WorldWideScience

Sample records for ammonium phosphate crystals

  1. Thiourea-doped ammonium dihydrogen phosphate: A single crystal ...

    Indian Academy of Sciences (India)

    Thiourea-doped ammonium dihydrogen phosphate (TADP) exhibits nonlinear optical property and the second harmonic generation efficiency of these crystals is three times that of pure ammonium dihydrogen phosphate (ADP) crystal. In this context, the study of structural distortion in the thiourea-doped ADP crystal is ...

  2. Hybrid organic-inorganic crystals based on ammonium dihydrogen phosphate and ammonium salicylate

    Science.gov (United States)

    Voronov, A. P.; Salo, V. I.; Puzikov, V. M.; Babenko, G. N.; Roshal, A. D.; Tkachenko, V. F.

    2011-11-01

    ADP-NH 4Sal hybrid crystals are grown from aqueous solutions. The influence of the acidity of the mixed solution on the conditions of co-crystallization of the components is studied. The spectral and scintillation characteristics are determined. Co-crystallization of ammonium salicylate (NH 4Sal) and ammonium dihydrogen phosphate (ADP, NH 4H 2PO 4) is shown to be feasible, the structure of the doping addition being defined by the solution рН. In basic and weak acidic media the hybrid crystals ADP:NH 4Sal are formed in which salicylate anions are located in the interplanar space between the {110}-type planes in the lattice of ADP. The luminescence spectra contain an emission band maximum with λ max=360 nm. In acidic solutions there are ADP:HSal crystals in which salicylic acid molecules captured by the growth macrosteps are located in the interplanar space of the prismatic {100} and pyramidal {101} growth sectors. The luminescence band undergoes bathochromic shift to λmax=400 nm. The sensitivity of ADP:NH 4Sal scintillation crystals to fast neutrons depends on the concentration of ammonium salicylate in ADP matrix. The highest neutron sensitivity is characteristic of the co-doped ADP:NH 4Sal/Tl scintillation crystals.

  3. 21 CFR 582.1141 - Ammonium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b) Conditions...

  4. Studies on the Effects of Ammonium Phosphates on the ...

    African Journals Online (AJOL)

    ……..(2). Ammonium dihydrogen tetraoxophosphate (V): (NH4)2HPO4 → NH4H2PO4 + NH3 ……(3a). NH4H2PO4 → H3PO4 + NH3 …...........(3b). Scheme 1: Equations for the combustion of the three ammonium phosphates used in filling the ...

  5. [Composition analyses of urinary microcrystalline in urine of magnesium ammonium phosphate stones formers and its relationship with the stones formation].

    Science.gov (United States)

    Yang, Jin; Huang, Zhi-Jie; Hou, Shan-Hua; Ouyang, Jian-Ming

    2011-01-01

    By means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nano-particle size analyzer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the composition, morphology, particle size and zeta potential of urinary microcrystalline in urine of magnesium ammonium phosphate stone formers were investigated. The components of stones were also analyzed. The results showed that there was a close relationship among stone components, urinary microcrystalline composition and urine pH. A high pH value of 6.5 or more usually appeared in the urine of magnesium ammonium phosphate stone formers. The main component of urine microcrystalline was magnesium ammonium phosphate crystals with different crystal water such as monohydrate or hexahydrate. Magnesium ammonium phosphate crystals are mainly petal-shaped, crosswise shape. These microcrystalline have an uneven particle size distribution, a wider distribution range, and apparent aggregation. There is no significant difference in the zeta potential between the magnesium ammonium phosphate stone formers (mean (-9.83 +/- 0.66) mV) and healthy control subjects (mean (-10.74 +/- 0.25) mV). This study can help predict the occurrence of urolithiasis, and provide inspiration to the prediction of the type of urinary stones.

  6. Growth features of ammonium hydrogen d-tartrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Ammonium hydrogen d-tartrate (d-AHT) single crystals were grown in silica gel. The growth fea- tures of these crystals with variation of parameters like specific gravity of the gel, gel pH, acid concentrations, concentration of the feed solution and gel age were studied in detail. Keywords. d-AHT single crystals; growth features ...

  7. Formation Mechanism of Magnesium Ammonium Phosphate Stones: A Component Analysis of Urinary Nanocrystallites

    Directory of Open Access Journals (Sweden)

    Xin-Yuan Sun

    2015-01-01

    Full Text Available The components of urinary nanocrystallites in patients with magnesium ammonium phosphate (MAP stones were analyzed by X-ray diffraction (XRD, Fourier-transform infrared (FT-IR spectrometer, high-resolution transmission electron microscopy (HRTEM, selected area electron diffraction (SAED, fast Fourier transformation (FFT, and energy-dispersive X-ray spectroscopy (EDS. The main components of the stones were MAP hexahydrate (MAP·6H2O, magnesium hydrogen phosphate trihydrate (MgHPO4·3H2O, and a small amount of calcium phosphate (CaP, while the main components of urinary nanocrystallites were MgHPO4·3H2O, CaP, and MAP monohydrate (MAP·H2O. MAP·H2O induced the formation of MAP stones as seed crystals. MgHPO4·3H2O was accompanied by the appearance of MAP·6H2O. The formation mechanism of MAP stones and influencing factors were discussed on the basis of the components of urine nanocrystallites. A model diagram of MAP stone formation was also put forward based on the results. Formation of MAP stones was closely related to the presence of high amounts of MAP crystallites in urine. Urinary crystallite condition and changes in urine components could indicate the activity of stone diseases.

  8. Phosphate limitation in biological rapid sand filters used to remove ammonium from drinking water

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    2013-01-01

    Removing ammonium from drinking water is important for maintaining biological stability in distribution systems. This is especially important in regions that do not use disinfectants in the treatment process or keep a disinfectant residual in the distribution system. Problems with nitrification can...... occur with increased ammonium loads caused by seasonal or operational changes and can lead to extensive periods of elevated ammonium and nitrite concentrations in the effluent. One possible cause of nitrification problems in these filters maybe due to phosphate limitation. This was investigated using...... the total number of ammonium oxidizing bacteria in the column. © 2013 American Water Works Association AWWA WQTC Conference Proceedings All Rights Reserved....

  9. Rotavirus gastroenteritis-associated urinary ammonium acid urate crystals.

    Science.gov (United States)

    Yokoyama, Tadafumi; Sugimoto, Naotoshi; Kato, Eiji; Ohta, Kazuhide; Ishikawa, Sayaka; Ueno, Kazuyuki; Shimizu, Masaki; Yachie, Akihiro

    2015-01-01

    Although ammonium acid urate (AAU) calculi are extremely rare renal stone components, it was recently found that many urinary tract calculi that cause post-renal renal failure in rotavirus (RV) gastroenteritis are AAU calculi. The mechanism of AAU calculi development in RV gastroenteritis has not been fully elucidated. We analyzed data from eight RV gastroenteritis patients who transiently had AAU crystals in their urinary sediment. In these patients, formation of AAU crystals occurred earlier than the formation of AAU calculi. No difference was observed in serum and urine uric acid levels between RV gastroenteritis patients with or without AAU crystals. Interestingly, fractional excretion of sodium was extremely low among patients with AAU crystals. These results suggest that the formation of AAU crystals might not be due to excretion of uric acid, but excretion of sodium. © 2015 Japan Pediatric Society.

  10. Crystallization of Chicken Egg-White Lysozyme from Ammonium Sulfate

    Science.gov (United States)

    Forsythe, Elizabeth L.; Snell, Edward H.; Pusey, Marc L.

    1997-01-01

    Chicken egg-white lysozyme was crystallized from ammonium sulfate over the pH range 4.0-7.8, with protein concentrations from 100 to 150 mg/ml. Crystals were obtained by vapor-diffusion or batch-crystallization methods. The protein crystallized in two morphologies with an apparent morphology dependence on temperature and protein concentration. In general, tetragonal crystals could be grown by lowering the protein concentration or temperature. Increasing the temperature or protein concentration resulted in the growth of orthorhombic crystals. Representative crystals of each morphology were selected for X-ray analysis. The tetragonal crystals belonged to the P4(sub 3)2(sub 1)2 space group with crystals grown at ph 4.4 having unit-cell dimensions of a = b = 78.7 1, c=38.6 A and diffracting to beyond 2.0 A. The orthorhombic crystals, grown at pH 4.8, were of space group P2(sub 1)2(sub 1)2 and had unit-cell dimensions of a = 30.51, b = 56.51 and c = 73.62 A.

  11. CRYSTALLIZATION KINETICS OF AMMONIUM PERCHLORATE IN AN AGITATED VESSEL

    Directory of Open Access Journals (Sweden)

    Nahidh Kaseer

    2013-05-01

    Full Text Available 31Overall crystal growth kinetics for ammonium perchlorate in laboratory scale batch  agitated vessel crystallizer have been determined from batch experiments performed in an integral mode. The effects of temperature between 30-60ºC, seed size 0.07, 0.120 and 0.275 mm and stirrer speed 160, 340, and 480 rpm, on the kinetics of crystal growth were investigated. Two different methods, viz. polynomial fitting and initial derivative were used to predict the kinetics expression. In general both methods gave comparable results for growth kinetics estimation. The order of growth process is not more than two. The activation energy for crystal growth of ammonium perchlorate was determined and found  to be equal to 5.8 kJ/ mole.            Finally, the influence of the affecting parameters on the crystal growth rate gives general expression that had an obvious dependence of the growth rate on each variables of concern (temperature, seed size, and stirrer speed .The general overall growth rate expression had shown that super saturation is the most significant variable. While the positive dependence of the stirrer speed demonstrates the importance of the diffusional step in the growth rate model. Moreover, the positive dependence of the seed size demonstrate the importance of the surface integration  step in the growth rate model. All the studied variables tend to suggest that the growth rate characteristics  of ammonium perchlorate from aqueous solution commenced in a batch crystallizer are diffusion kinetic controlled process.

  12. Ammonium nickel sulfate hexahydrate crystal: a new ultraviolet light filter

    International Nuclear Information System (INIS)

    Su Genbo; Zhuang Xinxin; He Youping; Li Zhengdong; Wang Guofu

    2002-01-01

    We propounded and grew a new crystal material of ammonium nickel sulfate hexahydrate (ANSH) for an ultraviolet light filter. The crystal structure of ANSH was solved by x-ray diffraction method and the empirical formula of the title compound is (NH 4 ) 2 Ni(SO 4 ) 2 c6H 2 O. The ANSH crystal belongs to the monoclinic space group P2 1 /C, a = 6.2351 A, b = 12.451(3) A, c = 9.1798(18) A, β = 106.88(3)deg , v = 681.9(2) A 3 , z = 2 and D c = 1.924 g cm -3 . The deep-green ANSH single crystal with a dimension of 20.5x28x15 mm 3 has been grown by the cooling solution method. Thermo-gravimetry analysis showed that the dehydration temperature of the ANSH crystal is above 96.06 deg. C, which is much higher than that of commercially available nickel sulfate hexahydrate (NSH) crystals. The optical transmission character of the ANSH crystal is discontinuous in the range from ultraviolet (UV) to near IR wavelengths, and has several transmission peaks at 250 nm, 500 nm, 875 nm and 1425 nm, respectively. The UV transmission peak (250 nm) especially has high transmission efficiency and a narrow spectrum band-width. The relationship between the structure and the optical transmission property is further discussed

  13. Phosphate and ammonium removal from waste water, using constructed wetland systems

    OpenAIRE

    Drizo, Aleksandra

    1998-01-01

    Phosphorus and nitrogen in waste water from sewerage systems contribute to excessive nutrient enrichment of surface waters, presenting a threat to nature conservation, domestic and industrial water supplies, and recreation. The general objective of this research was to investigate phosphate and ammonium removal from waste water by constructed wetland systems (CWS), which are increasingly being used for low-cost water treatment. Phosphate (P) adsorption capacity and other prope...

  14. Increased vulnerability of Zostera noltii to stress caused by low light and elevated ammonium levels under phosphate deficiency

    NARCIS (Netherlands)

    Brun, F.G.; Olivé, I.; Malta, E.J.; Vergara, J.J.; Hernández, I.; Pérez-Lloréns, J.J.

    2008-01-01

    The effects of light and ammonium levels on net production, fluorescence parameters and non-structural carbohydrates of the seagrass Zostera noltii under different phosphate conditions were studied. A fully factorial design was used with light (low/high levels), ammonium supply and phosphate

  15. Synthesis and Characterization of Nickel Phosphate Nanoparticles and VSB-5 with Quaternary Ammonium Base

    Directory of Open Access Journals (Sweden)

    Abdolraouf Samadi–Maybodi

    2011-01-01

    Full Text Available Nickel phosphate VSB-5 (Versailles Santa Barbara-5 was synthesized with microwave for 1 h and followed by conventional oven for 2 days in the presence of (2-hydroxyethyl trimethylammonium hydroxide as template. By addition of ethylene glycol, nickel phosphate nanoparticle was prepared with average size of 55 nm. Also, nickel phosphate nanoparticles was synthesized by microwave assisted hydrothermal using tetrapropylammonium hydroxide as template. The spherical nickel phosphate crystals with average diameter of 80 nm were successfully synthesized in the presence of tetrapropylammonium hydroxide. Furthermore, spherical nanosized crystals were prepared with polyethylene glycol: water volume ratio of 1:1 using (2-hydroxyethyl trimethylammonium hydroxide as template.

  16. Crystallization pathways of sulfate-nitrate-ammonium aerosol particles.

    Science.gov (United States)

    Schlenker, Julie C; Martin, Scot T

    2005-11-10

    Crystallization experiments are conducted for aerosol particles composed of aqueous mixtures of (NH(4))(2)SO(4)(aq) and NH(4)NO(3)(aq), (NH(4))(2)SO(4)(aq) and NH(4)HSO(4)(aq), and NH(4)NO(3)(aq) and NH(4)HSO(4)(aq). Depending on the aqueous composition, crystals of (NH(4))(2)SO(4)(s), (NH(4))(3)H(SO(4))(2)(s), NH(4)HSO(4)(s), NH(4)NO(3)(s), 2NH(4)NO(3) x (NH(4))(2)SO(4)(s), and 3NH(4)NO(3) x (NH(4))(2)SO(4)(s) are formed. Although particles of NH(4)NO(3)(aq) and NH(4)HSO(4)(aq) do not crystallize even at 1% relative humidity, additions of 0.05 mol fraction SO(4)(2-)(aq) or NO(3)(-)(aq) ions promote crystallization, respectively. 2NH(4)NO(3) x (NH(4))(2)SO(4)(s) and (NH(4))(3)H(SO(4))(2)(s) appear to serve as good heterogeneous nuclei for NH(4)NO(3)(s) and NH(4)HSO(4)(s), respectively. 2NH(4)NO(3) x (NH(4))(2)SO(4)(s) crystallizes over a greater range of aqueous compositions than 3NH(4)NO(3) x (NH(4))(2)SO(4)(s). An infrared aerosol spectrum is provided for each solid based upon a linear decomposition analysis of the recorded spectra. Small nonzero residuals occur in the analysis because aerosol spectra depend on particle morphology, which changes slightly across the range of compositions studied. In addition, several of the mixed compositions crystallize with residual aqueous water of up to 5% particle mass. We attribute this water content to enclosed water pockets. The results provide further insights into the nonlinear crystallization pathways of sulfate-nitrate-ammonium aerosol particles.

  17. Occupational exposures in two industrial plants devoted to the production of ammonium phosphate fertilisers

    International Nuclear Information System (INIS)

    Bolívar, J P; Mosqueda, F; Gázquez, M J; López-Coto, I; Vaca, F; García-Tenorio, R; Adame, J A

    2013-01-01

    In order to fill a gap in the open literature, occupational exposures and activity concentrations have been assessed in two NORM industrial plants, located in the south-west of Spain, devoted to the production of mono-ammonium phosphate (MAP) and di-ammonium phosphate (DAP) fertilisers. The annual effective doses received by the workers from these plants are clearly below 1 mSv yr −1 and the contribution due to external radiation is similar to that due to inhalation. The contribution to the maximum effective doses due to inhalation of particulate matter has been estimated to be about 0.12 mSv yr −1 , while the 222 Rn concentrations inside the plants are of no concern. Consequently, no additional actions or radiological protection measures need to be taken to decrease the natural radiation received by the workers in these facilities. (paper)

  18. Synthesis and characterization of the aluminium phosphates modified with ammonium, calcium and molybdenum by hydrothermal method

    Directory of Open Access Journals (Sweden)

    Łuczka Kinga

    2016-06-01

    Full Text Available Synthesis and characterization of the aluminum phosphates modified with ammonium, calcium and molybdenum were conducted. The influence of process parameters (reactive pressure and molar ratios in the reaction mixture were studied. The contents of the individual components in the products were in the range of: 10.97–17.31 wt% Al, 2.65–13.32 wt% Ca, 0.70–3.11 wt% Mo, 4.36–8.38 wt% NH3, and 35.12–50.54 wt% P2O5. The materials obtained in the experiments were characterized by various physicochemical parameters. The absorption oil number was in the range from 67 to 89 of oil/100 g of product, the surface area was within the range of 4–76 m2/g, whereas the average particle size of products reached 282–370 nm. The Tafel tests revealed comparable anticorrosive properties of aluminum phosphates modified with ammonium, calcium, molybdenum in comparison with commercial phosphate.

  19. Synthesis and Exfoliation of Discotic Zirconium Phosphates to Obtain Colloidal Liquid Crystals.

    Science.gov (United States)

    Yu, Yi-Hsien; Wang, Xuezhen; Shinde, Abhijeet; Cheng, Zhengdong

    2016-05-25

    Due to their abundance in natural clay and potential applications in advanced materials, discotic nanoparticles are of interest to scientists and engineers. Growth of such anisotropic nanocrystals through a simple chemical method is a challenging task. In this study, we fabricate discotic nanodisks of zirconium phosphate [Zr(HPO4)2·H2O] as a model material using hydrothermal, reflux and microwave-assisted methods. Growth of crystals is controlled by duration time, temperature, and concentration of reacting species. The novelty of the adopted methods is that discotic crystals of size ranging from hundred nanometers to few micrometers can be obtained while keeping the polydispersity well within control. The layered discotic crystals are converted to monolayers by exfoliation with tetra-(n)-butyl ammonium hydroxide [(C4H9)4NOH, TBAOH]. Exfoliated disks show isotropic and nematic liquid crystal phases. Size and polydispersity of disk suspensions is highly important in deciding their phase behavior.

  20. Thiourea-doped ammonium dihydrogen phosphate: A single crystal ...

    Indian Academy of Sciences (India)

    Figure 1. Picture of ADP molecule. Table 1. Crystallographic and data collection details. Chemical formula: H1.5N0.25OP0.25. Diffractometer: Four circle. Mr: 29.25. Data collection method: θ–2θ scan. Space group: Tetragonal, I-42d. No. of measured, independent & observed reflections: 163, 163, 163. Temperature (K): 300.

  1. Radio phosphorus kinetics in the blood of sheep supplemented with dicalcium phosphate, mono ammonium phosphate, triple superphosphate and Tapira rock phosphate

    International Nuclear Information System (INIS)

    Abdalla, A.L.

    1992-01-01

    With the aim to study the kinetics of radio phosphorus ( 32 P) in the blood of animals supplemented with dicalcium phosphate (BIC), mono ammonium phosphate (MAP), triple superphosphate (SPT) and Tapira rock phosphate (TAP), 32 male sheep were kept in metabolic cages at the Animal Science Section / CENA - USP. Plasma was obtained by centrifugation and the specific activity, rate of disappearance and half life of 32 P in plasma were determined. In the red blood cells were determined the uptake rate of the radioisotope, the rate of disappearance and half life of 32 P up taken. It was observed a statistical significant difference (p 32 P in the plasma and erythrocytes. The specific activity and half life of 32 P in the plasma were statistically different (p<0,10) among sheep receiving the different phosphorus sources; the same was observed in respect to the red blood cells. It was concluded that the supplemented phosphorus source given in the diet of sheep may affect the kinetics of the radio phosphorus in the blood after been intravenously injected. (author)

  2. Immobilisation of radio cesium loaded ammonium molybdo phosphate in glass matrices

    International Nuclear Information System (INIS)

    Yalmali, Vrunda S.; Singh, I.J.; Sathi Sasidharan, N.; Deshingkar, D.S.

    2004-11-01

    Long half life and easy availability from high level wastes make 137 Cesium most economical radiation source. High level liquid waste processing for 137 Cesium removal has become easier due to development of Cesium specific granulated ammonium molybdophosphate (AMP) composite. In such applications, resulting spent composite AMP itself represents high active solid waste and immobilization of these materials in cement may not be acceptable. Studies on immobilization of 137 Cs loaded AMP were taken up in order to achieve twin goals of increasing safety and minimizing processing costs of the final matrix. Studies indicated that phosphate modified sodium borosilicate SPNM glasses prepared under usual oxidizing conditions are not suitable for immobilization of 137 Cs loaded on AMP .Phosphate glasses containing Na 2 O, P 2 O 5 , B 2 O 3 , Fe 2 O 3 , Al 2 O 3 and SiO 2 as major constituents are capable of incorporating 6 to 8 % AMP. The Normalized Leach rates of these glasses for sodium, cesium, boron and silica are 10 -4 to 10 -6 gm/cm 2 /day which are comparable to or better than those reported for NBS glasses incorporating HLW. Homogeneity of the final matrix was confirmed by x-ray diffraction analysis. Further studies on characterization of these glasses would establish their acceptability. (author)

  3. Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium

    Science.gov (United States)

    Cheng, Lei; Weir, Michael D.; Zhang, Ke; Wu, Eric; Xu, Sarah M.; Zhou, Xuedong; Xu, Hockin H. K.

    2012-01-01

    Objectives Half of dental restorations fail in 10 years, with secondary caries as the main reason. Calcium phosphate composites could remineralize tooth lesions. The objectives of this study were to: (1) Impart antibacterial activity to a composite with nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate the effect of quaternary ammonium dimethacrylate (QADM) on mechanical and dental plaque microcosm biofilm properties for the first time. Methods The NACP and glass particles were filled into a dental resin that contained bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, the QADM. NACP nanocomposites containing 0%, 7%, 14%, and 17.5% of QADM by mass, respectively, were photo-cured. A commercial composite with no antibacterial activity was used as control. Mechanical properties were measured in three-point flexure. A human saliva microcosm model was used to grow biofilms on composites. Live/dead assay, metabolic activity, colony-forming unit (CFU) counts, and lactic acid production of biofilms on the composites were measured. Results Increasing QADM mass fraction monotonically reduced the biofilm viability, CFU and lactic acid. Biofilms on NACP nanocomposite with 17.5% QADM had metabolic activity that was 30% that on a commercial composite control (pcontrol was 6-fold those on NACP+17.5% QADM nanocomposite. Composite control had long strings of cells with normal short-rod shapes, while some cells on NACP-QADM nanocomposites disintegrated into pieces. Adding QADM to NACP did not decrease the strength and elastic modulus, which matched (p>0.1) those of a commercial composite without Ca-PO4 or antibacterial activity. Significance A dental plaque microcosm model was used to evaluate the novel NACP-QADM nanocomposite. The nanocomposite greatly reduced the biofilm viability, metabolic activity and lactic acid, while its mechanical properties matched those of a commercial composite. NACP-QADM nanocomposite with calcium phosphate fillers, good

  4. A new crystal modification of diammonium hydrogen phosphate, (NH42(HPO4

    Directory of Open Access Journals (Sweden)

    Bernhard Spingler

    2010-04-01

    Full Text Available The addition of hexafluoridophosphate salts (ammonium, silver, thallium or potassium is usually used to precipitate complex cations from aqueous solutions. It has long been known that PF6− is sensitive towards hydrolysis under acidic conditions [Gebala & Jones (1969. J. Inorg. Nucl. Chem. 31, 771–776; Plakhotnyk et al. (2005. J. Fluorine Chem. 126, 27–31]. During the course of our investigation into coinage metal complexes of diphosphine ligands, we used ammonium hexafluoridophosphate in order to crystallize [Ag(diphosphine2]PF6 complexes. From these solutions we always obtained needle-like crystals which turned out to be the title compound, 2NH4+·HPO42−. It was received as the hydrolysis product of NH4PF6. The crystals are a new modification of diammonium hydrogen phosphate. In contrast to the previously published polymorph [Khan et al. (1972. Acta Cryst. B28, 2065–2069], Z′ of the title compound is 2. In the new modification of the title compound, there are eight molecules of (NH42(HPO4 in the unit cell. The structure consists of PO3OH and NH4 tetrahedra, held together by O—H...O and N—H...O hydrogen bonds.

  5. Study on Mg2+ removal from ammonium dihydrogen phosphate solution by an emulsion liquid membrane

    Directory of Open Access Journals (Sweden)

    Luo JianHong

    2014-01-01

    Full Text Available Mg2+is extracted from ammonium dihydrogen phosphate (NH4H2PO4 solution by an emulsion liquid membrane (ELM using mono-(2-ethylhexyl 2-ethylhexyl phosphonate (HEHPEHEas a carrier, sulfonated liquid polybutadiene (LYF as a surfactant and kerosene as a solvent. To study the extraction efficiency and advantages of the ELM process in the separation of Mg2+,the effects of various operating conditions on the extraction -HEHPEHE volume fraction, reaction temperature, treat ratio (emulsion phase / external phase, phase ratio (membrane phase / internal phase, agitation speed, extraction time, internal phase concentration, surfactant LYF concentration and initial pH of NH4H2PO4 solution are experimentally investigated and discussed. The results show that Mg2+ in NH4H2PO4 solution can be effectively removed by the ELM process. An extraction efficiency of more than 83.1% is attained at the optimized parameters and superior-grade NH4H2PO4can be obtained by two levels of extraction.

  6. Dibasic Ammonium Phosphate Application Enhances Aromatic Compound Concentration in Bog Bilberry Syrup Wine.

    Science.gov (United States)

    Wang, Shao-Yang; Li, Yi-Qing; Li, Teng; Yang, Hang-Yu; Ren, Jie; Zhang, Bo-Lin; Zhu, Bao-Qing

    2016-12-29

    A nitrogen deficiency always causes bog bilberry syrup wine to have a poor sensory feature. This study investigated the effect of nitrogen source addition on volatile compounds during bog bilberry syrup wine fermentation. The syrup was supplemented with 60, 90, 120 or 150 mg/L dibasic ammonium phosphate (DAP) before fermentation. Results showed that an increase of DAP amounts accelerated fermentation rate, increased alcohol content, and decreased sugar level. Total phenol and total flavonoid content were also enhanced with the increase of DAP amounts. A total of 91 volatile compounds were detected in the wine and their concentrations were significantly enhanced with the increase of DAP. Ethyl acetate, isoamyl acetate, phenethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isobutanol, isoamyl alcohol, levo -2,3-butanediol, 2-phenylethanol, meso -2,3-butanediol, isobutyric acid, hexanoic acid, and octanoic acid exhibited a significant increase of their odor activity value (OAV) with the increase of DAP amounts. Bog bilberry syrup wine possessed fruity, fatty, and caramel flavors as its major aroma, whereas a balsamic note was the least present. The increase of DAP amounts significantly improved the global aroma attributes, thereby indicating that DAP supplementation could promote wine fermentation performance and enhance the sensory quality of bog bilberry syrup wine.

  7. Growth features of ammonium hydrogen d-tartrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Most of the tartrate compounds are insoluble in water and decompose before melting. Hence, single crystals of such type cannot be grown either by slow evaporation or by melt technique, but can be grown easily by gel method. Gel method is an alternative method to solution growth with controlled diffusion and the growth ...

  8. Efficiency of Nannochloropsis oculata and Bacillus polymyxa symbiotic composite at ammonium and phosphate removal from synthetic wastewater.

    Science.gov (United States)

    Wang, Sufeng; Liu, Jianxin; Li, Cui; Chung, Brian Michael

    2018-03-01

    Many issues, such as, DO accumulation, N 2 fixation obstacle, and carbon dioxide diffusion, hamper the application of microalgae-alginate immobilization in wastewater treatment. The objective of this study was to evaluate the effect of the microalgae Nannochloropsis oculata immobilized with the bacterium Bacillus polymyxa in alginate on ammonium and phosphate removal from synthetic wastewater. Results show that the co-immobilized Bacillus-Nannochloropsis can exploit ammonium and phosphate from wastewater more effectively than the immobilized Nannochloropsis, and immobilized Bacillus alone. A significantly higher ammonium and phosphate removal efficiency was found in co-immobilized Bacillus-Nannochloropsis (59.85%, 90.44%) than of that in immobilized Nannochloropsis (49.56%, 77.36%), and Bacillus immobilized (31.46%, 29.66%) alone. Additionally, the most effective co-immobilization mixture ratio for wastewater treatment was found to contain equal suspension (10 8 cell/ml) volume of the Nannochloropsis and Bacillus. Nannochloris and Bacillus can coexist harmoniously with the symbiotic and synergistic relationship, and the Nannochloropsis oculata- Bacillus polymyxa combination can be useful as a potential method to develop novel wastewater treatment.

  9. [Chondrocalcinosis. Clinical impact of intra-articular calcium phosphate crystals].

    Science.gov (United States)

    Fuerst, M

    2014-06-01

    Calcium pyrophosphate dihydrate (CPPD) crystals are known to cause acute attacks of pseudogout in joints but crystal deposition has also been reported to be associated with osteoarthritis (OA). Aside from CPPD crystals, basic calcium phosphates (BCPs), consisting of carbonate-substituted hydroxyapatite (HA), tricalcium phosphate and octacalcium phosphate, have been found in synovial fluid, synovium and cartilage of patients with OA. Although CPPD crystals have been found to be associated with OA and are an important factor in joint disease, this has also recently been associated with a genetic defect. However, according to the most recent findings, the association of BCP crystals, such as apatite with OA is much stronger, as their presence significantly correlates with the severity of cartilage degeneration. Identification of BCP crystals in OA joints remains problematic due to a lack of simple and reliable methods of detection. The clinical and pathological relevance of cartilage mineralization in patients with OA is not completely understood. It is well established that mineralization of articular cartilage is often found close to hypertrophic chondrocytes. A significant correlation between the expression of type X collagen, a marker for chondrocyte hypertrophy and cartilage mineralization was observed. In the process of endochondral ossification, the link between hypertrophy and matrix mineralization is particularly well described. Hypertrophic chondrocytes in OA cartilage and at the growth line share certain features, not only hypertrophy but also a capability to mineralize the matrix. Recent data indicate that chondrocyte hypertrophy is a key factor in articular cartilage mineralization strongly linked to OA and does not characterize a specific subset of OA patients, which has important consequences for therapeutic strategies for OA.

  10. Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process.

    Science.gov (United States)

    Hutnik, Nina; Kozik, Anna; Mazienczuk, Agata; Piotrowski, Krzysztof; Wierzbowska, Boguslawa; Matynia, Andrzej

    2013-07-01

    Continuous DT MSMPR (Draft Tube Mixed Suspension Mixed Product Removal) crystallizer was provided with typical wastewater from phosphorus mineral fertilizers industry (pH < 4, 0.445 mass % of PO4(3-), inorganic impurities presence), dissolved substrates (magnesium and ammonium chlorides) and solution alkalising the environment of struvite MgNH4PO4·6H2O reaction crystallization process. Research ran in constant temperature 298 K assuming stoichiometric proportions of substrates or 20% excess of magnesium ions. Influence of pH (8.5-10) and mean residence time (900-3600 s) on product size distribution, its chemical composition, crystals shape, size-homogeneity and process kinetics was identified. Crystals of mean size ca. 25-37 μm and homogeneity CV 70-83% were produced. The largest crystals, of acceptable homogeneity, were produced using 20% excess of magnesium ions, pH 9 and mean residence time 3600 s. Under these conditions nucleation rate did not exceed 9 × 10(7) 1/(s m(3)) according to SIG (Size Independent Growth) MSMPR kinetic model. Linear crystal growth rate was 4.27 × 10(-9) m/s. Excess of magnesium ions influenced struvite reaction crystallization process yield advantageously. Concentration of phosphate(V) ions decreased from 0.445 to 9.2 × 10(-4) mass %. This can be regarded as a very good process result. In product crystals, besides main component - struvite, all impurities from wastewater were detected analytically. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    Science.gov (United States)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  12. Fate of arsenic, phosphate and ammonium plumes in a coastal aquifer affected by saltwater intrusion.

    Science.gov (United States)

    Colombani, N; Mastrocicco, M; Prommer, H; Sbarbati, C; Petitta, M

    2015-08-01

    A severe groundwater contamination with extensive plumes of arsenic, phosphate and ammonium was found in a coastal aquifer beneath a former fertilizer production plant. The implementation of an active groundwater remediation strategy, based on a comprehensive pump and treat scheme, now prevents the migration of the dissolved contaminants into the marine environment. However, due to the site's proximity to the coastline, a seawater wedge was induced by the pumping scheme. Additionally the groundwater flow and salinity patterns were also strongly affected by leakage from the site's sewer system and from a seawater-fed cooling canal. The objective of this study was to elucidate the fate of arsenic and its co-contaminants over the site's history under the complex, coupled hydrodynamic and geochemical conditions that prevail at the site. A detailed geochemical characterisation of samples from sediment cores and hydrochemical data provided valuable high-resolution information. The obtained data were used to develop various conceptual models and to constrain the development and calibration of a reactive transport model. The reactive transport simulations were performed for a sub-domain (two-dimensional transect) of an earlier developed three-dimensional flow and variable density solute transport model. The results suggest that in the upper sub-oxic zone the influx of oxygenated water promoted As attenuation via co-precipitation with Al and Fe oxides and copper hydroxides. In contrast, in the deeper aquifer zone, iron reduction, associated with the release of adsorbed As and the dissolution of As bearing phases, provided and still provides to date a persistent source for groundwater pollution. The presented monitoring and modelling approach could be broadly applied to coastal polluted sites by complex contaminant mixture containing As. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Characterization of polyacrylic acid modified zinc phosphate crystal conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wragg, J.L.; Chamberlain, J.E.; Chann, L.; White, H.W. (Univ. of Missouri, Columbia, MO (United States). Dept. of Physics and Astronomy); Sugama, T. (Brookhaven National Lab., Upton, NY (United States). Energy Efficiency and Conservation Div.); Manalis, S. (Digital Instruments, Inc., Santa Barbara, CA (United States))

    1993-11-05

    Raman spectroscopy and atomic force microscopy have been used to investigate the composition and surface structure of polyacrylic acid modified zinc phosphate crystal conversion coatings on steel. Zinc phosphate coatings are used extensively to provide corrosion protection and to improve adherence of top coatings to steel. Within the last few years it has been demonstrated that addition of high molecular weight polyacrylic acid (PAA) to the phosphating bath can significantly improve both resistance to corrosion and topcoat adherence. It has been reported that the addition of PAA reduces the size of crystallites, which leads to greater film ductility, and therefore to fewer sites for corrosive attack, and that organic molecular segments from the PAA are incorporated into the surface structure and provide additional adhesive bonding with polymeric topcoats. In this work Raman spectra show the compositions of both unmodified and PAA modified films to be zinc phosphate dihydrate, Zn[sub 3](PO[sub 4])[sub 2] [times] 2H[sub 2]O. Atomic force microscopy (AFM) was used to measure the morphologies of single crystallite surfaces. Morphologies of the unmodified and modified films obtained by AFM are in general quite similar, but subtle differences are apparent.

  14. Changes of pH during biomacromolecule crystallization by vapor diffusion using ammonium sulfate as the precipitant

    International Nuclear Information System (INIS)

    Mikol, V.; Giege, R.; Rodeau, J.L.

    1989-01-01

    Possible pH variations during crystallization of biological macromolecules by the vapor diffusion method have not been taken into account in most experiments so far reported. The present study demonstrates that when ammonium sulfate is used as the precipitant, pH changes occur due to ammonia transfer following ammonium/ammonia equilibrium. The pH in a crystallization droplet is shown to be controlled by that of the reservoir. The theory of the effect is given and the consequences of pH variations during crystallization are discussed in terms of reproducibility of experiments. An application, the crystallization of concanavalin A induced by pH variation, is presented. (orig.)

  15. Mechanism of calcium phosphates precipitation in liquid crystals

    International Nuclear Information System (INIS)

    Prelot, B.; Zemb, T.

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m 2 /g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  16. Phosphate limitation in biological rapid sand filters used to remove ammonium from drinking water

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    2013-01-01

    Removing ammonium from drinking water is important for maintaining biological stability in distribution systems. This is especially important in regions that do not use disinfectants in the treatment process or keep a disinfectant residual in the distribution system. Problems with nitrification can...... the total number of ammonium oxidizing bacteria in the column. © 2013 American Water Works Association AWWA WQTC Conference Proceedings All Rights Reserved....

  17. Biomineralization of calcium phosphate crystals on chitin nanofiber hydrogel for bone regeneration material.

    Science.gov (United States)

    Kawata, Mari; Azuma, Kazuo; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2016-01-20

    We previously reported a chitin nanofiber hydrogel from squid pen β-chitin by a simple NaOH treatment. In the present study, a calcium phosphate/chitin nanofiber hydrogel was prepared for bone tissue engineering. Calcium phosphate was mineralized on the hydrogel by incubation in a solution of diammonium hydrogen phosphate solution followed by calcium nitrate tetrahydrate. X-ray diffractometry and Fourier transform infrared spectroscopy showed the formation of calcium phosphate crystals. The morphology of the calcium phosphate crystals changed depending on the calcification time. After mineralization, the mechanical properties of the hydrogel improved due to the reinforcement effect of calcium phosphate crystal. In an animal experiment, calcium phosphate/chitin nanofiber hydrogel accelerated mineralization in subcutaneous tissues. Morphological osteoblasts were observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Crystallization Behavior of Phosphate Glasses with Hydrophobic Coating Materials

    Directory of Open Access Journals (Sweden)

    Jaeyeop Chung

    2015-01-01

    Full Text Available We analyzed the effect of the addition of Li2O3, TiO2, and Fe2O3 on the crystallization behavior of P2O5–CaO–SiO2–K2O glasses and the effect of the crystallization behavior on the roughness and hydrophobicity of the coated surface. Exothermic behavior, including a strong exothermic peak in the 833–972 K temperature range when Fe2O3, TiO2, or Li2O3 was added, was confirmed by differential thermal analysis. The modified glass samples (PFTL1–3 showed diffraction peaks when heated at 1073 and 1123 K for 5 min; the crystallized phase corresponds to Fe3(PO42, that is, graftonite. We confirmed that the intensity of the diffraction peaks increases at high temperatures and with increasing Li2O3 content. In the case of the PFTL3 glass, a Li3Fe2(PO42 phase, that is, trilithium diiron(III tris[phosphate(V], was observed. Through scanning electron microscopy and the contact angles of the surfaces with water, we confirmed that the increase in surface roughness, correlated to the crystallization of the glass frit, increases hydrophobicity of the surface. The calculated values of the local activation energies for the growth of Fe3(PO42 on the PTFL1, PTFL2, and PFTL3 glass were 237–292 kJ mol−1, 182–258 kJ mol−1, and 180–235 kJ mol−1.

  19. Photoacoustic characterization of transient defects in potassium dihydrogen phosphate crystals

    International Nuclear Information System (INIS)

    Martinez Matos, O.; Torchia, G.A.; Tocho, J.O.; Bilmes, G.M.

    2004-01-01

    Transient defects in potassium dihydrogen phosphate (KDP) were characterized by using the acoustic signals generated in the crystal when it is impinged with pulsed laser radiation. These defects are produced by simultaneous absorption of two λ=266 nm photons and they show linear absorption in the visible and UV spectral region. The decay kinetics of the defects has been studied by a new method based on the analysis of the acoustic signal generated by visible pulses. The acoustic measurement of the decay time shows a nonexponential decay and it is free from thermal lensing or beam deformation by other causes, effects that can alter the pure optical measurements. We propose that the origin of the photoacoustic signal is the heat released by the deexcitation of the energy levels of the defects when they are excited by visible pulses. This mechanism, optical absorption and nonradiative relaxation of defects, could be the reason for some depletion in the yield of several devices based on KDP. This phenomena must be carefully taken in account, when KDP crystals are used in combination with Nd:YAG (YAG, yttrium aluminum garnet) lasers for second-harmonic generation from λ=532 nm to λ=266 nm

  20. Effects of Ammonium Phosphate on Structure of Cell and Carb on Layer after Burned of Polyurethane-imide Foams

    Directory of Open Access Journals (Sweden)

    ZHANG Qi

    2017-06-01

    Full Text Available Using ammonium phosphate as flame retardant,polyurethane-imide foams were synthesized via PI pre-polymer method. The effect of APP on the cell structure, thermal stability and carbon layer morphology were analyzed by polarizing microscope,SEM and TGA. The effect of cell structure change on carbon layer morphology was focused and discussed and the formation process of carbon layer was simulated. The results show that cell diameter drops sharply from 690.25μm to 277.83μm, the foam density increases with the increasing addition of APP;the addition of APP makes char yield increased by 30%; the cell wall and peak respectively expand into rod-like and spherical carbon layer, but the cell films burn into holes. Furthermore, the sizes of rod-like and spherical carbon layer increase, but the holes decrease with the increasing addition of APP.

  1. Crystal structure of hydrazine iron(III phosphate, the first transition metal phosphate containing hydrazine

    Directory of Open Access Journals (Sweden)

    Renald David

    2015-12-01

    Full Text Available The title compound, poly[(μ2-hydrazine(μ4-phosphatoiron(III], [Fe(PO4(N2H4]n, was prepared under hydrothermal conditions. Its asymmetric unit contains one FeIII atom located on an inversion centre, one P atom located on a twofold rotation axis, and two O, one N and two H atoms located on general positions. The FeIII atom is bound to four O atoms of symmetry-related PO4 tetrahedra and to two N atoms of two symmetry-related hydrazine ligands, resulting in a slightly distorted FeO4N2 octahedron. The crystal structure consists of a three-dimensional hydrazine/iron phoshate framework whereby each PO4 tetrahedron bridges four FeIII atoms and each hydrazine ligand bridges two FeIII atoms. The H atoms of the hydrazine ligands are also involved in moderate N—H...O hydrogen bonding with phosphate O atoms. The crystal structure is isotypic with the sulfates [Co(SO4(N2H4] and [Mn(SO4(N2H4].

