobox 1 ( Vax1 ) as a novel homeodomain transcription factor responsible for GnRH neuron maturation and fertility. GnRH neuron counts in Vax1 knock-out embryos revealed Vax1 to be required for the presence of GnRH-expressing cells at embryonic day 17.5 (E17.5), but not at E13.5. To localize the effects of Vax1 on fertility, we generated Vax1 flox mice and crossed them with Gnrh cre mice to specifically delete Vax1 within GnRH neurons. GnRH staining in Vax1 flox/flox :GnRH cre mice show a total absence of GnRH expression in the adult. We performed lineage tracing in Vax1 flox/flox :GnRH cre :RosaLacZ mice which proved GnRH neurons to be alive, but incapable of expressing GnRH. The absence of GnRH leads to delayed puberty, hypogonadism and complete infertility in both sexes. Finally, using the immortalized model GnRH neuron cell lines, GN11 and

  11. Control of bursting synchronization in networks of Hodgkin-Huxley-type neurons with chemical synapses.

    Science.gov (United States)

    Batista, C A S; Viana, R L; Ferrari, F A S; Lopes, S R; Batista, A M; Coninck, J C P

    2013-04-01

    Thermally sensitive neurons present bursting activity for certain temperature ranges, characterized by fast repetitive spiking of action potential followed by a short quiescent period. Synchronization of bursting activity is possible in networks of coupled neurons, and it is sometimes an undesirable feature. Control procedures can suppress totally or partially this collective behavior, with potential applications in deep-brain stimulation techniques. We investigate the control of bursting synchronization in small-world networks of Hodgkin-Huxley-type thermally sensitive neurons with chemical synapses through two different strategies. One is the application of an external time-periodic electrical signal and another consists of a time-delayed feedback signal. We consider the effectiveness of both strategies in terms of protocols of applications suitable to be applied by pacemakers.

  12. Independence of echo-threshold and echo-delay in the barn owl.

    Directory of Open Access Journals (Sweden)

    Brian S Nelson

    Full Text Available Despite their prevalence in nature, echoes are not perceived as events separate from the sounds arriving directly from an active source, until the echo's delay is long. We measured the head-saccades of barn owls and the responses of neurons in their auditory space-maps while presenting a long duration noise-burst and a simulated echo. Under this paradigm, there were two possible stimulus segments that could potentially signal the location of the echo. One was at the onset of the echo; the other, after the offset of the direct (leading sound, when only the echo was present. By lengthening the echo's duration, independently of its delay, spikes and saccades were evoked by the source of the echo even at delays that normally evoked saccades to only the direct source. An echo's location thus appears to be signaled by the neural response evoked after the offset of the direct sound.

  13. Prevention of hypoglycemia-induced neuronal death by minocycline

    Science.gov (United States)

    2012-01-01

    Diabetic patients who attempt strict management of blood glucose levels frequently experience hypoglycemia. Severe and prolonged hypoglycemia causes neuronal death and cognitive impairment. There is no effective tool for prevention of these unwanted clinical sequelae. Minocycline, a second-generation tetracycline derivative, has been recognized as an anti-inflammatory and neuroprotective agent in several animal models such as stroke and traumatic brain injury. In the present study, we tested whether minocycline also has protective effects on hypoglycemia-induced neuronal death and cognitive impairment. To test our hypothesis we used an animal model of insulin-induced acute hypoglycemia. Minocycline was injected intraperitoneally at 6 hours after hypoglycemia/glucose reperfusion and injected once per day for the following 1 week. Histological evaluation for neuronal death and microglial activation was performed from 1 day to 1 week after hypoglycemia. Cognitive evaluation was conducted 6 weeks after hypoglycemia. Microglial activation began to be evident in the hippocampal area at 1 day after hypoglycemia and persisted for 1 week. Minocycline injection significantly reduced hypoglycemia-induced microglial activation and myeloperoxidase (MPO) immunoreactivity. Neuronal death was significantly reduced by minocycline treatment when evaluated at 1 week after hypoglycemia. Hypoglycemia-induced cognitive impairment is also significantly prevented by the same minocycline regimen when subjects were evaluated at 6 weeks after hypoglycemia. Therefore, these results suggest that delayed treatment (6 hours post-insult) with minocycline protects against microglial activation, neuronal death and cognitive impairment caused by severe hypoglycemia. The present study suggests that minocycline has therapeutic potential to prevent hypoglycemia-induced brain injury in diabetic patients. PMID:22998689

  14. Ketamine-Induced Changes in the Signal and Noise of Rule Representation in Working Memory by Lateral Prefrontal Neurons.

    Science.gov (United States)

    Ma, Liya; Skoblenick, Kevin; Seamans, Jeremy K; Everling, Stefan

    2015-08-19

    Working memory dysfunction is an especially debilitating symptom in schizophrenia. The NMDA antagonist ketamine has been successfully used to model working memory deficits in both rodents and nonhuman primates, but how it affects the strength and the consistency of working memory representations remains unclear. Here we recorded single-neuron activity in the lateral prefrontal cortex of macaque monkeys before and after the administration of subanesthetic doses of ketamine in a rule-based working memory task. The rule was instructed with a color cue before each delay period and dictated the correct prosaccadic or antisaccadic response to a peripheral stimulus appearing after the delay. We found that acute ketamine injections both weakened the rule signal across all delay periods and amplified the trial-to-trial variance in neural activities (i.e., noise), both within individual neurons and at the ensemble level, resulting in impaired performance. In the minority of postinjection trials when the animals responded correctly, the preservation of the signal strength during the delay periods was predictive of their subsequent success. Our findings suggest that NMDA receptor function may be critical for establishing the optimal signal-to-noise ratio in information representation by ensembles of prefrontal cortex neurons. In schizophrenia patients, working memory deficit is highly debilitating and currently without any efficacious treatment. An improved understanding of the pathophysiology of this symptom may provide critical information to treatment development. The NMDA antagonist ketamine, when injected at a subanesthetic dose, produces working memory deficit and other schizophrenia-like symptoms in humans and other animals. Here we investigated the effects of ketamine on the representation of abstract rules by prefrontal neurons, while macaque monkeys held the rules in working memory before responding accordingly. We found that ketamine weakened the signal

  15. The breaking of a delayed ring neural network contributes to stability: The rule and exceptions.

    Science.gov (United States)

    Khokhlova, T N; Kipnis, M M

    2013-12-01

    We prove that in our mathematical model the breaking of a delayed ring neural network extends the stability region in the parameters space, if the number of the neurons is sufficiently large. If the number of neurons is small, then a "paradoxical" region exists in the parameters space, wherein the ring neural configuration is stable, while the linear one is unstable. We study the conditions under which the paradoxical region is nonempty. We discuss how our mathematical modeling reflects neurosurgical operations with the severing of particular connections in the brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Clinical and neuropsychological changes after the disappearance of seizures in a case of transient epileptic amnesia

    Directory of Open Access Journals (Sweden)

    Masanori Sekimoto

    2017-01-01

    Full Text Available We encountered a female patient with late-onset temporal lobe epilepsy who presented with transient amnesia as the sole ictal manifestation, an accelerated rate of forgetting daily life events, and a retrograde memory deficit. We describe the memory function of the patient both before and after the administration of antiseizure medication. After the patient's seizures were controlled with antiseizure drugs, her neuropsychological memory performance scores showed improvement. We presumed that the disappearance of seizures was associated with a decrease in the accelerated rate of forgetting medication. However, her lost memories were not recovered after the seizures were controlled by antiseizure medication.

  17. Supporting the self-concept with memory: insight from amnesia

    Science.gov (United States)

    Verfaellie, Mieke

    2015-01-01

    We investigated the extent to which personal semantic memory supports the self-concept in individuals with medial temporal lobe amnesia and healthy adults. Participants completed eight ‘I Am’ self-statements. For each of the four highest ranked self-statements, participants completed an open-ended narrative task, during which they provided supporting information indicating why the I Am statement was considered self-descriptive. Participants then completed an episodic probe task, during which they attempted to retrieve six episodic memories for each of these self-statements. Supporting information was scored as episodic, personal semantic or general semantic. In the narrative task, personal semantic memory predominated as self-supporting information in both groups. The amnesic participants generated fewer personal semantic memories than controls to support their self-statements, a deficit that was more pronounced for trait relative to role self-statements. In the episodic probe task, the controls primarily generated unique event memories, but the amnesic participants did not. These findings demonstrate that personal semantic memory, in particular autobiographical fact knowledge, plays a critical role in supporting the self-concept, regardless of the accessibility of episodic memories, and they highlight potential differences in the way traits and roles are supported by personal memory. PMID:25964501

  18. Distinct neuronal interactions in anterior inferotemporal areas of macaque monkeys during retrieval of object association memory.

    Science.gov (United States)

    Hirabayashi, Toshiyuki; Tamura, Keita; Takeuchi, Daigo; Takeda, Masaki; Koyano, Kenji W; Miyashita, Yasushi

    2014-07-09

    In macaque monkeys, the anterior inferotemporal cortex, a region crucial for object memory processing, is composed of two adjacent, hierarchically distinct areas, TE and 36, for which different functional roles and neuronal responses in object memory tasks have been characterized. However, it remains unknown how the neuronal interactions differ between these areas during memory retrieval. Here, we conducted simultaneous recordings from multiple single-units in each of these areas while monkeys performed an object association memory task and examined the inter-area differences in neuronal interactions during the delay period. Although memory neurons showing sustained activity for the presented cue stimulus, cue-holding (CH) neurons, interacted with each other in both areas, only those neurons in area 36 interacted with another type of memory neurons coding for the to-be-recalled paired associate (pair-recall neurons) during memory retrieval. Furthermore, pairs of CH neurons in area TE showed functional coupling in response to each individual object during memory retention, whereas the same class of neuron pairs in area 36 exhibited a comparable strength of coupling in response to both associated objects. These results suggest predominant neuronal interactions in area 36 during the mnemonic processing, which may underlie the pivotal role of this brain area in both storage and retrieval of object association memory. Copyright © 2014 the authors 0270-6474/14/349377-12$15.00/0.

  19. Inhibiting cholesterol degradation induces neuronal sclerosis and epileptic activity in mouse hippocampus

    Science.gov (United States)

    Chali, Farah; Djelti, Fathia; Eugene, Emmanuel; Valderrama, Mario; Marquer, Catherine; Aubourg, Patrick; Duykaerts, Charles; Miles, Richard; Cartier, Nathalie; Navarro, Vincent

    2015-01-01

    Elevations in neuronal cholesterol have been associated with several degenerative diseases. An enhanced excitability and synchronous firing in surviving neurons are among the sequels of neuronal death in these diseases and also in some epileptic syndromes. Here, we attempted to increase neuronal cholesterol levels, using a short hairpin RNA (shRNA) to suppress expression of the enzyme CYP46A1. This protein hydroxylates cholesterol and so facilitates trans-membrane extrusion. A sh-RNA CYP46A1construction coupled to an adeno-associated virus (AAV5) was injected focally and unilaterally into mouse hippocampus. It was selectively expressed first in neurons of the CA3a region. Cytoplasmic and membrane cholesterol increased, neuronal soma volume increased and then decreased before pyramidal cells died. As CA3a pyramidal cells died, inter-ictal EEG events occurred during exploration and non-REM sleep. With time, neuronal death spread to involve pyramidal cells and interneurons of the CA1 region. CA1 neuronal death was correlated with a delayed local expression of phosphorylated tau. Astrocytes were activated throughout the hippocampus and microglial activation was specific to regions of neuronal death. CA1 neuronal death was correlated with distinct aberrant EEG activity. During exploratory behaviour and rapid eye movement sleep, EEG oscillations at 7-10 Hz (theta) could accelerate to 14-21 Hz (beta) waves. They were accompanied by low amplitude, high-frequency oscillations of peak power at ~300Hz and a range of 250-350 Hz. While episodes of EEG acceleration were not correlated with changes in exploratory behaviour, they were followed in some animals by structured seizure-like discharges. These data strengthen links between increased cholesterol, neuronal sclerosis and epileptic behavior PMID:25847620

  20. La experiencia truncada: estudio de la amnesia anterógrada como representación del sujeto empirista en Memento (2000

    Directory of Open Access Journals (Sweden)

    Oriol ALONSO CANO

    2016-09-01

    Full Text Available Este lacónico estudio pretende ser una reflexión en torno a la problemática de la amnesia anterógrada, y sus diferentes consecuencias. Una de ellas, que es la que se va a defender a lo largo del texto, radica en que, el sujeto amnésico anterógrado, representa, de una forma diáfana, la subjetividad empirista establecida por John Locke1 y radicalizada por David Hume2.Asimismo, para realizar esta investigación, se ha escogido un caso concreto para poder determinar con absoluta precisión el fenómeno amnésico anterógrada. En particular, este caso en el que se ha acogido el estudio es el personaje Leonard Shelby (Lenny del film de culto Memento (2000 de Christopher Nolan.En la primera parte del estudio, se explica de una forma sinóptica la estructura del film, así como los acontecimientos que le ocurren a Lenny y que determinan su patología. Unida a esta explicación, se sacan a la luz varias cuestiones problemáticas que el caso de Lenny acarrea, como, verbigracia, el problema de la identidad y la ruptura de la conciencia inmutable y “substancialista”.Ulteriormente, el estudio se dirige hacia una dilucidación del fenómeno de la amnesia anterógrada. Para ello, la investigación se encaminará por uno de los primeros casos detectados (el paciente HM, y se destacarán las diferentes características de esta realidad patológica. Se observarán las diferentes estructuras cerebrales implicadas en la enfermedad, así como a varias cuestiones que parecen problematizar la definición inicial de amnesia anterógrada.Finalmente, se observará como, una vez dilucidadas todas las características, la figura del amnésico anterógrada encarna el sujeto empirista que impulsan tanto Locke1 como Hume2, debido a la ruptura de toda perspectiva futurista, al carecer de la facultad de generar nuevas experiencias y, por consiguiente, encarnar un sujeto que transita por la pura instantaneidad.

  1. Targeted Ablation and Reorganization of the Principal Preplate Neurons and Their Neuroblasts Identified by Golli Promoter Transgene Expression in the Neocortex of Mice

    Directory of Open Access Journals (Sweden)

    Yuan-Yun Xie

    2009-10-01

    Full Text Available The present study delineates the cellular responses of dorsal pallium to targeted genetic ablation of the principal preplate neurons of the neocortex. Ganciclovir treatment during prenatal development (E11-E13; where E is embryonic day of mice selectively killed cells with shared S-phase vulnerability and targeted expression of a GPT [golli promoter transgene, linked to HSV-TK (herpes simplex virus-thymidine kinase, τ-eGFP (τ-enhanced green fluorescent protein and lacZ (lacZ galactosidase reporters] localized in preplate neurons. Morphogenetic fates of attacked neurons and neuroblasts, and their successors, were assessed by multiple labelling in time-series comparisons between ablated (HSV-TK+/0 and control (HSV-TK0/0 littermates. During ablation generation, neocortical growth was suppressed, and compensatory reorganization of non-GPT ventricular zone progenitors of dorsal pallium produced replacements for killed GPT neuroblasts. Replacement and surviving GPT neuroblasts then produced replacements for killed GPT neurons. Near-normal restoration of their complement delayed the settlement of GPT neurons into the reconstituted preplate, which curtailed the outgrowth of pioneer corticofugal axons. Based on this evidence, we conclude that specific cell killing in ablated mice can eliminate a major fraction of GPT neurons, with insignificant bystander killing. Also, replacement GPT neurons in ablated mice originate exclusively by proliferation from intermediate progenitor GPT neuroblasts, whose complement is maintained by non-GPT progenitors for inductive regulation of the total complement of GPT neurons. Finally, GPT neurons in both normal and ablated mice meet all morphogenetic criteria, including the ‘outside-in’ vertical gradient of settlement, presently used to identify principal preplate neurons. In ablated mice, delayed organization of these neurons desynchronizes and isolates developing neocortex from the rest of the brain, and

  2. NeuronBank: a tool for cataloging neuronal circuitry

    Directory of Open Access Journals (Sweden)

    Paul S Katz

    2010-04-01

    Full Text Available The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  3. New results for global robust stability of bidirectional associative memory neural networks with multiple time delays

    International Nuclear Information System (INIS)

    Senan, Sibel; Arik, Sabri

    2009-01-01

    This paper presents some new sufficient conditions for the global robust asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with multiple time delays. The results we obtain impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. We also give some numerical examples to demonstrate the applicability and effectiveness of our results, and compare the results with the previous robust stability results derived in the literature.

  4. The Effects of Guanfacine and Phenylephrine on a Spiking Neuron Model of Working Memory.

    Science.gov (United States)

    Duggins, Peter; Stewart, Terrence C; Choo, Xuan; Eliasmith, Chris

    2017-01-01

    We use a spiking neural network model of working memory (WM) capable of performing the spatial delayed response task (DRT) to investigate two drugs that affect WM: guanfacine (GFC) and phenylephrine (PHE). In this model, the loss of information over time results from changes in the spiking neural activity through recurrent connections. We reproduce the standard forgetting curve and then show that this curve changes in the presence of GFC and PHE, whose application is simulated by manipulating functional, neural, and biophysical properties of the model. In particular, applying GFC causes increased activity in neurons that are sensitive to the information currently being remembered, while applying PHE leads to decreased activity in these same neurons. Interestingly, these differential effects emerge from network-level interactions because GFC and PHE affect all neurons equally. We compare our model to both electrophysiological data from neurons in monkey dorsolateral prefrontal cortex and to behavioral evidence from monkeys performing the DRT. Copyright © 2016 Cognitive Science Society, Inc.

  5. Nonlinear Dynamics and Chaos in Fractional-Order Hopfield Neural Networks with Delay

    Directory of Open Access Journals (Sweden)

    Xia Huang

    2013-01-01

    Full Text Available A fractional-order two-neuron Hopfield neural network with delay is proposed based on the classic well-known Hopfield neural networks, and further, the complex dynamical behaviors of such a network are investigated. A great variety of interesting dynamical phenomena, including single-periodic, multiple-periodic, and chaotic motions, are found to exist. The existence of chaotic attractors is verified by the bifurcation diagram and phase portraits as well.