  2. Effect of processing parameters of rotary ultrasonic machining on surface integrity of potassium dihydrogen phosphate crystals

    Directory of Open Access Journals (Sweden)

    Jianfu Zhang

    2015-09-01

    Full Text Available Potassium dihydrogen phosphate is an important optical crystal. However, high-precision processing of large potassium dihydrogen phosphate crystal workpieces is difficult. In this article, surface roughness and subsurface damage characteristics of a (001 potassium dihydrogen phosphate crystal surface produced by traditional and rotary ultrasonic machining are studied. The influence of process parameters, including spindle speed, feed speed, type and size of sintered diamond wheel, ultrasonic power, and selection of cutting fluid on potassium dihydrogen phosphate crystal surface integrity, was analyzed. The surface integrity, especially the subsurface damage depth, was affected significantly by the ultrasonic power. Metal-sintered diamond tools with high granularity were most suitable for machining potassium dihydrogen phosphate crystal. Cutting fluid played a key role in potassium dihydrogen phosphate crystal machining. A more precise surface can be obtained in machining with a higher spindle speed, lower feed speed, and using kerosene as cutting fluid. Based on the provided optimized process parameters for machining potassium dihydrogen phosphate crystal, a processed surface quality with Ra value of 33 nm and subsurface damage depth value of 6.38 μm was achieved.

  3. Separation of radio cesium from PUREX feed solution by sorption on composite ammonium molybdo phosphate (AMP)

    International Nuclear Information System (INIS)

    Singh, I.J.; Achuthan, P.V.; Jain, S.; Janardanan, C.; Gopalakrishnan, V.; Wattal, P.K.; Ramanujam, A.

    2001-01-01

    Composite AMP exchanger was developed and evaluated for separation of radio cesium from dissolver solutions of PUREX process using a column experiment. The composite shows excellent sorption of radio cesium from dissolver solutions without any loss of plutonium and uranium. The removal of radio cesium from dissolver solutions will help in lowering the degradation of tri-n-butyl phosphate (TBP) in the solvent extraction process and will also help in reducing the radiation related problems. (author)

  4. High temperature oxidation and crystallization behavior of phosphate glass compositions

    International Nuclear Information System (INIS)

    Russo, Diego; Rodriguez, Diego; Grumbaum, N.; Gonzalez Oliver, Carlos

    2003-01-01

    We analyzed the thermal transformation of three iron phosphate glasses having the following nominal compositions: M4 [70% P 2 O 5 , 30% Fe 2 O 3 ], M5 [85% M4, 15% UO 2 ] y M7 [69.7% P 2 O 5 , 28.6% Fe 2 O 3 , 1,7% Al 2 O 3 ]. Thermogravimetric analysis, DTA (differential thermal analysis) and SAXS (Small Angle X-ray Scattering) were performed.It was observed that it is easily possible to produce glasses in these systems having very low crystallinity.We could determine the final stable crystalline phases [Fe 4 (P 2 O 7 ) 3 , Fe(PO 3 ) 3 and Fe 3 (P 2 O 7 ) 2 ].The presence of uranium ions affects not only the redox effects but also the crystallization of the system.SAXS data obtained during the heating in vacuum up to ∼600degC, gave some variation of scattering intensities vs. scattering vector suggesting the development of an extra phase or some kind inhomogeneities that seems to disappear on heating

  5. Ammonium iron(III phosphate(V fluoride, (NH40.5[(NH40.375K0.125]FePO4F, with ammonium partially substituted by potassium

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2009-01-01

    Full Text Available The title compound, ammonium potassium iron(III phosphate fluoride, (NH40.875K0.125FePO4F, is built from zigzag chains ∞1{[FeO4F2]7−}, with Fe3+ in a distorted octahedral coordination, extending along both the [011] and [0overline{1}1] directions. These chains are made up of alternating trans-[FeO4F2] and cis-[FeO4F2] octahedra via shared F-atom corners, and are linked by PO4 tetrahedra, resulting in an open-framework structure with channels along the [010] and [100] directions. There are two crystallographically independent ammonium sites: one in the [010] channels and the other, partially substituted by K+ ions, in the [100] channels. The ammonium in the [010] channels is fixed to the framework via eight hydrogen bonds (six N—H...O and two N—H...F.

  6. Crystallization and preliminary X-ray diffraction analysis of human phosphate-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Martel, Carlos; Carpentier, Philippe; Morales, Renaud [Laboratoire de Cristallogenèse et Cristallographie des Protéines, Institut de Biologie Structurale J.-P. Ebel, 38027 Grenoble (France); Renault, Frédérique [Unité d’Enzymologie, Département de Toxicologie, Centre de Recherches du Service de Santé des Armées, 38702 La Tronche (France); Chesne-Seck, Marie-Laure [Laboratoire de Cristallographie Macromoléculaire, Institut de Biologie Structurale J.-P. Ebel, 38027 Grenoble (France); Rochu, Daniel; Masson, Patrick [Unité d’Enzymologie, Département de Toxicologie, Centre de Recherches du Service de Santé des Armées, 38702 La Tronche (France); Fontecilla-Camps, Juan Carlos [Laboratoire de Cristallogenèse et Cristallographie des Protéines, Institut de Biologie Structurale J.-P. Ebel, 38027 Grenoble (France); Chabrière, Eric, E-mail: eric.chabriere@lcm3b.uhp-nancy.fr [Unité d’Enzymologie, Département de Toxicologie, Centre de Recherches du Service de Santé des Armées, 38702 La Tronche (France); Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques, CNRS-Université Henri Poincaré, 54506 Vandoeuvre-lès-Nancy (France); Laboratoire de Cristallogenèse et Cristallographie des Protéines, Institut de Biologie Structurale J.-P. Ebel, 38027 Grenoble (France)

    2006-01-01

    The purification, detergent-exchange protocol and crystallization conditions that led to the discovery of HPBP are reported. HPBP is a new human apoprotein that is absent from the genomic database and is the first phosphate transporter characterized in human plasma. Human phosphate-binding protein (HPBP) was serendipitously discovered by crystallization and X-ray crystallography. HPBP belongs to a eukaryotic protein family named DING that is systematically absent from the genomic database. This apoprotein of 38 kDa copurifies with the HDL-associated apoprotein paraoxonase (PON1) and binds inorganic phosphate. HPBP is the first identified transporter capable of binding phosphate ions in human plasma. Thus, it may be regarded as a predictor of phosphate-related diseases such as atherosclerosis. In addition, HPBP may be a potential therapeutic protein for the treatment of such diseases. Here, the purification, detergent-exchange protocol and crystallization conditions that led to the discovery of HPBP are reported.

  7. Impact of orchard and tillage management practices on soil leaching of atrazine, potassium, magnesium, manganese, iron, ammonium, nitrates and phosphates

    Science.gov (United States)

    Szajdak, L.; Lipiec, J.; Siczek, A.; Kotowska, U.; Nosalewicz, A.

    2009-04-01

    The experiments were carried out on an Orthic Luvisol developed from loess, over limestone, at the experimental field of Lublin Agricultural University in Felin (51o15'N, 22o35'E), Poland. The investigation deals with the problems of leaching's rate of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,2,3-triazine), potassium, magnesium, manganese, iron, ammonium, nitrates and phosphates from two management systems of soil: (i) conventionally tilled field with main tillage operations including stubble cultivator (10 cm) + harrowing followed by mouldboard ploughing to 20 cm depth, and crop rotation including selected cereals, root crops and papillionaceous crops, (ii) 35-year-old apple orchard field (100x200m) with a permanent sward that was mown in the inter-rows during the growing season. The conventionally tilled plot was under the current management practice for approximately 30 years. Field sites were close to each other (about 150 m). Core samples of 100 cm3 volume and 5 cm diameter were taken from two depths 0-10 cm and 10-20 cm, and were used to determine the soil water characteristic curve. It was observed that management practices impacted on the physic-chemical properties of soils. pH (in H2O) in tilled soil ranged from 5.80 to 5.91. However soil of orchard soil revealed higher values of pH than tilled soil and ranged from 6.36 to 6.40. The content of organic carbon for tilled soil ranged from 1.13 to 1.17%, but in orchard soil from 1.59 to 1.77%. Tillled soil showed broader range of bulk density 1.38-1.62 mg m-3, than orchard soil 1.33-134 mg m-3. The first-order kinetic reaction model was fitted to the experimental atrazine, potassium, magnesium, manganese, iron, nitrates, ammonium and phosphates leaching vs. time data. The concentrations of leached chemical compounds revealed linear curves. The correlation coefficients ranged from -0.873 to -0.993. The first-order reaction constants measured for the orchard soils were from 3.8 to 19 times higher than

  8. Enhanced proton conductivity of niobium phosphates by interfacing crystal grains with an amorphous functional phase

    DEFF Research Database (Denmark)

    Huang, Yunjie; Yu, Lele; Li, Haiyan

    2016-01-01

    Niobium phosphate is an interesting proton conductor operational in the intermediate temperature range. In the present work two forms of phosphates were prepared: an amorphous one with high specific area and a crystalline one with low specific surface area. Both phosphates exhibited very low prot...... the high surface area amorphous phosphate was used as the precursor. At 250 °C thus obtained niobium phosphate showed a high and stable conductivity of 0.03 S cm−1 under dry atmosphere and of 0.06 S cm−1 at a water partial pressure of 0.12 atm....... conductivities. An activation process was developed to convert the phosphates into crystal grains with a phosphorus rich amorphous phase along the grain boundaries. As a result, the obtained niobium phosphates showed considerably enhanced and stable proton conductivities. The activation effect was prominent when...

  9. Flame retardancy of polyamide 6 hybrid fibers: Combined effects of α-zirconium phosphate and ammonium sulfamate

    Directory of Open Access Journals (Sweden)

    Hengxue Xiang

    2017-06-01

    Full Text Available Synergistic effect between α-zirconium phosphate (α-ZrP and ammonium sulfamate (AS for enhanced flame retardant properties of Polyamide 6 (PA6 was investigated by using oxygen index instrument, cone calorimeter, thermogravimetric analyzer (TGA, Instron universal test machine and scanning electron microscopy (SEM. PA6/AS/α-ZrP ternary hybrid materials with various contents of α-ZrP and AS were fabricated by melt-mixing method. The result from flammability indicated that the Limiting oxygen index (LOI and Underwriters Laboratories-94 (UL-94 rating of PA6/AS/α-ZrP were significantly accelerated under the coordinating function of α-ZrP and AS. Moreover, the thermal stability for PA6/AS/α-ZrP studied by TGA also demonstrated this synergistic effect between α-ZrP and AS on the heat resistance. The effects of the usage amount of α-ZrP and AS on mechanical properties were analyzed by using uniaxial tensile test. It was found that the addition of AS provided negative effects on the tensile strength of PA6/AS/α-ZrP, however, the adverse trends that mentioned above could be overcome by using the well dispersed α-ZrP.

  10. Effect of Pyrite on Thiosulfate Leaching of Gold and the Role of Ammonium Alcohol Polyvinyl Phosphate (AAPP

    Directory of Open Access Journals (Sweden)

    Xiaoliang Liu

    2017-07-01

    Full Text Available The effect of pyrite and the role of ammonium alcohol polyvinyl phosphate (AAPP during gold leaching in ammoniacal thiosulfate solutions were investigated using pure gold foils. The results showed that pyrite catalyzed the decomposition and also significantly increased the consumption of thiosulfate. This detrimental effect became more severe with increasing pyrite content. Further, the presence of pyrite also substantially slowed the gold leaching kinetics and reduced the overall gold dissolution. The reduction in gold dissolution was found to be caused primarily by the surface passivation of the gold. The negative effects of pyrite, however, can be alleviated by the addition of AAPP. Comparison of zeta potentials of pyrite with and without AAPP suggests that AAPP had adsorbed on the surface of the pyrite and weakened the catalytic effect of pyrite on the thiosulfate decomposition by blocking the contact between the pyrite and thiosulfate anions. AAPP also competed with thiosulfate anions to complex with the cupric ion at the axial coordinate sites, and thus abated the oxidation of thiosulfate by cupric ions. Moreover, the indiscriminate adsorption of AAPP on the surfaces of gold and passivation species prevented the passivation of the gold surface by surface charge and electrostatic repulsion. Therefore, AAPP effectively stabilized the thiosulfate in the solution and facilitated the gold leaching in the presence of pyrite.

  11. True absorption of phosphorus from di calcium phosphate, mono ammonium phosphate, triple superphosphate and urea-phosphate in bovine by the radio phosphorus dilution technique

    International Nuclear Information System (INIS)

    Silva Filho, J.C. da.

    1990-01-01

    With the aim to study the utilization of alternative sources of phosphorus by ruminants. Twenty four males steers, with 250 Kg live weight and 18 months of age, were allocated in four groups of six animals each. The animals were housed in individual pens and received a diet containing chopped hay, corn and soybean meal, urea and mineral mixtures. The phosphate sources were added to supply 10 g of phosphorus per animal daily. The animals were injected intravenously and individually with 37 MBq of P-32 (N A 2 H P O 4 ) at the 20 th day of the experimental trial into the jugular vein. Blood and faces were collected and sampled at 24 hours intervals, for 8 days. Based on the specific activities in plasma and faces, the fecal endogenous loss and true phosphorus absorption were determined. (author)

  12. Effect of defects induced by doping and fast neutron irradiation on the thermal properties of lithium ammonium sulphate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kandil, S.H.; Ramadan, T.A.; Darwish, M.M. (Alexandria Univ. (Egypt). Dept. of Materials Science); Kassem, M.E.; El-Khatib, A.M. (Alexandria Univ. (Egypt). Dept. of Physics)

    1994-05-01

    Structural defects were introduced in lithium ammonium sulphate crystals (LAS) either in the process of crystal growth (in the form of foreign ions) or by neutron irradiation. The effect of such defects on the thermal properties of LAS crystals was studied in the temperature range 300-500 K. It was assumed that the doped LAS crystals are composed of a two-phase system having different thermal parameters in each phase. The specific heat at constant pressure, C[sub p], of irradiated samples was found to decrease with increasing irradiation doses. The thermal expansion of LAS crystals was found to be dependent on neutron irradiation, and was attributed to two processes: the release of new species and the trapping process. (author).

  13. Radical distributions in ammonium tartrate single crystals exposed to photon and neutron beams

    International Nuclear Information System (INIS)

    Marrale, M.; Longo, A.; Brai, M.; Barbon, A.; Brustolon, M.

    2014-01-01

    The radiation therapy carried out by means of heavy charged particles (such as carbon ions) and neutrons is rapidly becoming widespread worldwide. The success of these radiation therapies relies on the high density of energy released by these particles or by secondary particles produced after primary interaction with matter. The biological damages produced by ionising radiations in tissues and cells depend more properly on the energy released per unit pathlength, which is the linear energy transfer and which determines the radiation quality. To improve the therapy effectiveness, it is necessary to grasp the mechanisms of free radical production and distribution after irradiation with these particles when compared with the photon beams. In this work some preliminary results on the analysis of the spatial distributions of the free radicals produced after exposure of ammonium tartrate crystals to various radiation beams ( 60 Co gamma photons and thermal neutrons) were reported. Electron spin resonance analyses were performed by the electron spin echo technique, which allows the determination of local spin concentrations and by double electron-electron resonance technique, which is able to measure the spatial distance distribution (range 1.5-8 nm) among pairs of radicals in solids. The results of these analyses are discussed on the basis of the different distributions of free radicals produced by the two different radiation beams used. This paper extends to the single crystal case, a similar work done on AT powder irradiated with different beams, with assessment of microscopic radical concentration by determining the amount of ID contribution and obtaining the inter-radical distance distributions by double microwave irradiation. In this paper single crystals of AT have been exposed to 60 Co photons and neutrons. The results confirm that advanced pulse EPR techniques allow the direct measurement of the local free radical concentration and provide information about the

  14. Crystal growth, structural and thermal studies of amino acids admixtured L-arginine phosphate monohydrate single crystals

    Science.gov (United States)

    Anandan, P.; Saravanan, T.; Parthipan, G.; Kumar, R. Mohan; Bhagavannarayana, G.; Ravi, G.; Jayavel, R.

    2011-05-01

    To study the improved characteristics of L-arginine phosphate monohydrate (LAP) crystals, amino acids mixed LAP crystals have been grown by slow cooling method. Amino acids like glycine, L-alanine, and L-valine have been selected for doping. Optical quality bulk crystals have been harvested after a typical growth period of about twenty days. The effect of amino acids in the crystal lattice and molecular vibrational frequencies of various functional groups in the crystals have been studied using X-ray powder diffraction and Fourier Transform infrared (FTIR) analyses respectively. Thermal behavior of the amino acids mixed LAP crystals have been studied from the TG and DTG analyses. High-resolution X-ray diffraction studies have been carried out to find the crystalline nature. Optical transmission studies have been carried out by UV-vis spectrophotometer. The cut off wavelength is below 240 nm for the grown crystals.

  15. Mucins and calcium phosphate precipitates additively stimulate cholesterol crystallization

    NARCIS (Netherlands)

    van den Berg, A. A.; van Buul, J. D.; Tytgat, G. N.; Groen, A. K.; Ostrow, J. D.

    1998-01-01

    Human biliary mucin and calcium binding protein (CBP) influence formation of both calcium salt precipitates and cholesterol crystals and colocalize in the center of cholesterol gallstones. We investigated how physiological concentrations of these proteins regulate cholesterol crystallization in

  16. Synthesis of some calcium phosphate crystals using the useful biomass for immobilization of microorganisms

    Science.gov (United States)

    Kohiruimaki, T.

    2011-10-01

    Three sources of biomass generated by primary industry were used as the raw material for the synthesis of calcium phosphate crystals. Phosphoric acid was extracted from burned rice chaff using a 30% nitric acid solution, while scallop shells and gypsum of plasterboard were used as calcium sources. The calcium phosphate crystals were synthesized by a method involving homogeneous precipitation, and the relationship between the composition and shape of the crystals and the pH at the time of the precipitation was investigated. Monetite crystals in a petal form with a diameter ranging from 0.1 to 2 μm were precipitated at pH 2.0, while granular apatite crystals with a mean diameter of 1 μm were precipitated at pH 6.0. We also investigated the ability of the synthesized calcium phosphate crystals to immobilize lactic acid bacteria for practical use in industrial bioreactor. It was determined that monetite crystals with a diameter of 2 μm had the highest ability to fix lactic acid bacteria. The population of lactic acid bacteria was estimated to exceed 1,300 bacteria per crystal surface of 50 μm2 suggesting that these crystals may be of practical use in industrial fermenters.

  17. Synthesis of some calcium phosphate crystals using the useful biomass for immobilization of microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Kohiruimaki, T, E-mail: kohi@hi-tech.ac.jp [Department of Technology, Hachinohe Institute of Technology, 88-1 Myo-oobiraki, Hachinohe-shi 031-8501 (Japan)

    2011-10-29

    Three sources of biomass generated by primary industry were used as the raw material for the synthesis of calcium phosphate crystals. Phosphoric acid was extracted from burned rice chaff using a 30% nitric acid solution, while scallop shells and gypsum of plasterboard were used as calcium sources. The calcium phosphate crystals were synthesized by a method involving homogeneous precipitation, and the relationship between the composition and shape of the crystals and the pH at the time of the precipitation was investigated. Monetite crystals in a petal form with a diameter ranging from 0.1 to 2 {mu}m were precipitated at pH 2.0, while granular apatite crystals with a mean diameter of 1 {mu}m were precipitated at pH 6.0. We also investigated the ability of the synthesized calcium phosphate crystals to immobilize lactic acid bacteria for practical use in industrial bioreactor. It was determined that monetite crystals with a diameter of 2 {mu}m had the highest ability to fix lactic acid bacteria. The population of lactic acid bacteria was estimated to exceed 1,300 bacteria per crystal surface of 50 {mu}m{sup 2} suggesting that these crystals may be of practical use in industrial fermenters.

  18. Synthesis of some calcium phosphate crystals using the useful biomass for immobilization of microorganisms

    International Nuclear Information System (INIS)

    Kohiruimaki, T

    2011-01-01

    Three sources of biomass generated by primary industry were used as the raw material for the synthesis of calcium phosphate crystals. Phosphoric acid was extracted from burned rice chaff using a 30% nitric acid solution, while scallop shells and gypsum of plasterboard were used as calcium sources. The calcium phosphate crystals were synthesized by a method involving homogeneous precipitation, and the relationship between the composition and shape of the crystals and the pH at the time of the precipitation was investigated. Monetite crystals in a petal form with a diameter ranging from 0.1 to 2 μm were precipitated at pH 2.0, while granular apatite crystals with a mean diameter of 1 μm were precipitated at pH 6.0. We also investigated the ability of the synthesized calcium phosphate crystals to immobilize lactic acid bacteria for practical use in industrial bioreactor. It was determined that monetite crystals with a diameter of 2 μm had the highest ability to fix lactic acid bacteria. The population of lactic acid bacteria was estimated to exceed 1,300 bacteria per crystal surface of 50 μm 2 suggesting that these crystals may be of practical use in industrial fermenters.

  19. Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite

    Science.gov (United States)

    Zhang, Ke; Cheng, Lei; Weir, Michael D; Bai, Yu-Xing; Xu, Hockin HK

    2016-01-01

    Composites containing nanoparticles of amorphous calcium phosphate (NACP) remineralize tooth lesions and inhibit caries. A recent study synthesized quaternary ammonium methacrylates (QAMs) with chain lengths (CLs) of 3–18 and determined their effects on a bonding agent. This study aimed to incorporate these QAMs into NACP nanocomposites for the first time to simultaneously endow the material with antibacterial and remineralizing capabilities and to investigate the effects of the CL on the mechanical and biofilm properties. Five QAMs were synthesized: DMAPM (CL3), DMAHM (CL6), DMADDM (CL12), DMAHDM (CL16), and DMAODM (CL18). Each QAM was incorporated into a composite containing 20% NACP and 50% glass fillers. A dental plaque microcosm biofilm model was used to evaluate the antibacterial activity. The flexural strength and elastic modulus of nanocomposites with QAMs matched those of a commercial control composite (n = 6; P > 0.1). Increasing the CL from 3 to 16 greatly enhanced the antibacterial activity of the NACP nanocomposite (P control composite. The NACP nanocomposite with a CL of 16 produced 2-log decreases in the colony-forming units (CFU) of total microorganisms, total streptococci, and mutans streptococci. In conclusion, QAMs with CLs of 3–18 were synthesized and incorporated into an NACP nanocomposite for the first time to simultaneously endow the material with antibacterial and remineralization capabilities. Increasing the CL reduced the metabolic activity and acid production of biofilms and caused a 2-log decrease in CFU without compromising the mechanical properties. Nanocomposites exhibiting strong anti-biofilm activity, remineralization effects, and mechanical properties are promising materials for tooth restorations that inhibit caries. PMID:27025265

  20. Molecular mechanism of crystallization impacting calcium phosphate cements

    Energy Technology Data Exchange (ETDEWEB)

    Giocondi, J L; El-Dasher, B S; Nancollas, G H; Orme, C A

    2009-05-31

    In summary, SPM data has shown that (1) Mg inhibits growth on all steps but relatively high Mg/Ca ratios are needed. Extracting the mechanism of interaction requires more modeling of the kinetic data, but step morphology is consistent with incorporation. (2) Citrate has several effects depending on the citrate/Ca ratio. At the lowest concentrations, citrate increases the step free energy without altering the step kinetics; at higher concentrations, the polar step is slowed. (3) Oxalate also slows the polar step but additionally stabilizes a new facet, with a [100]{sub Cc} step. (4) Etidronate has the greatest kinetic impact of the molecules studied. At 7{micro}M concentrations, the polar step slows by 60% and a new polar step appears. However, at the same time the [10-1]{sub Cc} increases by 67%. It should be noted that all of these molecules complex calcium and can effect kinetics by altering the solution supersaturation or the Ca to HPO{sub 4}{sup 2-} ratio. For the SPM data shown, this effect was corrected for to distinguish the effect of the molecule at the crystal surface from the effect of the molecule on the solution speciation. The goal of this paper is to draw connections between fundamental studies of atomic step motion and potential strategies for materials processing. It is not our intent to promote the utility of SPM for investigating processes in cement dynamics. The conditions are spectacularly different in many ways. The data shown in this paper are fairly close to equilibrium (S=1.6) whereas the nucleation of cements is initiated at supersaturation ratios in the thousands to millions. Of course, after the initial nucleation phase, the growth will occur at more modest supersaturations and as the cement evolves towards equilibrium certainly some of the growth will occur in regimes such as shown here. In addition to the difference in supersaturation, cements tend to have lower additive to calcium ratios. As an example, the additive to Ca ratio is

  1. Mechanism of calcium phosphates precipitation in liquid crystals; Mecanisme de precipitation de phosphates de calcium dans des cristaux liquides

    Energy Technology Data Exchange (ETDEWEB)

    Prelot, B.; Zemb, T

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m{sup 2}/g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  2. Characterization studies on the additives mixed L-arginine phosphate monohydrate (LAP) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Haja Hameed, A.S., E-mail: hajahameed2001@gmail.co [PG and Research Department of Physics, Jamal Mohamed College, Tiruchirappalli 620 020, Tamil Nadu (India); Karthikeyan, C. [PG and Research Department of Physics, Jamal Mohamed College, Tiruchirappalli 620 020, Tamil Nadu (India); Ravi, G. [Department of Physics, Alagappa University, Karaikudi 630 003 (India); Rohani, S. [Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, N6A 5B9 (Canada)

    2011-04-01

    L-arginine phosphate monohydrate (LAP), potassium thiocyanate (KSCN) mixed LAP (LAP:KSCN) and sodium sulfite (Na{sub 2}SO{sub 3}) mixed LAP (LAP:Na{sub 2}SO{sub 3}) single crystals were grown by slow cooling technique. The effect of microbial contamination and coloration on the growth solutions was studied. The crystalline powders of the grown crystals were examined by X-ray diffraction and the lattice parameters of the crystals were estimated. From the FTIR spectroscopic analysis, various functional group frequencies associated with the crystals were assigned. Vickers microhardness studies were done on {l_brace}1 0 0{r_brace} faces for pure and additives mixed LAP crystals. From the preliminary surface second harmonic generation (SHG) results, it was found that the SHG intensity at (1 0 0) face of LAP:KSCN crystal was much stronger than that of pure LAP.

  3. Crystal structure and theoretical studies on quinoline phosphate

    Science.gov (United States)

    Ben Issa, T.; Ghalla, H.; Marzougui, S.; Benhamada, L.

    2017-12-01

    The crystal structure of (C9H7N) H3PO4 (QP) was determined from single crystals obtained by slow evaporation methods (space group Pī; a = 7.5508(3) Å, b = 7.9705(3) Å, c = 8.6849(3) Å; α = 77.3725(18)°, β = 82.6225(19)°, γ = 74.9829(19)°). The crystal structure of QP is built up from infinite hydrogen bonding inorganic chains of (H3PO4)n lay parallel to the an axis, which are also connected to the quinoline rings through hydrogen bonds in a 3D arrangement. The structure was examined through atoms in molecules (AIM) topological and Hirshfeld surface (HS) analyses and its molecular structure optimized by theoretical density functional (DFT) calculations. The QP observed IR absorptions between 4000 and 400 cm-1 were assigned on the basis of the calculated theoretical vibrational modes.

  4. Electrical Conduction in Deuterated Ammonium Dihydrogen Phosphate Crystals with Different Degrees of Deuteration

    Science.gov (United States)

    Zhu, Li-Li; Gan, Xiao-Yu; Zhang, Qing-Hua; Liu, Bao-An; Xu, Ming-Xia; Zhang, Li-Song; Xu, Xin-Guang; Gu, Qing-Tian; Sun, Xun

    2015-05-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 51323002 and 51402173, the Independent Innovation Foundation of Shandong University under Grant No 2012JC016, the Natural Science Foundation for Distinguished Young Scholar of Shandong Province under Grant No JQ201218, and the Project of Key Laboratory of Neutron Physics of China Academy Of Engineering Physics under Grant No 2014BB07.

  5. Phosphate-binding protein from Polaromonas JS666: purification, characterization, crystallization and sulfur SAD phasing.

    Science.gov (United States)

    Pegos, Vanessa R; Hey, Louis; LaMirande, Jacob; Pfeffer, Rachel; Lipsh, Rosalie; Amitay, Moshe; Gonzalez, Daniel; Elias, Mikael

    2017-06-01

    Phosphate-binding proteins (PBPs) are key proteins that belong to the bacterial ABC-type phosphate transporters. PBPs are periplasmic (or membrane-anchored) proteins that capture phosphate anions from the environment and release them to the transmembrane transporter. Recent work has suggested that PBPs have evolved for high affinity as well as high selectivity. In particular, a short, unique hydrogen bond between the phosphate anion and an aspartate residue has been shown to be critical for selectivity, yet is not strictly conserved in PBPs. Here, the PBP from Polaromonas JS666 is focused on. Interestingly, this PBP is predicted to harbor different phosphate-binding residues to currently known PBPs. Here, it is shown that the PBP from Polaromonas JS666 is capable of binding phosphate, with a maximal binding activity at pH 8. Its structure is expected to reveal its binding-cleft configuration as well as its phosphate-binding mode. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.35 Å resolution of the PBP from Polaromonas JS666 are reported.

  6. Effects of polymer concentration on the morphology of calcium phosphate crystals formed in polyacrylamide hydrogels

    Science.gov (United States)

    Yokoi, Taishi; Kawashita, Masakazu; Ohtsuki, Chikara

    2013-11-01

    Growing crystals in hydrogels is an attractive method to form inorganic solids with designed morphology under ambient conditions. Precipitation of the inorganic solids in a hydrogel matrix can be regarded as mimicking the process of biomineralization. In the construction of biominerals, an organic template composed of insoluble macromolecules is used to control the crystal growth of the inorganic compounds. The morphological control in biomineralization can be applied to artificial reaction systems. In this study, the morphology of calcium phosphate crystals formed in polymeric hydrogels of various polymer concentrations was investigated. Spherical octacalcium phosphate (OCP) precipitated in the polyacrylamide (PAAm) hydrogels. Fibrous crystals gradually covered the surface of the spherical crystals as the polymer concentration of the gel increased. The morphology of the OCP crystals changed from sea urchin shapes to wool-ball shapes with increasing PAAm concentration. The morphological change is generated by the template effect of the polymer wall, which is made up of stacked PAAm sheets, surrounding the spherical OCP crystals.

  7. Calcium Phosphate Crystals from Uremic Serum Promote Osteogenic Differentiation in Human Aortic Smooth Muscle Cells.

    Science.gov (United States)

    Liu, Yaorong; Zhang, Lin; Ni, Zhaohui; Qian, Jiaqi; Fang, Wei

    2016-11-01

    Recent study demonstrated that calcium phosphate (CaP) crystals isolated from high phosphate medium were a key contributor to arterial calcification. The present study further investigated the effects of CaP crystals induced by uremic serum on calcification of human aortic smooth muscle cells. This may provide a new insight for the development of uremic cardiovascular calcification. We tested the effects of uremic serum or normal serum on cell calcification. Calcification was visualized by staining and calcium deposition quantified. Expression of various bone-calcifying genes was detected by real-time PCR, and protein levels were quantified by western blotting or enzyme-linked immunosorbent assays. Pyrophosphate was used to investigate the effects of CaP crystals' inhibition. Finally, CaP crystals were separated from uremic serum to determine its specific pro-calcification effects. Uremic serum incubation resulted in progressively increased calcification staining and increased calcium deposition in HASMCs after 4, 8 and 12 days (P vs 0 day crystals with pyrophosphate incubation prevented calcium deposition and bone-calcifying gene over-expression increased by uremic serum. CaP crystals, rather than the rest of uremic serum, were responsible for these effects. Uremic serum accelerates arterial calcification by mediating osteogenic differentiation. This effect might be mainly attributed to the CaP crystal content.

  8. Crystal Structure and Substrate Specificity of D-Galactose-6-Phosphate Isomerase Complexed with Substrates

    Science.gov (United States)

    Lee, Jung-Kul; Pan, Cheol-Ho

    2013-01-01

    D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays. PMID:24015281

  9. Crystal structure and substrate specificity of D-galactose-6-phosphate isomerase complexed with substrates.

    Directory of Open Access Journals (Sweden)

    Woo-Suk Jung

    Full Text Available D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26, which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD, catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi. Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays.

  10. Acid indium strontium phosphate SrIn2[PO3(OH)]4: synthesis and crystal structure

    International Nuclear Information System (INIS)

    Rusakov, D.A.; Bobylev, A.P.; Komissarova, L.N.; Filaretov, A.A.; Danilov, V.P.

    2007-01-01

    Acid indium-strontium phosphate SrIn 2 [PO 3 (OH)] 4 is synthesized and characterized. Crystal structure and lattice parameters ate determined. In atoms in SrIn 2 [PO 3 (OH)] 4 structure are in distorted InO 6 octahedrons and form with PO 3 (OH) tetrahedrons mixed paraskeleton {In 2 [PO 3 (OH)] 4 } 3∞ 2- with emptinesses occupied by big Sr 2+ cations. The compound is thermally stable up to 400 Deg C [ru

  11. CCDC 1048728: Experimental Crystal Structure Determination : ammonium tris(2-(methoxyimino)propanoato)-tin(ii) dihydrate

    KAUST Repository

    Khanderi, Jayaprakash

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  12. Why Basic Calcium Phosphate Crystals Should Be Targeted In the Treatment of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Claire-Louise Murphy

    2014-07-01

    Full Text Available Osteoarthritis (OA is the most common form of arthritis and results in significant social, psychological, and economic costs. It is characterised by progressive cartilage loss, bone remodelling, osteophyte formation, and synovial inflammation with resultant joint pain and disability. Since OA affects the entire joint, it is not surprising that there has been difficulty developing an effective targeted treatment. Treatments available for structural disease modification are limited. Current options appear to mostly reduce symptoms. Basic calcium phosphate (BCP crystals represent a potential therapeutic target in OA; they have been found in 100% of knee and hip cartilages removed at joint replacement. Intra-articular BCP crystals are associated with large joint effusions and dissolution of intra-articular structures, synovial proliferation, and marked degeneration as assessed by diagnostic imaging. While BCP deposition has been considered by many to be simply a consequence of advanced OA, there is substantial evidence to support BCP crystal deposition as an active pathogenic mediator of OA. BCP crystals exhibit a multiplicity of biologic effects in vitro including the ability to stimulate mitogenesis and prostaglandin, cytokine, and matrix metalloproteinase (MMP synthesis in a number of cell types including macrophages, synovial fibroblasts, and chondrocytes. BCP crystals also contribute to inflammation in OA through direct interaction with the innate immune system. Intra-articular BCP crystals can elicit synovial inflammation and cartilage degradation in mice in vivo . Although intra-articular BCP crystals are difficult to detect at the bedside, advances in modern technology should allow improved identification and quantitation of BCP crystals. Our article focuses on why basic calcium crystals are important in the pathogenesis of OA. There is ample evidence that BCP crystals should be explored as a therapeutic target in OA.

  13. Influence of the environmental factors on the intensity of the oxygen, ammonium, and phosphate metabolism in the agar-containing seaweed Ahnfeltia tobuchiensis (Ahnfeltiales, Rhodophyta)

    Science.gov (United States)

    Cherbadgy, I. I.; Sabitova, L. I.

    2011-02-01

    A complex study of the influence of various environmental factors on the rate of the oxygen (MO 2), ammonium (MNH 4), and phosphate (MPO 4) metabolism in Ahnfeltia tobuchiensis has been carried out in situ in the Izmena Bay of Kunashir Island. The following environmental factors have been included into the investigation: the photosynthetically active radiation (PAR); the ammonium (NH4); the phosphate (PO4); and the tissue content of carbon (C), nitrogen (N), phosphorus (P), and chlorophyll a (Chl). The population of agar-containing seaweed A. tobuchiensis forms a layer with a thickness up to 0.5 m, which occupies about 23.3 km2; the population's biomass is equal to 125000 tons. The quantitative assessment of the organic matter production and nutrient consumption during the oxygen metabolism (MO 2) has been carried out for the whole population. It has been shown that the daily rate depends on the PAR intensity, the seawater concentrations of PO4 and NH4, and the tissue content of N and P ( r 2 = 0.78, p < 0.001). The daily NH4 consumption averages 0.21 μmol/(gDW h) and depends on the NH4 and O2 concentrations in the seawater and on the C and Chl a content in the algal tissues ( r 2 = 0.64, p < 0.001). The daily PO4 consumption averages 0.01 μmol/(gDW h) and depends on the NH4 concentration in the seawater and on the P content in the algal tissues ( r 2 = 0.40, p < 0.001).

  14. Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Calabrese, J.C.; Wawrzak, Z.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    3,4-Dihydroxy-2-butanone-4-phosphate synthase catalyzes a commitment step in the biosynthesis of riboflavin. On the enzyme, ribulose 5-phosphate is converted to 3,4-dihydroxy-2-butanone 4-phosphate and formate in steps involving enolization, ketonization, dehydration, skeleton rearrangement, and formate elimination. The enzyme is absent in humans and an attractive target for the discovery of antimicrobials for pathogens incapable of acquiring sufficient riboflavin from their hosts. The homodimer of 23 kDa subunits requires Mg{sup 2+} for activity. The first three-dimensional structure of the enzyme was determined at 1.4 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on Escherichia coli protein crystals containing gold. The protein consists of an {alpha} + {beta} fold having a complex linkage of {beta} strands. Intersubunit contacts are mediated by numerous hydrophobic interactions and three hydrogen bond networks. A proposed active site was identified on the basis of amino acid residues that are conserved among the enzyme from 19 species. There are two well-separated active sites per dimer, each of which comprise residues from both subunits. In addition to three arginines and two threonines, which may be used for recognizing the phosphate group of the substrate, the active site consists of three glutamates, two aspartates, two histidines, and a cysteine which may provide the means for general acid and base catalysis and for coordinating the Mg{sup 2+} cofactor within the active site.

  15. Nitrate (chloride) melts as media for crystal growth of complex phosphates of alkali and trivalent metals

    Science.gov (United States)

    Livitska, Oksana; Strutynska, Nataliia; Zatovsky, Igor; Slobodyanik, Nikolai; Odinets, Eugen

    2016-01-01

    The interaction in the molten systems MIPO3-MIII2O3-MINO3 (MICl) (MI - Na, K; MIII - Al, Fe, Y, Bi) was investigated at molar ratios P/MIII=1 or 3 at the temperatures 400 °C (for MINO3) or 810 °C (for MICl). Formation conditions of complex phosphates MI3MIII2(PO4)3 and MI3MIII(PO4)2 (MI - Na, K; MIII - Al, Fe, Bi) were established. It was shown that the crystal size of obtained phosphates can be controlled by using different salt melts. The synthesized compounds were characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, Optical microscopy and Scanning electron microscopy with Energy-dispersive X-ray spectroscopy. Differential thermal data for Na3Bi(PO4)2 and Na3Fe(PO4)2 showed congruent and incongruent melting, respectively.

  16. Detailed mechanisms of1H spin-lattice relaxation in ammonium dihydrogen phosphate confirmed by magic angle spinning.

    Science.gov (United States)

    Hayashi, Shigenobu; Jimura, Keiko

    2017-10-01

    Mechanisms of the 1 H spin-lattice relaxation in NH 4 H 2 PO 4 were studied in detail by use of the effect of magic angle spinning on the relaxation. The acid and the ammonium protons have different relaxation times at the spinning rates higher than 10 kHz due to suppression of spin diffusion between the two kinds of protons. The intrinsic relaxation times not affected by the spin diffusion and the spin-diffusion assisted relaxation times were evaluated separately, taking into consideration temperature dependence. Both mechanisms contribute to the 1 H relaxation of the acid protons comparatively. The spin-diffusion assisted relaxation mechanism was suppressed to the level lower than the experimental errors at the spinning rate of 30 kHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. An unexpected phosphate binding site in Glyceraldehyde 3-Phosphate Dehydrogenase: Crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme

    Directory of Open Access Journals (Sweden)

    Chattopadhyay Debasish

    2009-02-01

    Full Text Available Abstract Background The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips to the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. Results We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2Å resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate occupies an unexpected site not seen before and the phosphate binding loop remains in

  18. Assessing microstructure changes in potassium dihydrogen phosphate crystals induced by mechanical stresses

    International Nuclear Information System (INIS)

    Hou, Ning; Zhang, Yong; Zhang, Liangchi; Zhang, Feihu

    2016-01-01

    This paper proposes a new way of damage characterization with the aid of the grazing incidence X-ray diffraction technique. The results showed that a machined potassium dihydrogen phosphate (KDP) crystal contains a lattice misalignment structure in its shallow subsurface layer. Dislocation motions are the primary mechanism of the structural evolution from the KDP's monocrystalline to the misaligned crystalline structure. These findings allow to identify the underlying causes of lower laser damage threshold (LDT) of KDP components produced by ultra-precision machining.

  19. Large potassium dihydrogen phosphate crystal growth using a three-vessel system for fusion lasers

    International Nuclear Information System (INIS)

    Sasaki, T.; Yokotani, A.; Yamanaka, T.; Nakai, S.; Yamanaka, C.

    1989-01-01

    Large scale laser fusion experiments are being performed in the Institute of Laser Engineering, Osaka University, using the glass laser system Gekko-XII. For this laser, very large nonlinear crystals of potassium dihydrogen phosphate (KDP) with a cross section over 40 X 40 cm is needed as a frequency converter to obtain a short wavelength laser. Generally the temperature falling method (TFM) is used to grow such a huge crystal, but the volume of the growing vessel becomes tremendously large. The three-vessel system (TVS), which is a constant temperature and concentration method, allows better control of supersaturation than does the TFM, and the volume of the main growth vessel can be smaller than that in the case of the TFM. The authors have constructed a TVS. The KDP crystal grew in the growth tank that was kept at a constant temperature of 20 +- 0.01 0 C. The authors show the growth history of the KDP crystal of a 40- X 40-cm cross section. This system is now being operated to obtain the KDP of 100-cm height, and a theoretical estimate of the growth rate is under consideration. These results are presented

  20. From dihydrated iron(III) phosphate to monohydrated ammonium-iron(II) phosphate: Solvothermal reaction mediated by acetone-urea mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, Belen F., E-mail: mbafernandez@uniovi.es [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain); Trobajo, Camino [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain); Pique, Carmen [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain); Garcia, Jose R. [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain); Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain)

    2012-12-15

    By reaction between synthetic phosphosiderite FePO{sub 4}{center_dot}2H{sub 2}O, urea (NH{sub 2}){sub 2}CO, and acetone (CH{sub 3}){sub 2}CO, we report a novel solvothermal synthesis of polycrystalline NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O. The preparation of other two individual phases, NH{sub 4}Fe{sub 2}(OH)(PO{sub 4}){sub 2}{center_dot}2H{sub 2}O and NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}, is also described. The obtained product is a function of the reaction time and the N/P molar ratio in the reagent mixture, and the existence of structural memory in the dissolution-precipitation processes is discussed. Below 25 K, NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O behaves magnetically in a complex way, because both ferromagnetic and antiferromagnetic signals are superimposed, suggesting the existence of a canting of iron(II) magnetic moments. - Graphical abstract: Solvothermal synthesis of polycrystalline NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O is presented. The preparation of other two individual phases, NH{sub 4}Fe{sub 2}(OH)(PO{sub 4}){sub 2}{center_dot}2H{sub 2}O and NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2} as a function of the N/P molar ratio in the reagent mixture and the reaction time, is also described. Highlights: Black-Right-Pointing-Pointer Solvothermal synthesis of NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O from an Fe(III) phosphate: reduction process. Black-Right-Pointing-Pointer Formation of two intermediate metastable phases: phase diagram. Black-Right-Pointing-Pointer Thermal decomposition in two steps: mass loss of both water and ammonia. Black-Right-Pointing-Pointer Magnetic behaviour: AF+constant spontaneous magnetization.