  6. Sustained experience of emotion after loss of memory in patients with amnesia.

    Science.gov (United States)

    Feinstein, Justin S; Duff, Melissa C; Tranel, Daniel

    2010-04-27

    Can the experience of an emotion persist once the memory for what induced the emotion has been forgotten? We capitalized on a rare opportunity to study this question directly using a select group of patients with severe amnesia following circumscribed bilateral damage to the hippocampus. The amnesic patients underwent a sadness induction procedure (using affectively-laden film clips) to ascertain whether their experience of sadness would persist beyond their memory for the sadness-inducing films. The experiment showed that the patients continued to experience elevated levels of sadness well beyond the point in time at which they had lost factual memory for the film clips. A second experiment using a happiness induction procedure yielded similar results, suggesting that both positive and negative emotional experiences can persist independent of explicit memory for the inducing event. These findings provide direct evidence that a feeling of emotion can endure beyond the conscious recollection for the events that initially triggered the emotion.

  7. Medial Temporal Lobe Contributions to Future Thinking: Evidence from Neuroimaging and Amnesia

    Directory of Open Access Journals (Sweden)

    Mieke Verfaellie

    2012-09-01

    Full Text Available Following early amnesic case reports, there is now considerable evidence suggesting a link between remembering the past and envisioning the future. This link is evident in the overlap in neural substrates as well as cognitive processes involved in both kinds of tasks. While constructing a future narrative requires multiple processes, neuroimaging and lesion data converge on a critical role for the medial temporal lobes (MTL in retrieving and recombining details from memory in the service of novel simulations. Deficient detail retrieval and recombination may lead to impairments not only in episodic, but also in semantic prospection. MTL contributions to scene construction and mental time travel may further compound impairments in amnesia on tasks that pose additional demands on these processes, but are unlikely to form the core deficit underlying amnesics' cross-domain future thinking impairment. Future studies exploring the role of episodic memory in other forms of self-projection or future-oriented behaviour may elucidate further the adaptive role of memory.

  8. Transient Global Amnesia Associated with an Acute Infarction at the Cingulate Gyrus

    Directory of Open Access Journals (Sweden)

    Alejandro Gallardo-Tur

    2014-01-01

    Full Text Available Background. Transient global amnesia (TGA is a syndrome of sudden, unexplained isolated short-term memory loss. In the majority of TGA cases, no causes can be identified and neuroimaging, CSF studies and EEG are usually normal. We present a patient with TGA associated with a small acute infarct at the cingulate gyrus. Case Report. The patient, a 62 year-old man, developed two episodes of TGA. He had hypertension and hypercholesterolemia. He was found to have an acute ischemic stroke of small size (15 mm of maximal diameter at the right cerebral cingulate gyrus diagnosed on brain magnetic resonance imaging. No lesions involving other limbic system structures such as thalamus, fornix, corpus callosum, or hippocampal structures were seen. The remainder of the examination was normal. Conclusion. Unilateral ischemic lesions of limbic system structures may result in TGA. We must bear in mind that TGA can be an associated clinical disorder of cingulate gyrus infarct.

  9. Sudden amnesia resulting in pain relief: the relationship between memory and pain.

    Science.gov (United States)

    Choi, Daniel S; Choi, Deborah Y; Whittington, Robert A; Nedeljković, Srdjan S

    2007-11-01

    Nociceptive pain and its emotional component can result in the development of a "chronic pain memory". This report describes two patients who had long histories of chronic pain and opioid dependence. Both patients experienced sudden memory loss that was followed by significant pain reduction and an eradication of their need for opioid management. Neural centers involved in sensory pain, its affective component, opioid dependence, and memory overlap in the brain and share common pathways. The anterior cingulate cortex, the insular cortex, and the amygdala are examples of regions implicated in both pain and memory. One of the patients in the report experienced multiple seizure episodes, which may have contributed to memory loss and pain relief. The role of electroconvulsive therapy as it relates to amnesia and pain is reviewed. Questions are raised regarding whether therapies that address the memory component of pain may have a role in the treatment of long-term chronic pain patients.

  10. [Posttraumatic stress disorder in patients with neurogenic amnesia for the traumatic event].

    Science.gov (United States)

    Podoll, K; Kunert, H J; Sass, H

    2000-10-01

    The development of symptoms of posttraumatic stress disorder (PTSD) in patients with neurogenic amnesia for the traumatic event is recorded in 2 own patients and in 19 cases from the clinical literature. With a single exception, all patients were accident victims with closed head injuries. Only about three quarters of the patients completely fulfilled DSM-III-R criteria of PTSD. Nineteen patients displayed involuntary conscious memories of aspects of the traumatic event (presenting as recurrent intrusive thoughts, images or dreams) co-existent with a complete or partial lack of voluntary conscious memories of the trauma, suggesting that different memory systems and distinct brain mechanisms subserve these phenomena. The said clinical observations are discussed against the background of current neuropsychological models of multiple memory systems. The recorded cases demonstrate that declarative episodic memory is not necessary for symptoms of PTSD to emerge, whereas preserved functions of non-declarative memory systems represent a sufficient condition for the development of PTSD symptoms.

  11. Axonal recordings from medial superior olive neurons obtained from the lateral lemniscus of the chinchilla (Chinchilla laniger).

    Science.gov (United States)

    Bremen, Peter; Joris, Philip X

    2013-10-30

    Interaural time differences (ITDs) are a major cue for localizing low-frequency (binaural beats and dichotic noise bursts to characterize the best delay versus characteristic frequency distribution, and compared the data to recordings we obtained in the inferior colliculus (IC). In contrast to most reports in other rodents, many best delays were close to zero ITD, both in MSO and IC, with a majority of the neurons recorded in the LL firing maximally within the presumed ethological ITD range.

  12. CDKL5 and Shootin1 Interact and Concur in Regulating Neuronal Polarization.

    Directory of Open Access Journals (Sweden)

    Mohammad Sarfaraz Nawaz

    Full Text Available In the last years, the X-linked cyclin-dependent kinase-like 5 (CDKL5 gene has been associated with epileptic encephalopathies characterized by the early onset of intractable epilepsy, severe developmental delay, autistic features, and often the development of Rett syndrome-like features. Still, the role of CDKL5 in neuronal functions is not fully understood. By way of a yeast two hybrid screening we identified the interaction of CDKL5 with shootin1, a brain specific protein acting as a determinant of axon formation during neuronal polarization. We found evidence that CDKL5 is involved, at least in part, in regulating neuronal polarization through its interaction with shootin1. Indeed, the two proteins interact in vivo and both are localized in the distal tip of outgrowing axons. By using primary hippocampal neurons as model system we find that adequate CDKL5 levels are required for axon specification. In fact, a significant number of neurons overexpressing CDKL5 is characterized by supernumerary axons, while the silencing of CDKL5 disrupts neuronal polarization. Interestingly, shootin1 phosphorylation is reduced in neurons silenced for CDKL5 suggesting that the kinase affects, directly or indirectly, the post-translational modification of shootin1. Finally, we find that the capacity of CDKL5 to generate surplus axons is attenuated in neurons with reduced shootin1 levels, in agreement with the notion that two proteins act in a common pathway. Altogether, these results point to a role of CDKL5 in the early steps of neuronal differentiation that can be explained, at least in part, by its association with shootin1.

  13. CDKL5 and Shootin1 Interact and Concur in Regulating Neuronal Polarization.

    Science.gov (United States)

    Nawaz, Mohammad Sarfaraz; Giarda, Elisa; Bedogni, Francesco; La Montanara, Paolo; Ricciardi, Sara; Ciceri, Dalila; Alberio, Tiziana; Landsberger, Nicoletta; Rusconi, Laura; Kilstrup-Nielsen, Charlotte

    2016-01-01

    In the last years, the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene has been associated with epileptic encephalopathies characterized by the early onset of intractable epilepsy, severe developmental delay, autistic features, and often the development of Rett syndrome-like features. Still, the role of CDKL5 in neuronal functions is not fully understood. By way of a yeast two hybrid screening we identified the interaction of CDKL5 with shootin1, a brain specific protein acting as a determinant of axon formation during neuronal polarization. We found evidence that CDKL5 is involved, at least in part, in regulating neuronal polarization through its interaction with shootin1. Indeed, the two proteins interact in vivo and both are localized in the distal tip of outgrowing axons. By using primary hippocampal neurons as model system we find that adequate CDKL5 levels are required for axon specification. In fact, a significant number of neurons overexpressing CDKL5 is characterized by supernumerary axons, while the silencing of CDKL5 disrupts neuronal polarization. Interestingly, shootin1 phosphorylation is reduced in neurons silenced for CDKL5 suggesting that the kinase affects, directly or indirectly, the post-translational modification of shootin1. Finally, we find that the capacity of CDKL5 to generate surplus axons is attenuated in neurons with reduced shootin1 levels, in agreement with the notion that two proteins act in a common pathway. Altogether, these results point to a role of CDKL5 in the early steps of neuronal differentiation that can be explained, at least in part, by its association with shootin1.