  1. Ferrous ammonium phosphate (FeNH₄PO₄) as a new food fortificant: iron bioavailability compared to ferrous sulfate and ferric pyrophosphate from an instant milk drink.

    Science.gov (United States)

    Walczyk, Thomas; Kastenmayer, Peter; Storcksdieck Genannt Bonsmann, Stefan; Zeder, Christophe; Grathwohl, Dominik; Hurrell, Richard F

    2013-06-01

    The main purpose of this study was to establish bioavailability data in humans for the new (Fe) fortification compound ferrous ammonium phosphate (FAP), which was specially developed for fortification of difficult-to-fortify foods where soluble Fe compounds cannot be used due to their negative impact on product stability. A double-blind, randomized clinical trial with cross-over design was conducted to obtain bioavailability data for FAP in humans. In this trial, Fe absorption from FAP-fortified full-cream milk powder was compared to that from ferric pyrophosphate (FPP) and ferrous sulfate. Fe absorption was determined in 38 young women using the erythrocyte incorporation dual stable isotope technique (⁵⁷Fe, ⁵⁸Fe). Geometric mean Fe absorption from ferrous sulfate, FAP and FPP was 10.4, 7.4 and 3.3 %, respectively. Fe from FAP was significantly better absorbed from milk than Fe from FPP (p soluble reference compound (p = 0.0002). Absorption ratios of FAP and FPP relative to ferrous sulfate as a measure of relative bioavailability were 0.71 and 0.32, respectively. The results of the present studies show that replacing FPP with FAP in full-cream milk could significantly improve iron bioavailability.

  2. Effect of rare-earth dopants on the growth and structural, optical, electrical and mechanical properties of L-arginine phosphate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, S., E-mail: arjunan_hce@yahoo.co.i [Department of Physics, Sri Ramachandra University, Porur, Chennai (India); Bhaskaran, A. [Department of Physics, Dr. Ambedkar Government College, Chennai (India); Kumar, R. Mohan; Mohan, R. [Department of Physics, Presidency College, Chennai (India); Jayavel, R. [Crystal Growth Centre, Anna University, Chennai (India)

    2010-09-17

    Research highlights: {yields} Thorium, Lanthanum and Cerium rare-earth ions were doped with L-arginine phosphate material and the crystals were grown by slow evaporation technique. {yields} The transparency of the rare-earth doped LAP crystals has enhanced compared to pure LAP. {yields} The powder SHG measurements revealed that the SHG output of rare-earth doped LAP crystals increases considerably compared to that of LAP. {yields} Vicker's hardness number of as-grown crystal of LAP is higher than that of rare-earth doped LAP crystals. - Abstract: Effect of Thorium, Lanthanum and Cerium rare-earth ions on the growth and properties of L-arginine phosphate single crystals has been reported. The incorporation of rare-earth dopants into the L-arginine phosphate crystals is confirmed by Inductively Coupled Plasma-Mass Spectroscopy analysis. The unit cell parameters for pure and rare-earth doped L-arginine phosphate crystals have been estimated by powder X-ray diffraction studies. UV-visible studies revealed the transmittance percentage and cut-off wavelengths of the grown crystals. Powder second harmonic generation measurement has been carried out for pure and doped L-arginine phosphate crystals. The dielectric behavior of the grown crystals was analyzed for different frequencies at room temperature. The mechanical properties have been determined for pure and the doped L-arginine phosphate crystals.

  3. Microindentation deformation of lithium dihydrogen phosphate single crystals: Microhardness measurement and indentation size effect

    Energy Technology Data Exchange (ETDEWEB)

    Iurchenko, Anton [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenin Avenue 60, 61001 Kharkiv (Ukraine); Borc, Jarosław, E-mail: j.borc@pollub.pl [Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin (Poland); Sangwal, Keshra [Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin (Poland); Voronov, Alexei [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenin Avenue 60, 61001 Kharkiv (Ukraine)

    2016-02-15

    The Vickers microhardness H{sub V} of the (110) and (111) as-grown faces of lithium dihydrogen phosphate (LDP) crystals was investigated as a function of applied load P. The microhardness H{sub V} of the two faces increases with load P i.e. reverse indentation size effect (reverse ISE) and the hardness of the (110) face is somewhat lower than that of the (111) face but this difference is not easily recognized for these planes due to large scatter in the data. The origin of observed ISE was analyzed using different approaches. It was found that: (1) Hays–Kendall's and Begley–Hutchinson's relations do not explain the origin of reverse ISE but Meyer's law describes the reverse ISE satisfactorily and its constants provide a link between ISE and formation of radial cracks with applied indentation load P, (2) reverse ISE is associated with tensile surface stresses, (3) despite its failure to explain reverse ISE, Begley–Hutchinson's relation is reliable to obtain load-independent hardness H{sub 0}, is 2337 MPa for LDP, and (4) the value of fracture toughness K{sub C} of LDP crystals lies between 4.7 and 12 MPa m{sup 1/2}. The load-independent hardness H{sub 0} of LDP is higher by a factor of 1.5 than that reported for undoped KDP and ADP crystals whereas its fracture toughness K{sub C} is higher by factor of about 20 than that of undoped KDP crystals. - Highlights: • Vickers indentations on the (110) and (111) faces of LDP crystals were made. • The microhardness H{sub V} was investigated as a function of applied load P. • Reverse indentation size effect was observed. • Fracture toughness K{sub C} from the radial cracks was calculated.

  4. An investigation on the effect of gamma-irradiation on the optical absorption spectra in Cu(II) doped ammonium Tetrachlorozincate (ATZC) single crystals

    International Nuclear Information System (INIS)

    Abu El-Fadl, A.; Mohamad, G.A.; Abd El-Sttar, M.

    2003-01-01

    Optical transmittance measurements were carried out on Ammonium tetrachlorozincate (ATZC) crystals doped with small concentrations of Cu 2+ ions and irradiated with different doses of gamma-radiation. The absorption coefficient (alpha) and the extinction coefficient (K) of unirradiated and irradiated ATZC crystals were calculated. Valued of the allowed indirect optical energy gap (E g ) of ATZC were calculated as a function of gamma-dose. The effect of gamma irradiation is to increase in the absorption coefficient value and to decrease in E g value. The results could be explained in the fact that gamma irradiation produces defects of ionizing type because of internal irradiation with photon or Compton electrons

  5. Structural matching of ferroelectric domains and associated distortion in potassium titanyl phosphate crystals

    CERN Document Server

    Pernot-Rejmankova, P; Cloetens, P; Lyford, T; Baruchel, J

    2003-01-01

    The surface deformation and atomic-level distortions associated with crystal structural matching at ferroelectric inversion domain walls are investigated in periodically poled potassium titanyl phosphate (KTP) crystals. A deformation, of the order of 10 sup - sup 8 m in scale and having the periodicity of the domains, is observed at the surfaces by optical interferometry. It is discussed in terms of the piezoelectric effect. The matching of the crystal structures at the domain walls is studied by combining the hard x-ray Fresnel phase-imaging technique with Bragg diffraction imaging methods ('Bragg-Fresnel imaging') and using synchrotron radiation. Quantitative analysis of the contrast of the Bragg-Fresnel images recorded as a function of the propagation distance is demonstrated to allow the determination of how the domains are matched at the atomic (unit cell) level, even though the spatial resolution of the images is on the scale of micrometres. The atom P(1) is determined as the linking atom for connecting...

  6. A new uranyl phosphate sheet in the crystal structure of furongite

    Energy Technology Data Exchange (ETDEWEB)

    Dal Bo, Fabrice; Hatert, Frederic [Liege Univ. (Belgium). Lab. de Mineralogie; Philippo, Simon [Musee National d' Historie Naturelle, Luxembourg (Luxembourg). Section Mineralogie

    2017-06-15

    The crystal structure of furongite, Al{sub 4}[(UO{sub 2}){sub 4}(PO{sub 4}){sub 6}](OH){sub 2}(H{sub 2}O){sub 19.5}, from the Kobokobo pegmatite, Kivu, Democratic Republic of Congo, was solved for the first time. Furongite is triclinic, the space group P anti 1, Z=2, a = 12.1685(8), b = 14.1579(6), c = 17.7884(6) Aa, α = 79.822(3), β = 77.637(4), γ = 67.293(2) , and V = 2746.2(2)Aa{sup 3}. The crystal structure was refined from single crystal X-ray diffraction data to R{sub 1} = 0.0733 for 7716 unique observed reflections, and to wR{sub 2} = 0.2081 for all 12,538 unique reflections. The structure of furongite contains infinite uranyl phosphate sheets of composition [(UO{sub 2}){sub 4}(PO{sub 4}){sub 6}]{sup 10-} which are parallel to (1 0 1). The sheets are constituted by UrO{sub 5} pentagonal bipyramids and PO{sub 4} tetrahedra which share edges and vertices, and adjacent sheets are linked by a dense network of hydrogen bonds. Running through the sheets and connected mainly to the free apical oxygen atom of PO4 tetrahedra are Al octahedra connected together to form remarkable Al{sub 2}O{sub 5}(OH)(H{sub 2}O){sub 5} and Al{sub 4}O{sub 8}(OH){sub 2}(H{sub 2}O){sub 10} clusters. These Al clusters are only bonded to one sheet, and do not connect two adjacent sheets together. The topology of the uranyl phosphate sheets is related to the uranophane anion topology, and can be described as a new geometrical isomer of the uranophane group. Furongite is the first uranyl phosphate reported in nature with a U:P ratio of 2:3.

  7. Growth, structural, thermal and optical studies of deuterated L-Arginine phosphate (dLAP) single crystals

    International Nuclear Information System (INIS)

    Haja Hameed, A.S.; Ravi, G.; Nixon Azariaha, A.; Ramasamy, P.

    2001-01-01

    L-arginine phosphate (LAP) and deuterated L-arginine phosphate(dLAP) are promising non linear optical materials having good non linear coefficient, high damage threshold and less hygroscopic nature as compared to potassium dihydrogen phosphate (KDP). Due to the significant absorptions in the near infrared in the pure LAP, its deuterated analog (dLAP) crystals have been grown. The presence of deuterium in dLAP shifts this absorption by 3%. This crystals are grown from the solvent of heavy water (D 2 O) by slow cooling method. The growth conditions for the growth of monoclinic dLAP crystals are optimized by adjusting the growth parameters, such as pH, temperature etc. The grown crystals are morphologically compared with the pure LAP crystals. The variation of lattice parameters of dLAP crystal with pure LAP is found from the X-ray powder diffraction studies. The thermal behaviour and molecular vibrations of dLAP are reported from DT and TG and FTIR studies. (author)

  8. Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte

    Directory of Open Access Journals (Sweden)

    Morsi M. Mahmoud

    2016-06-01

    Full Text Available Lithium aluminum germanium phosphate (LAGP glass-ceramics are considered as promising solid-state electrolytes for Li-ion batteries. LAGP glass was prepared via the regular conventional melt-quenching method. Thermal, chemical analyses and X-ray diffraction (XRD were performed to characterize the prepared glass. The crystallization of the prepared LAGP glass was done using conventional heating and high frequency microwave (MW processing. Thirty GHz microwave (MW processing setup were used to convert the prepared LAGP glass into glass-ceramics and compared with the conventionally crystallized LAGP glass-ceramics that were heat-treated in an electric conventional furnace. The ionic conductivities of the LAGP samples obtained from the two different routes were measured using impedance spectroscopy. These samples were also characterized using XRD and scanning electron microscopy (SEM. Microwave processing was successfully used to crystallize LAGP glass into glass-ceramic without the aid of susceptors. The MW treated sample showed higher total, grains and grain boundary ionic conductivities values, lower activation energy and relatively larger-grained microstructure with less porosity compared to the corresponding conventionally treated sample at the same optimized heat-treatment conditions. The enhanced total, grains and grain boundary ionic conductivities values along with the reduced activation energy that were observed in the MW treated sample was considered as an experimental evidence for the existence of the microwave effect in LAGP crystallization process. MW processing is a promising candidate technology for the production of solid-state electrolytes for Li-ion battery.

  9. Twisted intra-molecular charge transfer investigations of semiorganic triglycine phosphate single crystal for non linear optical applications

    Science.gov (United States)

    Meera, M. R.; Joselin Beaula, T.; Rayar, S. L.; Bena Jothy, V.

    2017-09-01

    NLO materials are gaining importance in technologies such as optical communication, optical computing and dynamic image processing. Many NLO crystals grown by mixing amino acids with various organic and inorganic acids have been reported in the literature. Hence, glycine mixed semi-organic material will be of special interest as a fundamental building block to develop many complex crystals with improved NLO properties. A semi organic Single crystal of Triglycine Phosphate (TGP) which was grown and spectral analysis have been using FTIR and Raman spectral analysis. Natural Bond Orbital Analysis and the atomic natural charges are also predicted. HOMO LUMO energy gap value suggests the possibility of charge transfer within the molecule.

  10. An unexpected phosphate binding site in Glyceraldehyde 3-Phosphate Dehydrogenase: Crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Cook, William J; Senkovich, Olga; Chattopadhyay, Debasish; (UAB)

    2009-06-08

    The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate) and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips to the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate) proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD) state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2{angstrom} resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate

  11. Phosphate-binding protein from Polaromonas JS666: purification, characterization, crystallization and sulfur SAD phasing

    Energy Technology Data Exchange (ETDEWEB)

    Pegos, Vanessa R.; Hey, Louis; LaMirande, Jacob; Pfeffer, Rachel; Lipsh, Rosalie; Amitay, Moshe; Gonzalez, Daniel; Elias, Mikael (JCT-Israel); (UMM); (CNRS-UMR)

    2017-05-25

    Phosphate-binding proteins (PBPs) are key proteins that belong to the bacterial ABC-type phosphate transporters. PBPs are periplasmic (or membrane-anchored) proteins that capture phosphate anions from the environment and release them to the transmembrane transporter. Recent work has suggested that PBPs have evolved for high affinity as well as high selectivity. In particular, a short, unique hydrogen bond between the phosphate anion and an aspartate residue has been shown to be critical for selectivity, yet is not strictly conserved in PBPs. Here, the PBP fromPolaromonasJS666 is focused on. Interestingly, this PBP is predicted to harbor different phosphate-binding residues to currently known PBPs. Here, it is shown that the PBP fromPolaromonasJS666 is capable of binding phosphate, with a maximal binding activity at pH 8. Its structure is expected to reveal its binding-cleft configuration as well as its phosphate-binding mode. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.35 Å resolution of the PBP fromPolaromonasJS666 are reported.

  12. Hybrid organic-inorganic crystal structure of 4-(di-methyl-amino)-pyridinium di-methyl-ammonium tetra-chlorido-lead(II).

    Science.gov (United States)

    Benson, Cassidy A; Bateman, Gage; Cox, Jordan M; Benedict, Jason B

    2017-11-01

    The title compound, (C 2 H 8 N)(C 7 H 11 N 2 )[PbCl 4 ], is a hybrid organic-inorganic material. It crystallizes in the space group C 2/ c and contains one half of a mol-ecule of lead chloride, 4-(di-methyl-amino)-pyridinium, and di-methyl-ammonium in the asymmetric unit. The crystal structure exhibits chains of lead chloride capped by 4-(di-methyl-amino)-pyridinium and di-methyl-ammoium by hydrogen bonding. This creates a one-dimensional zipper-like structure down the a axis. The crystal structure is examined and compared to a similar structure containing lead chloride and di-methyl-benzene-1,4-diaminium.

  13. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of the mannose 6-phosphate isomerase from Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Gowda, Giri; Sagurthi, Someswar Rao [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012 (India); Savithri, H. S. [Department of Biochemistry, Indian Institute of Science, Bangalore 560 012 (India); Murthy, M. R. N., E-mail: mrn@mbu.iisc.ernet.in [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012 (India)

    2008-02-01

    The cloning, expression, purification, crystallization and preliminary X-ray crystallographic studies of mannose 6-phosphate isomerase from S. typhimurium are reported. Mannose 6-phosphate isomerase (MPI; EC 5.3.1.8) catalyzes the reversible isomerization of d-mannose 6-phosphate (M6P) and d-fructose 6-phosphate (F6P). In the eukaryotes and prokaryotes investigated to date, the enzyme has been reported to play a crucial role in d-mannose metabolism and supply of the activated mannose donor guanosine diphosphate d-mannose (GDP-d-mannose). In the present study, MPI was cloned from Salmonella typhimurium, overexpressed in Escherichia coli and purified using Ni–NTA affinity column chromatography. Purified MPI crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 36.03, b = 92.2, c = 111.01 Å. A data set extending to 1.66 Å resolution was collected with 98.8% completeness using an image-plate detector system mounted on a rotating-anode X-ray generator. The asymmetric unit of the crystal cell was compatible with the presence of a monomer of MPI. A preliminary structure solution of the enzyme has been obtained by molecular replacement using Candida albicans MPI as the phasing model and the program Phaser. Further refinement and model building are in progress.

  14. Compositional Tuning, Crystal Growth, and Magnetic Properties of Iron Phosphate Oxide

    Science.gov (United States)

    Tarne, Michael

    Iron phosphate oxide, Fe3PO4O 3, is a crystalline solid featuring magnetic Fe3+ ions on a complex lattice composed of closely-spaced triangles. Previous work from our research group on this compound has proposed a helical magnetic structure below T = 163 K attributed to J1 - J2 competing interactions between nearest-neighbor and next-nearest-neighbor iron atoms. This was based on neutron powder diffraction featuring unique broad, flat-topped magnetic reflections due to needle-like magnetic domains. In order to confirm the magnetic structure and origins of frustration, this thesis will expand upon the research focused on this compound. The first chapter focuses on single crystal growth of Fe3PO 4O3. While neutron powder diffraction provides insight to the magnetic structure, powder and domain averaging obfuscate a conclusive structure for Fe3PO4O3 and single crystal neutron scattering is necessary. Due to the incongruency of melting, single crystal growth has proven challenging. A number of techniques including flux growth, slow cooling, and optical floating zone growth were attempted and success has been achieved via heterogenous chemical vapor transport from FePO 4 using ZrCl4 as a transport agent. These crystals are of sufficient size for single crystal measurements on modern neutron diffractometers. Dilution of the magnetic sublattice in frustrated magnets can also provide insight into the nature of competing spin interactions. Dilution of the Fe 3+ lattice in Fe3PO4O3 is accomplished by substituting non-magnetic Ga3+ to form the solid solution series Fe3-xGaxPO4O3 with x = 0, 0.012, 0.06, 0.25, 0.5, 1.0, 1.5. The magnetic susceptibility and neutron powder diffraction data of these compounds are presented. A dramatic decrease of the both the helical pitch length and the domain size is observed with increasing x; for x > 0.5, the compounds lack long range magnetic order. The phases that do exhibit magnetic order show a decrease in helical pitch with increasing x

  15. Should acidification of urine be performed before the analysis of calcium, phosphate and magnesium in the presence of crystals?

    Science.gov (United States)

    Pratumvinit, Busadee; Reesukumal, Kanit; Wongkrajang, Preechaya; Khejonnit, Varanya; Klinbua, Cherdsak; Dangneawnoi, Weerapol

    2013-11-15

    Acidification of urine has been recommended before testing for calcium, phosphate, and magnesium. We investigated the necessity of pre-analytical acidification in both crystallized and non-crystallized urine samples. From 130 urine samples obtained via routine urine analysis, 65 (50%) samples were classified as non-crystallized. All samples were divided into three groups: untreated samples, acidified samples with HCl, and acidified samples after 1h room-temperature incubation. Urine samples were measured for calcium, phosphate, magnesium, and creatinine using Modular P800 and were examined for crystals using light microscopy. In crystallized samples, acidified samples with 1h incubation had significantly higher Ca/Cr, P/Cr, and Mg/Cr than did untreated samples with mean differences of 0.04, 0.03, and 0.01 mg/mg, respectively (Purine should be performed before the measurement of Ca, P, and Mg in the presence of urinary crystals. However, the lack of an acidification process does not result in a clinically significant change. © 2013.

  16. Two-dimensional hydrogen-bonded polymers in the crystal structures of the ammonium salts of phenoxyacetic acid, (4-fluorophenoxyacetic acid and (4-chloro-2-methylphenoxyacetic acid

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2014-12-01

    Full Text Available The structures of the ammonium salts of phenoxyacetic acid, NH4+·C8H6O3−, (I, (4-fluorophenoxyacetic acid, NH4+·C8H5FO3−, (II, and the herbicidally active (4-chloro-2-methylphenoxyacetic acid (MCPA, NH4+·C9H8ClO3−·0.5H2O, (III have been determined. All have two-dimensional layered structures based on inter-species ammonium N—H...O hydrogen-bonding associations, which give core substructures consisting primarily of conjoined cyclic motifs. The crystals of (I and (II are isomorphous with the core comprising R12(5, R12(4 and centrosymmetric R42(8 ring motifs, giving two-dimensional layers lying parallel to (100. In (III, the water molecule of solvation lies on a crystallographic twofold rotation axis and bridges two carboxyl O atoms in an R44(12 hydrogen-bonded motif, creating two R43(10 rings, which together with a conjoined centrosymmetric R42(8 ring incorporating both ammonium cations, generate two-dimensional layers lying parallel to (100. No π–π ring associations are present in any of the structures.

  17. Neutron Crystal Structure of RAS GTPase Puts in Question the Protonation State of the GTP γ-Phosphate*

    Science.gov (United States)

    Knihtila, Ryan; Holzapfel, Genevieve; Weiss, Kevin; Meilleur, Flora; Mattos, Carla

    2015-01-01

    RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated γ-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the start of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. The neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases. PMID:26515069

  18. Solubility of ammonium metavanadate in ammonium carbonate and sodium bicarbonate solutions at 25 deg C

    International Nuclear Information System (INIS)

    Fedorov, P.I.; Andreev, V.K.; Slotvinskij-Sidak, N.P.

    1978-01-01

    Solubility at 25 deg C has been studied in the system ammonium metavanadate - sodium bicarbonate - water which is a stable section of the corresponding quaternary mutual system. In the eutonic point the content of ammonium metavanadate is 4.95% and of sodium bicarbonate 12.1%. The crystallization branch of ammonium metavanadate has been studied in the system ammonium metavanadate - ammonium carbonate - water at 25 deg C. Metavanadate solubility attains minimum (0.14%) at ammonium carbonate concentration 2.6%. Three sections have been studied of the quaternary system ammonium - metavanadate - ammonium carbonate - sodium bicarbonate-water at 25 deg C in the crystallization region of ammonium metavanadate at a ratio of sodium bicarbonate to ammonium carbonate 3:1, 1:1, and 1:3. A region of minimum solubility of ammonium metavanadate has been detected (0.1%)

  19. Use of combined ion exchangers on the basis of KU-23 and KM-2p cation exchangers for purification of ammonium molybdate and tungstate solutions from phosphate, arsenate, and silicate impurities

    International Nuclear Information System (INIS)

    Blokhin, A.A.; Majorov, D.Yu.; Kopyrin, A.A.; Taushkanov, V.P.

    2002-01-01

    Using the Tracer technique ( 32 P) and elementary analysis, potentiality of using combined ionites on the basis of macroporous cation-exchange resins KU-23 or KM-2p and hydrated zirconium oxide for purification of concentrated solutions of ammonium molybdate and tungstate from phosphate-, arsenate-, and silicate-ions impurities was studied. High selectivity of the combined ionites towards impurity ions was ascertained, which permits reducing the content of impurities by a factor of 50-100 compared with the initial one [ru

  20. Cooperativity between Volatilization of NH3, Evaporation of Water and Crystallization of Na2SO4 in Internally Mixed Sodium Succinate/Ammonium Sulfate Aerosols

    Science.gov (United States)

    Wang, Pan; Pang, Shu-Feng; Zhang, Yun-Hong

    2017-04-01

    Gas-to-particle partitioning is one of the most important physicochemical process in atmospheric aerosols. The chemical reaction in the internally mixed organic/inorganic aerosols attracts much attention on the volatility and hygroscopicity. In this study, FTIR spectra evolution with time were observed by FTIR-ATR technique at constant relative humidity for the internally mixed sodium succinate/ammonium sulfate aerosols with molar ratio of 1:1. The results showed that sodium succinate and ammonium sulfate in the mixed aerosols could react to form succinate acid and sodium sulfate accompanying NH3 volatile as followings: NaOOCCH2CH2COONa (aq) + (NH4)2SO4 (aq) → HOOCCH2CH2COOH (aq) + Na2SO4 (aq or crystal) + NH3 (g) The volatilization of NH3 speeded up the evaporation of water, and indirectly accelerated the crystallization of Na2SO4 in the mixed aerosols, which synergistically accelerated release of NH3. The complex reaction between dicarboxylic salt and (NH4)2SO4 could help us to understand the cooperativity between the gas-to-particle equilibrium, phase transition, atmospheric composition and volatility, which could reveal the formation mechanism of the secondary organic aerosols.

  1. Crystallization and preliminary X-ray diffraction analysis of the phosphate-binding protein PhoX from Xanthomonas citri.

    Science.gov (United States)

    Pegos, Vanessa R; Medrano, Francisco Javier; Balan, Andrea

    2014-12-01

    Xanthomonas axonopodis pv. citri (X. citri) is an important bacterium that causes citrus canker disease in plants in Brazil and around the world, leading to significant economic losses. Determination of the physiology and mechanisms of pathogenesis of this bacterium is an important step in the development of strategies for its containment. Phosphate is an essential ion in all microrganisms owing its importance during the synthesis of macromolecules and in gene and protein regulation. Interestingly, X. citri has been identified to present two periplasmic binding proteins that have not been further characterized: PstS, from an ATP-binding cassette for high-affinity uptake and transport of phosphate, and PhoX, which is encoded by an operon that also contains a putative porin for the transport of phosphate. Here, the expression, purification and crystallization of the phosphate-binding protein PhoX and X-ray data collection at 3.0 Å resolution are described. Biochemical, biophysical and structural data for this protein will be helpful in the elucidation of its function in phosphate uptake and the physiology of the bacterium.

  2. Phosphate recovery through struvite-family crystals precipitated in the presence of citric acid: mineralogical phase and morphology evaluation.

    Science.gov (United States)

    Perwitasari, D S; Edahwati, L; Sutiyono, S; Muryanto, S; Jamari, J; Bayuseno, A P

    2017-11-01

    Precipitation strategy of struvite-family crystals is presented in this paper to recover phosphate and potassium from a synthetic wastewater in the presence of citric acid at elevated temperature. The crystal-forming solutions were prepared from crystals of MgCl 2 and NH 4 H 2 PO 4 with a molar ratio of 1:1:1 for Mg +2 , [Formula: see text], and [Formula: see text], and the citric acid (C 6 H 8 O 7 ) was prepared (1.00 and 20.00 ppm) from citric acid crystals. The Rietveld analysis of X-ray powder diffraction pattern confirmed a mixed product of struvite, struvite-(K), and newberyite crystallized at 30°C in the absence of citric acid. In the presence of citric acid at 30° and 40°C, an abundance of struvite and struvite-(K) were observed. A minute impurity of sylvite and potassium peroxide was unexpectedly found in certain precipitates. The crystal solids have irregular flake-shaped morphology, as shown by scanning electron microscopy micrograph. All parameters (citric acid, temperature, pH, Mg/P, and N/P) were deliberately arranged to control struvite-family crystals precipitation.

  3. Laser Induced Damage of Potassium Dihydrogen Phosphate (KDP Optical Crystal Machined by Water Dissolution Ultra-Precision Polishing Method

    Directory of Open Access Journals (Sweden)

    Yuchuan Chen

    2018-03-01

    Full Text Available Laser induced damage threshold (LIDT is an important optical indicator for nonlinear Potassium Dihydrogen Phosphate (KDP crystal used in high power laser systems. In this study, KDP optical crystals are initially machined with single point diamond turning (SPDT, followed by water dissolution ultra-precision polishing (WDUP and then tested with 355 nm nanosecond pulsed-lasers. Power spectral density (PSD analysis shows that WDUP process eliminates the laser-detrimental spatial frequencies band of micro-waviness on SPDT machined surface and consequently decreases its modulation effect on the laser beams. The laser test results show that LIDT of WDUP machined crystal improves and its stability has a significant increase by 72.1% compared with that of SPDT. Moreover, a subsequent ultrasonic assisted solvent cleaning process is suggested to have a positive effect on the laser performance of machined KDP crystal. Damage crater investigation indicates that the damage morphologies exhibit highly thermal explosion features of melted cores and brittle fractures of periphery material, which can be described with the classic thermal explosion model. The comparison result demonstrates that damage mechanisms for SPDT and WDUP machined crystal are the same and WDUP process reveals the real bulk laser resistance of KDP optical crystal by removing the micro-waviness and subsurface damage on SPDT machined surface. This improvement of WDUP method makes the LIDT more accurate and will be beneficial to the laser performance of KDP crystal.

  4. Behaviour and dynamics of di-ammonium phosphate in bauxite processing residue sand in Western Australia--II. Phosphorus fractions and availability.

    Science.gov (United States)

    Chen, C R; Phillips, I R; Wei, L L; Xu, Z H

    2010-06-01

    The production of alumina involves its extraction from bauxite ore using sodium hydroxide under high temperature and pressure. This process yields a large amount of residue wastes, which are difficult to revegetate due to their inherent hostile properties--high alkalinity and sodicity, poor water retention and low nutrient availability. Although phosphorus (P) is a key element limiting successful ecosystem restoration, little information is available on the availability and dynamics of P in rehabilitated bauxite-processing residue sand (BRS). The major aim of this experiment was to quantify P availability and behaviour as affected by pH, source of BRS and di-ammonium phosphate (DAP) application rate. This incubation experiment was undertaken using three sources of BRS, three DAP application rates (low, without addition of DAP; medium, 15.07 mg P and 13.63 mg N of DAP per jar, 100 g BRS; and high, 30.15 mg P and 27.26 mg N per jar, 100 g BRS), and four BRS pH treatments (4, 7, 9 and 11 (original)). The moisture content was adjusted to 55% water holding capacity and each BRS sample was incubated at 25 degrees C for a period of 119 days. After this period, Colwell P and 0.1 M H(2)SO(4) extractable P in BRS were determined. In addition, P sequential fractionation was carried out and the concentration of P in each pool was measured. A significant proportion (37% recovered in Colwell P and 48% in 0.1 M H(2)SO(4) extraction) of P added as DAP in BRS are available for plant use. The pH did not significantly affect 0.1 M H(2)SO(4) extractable P, while concentrations of Colwell P in the higher initial pH treatments (pH 7, 9 and 11) were greater than in the pH 4 treatments. The labile fractions (sum of NH(4)Cl (AP), bicarbonate and first sodium hydroxide extractable P (N(I)P)) consisted of 58-64% and 70-72% of total P in the medium and high DAP rate treatments, respectively. This indicates that most P added as DAP remained labile or moderately labile in BRS, either in

  5. Synthesis, growth, structure, mechanical and optical properties of a new semi-organic 2-methyl imidazolium dihydrogen phosphate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nagapandiselvi, P., E-mail: nagapandiselvip@ssn.edu.in [Department of Physics, SSN College of Engineering, Kalavakkam (India); Baby, C. [Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai (India); Gopalakrishnan, R. [Crystal Research Lab, Department of Physics, Anna University, Chennai (India)

    2016-09-15

    Highlights: • 2MIDP crystals were grown by slow evaporation solution growth technique. • Single crystal XRD revealed self-assembled supramolecular framework. • Z scan technique is employed for third order nonlinear optical susceptibility. • Structure-property correlation is established. - Abstract: A new semi-organic compound, 2-methyl imidazolium dihydrogen phosphate (2MIDP), was prepared and good quality single crystals of 2MIDP were grown by slow evaporation solution growth technique. Crystal structure elucidated using Single crystal XRD showed that 2MIDP crystallizes in monoclinic system with P2{sub 1}/c space group. FT-IR, UV-Vis-NIR, Fluorescence and FT-NMR spectra confirm the molecular structure of 2MIDP. The UV-Vis-NIR spectra established the suitability of the compound for NLO applications. TG-DSC showed that 2MIDP is thermally stable up to 200 °C. Mechanical characteristics like hardness number (H{sub v}), stiffness constant (C{sub 11}), yield strength (σ{sub v}), fracture toughness (K{sub c}) and brittleness index (B{sub i}) were assessed using Vicker’s microhardness tester. Third order nonlinear optical properties determined from Z-scan measurement using femto and picosecond lasers showed two photon reverse saturable absorption. The enhancement of nonlinear optical properties in femto second laser, revealed the suitability of 2MIDP for optical limiting applications.

  6. Crystallization of dicalcium phosphate dihydrate with presence of glutamic acid and arginine at 37 °C.

    Science.gov (United States)

    Li, Chengfeng; Ge, Xiaolu; Li, Guochang; Bai, Jiahai; Ding, Rui

    2014-08-01

    The formations of non-metabolic stones, bones and teeth were seriously related to the morphology, size and surface reactivity of dicalcium phosphate dihydrate (DCPD). Herein, a facile biomimetic mineralization method with presence of glutamic acid and arginine was employed to fabricate DCPD with well-defined morphology and adjustable crystallite size. In reaction solution containing more arginine, crystallization of DCPD occurred with faster rate of nucleation and higher density of stacked layers due to the generation of more OH(-) ions after hydrolysis of arginine at 37 °C. With addition of fluorescein or acetone, the consumption of OH(-) ions or desolvation reaction of Ca(2+) ions was modulated, which resulted in the fabrication of DCPD with adjustable crystallite sizes and densities of stacked layers. In comparison with fluorescein-loading DCPD, dicalcium phosphate anhydrate was prepared with enhanced photoluminescence properties due to the reduction of self-quenching effect and regular arrangement of encapsulated fluorescein molecules. With addition of more acetone, DCPD was prepared with smaller crystallite size via antisolvent crystallization. The simulated process with addition of amino acids under 37 °C would shed light on the dynamic process of biomineralization for calcium phosphate compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Enhanced Selectivity of the Separation of CO2 from N2 during Crystallization of Semi-Clathrates from Quaternary Ammonium Solutions

    Directory of Open Access Journals (Sweden)

    Herri J.-M.

    2014-09-01

    Full Text Available CO2 mitigation is crucial environmental problem and a societal challenge for this century. CO2 capture and sequestration is a route to solve a part of the problem, especially for the industries in which the gases to be treated are well localized. CO2 capture by using hydrate is a process in which the cost of the separation is due to compression of gases to reach the gas hydrate formation conditions. Under pressure, the water and gas forms a solid that encapsulates preferentially CO2. The gas hydrate formation requires high pressures and low temperatures, which explains the use of thermodynamic promoters to decrease the operative pressure. Quaternary ammoniums salts represent an interesting family of components because of their thermodynamic effect, but also because they can generate crystals that are easily handled. In this work, we have made experiments concerning the equilibrium of (CO2, N2 in presence of Tetra-n-Butyl Ammonium Bromide (TBAB which form a semi-clathrate hydrate. We propose equilibrium data (pressure, temperature in presence of TBAB at different concentrations and we compare them to the literature. We have also measured the composition of the hydrate phase in equilibrium with the gas phase at different CO2 concentrations. We observe that the selectivity of the separation is dramatically increased in comparison to the selectivity of the pure water gas clathrate hydrate. We observe also a benefice on the operative pressure which can be dropped down to the atmospheric pressure.

  8. Expression, purification, crystallization and preliminary X-ray analysis of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    International Nuclear Information System (INIS)

    Elliott, Paul R.; Mohammad, Shabaz; Melrose, Helen J.; Moody, Peter C. E.

    2008-01-01

    Glyceraldehyde-3-phosphate dehydrogenase B from H. pylori has been cloned, expressed, purified and crystallized in the presence of NAD. Crystals of GAPDHB diffracted to 2.8 Å resolution and belonged to space group P6 5 22, with unit-cell parameters a = b = 166.1, c = 253.1 Å. Helicobacter pylori is a dangerous human pathogen that resides in the upper gastrointestinal tract. Little is known about its metabolism and with the onset of antibiotic resistance new treatments are required. In this study, the expression, purification, crystallization and preliminary X-ray diffraction of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from H. pylori are reported

  9. Study of the crystal structure of double ammonium hafnium sulfate of the (NH4)4Hf(SO4)4x4H2O composition

    International Nuclear Information System (INIS)

    Chalyj, V.P.; Sheka, I.A.; Fedoryako, L.I.; Fomenko, V.V.

    1978-01-01

    Two new double compounds of (NH 4 ) 2 Hf(SO 4 ) 3 x2H 2 O and (NH 4 ) 4 Hf(SO 4 ) 4 x4H 2 O have been studied. The second compound which forms needle transparent crystals of monoclinic singony, has been studied by the X-ray analysis. The unit cell parametres are as follows: a = 18.12(3), b = 14.89(3), c = 7.25(3) A, γ = 95.5 deg (5), spatial group P 2 /b, N=4. The first structure may be described as an islet structure. Besides basic valent bonds, it contains numerous intermolecular contacts and hydrogen bonds formed by water molecules and ammonium ions

  10. Expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Paul R.; Evans, Daniel; Greenwood, Jacqueline A.; Moody, Peter C. E., E-mail: pcem1@leicester.ac.uk [Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN (United Kingdom)

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase A has been cloned, expressed and purified. Apoprotein crystals have been grown which diffracted to 1.75 Å resolution and belonged to space group P2{sub 1}; holo crystals were grown in the presence of NADP, diffracted to 2.6 Å resolution and belonged to space group P3{sub 2}. The classical glycolytic pathway contains an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, with NADP-dependent forms reserved for photosynthetic organisms and archaea. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori is reported; crystals of the protein were grown both in the presence and the absence of NADP.

  11. Studies on growth, structural, dielectric, laser damage threshold, linear and nonlinear optical properties of methylene blue admixtured L-arginine phosphate single crystal

    Science.gov (United States)

    Peramaiyan, G.; Pandi, P.; Bhagavannarayana, G.; Mohan Kumar, R.

    2012-12-01

    L-Arginine phosphate (LAP) and methylene blue dye admixtured L-arginine phosphate single crystals were grown by slow cooling technique and their cell parameters, crystalline perfection, dopant inclusion were confirmed by single crystal, powder X-ray diffraction and high resolution X-ray diffraction analyses respectively. The modes of vibrations of different functional groups present in pure and dye admixtured LAP crystals have been identified by FTIR spectral analysis. The UV-Vis-NIR spectral study was performed on the grown crystals and found that the crystals are transparent in the entire visible-NIR region. The dielectric measurement was carried out on the grown crystals as a function of frequency at room temperature. The microhardness hardness study on (1 0 0) plane of grown crystals reveals the mechanical behavior of the crystals. The laser damage threshold value significantly enhanced for dye admixtured crystal in comparison with pure LAP crystal. The relative SHG efficiency of methylane blue admixtured LAP crystal was found to be 1.3 times higher than that of pure LAP crystal.

  12. Novel niobium phosphates: synthesis, crystal-chemical characterization, and heating behaviour

    International Nuclear Information System (INIS)

    Zharinova, M.V.; Orlova, A.I.; Lipatova, E.V.; Kazantsev, G.N.; Samojlov, S.G.; Kurazhkovskaya, V.S.

    2004-01-01

    Framework phosphates of compositions Na 2x Al 0.5+x Nb 1.5-x (PO 4 ) 3 and Na 2x Fe 0.5+x Nb 1.5-x (PO 4 ) 3 (0≤x≤0.5) were synthesized. X-ray powder diffraction and IR spectroscopy showed that the compounds are rhombohedral (space group R3-barc). The heating behaviour of the phosphates was studied using high-temperature X-ray crystallography in the range 20-800 Deg C. Thermal expansion and its anisotropy were shown to be a function of the cations involved. Phosphate Al 0.5 Nb 1.5 (PO 4 ) 3 has a near-zero thermal expansion and a near-zero anisotropy of thermal expansion. Thermal expansion of the phosphates can be varied smoothly by changing their cationic composition [ru

  13. Influence of formic acid on electrical, linear and nonlinear optical properties of potassium dihydrogen phosphate (KDP) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anis, Mohd [Crystal Growth Laboratory, Department of Physics, Milliya Arts, Science and Management Science College, Beed 431122, Maharashtra (India); Shirsat, M.D. [Intelligent Material Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431005,Maharashtra (India); Muley, Gajanan [Department of Physics, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra (India); Hussaini, S.S., E-mail: Shuakionline@yahoo.co.in [Crystal Growth Laboratory, Department of Physics, Milliya Arts, Science and Management Science College, Beed 431122, Maharashtra (India)

    2014-09-15

    In present investigation 0.5 and 1 mol% formic acid (FA) added potassium dihydrogen phosphate (KDP) crystals have been grown by a slow evaporation technique. The cell parameters of the grown crystals were determined using single crystal X-ray diffraction analysis. The presence of different functional groups has been qualitatively analyzed by the FT-IR spectral analysis. The optical transparency and optical constants were assessed employing UV–visible studies in the range of 200–900 nm. The wide optical band gap of 1 mol% FA added KDP has been found to be 5 eV. The frequency dependent dielectric measurements were studied for pure and KDP added FA crystals. The enhanced second harmonic generation (SHG) efficiency of grown crystals was determined by a classical Kurtz–Perry powder technique. The encouraging third order nonlinear properties were examined employing a Z-scan technique using He–Ne laser, at 632.8 nm. The effective negative index of refraction and high figure of merit (FOM) essential for laser stabilization were determined for grown crystals. - Highlights: • Study on electrical and optical properties of formic acid (FA) added KDP was reported for the first time. • Optical properties were found to be enhanced with increasing concentration of FA. • The SHG efficiency of 1 mol% FA added KDP was 1.13 times that of KDP. • The high concentration of FA contributed lower dielectric properties to KDP suitable for microelectronics applications. • The improved third order nonlinear parameters were ascertained with addition of FA in KDP crystal.