  14. Moderately delayed post-insult treatment with normobaric hyperoxia reduces excitotoxin-induced neuronal degeneration but increases ischemia-induced brain damage

    Directory of Open Access Journals (Sweden)

    Haelewyn Benoit

    2011-04-01

    Full Text Available Abstract Background The use and benefits of normobaric oxygen (NBO in patients suffering acute ischemic stroke is still controversial. Results Here we show for the first time to the best of our knowledge that NBO reduces both NMDA-induced calcium influxes in vitro and NMDA-induced neuronal degeneration in vivo, but increases oxygen and glucose deprivation-induced cell injury in vitro and ischemia-induced brain damage produced by middle cerebral artery occlusion in vivo. Conclusions Taken together, these results indicate that NBO reduces excitotoxin-induced calcium influx and subsequent neuronal degeneration but favors ischemia-induced brain damage and neuronal death. These findings highlight the complexity of the mechanisms involved by the use of NBO in patients suffering acute ischemic stroke.

  15. Effects of prior aversive experience upon retrograde amnesia induced by hypothermia.

    Science.gov (United States)

    Jensen, R A; Riccio, D C; Gehres, L

    1975-08-01

    Two experiments examined the extent to which retrograde amnesia (RA) is attenuated by prior learning experiences. In Experiment 1, rats initially received either passive avoidance training in a step-through apparatus, exposure to the apparatus, or noncontingent footshock. When training on a second but different passive avoidance task was followed by hypothermia treatment, RA was obtained only in the latter two groups. In Experiment 2, one-way active avoidance training, yoked noncontingent shocks, or apparatus exposure constituted the initial experience. Subsequent step-down passive avoidance training and amnestic treatment resulted in memory loss for the prior apparatus exposure group, but not for either of the preshocked conditions. These experiments demonstrate that certain types of prior aversive experience can substantially modify the magnitude of RA, and, in conjunction with other familiarization studies, emphasize a paradox for interpretations of RA based solely upon CNS disruption. The possibility that hypothermia treatment serves as an important contextual or encoding cue necessary for memory retrieval was considered. It was suggested that prior experience may block RA by enabling rats to differentiate training and treatment conditions.

  16. PERIPHERAL SENSORY NEURONS EXPRESSING MELANOPSIN RESPOND TO LIGHT

    Directory of Open Access Journals (Sweden)

    Anna Matynia

    2016-08-01

    Full Text Available The ability of light to cause pain is paradoxical. The retina detects light but is devoid of nociceptors while the trigeminal sensory ganglia (TG contain nociceptors but not photoreceptors. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs are thought to mediate light-induced pain but recent evidence raises the possibility of an alternative light responsive pathway independent of the retina and optic nerve. Here, we show that melanopsin is expressed in both human and mouse TG neurons. In mice, they represent 3% of small TG neurons that are preferentially localized in the ophthalmic branch of the trigeminal nerve and are likely nociceptive C fibers and high-threshold mechanoreceptor Aδ fibers based on a strong size-function association. These isolated neurons respond to blue light stimuli with a delayed onset and sustained firing, similar to the melanopsin-dependent intrinsic photosensitivity observed in ipRGCs. Mice with severe bilateral optic nerve crush exhibit no light-induced responses including behavioral light aversion until treated with nitroglycerin, an inducer of migraine in people and migraine-like symptoms in mice. With nitroglycerin, these same mice with optic nerve crush exhibit significant light aversion. Furthermore, this retained light aversion remains dependent on melanopsin-expressing neurons. Our results demonstrate a novel light-responsive neural function independent of the optic nerve that may originate in the peripheral nervous system to provide the first direct mechanism for an alternative light detection pathway that influences motivated behavior.

  17. Retrograde amnesia produced by electron beam exposure: causal parameters and duration of memory loss. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron beam exposure has been investigated. RA production was evaluated using a single-trial avoidance task across a 10/sup 4/ dose range for 10-, 1-, and 0.1-..mu..sec pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 10/sup 6/ rad/sec. By employing a 10 rad (10/sup 6/ rad/sec) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory activation which provided a novel stimulus that masked previous stimuli.

  18. Normal Patterns of Deja Experience in a Healthy, Blind Male: Challenging Optical Pathway Delay Theory

    Science.gov (United States)

    O'Connor, Akira R.; Moulin, Christopher J. A.

    2006-01-01

    We report the case of a 25-year-old healthy, blind male, MT, who experiences normal patterns of deja vu. The optical pathway delay theory of deja vu formation assumes that neuronal input from the optical pathways is necessary for the formation of the experience. Surprisingly, although the sensation of deja vu is known to be experienced by blind…

  19. Transition from Target to Gaze Coding in Primate Frontal Eye Field during Memory Delay and Memory–Motor Transformation123

    Science.gov (United States)

    Sajad, Amirsaman; Sadeh, Morteza; Yan, Xiaogang; Wang, Hongying

    2016-01-01

    Abstract The frontal eye fields (FEFs) participate in both working memory and sensorimotor transformations for saccades, but their role in integrating these functions through time remains unclear. Here, we tracked FEF spatial codes through time using a novel analytic method applied to the classic memory-delay saccade task. Three-dimensional recordings of head-unrestrained gaze shifts were made in two monkeys trained to make gaze shifts toward briefly flashed targets after a variable delay (450-1500 ms). A preliminary analysis of visual and motor response fields in 74 FEF neurons eliminated most potential models for spatial coding at the neuron population level, as in our previous study (Sajad et al., 2015). We then focused on the spatiotemporal transition from an eye-centered target code (T; preferred in the visual response) to an eye-centered intended gaze position code (G; preferred in the movement response) during the memory delay interval. We treated neural population codes as a continuous spatiotemporal variable by dividing the space spanning T and G into intermediate T–G models and dividing the task into discrete steps through time. We found that FEF delay activity, especially in visuomovement cells, progressively transitions from T through intermediate T–G codes that approach, but do not reach, G. This was followed by a final discrete transition from these intermediate T–G delay codes to a “pure” G code in movement cells without delay activity. These results demonstrate that FEF activity undergoes a series of sensory–memory–motor transformations, including a dynamically evolving spatial memory signal and an imperfect memory-to-motor transformation. PMID:27092335

  20. Mechanism of mesenchymal stem cell-induced neuron recovery and anti-inflammation.

    Science.gov (United States)

    Huang, Peng; Gebhart, Nichole; Richelson, Elliott; Brott, Thomas G; Meschia, James F; Zubair, Abba C

    2014-10-01

    After ischemic or hemorrhagic stroke, neurons in the penumbra surrounding regions of irreversible injury are vulnerable to delayed but progressive damage as a result of ischemia and hemin-induced neurotoxicity. There is no effective treatment to rescue such dying neurons. Mesenchymal stem cells (MSCs) hold promise for rescue of these damaged neurons. In this study, we evaluated the efficacy and mechanism of MSC-induced neuro-regeneration and immune modulation. Oxygen-glucose deprivation (OGD) was used in our study. M17 neuronal cells were subjected to OGD stress then followed by co-culture with MSCs. Rescue effects were evaluated using proliferation and apoptosis assays. Cytokine assay and quantitative polymerase chain reaction were used to explore the underlying mechanism. Antibody and small molecule blocking experiments were also performed to further understand the mechanism. We showed that M17 proliferation was significantly decreased and the rate of apoptosis increased after exposure to OGD. These effects could be alleviated via co-culture with MSCs. Tumor necrosis factor-α was found elevated after OGD stress and was back to normal levels after co-culture with MSCs. We believe these effects involve interleukin-6 and vascular endothelial growth factor signaling pathways. Our studies have shown that MSCs have anti-inflammatory properties and the capacity to rescue injured neurons. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  1. Glial degeneration with oxidative damage drives neuronal demise in MPSII disease.

    Science.gov (United States)

    Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia

    2016-08-11

    Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression.

  2. Out of time: a possible link between mirror neurons, autism and electromagnetic radiation.

    Science.gov (United States)

    Thornton, Ian M

    2006-01-01

    Recent evidence suggests a link between autism and the human mirror neuron system. In this paper, I argue that temporal disruption from the environment may play an important role in the observed mirror neuron dysfunction, leading in turn to the pattern of deficits associated with autism. I suggest that the developing nervous system of an infant may be particularly prone to temporal noise that can interfere with the initial calibration of brain networks such as the mirror neuron system. The most likely source of temporal noise in the environment is artificially generated electromagnetic radiation. To date, there has been little evidence that electromagnetic radiation poses a direct biological hazard. It is clear, however, that time-varying electromagnetic waves have the potential to temporally modulate the nervous system, particularly when populations of neurons are required to act together. This modulation may be completely harmless for the fully developed nervous system of an adult. For an infant, this same temporal disruption might act to severely delay or disrupt vital calibration processes.

  3. Kappe neurons, a novel population of olfactory sensory neurons.

    Science.gov (United States)

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  4. Pseudorabies virus infection alters neuronal activity and connectivity in vitro.