  14. Study of the surface crystallization and resistance to dissolution of niobium phosphate glasses for nuclear waste immobilization

    International Nuclear Information System (INIS)

    Vieira, Heveline

    2008-01-01

    The surface crystallization and the dissolution rate of three phosphate glass compositions containing different amounts of niobium oxide were studied. The glasses were named Nb30, Nb37, and Nb44 according to the nominal content of niobium oxide in the glass composition. The three compositions were evaluated keeping the P 2 O 5 /K 2 O ratio constant and varying the amount of Nb 2 O 5 . These glasses were produced by melting appropriate chemical compounds at 1500 deg C for 0.5 hour. The crystalline phases which were nucleated on the glass surface after heat treatment were determined by X-ray diffraction. The crystalline structures depend on the amount of niobium oxide in the glass composition. The crystal morphologies were observed by using an optical microscope, and their characteristics are specific for each kind of crystalline phase. The crystal growth rate and the surface nuclei density were determined for each glass composition, and they depend on each crystalline phase nucleated on the surface. From the differential thermal analysis curves it was determined that the Nb44 glass containing 46.5 mol por cent of niobium oxide is the most thermally stable against crystallization when compared to the Nb30 and Nb37 glasses. According to the activation energies determined for crystal growth on the surface of each glass type, the Nb44 glass can also be considered the most resistant one against crystallization. The dissolution rate for the Nb44 glass after 14 days immersed in an aqueous solution with pH equals to 7 at 90 deg C is the lowest (9.0 x 10 -7 g. cm -2 . day -1 ) when compared to the other two glass compositions. The dissolution rates in acidic and neutral solutions of all studied glasses meet the international standards for materials which can be used in the immobilization of nuclear wastes. (author)

  15. Guanidine-phosphate non-covalent interaction in LAP crystal growth solution evidenced from spectroscopy studies

    Science.gov (United States)

    Wang, L.; Zhang, G. H.; Wang, X. Q.; Zhu, L. Y.; Xu, D.

    2015-09-01

    The similar L-arginine molecule aggregation has been found in L-arginine (LA) and L-arginine phosphate monohydrate (LAP) aqueous solutions. The special fluorescence emission at 380 nm of LA aggregates in LAP solution has been found, compared with the emission of LA solution at 415 nm, which has an obvious blue shift. By comparing the fluorescence spectra of several solutions for L-arginine and L-lysine salts, the interaction between phosphate and guanidine in LAP solution was considered to be the cause of its special fluorescence emission. Meanwhile, when LAP molecule formed in solution, the fluorescence emission wavelength and the UV absorption intensity at 296 nm of L-arginine solutions have mutated. Therefore, the group interaction involved by guanidine has changed the fluorescence properties of L-arginine aggregates in LAP solution, indicating that the specific interaction between phosphate and guanidine exists in LAP molecule.

  16. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    , it cannot store hydrogen reversibly. Recently, the first ammonium metal borohydride, NH4Ca(BH4)3 was published, which may be considered as substitution of K+ by NH4+ in KCa(BH4)3, due to the similar sizes of NH4+ and K+[1]. This compound successfully stabilizes NH4BH4. In the present work, a series of novel...... halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed......, and the crystal structures and thermal decompositions are investigated. Mixtures of NH4BH4 - NaBH4 do not react, while solid solutions, K1-x(NH4)xBH4, are formed for NH4BH4 - KBH4. For the other composites, novel ammonium metal borohydrides are formed. Several of these structures have been solved from high...

  17. A biomimetic strategy to form calcium phosphate crystals on type I collagen substrate

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhang [Department of Restorative Dentistry, Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road 119074, Singapore (Singapore); Neoh, Koon Gee [Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 119260, Singapore (Singapore); Kishen, Anil, E-mail: anil.kishen@utoronto.ca [Discipline of Endodontics, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON (Canada)

    2010-07-20

    Objective: The aim of this study is to induce mineralization of collagen by introducing phosphate groups onto type I collagen from eggshell membrane (ESM) by treating with sodium trimetaphosphate (STMP). This strategy is based on the hypothesis that phosphate groups introduced on collagen can mimic the nucleating role of phosphorylated non-collagenous proteins bound to collagen for inducing mineralization in natural hard tissue. Method: The collagen membrane was phosphorylated by treating it with a solution of STMP and saturated calcium hydroxide. The phosphorylated collagen was subsequently exposed to a mineralization solution and the pattern of mineralization on the surface of phosphorylated collagen substrate was analyzed. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), field emission electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and microhardness test were used to characterize the collagen substrate and the pattern of minerals formed on the collagen surface. Results: The FTIR and EDX results indicated that the phosphate groups were incorporated onto the collagen surface by treatment with STMP. During the mineralization process, the plate-like mineral, octacalcium phosphate (OCP), which was initially formed on the surface of ESM, was later transformed into needle-like hydroxyapatite (HAP) as indicated by the SEM, FESEM, EDX and XRD findings. The microhardness test displayed significant increase in the Knoop hardness number of the mineralized collagen. Conclusions: Phosphate groups can be introduced onto type I collagen surface by treating it with STMP and such phosphorylated collagen can induce the mineralization of type I collagen.

  18. New insights into thorium and uranium oxo-arsenic (III/V) and oxo-phosphates (V) crystal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Na

    2015-12-11

    The fundamental chemistry of actinides is of great interest owing to the diverse number of valence states and complex coordination chemistry of the actinides. The phases based on actinides and oxo-salt fragments have been under thorough investigation in the last decades. These compounds can be widely found in nature and they affect the migration process of actinides in nature. A better understanding of the fundamental coordination chemistry of actinide compounds with oxo-salts of group V elements is not only important for understanding the actinides behavior within the migration process but can also be used to understand actinide properties in phosphate ceramics. Concerning the radioactive issues, the less radioactive early actinides (i.e. U, Th) can be taken as modeling elements to study the crystal chemistry of the transuranic elements (Np, Pu) without the major handling problems. This can be done as Th(IV) has a very similar coordination chemistry with An(IV) and U(VI) can be chosen as a modeling element for transuranic elements in higher valence states. Therefore, a systematic research on the actinides (U, Th) bearing phases with tetrahedral oxo-anions such as phosphates and arsenates have been performed in this work. High temperature (HT) solid state reaction, High pressure high temperature (HP-HT) solid state reaction and the hydrothermal method were the methods of choice for synthesizing actinide bearing oxo-arsenic(III/V) and oxo- phosphorus(V) phases in the past three years. As a result, numerous novel compounds containing actinides were obtained. The structures of all compounds were determined using single crystal X-ray diffraction data. Raman spectroscopy, EDS, DSC and high temperature powder X-ray diffraction (HT-PXRD) measurements were implemented to characterize the chemical and physical properties of the obtained compounds. The core of this dissertation is a fundamental study of the crystal chemistry of actinides (Th, U) oxo-arsenic (III/V) and oxo-phosphate

  19. Influence of Concentration and Temperature on Tunneling and Rotational Dynamics of Ammonium in $Rb_{1-x}(NH_{4})_{x}$ Mixed Crystals

    CERN Document Server

    Natkaniec, I; Martínez-Sarrion, M L; Mestres, L; Herraiz, M; Smirnov, L S; Shuvalov, L A

    2001-01-01

    The Rb_{1-x}(NH_{4})_{x} mixed crystals are studied by inelastic incoherent neutron scattering using time-of-flight spectrometers in the concentration region of the x-T phase diagram 0.01\\lq x \\lq 0.66 at 5\\lq T \\lq 150 K, where dynamic and static orientational disorder phases are generally found. It is shown that at 5 K rotational tunneling levels for ammonium concentrations x=0.01,0.02 and 0.06 are similar. Additional tunneling levels are observed for x=0.16 which can be explained as the result of T-states splitting for annount of NH_{4}-NH_{4} interaction. Tunneling levels are not observed for 0.40 as the result of forming orientational glass state. The elastic incoherent structure factors for concentrations 0.01\\lq x \\lq 0.16 (dynamic orientational disordered \\alpha-phase), x=0.40 (orientational glass state) and 0.50\\lq x \\lq 0.66 (orientational ordered state) have different temperature dependences.

  20. Crystal structure and energy band and optical properties of phosphate Sr3P4O13

    International Nuclear Information System (INIS)

    Zhang, Y.-C.; Cheng, W.-D.; Wu, D.-S.; Zhang, H.; Chen, D.-G.; Gong, Y.-J.; Kan, Z.-G.

    2004-01-01

    A single crystal of the compound Sr 3 P 4 O 13 has been found and the crystal structure has been characterized by means of single crystal X-ray diffraction analysis. The compound crystallizes in triclinic system and belongs to space group P1-bar. It builds up from SrO 7 polyhedra and P 4 O 13 -6 anions and has a layered structure, and the Sr atoms are located in the interlayer space. The absorption and luminescence spectrum of Sr 3 P 4 O 13 microcrystals have been measured. The calculated results of crystal energy band structure by the DFT show that the solid state of Sr 3 P 4 O 13 is an isolator with direct band gap. The calculated total and partial density of states indicate that the top valence bands are contributions from P 3p and O 2p states and low conduction bands mostly originate from Sr atomic states. The calculated optical response functions expect that the Sr 3 P 4 O 13 is a low refractive index, and it is possible that the Sr 3 P 4 O 13 is used to make transparent material between the UV and FR light zone

  1. Synthesis and investigation of neptunium zirconium phosphate, a member of the NZP family: crystal structure, thermal behaviour and Mössbauer spectroscopy studies

    NARCIS (Netherlands)

    Bykov, D.; Konings, R.J.M.; Apostolidis, C.; Hen, A.; Colineau, E; Wiss, T; Raison, P.

    2017-01-01

    A new double neptunium zirconium phosphate of the type MxZr2(PO4)3 (M = Np), crystallizing in the structure type NaZr2(PO4)3 (NZP, NASICON), was synthesized by solid state reactions at high temperatures and characterized by X-ray diffraction, infrared spectroscopy and Mössbauer spectroscopy. The

  2. Purification, crystallization and preliminary X-ray crystallographic study of the l-fuculose-1-phosphate aldolase (FucA) from Thermus thermophilus HB8

    Energy Technology Data Exchange (ETDEWEB)

    Jeyakanthan, Jeyaraman, E-mail: kanthan@spring8.or.jp; Taka, Junichiro; Kikuchi, Akihiro [Biometal Science Laboratory, RIKEN Harima Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kuroishi, Chizu; Yutani, Katsuhide [Advanced Protein Crystallography Research Group, RIKEN Harima Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan); Shiro, Yoshitugu [Biometal Science Laboratory, RIKEN Harima Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2005-12-01

    The crystallization and preliminary X-ray diffraction analysis of the l-fuculose-1-phosphate aldolase (FucA) from T. thermophilus HB8. Native diffraction data set was collected to a resolution of 1.9 Å. Fuculose phosphate aldolase catalyzes the reversible cleavage of l-fuculose-1-phosphate to dihydroxyacetone phosphate and l-lactaldehyde. The protein from Thermus thermophilus HB8 is a biological tetramer with a subunit molecular weight of 21 591 Da. Purified FucA has been crystallized using sitting-drop vapour-diffusion and microbatch techniques at 293 K. The crystals belong to space group P4, with unit-cell parameters a = b = 100.94, c = 45.87 Å. The presence of a dimer of the enzyme in the asymmetric unit was estimated to give a Matthews coefficient (V{sub M}) of 2.7 Å{sup 3} Da{sup −1} and a solvent content of 54.2%(v/v). Three-wavelength diffraction MAD data were collected to 2.3 Å from zinc-containing crystals. Native diffraction data to 1.9 Å resolution have been collected using synchrotron radiation at SPring-8.

  3. Expression, purification, crystallization and preliminary X-ray analysis of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Paul R.; Mohammad, Shabaz; Melrose, Helen J.; Moody, Peter C. E., E-mail: pcem1@leicester.ac.uk [Henry Wellcome Laboratories for Structural Biology, University of Leicester, Leicester LE1 9HN (United Kingdom)

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase B from H. pylori has been cloned, expressed, purified and crystallized in the presence of NAD. Crystals of GAPDHB diffracted to 2.8 Å resolution and belonged to space group P6{sub 5}22, with unit-cell parameters a = b = 166.1, c = 253.1 Å. Helicobacter pylori is a dangerous human pathogen that resides in the upper gastrointestinal tract. Little is known about its metabolism and with the onset of antibiotic resistance new treatments are required. In this study, the expression, purification, crystallization and preliminary X-ray diffraction of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from H. pylori are reported.

  4. Phosphate Management: FY2010 Results Of Phosphate Precipitation Tests

    International Nuclear Information System (INIS)

    Hay, M.; King, W.

    2011-01-01

    The Phosphate Management program seeks to develop treatment options for caustic phosphate solutions resulting from the caustic leaching of the bismuth phosphate sludge. The SRNL subtask investigated the precipitation of phosphate salts from caustic solutions through addition of fluoride and by crystallization. The scoping tests examined the: precipitation of phosphate by the addition of sodium fluoride to form the sodium fluorophosphate double salt, Na 7 F(PO 4 ) 2 · 19H 2 O, crystallization of phosphate by reducing the temperature of saturated phosphate solutions, and combinations of precipitation and crystallization. A simplified leachate simulant was used in the study produced by dissolving sodium phosphate in 1 M to 3.5 M sodium hydroxide solutions. The results show that all three processes; precipitation with sodium fluoride, crystallization, and combined precipitation/crystallization can be effective for removing large amounts of phosphate from solution. The combined process of precipitation/crystallization showed >90% removal of phosphate at all hydroxide concentrations when cooling a non-saturated phosphate solution from 65 C to 25 C. Based on the measured solubility of sodium phosphate, pH adjustment/caustic addition will also remove large amounts of phosphate from solution (>80%). For all three processes, the phosphate concentration in the caustic solution must be managed to keep the phosphate from becoming too concentrated and thereby potentially forming a solid mass of sodium phosphate after an effective phosphate removal process.

  5. 1D magnetic interactions in Cu(II) oxovanadium phosphates (VPO), magnetic susceptibility, DFT, and single-crystal EPR.

    Science.gov (United States)

    Venegas-Yazigi, Diego; Spodine, Evgenia; Saldias, Marianela; Vega, Andrés; Paredes-García, Verónica; Calvo, Rafael; de Santana, Ricardo Costa

    2015-04-20

    We report the crystal face indexing and molecular spatial orientation, magnetic properties, electron paramagnetic resonance (EPR) spectra, and density functional theory (DFT) calculations of two previously reported oxovanadium phosphates functionalized with Cu(II) complexes, namely, [Cu(bipy)(VO2)(PO4)]n (1) and [{Cu(phen)}2(VO2(H2O)2)(H2PO4)2 (PO4)]n (2), where bipy = 2,2'-bipyridine and phen = 1,10-phenanthroline, obtained by a new synthetic route allowing the growth of single crystals appropriate for the EPR measurements. Compounds 1 and 2 crystallize in the triclinic group P1̅ and in the orthorhombic Pccn group, respectively, containing dinuclear copper units connected by two -O-P-O- bridges in 1 and by a single -O-P-O- bridge in 2, further connected through -O-P-O-V-O- bridges. We emphasize in our work the structural aspects related to the chemical paths that determine the magnetic properties. Magnetic susceptibility data indicate bulk antiferromagnetism for both compounds, allowing to calculate J = -43.0 cm(-1) (dCu-Cu = 5.07 Å; J defined as Hex(i,j) = -J Si·Sj), considering dinuclear units for 1, and J = -1.44 cm(-1) (dCu-Cu = 3.47 Å) using the molecular field approximation for 2. The single-crystal EPR study allows evaluation of the g matrices, which provide a better understanding of the electronic structure. The absence of structure of the EPR spectra arising from the dinuclear character of the compounds allows estimation of weak additional exchange couplings |J'| > 0.3 cm(-1) for 1 (dCu-Cu = 5.54 Å) and a smaller value of |J'| ≥ 0.15 cm(-1) for 2 (dCu-Cu = 6.59 Å). DFT calculations allow evaluating two different exchange couplings for each compound, specifically, J = -36.60 cm(-1) (dCu-Cu = 5.07 Å) and J' = 0.20 cm(-1) (dCu-Cu =5.54 Å) for 1 and J = -1.10 cm(-1) (dCu-Cu =3.47 Å) and J' = 0.01 cm(-1) (dCu-Cu = 6.59 Å) for 2, this last value being in the range of the uncertainties of the calculations. Thus, these values are in good agreement

  6. Phosphate induced crystal acute kidney injury – an under-recognized cause of acute kidney injury potentially leading to chronic kidney disease: case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Lochy S

    2013-03-01

    Full Text Available S Lochy,1 R Jacobs,1 PM Honoré,1 E De Waele,1 O Joannes-Boyau,2 J De Regt,1 V Van Gorp,1 HD Spapen1 1Intensive Care Dept, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium; 2Haut Leveque University Hospital of Bordeaux, University of Bordeaux 2, Pessac, France Abstract: Acute phosphate nephropathy or nephrocalcinosis is a tubulointerstitial nephropathy characterized by tubular calcium phosphate deposition – crystal nephropathy – and slowly progressive renal insufficiency during or following treatment with preparations containing sodium phosphate. We report a patient who developed nephrocalcinosis (crystal induced acute kidney injury following the administration of a combination of oral and rectal sodium phosphate for treatment of postoperative constipation. A timely renal replacement therapy procedure may reverse the process of crystallization and the irreversible slope towards chronic dialysis. Keywords: hemofiltration, acute phosphate nephropathy, hyperphosphatemie, crystal induced nephropathy, CRRT, worse prognosis, dialysis

  7. Treating ammonium-rich wastewater with sludge from water treatment plant to produce ammonium alum

    Directory of Open Access Journals (Sweden)

    Wen-Po Cheng

    2016-03-01

    Full Text Available This study applies a process to treat ammonium-rich wastewater using alum-generated sludge form water purification plant, and gain economic benefit by producing ammonium alum (Al(NH4(SO42·12H2O. The factors affecting production of ammonium alum include molar ratio of ammonium to aluminum concentration, sulfuric acid concentration, mixing speed, mixing time, standing time, and temperature. According to the equation for the ammonium removal reaction, the theoretical quantity of ammonium alum was calculated based on initial and final concentrations of ammonium. Then, the weight of ammonium alum crystal was divided by the theoretical weight to derive the recovery ratio. The optimum sludge and sulfuric acid dosage to treat about 17 g L−1 ammonium wastewater are 300 g L−1 and 100 mL L−1, respectively. The optimal dosage for wastewater is molar ratio of ammonium to aluminum of about 1 due to the aluminum dissolving in acidified wastewater. The ammonium removal efficiency is roughly 70% and the maximum recovery ratio for ammonium alum is 93% when the wastewater is mixed for 10 min at the mixing velocity gradient of 100 s−1. Ammonium alum production or ammonium removal can be enhanced by controlling the reaction at low temperatures.

  8. Overproduction, crystallization and preliminary X-ray analysis of the putative l-ascorbate-6-phosphate lactonase UlaG from Escherichia coli

    International Nuclear Information System (INIS)

    Garces, Fernando; Fernández, Francisco J.; Pérez-Luque, Rosa; Aguilar, Juan; Baldomà, Laura; Coll, Miquel; Badía, Josefa; Vega, M. Cristina

    2007-01-01

    UlaG, the putative l-ascorbate-6-phosphate lactonase encoded by the ulaG gene from the utilization of l-ascorbate regulon in E. coli, has been cloned, overexpressed, purified using standard chromatographic techniques and crystallized in a monoclinic space group. Crystals were obtained by the sitting-drop vapour-diffusion method at 293 K. A data set diffracting to 3 Å resolution was collected from a single crystal at 100 K. UlaG, the putative l-ascorbate-6-phosphate lactonase encoded by the ulaG gene from the utilization of l-ascorbate regulon in Escherichia coli, has been cloned, overexpressed, purified using standard chromatographic techniques and crystallized. Crystals were obtained by sitting-drop vapour diffusion at 293 K. Preliminary X-ray diffraction analysis revealed that the UlaG crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 104.52, b = 180.69, c = 112.88 Å, β = 103.26°. The asymmetric unit is expected to contain six copies of UlaG, with a corresponding volume per protein weight of 2.16 Å 3 Da −1 and a solvent content of 43%

  9. Effect of the purity of starting materials on the growth and properties of potassium dihydrogen phosphate single crystals – A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Rajesh, P., E-mail: rajeshp@ssn.edu.in [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Charoen In, Urit [Department of Physics, Faculty of Science, Mahasarakham University, Mahasarakham 44150 (Thailand); Manyum, Prapun [School of Physics and NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology, Nakhon Ratchasima, Muang 30000 (Thailand); Ramasamy, P. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India)

    2014-11-15

    Highlights: • Bulk size KDP crystal has been grown with higher growth rate. • Systematic study on the effect of starting materials has been done. • Crystalline perfection is maintained in the entire crystal. - Abstract: A systematic study on the effect of purity of starting materials on the growth and properties of potassium dihydrogen phosphate single crystals is crucial for the future study of the material for nonlinear optical applications. Potassium dihydrogen phosphate crystals were grown using high pure (99.999%) and ordinary (99.9%) starting raw materials using slow cooling method in identical conditions. Their optical transparency and crystalline perfection are studied by UV and high resolution X-ray diffraction analyses respectively. The results are checked with the help of etching analyses. The full width at half maximum is 8″ which is close to that expected from the plane wave theory of dynamical X-ray diffraction for an ideally perfect crystal. Results of those studies are correlated with each other. The quantitative results show that the raw material plays an important role in the growth of good quality crystals.

  10. Study on effect of 1,3-dimethyl urea doping on optical properties of L-arginine phosphate monohydrate (LAP) single crystal

    Science.gov (United States)

    Wankhade, Pratik M.; Muley, Gajanan G.

    Pure and 1,3-dimethyl urea doped L-arginine phosphate monohydrate (LAP) crystals were grown by a solution growth technique from aqueous solution at a constant temperature. The effect of dopant on the optical properties, crystal structure and second harmonic generation (SHG) efficiency was studied. Dopant modifies the SHG efficiency of the LAP crystal at a greater extent. The SHG efficiency of 0.01 mol% 1,3-dimethyl urea doped LAP crystal corresponds to 1.37 times more as compared to the pure LAP. Absorption and transmission were measured in the spectral range 190-1083 nm. The increase in the optical transparency of the doped crystal is reported. The band gap of the grown crystals has been determined. The presence of the dopant in the doped crystals was confirmed qualitatively by the FT-IR spectroscopy. A slight variation in unit cell parameters has been reported. Thermal and dielectric study of the doped crystal has also been presented.

  11. Oriented bone regenerative capacity of octacalcium phosphate/gelatin composites obtained through two-step crystal preparation method.

    Science.gov (United States)

    Ishiko-Uzuka, Risa; Anada, Takahisa; Kobayashi, Kazuhito; Kawai, Tadashi; Tanuma, Yuji; Sasaki, Keiichi; Suzuki, Osamu

    2017-07-01

    The present study was designed to investigate whether composite of coprecipitating octacalcium phosphate and gelatin (C-OCP/Gel) has an effect in repairing critical-sized defect of rat calvaria with oriented regenerative bone if implanted. The materials were prepared through two steps to disperse homogenous and well-elongated OCP toward long axis of the crystals in gelatin (Gel) matrix with the distinct concentration 17-44 wt %: OCP precipitates recovered from the coprecipitated with Gel molecules in aqueous solution (referred to as C-OCP hereafter) were mixed again in fresh aqueous Gel solution with various mixing ratio to form C-OCP/Gel for implantation. C-OCP/Gel disks with 9 mm diameter and 1 mm thickness after the dehydrothermal treatment was implanted in 9 mm diameter rat calvaria critical-sized defect. The histology, the histomorphometry in the regenerated bone and the quantitative analysis of the orientation of collagen with picrosirius red staining were carried out. It was found that C-OCP/Gel is capable of not only inducing sufficiently regenerative bone over 80% of the defect coupled with practically complete material biodegradation but also forming oriented bone significantly in relation to the amount of C-OCP in Gel matrix until 12 weeks after the implantation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1029-1039, 2017. © 2016 Wiley Periodicals, Inc.

  12. Aluminium phosphate sulphate minerals (APS) associated with proterozoic unconformity-type uranium deposits: crystal-chemical characterisation and petrogenetic significance

    International Nuclear Information System (INIS)

    Gaboreau, St.

    2005-01-01

    Aluminium phosphate sulfate minerals (APS) are particularly widespread and spatially associated with hydrothermal clay alteration in both the East Alligator River Uranium Field (Northern Territory, Australia) and the Athabasca basin (Saskatchewan, Canada), in the environment of proterozoic unconformity-related uranium deposits (URUD). The purpose of this study is both: 1) to characterize the nature and the origin of the APS minerals on both sides of the middle proterozoic unconformity between the overlying sandstones and the underlying metamorphic basement rocks that host the uranium ore bodies, 2) to improve our knowledge on the suitability of these minerals to indicate the paleo-conditions (redox, pH) at which the alteration processes relative to the uranium deposition operated. The APS minerals result from the interaction of oxidising and relatively acidic fluids with aluminous host rocks enriched in monazite. Several APS-bearing clay assemblages and APS crystal-chemistry have also been distinguished as a function of the distance from the uranium ore bodies or from the structural discontinuities which drained the hydrothermal solutions during the mineralisation event. One of the main results of this study is that the index mineral assemblages, used in the recent literature to describe the alteration zones around the uranium ore bodies, can be theoretically predicted by a set of thermodynamic calculations which simulate different steps of fluid-rock interaction processes related to a downward penetrating of hyper-saline, oxidizing and acidic diagenetic fluids through the lower sandstone units of the basins and then into the metamorphic basement rocks. The above considerations and the fact that APS with different crystal-chemical compositions crystallized in a range of fO 2 and pH at which uranium can either be transported in solution or precipitated as uraninite in the host-rocks make these minerals not only good markers of the degree of alteration of the

  13. Reduced toxicological activity of cigarette smoke by the addition of ammonium magnesium phosphate to the paper of an electrically heated cigarette: smoke chemistry and in vitro cytotoxicity and genotoxicity.

    Science.gov (United States)

    Roemer, E; Stabbert, R; Veltel, D; Müller, B P; Meisgen, T J; Schramke, H; Anskeit, E; Elves, R G; Fournier, J A

    2008-04-01

    The effects of the addition of ammonium magnesium phosphate (AMP) to the paper of an electrically heated cigarette (EHC) prototype on smoke composition and toxicity were quantified and the underlying mechanisms investigated. Smoke from EHC prototypes with and without AMP and from conventional cigarettes, i.e. the University of Kentucky Standard Reference Cigarette 1R4F and eight American-blend market cigarettes, was compared. Endpoints for comparison were smoke chemistry, where toxic constituents were measured, cytotoxic activity, as measured in murine fibroblasts embryo cells by the Neutral Red Uptake Assay, and genotoxic activity, as measured in bacteria by the Salmonella Reverse Mutation Assay and in murine lymphoma cells by the TK Assay. The addition of AMP to the EHC led to a reduction of toxic substances and toxicological activity of approximately 30% compared to the EHC without AMP. Compared to the conventional cigarettes, the EHC with AMP showed reductions of 75-90%. Smoke from the EHCs generated in nitrogen atmospheres supplemented with different concentrations of ammonia and oxygen was assayed for its in vitro cytotoxicity and genotoxicity. The results indicate that the ammonia released by AMP at the heating site of the EHC is responsible for the reductions in cytotoxicity and mutagenicity for the EHC with AMP compared with the EHC without AMP. Thus, while the EHC approach distinctly reduces toxic smoke constituents compared to conventional cigarettes, the use of AMP in the paper of an EHC leads to further distinct reductions. In the study presented here, in vitro assays were used as quantitative tools to investigate toxicity-related mechanisms.

  14. Effect of NH4-N/P and Ca/P molar ratios on the reactive crystallization of calcium phosphates for phosphorus recovery from wastewater

    DEFF Research Database (Denmark)

    Vasenko, Liubov; Qu, Haiyan

    2017-01-01

    treatment plants. Metastable zone width was determined for two target phosphorus products: DCPD (dicalcium phosphate dihydrate) and HAp (hydroxyapatite) in the range of pH 4.5 – 7. HAp crystal-lizes at final pH higher than 6.3 while DCPD crystallizes at the final pH in between 4.7 – 5.7. At the final pH 5......In this work, the effects of operational parameters, initial phosphorus concentration and molar ratios of Ca/P and NH4-N/P (further in the text N/P), on the nature and purity of precipitated phosphorus products have been investigated in an artificial system that mimics the supernatant in wastewater...

  15. Synthesis, antimicrobial activity of lamotrigine and its ammonium ...

    Indian Academy of Sciences (India)

    Antiepileptic drug lamotrigine and its thirteen ammonium salt complexes (4a-4m) were synthesized and characterized by IR, elemental analysis, 1H-NMR, and MS spectral methods. Many of the ammonium salts (4a-4m) were first reported. Furthermore, the crystal structure of compound 3 was determined by single crystal ...

  16. Synthesis and crystal structure of 4-fluorobenzylammonium dihydrogen phosphate, [FC6H4CH2NH3]H2PO4

    Directory of Open Access Journals (Sweden)

    Ali Rayes

    2016-12-01

    Full Text Available The asymmetric unit of the title salt, [p-FC6H4CH2NH3]+·H2PO4−, contains one 4-fluorobenzylammonium cation and one dihydrogen phosphate anion. In the crystal, the H2PO4− anions are linked by O—H...O hydrogen bonds to build corrugated layers extending parallel to the ab plane. The FC6H4CH2NH3+ cations lie between these anionic layers to maximize the electrostatic interactions and are linked to the H2PO4− anions through N—H...O hydrogen bonds, forming a three-dimensional supramolecular network. Two hydrogen atoms belonging to the dihydrogen phosphate anion are statistically occupied due to disorder along the OH...HO direction.

  17. Ammonium diphosphitoindate(III

    Directory of Open Access Journals (Sweden)

    Farida Hamchaoui

    2013-04-01

    Full Text Available The crystal structure of the title compound, NH4[In(HPO32], is built up from InIII cations (site symmetry 3m. adopting an octahedral environment and two different phosphite anions (each with site symmetry 3m. exhibiting a triangular–pyramidal geometry. Each InO6 octahedron shares its six apices with hydrogen phosphite groups. Reciprocally, each HPO3 group shares all its O atoms with three different metal cations, leading to [In(HPO32]− layers which propagate in the ab plane. The ammonium cation likewise has site symmetry 3m.. In the structure, the cations are located between the [In(HPO32]− layers of the host framework. The sheets are held together by hydrogen bonds formed between the NH4+ cations and the O atoms of the framework.

  18. Activation and fluoride-assisted phosphating of aluminum-silicon-coated steel.

    Science.gov (United States)

    Schneider, Paul; Sigel, Reinhard; Lange, Miriam M; Beier, Frank; Renner, Frank U; Erbe, Andreas

    2013-05-22

    Phosphating is a crucial process in the corrosion protection of metals. Here, activation and fluoride-assisted tricationic phosphating is investigated on aluminum-silicon (AS) coated steel surfaces. Dynamic light scattering results from the activation bath show a bimodal size distribution, with hydrodynamic radii of ~400 nm and ~10 μm. For the smaller particle fraction, static light scattering results are consistent with the interpretation of disklike particles as scattering objects. Particles of the larger fraction sediment with time. In the presence of electrolyte, the scattering intensity from the larger particle fraction increases. Coagulation with time is suggested to be related to the decrease in activity of the activation bath. Scanning Auger microscopy (SAM) shows a higher phosphorus concentration after titanium phosphate activation in the Al-rich areas compared to the Si-rich areas of the AS coatings. There is no correlation between the size of the species in the activation bath, and the size of the phosphate-containing regions on the activated surface. Phosphating was performed in the presence of hexafluorosilicic acid, H2SiF6, ammonium hydrogen difluoride, NH4HF2, and both, at an initial pH of 2.5. The absence of crystals after phosphating with H2SiF6 is an indication that SiF6(2-) is the final product of the oxide dissolution in the presence of fluoride. In the presence of NH4HF2, the Si-rich regions of the surface are phosphated before the Si-poor (Al-rich) regions. Hence, the phosphate distribution after activation and after phosphating are opposite. These results show that a high surface concentration of phosphate after activation is not sufficient for a high coverage with phosphate crystals after phosphating.

  19. Crystal Structures of the Iron–Sulfur Cluster-Dependent Quinolinate Synthase in Complex with Dihydroxyacetone Phosphate, Iminoaspartate Analogues, and Quinolinate

    Energy Technology Data Exchange (ETDEWEB)

    Fenwick, Michael K. [Cornell Univ., Ithaca, NY (United States); Ealick, Steven E. [Cornell Univ., Ithaca, NY (United States)

    2016-07-12

    The quinolinate synthase of prokaryotes and photosynthetic eukaryotes, NadA, contains a [4Fe-4S] cluster with unknown function. We report crystal structures of Pyrococcus horikoshii NadA in complex with dihydroxyacetone phosphate (DHAP), iminoaspartate analogues, and quinolinate. DHAP adopts a nearly planar conformation and chelates the [4Fe-4S] cluster via its keto and hydroxyl groups. The active site architecture suggests that the cluster acts as a Lewis acid in enediolate formation, like zinc in class II aldolases. The DHAP and putative iminoaspartate structures suggest a model for a condensed intermediate. The ensemble of structures suggests a two-state system, which may be exploited in early steps.

  20. Identification of crystals in Hanford nuclear waste using polarized light microscopy

    International Nuclear Information System (INIS)

    Herting, D.L.

    1984-09-01

    The use of polarized light microscopy for identifying crystals encountered in Rockwell Hanford Operations chemical studies is described. Identifying characteristics and full-color photographs are presented for crystals commonly found in Hanford Site nuclear waste, including sodium nitrate, sodium nitrite, sodium aluminate, sodium phosphate, sodium fluoride, ammonium heptafluorozirconate, sodium sulfate, sodium carbonate, and ammonium nitrate. These characteristics are described in terms of birefringence, extinction position, interference figure, sign of elongation, optic sign, and crystal morphology. Background information on crystal optics is presented so that these traits can be understood by the nonmicroscopist. Detailed operational instructions are given so that the novice microscope user can make the proper adjustments of the instrument to search for and observe the identifying features of the crystals

  1. High-temperature fluxing salt of LiNbO{sub 3} single-crystal by potassium meta-phosphate solvent

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, De-Long, E-mail: dlzhang@tju.edu.cn [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China); Du, Wen-Jie; Gao, Jian; Hua, Ping-Rang [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China); Yu, Zhi-Wu, E-mail: zhiwuyu@hmfl.ac.cn [High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Yu, Dao-Yin [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China); Yue-Bun Pun, Edwin [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-12-16

    We report that potassium meta-phosphate (KPO{sub 3}) is an adequate solvent for high-temperature fluxing salt of LiNbO{sub 3} crystal. As the KPO{sub 3} is used as the solvent, the solubility of LiNbO{sub 3} is as high as 3 g g{sup −1} at 1050 °C. The dissolving is fast. Neither solute nor solvent evaporates from the melt during the dissolving procedure. A clear solution is obtained and verified valid for crystal composition analysis using chemical method of inductively coupled plasma atomic emission spectroscopy. To help for understanding the dissolving mechanism, the obtained fluxing melt product was further characterized using X-ray diffraction, nuclear magnetic resonance and Raman scattering spectroscopy. The results show that the melt is amorphous. The P ion in the melt is in the form of low condensation and the Nb ion is likely in the form of Lindqvist ion. Finally, the dissolving mechanism is discussed. - Graphical abstract: An interesting and crucial finding that potassium meta-phosphate (KPO{sub 3}) is an adequate high-temperature solvent for composition analysis of LiNbO{sub 3} optical single-crystal using chemical method. - Highlights: • High-temperature fluxing salt of LiNbO{sub 3} (LN) crystal by KPO{sub 3} solvent is reported. • The solubility of LN is as much as 3 g g{sup −1} at 1050 °C and follows the Van't Hoff law. • The solution obtained is valid for LN composition analysis using chemical method. • The fluxing melt is amorphous with Nb presence in Lindqvist ion and P in free ion. • Flexible P–O bond, opened structure and high viscosity make KPO{sub 3} the adequate solvent.

  2. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed...

  3. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  4. Production and crystallization of α-phosphoglucomutase from Lactococcus lactis

    International Nuclear Information System (INIS)

    Nogly, Przemyslaw; Castro, Rute; Rosa, Matteo de; Neves, Ana Rute; Santos, Helena; Archer, Margarida

    2012-01-01

    α-Phosphoglucomutase from L. lactis, a homologue of human phosphomannomutase 1, was produced and crystallized. X-ray diffraction data were collected to 1.5 Å resolution. α-Phosphoglucomutase (α-PGM) is an enzyme that is essential for the growth of Lactococcus lactis. The enzyme links bacterial anabolism with sugar utilization through glycolysis by catalyzing the reversible interconversion of glucose 6-phosphate and α-glucose 1-phosphate. The gene encoding α-PGM was cloned and overexpressed in L. lactis. The purified protein was functionally active and was crystallized with ammonium sulfate as a precipitant using vapour-diffusion and seeding techniques. Optimized crystals diffracted to 1.5 Å resolution at a synchrotron source

  5. Discussion about magnesium phosphating

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-07-01

    Full Text Available The paper describes results from recently published research focused on production of non-conventional magnesium phosphate Mg3(PO42・4H2O – bobierrite, or MgHPO4・3H2O – newberyite coating for both magnesium alloys and/or mild steel. This new kind of coating is categorized in the context of current state of phosphating technology and its potential advantages and crystal structure is discussed. At the same time, the suitable comparison techniques for magnesium phosphate coating and conventional zinc phosphate coating are discussed.

  6. Ammonium sulfate preparation from phosphogypsum waste

    Directory of Open Access Journals (Sweden)

    Abdel-Hakim T. Kandil

    2017-01-01

    Full Text Available The Egyptian phosphogypsum waste is treated using sulfuric acid prior the ammonium sulfate production. The relevant factors that would affect the removal efficiencies of some impurities are studied. The optimum conditions of the treatment are 8 M sulfuric acid solution and 1/4 solid/liquid ratio for 30 min contact time at 80 °C. Moreover, the optimum conditions of the ammonium sulfate preparation are 10 g of the suspended impure or purified phosphogypsum in 40 ml of 3% ammonium sulfate solution (as initiator, 1/4 solid/liquid ratio at pH7 at an addition of an excess ammonium carbonate, and 150 rpm stirring speed for 4.0 h contact time at 55 °C as well as the 5 mg of barium chloride is added to remove the radium in the ammonium sulfate product. Finally, the ammonium sulfate is crystallized and the chemical analysis of the product shows 20% nitrogen and 23.6% sulfur. Therefore, the purity of the obtained ammonium sulfate is 95% from the purified phosphogypsum.

  7. 21 CFR 184.1296 - Ferric ammonium citrate.

    Science.gov (United States)

    2010-04-01

    ... occurs as thin transparent green scales, as granules, as a powder, or as transparent green crystals. (b) The ingredients meet the specifications of the Food Chemicals Codex, 3d Ed. (1981), pp. 116-117 (Ferric ammonium citrate, brown) and p. 117 (Ferric ammonium citrate, green), which is incorporated by...

  8. Predicting laser-induced bulk damage and conditioning for deuterated potassium di-hydrogen phosphate crystals using ADM (absorption distribution model)

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Z M; Spaeth, M L; Manes, K; Adams, J J; Carr, C W

    2010-02-26

    We present an empirical model that describes the experimentally observed laser-induced bulk damage and conditioning behavior in deuterated Potassium dihydrogen Phosphate (DKDP) crystals in a self-consistent way. The model expands on an existing nanoabsorber precursor model and the multi-step absorption mechanism to include two populations of absorbing defects, one with linear absorption and another with nonlinear absorption. We show that this model connects previously uncorrelated small-beam damage initiation probability data to large-beam damage density measurements over a range of ns pulse widths relevant to ICF lasers such as the National Ignition Facility (NIF). In addition, this work predicts the damage behavior of laser-conditioned DKDP and explains the upper limit to the laser conditioning effect. The ADM model has been successfully used during the commissioning and early operation of the NIF.

  9. Synthesis, crystal structure and characterization of a new organic-inorganic hybrid material 4-(ammonium methyl) pipyridinium hexachloro stanate (II) trihydrate

    Science.gov (United States)

    Lassoued, Mohamed Saber; Abdelbaky, Mohammed S. M.; Lassoued, Abdelmajid; Ammar, Salah; Gadri, Abdellatif; Ben Salah, Abdelhamid; García-Granda, Santiago

    2018-03-01

    The present paper undertakes the study of (C6H16N2) SnCl6·3H2O which is a new hybrid compound. It was prepared and characterized by single crystal X-ray diffraction, X-ray powder, Hirshfeld surface, Spectroscopy measurement, thermal study and photoluminescence properties. The single crystal X-ray diffraction studies revealed that the compound crystallizes in monoclinic Cc space group with cell parameters a = 8.3309(9) Å, b = 22.956(2) Å, c = 9.8381(9) Å, β = 101.334(9) ° and Z = 4. The atomic arrangement shows an alternation of organic and inorganic entities. The cohesion between these entities is performed via Nsbnd H⋯Cl, Nsbnd H⋯O, Osbnd H⋯Cl and Osbnd H⋯O hydrogen bonding to form a three-dimensional network. Hirshfeld surface analysis was used to investigate intermolecular interactions, as well 2D finger plots were conducted to reveal the contribution of these interactions in the crystal structure quantitatively. The X-ray powder is in agreement with the X-ray structure. Scanning electron microscope (SEM) was carried out. Furthermore, the room temperature infrared (IR) spectrum of the title compound was recorded and analyzed on the basis of data found in the literature. Solid state 13C NMR spectrum shows four signals, confirming the solid state structure determined by X-ray diffraction. Besides, the thermal analysis studies were performed, but no phase transition was found in the temperature range between 30 and 450 °C. The optical and PL properties of the compound were investigated in the solid state at room temperature and exhibited three bands at 348 and 401 cm-1 and a strong fluorescence at 480 nm.