    Directory of Open Access Journals (Sweden)

    Kelly M McCarthy

    2009-10-01

    Full Text Available Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV, infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural

  5. Modulation of the spike activity of neocortex neurons during a conditioned reflex.

    Science.gov (United States)

    Storozhuk, V M; Sanzharovskii, A V; Sachenko, V V; Busel, B I

    2000-01-01

    Experiments were conducted on cats to study the effects of iontophoretic application of glutamate and a number of modulators on the spike activity of neurons in the sensorimotor cortex during a conditioned reflex. These studies showed that glutamate, as well as exerting a direct influence on neuron spike activity, also had a delayed facilitatory action lasting 10-20 min after iontophoresis was finished. Adrenomimetics were found to have a double modulatory effect on intracortical glutamate connections: inhibitory and facilitatory effects were mediated by beta1 and beta2 adrenoceptors respectively. Although dopamine, like glutamate, facilitated neuron spike activity during the period of application, the simultaneous facilitatory actions of glutamate and L-DOPA were accompanied by occlusion of spike activity, and simultaneous application of glutamate and haloperidol suppressed spike activity associated with the conditioned reflex response. Facilitation thus appears to show a significant level of dependence on metabotropic glutamate receptors which, like dopamine receptors, are linked to the intracellular medium via Gi proteins.

  6. Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus.

    Directory of Open Access Journals (Sweden)

    Matías A Goldin

    2017-08-01

    Full Text Available Different neuronal types within brain motor areas contribute to the generation of complex motor behaviors. A widely studied songbird forebrain nucleus (HVC has been recognized as fundamental in shaping the precise timing characteristics of birdsong. This is based, among other evidence, on the stretching and the "breaking" of song structure when HVC is cooled. However, little is known about the temperature effects that take place in its neurons. To address this, we investigated the dynamics of HVC both experimentally and computationally. We developed a technique where simultaneous electrophysiological recordings were performed during temperature manipulation of HVC. We recorded spontaneous activity and found three effects: widening of the spike shape, decrease of the firing rate and change in the interspike interval distribution. All these effects could be explained with a detailed conductance based model of all the neurons present in HVC. Temperature dependence of the ionic channel time constants explained the first effect, while the second was based in the changes of the maximal conductance using single synaptic excitatory inputs. The last phenomenon, only emerged after introducing a more realistic synaptic input to the inhibitory interneurons. Two timescales were present in the interspike distributions. The behavior of one timescale was reproduced with different input balances received form the excitatory neurons, whereas the other, which disappears with cooling, could not be found assuming poissonian synaptic inputs. Furthermore, the computational model shows that the bursting of the excitatory neurons arises naturally at normal brain temperature and that they have an intrinsic delay at low temperatures. The same effect occurs at single synapses, which may explain song stretching. These findings shed light on the temperature dependence of neuronal dynamics and present a comprehensive framework to study neuronal connectivity. This study, which

  7. A review of the methods for neuronal response latency estimation

    DEFF Research Database (Denmark)

    Levakovaa, Marie; Tamborrino, Massimiliano; Ditlevsen, Susanne

    2015-01-01

    Neuronal response latency is usually vaguely defined as the delay between the stimulus onset and the beginning of the response. It contains important information for the understanding of the temporal code. For this reason, the detection of the response latency has been extensively studied in the ...... by the stimulation using interspike intervals and spike times. The aim of this paper is to present a review of the main techniques proposed in both classes, highlighting their advantages and shortcomings....

  8. Lyapunov Functions to Caputo Fractional Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Ravi Agarwal

    2018-05-01

    Full Text Available One of the main properties of solutions of nonlinear Caputo fractional neural networks is stability and often the direct Lyapunov method is used to study stability properties (usually these Lyapunov functions do not depend on the time variable. In connection with the Lyapunov fractional method we present a brief overview of the most popular fractional order derivatives of Lyapunov functions among Caputo fractional delay differential equations. These derivatives are applied to various types of neural networks with variable coefficients and time-varying delays. We show that quadratic Lyapunov functions and their Caputo fractional derivatives are not applicable in some cases when one studies stability properties. Some sufficient conditions for stability of equilibrium of nonlinear Caputo fractional neural networks with time dependent transmission delays, time varying self-regulating parameters of all units and time varying functions of the connection between two neurons in the network are obtained. The cases of time varying Lipschitz coefficients as well as nonLipschitz activation functions are studied. We illustrate our theory on particular nonlinear Caputo fractional neural networks.

  9. Propylparaben reduces the excitability of hippocampal neurons by blocking sodium channels.

    Science.gov (United States)

    Lara-Valderrábano, Leonardo; Rocha, Luisa; Galván, Emilio J

    2016-12-01

    Propylparaben (PPB) is an antimicrobial preservative widely used in food, cosmetics, and pharmaceutics. Virtual screening methodologies predicted anticonvulsant activity of PPB that was confirmed in vivo. Thus, we explored the effects of PPB on the excitability of hippocampal neurons by using standard patch clamp techniques. Bath perfusion of PPB reduced the fast-inactivating sodium current (I Na ) amplitude, causing a hyperpolarizing shift in the inactivation curve of the I Na, and markedly delayed the sodium channel recovery from the inactivation state. Also, PPB effectively suppressed the riluzole-sensitive, persistent sodium current (I NaP ). PPB perfusion also modified the action potential kinetics, and higher concentrations of PPB suppressed the spike activity. Nevertheless, the modulatory effects of PPB did not occur when PPB was internally applied by whole-cell dialysis. These results indicate that PPB reduces the excitability of CA1 pyramidal neurons by modulating voltage-dependent sodium channels. The mechanistic basis of this effect is a marked delay in the recovery from inactivation state of the voltage-sensitive sodium channels. Our results indicate that similar to local anesthetics and anticonvulsant drugs that act on sodium channels, PPB acts in a use-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. BIG1 is required for the survival of deep layer neurons, neuronal polarity, and the formation of axonal tracts between the thalamus and neocortex in developing brain.

    Directory of Open Access Journals (Sweden)

    Jia-Jie Teoh

    Full Text Available BIG1, an activator protein of the small GTPase, Arf, and encoded by the Arfgef1 gene, is one of candidate genes for epileptic encephalopathy. To know the involvement of BIG1 in epileptic encephalopathy, we analyzed BIG1-deficient mice and found that BIG1 regulates neurite outgrowth and brain development in vitro and in vivo. The loss of BIG1 decreased the size of the neocortex and hippocampus. In BIG1-deficient mice, the neuronal progenitor cells (NPCs and the interneurons were unaffected. However, Tbr1+ and Ctip2+ deep layer (DL neurons showed spatial-temporal dependent apoptosis. This apoptosis gradually progressed from the piriform cortex (PIR, peaked in the neocortex, and then progressed into the hippocampus from embryonic day 13.5 (E13.5 to E17.5. The upper layer (UL and DL order in the neocortex was maintained in BIG1-deficient mice, but the excitatory neurons tended to accumulate before their destination layers. Further pulse-chase migration assay showed that the migration defect was non-cell autonomous and secondary to the progression of apoptosis into the BIG1-deficient neocortex after E15.5. In BIG1-deficient mice, we observed an ectopic projection of corticothalamic axons from the primary somatosensory cortex (S1 into the dorsal lateral geniculate nucleus (dLGN. The thalamocortical axons were unable to cross the diencephalon-telencephalon boundary (DTB. In vitro, BIG1-deficient neurons showed a delay in neuronal polarization. BIG1-deficient neurons were also hypersensitive to low dose glutamate (5 μM, and died via apoptosis. This study showed the role of BIG1 in the survival of DL neurons in developing embryonic brain and in the generation of neuronal polarity.

  11. Supporting the self-concept with memory: insight from amnesia.

    Science.gov (United States)

    Grilli, Matthew D; Verfaellie, Mieke

    2015-12-01

    We investigated the extent to which personal semantic memory supports the self-concept in individuals with medial temporal lobe amnesia and healthy adults. Participants completed eight 'I Am' self-statements. For each of the four highest ranked self-statements, participants completed an open-ended narrative task, during which they provided supporting information indicating why the I Am statement was considered self-descriptive. Participants then completed an episodic probe task, during which they attempted to retrieve six episodic memories for each of these self-statements. Supporting information was scored as episodic, personal semantic or general semantic. In the narrative task, personal semantic memory predominated as self-supporting information in both groups. The amnesic participants generated fewer personal semantic memories than controls to support their self-statements, a deficit that was more pronounced for trait relative to role self-statements. In the episodic probe task, the controls primarily generated unique event memories, but the amnesic participants did not. These findings demonstrate that personal semantic memory, in particular autobiographical fact knowledge, plays a critical role in supporting the self-concept, regardless of the accessibility of episodic memories, and they highlight potential differences in the way traits and roles are supported by personal memory. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Curtailing effect of awakening on visual responses of cortical neurons by cholinergic activation of inhibitory circuits.

    Science.gov (United States)

    Kimura, Rui; Safari, Mir-Shahram; Mirnajafi-Zadeh, Javad; Kimura, Rie; Ebina, Teppei; Yanagawa, Yuchio; Sohya, Kazuhiro; Tsumoto, Tadaharu

    2014-07-23

    Visual responsiveness of cortical neurons changes depending on the brain state. Neural circuit mechanism underlying this change is unclear. By applying the method of in vivo two-photon functional calcium imaging to transgenic rats in which GABAergic neurons express fluorescent protein, we analyzed changes in visual response properties of cortical neurons when animals became awakened from anesthesia. In the awake state, the magnitude and reliability of visual responses of GABAergic neurons increased whereas the decay of responses of excitatory neurons became faster. To test whether the basal forebrain (BF) cholinergic projection is involved in these changes, we analyzed effects of electrical and optogenetic activation of BF on visual responses of mouse cortical neurons with in vivo imaging and whole-cell recordings. Electrical BF stimulation in anesthetized animals induced the same direction of changes in visual responses of both groups of neurons as awakening. Optogenetic activation increased the frequency of visually evoked action potentials in GABAergic neurons but induced the delayed hyperpolarization that ceased the late generation of action potentials in excitatory neurons. Pharmacological analysis in slice preparations revealed that photoactivation-induced depolarization of layer 1 GABAergic neurons was blocked by a nicotinic receptor antagonist, whereas non-fast-spiking layer 2/3 GABAergic neurons was blocked only by the application of both nicotinic and muscarinic receptor antagonists. These results suggest that the effect of awakening is mediated mainly through nicotinic activation of layer 1 GABAergic neurons and mixed nicotinic/muscarinic activation of layer 2/3 non-fast-spiking GABAergic neurons, which together curtails the visual responses of excitatory neurons. Copyright © 2014 the authors 0270-6474/14/3410122-12$15.00/0.

  13. Kappe neurons, a novel population of olfactory sensory neurons

    OpenAIRE

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...

  14. Photoperiod Modulates Fast Delayed Rectifier Potassium Currents in the Mammalian Circadian Clock.

    Science.gov (United States)

    Farajnia, Sahar; Meijer, Johanna H; Michel, Stephan

    2016-10-01

    One feature of the mammalian circadian clock, situated in the suprachiasmatic nucleus (SCN), is its ability to measure day length and thereby contribute to the seasonal adaptation of physiology and behavior. The timing signal from the SCN, namely the 24 hr pattern of electrical activity, is adjusted according to the photoperiod being broader in long days and narrower in short days. Vasoactive intestinal peptide and gamma-aminobutyric acid play a crucial role in intercellular communication within the SCN and contribute to the seasonal changes in phase distribution. However, little is known about the underlying ionic mechanisms of synchronization. The present study was aimed to identify cellular mechanisms involved in seasonal encoding by the SCN. Mice were adapted to long-day (light-dark 16:8) and short-day (light-dark 8:16) photoperiods and membrane properties as well as K + currents activity of SCN neurons were measured using patch-clamp recordings in acute slices. Remarkably, we found evidence for a photoperiodic effect on the fast delayed rectifier K + current, that is, the circadian modulation of this ion channel's activation reversed in long days resulting in 50% higher peak values during the night compared with the unaltered day values. Consistent with fast delayed rectifier enhancement, duration of action potentials during the night was shortened and afterhyperpolarization potentials increased in amplitude and duration. The slow delayed rectifier, transient K + currents, and membrane excitability were not affected by photoperiod. We conclude that photoperiod can change intrinsic ion channel properties of the SCN neurons, which may influence cellular communication and contribute to photoperiodic phase adjustment. © The Author(s) 2016.

  15. Photoperiod Modulates Fast Delayed Rectifier Potassium Currents in the Mammalian Circadian Clock

    Directory of Open Access Journals (Sweden)

    Sahar Farajnia

    2016-09-01

    Full Text Available One feature of the mammalian circadian clock, situated in the suprachiasmatic nucleus (SCN, is its ability to measure day length and thereby contribute to the seasonal adaptation of physiology and behavior. The timing signal from the SCN, namely the 24 hr pattern of electrical activity, is adjusted according to the photoperiod being broader in long days and narrower in short days. Vasoactive intestinal peptide and gamma-aminobutyric acid play a crucial role in intercellular communication within the SCN and contribute to the seasonal changes in phase distribution. However, little is known about the underlying ionic mechanisms of synchronization. The present study was aimed to identify cellular mechanisms involved in seasonal encoding by the SCN. Mice were adapted to long-day (light–dark 16:8 and short-day (light–dark 8:16 photoperiods and membrane properties as well as K+ currents activity of SCN neurons were measured using patch-clamp recordings in acute slices. Remarkably, we found evidence for a photoperiodic effect on the fast delayed rectifier K+ current, that is, the circadian modulation of this ion channel’s activation reversed in long days resulting in 50% higher peak values during the night compared with the unaltered day values. Consistent with fast delayed rectifier enhancement, duration of action potentials during the night was shortened and afterhyperpolarization potentials increased in amplitude and duration. The slow delayed rectifier, transient K+ currents, and membrane excitability were not affected by photoperiod. We conclude that photoperiod can change intrinsic ion channel properties of the SCN neurons, which may influence cellular communication and contribute to photoperiodic phase adjustment.

  16. Channel noise effects on first spike latency of a stochastic Hodgkin-Huxley neuron

    Science.gov (United States)

    Maisel, Brenton; Lindenberg, Katja

    2017-02-01

    While it is widely accepted that information is encoded in neurons via action potentials or spikes, it is far less understood what specific features of spiking contain encoded information. Experimental evidence has suggested that the timing of the first spike may be an energy-efficient coding mechanism that contains more neural information than subsequent spikes. Therefore, the biophysical features of neurons that underlie response latency are of considerable interest. Here we examine the effects of channel noise on the first spike latency of a Hodgkin-Huxley neuron receiving random input from many other neurons. Because the principal feature of a Hodgkin-Huxley neuron is the stochastic opening and closing of channels, the fluctuations in the number of open channels lead to fluctuations in the membrane voltage and modify the timing of the first spike. Our results show that when a neuron has a larger number of channels, (i) the occurrence of the first spike is delayed and (ii) the variation in the first spike timing is greater. We also show that the mean, median, and interquartile range of first spike latency can be accurately predicted from a simple linear regression by knowing only the number of channels in the neuron and the rate at which presynaptic neurons fire, but the standard deviation (i.e., neuronal jitter) cannot be predicted using only this information. We then compare our results to another commonly used stochastic Hodgkin-Huxley model and show that the more commonly used model overstates the first spike latency but can predict the standard deviation of first spike latencies accurately. We end by suggesting a more suitable definition for the neuronal jitter based upon our simulations and comparison of the two models.

  17. Persistent Neuronal Firing in Primary Somatosensory Cortex in the Absence of Working Memory of Trial-Specific Features of the Sample Stimuli in a Haptic Working Memory Task

    Science.gov (United States)

    Wang, Liping; Li, Xianchun; Hsiao, Steven S.; Bodner, Mark; Lenz, Fred; Zhou, Yong-Di

    2012-01-01

    Previous studies suggested that primary somatosensory (SI) neurons in well-trained monkeys participated in the haptic-haptic unimodal delayed matching-to-sample (DMS) task. In this study, 585 SI neurons were recorded in monkeys performing a task that was identical to that in the previous studies but without requiring discrimination and active…

  18. Value of dynamic susceptibility contrast perfusion MRI in the acute phase of transient global amnesia.

    Directory of Open Access Journals (Sweden)

    Alex Förster

    Full Text Available Transient global amnesia (TGA is a transitory, short-lasting neurological disorder characterized by a sudden onset of antero- and retrograde amnesia. Perfusion abnormalities in TGA have been evaluated mainly by use of positron emission tomography (PET or single-photon emission computed tomography (SPECT. In the present study we explore the value of dynamic susceptibility contrast perfusion-weighted MRI (PWI in TGA in the acute phase.From a MRI report database we identified TGA patients who underwent MRI including PWI in the acute phase and compared these to control subjects. Quantitative perfusion maps (cerebral blood flow (CBF and volume (CBV were generated and analyzed by use of Signal Processing In NMR-Software (SPIN. CBF and CBV values in subcortical brain regions were assessed by use of VOI created in FIRST, a model-based segmentation tool in the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB Software Library (FSL.Five TGA patients were included (2 men, 3 women. On PWI, no relevant perfusion alterations were found by visual inspection in TGA patients. Group comparisons for possible differences between TGA patients and control subjects showed significant lower rCBF values bilaterally in the hippocampus, in the left thalamus and globus pallidus as well as bilaterally in the putamen and the left caudate nucleus. Correspondingly, significant lower rCBV values were observed bilaterally in the hippocampus and the putamen as well as in the left caudate nucleus. Group comparisons for possible side differences in rCBF and rCBV values in TGA patients revealed a significant lower rCBV value in the left caudate nucleus.Mere visual inspection of PWI is not sufficient for the assessment of perfusion changes in TGA in the acute phase. Group comparisons with healthy control subjects might be useful to detect subtle perfusion changes on PWI in TGA patients. However, this should be confirmed in larger data sets and serial PWI

  19. Rich-Club Organization in Effective Connectivity among Cortical Neurons

    Science.gov (United States)

    Shimono, Masanori; Ito, Shinya; Yeh, Fang-Chin; Timme, Nicholas; Myroshnychenko, Maxym; Lapish, Christopher C.; Tosi, Zachary; Hottowy, Pawel; Smith, Wesley C.; Masmanidis, Sotiris C.; Litke, Alan M.; Sporns, Olaf; Beggs, John M.