  10. Characteristics of optical parametric oscillator synchronously pumped by Yb:KGW laser and based on periodically poled potassium titanyl phosphate crystal

    Science.gov (United States)

    Vengelis, Julius; Tumas, Adomas; Pipinytė, Ieva; Kuliešaitė, Miglė; Tamulienė, Viktorija; Jarutis, Vygandas; Grigonis, Rimantas; Sirutkaitis, Valdas

    2018-03-01

    We present experimental data and numerical simulation results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) pumped by femtosecond Yb:KGW laser (central wavelength at 1033 nm). The nonlinear medium for parametric generation was periodically poled potassium titanyl phosphate crystal (PPKTP). Maximum parametric light conversion efficiency from pump power to signal power was more than 37.5% at λs=1530 nm wavelength, whereas the achieved signal wave continuous tuning range was from 1470 nm to 1970 nm with signal pulse durations ranging from 91 fs to roughly 280 fs. We demonstrated wavelength tuning by changing cavity length and PPKTP crystal grating period and also discussed net cavity group delay dispersion (GDD) influence on SPOPO output radiation characteristics. The achieved high pump to signal conversion efficiency and easy wavelength tuning make this device a very promising alternative to Ti:sapphire based SPOPOs as a source of continuously tunable femtosecond laser radiation in the near and mid-IR range.

  11. Fatores de retardamento e coeficientes de dispersão-difusão de fosfato, potássio e amônio em solos de Minas Gerais Retardation factors and dispersion-diffusion coefficients of phosphate, potassium and ammonium in soils of Minas Gerais - Brazil

    Directory of Open Access Journals (Sweden)

    Ermelinda M. M. Oliveira

    2004-12-01

    Full Text Available Através deste estudo objetivou-se comparar os fatores de retardamento (R e os coeficientes de dispersão-difusão (D do fosfato, potássio e amônio, determinados em cinco solos de Minas Gerais (um Neossolo Quartzarênico órtico - RQo; três Latossolos Vermelhos distróficos - LVd1, LVd2 e LVd3; e um Latossolo Vermelho-Amarelo distrófico - LVAd. O experimento foi realizado utilizando-se colunas de percolação, que receberam aplicações de uma das soluções resultantes das oito possíveis combinações de duas concentrações de fosfato, potássio e amônio (15 e 60 mg L-1 de P, 75 e 300 mg L-1 de K e 15 e 60 mg L-1 de N. Valores menores de R para o potássio e o amônio, foram observados, quando comparados com os do fosfato. O R para fosfato foi menor no solo mais arenoso (RQo e maior no mais oxídico (LVd2, enquanto nos Latossolos os maiores valores do R para potássio e amônio estiveram relacionados com o incremento do teor de argila, sem tendência definida quanto á concentração do íon em estudo ou do íon acompanhante. Não se evidenciou relação nítida entre as concentrações de fosfato, potássio e amônio e os D desses íons nos solos estudados.The objective of this study was to compare the retardation factors (R, and dispersion-diffusion coefficients (D of phosphate, potassium and ammonium, determined in five Brazilian soils from Minas Gerais State (Orthic Quartzarenic Neosoil, RQo; three distrophic Red Latosols, LVd1, LVd2 and LVd3; and a distrophic Yellow-Red Latosol, LVAd. The experiment used percolation columns, applying one of the eight possible solutions resulting from the mixture of two phosphate, potassium and ammonium concentrations (15 and 60 mg L-1 P, 75 and 300 mg L-1 K, and 15 and 60 mgL-1 N. Lower values of R were observed for potassium and ammonium compared to phosphate. The value of R for phosphate was the lowest in the most sandy soil (RQo and highest in the most oxidic soil (LVd2. The highest Latosol

  12. The creation of defects in ammonium halides by excitons

    International Nuclear Information System (INIS)

    Kim, L.M.

    2002-01-01

    The ammonium halides crystals and alkali halides crystals are analogous by kind chemical bonds and crystalline lattices. The anionic sublattice is identical in this crystals. It is known the main mechanism of defect creation by irradiation is radiationless decay of excitons in alkali halides crystals. The F-, H-centers are formation in this processes. However, F, H-centres are not detected in ammonium halides. The goal of this work is investigation the creation of defects in ammonium halides by excitons. We established that excitons in ammonium chlorides and bromides are similar to excitons in alkali halides. It is known excitons are self-trapped and have identical parameters of the exciton-phonon interaction in both kind crystals. It is supposed, that processes of radiationless disintegration of excitons are identical in ammonium and alkali halides. It is necessary to understand why F-, H-centers are absent in ammonium halides. V k -centres are created by the excitation of the ammonium halides crystals in the absorption band of excitons. It was established by thermoluminescence and spectrums of absorption. The V k -centers begin to migrate at 110-120 K in ammonium chlorides and bromides. The curve of thermoluminescence have peak with maximum at this temperatures. It is known V k -centers in ammonium chlorides have the absorption band at 380 nm. We discovered this absorption band after irradiation of crystals by ultra-violet. In alkali halides F-center is anionic vacancy with electron. The wave function of electron are spread ed at the cations around anionic vacancy. We established the cation NH 4 + in ammonium halides can to capture electron. The ion NH 4 2+ is unsteady. It is disintegrated to NH 3 + and H + . We suppose that excitons in ammonium and alkali halides are disintegrated identically. When cation NH 4 + capture electron, in the anionic sublattice the configuration are created in a direction (100) The indicated configuration is unsteady in relation to a

  13. Development of calcium phosphate based apatite from hen's eggshell

    Indian Academy of Sciences (India)

    Unknown

    Cowin et al 1987). The apatitic calcium phosphate of bone mineral consists of carbonate, small amount of sodium, magnesium and other trace ele- ments. The submicroscopic crystal of calcium phosphate in bone resembles the crystal structure ...

  14. Elevated ammonium levels

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Novak, Ivana; MacAulay, Nanna

    2012-01-01

    Increased ammonium (NH(4)(+)/NH(3)) in the brain is a significant factor in the pathophysiology of hepatic encephalopathy, which involves altered glutamatergic neurotransmission. In glial cell cultures and brain slices, glutamate uptake either decreases or increases following acute ammonium expos...

  15. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  16. Phosphate Salts

    Science.gov (United States)

    ... many different combinations of the chemical phosphate with salts and minerals. Foods high in phosphate include dairy products, whole grain cereals, nuts, and certain meats. Phosphates found in dairy products ... People use phosphate salts for medicine. Be careful not to confuse phosphate ...

  17. Effect of oxalic acid on the optical, thermal, dielectric and mechanical behaviour of ADP crystals

    International Nuclear Information System (INIS)

    Rajesh, P.; Ramasamy, P.

    2009-01-01

    The effect of the addition, over a concentration range from 1 to 5 mol%, of oxalic acid on the growth rate, optical transparency, hardness, dielectric behaviour, and SHG efficiency of ammonium dihydrogen phosphate single crystals grown by slow evaporation method has been investigated. UV-Vis studies show that the transparency of the oxalic acid added crystals decreased gradually. Thermal studies indicate that the decomposition temperatures of the crystal are decreased in oxalic acid added ADP crystals. It is observed from the dielectric measurements that the dielectric constant and dielectric loss increase with increase in temperature for all the crystals. Vicker's microhardness study reveals that the addition of higher concentration of oxalic acid decreases the hardness of the crystal. SHG efficiency of 1 mol% of oxalic acid is higher than the pure ADP.

  18. Crystal structure of ammonium 3′-azido-3′-deoxythymidine-5′-aminocarbonylphosphonate hemihydrate: an anti-HIV agent

    Directory of Open Access Journals (Sweden)

    Maxim V. Jasko

    2014-11-01

    Full Text Available The asymmetric unit of the title compound, NH4+·C11H14N6O7P−·0.5H2O, contains one 3′-azido-3′-deoxythymidine-5′aminocarbonylphosphonate (ACP–AZT anion, half of an NH4+ cation lying on a twofold rotation axis and in another position, occupied with equal probabilities of 0.5, an NH4+ cation and a water molecule. The amide group of the ACP–AZT anion is disordered (occupancy ratio 0.5:0.5, with one part forming an N—H...O (involving C=O...H4N+ hydrogen bond and the other an O—H...N (involving C—NH2...OH2 hydrogen bond with the components of the split NH4+/H2O position. The pseudorotation parameters of ACP–AZT set it apart from previously studied AZT and thymidine. In the crystal, the various components are linked by N—H...O, O—H...O, N—H...N, C—H...O and C—H...N hydrogen bonds, forming a three-dimensional framework.

  19. Discussion about magnesium phosphating

    OpenAIRE

    Pokorny, P.; Tej, P.; Szelag, P.

    2016-01-01

    The paper describes results from recently published research focused on production of non-conventional magnesium phosphate Mg3(PO4)2・4H2O – bobierrite, or MgHPO4・3H2O – newberyite) coating for both magnesium alloys and/or mild steel. This new kind of coating is categorized in the context of current state of phosphating technology and its potential advantages and crystal structure is discussed. At the same time, the suitable comparison techniques for magnesium phosphate coating and convention...

  20. The ammonium sulfate inhibition of human angiogenin.

    Science.gov (United States)

    Chatzileontiadou, Demetra S M; Tsirkone, Vicky G; Dossi, Kyriaki; Kassouni, Aikaterini G; Liggri, Panagiota G V; Kantsadi, Anastassia L; Stravodimos, George A; Balatsos, Nikolaos A A; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2016-09-01

    In this study, we investigate the inhibition of human angiogenin by ammonium sulfate. The inhibitory potency of ammonium sulfate for human angiogenin (IC50 = 123.5 ± 14.9 mm) is comparable to that previously reported for RNase A (119.0 ± 6.5 mm) and RNase 2 (95.7 ± 9.3 mm). However, analysis of two X-ray crystal structures of human angiogenin in complex with sulfate anions (in acidic and basic pH environments, respectively) indicates an entirely distinct mechanism of inhibition. While ammonium sulfate inhibits the ribonucleolytic activity of RNase A and RNase 2 by binding to the active site of these enzymes, sulfate anions bind only to peripheral substrate anion-binding subsites of human angiogenin, and not to the active site. © 2016 Federation of European Biochemical Societies.

  1. Non-centrosymmetric ammonium rare earth nitrates (NH{sub 4}){sub 2}Ln(NO{sub 3}){sub 5}.4H{sub 2}O - crystal structure, crystal growth and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bohaty, Ladislav; Held, Peter; Becker, Petra [Institut fuer Kristallographie, Koeln Univ. (Germany); Froehlich, Roland [Organisch-Chemisches Institut, Muenster Univ. (Germany)

    2010-06-15

    For crystals of (NH{sub 4}){sub 2}Ln(NO{sub 3}){sub 5}.4H{sub 2}O (Ln = La, Ce, Pr, Nd), the piezoelectric and the pyroelectric effect was demonstrated unambiguously. X-ray structure determination shows that all four compounds are isomorphic, with monoclinic, non-centrosymmetric space group Cc, and are further isomorphic to the related rubidium compounds Rb{sub 2}Ln(NO{sub 3}){sub 5}.4H{sub 2}O. Large single crystals of the colourless compounds (NH{sub 4}){sub 2}La(NO{sub 3}){sub 5}.4H{sub 2}O and (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 5}.4H{sub 2}O were grown. On the basis of determined precise refractive indices and their dispersion in the wavelength region 0.365-1.083 μm, phase-matching conditions for collinear second harmonic generation were analyzed. In both crystals, type I phase matching can be realized for wavelengths from 0.893 μm (La) or 0.892 μm (Ce) to the near IR, where first absorption bands appear. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Scandium phosphates

    International Nuclear Information System (INIS)

    Mel'nikov, P.P.; Komissarova, L.N.

    1988-01-01

    The review deals with scandium phosphates known by now, including mono- and condensed phosphates (di-, tri-, tetra phosphates and more condensed forms). Phosphates with complex cation and anion parts are also considered. The methods of preparation, structural types, structure peculiarities, physicochemical characteristics are generalized and application fields of the compounds mentioned are indicated

  3. Routes to new hafnium(IV) tetraaryl porphyrins and crystal structures of unusual phosphate-, sulfate-, and peroxide-bridged dimers.

    Science.gov (United States)

    Falber, Alexander; Todaro, Louis; Goldberg, Israel; Favilla, Michael V; Drain, Charles Michael

    2008-01-21

    New routes for the synthesis of mono tetraaryl porphyrinato hafnium(IV) complexes, Hf(IV)Por(L)(2), are reported, where the secondary ligands, L, are determined by the method of purification. These synthetic routes cater to the solubility of the macrocycles and provide access to Hf(IV) complexes of meso tetraaryl porphyrins bearing diverse functional groups such as phenyl, tolyl, pyridyl, pentafluorophenyl, and carboxyphenyl. The latter three derivatives significantly expand the repertoire of hafnium porphyrinates. One route refluxes the porphyrin with HfCl(4) in 1-chloronaphthalene or in a mixed solvent of 1-chloronaphthalene and o-cresol. A second, solventless method is also reported wherein the porphyrin is mixed with Hf(cp)(2)Cl(2) and heated to give the metalated porphyrin in good yields. Simultaneous purification and formation of stable porphyrinato hafnium(IV) diacetate complexes, Hf(Por)OAc(2), is accomplished by elution over silica gel using 3-5% acetic acid in the eluent. Exchange of the acetate ligands for other oxo-bearing ligands can be nearly quantitative, such as p-aminobenzoate (PABA), pentanoate (pent), or octanoate (oct). Notably, we find that two to three of a variety of small multitopic dianions such as peroxo (O(2)(-2)), SO(4)(-2), and HPO(4)(-2) serve to bridge between two Hf(Por) moieties to form stable dimers. The crystal structures of this library of Hf(Por) complexes are reported, and we note that careful analysis of crystallography data reveals (Por)Hf(micro-eta(2)-O(2))(2)Hf(Por) rather than four bridging oxo or hydroxy ions.

  4. Proton dynamics investigation for dimethyl ammonium cation

    International Nuclear Information System (INIS)

    Pislewski, N.; Tritt-Goc, J.; Jakubas, R.

    1995-01-01

    Proton dynamics in dimethyl ammonium cation has been investigated by means of NMR and spin echo methods in polycrystalline salts [NH 2 (CH 3 ) 2 ] + Bi 2 J 9 - and [NH 2 (CH 3 ) 2 ] + SbJ 9 - . Spin-lattice relaxation time as well as second moment of NMR line have been measured for influence study of crystal structure changes on proton dynamics

  5. Raman gains of ADP and KDP crystals

    Science.gov (United States)

    Zhou, Hai-Liang; Zhang, Qing-Hua; Wang, Bo; Xu, Xin-Guang; Wang, Zheng-Ping; Sun, Xun; Zhang, Fang; Zhang, Li-Song; Liu, Bao-An; Chai, Xiang-Xu

    2015-04-01

    In this paper, the Raman gain coefficients of ammonium dihydrogen phosphate (ADP) and potassium dihydrogen phosphate (KDP) crystals are measured. By using a pump source of a 30-ps, 532-nm laser, the gain coefficients of ADP and KDP are 1.22 cm/GW, and 0.91 cm/GW, respectively. While for a 20-ps, 355-nm pump laser, the gain coefficients of these two crystals are similar, which are 1.95 cm/GW for ADP and 1.86 for KDP. The present results indicate that for ultra-violet frequency conversion, the problem of stimulated Raman scattering for ADP crystal will not be more serious than that for KDP crystal. Considering other advantages such the larger nonlinear optical coefficient, higher laser damage threshold, and lower noncritical phase-matching temperature, it can be anticipated that ADP will be a powerful competitor to KDP in large aperture, high energy third-harmonic generation or fourth-harmonic generation applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51323002 and 51402173), the Independent Innovation Foundation of Shandong University, China (Grant Nos. IIFSDU and 2012JC016), the Program for New Century Excellent Talents in University, China (Grant No. NCET-10-0552), the Fund from the Key Laboratory of Neutron Physics, China Academy of Engineering Physics (Grant No. 2014BB07), and the Natural Science Foundation for Distinguished Young Scholar of Shandong Province, China (Grant No. JQ201218).

  6. Manganese phosphate-coating

    International Nuclear Information System (INIS)

    Peyre, Y.

    1999-01-01

    Manganese phosphate-coating is one of the numerous chemical surface treatment which is used industrially. Its applications are usual for improving the friction properties of a lot of mechanical parts. Used for the treatment of steels and cast steels, baths (containing phosphoric acid, manganese phosphate and different additives) lead to the formation of nonmetal coatings of a few micrometers. These manganese-iron or manganese phosphates crystals reduce the friction coefficient and retain the lubricant film in contact with the moving parts. The running noises, the wear and the seizure risks are then strongly reduced. Pure manganese phosphate-coating is currently developing because the obtained coatings are thinner and more regular. (O.M.)

  7. Expression, purification, crystallization, data collection and preliminary biochemical characterization of methicillin-resistant Staphylococcus aureus Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase

    Energy Technology Data Exchange (ETDEWEB)

    Seetharamappa, Jaldappagari [Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST,Scotland (United Kingdom); Department of Chemistry, Karnatak University, Pavate Nagar, Dharwad 580 003, Karnataka State (India); Oke, Muse; Liu, Huanting; McMahon, Stephen A.; Johnson, Kenneth A.; Carter, Lester; Dorward, Mark; Zawadzki, Michal [Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST,Scotland (United Kingdom); Overton, Ian M.; Niekirk, C. A. Johannes van [Scottish Structural Facility and School of Life Sciences Research, University of Dundee, Dow Street, Dundee DD1 5EH,Scotland (United Kingdom); Graham, Shirley; Botting, Catherine H.; Taylor, Garry L.; White, Malcolm F. [Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST,Scotland (United Kingdom); Barton, Geoffrey J. [Scottish Structural Facility and School of Life Sciences Research, University of Dundee, Dow Street, Dundee DD1 5EH,Scotland (United Kingdom); Coote, Peter J.; Naismith, James H., E-mail: naismith@st-andrews.ac.uk [Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST,Scotland (United Kingdom)

    2007-05-01

    As part of work on S. aureus, the crystallization of Sar2028, a protein that is upregulated in MRSA, is reported. Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase with a molecular weight of 48 168 Da, was overexpressed in methicillin-resistant Staphylococcus aureus compared with a methicillin-sensitive strain. The protein was expressed in Escherichia coli, purified and crystallized. The protein crystallized in a primitive orthorhombic Laue group with unit-cell parameters a = 83.6, b = 91.3, c = 106.0 Å, α = β = γ = 90°. Analysis of the systematic absences along the three principal axes indicated the space group to be P2{sub 1}2{sub 1}2{sub 1}. A complete data set was collected to 2.5 Å resolution.

  8. Enzymatic dissolution of calcium and struvite crystals: in vitro evaluation of biochemical requirements.

    Science.gov (United States)

    Thalji, Nabil K; Richards, Nigel G; Peck, Ammon B; Canales, Benjamin K

    2011-09-01

    To evaluate the factors that affect the enzymatic dissolution rate of calcium oxalate monohydrate (COM), calcium phosphate (brushite), and magnesium ammonium phosphate (struvite) crystals as enzymatic digestion of kidney stones could enhance lithotripsy or provide alternatives to surgical removal. At pH 4.2, pelleted COM crystals were combined with oxalate decarboxylase (ODC from Bacillus subtilis), oxalate oxidase (from Hordeum vulgare), or control. Crystal dissolution was followed by measuring increases in solution calcium ion concentration. For phosphate-based crystals, the rates of phosphorolysis by the enzyme purine nucleoside phosphorylase (PNP, assay form) were compared to the control solution using spectrophotometry. The addition of ODC to COM crystals resulted in production of highly soluble calcium formate and a 15-fold increase in COM solubility. By adding a formate-catabolizing enzyme (formate dehydrogenase), dissolution increased 47-fold compared with controls with nearly one half of the mineral dissolved. Oxalate oxidase showed much lower activity than ODC in COM dissolution. Using inorganic phosphate as a substrate, PNP was able to dissolve both brushite and struvite minerals in water at concentrations near saturation. Measuring dissolution by adding more PNP was not possible because of equilibrium and assay detection restraints. Stone dissolution using enzymes appears to be viable, particularly for oxalate-based minerals. In a closed system, product inhibition by calcium formate appeared to limit the extent of COM crystal dissolution using ODC. Although phosphate-containing minerals appear to be suitable phosphate sources for PNP, the reversibility of the reaction limits the use of this enzyme. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Phosphate sensing

    Science.gov (United States)

    Bergwitz, Clemens; Jüppner, Harald

    2011-01-01

    Human phosphate homeostasis is regulated at the level of intestinal absorption of phosphate from the diet, release of phosphate through bone resorption, and renal phosphate excretion and involves the actions of parathyroid hormone (PTH), 1,25-dihydroxy-vitamin D (1,25-(OH)2-D), and fibroblast growth factor 23 (FGF23) to maintain circulating phosphate levels within a narrow normal range, which is essential for numerous cellular functions, for the growth of tissues and for bone mineralization. Prokaryotic and single cellular eukaryotic organisms such as bacteria and yeast “sense” ambient phosphate with a multi-protein complex located in their plasma membrane, which modulates the expression of genes important for phosphate uptake and metabolism (pho pathway). Database searches based on amino acid sequence conservation alone have been unable to identify metazoan orthologs of the bacterial and yeast phosphate sensors. Thus little is known about how human and other metazoan cells sense inorganic phosphate to regulate the effects of phosphate on cell metabolism (“metabolic” sensing) or to regulate the levels of extracellular phosphate via feedback system(s) (“endocrine” sensing). Whether the “metabolic” and the “endocrine” sensor use the same or different signal transduction cascades is unknown. This chapter will review the bacterial and yeast phosphate sensors, and then discuss what is currently known about the metabolic and endocrine effects of phosphate in multicellular organisms and humans. PMID:21406298

  10. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  11. Sodium Phosphate

    Science.gov (United States)

    Sodium phosphate is used in adults 18 years of age or older to empty the colon (large intestine, bowel) ... view of the walls of the colon. Sodium phosphate is in a class of medications called saline ...

  12. The 1.1 Å resolution structure of a periplasmic phosphate-binding protein from Stenotrophomonas maltophilia: a crystallization contaminant identified by molecular replacement using the entire Protein Data Bank.

    Science.gov (United States)

    Keegan, Ronan; Waterman, David G; Hopper, David J; Coates, Leighton; Taylor, Graham; Guo, Jingxu; Coker, Alun R; Erskine, Peter T; Wood, Steve P; Cooper, Jonathan B

    2016-08-01

    During efforts to crystallize the enzyme 2,4-dihydroxyacetophenone dioxygenase (DAD) from Alcaligenes sp. 4HAP, a small number of strongly diffracting protein crystals were obtained after two years of crystal growth in one condition. The crystals diffracted synchrotron radiation to almost 1.0 Å resolution and were, until recently, assumed to be formed by the DAD protein. However, when another crystal form of this enzyme was eventually solved at lower resolution, molecular replacement using this new structure as the search model did not give a convincing solution with the original atomic resolution data set. Hence, it was considered that these crystals might have arisen from a protein impurity, although molecular replacement using the structures of common crystallization contaminants as search models again failed. A script to perform molecular replacement using MOLREP in which the first chain of every structure in the PDB was used as a search model was run on a multi-core cluster. This identified a number of prokaryotic phosphate-binding proteins as scoring highly in the MOLREP peak lists. Calculation of an electron-density map at 1.1 Å resolution based on the solution obtained with PDB entry 2q9t allowed most of the amino acids to be identified visually and built into the model. A BLAST search then indicated that the molecule was most probably a phosphate-binding protein from Stenotrophomonas maltophilia (UniProt ID B4SL31; gene ID Smal_2208), and fitting of the corresponding sequence to the atomic resolution map fully corroborated this. Proteins in this family have been linked to the virulence of antibiotic-resistant strains of pathogenic bacteria and with biofilm formation. The structure of the S. maltophilia protein has been refined to an R factor of 10.15% and an Rfree of 12.46% at 1.1 Å resolution. The molecule adopts the type II periplasmic binding protein (PBP) fold with a number of extensively elaborated loop regions. A fully dehydrated phosphate

  13. Urine Anion Gap to Predict Urine Ammonium and Related Outcomes in Kidney Disease.

    Science.gov (United States)

    Raphael, Kalani L; Gilligan, Sarah; Ix, Joachim H

    2018-02-07

    Low urine ammonium excretion is associated with ESRD in CKD. Few laboratories measure urine ammonium, limiting clinical application. We determined correlations between urine ammonium, the standard urine anion gap, and a modified urine anion gap that includes sulfate and phosphate and compared risks of ESRD or death between these ammonium estimates and directly measured ammonium. We measured ammonium, sodium, potassium, chloride, phosphate, and sulfate from baseline 24-hour urine collections in 1044 African-American Study of Kidney Disease and Hypertension participants. We evaluated the cross-sectional correlations between urine ammonium, the standard urine anion gap (sodium + potassium - chloride), and a modified urine anion gap that includes urine phosphate and sulfate in the calculation. Multivariable-adjusted Cox models determined the associations of the standard urine anion gap and the modified urine anion gap with the composite end point of death or ESRD; these results were compared with results using urine ammonium as the predictor of interest. The standard urine anion gap had a weak and direct correlation with urine ammonium ( r =0.18), whereas the modified urine anion gap had a modest inverse relationship with urine ammonium ( r =-0.58). Compared with the highest tertile of urine ammonium, those in the lowest urine ammonium tertile had higher risk of ESRD or death (hazard ratio, 1.46; 95% confidence interval, 1.13 to 1.87) after adjusting for demographics, GFR, proteinuria, and other confounders. In comparison, participants in the corresponding standard urine anion gap tertile did not have higher risk of ESRD or death (hazard ratio, 0.82; 95% confidence interval, 0.64 to 1.07), whereas the risk for those in the corresponding modified urine anion gap tertile (hazard ratio, 1.32; 95% confidence interval, 1.03 to 1.68) approximated that of directly measured urine ammonium. Urine anion gap is a poor surrogate of urine ammonium in CKD unless phosphate and

  14. Protein Precipitation Using Ammonium Sulfate

    OpenAIRE

    Wingfield, Paul T.

    2001-01-01

    The basic theory of protein precipitation by addition of ammonium sulfate is presented and the most common applications are listed, Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution.

  15. Relations of ammonium minerals at several hydrothermal systems in the western U.S.

    Science.gov (United States)

    Krohn, M.D.; Kendall, C.; Evans, J.R.; Fries, T.L.

    1993-01-01

    Ammonium bound to silicate and sulfate minerals has recently been located at several major hydrothermal systems in the western U.S. utilizing newly-discovered near-infrared spectral properties. Knowledge of the origin and mineralogic relations of ammonium minerals at known hydrothermal systems is critical for the proper interpretation of remote sensing data and for testing of possible links to mineralization. Submicroscopic analysis of ammonium minerals from two mercury- and gold-bearing hot-springs deposits at Ivanhoe, Nevada and McLaughlin, California shows that the ammonium feldspar, buddingtonite, occurs as fine-grained euhedral crystals coating larger sulfide and quartz crystals. Ammonium feldspar seems to precipitate relatively late in the crystallization sequence and shows evidence for replacement of NH4+ by K+ or other monovalent cations. Some buddingtonite is observed in close association with mercury, but not with gold. Ammonioalunite is found in a variety of isolated crystal forms at both deposits. Nitrogen isotopic values for ammonium-bearing minerals show a 14??? range in composition, precluding assignment of a specific provenance to the nitrogen. The correlations of nitrogen isotopic values with depth and ammonium content suggest some loss of nitrogen in the oxidizing supergene environment, possibly as a metastable mineral. The high ammonium content in these hydrothermal systems, the close association to mercury, and the small crystal size of the ammonium-bearing minerals all suggest that ammonium may be transported in a late-stage vapor phase or as an organic volatile. Such a process could lead to the formation of a non-carbonaceous organic aureole above a buried geothermal source. The discovery of a 10-km outcrop of ammonium minerals confirms that significant substitution of ammonium in minerals is possible over an extensive area and that remote sensing is a feasible means to detect such aureoles. ?? 1993.

  16. Development of a ten inch manipulators-based, flexible, broadband two-crystal spectrometer

    Science.gov (United States)

    Steel, A. B.; Dunn, J.; Emig, J.; Beiersdorfer, P.; Brown, G. V.; Shepherd, R.; Marley, E. V.; Hoarty, D. J.

    2014-11-01

    We have developed and implemented a broadband X-ray spectrometer with a variable energy range for use at the Atomic Weapons Establishment's Orion Laser. The spectrometer covers an energy bandwidth of ˜1-2 keV using two independently mounted, movable Bragg diffraction crystals. Using combinations of cesium hydrogen pthlate, ammonium dihydrogen phosphate, and pentaerythritol crystals, spectra covering the 1.4-2.5, 1.85-3.15, or 3.55-5.1 keV energy bands have been measured. Image plate is used for detection owing to its high dynamic range. Background signals caused by high energy X-rays and particles commonly produced in high energy laser experiments are reduced by a series of tantalum baffles and filters installed between the source and crystal and also between the crystals and detector.

  17. Development of a ten inch manipulators-based, flexible, broadband two-crystal spectrometer.

    Science.gov (United States)

    Steel, A B; Dunn, J; Emig, J; Beiersdorfer, P; Brown, G V; Shepherd, R; Marley, E V; Hoarty, D J

    2014-11-01

    We have developed and implemented a broadband X-ray spectrometer with a variable energy range for use at the Atomic Weapons Establishment's Orion Laser. The spectrometer covers an energy bandwidth of ∼1-2 keV using two independently mounted, movable Bragg diffraction crystals. Using combinations of cesium hydrogen pthlate, ammonium dihydrogen phosphate, and pentaerythritol crystals, spectra covering the 1.4-2.5, 1.85-3.15, or 3.55-5.1 keV energy bands have been measured. Image plate is used for detection owing to its high dynamic range. Background signals caused by high energy X-rays and particles commonly produced in high energy laser experiments are reduced by a series of tantalum baffles and filters installed between the source and crystal and also between the crystals and detector.

  18. Spectrophotometric Determination of Nitrate and Phosphate Levels ...

    African Journals Online (AJOL)

    MBI

    2013-04-09

    Apr 9, 2013 ... may help in the growth of algae (Beavington,. 1977). Determination of phosphate ion in drinking water. 50cm3 of water sample was pipetted into a 500cm3 volumetric flask, 5cm3 of Ammonium molybdate solution and 3.0cm3 of ascorbic acid were added with swirling, the mixture was diluted to the mark with ...

  19. Heterogeneous reactions of alkylamines with ammonium sulfate and ammonium bisulfate.

    Science.gov (United States)

    Qiu, Chong; Wang, Lin; Lal, Vinita; Khalizov, Alexei F; Zhang, Renyi

    2011-06-01

    The heterogeneous reactions between alkylamines and ammonium salts (ammonium sulfate and ammonium bisulfate) have been studied using a low-pressure fast flow reactor coupled to an ion drift-chemical ionization mass spectrometer (ID-CIMS) at 293 ± 2 K. The uptake of three alkylamines, i.e., monomethylamine, dimethylamine, and trimethylamine, on ammonium sulfate shows a displacement reaction of ammonium by aminium, evidenced by the release of ammonia monitored using protonated acetone dimer as the reagent ion. For the three alkylamines, the initial uptake coefficients (γ(0)) range from 2.6 × 10(-2) to 3.4 × 10(-2) and the steady-state uptake coefficients (γ(ss)) range from 6.0 × 10(-3) to 2.3 × 10(-4) and decrease as the number of methyl groups on the alkylamine increases. A different reaction mechanism is observed for the uptake of the three alkylamines on ammonium bisulfate, which is featured by an acid-base reaction (neutralization) with irreversible alkylamine loss and no ammonia generation and occurs at a rate limited by diffusion of gaseous alkylamines to the ammonium bisulfate surface. Our results reveal that the reactions between alkylamines and ammonium salts contribute to particle growth and alter the composition of ammonium sulfate and bisulfate aerosols in the atmosphere.

  20. Prevention of radioactive contamination in the manufacture of phosphate fertilizers

    International Nuclear Information System (INIS)

    Romero G, E.T.

    1995-01-01

    In this work was studied the separation of uranium from the phosphate rock to decrease the level of radioactivity in the phosphate fertilizers, this prevents the redistribution of uranium in the environment. The uranium leaching conditions from phosphate rock were estimated using alkaline solutions. The changes in the natural phosphate rock after leaching were studied. The amenability to separate the uranium from phosphate rock with ammonium carbonate / bicarbonate solution was determined. The uranium extraction was approximately 40%. The leaching conditions showed high selectivity for uranium without changes in the ore structure. The bulk ore was not dissolved. (Author)

  1. Study of the surface crystallization and resistance to dissolution of niobium phosphate glasses for nuclear waste immobilization; Estudo da cristalizacao superficial e da resistencia a dissolucao de vidros niobofosfatos visando a imobilizacao de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Heveline

    2008-07-01

    The surface crystallization and the dissolution rate of three phosphate glass compositions containing different amounts of niobium oxide were studied. The glasses were named Nb30, Nb37, and Nb44 according to the nominal content of niobium oxide in the glass composition. The three compositions were evaluated keeping the P{sub 2}O{sub 5}/K{sub 2}O ratio constant and varying the amount of Nb{sub 2}O{sub 5}. These glasses were produced by melting appropriate chemical compounds at 1500 deg C for 0.5 hour. The crystalline phases which were nucleated on the glass surface after heat treatment were determined by X-ray diffraction. The crystalline structures depend on the amount of niobium oxide in the glass composition. The crystal morphologies were observed by using an optical microscope, and their characteristics are specific for each kind of crystalline phase. The crystal growth rate and the surface nuclei density were determined for each glass composition, and they depend on each crystalline phase nucleated on the surface. From the differential thermal analysis curves it was determined that the Nb44 glass containing 46.5 mol por cent of niobium oxide is the most thermally stable against crystallization when compared to the Nb30 and Nb37 glasses. According to the activation energies determined for crystal growth on the surface of each glass type, the Nb44 glass can also be considered the most resistant one against crystallization. The dissolution rate for the Nb44 glass after 14 days immersed in an aqueous solution with pH equals to 7 at 90 deg C is the lowest (9.0 x 10{sup -7} g. cm{sup -2} . day{sup -1}) when compared to the other two glass compositions. The dissolution rates in acidic and neutral solutions of all studied glasses meet the international standards for materials which can be used in the immobilization of nuclear wastes. (author)

  2. Ammonium on Ceres

    Science.gov (United States)

    Ammannito, E.; De Sanctis, M. C.; Carrorro, F. G.; Ciarniello, M.; Combe, J. P.; De Angelis, S.; Ehlmann, B. L.; Frigeri, A.; Longobardo, A.; Mugnuolo, R.; Marchi, S.; Palomba, E.; Raymond, C. A.; Salatti, M.; Tosi, F.; Zambon, F.; Russell, C. T.

    2017-12-01

    Since January 2015, the surface of Ceres has been studied by the Dawn spacecraft through the measurements from the three instruments on board (1). The VIR imaging spectrometer, sensitive to the spectral range 0.25 -5.0 μm, provided information on the surficial composition of Ceres at resolutions ranging from few kilometers to about one hundred meters (2). Analysis of VIR reflectance data revealed that the average spectrum of Ceres is compatible with a mixture of low-albedo minerals, Mg- phyllosilicates, ammoniated clays, and Mg- carbonates, (3) confirming previous studies based on ground based spectra (4, 5). Mineralogical maps of the surface at about 1 km/px show that the components identified in the average spectrum are present all across the surface with variations in their relative abundance and chemical composition (6, 7). While the ammoniated clays have been already studied (6), the presence nature and distribution of additional ammoniated species has never been investigated in detail, although the spectral analysis of the bright faculae within Occator crater already revealed the potential presence of ammonium salts (8). Since the position and shape of the ammonium absorption in the VIS-NIR region are function of the hosting mineral specie (8), we did an inventory and characterization of the ammonium-rich regions, in order to analyze their spectral properties. In addition to the presence of ammonium, also the identification of the hosting species has implication for the evolution of Ceres. Our study, therefore, is a step forward in understanding of evolutionary pathway of Ceres. References: (1) Russell, C. T. et al., Science, 2016. (2) De Sanctis M.C. et al., Space Science Reviews, 2011. (3) De Sanctis M.C. et al., Nature, 2015. (4) King T. et al. Science, 1992. (5) Rivkin A.S. et al. Icarus, 2006. (6) Ammannito E. et al., Science, 2016. (7) Carrozzo F.G. et al., Science Advances, in revision. (8) De Sanctis et al., Nature, 2016. (9) Berg et al., Icarus

  3. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  4. Crystal structures and magnetic properties of iron (III)-based phosphates: Na4NiFe(PO4)3 and Na2Ni2Fe(PO4)3

    International Nuclear Information System (INIS)

    Essehli, Rachid; Bali, Brahim El; Benmokhtar, Said; Bouziane, Khalid; Manoun, Bouchaib; Abdalslam, Mouner Ahmed; Ehrenberg, Helmut

    2011-01-01

    Graphical abstract: A perspective view of the Na 2 Ni 2 Fe(PO 4 ) 3 structure along the [0 0 1] direction. Both compounds seem to exibit antiferromagnetic interactions between magnetic entities at low temperature. Display Omitted Research highlights: → Nasicon and Alluaudite compounds, Iron(III)-based phosphates, Crystal structures of Na 4 NiFe(PO 4 ) 3 and Na 2 Ni 2 Fe(PO 4 ) 3 . → Magnetism behaviours of Na 4 NiFe(PO 4 ) 3 and Na 2 Ni 2 Fe(PO 4 ) 3 . → Antiferromagnetism interactions. → Mossbauer spectroscopy. - Abstract: Crystal structures from two new phosphates Na 4 NiFe(PO 4 ) 3 (I) and Na 2 Ni 2 Fe(PO 4 ) 3 (II) have been determined by single crystal X-ray diffraction analysis. Compound (I) crystallizes in a rhombohedral system (S. G: R-3c, Z = 6, a = 8.7350(9) A, c = 21.643(4) A, R 1 = 0.041, wR 2 =0.120). Compound (II) crystallizes in a monoclinic system (S. G: C2/c, Z = 4, a = 11.729(7) A, b = 12.433(5) A, c = 6.431(2) A, β = 113.66(4) o , R 1 = 0.043, wR 2 =0.111). The three-dimensional structure of (I) is closely related to the Nasicon structural type, consisting of corner sharing [(Ni/Fe)O 6 ] octahedra and [PO 4 ] tetrahedra forming [NiFe(PO 4 ) 3 ] 4+ units which align in chains along the c-axis. The Na + cations fill up trigonal antiprismatic sites within these chains. The crystal structure of (II) belongs to the alluaudite type. Its open framework results from [Ni 2 O 10 ] units of edge-sharing [NiO 6 ] octahedra, which alternate with [FeO 6 ] octahedra that form infinite chains. Coordination of these chains yields two distinct tunnels in which site Na + . The magnetization data of compound (I) reveal antiferromagnetic (AFM) interactions by the onset of deviations from a Curie-Weiss behaviour at low temperature as confirmed by Moessbauer measurements performed at 4.2 K. The corresponding temperature dependence of the reciprocal susceptibility χ -1 follows a typical Curie-Weiss behaviour for T > 105 K. A canted AFM state is proposed for

  5. Crystallisation of mixtures of ammonium nitrate, ammonium sulphate and soot

    NARCIS (Netherlands)

    Dougle, P.G.; Veefkind, J.P.; Brink, H.M. ten

    1998-01-01

    Crystallisation of laboratory aerosols of ammonium nitrate and of internal mixtures of this salt with ammonium sulphate were investigated using humidity controlled nephelometry. The aerosol was produced via nebulizing of solutions and then dried to 25% RH, which is a realistic minimum value for

  6. Phosphate glasses, containing nitrogen

    International Nuclear Information System (INIS)

    Lisitsyna, E.A.; Khalilev, V.D.; Koryavin, A.A.; Goncharova, L.N.

    1987-01-01

    Possibilities of nitrogen-containing glass synthesis by the introduction into the charge of ammonium salts, as well as aluminium nitride, are studied. Zinc alumoyttrium phosphate glass (mol. %) Zn(PO 3 ) 2 - 4O, Al(PO 3 ) 3 - 3O, Y(PO 3 ) 3 -3O is suggested as a matrix. It is shown that the effect of amide and imide groups on the properties of the glass is less noticeable than the effect of nitride groups. Direct introduction of nitride constituent was realized using AlN, but aluminium introduction was taken into account so that the oxide was subtracted. The attempt to introduce more than 2.5 mass % of nitrogen into initial matrix by aluminium nitride has failed due to repeated restoration of glass with amorphous phosphorus isolation

  7. Radionuclide flow during the conversion of phosphogypsum to ammonium sulfate

    International Nuclear Information System (INIS)

    Burnett, W.C.; Schultz, M.K.; Hull, C.D.

    1996-01-01

    Approximately 30 million tons of the by-product phosphogypsum are currently produced annually by the phosphate fertilizer industry in Florida. Nearly all of this material is stockpiled because radioactive impurities prevent utilization of what could otherwise be a useful agricultural amendment or construction material. Long-term storage and maintenance of this material presents economic as well as potential environmental concerns. One partial solution to this problem may be conversion of phosphogypsum to ammonium sulfate by the so-called Merseberg ammonocarbonation process. Ammonium sulfate is an excellent fertilizer which supplies sulfur as well as nitrogen to soils. We have assessed the flow of the natural decay-series radionuclides 238 U, 226 Ra, 210 Pb and 210 Po through the Merseberg process by the analysis of starting materials and products from overseas industrial-scale plants. Results indicate that the radionuclides associated with phosphogypsum do not report to the ammonium sulfate product but are found instead almost exclusively in the by-product calcium carbonate. Thus, the radiochemical results are encouraging in terms of using this process as an option for partial removal of waste phosphogypsum. Although there is a clear and recognized need for increased sulfur addition to many crops, the price of sulfur has been so low and alternative supplies of ammonium so common that investment in this process has been discouraged. Recent price increases and demand for ammonium sulfate may make the Merseberg process more attractive. (author)

  8. Protein Precipitation Using Ammonium Sulfate.

    Science.gov (United States)

    2016-04-01

    The basic theory of protein precipitation by addition of ammonium sulfate is presented, and the most common applications are listed. Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution. Copyright © 2016 John Wiley & Sons, Inc.

  9. [Screening, identification and phosphate-solubilizing characteristics of Rahnella sp. phosphate-solubilizing bacteria in calcareous soil].

    Science.gov (United States)

    Qiao, Zhi-wei; Hong, Jian-ping; Xie, Ying-he; Li, Lin-xuan

    2013-08-01

    Several strains of phosphate-solubilizing bacteria were isolated and screened from the crop rhizosphere of calcareous soil in Shanxi Province of China. After repeated isolation and purification, the strain W25 with strong phosphate-solubilizing activity was obtained, and identified as Rahnella sp., based on the morphological, physiological and biochemical properties and the analysis of 16S rRNA gene sequence. Further studies on the W25 showed that the maximum phosphate-solubilizing capability of the W25 on tricalium phosphate, aluminum phosphate and ferric phosphate reached 385.5, 110.4 and 216.6 mg x L(-1), respectively. In the liquid culture with aluminum phosphate and ferric phosphate, the solubilized phosphorous by the W25 was significantly negatively correlated with the liquid pH, with the correlation coefficient being 0.56 and 0.81, respectively. Among the carbon and nitrogen sources, glucose and ammonium nitrate were the optimum for the solubilization of tricalium phosphate by W25. The utilization of carbon source was in the order of glucose > lactose > sucrose > mannitose > starch, and that of nitrogen source was in the order of ammonium nitrate > ammonium chloride > ammonium sulfate > potassium nitrate > sodium nitrate. Different nitrogen sources had greater effects on the production of organic acids by W25. Formic acid and acetic acid would be produced when the nitrogen source was NH4+, oxalic acid and succinic acid would be produced when the nitrogen source was NO3(-), and citric acid would be extra produced when the ammonium nitrate was used as the nitrogen source.

  10. Early metabolic effects and mechanism of ammonium transport in yeast

    International Nuclear Information System (INIS)

    Pena, A.; Pardo, J.P.; Ramirez, J.

    1987-01-01

    Studies were performed to define the effects and mechanism of NH+4 transport in yeast. The following results were obtained. Glucose was a better facilitator than ethanol-H 2 O 2 for ammonium transport; low concentrations of uncouplers or respiratory inhibitors could inhibit the transport with ethanol as the substrate. With glucose, respiratory inhibitors showed only small inhibitory effects, and only high concentrations of azide or trifluoromethoxy carbonylcyanide phenylhydrazone could inhibit ammonium transport. Ammonium in the free state could be concentrated approximately 200-fold by the cells. Also, the addition of ammonium produced stimulation of both respiration and fermentation; an increased rate of H+ extrusion and an alkalinization of the interior of the cell; a decrease of the membrane potential, as monitored by fluorescent cyanine; an immediate decrease of the levels of ATP and an increase of ADP, which may account for the stimulation of both fermentation and respiration; and an increase of the levels of inorganic phosphate. Ammonium was found to inhibit 86Rb+ transport much less than K+. Also, while K+ produced a competitive type of inhibition, that produced by NH4+ was of the noncompetitive type. From the distribution ratio of ammonium and the pH gradient, an electrochemical potential gradient of around -180 mV was calculated. The results indicate that ammonium is transported in yeast by a mechanism similar to that of monovalent alkaline cations, driven by a membrane potential. The immediate metabolic effects of this cation seem to be due to an increased [H+]ATPase, to which its transport is coupled. However, the carriers seem to be different. The transport system studied in this work was that of low affinity

  11. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  12. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  13. Ammonium Perchlorate and Ammonium Perchlorate- Hydroxyl Terminated Polybutadiene Simulated Combustion

    Directory of Open Access Journals (Sweden)

    Rene Francisco Boschi Gonçalves

    2012-03-01

    Full Text Available The combustion simulation of ammonium perchlorate was carried out with the software Chemkin, in two steps: the burning behavior of pure ammonium perchlorate and the one of formulated ammonium perchlorate with hydroxyl terminated polybutadiene binder. In both cases, the room pressure varied in order to verify its influence in the system. The burning environment conditions were diverse. During the combustion process, the data obtained from the kinetic chemistry simulation software were compiled. The flame structure can be described by the molar fraction of the burning products and the temperature evolution from the surface of the material.

  14. Molten salt flux synthesis and crystal structure of a new open-framework uranyl phosphate Cs3(UO2)2(PO4)O2: Spectroscopic characterization and cationic mobility studies

    Science.gov (United States)

    Yagoubi, S.; Renard, C.; Abraham, F.; Obbade, S.

    2013-04-01

    The reaction of triuranyl diphosphate tetrahydrate precursor (UO2)3(PO4)2(H2O)4 with a CsI flux at 750 °C yields a yellow single crystals of new compound Cs3(UO2)2(PO4)O2. The crystal structure (monoclinic, space group C2/c, a=13.6261 (13) Å, b=8.1081(8) Å, c=12.3983(12) Å, β=114.61(12)°, V=1245.41(20) Å3 with Z=4) has been solved using direct methods and Fourier difference techniques. A full-matrix least-squares refinement on the basis of F2 yielded R1=0.028 and wR2=0.071 for 79 parameters and 1352 independent reflections with I≥2σ(I) collected on a BRUKER AXS diffractometer with MoKα radiation and a charge-coupled device detector. The crystal structure is built by two independent uranium atoms in square bipyramidal coordination, connected by two opposite corners to form infinite chains [UO5]∞1 and by one phosphorus atom in a tetrahedral environment PO4. The two last entities [UO5]∞1 and PO4 are linked by sharing corners to form a three-dimensional structure presenting different types of channels occupied by Cs+ alkaline cations. Their mobility within the tunnels were studied between 280 and 800 °C and compared with other tunneled uranyl minerals. The infrared spectrum shows a good agreement with the values inferred from the single crystal structure analysis of uranyl phosphate compound.

  15. Redox process catalysed by growing crystal-strengite, FePO4,2H2O, crystallizing from solution with iron(II) and hydroxylamine

    Science.gov (United States)

    Lundager Madsen, Hans Erik

    2014-09-01

    In an attempt to grow pure crystals of the iron(II) phosphate vivianite, Fe3(PO4)2,8H2O, from a solution of Mohr's salt, Fe(NH4)2(SO4)2,6H2O, added to a solution of ammonium phosphate, hydroxylammonium chloride, NH3OHCl, was added to the iron(II) stock solution to eliminate oxidation of iron(II) by oxygen from the air. However, the effect turned out to be the opposite of the expected: whereas hydroxylamine reduces iron(III) in bulk solution, it acted as a strong oxidant in the presence of growing iron phosphate crystals, causing the crystallization of the iron(III) phosphate strengite, FePO4,2H2O, as the only solid phase. Evidently the crystal surface catalyses oxidation of iron(II) by hydroxylamine. The usual composite kinetics of spiral growth and surface nucleation was found. The surface-nucleation part yielded edge free energy λ in the range 12-45 pJ/m, virtually independent of temperature and in the range typical for phosphates of divalent metals. The scatter of values for λ presumably arises from contributions from different crystal forms to the overall growth rate. The low mean value points to strong adsorption of iron(II), which is subsequently oxidized at the crystal surface, forming strengite. The state of the system did not tend to thermodynamic equilibrium, but to a metastable state, presumably controlled by the iron(II) rich surface layer of the crystal. In addition to crystal growth, it was possible to measure nucleation kinetics by light scattering (turbidimetry). A point of transition from heterogeneous to homogeneous nucleation was found, and from the results for the homogeneous domain a rather precise value of crystal surface free energy γ=55 mJ/m2 was found. This is a relatively low value as well, indicating that the redox process plays a role already at the nucleation stage.

  16. The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste

    Science.gov (United States)

    Hsu, Jen-Hsien; Bai, Jincheng; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Zervos, Adam

    2018-03-01

    The effects of cooling rate on the chemical durability of iron phosphate waste forms containing up to 40 wt% of a high MoO3 Collins-CLT waste simulant were determined at 90 °C using the product consistency test (PCT). The waste form, designated 40wt%-5, meets appropriate Department of Energy (DOE) standards when rapidly quenched from the melt (as-cast) and after slow cooling following the CCC (canister centerline cooling)-protocol, although the quenched glass is more durable. The analysis of samples from the vapor hydration test (VHT) and the aqueous corrosion test (differential recession test) reveals that rare earth orthophosphate (monazite) and Zr-pyrophosphate crystals that form on cooling are more durable than the residual glass in the 40wt%-5 waste form. The residual glass in the CCC-treated samples has a greater average phosphate chain length and a lower Fe/P ratio, and those contribute to its faster corrosion kinetics.

  17. Effects of phosphate rock application on dry matter yield and ...

    African Journals Online (AJOL)

    Administrator

    Three sources of P: Ogun phosphate rock (OPR: 20.2% P2O5); Crystallizer super (CS: 31.4% P2O5) ... super phosphate (SSP) gave a higher total biomass than the phosphate rocks (PR). On Ilora soil with the regular application frequency in .... cropping cycle lasted for four weeks. Total plants were uprooted and the shoots ...

  18. Electrochemical Reduction of Zinc Phosphate

    International Nuclear Information System (INIS)

    Kim, Chang Hwan; Lee, Jung Hyun; Shin, Woon Sup

    2010-01-01

    We demonstrated first that the electrochemical reduction of zinc phosphate in neutral phosphate buffer is possible and potentially applicable to bio-compatible rechargeable battery. The actual redox component is Zn(s)/Zn phosphate(s) and the future research about the control of crystal formation for the better cyclability is required. In lead-acid battery, the electrochemical redox reaction of Pb (s) /PbSO 4(s) is used by reducing Pb(II) and oxidizing Pb(0) in sulfate rich solution. Since both reduced form and oxidized form are insoluble, they cannot diffuse to the opposite electrodes and react. It is a very common strategy to make a stable battery electrode that a metal element is reduced and oxidized in solution containing an abundance of anion readily precipitating with the metal ion. For the application of this strategy to construction of rechargeable battery using bio-compatible electrode materials and electrolytes, the use of phosphate ion can be considered as anion readily precipitating with metal ions. If phosphate buffer with neutral pH is used as electrolyte, the better bio-compatibility will be achieved than most of rechargeable battery using strong acid, strong base or organic solvent as electrolyte solution. There are many metal ions readily precipitating with phos-phate ion, and zinc is one of them

  19. Reactive Uptake of Dimethylamine by Ammonium Sulfate and Ammonium Sulfate-Sucrose Mixed Particles.

    Science.gov (United States)

    Chu, Yangxi; Chan, Chak K

    2017-01-12

    Short-chain alkyl amines can undergo gas-to-particle partitioning via reactive uptake by ammonium salts, whose phases have been thought to largely influence the extent of amine uptake. Previous studies mainly focused on particles of single ammonium salt at either dry or wet conditions without any addition of organic compounds. Here we report the uptake of dimethylamine (DMA) by ammonium sulfate (AS) and AS-sucrose mixed particles at different relative humidities (RHs) using an electrodynamic balance coupled with in situ Raman spectroscopy. DMA is selected as a representative of short-chain alkyl amines, and sucrose is used as a surrogate of viscous and hydrophilic organics. Effective DMA uptake was observed for most cases, except for the water-limiting scenario at <5% RH and the formation of an ultraviscous sucrose coating at 10% RH and below. DMA uptake coefficients (γ) were estimated using the particle mass measurements during DMA uptake. Addition of sucrose can increase γ by absorbing water or inhibiting AS crystallization and decrease γ by elevating the particle viscosity and forming a coating layer. DMA uptake can be facilitated for crystalline AS or retarded for aqueous AS with hydrophilic viscous organics (e.g., secondary organic material formed via the oxidation of biogenic volatile organic compounds) present in aerosol particles.

  20. Structure of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase in a hexagonal crystal form: insights into the path of carbamoyl phosphate to the active site of the enzyme.

    Science.gov (United States)

    Vitali, Jacqueline; Singh, Aditya K; Soares, Alexei S; Colaneri, Michael J

    2012-05-01

    Crystals of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase (ATCase) grew in the presence of the regulatory chain in the hexagonal space group P6(3)22, with one monomer per asymmetric unit. This is the first time that crystals with only one monomer in the asymmetric unit have been obtained; all known structures of the catalytic subunit contain several crystallographically independent monomers. The symmetry-related chains form the staggered dimer of trimers observed in the other known structures of the catalytic subunit. The central channel of the catalytic subunit contains a sulfate ion and a K(+) ion as well as a glycerol molecule at its entrance. It is possible that it is involved in channeling carbamoyl phosphate (CP) to the active site of the enzyme. A second sulfate ion near Arg164 is near the second CP position in the wild-type Escherichia coli ATCase structure complexed with CP. It is suggested that this position may also be in the path that CP takes when binding to the active site in a partial diffusion process at 310 K. Additional biochemical studies of carbamoylation and the molecular organization of this enzyme in M. jannaschii will provide further insight into these points.

  1. Structure of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase in a hexagonal crystal form: Insights into the path of carbamoyl phosphate to the active site of the enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Vitali J.; Soares A.; Singh, A. K.; Colaneri, M. J.

    2012-05-01

    Crystals of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase (ATCase) grew in the presence of the regulatory chain in the hexagonal space group P6{sub 3}22, with one monomer per asymmetric unit. This is the first time that crystals with only one monomer in the asymmetric unit have been obtained; all known structures of the catalytic subunit contain several crystallographically independent monomers. The symmetry-related chains form the staggered dimer of trimers observed in the other known structures of the catalytic subunit. The central channel of the catalytic subunit contains a sulfate ion and a K{sup +} ion as well as a glycerol molecule at its entrance. It is possible that it is involved in channeling carbamoyl phosphate (CP) to the active site of the enzyme. A second sulfate ion near Arg164 is near the second CP position in the wild-type Escherichia coli ATCase structure complexed with CP. It is suggested that this position may also be in the path that CP takes when binding to the active site in a partial diffusion process at 310 K. Additional biochemical studies of carbamoylation and the molecular organization of this enzyme in M. jannaschii will provide further insight into these points.

  2. (IV) phosphates

    Indian Academy of Sciences (India)

    M(IV) phosphates of the class of tetravalent metal acid (TMA) salts where M (IV) = Zr, Ti, Sn has been synthesized by the sol-gel method. These materials have been characterized for elemental analysis (ICP-AES), thermal analysis (TGA, DSC), X-ray analysis and FTIR spectroscopy. Chemical resistivity of these materials ...

  3. Reuse of ammonium fluoride generated in the uranium hexafluoride conversion

    International Nuclear Information System (INIS)

    Silva Neto, J.B.; Carvalho, E.F. Urano de; Durazzo, M.; Riella, H.G

    2010-01-01

    The Nuclear Fuel Centre of IPEN / CNEN - SP develops and manufactures dispersion fuel with high uranium concentration to meet the demand of the IEA-R1 reactor and future research reactors planned to be constructed in Brazil. The fuel uses uranium silicide (U 3 Si 2 ) dispersed in aluminum. For producing the fuel, the processes for uranium hexafluoride (UF 6 ) conversion consist in obtaining U 3 Si 2 and / or U 3 O 8 through the preparation of intermediate compounds, among them ammonium uranyl carbonate - AUC, ammonium diuranate - DUA and uranium tetrafluoride - UF 4 . This work describes a procedure for preparing uranium tetrafluoride by a dry route using as raw material the filtrate generated when producing routinely ammonium uranyl carbonate. The filtrate consists primarily of a solution containing high concentrations of ammonium (NH 4 + ), fluoride (F - ), carbonate (CO 3 -- ) and low concentrations of uranium. The procedure is basically the recovery of NH 4 F and uranium, as UF 4 , through the crystallization of ammonium bifluoride (NH 4 HF 2 ) and, in a later step, the addition of UO 2 , occurring fluoridation and decomposition. The UF 4 obtained is further diluted in the UF 4 produced routinely at IPEN / CNEN-SP by a wet route process. (author)

  4. Crystal structures and magnetic properties of iron (III)-based phosphates: Na{sub 4}NiFe(PO{sub 4}){sub 3} and Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Essehli, Rachid, E-mail: rachid_essehli@yahoo.fr [Laboratory of Mineral Solid and Analytical Chemistry ' LCSMA' , Department of Chemistry, Faculty of Sciences, University Mohamed I, Po. Box 717, 60000 Oujda (Morocco); Bali, Brahim El [Laboratory of Mineral Solid and Analytical Chemistry ' LCSMA' , Department of Chemistry, Faculty of Sciences, University Mohamed I, Po. Box 717, 60000 Oujda (Morocco); Benmokhtar, Said [LCMS, Laboratoire de Chimie des Materiaux Solides, Departement de chimie, Faculte des Sciences Ben M' SIK, Casablanca (Morocco); Bouziane, Khalid [Physics Department, College of Science, Sultan Qaboos University, PO Box 36, Postal Code 123 Al Khod, Sultanate of Oman (Oman); Manoun, Bouchaib [Laboratoire de Physico-Chimie des Materiaux, Departement de Chimie, FST Errachidia, University Moulay Ismail, B.P. 509 Boutalamine, Errachidia (Morocco); Abdalslam, Mouner Ahmed [Materials Science, Technical University Darmstadt, Darmstadt (Germany); Ehrenberg, Helmut [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany)

    2011-01-28

    Graphical abstract: A perspective view of the Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3} structure along the [0 0 1] direction. Both compounds seem to exibit antiferromagnetic interactions between magnetic entities at low temperature. Display Omitted Research highlights: > Nasicon and Alluaudite compounds, Iron(III)-based phosphates, Crystal structures of Na{sub 4}NiFe(PO{sub 4}){sub 3} and Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3}. > Magnetism behaviours of Na{sub 4}NiFe(PO{sub 4}){sub 3} and Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3}. > Antiferromagnetism interactions. > Mossbauer spectroscopy. - Abstract: Crystal structures from two new phosphates Na{sub 4}NiFe(PO{sub 4}){sub 3} (I) and Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3} (II) have been determined by single crystal X-ray diffraction analysis. Compound (I) crystallizes in a rhombohedral system (S. G: R-3c, Z = 6, a = 8.7350(9) A, c = 21.643(4) A, R{sub 1} = 0.041, wR{sub 2}=0.120). Compound (II) crystallizes in a monoclinic system (S. G: C2/c, Z = 4, a = 11.729(7) A, b = 12.433(5) A, c = 6.431(2) A, {beta} = 113.66(4){sup o}, R{sub 1} = 0.043, wR{sub 2}=0.111). The three-dimensional structure of (I) is closely related to the Nasicon structural type, consisting of corner sharing [(Ni/Fe)O{sub 6}] octahedra and [PO{sub 4}] tetrahedra forming [NiFe(PO{sub 4}){sub 3}]{sup 4+} units which align in chains along the c-axis. The Na{sup +} cations fill up trigonal antiprismatic sites within these chains. The crystal structure of (II) belongs to the alluaudite type. Its open framework results from [Ni{sub 2}O{sub 10}] units of edge-sharing [NiO{sub 6}] octahedra, which alternate with [FeO{sub 6}] octahedra that form infinite chains. Coordination of these chains yields two distinct tunnels in which site Na{sup +}. The magnetization data of compound (I) reveal antiferromagnetic (AFM) interactions by the onset of deviations from a Curie-Weiss behaviour at low temperature as confirmed by Moessbauer measurements performed at 4.2 K. The

  5. 21 CFR 184.1143 - Ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium sulfate. 184.1143 Section 184.1143 Food... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg... is prepared by the neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient meets...

  6. Double selenates of rare earths and ammonium

    International Nuclear Information System (INIS)

    Iskhakova, L.D.; Kozlova, N.P.; Makarevich, L.G.

    1991-01-01

    Double selenates of rare earths with ammonium were prepared in result of crystallization. It is shown that NH 4 Ln(SeO 4 ) · nH 2 O crystalline hydrates are presented by penta-and trihydrates. Existance of two modifications was revealed for NH 4 Ln(SeO 4 ) · 5H 2 O: monoclinic form of NH 4 La(SeO 4 ) 2 · 5H 2 O, isostructural RbCe(SeO 4 ) 2 · 5H 2 O, and earlier unknown rhombic form of salts with Ln = Pr, Nd. Trihydrates with Ln = Sm-Yb belong to structural type of RbNd(SeO 4 ) 2 · 3H 2 O. Anhydrous salts NH 4 Ln(SeO 4 ) 2 are isostructural with monoclinic KNd(SO 4 ) 2 modification. Lattice parameters of binary selenates are presented

  7. Process for uranium recovery in phosphated compounds

    International Nuclear Information System (INIS)

    1980-01-01

    Process for uranium recovery in phosphated compounds with an organic phase containing dialkyl pyrophosphoric acid and at least one mole of uranium and ammonium dialkyl pyrophosphate for each mole of dialkyl pyrophosphoric acid. The concentration of dialkyl pyrophosphoric acid in the organic phase is between 0.1 to 0.4M to improve uranium extraction in respect to iron extraction and recover completly the uranium. Means to avoid emulsion problems are given [fr

  8. Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth.

    Science.gov (United States)

    Ming, Jinfa; Jiang, Zhijuan; Wang, Peng; Bie, Shiyu; Zuo, Baoqi

    2015-06-01

    Use of organic templates for controlling the growth of inorganic crystals is one of the research topics in biomimetic field. In particular, oriented growth of hydroxyapatite (HAp) in organic fibrous matrix is provided a new view angle to study biomineralization of bone and its potential biomedical applications. The crystallization of HAp in fibrous hydrogels could mimic such biomineralization. In this paper, we report HAp nanorod crystal synthesized successfully by a biomimetic method using calcium chloride and ammonium dihydrogen phosphate as reagents in the presence of silk fibroin/sodium alginate (SF/SA) fibrous hydrogels. The effects of influence factors such as mineral times, pH, and temperature on controlling HAp nanorod crystals are discussed. The elongated HAp nanorods with rectangular column are grown with the increase of mineral times in biomimetic process. By changing pH, HAp nanorod crystals are obtained at alkaline condition in fibrous hydrogels. Moreover, compared to other temperatures, rod-shaped HAp crystals were formed at 20°C. The results imply this to be an effective method for preparing HAp crystals with controllable morphology for bone repair application. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Influence of pH of phosphating bath on the zinc phosphate coating on AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.Y.; Lian, J.S.; Niu, L.Y.; Jiang, Z.H. [Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025 (China)

    2006-02-15

    Suitable pH of the phosphating bath is crucial to restrain resolving rate of magnesium and obtain high quality phosphate coatings because of the high activity of magnesium. In this investigation a compact zinc phosphate coatings on AZ91D were successfully obtained from the phosphating bath with pH=2.15{proportional_to}2.5. This figure indicated that the slab-like phosphate crystals were entirely covered the substrate when the pH of the phosphating bath is 2.5. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  10. Facile synthesis of ammonium vanadate nanofibers by using reflux in aqueous V{sub 2}O{sub 5} solution with ammonium persulfate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Hun [Department of Convergence Nanoscience, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Koo, Jun Mo [Department of Organic and Nano Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Oh, Seong Geun, E-mail: seongoh@hanyang.ac.kr [Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Im, Seung Soon, E-mail: imss007@hanyang.ac.kr [Department of Convergence Nanoscience, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Department of Organic and Nano Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2017-06-15

    Ammonium vanadate nanofibers were synthesized by simple reflux method in aqueous V{sub 2}O{sub 5} solution with ammonium persulfate without relying on surfactants, catalysts, harmful solvents and autoclave. The degree of intercalation by cationic ammonium ions into the crystal structure of vanadium oxide along with its change in chemical composition were analyzed by thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR). The morphological changes toward nanofiber structure, having diameter of 20–30 nm and a few μm length, were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The influences of synthetic conditions, such as reaction time and concentration of sulfate (SO{sub 4}{sup 2-}), on the crystal structures and morphologies of the resulting products have investigated. As a result, the ammonium vanadate nanofiber was formed in a short reaction time through a simple reflux method and yielded comparable electrical conductivity 1.47 × 10{sup -2} S/cm. - Highlights: • Ammonium vanadate nanofiber (AVFr) was prepared by simple reflux method. • AVFr yielded comparable electrical conductivity 1.47 × 10{sup -2} S/cm. • The electrical conductivity was improved by the increased amount of ammonium ion. • Sulfate ions (SO{sub 4}{sup 2-}) play a crucial role in controlling the morphology of nanofiber.

  11. Iron Phosphate Glass-ceramics

    Directory of Open Access Journals (Sweden)

    Andrea Moguš-Milanković

    2015-12-01

    Full Text Available The crystallization of 40Fe2O3-60P2O5, 10ZnO-30Fe2O3-60P2O5 and (43.3−xPbO–(13.7+xFe2O3–43P2O5, (0 x < 30, glasses and glass-ceramic have been investigated. The structural evolution of glasses during heat treatment at various temperatures and the tendency for crystallization for series of glasses with modified composition are characterized by a dendrite-like phase separation in the early stage of crystallization. Such a behavior leads to the formation of randomly dispersed agglomerates which contain the anhedrally shaped crystallites embedded in glass matrix. Therefore, regardless of the type of crystallization, controlled or spontaneous, the formation of crystalline phases in these phosphate glasses and glass-ceramics is attributed to the disordered interfaces between crystalline grains and glassy matrix.

  12. Crystallization and preliminary X-ray diffraction analysis of XAC1151, a small heat-shock protein from Xanthomonas axonopodis pv. citri belonging to the α-crystallin family

    Energy Technology Data Exchange (ETDEWEB)

    Hilario, Eduardo; Teixeira, Elaine Cristina; Pedroso, Gisele Audrei; Bertolini, Maria Célia [Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, Araraquara-SP (Brazil); Medrano, Francisco Javier, E-mail: fjmedrano@yahoo.com [Departamento de Cristalografia de Proteínas, Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas-SP (Brazil); Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, Araraquara-SP (Brazil)

    2006-05-01

    XAC1151, a small heat-shock protein from X. axonopodis pv. citri belonging to the α-crystallin family, was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium phosphate. X-ray diffraction data were collected to 1.65 Å resolution using a synchrotron-radiation source. The hspA gene (XAC1151) from Xanthomonas axonopodis pv. citri encodes a protein of 158 amino acids that belongs to the small heat-shock protein (sHSP) family of proteins. These proteins function as molecular chaperones by preventing protein aggregation. The protein was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium phosphate. X-ray diffraction data were collected to 1.65 Å resolution using a synchrotron-radiation source. The crystal belongs to the rhombohedral space group R3, with unit-cell parameters a = b = 128.7, c = 55.3 Å. The crystal structure was solved by molecular-replacement methods. Structure refinement is in progress.

  13. Elaboration of thorium uranium phosphate-diphosphate({beta}-TUPD) and {beta}-TUPD/monazite composite materials from crystallized precursors: sintering and study of the long term behavior of the ceramics; Elaboration de phosphate-diphosphate de thorium et d'uranium ({beta}-PDTU) et de materiaux composites {beta}-PDTU/Monazite a partir de precurseurs cristallises. Etudes du frittage et de la durabilite chimique

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, N

    2004-11-01

    Thorium Phosphate-Diphosphate ({beta}-TPD) is actually considered as potential host matrix for the immobilization of radionuclides, and especially actinides, in the field of an underground repository. The studies reported in this work are based on the precipitation of the Thorium Phosphate Hydrogen-Phosphate Hydrate (TPHPH) as a precursor of {beta}-TPD. The crystal structure of TPHPH was solved then the reactions involved during its transformation into {beta}-TPD were established. It allows us to put in evidence a new monoclinic variety of TPD, called {alpha}-TPD, acting as intermediate of reaction. Moreover, the existence of a complete solid solution between TPHPH and UPHPH was demonstrated.The experimental conditions of sintering leading to an optimal densification of the pellets were determined. The relative density of the samples was always between 95 and 100% of the calculated value while a significant improvement of the homogeneity of the samples was noted. By this way, the process based on the precipitation of low-temperature crystallized precursors followed by their heat treatment at high temperature was applied to the preparation of {beta}-TUPD/Monazite based composites in the aim to incorporate simultaneously tri- and tetravalent actinides. The chemical durability of {beta}-TUPD sintered samples was evaluated. The normalized leaching rates determined in several experimental conditions revealed the good resistance of the solids to aqueous alteration. Moreover, the normalized dissolution rates exhibited a low dependence to temperature, pH as well as to several ions present in the leachate. For all the samples, thorium was quickly precipitated as a neo-formed phosphate phase identified to TPHPH. (author)

  14. Molten salt flux synthesis and crystal structure of a new open-framework uranyl phosphate Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2}: Spectroscopic characterization and cationic mobility studies

    Energy Technology Data Exchange (ETDEWEB)

    Yagoubi, S., E-mail: said.yagoubi@cea.fr [LEEL SIS2M UMR 3299 CEA-CNRS-Université Paris-Sud 11, CEA Saclay, F-91191 Gif-Sur-Yvette (France); Renard, C.; Abraham, F. [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d’Ascq Cedex (France); Obbade, S. [Laboratoire d’Electrochimie et de Physicochimie des Matériaux et des Interfaces, LEPMI, UMR 5279, CNRS-Grenoble INP-UdS-UJF, 1130 Rue de la Piscine, BP75, 38402 Saint-Martin d’Hères (France)

    2013-04-15

    The reaction of triuranyl diphosphate tetrahydrate precursor (UO{sub 2}){sub 3}(PO{sub 4}){sub 2}(H{sub 2}O){sub 4} with a CsI flux at 750 °C yields a yellow single crystals of new compound Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2}. The crystal structure (monoclinic, space group C2/c, a=13.6261 (13) Å, b=8.1081(8) Å, c=12.3983(12) Å, β=114.61(12)°, V=1245.41(20) Å{sup 3} with Z=4) has been solved using direct methods and Fourier difference techniques. A full-matrix least-squares refinement on the basis of F{sup 2} yielded R1=0.028 and wR2=0.071 for 79 parameters and 1352 independent reflections with I≥2σ(I) collected on a BRUKER AXS diffractometer with MoKα radiation and a charge-coupled device detector. The crystal structure is built by two independent uranium atoms in square bipyramidal coordination, connected by two opposite corners to form infinite chains {sup 1}{sub ∞}[UO{sub 5}] and by one phosphorus atom in a tetrahedral environment PO{sub 4}. The two last entities {sup 1}{sub ∞}[UO{sub 5}] and PO{sub 4} are linked by sharing corners to form a three-dimensional structure presenting different types of channels occupied by Cs{sup +} alkaline cations. Their mobility within the tunnels were studied between 280 and 800 °C and compared with other tunneled uranyl minerals. The infrared spectrum shows a good agreement with the values inferred from the single crystal structure analysis of uranyl phosphate compound. - Graphical abstract: Arrhenius plot of the electrical conductivity of tunneled compounds Cs{sub 3}U{sub 2}PO{sub 10} and CsU{sub 2}Nb{sub 2}O{sub 11.5}. Highlights: ► The reaction of (UO{sub 2}){sub 3}(PO{sub 4}){sub 2}(H{sub 2}O){sub 4} in excess of molten CsI leads to single-crystals of new tunneled compound Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2}. ► Ionic conductivity measurements and crystal structure analysis indicate a strong connection of the Cs{sup +} cations to the tunnels. ► A low symmetry in Cs{sub 3}(UO{sub 2

  15. Crystallization and crystal properties of squid rhodopsin

    International Nuclear Information System (INIS)

    Murakami, Midori; Kitahara, Rei; Gotoh, Toshiaki; Kouyama, Tsutomu

    2007-01-01

    Truncated rhodopsin from the retina of the squid Todarodes pacificus was extracted and crystallized by the sitting-drop vapour-diffusion method. Hexagonal crystals grown in the presence of octylglucoside and ammonium sulfate diffracted to 2.8 Å resolution. Rhodopsin, a photoreceptor membrane protein in the retina, is a prototypical member of the G-protein-coupled receptor family. In this study, rhodopsin from the retina of the squid Todarodes pacificus was treated with V8 protease to remove the C-terminal extension. Truncated rhodopsin was selectively extracted from the microvillar membranes using alkyl glucoside in the presence of zinc ions and was then crystallized by the sitting-drop vapour-diffusion method. Of the various crystals obtained, hexagonal crystals grown in the presence of octylglucoside and ammonium sulfate diffracted to 2.8 Å resolution. The diffraction data suggested that the crystal belongs to space group P6 2 , with unit-cell parameters a = b = 122.1, c = 158.6 Å. Preliminary crystallographic analysis, together with linear dichroism results, suggested that the rhodopsin dimers are packed in such a manner that their transmembrane helices are aligned nearly parallel to the c axis

  16. Study of ammonium sulfates electric conductivity

    International Nuclear Information System (INIS)

    Dobrynin, D.V.; Tulegulov, A.D.

    2006-01-01

    In the work results of research of ammonium sulfate electroconductivity are given. The influence effecting on ammonium sulfate conductivity is investigated. The various circuits of inclusion tetra ohmmeter are given. (author)

  17. Crystal structure of an unknown solvate of bis­(tetra-n-butyl­ammonium) [N,N′-(4-tri­fluoro­methyl-1,2-phenyl­ene)bis­(oxamato)-κ4 O,N,N′,O′]nickelate(II)

    Science.gov (United States)

    Eya’ane Meva, François; Schaarschmidt, Dieter; Rüffer, Tobias

    2015-01-01

    In the title compound, [N(C4H9)4]2[Ni(C11H3F3N2O6)] or [N(n-Bu)4]2[Ni(topbo)] [n-Bu = n-butyl and topbo = 4-tri­fluoro­methyl-1,2-phenyl­enebis(oxamate)], the Ni2+ cation is coordinated by two deprotonated amido N atoms and two carboxyl­ate O atoms, setting up a slightly distorted square-planar coordination environment. The [Ni(topbo]2− anion lies on a twofold rotation axis. Due to an incompatibility with the point-group symmetry of the complete mol­ecule, orientational disorder of the CF3 group is observed. The tetra­hedral ammonium cations and the anion are linked by weak inter­molecular C—H⋯O and C—H⋯F hydrogen-bonding inter­actions into a three-dimensional network. A region of electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as plausible solvent mol­ecule(s). The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule. PMID:26090126

  18. 21 CFR 184.1133 - Ammonium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium alginate. 184.1133 Section 184.1133 Food... Specific Substances Affirmed as GRAS § 184.1133 Ammonium alginate. (a) Ammonium alginate (CAS Reg. No. 9005... accordance with § 184.1(b)(2), the ingredient is used in food only within the following specific limitations...

  19. 76 FR 47238 - Ammonium Nitrate From Russia

    Science.gov (United States)

    2011-08-04

    ... COMMISSION Ammonium Nitrate From Russia Determination On the basis of the record \\1\\ developed in the subject... order on ammonium nitrate from Russia would be likely to lead to continuation or recurrence of material... Commission are contained in USITC Publication 4249 (August 2011), entitled Ammonium Nitrate from Russia...

  20. 21 CFR 582.1143 - Ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance...

  1. Copper scandium zirconium phosphate

    DEFF Research Database (Denmark)

    Bond, Andrew David; Warner, Terence Edwin

    2013-01-01

    The title compound, with nominal formula Cu(2)ScZr(PO(4))(3), has a beige coloration and displays fast Cu(+) cation conduction at elevated temperatures. It adopts a NASICON-type structure in the space group R3c. The examined crystal was an obverse-reverse twin with approximately equal twin...... components. The [Sc(III)Zr(IV)(PO(4))(3)](2-) framework is composed of corner-sharing Sc/ZrO(6) octahedra and PO(4) tetrahedra. The Sc and Zr atoms are disordered on one atomic site on a crystallographic threefold axis. The P atom of the phosphate group lies on a crystallographic twofold axis. Nonframework...... Cu(+) cations occupy three positions. Two of the Cu(+) positions generate an approximately circular distribution around a site of 3 symmetry, referred to as the M1 site in the NASICON-type structure. The other Cu(+) position is situated close to the twofold symmetric M2 site, displaced...

  2. Aluminium phosphate sulphate minerals (APS) associated with proterozoic unconformity-type uranium deposits: crystal-chemical characterisation and petrogenetic significance; Les sulfates phosphates d'aluminium hydrates (APS) dans l'environnement des gisements d'uranium associes a une discordance proterozoique: caracterisation cristallochimique et signification petrogenetique

    Energy Technology Data Exchange (ETDEWEB)

    Gaboreau, St

    2005-07-01

    Aluminium phosphate sulfate minerals (APS) are particularly widespread and spatially associated with hydrothermal clay alteration in both the East Alligator River Uranium Field (Northern Territory, Australia) and the Athabasca basin (Saskatchewan, Canada), in the environment of proterozoic unconformity-related uranium deposits (URUD). The purpose of this study is both: 1) to characterize the nature and the origin of the APS minerals on both sides of the middle proterozoic unconformity between the overlying sandstones and the underlying metamorphic basement rocks that host the uranium ore bodies, 2) to improve our knowledge on the suitability of these minerals to indicate the paleo-conditions (redox, pH) at which the alteration processes relative to the uranium deposition operated. The APS minerals result from the interaction of oxidising and relatively acidic fluids with aluminous host rocks enriched in monazite. Several APS-bearing clay assemblages and APS crystal-chemistry have also been distinguished as a function of the distance from the uranium ore bodies or from the structural discontinuities which drained the hydrothermal solutions during the mineralisation event. One of the main results of this study is that the index mineral assemblages, used in the recent literature to describe the alteration zones around the uranium ore bodies, can be theoretically predicted by a set of thermodynamic calculations which simulate different steps of fluid-rock interaction processes related to a downward penetrating of hyper-saline, oxidizing and acidic diagenetic fluids through the lower sandstone units of the basins and then into the metamorphic basement rocks. The above considerations and the fact that APS with different crystal-chemical compositions crystallized in a range of fO{sub 2} and pH at which uranium can either be transported in solution or precipitated as uraninite in the host-rocks make these minerals not only good markers of the degree of alteration of the

  3. Mg-doped biphasic calcium phosphate by a solid state reaction route: Characterization and evaluation of cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Webler, Geovana D. [Instituto de Física, Universidade Federal de Alagoas, Maceió-AL 57072970 (Brazil); Correia, Ana C.C.; Barreto, Emiliano [Laboratório de Biologia Celular, Universidade Federal de Alagoas, Maceió-AL 57072970 (Brazil); Fonseca, Eduardo J.S., E-mail: eduardo@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, Maceió-AL 57072970 (Brazil)

    2015-07-15

    Hydroxyapatite (HAP) and β-tricalcium phosphate (β-TCP) are widely used in tissue engineering because of their chemical similarity to the inorganic bone phase. In this work, we prepare biphasic calcium phosphate (BCP, a mixture of HAP and β-TCP) doped with different concentrations of magnesium to investigate the influence of magnesium on the BCP crystal structure. Magnesium is known to be an important element in the composition of bones and teeth. Recent research has shown that the doping of magnesium into BCP improves its bone metabolism and mechanical properties without affecting its biocompatibility. The samples were prepared by solid-state reaction from calcium carbonate, monobasic ammonium phosphate, and magnesium nitrate hexahydrate. Varying concentrations of magnesium were used and its modifications were examined by different characterization techniques. The phase composition and morphology of the ceramic powders were characterized by X-ray diffraction and scanning electron microscopy, respectively. The functional groups were analyzed using Fourier transform infrared spectroscopy and Raman spectroscopy. Cell viability experiments, using macrophage-like cell lines J774, showed that the synthesized Mg-doped BCP did not exhibit cytotoxicity regardless of the doses assayed or the different concentrations of magnesium used, suggesting it as a good material for potential biological applications. - Highlights: • Simple and fast method for the preparation of the Mg-BCP. • Study of the influence of the incorporation of Mg in the BCP. • Cell viability showed that the synthesized Mg-BCP did not exhibit cytotoxicity.

  4. Phosphate accumulation in farm dam sediments

    International Nuclear Information System (INIS)

    Ruan, H.D.; Gilkes, R.J.

    1998-01-01

    Full text: Large amounts of phosphate are applied to agricultural regions in Australia each year. Phosphate is incorporated into organic materials, sorbed onto the surface of clay minerals, carbonates, iron oxides/hydroxides and other colloids or dissolved in soil solution. Phosphate in soil solution may leach into dam, or absorbed and particulate phosphate may be washed into dams during soil erosion and eventually accumulate in sediments. Variable and sometimes high concentrations of phosphate in water and sediments occur in farm dams in the York area of Western Australia. Phosphate accumulation in farm dam sediments (O to about 2 cm) was investigated using chemical analysis and X-ray diffraction. Concentrations of phosphorus up to 5 ppm in water and 1100 ppm in sediment were observed. The results of this study indicate that the amounts of total, organic and inorganic phosphate in sediment are approximately equal and are linearly related the dissolved phosphate concentration in dam water. High concentrations of nitrogen also exit in sediments and are closely related to the phosphate content of sediment presumably reflecting the high content of organic matter in sediments, ranging from 3 to 7% C. The concentration of phosphate in sediments is closely related to the organic matter concentration measured by LECO CHN analyser. X-ray diffraction patterns show that clay minerals in sediments consist of minor to large amounts of smectite and kaolinite, minor to moderate amounts of illite, mica and feldspars. Minor amounts of calcite and iron oxides were present only in a few samples. Clay minerals and iron oxides have moderate to high phosphate sorption capacities because the reactive sites on crystal surfaces and their high surface area. Thus colloidal minerals, organic materials and organo-mineral complexes may provide reactive sites for phosphate sorption

  5. Preliminary X-ray analysis of a new crystal form of the vanadium-dependent bromoperoxidase from Corallina officinalis.

    Science.gov (United States)

    Brindley, A A; Dalby, A R; Isupov, M N; Littlechild, J A

    1998-05-01

    A new crystal form of the vanadium-dependent bromoperoxidase from Corallina officinalis has been obtained. The crystals exhibit a 'teardrop' morphology and are grown from 2 M ammonium dihydrogen phosphate pH and diffract to beyond 1.7 A resolution. They are in tetragonal space group P4222 with unit-cell dimensions of a = b = 201.9, c = 178.19 A, alpha = beta = gamma = 90 degrees. A 2.3 A resolution native data set has been collected at the Hamburg Synchrotron. A mercury derivative data set has also been collected, and the heavy-atom positions have been determined. The self-rotation function and the positions of the heavy atoms are consistent with the molecule being a dodecamer with local 23 symmetry.

  6. Physicochemical study of the alteration surface of concrete exposed to ammonium salts

    International Nuclear Information System (INIS)

    Jauberthie, Raoul; Rendell, Frank

    2003-01-01

    The storage of chemicals in concrete silos often presents durability problems due to chemical attack, the high concentration encountered inevitably causes severe conditions. The aim of this paper is to examine the physicochemical changes that occur in concrete exposed to ammonium salts, notably ammonium sulphate and nitrate, which are noted for their aggressivity. The modification to mortar surfaces is examined with X-ray diffraction (XRD) and with SEM. Mortar immersed in ammonium sulphate is covered with gypsum needle-like crystals and undergoes rapid cracking when removed from the solution and washed. In the case of mortars immersed in ammonium nitrate solutions, there is rapid decalcification, accompanied by strength loss, due to the solubilization of calcium. It is also observed that the mortar surface is covered with rhombic calcite, which is attributed to the reaction between liberated calcium and CO 2 in the water

  7. Structures of Tris(2-hydroxyethyl)ammonium Salts of Succinic Acid

    Science.gov (United States)

    Loginov, S. V.; Dain, I. A.; Rybakov, V. B.; Ofitserov, E. N.; Gordeev, D. A.; Storozhenko, P. A.