    2016-01-01

    The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 μm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a “rich club.” We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory. SIGNIFICANCE STATEMENT Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several

  20. Rich-Club Organization in Effective Connectivity among Cortical Neurons.

    Science.gov (United States)

    Nigam, Sunny; Shimono, Masanori; Ito, Shinya; Yeh, Fang-Chin; Timme, Nicholas; Myroshnychenko, Maxym; Lapish, Christopher C; Tosi, Zachary; Hottowy, Pawel; Smith, Wesley C; Masmanidis, Sotiris C; Litke, Alan M; Sporns, Olaf; Beggs, John M

    2016-01-20

    The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 μm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a "rich club." We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory. Significance statement: Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several

  1. Levels-of-processing effects on recollection and familiarity during transient global amnesia and after recovery.

    Science.gov (United States)

    Thoma, Patrizia; Schwarz, Michael; Daum, Irene

    2010-11-01

    The aim of the present study was to investigate the pattern of recollection and familiarity deficits and the modulation of recognition memory performance by the depth of encoding (deep vs. shallow) in transient global amnesia (TGA). Ten patients with TGA and 11 control subjects were assessed during the acute stage and after recovery 7 to 19 days later. Both recollection and familiarity were impaired in the acute stage and showed significant, albeit not complete, recovery by the time of the postacute assessment. The patients did, however, show a significant levels-of-processing effect, which was significantly reduced in acute TGA, but not at follow-up. The significant levels-of-processing effect during acute TGA might be linked to recruitment of the prefrontal cortex. (c) 2010 APA, all rights reserved

  2. Propofol sedation in children: sleep trumps amnesia.

    Science.gov (United States)

    Veselis, Robert; Kelhoffer, Eric; Mehta, Meghana; Root, James C; Robinson, Fay; Mason, Keira P

    Detailed assessments of the effects of propofol on memory in children are lacking. We assessed the feasibility of measuring memory during propofol infusion, as commonly performed in sedation for MRI scanning. In addition, we determined the onset of memory loss in relation to the onset of sedation measured by verbal responsiveness. Children scheduled for sedation for MRI received a 10-min infusion of propofol (3 mg/kg) as they viewed and named 100 simple line drawings, one shown every five seconds, until they were no longer responsive (encoding). A control group receiving no sedation for MRI underwent similar tasks. Sedation was measured as any verbal response, regardless of correctness. After recovery from sedation, recognition memory was tested, with correct yes/no recognitions matched to sedation responses during encoding (subsequent memory paradigm). Of the 48 children who received propofol, 30 could complete all study tasks (6.2 ± 1.6 years, 16 males). Individual responses could be modeled in all 30 children. On average, there was a 50% probability of no verbal response 3.1 min after the start of infusion, with 50% memory loss at 2.7 min. Children receiving propofol recognized 65 ± 16% of the pictures seen, whereas the control group recognized 93 ± 5%. Measurement of memory and sedation is possible in verbal children receiving propofol by infusion in a clinical setting. Despite propofol being an amnestic agent, there was little or no amnestic effect of propofol while the child was verbally responsive. It is important for sedation providers to realize that propofol sedation does not always produce amnesia while the child is responsive. CLINICALTRIALS. NCT02278003. Copyright © 2016. Published by Elsevier B.V.

  3. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    Science.gov (United States)

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron

  4. Glucose and Intermediary Metabolism and Astrocyte-Neuron Interactions Following Neonatal Hypoxia-Ischemia in Rat.

    Science.gov (United States)

    Brekke, Eva; Berger, Hester Rijkje; Widerøe, Marius; Sonnewald, Ursula; Morken, Tora Sund

    2017-01-01

    Neonatal hypoxia-ischemia (HI) and the delayed injury cascade that follows involve excitotoxicity, oxidative stress and mitochondrial failure. The susceptibility to excitotoxicity of the neonatal brain may be related to the capacity of astrocytes for glutamate uptake. Furthermore, the neonatal brain is vulnerable to oxidative stress, and the pentose phosphate pathway (PPP) may be of particular importance for limiting this kind of injury. Also, in the neonatal brain, neurons depend upon de novo synthesis of neurotransmitters via pyruvate carboxylase in astrocytes to increase neurotransmitter pools during normal brain development. Several recent publications describing intermediary brain metabolism following neonatal HI have yielded interesting results: (1) Following HI there is a prolonged depression of mitochondrial metabolism in agreement with emerging evidence of mitochondria as vulnerable targets in the delayed injury cascade. (2) Astrocytes, like neurons, are metabolically impaired following HI, and the degree of astrocytic malfunction may be an indicator of the outcome following hypoxic and hypoxic-ischemic brain injury. (3) Glutamate transfer from neurons to astrocytes is not increased following neonatal HI, which may imply that astrocytes fail to upregulate glutamate uptake in response to the massive glutamate release during HI, thus contributing to excitotoxicity. (4) In the neonatal brain, the activity of the PPP is reduced following HI, which may add to the susceptibility of the neonatal brain to oxidative stress. The present review aims to discuss the metabolic temporal alterations observed in the neonatal brain following HI.

  5. Effect of histochrome on the severity of delayed effects of prenatal exposure to lead nitrate in the rat brain.

    Science.gov (United States)

    Ryzhavsky, B Ya; Lebedko, O A; Belolubskaya, D S

    2008-08-01

    The effects of histochrome on the severity of delayed effects of prenatal exposure to lead nitrate were studied in the rat brain. Exposure of pregnant rats to lead nitrate during activation of free radical oxidation reduced activity of NADH- and NADPH-dehydrogenases in cortical neurons of their 40-day-old progeny, reduced the number of neurons in a visual field, increased the number of pathologically modified neurons, and stimulated rat motor activity in an elevated plus-maze. Two intraperitoneal injections of histochrome in a dose of 0.1 mg/kg before and after lead citrate challenge attenuated the manifestations of oxidative stress and prevented the changes in some morphological and histochemical parameters of the brain, developing under the effect of lead exposure.

  6. EGFR inhibitor erlotinib delays disease progression but does not extend survival in the SOD1 mouse model of ALS.

    Directory of Open Access Journals (Sweden)

    Claire E Le Pichon

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease that causes progressive paralysis due to motor neuron death. Several lines of published evidence suggested that inhibition of epidermal growth factor receptor (EGFR signaling might protect neurons from degeneration. To test this hypothesis in vivo, we treated the SOD1 transgenic mouse model of ALS with erlotinib, an EGFR inhibitor clinically approved for oncology indications. Although erlotinib failed to extend ALS mouse survival it did provide a modest but significant delay in the onset of multiple behavioral measures of disease progression. However, given the lack of protection of motor neuron synapses and the lack of survival extension, the small benefits observed after erlotinib treatment appear purely symptomatic, with no modification of disease course.

  7. Talker-specific learning in amnesia: Insight into mechanisms of adaptive speech perception.

    Science.gov (United States)

    Trude, Alison M; Duff, Melissa C; Brown-Schmidt, Sarah

    2014-05-01

    A hallmark of human speech perception is the ability to comprehend speech quickly and effortlessly despite enormous variability across talkers. However, current theories of speech perception do not make specific claims about the memory mechanisms involved in this process. To examine whether declarative memory is necessary for talker-specific learning, we tested the ability of amnesic patients with severe declarative memory deficits to learn and distinguish the accents of two unfamiliar talkers by monitoring their eye-gaze as they followed spoken instructions. Analyses of the time-course of eye fixations showed that amnesic patients rapidly learned to distinguish these accents and tailored perceptual processes to the voice of each talker. These results demonstrate that declarative memory is not necessary for this ability and points to the involvement of non-declarative memory mechanisms. These results are consistent with findings that other social and accommodative behaviors are preserved in amnesia and contribute to our understanding of the interactions of multiple memory systems in the use and understanding of spoken language. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Selective neuronal lapses precede human cognitive lapses following sleep deprivation.

    Science.gov (United States)

    Nir, Yuval; Andrillon, Thomas; Marmelshtein, Amit; Suthana, Nanthia; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak

    2017-12-01

    Sleep deprivation is a major source of morbidity with widespread health effects, including increased risk of hypertension, diabetes, obesity, heart attack, and stroke. Moreover, sleep deprivation brings about vehicle accidents and medical errors and is therefore an urgent topic of investigation. During sleep deprivation, homeostatic and circadian processes interact to build up sleep pressure, which results in slow behavioral performance (cognitive lapses) typically attributed to attentional thalamic and frontoparietal circuits, but the underlying mechanisms remain unclear. Recently, through study of electroencephalograms (EEGs) in humans and local field potentials (LFPs) in nonhuman primates and rodents it was found that, during sleep deprivation, regional 'sleep-like' slow and theta (slow/theta) waves co-occur with impaired behavioral performance during wakefulness. Here we used intracranial electrodes to record single-neuron activities and LFPs in human neurosurgical patients performing a face/nonface categorization psychomotor vigilance task (PVT) over multiple experimental sessions, including a session after full-night sleep deprivation. We find that, just before cognitive lapses, the selective spiking responses of individual neurons in the medial temporal lobe (MTL) are attenuated, delayed, and lengthened. These 'neuronal lapses' are evident on a trial-by-trial basis when comparing the slowest behavioral PVT reaction times to the fastest. Furthermore, during cognitive lapses, LFPs exhibit a relative local increase in slow/theta activity that is correlated with degraded single-neuron responses and with baseline theta activity. Our results show that cognitive lapses involve local state-dependent changes in neuronal activity already present in the MTL.