    2018-01-01

    Succinic acid salts-tris(2-hydroxyethyl)ammonium succinate (C6H16NO3) 2 + C4H4O 4 2- (monoclinic crystals, sp. gr. P21/ c, Z = 4) and tris(2-hydroxyethyl)ammonium hydrogen succinate (C6H16NO3)+C4H5O 4 - (monoclinic crystals, sp. gr. P21/ c, Z = 4)—were synthesized and structurally characterized. The specific features of the three-dimensional structures of tris(2-hydroxyethyl)ammonium salts of succinic acid are considered. The role of interionic electrostatic interactions in the structure stabilization and the formation of products of composition 1: 1 and 1: 2 derived from succinic acid is discussed.

  8. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability

    DEFF Research Database (Denmark)

    Santos, Maria Margarida M. dos; Thygesen, G.; Kotter, P.

    2003-01-01

    , and alternative pathways for ammonium assimilation were overexpressed: GDH2 (NADH-consuming) or GLN1 and GLT1 (the GS-GOGAT system). The flux through the pentose phosphate pathway during aerobic growth on glucose decreased to about half that of the reference strain Saccharomyces cerevisiae CEN.KK113-7D...

  9. The Properties of Ammonium Dinitramine (ADN): Part 2: Melt Casting

    Science.gov (United States)

    Hahma, A.; Edvinsson, H.; Östmark, H.

    2010-04-01

    A melt casting technique for ammonium dinitramine (ADN) and ADN/aluminum was developed. ADN proved relatively easy to cast, when 1% of magnesium oxide was used as a stabilizer and crystallization kernels. Densities of ADN/MgO 99/1 were 92 to 97% of theoretical mean density (TMD) and those of ADN/Al/MgO 64/35/1 were between 95 and 99% of TMD. Sedimentation of Al in the melt was prevented and the particle wetting was ensured by selecting a suitable particle size for Al. No gelling agents or other additives were used. The casting process and factors influencing it are discussed.

  10. Recent results of EPR and Moessbauer investigations on lattice dynamics in ammonium sulphate

    CERN Document Server

    Grecu, M N; Grecu, V V

    2003-01-01

    Recent results of the lattice dynamics investigation on ammonium sulfate are reported based on recent experiments carried out using using the non-destructive experimental technique of EPR and NGR. The main results confirm the presence and the contribution of a soft mode, which accompanied the paraferroelectric phase transition in the investigated crystal. (authors)

  11. Regulation of serum phosphate

    Science.gov (United States)

    Lederer, Eleanor

    2014-01-01

    The regulation of serum phosphate, an acknowledged risk factor for chronic kidney disease and cardiovascular mortality, is poorly understood. The discovery of fibroblast growth factor 23 (FGF23) as a key regulator of renal phosphate handling and activation of vitamin D has revolutionized our comprehension of phosphate homeostasis. Through as yet undetermined mechanisms, circulating and dietary phosphate appear to have a direct effect on FGF23 release by bone cells that, in turn, causes renal phosphate excretion and decreases intestinal phosphate absorption through a decrease in vitamin D production. Thus, the two major phosphaturic hormones, PTH and FGF23, have opposing effects on vitamin D production, placing vitamin D at the nexus of phosphate homeostasis. While our understanding of phosphate homeostasis has advanced, the factors determining regulation of serum phosphate level remain enigmatic. Diet, time of day, season, gender, age and genetics have all been identified as significant contributors to serum phosphate level. The effects of these factors on serum phosphate have major implications for what is understood as ‘normal’ and for studies of phosphate homeostasis and metabolism. Moreover, other hormonal mediators such as dopamine, insulin-like growth factor, and angiotensin II also affect renal handling of phosphate. How the major hormone effects on phosphate handling are regulated and how the effect of these other factors are integrated to yield the measurable serum phosphate are only now beginning to be studied. PMID:24973411

  12. Ammonium azide under hydrostatic compression

    Science.gov (United States)

    Landerville, A. C.; Steele, B. A.; Oleynik, I. I.

    2014-05-01

    The properties of ammonium azide NH4N3 upon compression were investigated using first-principles density functional theory. The equation of state was calculated and the mechanism of a phase transition experimentally observed at 3.3 GPa is elucidated. Novel polymorphs of NH4N3 were found using a simple structure search algorithm employing random atomic displacements upon static compression. The structures of three new polymorphs, labelled as B, C, and D, are similar to those of other metal azides.

  13. doped cadmium potassium phosphate hexahydrate: A substitutional ...

    Indian Academy of Sciences (India)

    Single crystal EPR studies of VO(II)-doped cadmium potassium phosphate hexahydrate (CPPH) have been carried out at room temperature. The angular variation spectra in the three orthogonal planes indicate that the paramagnetic impurity has entered the lattice only substitutionally in place of Cd(II). Spin Hamiltonian ...

  14. Isolation and stable nitrogen isotope analysis of ammonium ions in ammonium nitrate prills using sodium tetraphenylborate.

    Science.gov (United States)

    Howa, John D; Lott, Michael J; Ehleringer, James R

    2014-07-15

    Because of the threat of bombings using improvised explosives containing ammonium nitrate (AN), law enforcement and intelligence communities have been interested in stable isotope techniques for tracking and discriminating AN sources. Separate analysis of the AN component ions ammonium and nitrate would add discriminatory power to these techniques. Ammonium ions in dissolved AN solution were isolated from samples by precipitation using sodium tetraphenylborate solution. We tested the isolation of ammonium from nitrates using solutions of ammonium and nitrate salts with different (15)N/(14)N isotope ratios. Ammonium tetraphenylborate and AN were separately analyzed for their (15)N/(14)N isotope ratios using EA-ConFlo-IRMS, and the (15)N/(14)N isotope ratios of the nitrate ions were calculated using mass balance. Ammonium and nitrate nitrogen isotope ratios were plotted as two separate variables. Isolation of ammonium precipitate from solutions containing dissolved nitrates did not influence the nitrogen isotope ratios of test ammonium salts. A survey set of 42 AN samples showed that the ammonium and nitrate (15)N/(14)N isotope ratios were not significantly correlated, and the paired mean differences were not statistically significant. Both ammonium and nitrate were depleted in (15)N relative to their theoretical atmospheric sources. Isolation of the ammonium ion from AN adds another dimension for the discrimination of forensic AN samples. This technique using sodium tetraphenylborate is robust and does not require specialized equipment. Our observations indicated that ammonium nitrogen and nitrate nitrogen have independent sources of isotopic variation. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Manufacture of ammonium sulfate fertilizer from gypsum-rich byproduct of flue gas desulfurization - A prefeasibility cost estimate

    Science.gov (United States)

    Chou, I.-Ming; Rostam-Abadi, M.; Lytle, J.M.; Achorn, F.P.

    1996-01-01

    Costs for constructing and operating a conceptual plant based on a proposed process that converts flue gas desulfurization (FGD)-gypsum to ammonium sulfate fertilizer has been calculated and used to estimate a market price for the product. The average market price of granular ammonium sulfate ($138/ton) exceeds the rough estimated cost of ammonium sulfate from the proposed process ($111/ ton), by 25 percent, if granular size ammonium sulfate crystals of 1.2 to 3.3 millimeters in diameters can be produced by the proposed process. However, there was at least ??30% margin in the cost estimate calculations. The additional costs for compaction, if needed to create granules of the required size, would make the process uneconomical unless considerable efficiency gains are achieved to balance the additional costs. This study suggests the need both to refine the crystallization process and to find potential markets for the calcium carbonate produced by the process.

  16. 21 CFR 184.1138 - Ammonium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg..._locations.html. (c) In accordance with § 184.1(b)(1), the ingredient is used in food with no limitation...

  17. 21 CFR 184.1137 - Ammonium carbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium carbonate. 184.1137 Section 184.1137 Food... Specific Substances Affirmed as GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3, CAS.../code_of_federal_regulations/ibr_locations.html. (c) In accordance with § 184.1(b)(1), the ingredient is...

  18. Producing ammonium uranate in spherical particulate form

    International Nuclear Information System (INIS)

    Dugua, J.

    1984-01-01

    A novel easily handled substantially particulate ammonium uranate with a mean diameter between 30 and 150 micrometers, an apparent untamped bulk density of 2 to 2.8 g/cm 3 , and a flowability measured on the Carr scale equal to or greater than 95, with a low sulfate ion content between 0.5 and 1%, is calimed together with a fluidized bed process for preparing such ammonium uranate by precipitation of a super-saturated solution of ammonium uranate. The ammonium uranate is obtained by reacting a uranium sulfate solution and an ammoniacal solution, operating at a pH of about 6.6 to 7.2

  19. Glufosinate ammonium selection of transformed Arabidopsis.

    Science.gov (United States)

    Weigel, Detlef; Glazebrook, Jane

    2006-12-01

    INTRODUCTIONOne of the most commonly used markers for the selection of transgenic Arabidopsis is resistance to glufosinate ammonium, an herbicide that is sold under a variety of trade names including Basta and Finale. Resistance to glufosinate ammonium is conferred by the bacterial bialophos resistance gene (BAR) encoding the enzyme phosphinotricin acetyl transferase (PAT). This protocol describes the use of glufosinate ammonium to select transformed Arabidopsis plants. The major advantage of glufosinate ammonium selection is that it can be performed on plants growing in soil and does not require the use of sterile techniques.

  20. Phosphate Uptake by Phosphate-Starved Euglena

    Science.gov (United States)

    BLUM, J. J.

    1966-01-01

    Phosphate-deprived Euglena acquire the ability to rapidly in-corporate added phosphate and, also, synthesize an induced acid phosphatase localized in the pellicle. The phosphate uptake system is saturated at low concentrations of phosphate and is inhibited by dinitrophenol, by low temperature, by K+, Li+, and Na+ ions, and competitively by arsenate. The orthophosphate incorporated into the cell is rapidly converted into organic forms but enough remains unesterified to suggest that the uptake is an active transport process. The data do not rule out the possibility that the induced phosphatase is involved in the transport process. PMID:5924104

  1. Synthesis of cerous ammonium nitrate using ceric ammonium nitrate and anhydrous ammonia as a reducing agent

    International Nuclear Information System (INIS)

    Bourleaux, G.; Colombet, P.; Rouxel, J.; Gradeff, P.S.; Mauermann, H.

    1988-01-01

    The reduction of ceric ammonium nitrate by anhydrous ammonia has been studied. The reaction yields cerous ammonium nitrate complex. This is an easy method to prepare an anhydrous Ce (III) salt, suitable for synthesis of organo cerium (III) derivatives [fr

  2. Reduction of nucleotides by ionizing radiation: uridine 5' phosphate, and cytidine 3' phosphate

    International Nuclear Information System (INIS)

    Box, H.C.; Potter, W.R.; Budzinski, E.E.

    1974-01-01

    Anions formed by the addition of an electron to the uracil base were observed in single crystals of the barium salt of uridine 5' phosphate x irradiated at 4.2 0 K. The hyperfine coupling tensor for the C 6 -H proton was deduced from ENDOR measurements; the principal values are -59.12, -32.92 and -16.24 MHz. Similar measurements were made on single crystals of cytidine 3' phosphate. The principal values for the C 6 -H proton hyperfine coupling in the anion formed on the cytosine base are -59.26, -33.98 and -14.68 MHz. (U.S.)

  3. The reduction of nucleotides by ionizing radiation: uridine 5' phosphate and cytidine 3' phosphate

    International Nuclear Information System (INIS)

    Box, H.C.; Potter, W.R.; Budzinski, E.E.

    1975-01-01

    Anions formed by the addition of an electron to the uracil base were observed in single crystals of the barium salt of uridine 5' phosphate x-irradiated at 4.2 degreeK. The hyperfine coupling tensor for the C 6 --H proton was deduced from ENDOR measurements; the principal values are -59.12, -32.92, and -16.24 MHz. Similar measurements were made on single crystals of cytidine 3' phosphate. The principal values for the C 6 --H proton hyperfine coupling in the anion formed on the cytosine base are -59.26, -33.98, and -14.68 MHz

  4. Crystallization of a 2:2 complex of granulocyte-colony stimulating factor (GCSF) with the ligand-binding region of the GCSF receptor

    Science.gov (United States)

    Honjo, Eijiro; Tamada, Taro; Maeda, Yoshitake; Koshiba, Takumi; Matsukura, Yasuko; Okamoto, Tomoyuki; Ishibashi, Matsujiro; Tokunaga, Masao; Kuroki, Ryota

    2005-01-01

    The granulocyte-colony stimulating factor (GCSF) receptor receives signals for regulating the maturation, proliferation and differentiation of the precursor cells of neutrophilic granulocytes. The signalling complex composed of two GCSFs (GCSF, 19 kDa) and two GCSF receptors (GCSFR, 34 kDa) consisting of an Ig-like domain and a cytokine-receptor homologous (CRH) domain was crystallized. A crystal of the complex was grown in 1.0 M sodium formate and 0.1 M sodium acetate pH 4.6 and belongs to space group P41212 (or its enantiomorph P43212), with unit-cell parameters a = b = 110.1, c = 331.8 Å. Unfortunately, this crystal form did not diffract beyond 5 Å resolution. Since the heterogeneity of GCSF receptor appeared to prevent the growth of good-quality crystals, the GCSF receptor was fractionated by anion-exchange chromatography. Crystals of the GCSF–fractionated GCSF receptor complex were grown as a new crystal form in 0.2 M ammonium phosphate. This new crystal form diffracted to beyond 3.0 Å resolution and belonged to space group P3121 (or its enantiomorph P3221), with unit-cell parameters a = b = 134.8, c = 105.7 Å. PMID:16511159

  5. Batagayite, CaZn2(Zn,Cu)6(PO4)4(PO3OH)3·12H2O, a new phosphate mineral from Këster tin deposit (Yakutia, Russia): occurrence and crystal structure

    Science.gov (United States)

    Yakovenchuk, Victor N.; Pakhomovsky, Yakov A.; Konopleva, Nataliya G.; Panikorovskii, Taras L.; Bazai, Ayya; Mikhailova, Julia A.; Bocharov, Vladimir N.; Ivanyuk, Gregory Yu.; Krivovichev, Sergey V.

    2017-12-01

    Batagayite, CaZn2(Zn,Cu)6(PO4)4(PO3OH)3·12H2O, is a new secondary phosphate mineral from the Këster deposit, Arga-Ynnykh-Khai massif, NE Yakutia, Russia. It is monoclinic, P21, a = 8.4264(4), b = 12.8309(6), c = 14.6928(9) Å, β = 98.514(6)o, V = 1571.05(15) Å3 and Z = 2 (from single-crystal X-ray diffraction data). Batagayite crystals are blades up to 2 mm long, flattened on {001} and elongated on [100]; blades often grow in radial aggregates. Associated minerals are arsenolite, native copper, epifanovite, fluorapatite, libethenite, Na-analogue of batagayite, pseudomalachite, quartz, sampleite, tobermorite, and Mg-analogue of hopeite. The streak is white and the luster is vitreous. The mineral is brittle and has a perfect cleavage on {001}, no parting was observed. The Mohs hardness is 3. Density, determined by the float-sink method in Clerici solution, is 2.90(3) g/cm3, and the calculated density is 3.02 g/cm3 (using the empirical formula and single-crystal unit-cell parameters). Batagayite is biaxial, optically negative, α = 1.566 ± 0.002, β = 1.572 ± 0.002, γ = 1.573 ± 0.002 at 589 nm. 2V meas. = 40(5)°, 2V calc = 44.3°. Optical orientation: Z is perpendicular to (001), further details unclear. No dispersion or pleochroism were observed. The mean chemical composition determined by electron microprobe is: Na2O 0.31, MgO 1.39, Al2O3 0.55, SiO2 0.48, P2O5 34.37, K2O 0.17, CaO 2.76, MnO 1.03, CuO 5.80, ZnO 35.62, CdO 0.24 wt%. The H2O content estimated from the crystal-structure refinement is 16.83 wt%, giving a total of 99.55 wt%. The empirical formula calculated on the basis of P + Si = 7 is (Zn6.22Cu1.04Ca0.70Mg0.49Mn0.21Al0.15Na0.14K0.05Cd0.03)Σ9.03(P6.89Si0.11)Σ7.00O24.91(OH)3.09·12.10H2O. The mineral easily dissolves in 10% room-temperature HCl. The eight diagnostic lines in the X-ray powder-diffraction pattern are (I-d[Å]-hkl): 100-14.59-001, 25-6.34-012, 11-6.02-111, 37-4.864-003, 13-4.766-112, 20-3.102-1 \\overline {2} \\overline {4} , 11

  6. Phosphate Adsorption from Membrane Bioreactor Effluent Using Dowex 21K XLT and Recovery as Struvite and Hydroxyapatite

    Science.gov (United States)

    Nur, Tanjina; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2016-01-01

    Discharging phosphate through wastewaters into waterways poses a danger to the natural environment due to the serious risks of eutrophication and health of aquatic organisms. However, this phosphate, if economically recovered, can partly overcome the anticipated future scarcity of phosphorus (P) resulting from exhaustion of natural phosphate rock reserves. An experiment was conducted to determine the efficiency of removing phosphate from a membrane bioreactor effluent (pH 7.0–7.5, 20, 35 mg phosphate/L) produced in a water reclamation plant by adsorption onto Dowex 21K XLT ion exchange resin and recover the phosphate as fertilisers. The data satisfactorily fitted to Langmuir adsorption isotherm with a maximum adsorption capacity of 38.6 mg·P/g. The adsorbed phosphate was quantitatively desorbed by leaching the column with 0.1 M NaCl solution. The desorbed phosphate was recovered as struvite when ammonium and magnesium were added at the molar ratio of phosphate, ammonium and magnesium of 1:1:1 at pH 9.5. Phosphate was also recovered from the desorbed solution as hydroxyapatite precipitate by adding calcium hydroxide to the solution at a phosphate to calcium molar ratio of 1:2 at pH 7.0. The P contents of struvite and hydroxyapatite produced were close to those of the respective commercial phosphate fertilisers. PMID:26950136

  7. Phosphate Adsorption from Membrane Bioreactor Effluent Using Dowex 21K XLT and Recovery as Struvite and Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Tanjina Nur

    2016-03-01

    Full Text Available Discharging phosphate through wastewaters into waterways poses a danger to the natural environment due to the serious risks of eutrophication and health of aquatic organisms. However, this phosphate, if economically recovered, can partly overcome the anticipated future scarcity of phosphorus (P resulting from exhaustion of natural phosphate rock reserves. An experiment was conducted to determine the efficiency of removing phosphate from a membrane bioreactor effluent (pH 7.0–7.5, 20, 35 mg phosphate/L produced in a water reclamation plant by adsorption onto Dowex 21K XLT ion exchange resin and recover the phosphate as fertilisers. The data satisfactorily fitted to Langmuir adsorption isotherm with a maximum adsorption capacity of 38.6 mg·P/g. The adsorbed phosphate was quantitatively desorbed by leaching the column with 0.1 M NaCl solution. The desorbed phosphate was recovered as struvite when ammonium and magnesium were added at the molar ratio of phosphate, ammonium and magnesium of 1:1:1 at pH 9.5. Phosphate was also recovered from the desorbed solution as hydroxyapatite precipitate by adding calcium hydroxide to the solution at a phosphate to calcium molar ratio of 1:2 at pH 7.0. The P contents of struvite and hydroxyapatite produced were close to those of the respective commercial phosphate fertilisers.

  8. A new technique for the synthesis of ammonium phosphomolybdate: precipitation in resin support

    International Nuclear Information System (INIS)

    Matsuda, H.T.

    1977-01-01

    A technique for synthesizing ammonium molybdophosphate, an inorganic ion exchanger which retains selectively cesium-137 from a mixture of fission products, employing a strong anionic resin, saturated with molybdate anions, is presented. This method enables the precipitation of ammonium molybdophosphate directly into the resinous structure by adding dihydrogen ammonium phosphate in 7,5M HNO 3 . The reactants maintened at 60 0 C for a period of four hours has been found to be the optimum condition for a maximum yield of this compound (anionic resin-ammonium molybdophosphate = R-AMP). The tests performed for characterizing this compound are: molybdenum-phosphorus ratio determination, electronic absorption spectra, infra-red absorption spectra, reflection microscopy observations, electron probe micro-analysis and X-ray powder patterns. The analysis confirmed the presence of the ammonium molybdophosphate in the resinous structure, permitting, thereby, its use as a cation exchanger. R-AMP showed a capacity of 0,48mE/g of dry material. The cesium retention studies were made using columns charged with R-AMP compound. The behavior of polivalent fission products was studied. The R-AMP column was applied to separate cesium from irradiated uranium solutions [pt

  9. Uranium from phosphate ores

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant

  10. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that ...

  11. Atmospheric behaviour of ammonia and ammonium

    NARCIS (Netherlands)

    Asman, W.A.H.

    1987-01-01

    1.4.1 Scope of this thesis

    A few models for ammonia and ammonium exist. Russell et al. (1983) made a multi-layer Lagrangian transport model describing the transport and formation of ammonium nitrate aerosol for California. They did not take reactions of ammonia and sulphuric acid

  12. 21 CFR 582.1135 - Ammonium bicarbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium bicarbonate. 582.1135 Section 582.1135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1135 Ammonium bicarbonate. (a)...

  13. Optimization of nutritional requirements and ammonium feeding ...

    African Journals Online (AJOL)

    tounukarin

    2011-09-07

    Sep 7, 2011 ... defined medium and to develop an ammonium control strategy to optimize the specific vitamin B12 production rate (Yp) ... Key words: Statistical designs, Pseudomonas denitrificans, chemically defined medium, ammonium controlling strategy ... analysis provides a powerful tool for effective quanti- fication of ...

  14. 76 FR 46907 - Ammonium Nitrate Security Program

    Science.gov (United States)

    2011-08-03

    ... located in, under, or adjacent to any waters subject to the jurisdiction of the United States. Through its..., marking, labeling, placarding, security plans, emergency response information, training, etc.). f... ``solid ammonium nitrate that is chiefly the ammonium salt of nitric acid and contains not less than 33...

  15. Using PXRD to Investigate the Crystallization of Highly ...

    African Journals Online (AJOL)

    The process of crystallization of highly concentrated emulsions of ammonium nitrate can be studied using powder X-ray diffraction. The dispersed particles comprise a supercooled aqueous solution of the ammonium nitrate salt and are dispersed in a paraffin-based oil. This results in a thermodynamically unstable system ...

  16. Growth of strontium hydrogen phosphate/gelatin composites: a biomimetic approach

    OpenAIRE

    Parvinzadeh Gashti, Mazeyar; Stir, Manuela Elena; Hulliger, Jürg

    2016-01-01

    Recent research has focused on the crystal growth of strontium phosphates via different methods due to the bioactivity and biocompatibility of these materials with bone tissue. Here, we use a biomimetic method to synthesize strontium hydrogen phosphate/gelatin composites via single diffusion in gelatin. We compare the composite crystals with analytical-grade strontium hydrogen phosphate using infrared spectroscopy (IR), scanning electron microscopy (SEM), thermal gravimetric analysis, and X-r...

  17. Transmission spectra study of sulfate substituted potassium dihydrogen phosphate

    KAUST Repository

    LI, LIANG

    2013-04-18

    Potassium dihydrogen phosphate (KDP) crystals with different amounts of sulfate concentration were grown and the transmittance spectrum was studied. A crystal with high sulfate replacement density exhibits heavy absorption property in the ultraviolet region which confirms and agrees well with former results. © 2013 Astro Ltd.

  18. Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell

    NARCIS (Netherlands)

    Kuntke, P.; Geleij, M.; Bruning, H.; Zeeman, G.; Hamelers, H.V.M.; Buisman, C.J.N.

    2011-01-01

    Ammonium recovery using a 2 chamber microbial fuel cell (MFC) was investigated at high ammonium concentration. Increasing the ammonium concentration (from 0.07 g to 4 g ammonium-nitrogen/L) by addition of ammonium chloride did not affect the performance of the MFC. The obtained current densities by

  19. Novel composites materials from functionalized polymers and silver coated titanium oxide capable for calcium phosphate induction, control of orthopedic biofilm infections: an "in vitro" study.

    Science.gov (United States)

    Tyllianakis, M; Dalas, E; Christofidou, M; Kallitsis, J K; Chrissanthopoulos, A; Koutsoukos, P G; Bartzavali, C; Gourdoupi, N; Papadimitriou, K; Oikonomou, E K; Yannopoulos, S N; Sevastos, D

    2010-07-01

    Three copolymers containing the functional groups P=O, S=O and C=O were prepared, and upon the introduction in calcium phosphate aqueous solutions at physiological conditions, "in vitro" were induced the precipitation of calcium phosphate crystals. The investigation of the crystal growth process was done at constant supersaturation. It is suggested that the negative end of the above functional groups acts as the active site for nucleation of the inorganic phase. In order to obtain the copolymer further antimicrobial activity, titania (TiO(2)) nanocrystals were incorporated in the polymer matrix after silver coverage by UV radiation. The antimicrobial resistance of the composite material (copolymer-titania/Ag) was tested against Staphylococcus epidermidis (SEM), Staphylococcus aureus (SAM), Candida parapsilosis (CAM) and Pseudomonas aeruginosa (PAM), microorganisms, using cut parts of "pi-plate" that covered with the above mentioned composite. The antimicrobial effect increased as the size of the nanocrystals TiO(2)/Ag decreased, the maximum achieved with the third polymer that contained also quartenary ammonium groups.

  20. Optical constants of ammonium sulfate in the infrared. [stratospheric aerosol refractive and absorption indices

    Science.gov (United States)

    Downing, H. D.; Pinkley, L. W.; Sethna, P. P.; Williams, D.

    1977-01-01

    The infrared spectral reflectance at near normal incidence has been measured for 3.2 M, 2.4 M, and 1.6 M solutions of ammonium sulfate, an aerosol abundant in the stratosphere and also present in the troposphere. Kramers-Kronig analysis was used to determine values of the refractive and absorption indices from the measured spectral reflectance. A synthetic spectrum of crystalline ammonium sulfate was obtained by extrapolation of the absorption index obtained for the solution to the absorber number densities of the NH4 and SO4 ions characteristic of the crystal.

  1. Nitrogen Cycling in Seagrass Beds Dominated by Thalassia testudinum and Halodule wrightii: the Role of Nitrogen Fixation and Ammonium Oxidation in Regulating Ammonium Availability

    Science.gov (United States)

    Capps, R.; Caffrey, J. M.; Hester, C.

    2016-02-01

    Seagrass meadows provide key ecosystem services including nursery and foraging grounds, storm and erosion buffers, biodiversity enhancers and global carbon and nutrient cycling. Nitrogen concentrations are often very low in coastal waters and sediments, which may limit primary productivity. Biological nitrogen fixation is a microbial process that converts dinitrogen to ammonium, which is readily taken up by seagrasses. In the oxygenated rhizospheres, diazotrophs provide the plant with ammonium and use root exudates as an energy source. Nitrogen fixation rates and nutrient concentrations differ between seagrass species and substrate types. Thalassia testudinum has a higher biomass and is a climax species than Halodule wrightii, which is a pioneer species. Nitrogen fixation rates are relatively consistent in Thalassia testudinum dominated sediments. However, it is relatively variable in sediments occupied by Halodule wrightii. Nitrogen fixation rates are higher in bare substrate compared to areas with Thalassia testudinum, which may be due to T. testudinum's greater efficiency in nutrient retention because it is a climax species. We hypothesize that seasonal shifts in nitrogen fixation will coincide with seasonal shifts in seagrass biomass due to higher nutrient requirements during peak growth and lower requirements during senescence and dormancy. The ratio of porewater ammonium to phosphate suggests that seagrass growth may be nitrogen limited as does nitrogen demand, estimated from gross primary productivity. Significant rates of ammonium oxidation in both surface and rhizosphere sediments contribute to this imbalance. Thus, nitrogen fixation may be critical in supporting plant growth.

  2. Continuous analysis of phosphate in a Greenland shallow ice core

    Science.gov (United States)

    Kjær, Helle Astrid; Svensson, Anders; Bigler, Matthias; Vallelonga, Paul; Kettner, Ernesto; Dahl-Jensen, Dorthe

    2010-05-01

    Phosphate is an important and sometimes limiting nutrient for primary production in the oceans. Because of deforestation and the use of phosphate as a fertilizer changes in the phosphate cycle have occurred over the last centuries. On longer time scales, sea level changes are thought to have also caused changes in the phosphate cycle. Analyzing phosphate concentrations in ice cores may help to gain important knowledge about those processes. In the present study, we attach a phosphate detection line to an existing continuous flow analysis (CFA) setup for ice core analysis at the University of Copenhagen. The CFA system is optimized for high-resolution measurements of insoluble dust particles, electrolytic melt water conductivity, and the concentrations of ammonium and sodium. For the phosphate analysis we apply a continuous and highly sensitive absorption method that has been successfully applied to determine phosphate concentrations of sea water (Zhang and Chi, 2002). A line of melt water from the CFA melt head (1.01 ml per minute) is combined with a molybdate blue reagent and an ascorbic acid buffer. An uncompleted reaction takes place in five meters of heated mixing coils before the absorption measurement at a wavelength of 710 nanometer takes place in a 2 m long liquid waveguide cell (LWCC) with an inner volume of 0.5 ml. The method has a detection limit of around 0.1 ppb and we are currently investigating a possible interference from molybdate reacting with silicates that are present in low amounts in the ice. Preliminary analysis of early Holocene samples from the NGRIP ice core show phosphate concentration values of a few ppb. In this study, we will attempt to determine past levels of phosphate in a shallow Northern Greenland firn core with an annual layer thickness of about 20 cm ice equivalent. With a melt speed of 2.5 cm ice per minute our method should allow the resolution of any seasonal variability in phosphate concentrations.

  3. Phosphorus recovery from anaerobic digester supernatant by struvite crystallization: model-based evaluation of a fluidized bed reactor.

    Science.gov (United States)

    Rahaman, M S; Mavinic, D S; Ellis, N

    2008-01-01

    This paper is an attempt to model the UBC (University of British Columbia) MAP (Magnesium Ammonium Phosphate) fluidized bed crystallizer. A mathematical model is developed based on the assumption of perfect size classification of struvitre crystals in the reactor and considering the movement of liquid phase as a plug flow pattern. The model predicts variation of species concentration of struvite along the crystal bed height. The species concentrations at two extreme ends (inlet and outlet) are then used to evaluate the reactor performance. The model predictions provide a reasonable good fit with the experimental results for both PO4-P and NH4-N removals. Another important aspect of this model is its capability of predicting the crystals size and the bed voidage at different height of the reactor. Those predictions also match fairly well with the experimental observations. Therefore, this model can be used as a tool for performance evaluation of the reactor and can also be extended to optimize the struvite crystallization process in the UBC MAP reactor. IWA Publishing 2008.

  4. Metal-free catalytic oxidation of sulfides to sulfoxides with ammonium nitrate, ammonium hydrogen sulfate and ammonium bromide as catalyst

    OpenAIRE

    Ghorbani-Choghamarani, Arash; Zolfigol, Mohammad Ali; Ayazi-Nasrabadi, Roia

    2010-01-01

    A general and metal-free catalytic oxidation of aliphatic and aromatic sulfides to their corresponding sulfoxides via combination of ammonium nitrate (NH4NO3), supported ammonium hydrogen sulfate on silica gel (NH4HSO4-SiO2) and a catalytic amount of ammonium bromide (NH4Br) in the presence of wet SiO2 (50%, w/w) has been investigated. The reactions were carried out heterogeneously and selectively in short reaction times in CH2Cl2 at room temperature. This protocol is mild and efficient compa...

  5. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars

    International Nuclear Information System (INIS)

    Cui, Xiaoqiang; Hao, Hulin; Zhang, Changkuan; He, Zhenli; Yang, Xiaoe

    2016-01-01

    The objective of this study was to investigate the relationship between Cd 2+ /NH 4 + sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500 °C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH 4 + and Cd 2+ , with a maximum sorption of 13.35 and 125.8 mg g −1 , respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3 mg g −1 ) for Cd 2+ . Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd 2+ sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars. - Highlights: • Biochars varied in physicochemical properties and adsorption capacity. • Canna indica derived biochar has a high sorption capacity for Cd 2+ . • NH 4 + and Cd 2+ sorption on biochars fits a pseudo second order and Langmuir model. • Sorption mechanism is related to complexation, cation exchange and precipitation.

  6. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaoqiang [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Hao, Hulin [Ningbo Raw Water Resource Research Academy, Ningbo (China); Zhang, Changkuan [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); He, Zhenli [Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945 (United States); Yang, Xiaoe, E-mail: xyang571@yahoo.com [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-01-01

    The objective of this study was to investigate the relationship between Cd{sup 2+}/NH{sub 4}{sup +} sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500 °C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH{sub 4}{sup +} and Cd{sup 2+}, with a maximum sorption of 13.35 and 125.8 mg g{sup −1}, respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3 mg g{sup −1}) for Cd{sup 2+}. Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd{sup 2+} sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars. - Highlights: • Biochars varied in physicochemical properties and adsorption capacity. • Canna indica derived biochar has a high sorption capacity for Cd{sup 2+}. • NH{sub 4}{sup +} and Cd{sup 2+} sorption on biochars fits a pseudo second order and Langmuir model. • Sorption mechanism is related to complexation, cation exchange and precipitation.

  7. Ammonium sulfate preparation from phosphogypsum waste

    OpenAIRE

    Kandil, Abdel-Hakim T.; Cheira, Mohamed F.; Gado, Hady S.; Soliman, Madiha H.; Akl, Hesham M.

    2017-01-01

    The Egyptian phosphogypsum waste is treated using sulfuric acid prior the ammonium sulfate production. The relevant factors that would affect the removal efficiencies of some impurities are studied. The optimum conditions of the treatment are 8 M sulfuric acid solution and 1/4 solid/liquid ratio for 30 min contact time at 80 °C. Moreover, the optimum conditions of the ammonium sulfate preparation are 10 g of the suspended impure or purified phosphogypsum in 40 ml of 3% ammonium sulfate soluti...

  8. Availability of native and added phosphates for the soil

    International Nuclear Information System (INIS)

    Scivittaro, W.B.; Boaretto, A.E.; Muraoka, T.

    1995-01-01

    In superficial composite samples of two Red-Yellow Latosols with different physical and chemical properties, analyses were carried out on inorganic form of phosphorus as well as the availability of native and added phosphates. The method applied was soil phosphorus fractionation associated with isotopic dilution technique ( 32 P). The samples were taken from pots containing soils incubated for a month with fluid phosphatic fertilizers (phosphoric acid and 10-30-00 suspension) and solid phosphatic fertilizers (mono ammonium phosphate and triple superphosphate), at the rate of 210 mg P 2 O 5 /kg of soil. A control treatment was included. In both soils the availability of inorganic phosphorus fractions decreased at the following order: H 2 O-P > Al-P > Fe-P > CA-P > occluded-P. The water soluble and aluminium phosphates represented the main source of available P for the newly fertilizer, the iron phosphates were also an important source of available phosphorus. The soil phosphorus fixing capacity influenced the availability of native and added phosphates. (author). 17 refs, 3 tabs

  9. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T.R.; Govindaraj, R.; Govindan Kutty, K.V.; Vasudeva Rao, P.R.

    2014-01-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe 3+ /Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300–700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass

  10. Degradation processes of reinforced concretes by combined sulfate–phosphate attack

    Energy Technology Data Exchange (ETDEWEB)

    Secco, Michele, E-mail: michele.secco@unipd.it [Inter-Departmental Research Center for the Study of Cement Materials and Hydraulic Binders (CIRCe), University of Padova, Via Gradenigo 6, 35131 Padova (Italy); Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, Via Marzolo 9, 35131 Padova (Italy); Lampronti, Giulio Isacco, E-mail: gil21@cam.ac.uk [Department of Earth Sciences, University of Cambridge, Downing Street, CB2 3EQ Cambridge (United Kingdom); Schlegel, Moritz-Caspar, E-mail: moritz-caspar.schlegel@helmholtz-berlin.de [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany); Helmholtz-Zentrum Berlin fürMaterialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Maritan, Lara, E-mail: lara.maritan@unipd.it [Department of Geosciences, University of Padova, Via Gradenigo 6, 35131 Padova (Italy); Zorzi, Federico, E-mail: federico.zorzi@unipd.it [Department of Geosciences, University of Padova, Via Gradenigo 6, 35131 Padova (Italy)

    2015-02-15

    A novel form of alteration due to the interaction between hydrated cement phases and sulfate and phosphate-based pollutants is described, through the characterization of concrete samples from an industrial reinforced concrete building. Decalcification of the cement matrices was observed, with secondary sulfate and phosphate-based mineral formation, according to a marked mineralogical and textural zoning. Five alteration layers may be detected: the two outermost layers are characterized by the presence of gypsum–brushite solid solution phases associated with anhydrous calcium sulfates and phosphates, respectively, while a progressive increase in apatite and ammonium magnesium phosphates is observable in the three innermost layers, associated with specific apatite precursors (brushite, octacalcium phosphate and amorphous calcium phosphate, respectively). The heterogeneous microstructural development of secondary phases is related to the chemical, pH and thermal gradients in the attacked cementitious systems, caused by different sources of pollutants and the exposure to the sun's radiation.

  11. Frequency doubling crystals

    Science.gov (United States)

    Wang, Francis; Velsko, Stephan P.

    1989-01-01

    A systematic approach to the production of frequency conversion crystals is described in which a chiral molecule has attached to it a "harmonic generating unit" which contributes to the noncentrosymmetry of the molecule. Certain preferred embodiments of such harmonic generating units include carboxylate, guanadyly and imidazolyl units. Certain preferred crystals include L-arginine fluoride, deuterated L-arginine fluoride, L-arginine chloride monohydrate, L-arginine acetate, dithallium tartrate, ammonium N-acetyl valine, N-acetyl tyrosine and N-acetyl hydroxyproline. Chemical modifications of the chiral molecule, such as deuteration, halogenation and controlled counterion substitution are available to adapt the dispersive properties of a crystal in a particular wavelength region.

  12. Electrochemically and Bioelectrochemically Induced Ammonium Recovery

    Science.gov (United States)

    Gildemyn, Sylvia; Luther, Amanda K.; Andersen, Stephen J.; Desloover, Joachim; Rabaey, Korneel

    2015-01-01

    Streams such as urine and manure can contain high levels of ammonium, which could be recovered for reuse in agriculture or chemistry. The extraction of ammonium from an ammonium-rich stream is demonstrated using an electrochemical and a bioelectrochemical system. Both systems are controlled by a potentiostat to either fix the current (for the electrochemical cell) or fix the potential of the working electrode (for the bioelectrochemical cell). In the bioelectrochemical cell, electroactive bacteria catalyze the anodic reaction, whereas in the electrochemical cell the potentiostat applies a higher voltage to produce a current. The current and consequent restoration of the charge balance across the cell allow the transport of cations, such as ammonium, across a cation exchange membrane from the anolyte to the catholyte. The high pH of the catholyte leads to formation of ammonia, which can be stripped from the medium and captured in an acid solution, thus enabling the recovery of a valuable nutrient. The flux of ammonium across the membrane is characterized at different anolyte ammonium concentrations and currents for both the abiotic and biotic reactor systems. Both systems are compared based on current and removal efficiencies for ammonium, as well as the energy input required to drive ammonium transfer across the cation exchange membrane. Finally, a comparative analysis considering key aspects such as reliability, electrode cost, and rate is made. This video article and protocol provide the necessary information to conduct electrochemical and bioelectrochemical ammonia recovery experiments. The reactor setup for the two cases is explained, as well as the reactor operation. We elaborate on data analysis for both reactor types and on the advantages and disadvantages of bioelectrochemical and electrochemical systems. PMID:25651406

  13. Effects of soil phosphorus status on environmental risk assessment of glyphosate and glufosinate-ammonium.

    Science.gov (United States)

    Laitinen, Pirkko; Siimes, Katri; Rämö, Sari; Jauhiainen, Lauri; Eronen, Liisa; Oinonen, Seija; Hartikainen, Helinä

    2008-01-01

    The increased use of herbicides poses a risk to the aquatic environment. Easy and economical methods are needed to identify the fields where specific environment protection measures are needed. Phosphorus (P) and organophosphorus herbicides compete for the same adsorption sites in soil. In this study the relationship between P obtained in routine Finnish agronomic tests (acid ammonium acetate [P(AC)]) and adsorption of glyphosate and glufosinate-ammonium was investigated to determine whether P(AC) values could be used in the risk assessment. The adsorption of glyphosate ((N-(phosphonomethyl)glycine) and glufosinate-ammonium (2-amino-4-(hydroxymethylphosphinyl)butanoic acid) was studied in a clay and a sandy loam soil enriched with increasing amounts of P added as potassium dihydrogen phosphate. Desorption was also determined for some P-enriched soil samples. The adsorption of both herbicides diminished with increasing P(AC) value. The correlations between Freundlich adsorption coefficients obtained in the adsorption tests and P(AC) were nonlinear but significant (r > 0.98) in both soils. The exponential models of the relationship between soil P(AC) values and glyphosate adsorption were found to fit well to an independent Finnish soil data set (P glufosinate-ammonium). The desorption results showed that glufosinate-ammonium sorption is not inversely related to soil P status, and the high correlation coefficients obtained in the test of the model were thus artifacts caused by an abnormal concentration of exchangeable potassium in soil. The solved equations are a useful tool in assessing the leaching risks of glyphosate, but their use for glufosinate-ammonium is questionable.