  9. Bcl-2 over-expression fails to prevent age-related loss of calretinin positive neurons in the mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Han Mingbo

    2006-08-01

    Full Text Available Abstract Background Cognitive performance declines with increasing age. Possible cellular mechanisms underlying this age-related functional decline remain incompletely understood. Early studies attributed this functional decline to age-related neuronal loss. Subsequent studies using unbiased stereological techniques found little or no neuronal loss during aging. However, studies using specific cellular markers found age-related loss of specific neuronal types. To test whether there is age-related loss of specific neuronal populations in the hippocampus, and subsequently, whether over-expression of the B-cell lymphoma protein-2 (Bcl-2 in these neurons could delay possible age-related neuronal loss, we examined calretinin (CR positive neurons in the mouse dentate gyrus during aging. Result In normal mice, there was an age-related loss of CR positive cells in the dentate gyrus. At the same region, there was no significant decrease of total numbers of neurons, which suggested that age-related loss of CR positive cells was due to the decrease of CR expression in these cells instead of cell death. In the transgenic mouse line over-expressing Bcl-2 in neurons, there was an age-related loss of CR positive cells. Interestingly, there was also an age-related neuronal loss in this transgenic mouse line. Conclusion These data suggest an age-related loss of CR positive neurons but not total neuronal loss in normal mice and this age-related neuronal change is not prevented by Bcl-2 over-expression.

  10. TAURINE REGULATION OF VOLTAGE-GATED CHANNELS IN RETINAL NEURONS

    Science.gov (United States)

    Rowan, Matthew JM; Bulley, Simon; Purpura, Lauren; Ripps, Harris; Shen, Wen

    2017-01-01

    Taurine activates not only Cl−-permeable ionotropic receptors, but also receptors that mediate metabotropic responses. The metabotropic property of taurine was revealed in electrophysiological recordings obtained after fully blocking Cl−-permeable receptors with an inhibitory “cocktail” consisting of picrotoxin, SR95531, and strychnine. We found that taurine’s metabotropic effects regulate voltage-gated channels in retinal neurons. After applying the inhibitory cocktail, taurine enhanced delayed outward rectifier K+ channels preferentially in Off-bipolar cells, and the effect was completely blocked by the specific PKC inhibitor, GF109203X. Additionally, taurine also acted through a metabotropic pathway to suppress both L- and N-type Ca2+ channels in retinal neurons, which were insensitive to the potent GABAB receptor inhibitor, CGP55845. This study reinforces our previous finding that taurine in physiological concentrations produces a multiplicity of metabotropic effects that precisely govern the integration of signals being transmitted from the retina to the brain. PMID:23392926

  11. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    KAUST Repository

    Jolivet, Renaud

    2015-02-26

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

  12. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    Science.gov (United States)

    Jolivet, Renaud; Coggan, Jay S.; Allaman, Igor; Magistretti, Pierre J.

    2015-01-01

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging. PMID:25719367

  13. Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble.

    Directory of Open Access Journals (Sweden)

    Renaud Jolivet

    2015-02-01

    Full Text Available Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS are still debated. To address this question, we developed a detailed biophysical model of the brain's metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

  14. Single-cell axotomy of cultured hippocampal neurons integrated in neuronal circuits.

    Science.gov (United States)

    Gomis-Rüth, Susana; Stiess, Michael; Wierenga, Corette J; Meyn, Liane; Bradke, Frank

    2014-05-01

    An understanding of the molecular mechanisms of axon regeneration after injury is key for the development of potential therapies. Single-cell axotomy of dissociated neurons enables the study of the intrinsic regenerative capacities of injured axons. This protocol describes how to perform single-cell axotomy on dissociated hippocampal neurons containing synapses. Furthermore, to axotomize hippocampal neurons integrated in neuronal circuits, we describe how to set up coculture with a few fluorescently labeled neurons. This approach allows axotomy of single cells in a complex neuronal network and the observation of morphological and molecular changes during axon regeneration. Thus, single-cell axotomy of mature neurons is a valuable tool for gaining insights into cell intrinsic axon regeneration and the plasticity of neuronal polarity of mature neurons. Dissociation of the hippocampus and plating of hippocampal neurons takes ∼2 h. Neurons are then left to grow for 2 weeks, during which time they integrate into neuronal circuits. Subsequent axotomy takes 10 min per neuron and further imaging takes 10 min per neuron.

  15. Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice.

    Science.gov (United States)

    Joo, Jin Deok; Kim, Mihwa; D'Agati, Vivette D; Lee, H Thomas

    2006-11-01

    Acute as well as delayed ischemic preconditioning (IPC) provides protection against cardiac and neuronal ischemia reperfusion (IR) injury. This study determined whether delayed preconditioning occurs in the kidney and further elucidated the mechanisms of renal IPC in mice. Mice were subjected to IPC (four cycles of 5 min of ischemia and reperfusion) and then to 30 min of renal ischemia either 15 min (acute IPC) or 24 h (delayed IPC) later. Both acute and delayed renal IPC provided powerful protection against renal IR injury. Inhibition of Akt but not extracellular signal-regulated kinase phosphorylation prevented the protection that was afforded by acute IPC. Neither extracellular signal-regulated kinase nor Akt inhibition prevented protection that was afforded by delayed renal IPC. Pretreatment with an antioxidant, N-(2-mercaptopropionyl)-glycine, to scavenge free radicals prevented the protection that was provided by acute but not delayed renal IPC. Inhibition of protein kinase C or pertussis toxin-sensitive G-proteins attenuated protection from both acute and delayed renal IPC. Delayed renal IPC increased inducible nitric oxide synthase (iNOS) as well as heat-shock protein 27 synthesis, and the renal protective effects of delayed preconditioning were attenuated by a selective inhibitor of iNOS (l-N(6)[1-iminoethyl]lysine). Moreover, delayed IPC was not observed in iNOS knockout mice. Both acute and delayed IPC were independent of A(1) adenosine receptors (AR) as a selective A(1)AR antagonist failed to block preconditioning and acute and delayed preconditioning occurred in mice that lacked A(1)AR. Therefore, this study demonstrated that acute or delayed IPC provides renal protection against IR injury in mice but involves distinct signaling pathways.

  16. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels

    Directory of Open Access Journals (Sweden)

    Stephan eKratzer

    2013-07-01

    Full Text Available Corticotropin-releasing hormone (CRH plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS and field excitatory postsynaptic potentials (fEPSP were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean  Standard error of the mean; 231.8  31.2% of control; n=10 while neither affecting fEPSPs (104.3 ± 4.2%; n=10 nor long-term potentiation (LTP. However, when Schaffer-collaterals were excited via action potentials (APs generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n=8 and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1 expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca2+-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity.

  17. Zebrafish embryos exposed to alcohol undergo abnormal development of motor neurons and muscle fibers.

    Science.gov (United States)

    Sylvain, Nicole J; Brewster, Daniel L; Ali, Declan W

    2010-01-01

    Children exposed to alcohol in utero have significantly delayed gross and fine motor skills, as well as deficiencies in reflex development. The reasons that underlie the motor deficits caused by ethanol (EtOH) exposure remain to be fully elucidated. The present study was undertaken to investigate the effects of embryonic alcohol exposure (1.5%, 2% and 2.5% EtOH) on motor neuron and muscle fiber morphology in 3 days post fertilization (dpf) larval zebrafish. EtOH treated fish exhibited morphological deformities and fewer bouts of swimming in response to touch, compared with untreated fish. Immunolabelling with anti-acetylated tubulin indicated that fish exposed to 2.5% EtOH had significantly higher rates of motor neuron axon defects. Immunolabelling of primary and secondary motor neurons, using znp-1 and zn-8, revealed that fish exposed to 2% and 2.5% EtOH exhibited significantly higher rates of primary and secondary motor neuron axon defects compared to controls. Examination of red and white muscle fibers revealed that fish exposed to EtOH had significantly smaller fibers compared with controls. These findings indicate that motor neuron and muscle fiber morphology is affected by early alcohol exposure in zebrafish embryos, and that this may be related to deficits in locomotion. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Neuronal survival in the brain: neuron type-specific mechanisms

    DEFF Research Database (Denmark)

    Pfisterer, Ulrich Gottfried; Khodosevich, Konstantin

    2017-01-01

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial...... numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether...... for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various...

  19. SELF-EXCITED WAVE PROCESSES IN CHAINS OF UNIDIRECTIONALLY COUPLED IMPULSE NEURONS

    Directory of Open Access Journals (Sweden)

    S. D. Glyzin

    2015-01-01

    Full Text Available The article is devoted to the mathematical modeling of neural activity. We propose new classes of singularly perturbed differential-difference equations with delay of Volterra type. With these systems, the models as a single neuron or neural networks are described. We study attractors of ring systems of unidirectionally coupled impulse neurons in the case where the number of links in the system increases indefinitely. In order to study periodic solutions of travelling wave type of this system, some special tricks are used which reduce the existence and stability problems for cycles to the investigation of auxiliary system with impulse actions. Using this approach, we establish that the number of stable self-excited waves simultaneously existing in the chain increases unboundedly as the number of links of the chain increases, that is, the well-known buffer phenomenon occurs.

  20. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus.

    Science.gov (United States)

    Hernández, Vivian M; Hegeman, Daniel J; Cui, Qiaoling; Kelver, Daniel A; Fiske, Michael P; Glajch, Kelly E; Pitt, Jason E; Huang, Tina Y; Justice, Nicholas J; Chan, C Savio

    2015-08-26

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the