  14. Investigation of Phosphate Retention in some Allophanic and Non-Allophanic Nano-Clays from Karaj Formation

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Monajjem

    2017-02-01

    and iron oxides from the soil, clay fraction was prepared for X-ray diffraction analyses. The nanoclay fraction was extracted using the method described by Li and Hu (2003. The specific surface area were determined using EGME method. Different forms of extractable aluminum, including pyrophosphate (Alp and ammonium oxalate (Alo extractable forms, as well as silica extractable by ammonium oxalate (Sio were measured. Routine chemical analyses for organic carbon (OC, cation exchange capacity (CEC were determined by standard methods. Particle size distribution was determined by the hydrometer method (after ultrasound dispersion. Allophane percentage was calculated using the formula provided in the soils under study by Mizota and Van Reeuwijk (1989. Nano particles were inspected using scanning electron microscope (SEM. Results and Discussion: The studied soils were classified as Entisols, Andisols and Inceptisols. The results showed that the bulk of soil mineralogy was consisted of combination of illitic, chloritic, smectite and hydroxy interlayer minerals. In addition to sesquioxides, the crystallization degree of soil minerals was also important in phosphate retention. Results of SEM studies of Andisols implied the existence of different types of aluminosilicate nano particles as nano ball (Allophane, nano tubes (imogolite and smectitic minerals. Hollow spherical structure was proposed for allophane. According to the SEM results, nano particles extracted from non andic soils were dominated by layered silicates (probably montmorillonite. Among physical properties which are effective on phosphate retention, the shape, size and porosity of the particles can be mentioned, all of which have impacts on the specific surface area of the particles. Soils with higher amounts of Alp and Sio were comprised more nanoclay (25,8 g per kg and higher phosphate retention (%55. Various mechanisms were suggested by soil scientists for phosphate sorption on allophane (Nanoclays. Some of are

  15. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Science.gov (United States)

    2010-07-01

    ..., combustible liquids, corrosive liquids, chlorates, permanganates, finely divided metals, caustic soda... molten ammonium nitrate if a fire occurred (and thus become potential detonators for the storage piles...

  16. Zinc phosphate conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, Toshifumi (Wading River, NY)

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  17. Zinc phosphate conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  18. Phosphorus, phosphorous, and phosphate.

    Science.gov (United States)

    Iheagwara, O Susan; Ing, Todd S; Kjellstrand, Carl M; Lew, Susie Q

    2013-10-01

    This article distinguishes the terms "phosphorus, phosphorous, and phosphate" which are frequently used interchangeably. We point out the difference between phosphorus and phosphate, with an emphasis on the unit of measure. Expressing a value without the proper name or unit of measure may lead to misunderstanding and erroneous conclusions. We indicate why phosphate must be expressed as milligrams per deciliter or millimoles per liter and not as milliequivalents per liter. Therefore, we elucidate the distinction among the terms "phosphorus, phosphorous, and phosphate" and the importance of saying precisely what one really means. © 2012 The Authors. Hemodialysis International © 2012 International Society for Hemodialysis.

  19. Nuclear waste immobilization in iron phosphate glasses

    International Nuclear Information System (INIS)

    Garcia, D.A.; Rodriguez, Diego A.; Menghini, Jorge E.; Bevilacqua, Arturo

    2007-01-01

    Iron-phosphate glasses have become important in the nuclear waste immobilization area because they have some advantages over silicate-based glasses, such as a lower processing temperature and a higher nuclear waste load without losing chemical and mechanical properties. Structure and chemical properties of iron-phosphate glasses are determined in terms of the main components, in this case, phosphate oxide along with the other oxides that are added to improve some of the characteristics of the glasses. For example, Iron oxide improves chemical durability, lead oxide lowers fusion temperature and sodium oxide reduces viscosity at high temperature. In this work a study based on the composition-property relations was made. We used different techniques to characterize a series of iron-lead-phosphate glasses with uranium and aluminium oxide as simulated nuclear waste. We used the Arquimedes method to determine the bulk density, differential temperature analysis (DTA) to determine both glass transition temperature and crystallization temperature, dilatometric analysis to calculate the linear thermal expansion coefficient, chemical durability (MCC-1 test) and X-ray diffraction (XRD). We also applied some theoretic models to calculate activation energies associated with the glass transition temperature and crystallization processes. (author)

  20. Synthesis of double condensed cesium gallium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Chudinova, N.N.; Grunze, I.; Guzeeva, L.S.; Avaliani, M.A.

    1987-09-01

    By crystallization from melts of polyphosphoric acids there are obtained double condensed phosphates of cesium and gallium of the following compositions: Cs/sub 2/GaH/sub 3/(P/sub 2/O/sub 7/)/sub 2/, CsGaHP/sub 3/O/sub 10/, Cs/sub 3/Ga/sub 3/P/sub 12/O/sub 36/. Their x-ray characteristics are given.

  1. 40 CFR 418.10 - Applicability; description of the phosphate subcategory.

    Science.gov (United States)

    2010-07-01

    ... are applicable to discharges resulting from the manufacture of sulfuric acid by sulfur burning, wet-process phosphoric acid, normal superphosphate, triple superphosphate and ammonium phosphate, except that the provisions of §§ 418.12, 418.13, and 418.17 shall not apply to wet-process phosphoric acid...

  2. Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4(+)).

    Science.gov (United States)

    Nozière, Barbara; Dziedzic, Pawel; Córdova, Armando

    2009-01-08

    Glyoxal, a common atmospheric gas, has been reported to be depleted in some regions of the atmosphere. The corresponding sink could be accounted for by reactions in or at the surface of atmospheric particles, but these reactions were not identified. Recently, we showed that inorganic ammonium ions, NH(4)(+), are efficient catalysts for reactions of carbonyl compounds, including glyoxal, in the liquid phase. To determine whether ammonium-catalyzed reactions can contribute to depletion of glyoxal in the atmosphere, the reactivity of this compound in aqueous solutions containing ammonium salts (ammonium sulfate, chloride, fluoride, and phosphate) at 298 K has been studied. The products identified by LC-HRMS and UV absorption revealed a mechanism involving two distinct pathways: a Bronsted acid pathway and an iminium pathway. The kinetics of the iminium pathway was studied by monitoring formation of a specific product. This pathway was second order in glyoxal in most of the solutions studied and should therefore be second order in most ammonium-containing aerosols in the atmosphere. The corresponding rate constant, k(II) (M(-1) s(-1)), increased strongly with ammonium ion activity, a(NH(4)(+)), and pH: k(II) (M(-1) s(-1)) = (2 +/- 1) x 10(-10) exp((1.5 +/- 0.8)aNH(4)(+)) exp((2.5 +/- 0.2)pH). This iminium pathway is a lower limit for the ammonium-catalyzed consumption of glyoxal, but the contribution of the acid pathway is expected to be small in tropospheric aerosols. With these results the reactive uptake of glyoxal on ammonium-containing aerosols was estimated and shown to be a possible explanation for depletion of this compound in Mexico City.

  3. Metachromasy of methylene blue due to aggregation over phosphate-modified polymeric carbon nitride

    Science.gov (United States)

    Lakshminarasimhan, N.; Sangeetha, D. N.; Nivetha, G.

    2017-05-01

    Polymeric carbon nitride in graphitic form (g-C3N4) is an emerging visible light active photocatalyst. In this work, phosphate-modified polymeric carbon nitride (PCN) was synthesized by thermal condensation of melamine in the presence of ammonium dihydrogen phosphate (ADP). The addition of PCN to methylene blue (MB) solution showed the color intensification. The hypsochromic shift in the absorption spectrum of MB is due to metachromasy, a phenomenon in which aggregation of dye molecules occurs over the surface of a material. The polymerization of melamine into carbon nitride and MB trimerization depend on the amount of ADP and nature of phosphate species, respectively.

  4. Expression, purification and crystallization of the ecto-enzymatic domain of rat E-NTPDase1 CD39.

    Science.gov (United States)

    Zhong, Xiaotian; Buddha, Madhavan; Guidotti, Guido; Kriz, Ron; Somers, Will; Mosyak, Lidia

    2008-11-01

    CD39 is a prototype member of the ecto-nucleoside triphosphate diphosphohydrolase family that hydrolyzes extracellular nucleoside diphosphates and triphosphates in the presence of divalent cations. Here, the expression, purification and crystallization of the ecto-enzymatic domain of rat CD39, sCD39, are described. The 67 kDa secreted soluble glycoprotein was recombinantly overexpressed in a glycosylation mutant CHO line, Lec.3.2.8.1, and purified from conditioned media. Diffraction-quality crystals of sCD39 were produced by the vapor-diffusion method using PEG 3350 and ammonium dihydrogen phosphate as precipitants. The enzyme crystallized in a primitive trigonal form in space group P3(2), with unit-cell parameters a = b = 118.1, c = 81.6 A and with two sCD39 copies in the asymmetric unit. Several low- to medium-resolution diffraction data sets were collected using an in-house X-ray source. Analysis of the intensity statistics showed that the crystals were invariably merohedrally twinned with a high twin fraction. For initial phasing, a molecular-replacement search was performed against the complete 3.2 A data set using a maximum-likelihood molecular-replacement method as implemented in Phaser. The initial model of the two sCD39 monomers was placed into the P3(2) lattice and rigid-body refined and position-minimized with PHENIX.

  5. Solid state reaction studies of ammonium sulphate with tetrafluorides of uranium and thorium (Preprint No. AL.06)

    International Nuclear Information System (INIS)

    Singh Mudher, K.D.; Khandekar, R.R.; Krishnan, K.; Jayadevan, N.C.

    1989-01-01

    Solid state reactions of uranium and thorium tetrafluorides with ammonium sulphate convert them to easily soluble sulphates. New phases of anhydrous U(SO 4 ) 2 and Th(SO 4 ) 2 formed during the course of reaction are characterised by chemical and x-ray methods. X-ray data of these phases have been indexed on hexagonal crystal system. (author)

  6. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Science.gov (United States)

    2010-10-01

    ... ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with..., blasting, type B, and Explosives, blasting, type E, Division 1.5 compatibility group D. (f) No mixture...

  7. High-temperature peaks of thermostimulated luminescence in the ammonium halogens

    International Nuclear Information System (INIS)

    Kim, L.M.; Musenova, Eh.K.; Mukhamedrakhimov, K.U.

    2003-01-01

    The ammonium halogen crystals (AHC) are the close analogs of the alkali halogen crystals by the type of chemical bonds and crystal lattice structure. The ammonium halogen after irradiation by X-rays within 80-300 K range have two peaks of thermo-stimulation luminescence. Its maximums in dependence of anions type are in the 110-120 K and 170-180 K ranges. The first range is related with activation of auto-localized holes migration, and the second one - with the NH 3 + defects decay. Experimentally is established, that the pure ammonium halogens have memory about the previous irradiation at heating up to 300 K. After repeat irradiation the recombination luminescence high-temperature peak's shoulder is appearing. The second luminescence peak's shoulder revealing does not depend on the impurity center nature. It is known, that in the AHC there is the next thermo-stimulation luminescence peak within 340-360 K. The thermal annealing of this peak leads to the memory effect disappearance. So, the observing phenomenon is related with own defect of the matrix in the cation sublattice. Experimentally is established, that at a room temperature the AHC memorizing about previous irradiation during 20 h

  8. Thermodynamics and nucleation mechanism of ammonium jarosite in sulfuric acid solution

    Science.gov (United States)

    Liu, PengFei; Zhang, YiFei; Wang, Li; You, ShaoWei; Bo, Jing

    2017-11-01

    Jarosite process is one of the most widely used methods in removing Fe, but in which the nucleation mechanism of ammonium jarosite has not been reported. Solubilities of the ammonium jarosite crystals under different Fe2(SO4)3 and (NH4)2SO4 concentrations and under different temperatures were measured, and the experiments of induction periods were systematically investigated in different temperatures (348 k, 358 k and 368 k) and H2SO4 concentrations (9 g/L, 10.8 g/L and 12.6 g/L) by reaction crystallization process based on the thermodynamic equilibrium data. According to the model of classical nucleation theory, the interfacial tension and the surface entropy factors in different conditions were calculated as 1.21 mJ/m2, 1.85 mJ/m2, 1.71 mJ/m2 and 1.51, 1.27, 1.17. The SEM photographs of (H3O, NH4)Fe3(SO4)2(OH)6 approved that the ammonium jarosite crystals were clearly grown by the two-dimensional nucleation mechanism and/or the spiral growth mechanism. But the growth mechanism of (H3O, NH4)Fe3(SO4)2(OH)6 had been determined to be the continuous growth by the surface entropy factor.

  9. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal.

    Science.gov (United States)

    Liu, Sitong; Yang, Fenglin; Gong, Zheng; Meng, Fangang; Chen, Huihui; Xue, Yuan; Furukawa, Kenji

    2008-10-01

    The simultaneous ammonium and sulfate removal was detected in an anammox reactor, consisted of ammonium oxidization with sulfate deoxidization, and subsequently traditional anammox process, in via of middle medium nitrite with solid sulfur and N2 as the terminal products. The pure anammox bacteria offered a great biotechnological potential for the completely autotrophic reaction indicated by batch tests. Denaturing gradient gel electrophoresis (DGGE) analysis further revealed that a new organism belonging to Planctomycetales was strongly enriched in the defined niche: the redox of ammonium and sulfate. The new species "Anammoxoglobussulfate" was so considered as holding a critical role in the ammonium oxidization with sulfate deoxidization to nitrite. Afterwards, the Planctomyces existing in the bacteria community performed the anammox process together to achieve the complete nitrogen and sulfate removal. The potential use of sulfate as electron acceptor for ammonium oxidizing widens the usage of anammox bacteria.

  10. Study on effect of process parameters and mixing on morphology of ammonium diuranate

    International Nuclear Information System (INIS)

    Subhankar Manna; Chandrabhanu Basak; Thakkar, U.R.; Shital Thakur; Roy, S.B.; Joshi, J.B.; Institute of Chemical Technology, Matunga, Mumbai

    2016-01-01

    Ammonium diuranate (ADU) is an important intermediate for the production of uranium base fuel. Controlling morphology of crystalline ADU powders is very important as it is retained by its subsequent products. Because of the high level of supersaturation, the involved mechanisms of precipitation like primary nucleation, crystal growth, aggregation and breakage occur simultaneously and they control the morphology. Effects of concentration of uranyl nitrate solution, temperature and the mixing intensity have been investigated on the morphology, crystal structure and the other physical properties of ADU. Effect of temperature is found to be more dominant for controlling morphology. (author)

  11. Phosphate acquisition efficiency and phosphate starvation tolerance ...

    Indian Academy of Sciences (India)

    2011 Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol. 156, 1202–1216. Ciereszko I., Gniazdowska A., Mikulska M. and Rychter A. M.. 1996 Assimilate translocation in bean plants (Phaseolus vulgaris. L.) during phosphate deficiency. J. Plant Physiol. 149, 343–. 348.

  12. Phosphate acquisition efficiency and phosphate starvation tolerance ...

    Indian Academy of Sciences (India)

    Here, we have reported the presence as well as the expression of a previously characterized rice gene, phosphate starvation tolerance ... from a cross between Gobindabhog and Satabdi, also did not show any linkage with P-deficiency tolerance ability. Thus, ... vated in P-limiting conditions which work in a cascade and.

  13. Radioactivity of phosphate mineral products

    OpenAIRE

    Mitrović Branislava; Vitorović Gordana; Stojanović Mirjana; Vitorović Duško

    2011-01-01

    The phosphate industry is one of the biggest polluters of the environment with uranium. Different products are derived after processing phosphoric ore, such as mineral and phosphate fertilizers and phosphate mineral supplements (dicalcium-and monocalcium phosphate) for animal feeding. Phosphate mineral additives used in animal food may contain a high activity of uranium. Research in this study should provide an answer to the extent in which phosphate minera...

  14. Radioactivity of phosphate mineral products

    Directory of Open Access Journals (Sweden)

    Mitrović Branislava

    2011-01-01

    Full Text Available The phosphate industry is one of the biggest polluters of the environment with uranium. Different products are derived after processing phosphoric ore, such as mineral and phosphate fertilizers and phosphate mineral supplements (dicalcium-and monocalcium phosphate for animal feeding. Phosphate mineral additives used in animal food may contain a high activity of uranium. Research in this study should provide an answer to the extent in which phosphate mineral products (phosphate fertilizer and phosphate mineral feed additives contribute to the contamination of soil, plants and animals.

  15. Reduction in Ammonium Ions in Sludge Liquor

    Directory of Open Access Journals (Sweden)

    Eglė Šlajūtė

    2013-12-01

    Full Text Available Liquor rejected from the centrifugation of the digested sludge can contain the concentrations of ammonium ions up to 1750 mg/L. These loads are usually returned to the intake of wastewater treatment plants (WWTP without additional treatment and can have a negative impact on biological wastewater and/or sludge treatment processes, e.g. phosphorus and nitrogen removal. This article deals with the use of naturally obtained sorbent, zeolite, in batch and column test procedure for removing ammonium from the rejected liquor. This research study was carried out using different sizes of zeolite particles: 0.8–1.6 mm and 1.6–2.5 mm. The highest efficiency of ammonium removal (up to 98 % was achieved by applying the zeolite particles of 0.8–1.6 mm.Article in Lithuanian

  16. The analysis of impurities in the diuranate-determination of phosphate by phosphomolybdate blue spectrophotometric method

    International Nuclear Information System (INIS)

    Sun Haobo

    2014-01-01

    Phosphomolybdenum blue spectrophotometric method was used for determination of phosphate in the diuranate. Diuranate was dissolved in nitric acid solution, in which formed a soluble heteropolyacid complex (namely phosphomolybdenum yellow) due to interaction of phosphate and ammonium molybdate. Then phosphomolybdenum yellow was reduced to phosphomolybdenum blue with Bismuth nitrate as catalyst. Colour intensity at 700 nm is in proportion to the content of phosphate determined by spectrophotometric method. This experiment presents good linearity at the range of 30 μg to 245 μg phosphate, and the relative standard deviation of the experimental result is 2.4%, and the recovery rate is from 95% to 105%. The determination result of phosphate content will not be effected under conditions of 4 mg of SiO 2 , 6 mg of Fe, 400 mg of Cl - and 4.5 mg of Ge in the solution. (author)

  17. On the evaporation of ammonium sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  18. On the evaporation of ammonium sulfate solution

    International Nuclear Information System (INIS)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-01-01

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 ± 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  19. Crystals, inflammation, and osteoarthritis.

    Science.gov (United States)

    Rosenthal, Ann K

    2011-03-01

    Calcium pyrophosphate dihydrate (CPPD) and basic calcium phosphate (BCP) crystals are common components of osteoarthritic joint fluids and tissues. Why these crystals form and how they contribute to joint damage in osteoarthritis remain unclear. With renewed interest in inflammation as a key component of osteoarthritis the role of calcium-containing crystals in this common disease warrants re-examination. There is ample evidence supporting a pathogenic role for inflammation in osteoarthritis, and the innate immune system likely participates in this inflammatory process. Recent work reinforces the almost universal existence of calcium-containing crystals in tissues from patients with end-stage osteoarthritis. Calcium-containing crystals may contribute to inflammation in osteoarthritis tissues through their direct interactions with components of the innate immune system, as well as by inducing or amplifying other inflammatory signals. There is increasing evidence that calcium-containing crystals contribute to osteoarthritis and their inflammatory properties may mediate detrimental effects through innate immunity signals. Calcium-containing crystals may thus represent important therapeutic targets in osteoarthritis.

  20. Uranyl phosphate mineral in Gapyeong area

    International Nuclear Information System (INIS)

    Chung, S.J.

    1980-01-01

    An uranyl phosphate crystal from Gapeong area is studied by means of single crystal x-ray diffraction and electron microscopic qualitative analysis of chemical contents. The crystal is identified as meta-ankoleite which has a unit cell of super structure with a=b=6.99 A, c=17.69 A and space group P4 2 22. There exists some indication in the total fluorescent spectrum of the sample that potassium may be partially substituted by calcium. The chemical formula of this meta-ankoleite may be expressed by Ksub(1-2x)Casub(x)(UO 2 PO 4 ) (H 2 O)sub(3-x). (Author)

  1. Luminescence of uranium in some phosphates

    International Nuclear Information System (INIS)

    Lin Yu; Zhang Rui

    1992-07-01

    The solid fluorescence spectral properties of uranium in phosphates systems have been observed. The NaH 2 PO 4 : U system has been found to be an efficient green phosphor. The luminescence mechanism of the phosphor has been discussed. The crystal structure of NaH 2 PO 4 : U system under different conditions was also studied. Over a wide range of ignition temperatures (200 ∼ 600 C degree), the system with mass ratio of U/NaH 2 PO 4 below 10 -3 transforms into NaPO 3 : U crystal, which emits strong fluorescence. The system is non-crystalline with decreasing fluorescence intensity when the ignition temperature is higher than 650 C degree. The NaPO 3 crystal lattice has distorted as the mass ratio of U/NaH 2 PO 4 of the system greater than 10 -2

  2. Use of extracting agent for decadmiation of phosphate rock

    Science.gov (United States)

    Benredjem, Z.; Delimi, R.

    2009-11-01

    According to World Bank projections, world population will reach 7 billion in 2020. This impressive population must be accommodated, clothed and most importantly it must be fed. It keep into this challenge an increase in the agricultural production must reach 90% of the already cultivated land. It is clear that mineral fertilizers will continue to play an important role in improving agricultural production. A fertilizer is by definition 'any product containing at least 5% of the three major plant nutrients: N, P2O5, and K2 O. The most common fertilizers are nitrogen, phosphate, potassium, magnesium and sulphur fertilizers. They can be simple, single or complex nutrients. Currently, phosphate fertilizers are by far the most prevalent. However, the fertilizers produced from phosphate ores still contain heavy metals that are harmful to human health. These heavy metals are transferred through processing to phosphoric acid: the main intermediary between the rock and phosphate fertilizers. Among these heavy metals, cadmium seems to be the most harmful and toxic element. The occurrence of such element in the fertilizer products causes a serious danger to both human health and environment. Most of the phosphate-bearing rocks contain large Cd amounts that are often above acceptable levels. Phosphate ore industry usually tends to improve the quality of product by eliminating this toxic element. The aim of this study is to present an accurate and less expensive method by which cadmium in phosphate ore would be reduced to lower rates. The method uses ammonium acetate salt, diamine tetra-acetic and hydrochloric acids as extracting agents of cadmium in phosphate. The influence of some parameters was taken into consideration, such as the volume/mass ratios, the extracting agent concentration and the temperature. The results analyses were based on the amount of cadmium extracted and P2O5 loss, and the efficiencies of extracting agents.

  3. Effect of Ammonium Chloride Solution on the Growth of Phosphorus Gypsum Whisker and Its Modification

    Directory of Open Access Journals (Sweden)

    Shouwei Jian

    2016-01-01

    Full Text Available Phosphogypsum is the by-product of phosphate of fertilizer or phosphate which causes serious environmental pollution. In this work, a series of phosphogypsum whiskers were prepared using phosphogypsum as raw materials and NH4Cl as additive through the atmospheric water solution method. The results showed that the ammonium chloride solution has a great influence on phosphogypsum whiskers growth and the solubility. The best whisker aspect ratio of phosphogypsum was preferred in 1 mol/L NH4Cl solution, in which the solubility achieved 6.434 mg/mL and the aspect ratio reached 69.29. Besides, NH4Cl was found to have a modified effect on gypsum whiskers’ growth and it can be used to get mesh or dendritic whiskers.

  4. Effects of Aromatic Ammoniums on Methyl Ammonium Lead Iodide Hybrid Perovskite Materials

    Directory of Open Access Journals (Sweden)

    Jianli Yang

    2017-01-01

    Full Text Available The introduction of bulky ammoniums into methyl ammonium lead iodide hybrid perovskites (MAPbI3 has emerged as a promising strategy to improve the properties of these materials. In the present work, we studied the effects of several aromatic ammoniums onto the structural, electronic, and optical properties of MAPbI3. Although powder XRD data suggest that the bulky cations are not involved in the bulk phase of the MAPbI3, a surprisingly large effect of the bulky cations onto the photoluminescence properties was observed.

  5. Metal-phosphate binders

    Science.gov (United States)

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  6. Structure of RNA 3'-phosphate cyclase bound to substrate RNA.

    Science.gov (United States)

    Desai, Kevin K; Bingman, Craig A; Cheng, Chin L; Phillips, George N; Raines, Ronald T

    2014-10-01

    RNA 3'-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3'-phosphate to form a 2',3'-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA-AMP and RNA(3')pp(5')A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3'-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3'-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3'-phosphate is poised for in-line attack on the P-N bond that links the phosphorous atom of AMP to N(ε) of His307. Thus, we provide the first insights into RNA 3'-phosphate termini recognition and the mechanism of 3'-phosphate activation by an Rtc enzyme. © 2014 Desai et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. Crystal structures of carbamate kinase from Giardia lamblia bound with citric acid and AMP-PNP.

    Directory of Open Access Journals (Sweden)

    Kap Lim

    Full Text Available The parasite Giardia lamblia utilizes the L-arginine dihydrolase pathway to generate ATP from L-arginine. Carbamate kinase (CK catalyzes the last step in this pathway, converting ADP and carbamoyl phosphate to ATP and ammonium carbamate. Because the L-arginine pathway is essential for G. lamblia survival and absent in high eukaryotes including humans, the enzyme is a potential target for drug development. We have determined two crystal structures of G. lamblia CK (glCK with bound ligands. One structure, in complex with a nonhydrolyzable ATP analog, adenosine 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP, was determined at 2.6 Å resolution. The second structure, in complex with citric acid bound in the postulated carbamoyl phosphate binding site, was determined in two slightly different states at 2.1 and 2.4 Å resolution. These structures reveal conformational flexibility of an auxiliary domain (amino acid residues 123-170, which exhibits open or closed conformations or structural disorder, depending on the bound ligand. The structures also reveal a smaller conformational change in a region associated the AMP-PNP adenine binding site. The protein residues involved in binding, together with a model of the transition state, suggest that catalysis follows an in-line, predominantly dissociative, phosphotransfer reaction mechanism, and that closure of the flexible auxiliary domain is required to protect the transition state from bulk solvent.

  8. Anaerobic ammonium oxidation in an estuarine sediment

    NARCIS (Netherlands)

    Risgaard-Petersen, N.; Meyer, R.L.; Schmid, M.C.; Jetten, M.S.M.; Enrich-Prast, A.; Rysgaard, S.; Revsbech, N.P.

    2004-01-01

    The occurrence and significance of the anammox (anaerobic ammonium oxidation) process relative to denitrification was studied in photosynthetically active sediment from 2 shallow-water estuaries: Randers Fjord and Norsminde Fjord, Denmark. Anammox accounted for 5 to 24 % of N-2 production in Randers

  9. Anaerobic ammonium oxidation in an estuarine sediment

    NARCIS (Netherlands)

    Risgaard-Petersen, N.; Meyer, R.L.; Schmid, M.; Jetten, M.S.M.; Enrich-Prast, A.; Rysgaard, S.; Revsbech, N.P.

    2004-01-01

    The occurrence and significance of the anammox (anaerobic ammonium oxidation) process relative to denitrification was studied in photosynthetically active sediment from 2 shallow-water estuaries: Randers Fjord and Norsminde Fjord, Denmark. Anammox accounted for 5 to 24% of N2 production in Randers

  10. 21 CFR 558.340 - Maduramicin ammonium.

    Science.gov (United States)

    2010-04-01

    .... Feed continuously as sole ration. Do not feed to laying hens. Withdraw 5 days before slaughter. (2... DRUGS, FEEDS, AND RELATED PRODUCTS NEW ANIMAL DRUGS FOR USE IN ANIMAL FEEDS Specific New Animal Drugs for Use in Animal Feeds § 558.340 Maduramicin ammonium. (a) Approvals. Type A medicated articles: 4.54...

  11. Lectin status, protein contents and ammonium assimilating ...

    African Journals Online (AJOL)

    activity of the ammonium assimilatory enzyme glutamine synthetase. M. nigra and M. alba extracts contained potent phytoagglutinins in various tissues with highest contents in M. nigra. The leaves and roots of both species of mulberry were used to determine the glutamine synthetase activity and high level of activity was ...

  12. Ammonium ions determination with polypyrrole modified electrode

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available The present work relates the preparation of polypyrrole films (PPy deposited on surfaces of glass carbon, nickel and ITO (tin oxide doped with indium on PET plastic, in order to study the ammonium detection. The popypyrrole films were polymerized with dodecylbenzenesulfonate (DBSA on the electrodes, at + 0,70 V vs. Ag/AgCl, based on a solution containing the pyrrole monomer and the amphiphilic salt. Films deposited on glass carbon presented better performance. Cyclic voltammetries, between – 1,50 to + 0,5 V vs. Ag/AgCl, were repeated adding different concentrations of NH4Cl, in order to observe the behavior of the film as a possible detector of ions NH4+. The peak current for oxidation varies with the concentration of ammonium. A linear region can be observed in the band of 0 to 80 mM, with a sensibility (Sppy approximately similar to 4,2 mA mM-1 cm-2, showing the efficacy of the electrodes as sensors of ammonium ions. The amount of deposited polymer, controlled by the time of growth, does not influence on the sensor sensibility. The modified electrode was used to determine ammonium in grounded waters.

  13. Ammonium conversion in liquid organic fertilisers

    NARCIS (Netherlands)

    Blok, C.; Streminska, M.; Vermeulen, T.

    2017-01-01

    Liquid organic fertilisers allow growers to abandon the use of conventional de novo (mined or synthesised) fertilisers without major technological adaptions to the cultivation system. In prior experiments the conversion by aerobic substrate born bacteria of ammonium into nitrate was plant growth

  14. Effects of ammonium nitrate, cesium chloride and ...

    African Journals Online (AJOL)

    Jane

    2011-10-12

    Oct 12, 2011 ... Key words: Potassium, high affinity transporters, channel blockers, ammonium. .... channel AtAKT1, indicating that channels may be involved in high-affinity. K+ uptake in a range of K+ concentrations (Hirsch et al.,. 1998; Spalding et al., ...... and tissue potassium concentrations by negative feedback effects.

  15. 21 CFR 184.1135 - Ammonium bicarbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium bicarbonate. 184.1135 Section 184.1135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 18...

  16. Optimization of nutritional requirements and ammonium feeding ...

    African Journals Online (AJOL)

    Through Plackett-Burman design, the major factors of glucose, ammonium sulfate and KCl were selected as the significant factors affecting vitamin B12 biosynthesis and these were further optimized by central composite design with response surface methodology. The maximum Yp of 34.2 μg/gDCW/h was obtained in batch ...

  17. Effect of Ethylenediaminetetraacetic Acid and Ammonium Oxalate ...

    African Journals Online (AJOL)

    This research was carried out to investigate effect of ethylenediaminetetraacetic acid and ammonium oxalate on the prevalence of microorganisms and removal of aluminum in soil by bitter leaf plant (Vernonia amygdalina). The test plant was sown in aluminium-polluted soil (conc. = 150mg Al kg-1 soil). One gram of each ...

  18. Nano-porous calcium phosphate balls.

    Science.gov (United States)

    Kovach, Ildyko; Kosmella, Sabine; Prietzel, Claudia; Bagdahn, Christian; Koetz, Joachim

    2015-08-01

    By dropping a NaH2PO4·H2O precursor solution to a CaCl2 solution at 90°C under continuous stirring in presence of two biopolymers, i.e. gelatin (G) and chitosan (C), supramolecular calcium phosphate (CP) card house structures are formed. Light microscopic investigations in combination with scanning electron microscopy show that the GC-based flower-like structure is constructed from very thin CP platelets. Titration experiments indicate that H-bonding between both biopolymers is responsible for the synergistic effect in presence of both polymers. Gelatin-chitosan-water complexes play an important role with regard to supramolecular ordering. FTIR spectra in combination with powder X-ray diffraction show that after burning off all organic components (heating up >600°C) dicalcium and tricalcium phosphate crystallites are formed. From high resolution transmission electron microscopy (HR-TEM) it is obvious to conclude, that individual crystal platelets are dicalcium phosphates, which build up ball-like supramolecular structures. The results reveal that the GC guided crystal growth leads to nano-porous supramolecular structures, potentially attractive candidates for bone repair. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution

    Science.gov (United States)

    Weber, A. L.

    1985-01-01

    The formation of alanine (ala) form C(14)-glyceraldehyde and ammonium phosphate in the presence or absence of a thiol is reported. At ambient temperature, ala synthesis was six times more rapid in the presence of 3-mercaptopropionic acid than in its absence (0.6 and 0.1 percent, respectively, after 60 days). Similarly, the presence of another thiol, N-acetylcysteinate, increased the production of ala, as well as of lactate. The reaction pathway of thiol-catalyzed synthesis of ala, with the lactic acid formed in a bypath, is suggested. In this, dehydration of glyceraldehyde is followed by the formation of hemithioacetal. In the presence of ammonia, an imine is formed, which eventually yields ala. This pathway is consistent with the observation that the rate ratio of ala/lactate remains constant throughout the process. The fact that the reaction takes place under anaerobic conditions in the presence of H2O and with the low concentrations of simple substrates and catalysts makes it an attractive model prebiotic reaction in the process of molecular evolution.

  20. Phosphate and sulfate-phosphate mineralization in sillimanite-bearing rocks at the Kyakhta deposit, western Transbaikal region

    Science.gov (United States)

    Izbrodin, I. A.; Ripp, G. S.; Karmanov, N. S.

    2009-12-01

    The phosphate and sulfate-phosphate minerals in the sillimanite-bearing rocks of the Kyakhta deposit are considered. The mineral assemblages of the high-Al rocks were formed during prograde and retrograde stages of metamorphism. The first stage is characterized by the formation of sillimanite, corundum, muscovite, quartz, rutile, titanohematite, magnetite, feldspar, biotite, lazulite, and wagnerite. The muscovite composition showed that sillimanite paragenesis was formed at temperatures above 510-600°C. According to oxygen isotope thermometry, the minimum metamorphic temperature for quartz and titanohematite is 690°C. Andalusite, diaspore, quartz, pyrophyllite, muscovite, and a wide range of phosphates and sulfate-phosphates crystallized during the retrograde stage. The decrease in temperature and increase in the water content led to the following sequence of mineral formation: Mg-Fe-Al-Ca-REE-rich phosphates (lazulite, scorzalite, augelite, apatite, and monazite) → Ca-Sr sulfate-phosphates (woodhouseite and svanbergite) → sulfate (barite) → Sr-Ca-Ba aluminophosphates (goyazite, crandallite, and gorceixite). The chemical compositions of phosphates and sulfate-phosphates minerals and their formation conditions are discussed.

  1. PRN 88-2: Clustering of Quaternary Ammonium Compounds

    Science.gov (United States)

    This Notice announces that EPA has clustered the Quaternary Ammonium Compounds into four groups for the purpose of testing chemicals to build a database that will support continued registration of the entire family of quaternary ammonium compounds

  2. Crystallization of water-soluble chlorophyll-proteins from Lepidium virginicum.

    Science.gov (United States)

    Murata, T; Itoh, R; Yakushiji, E

    1980-11-05

    Water-soluble chlorophyll-proteins were prepared from leaves of Lepidium virginicum, by means of ammonium sulfate fractionation followed by column chromatography on DEAE-cellulose and Sephacryl S-200. After intensive purification the chlorophyll-proteins were crystallized by dialysis against an ammonium sulfate solution.

  3. Purification of sodium phosphate yielded from Bangka's monazite base decomposition

    International Nuclear Information System (INIS)

    Walujo, Sugeng; Susilaningtyas; Mukhlis; Tukardi

    2002-01-01

    The aim of this experiment is to get purification condition of sodium phosphate from the filtration result of mixing mother liquor and filtrate of washing residue from Bangka monazite decomposition by alkaline. The method of purification which has been used was: dissolved the precipitation of sodium phosphate into water with the agitation time constant at 5 minutes and then the solution is settled for 12 hours until the sodium phosphate crystals appear. The variable of experiment included of dissolution time and the ratio of the amount precipitate sodium phosphate, which dissolved against the volume of water as solvent. Experiment data shown that the good temperature of dissolution at 70 oC with the ratio of precipitate sodium phosphate which dissolved is 60 gram/100 ml of water. The recovery of sodium phosphate crystallization is 65.18 % with Na 3 PO 4 purity is about 65.608 %, and it impurities content of U is 0.007% and NaOH and the others are 34.383%

  4. Uptake and accumulation of ammonium by Alexandrium catenella ...

    African Journals Online (AJOL)

    Following nitrogen exhaustion from the medium, ammonium pulses of varying magnitudes were induced, and measurements of extra- and intra-cellular ammonium were carried out for 24–72h along with measurements of ammonium incorporation (15N tracer) and inorganic carbon fixation (13C tracer). During vegetative ...

  5. Spectrometric determination of ammonium-nitrogen with quinol in ...

    African Journals Online (AJOL)

    Quinol is proposed as a reagent for the spectrometric determination of ammonium-nitrogen (NH4+-N) in aqueous medium. Quinol forms a pink complex with ammonium salt in aqueous medium. Hydrogen peroxide is needed for colour accentuation. The quinol/ammonium charge transfer complex has absorption maximum ...

  6. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of...

  7. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  8. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion...... of the zeolite particles, particularly after thermal treatment. When using mesoporous zeolites, the particles were evenly distributed throughout the mesopore system of the zeolitic support, even after calcination, leading to nanocrystals within mesoporous zeolite single crystals....

  9. Crystal structure of a sodium, zinc and iron(III-based non-stoichiometric phosphate with an alluaudite-like structure: Na1.67Zn1.67Fe1.33(PO43

    Directory of Open Access Journals (Sweden)

    Jamal Khmiyas

    2015-06-01

    Full Text Available The new title compound, disodium dizinc iron(III tris(phosphate, Na1.67Zn1.67Fe1.33(PO43, which belongs to the alluaudite family, has been synthesized by solid-state reactions. In this structure, all atoms are in general positions except for four, which are located on special positions of the C2/c space group. This structure is characterized by cation substitutional disorder at two sites, one situated on the special position 4e (2 and the other on the general position 8f. The 4e site is partially occupied by Na+ [0.332 (3], whereas the 8f site is entirely filled by a mixture of Fe and Zn. The full-occupancy sodium and zinc atoms are located at the Wyckoff positions on the inversion center 4a (-1 and on the twofold rotation axis 4e, respectively. Refinement of the occupancy ratios, bond-valence analysis and the electrical neutrality requirement of the structure lead to the given composition for the title compound. The three-dimensional framework of this structure consists of kinked chains of edge-sharing octahedra stacked parallel to [10-1]. The chains are formed by a succession of trimers based on [ZnO6] octahedra and the mixed-cation FeIII/ZnII [(Fe/ZnO6] octahedra [FeIII:ZnIII ratio 0.668 (3/0.332 (3]. Continuous chains are held together by PO4 phosphate groups, forming polyhedral sheets perpendicular to [010]. The stacked sheets delimit two types of tunnels parallel to the c axis in which the sodium cations are located. Each Na+ cation is coordinated by eight O atoms. The disorder of Na in the tunnel might presage ionic mobility for this material.

  10. Ammonium based ionic liquids act as compatible solvents for glycine peptides

    International Nuclear Information System (INIS)

    Vasantha, T.; Attri, Pankaj; Venkatesu, Pannuru; Rama Devi, R.S.

    2013-01-01

    Highlights: ► We report solubilities of glycine peptides in ionic liquids. ► We have predicted transfer free energies of glycine peptides in ionic liquids. ► UV-vis spectra analysis for glycine peptides in ionic liquids. ► We have synthesized the new ammonium based ILs. ► We have studied the peptide backbone unit contribution in ILs. - Abstract: In this article, we have reported the solubilities, apparent transfer free energies (ΔG′ tr ) and UV-visible absorption measurements of glycine peptides (GPs), such as glycine (Gly), diglycine (Gly 2 ), and cyclic glycylglycine (c(GG)) in aqueous ionic liquids (ILs), bearing sulfate and phosphate anions with ammonium cation, at T = 298.15 K. Values of solubility were obtained from density (ρ) measurements of GPs in water and in aqueous ILs. The ammonium ILs such as diethylammonium hydrogen sulfate (DEAS) [(CH 3 CH 2 ) 2 NH][HSO 4 ], triethylammonium hydrogen sulfate (TEAS) [(CH 3 CH 2 ) 3 NH][HSO 4 ], and triethylammonium dihydrogen phosphate (TEAP) [(CH 3 CH 2 ) 3 NH][H 2 PO 4 ] have been used in the present study. We observed the positive values of ΔG′ tr for Gly, Gly 2 , and c(GG) from water to ILs. These results reveal that the unfavourable interactions are dominated between ILs and the GPs. This indicates that the ammonium based ILs stabilize the GP structure. Further, we have used the ΔG′ tr results to evaluate the transfer free energies (Δg′ tr ) contribution of the peptide backbone unit, also known as glycyl residue, (–CH 2 C=ONH–) as function of ILs concentration. Our results suggest that all the investigated ammonium ILs are compatible with GPs and act as stabilizers for GPs structure through exclusion of ILs from GPs’ surface. Furthermore, UV-vis spectrophotometer measurements are used as evidence for the stability of GPs in aqueous ILs at T = 298.15 K.

  11. Phosphate control in dialysis

    Directory of Open Access Journals (Sweden)

    Cupisti A

    2013-10-01

    Full Text Available Adamasco Cupisti,1 Maurizio Gallieni,2 Maria Antonietta Rizzo,2 Stefania Caria,3 Mario Meola,4 Piergiorgio Bolasco31Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; 2Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, Milan, Italy; 3Territorial Department of Nephrology and Dialysis, ASL Cagliari, Italy; 4Sant'Anna School of Advanced Studies, University of Pisa, Pisa, ItalyAbstract: Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source

  12. Uranium production from phosphates

    International Nuclear Information System (INIS)

    Ketzinel, Z.; Folkman, Y.

    1979-05-01

    According to estimates of the world's uranium consumption, exploitation of most rich sources is expected by the 1980's. Forecasts show that the rate of uranium consumption will increase towards the end of the century. It is therefore desirable to exploit poor sources not yet in use. In the near future, the most reasonable source for developing uranium is phosphate rock. Uranium reserves in phosphates are estimated at a few million tons. Production of uranium from phosphates is as a by-product of phosphate rock processing and phosphoric acid production; it will then be possible to save the costs incurred in crushing and dissolving the rock when calculating uranium production costs. Estimates show that the U.S. wastes about 3,000 tons of uranium per annum in phosphoric acid based fertilisers. Studies have also been carried out in France, Yugoslavia and India. In Israel, during the 1950's, a small plant was operated in Haifa by 'Chemical and Phosphates'. Uranium processes have also been developed by linking with the extraction processes at Arad. Currently there is almost no activity on this subject because there are no large phosphoric acid plants which would enable production to take place on a reasonable scale. Discussions are taking place about the installation of a plant for phosphoric acid production utilising the 'wet process', producing 200 to 250,000 tons P 2 O 5 per annum. It is necessary to combine these facilities with uranium production plant. (author)

  13. Recovery of uranium from HCl digested phosphate rock solution

    International Nuclear Information System (INIS)

    Wamser, C.A.

    1975-01-01

    Uranium is recovered from a solution containing phosphoric acid, uranium in the hexavalent state and a chloride salt from the group consisting of alkali metal chloride, alkaline earth metal chloride, ammonium chloride and mixtures thereof, such as a solution obtained by hydrochloride acid digestion of phosphate rock. The phosphoric acid is extracted from the solution before the uranium is recovered from the remaining constituents thereof. Extraction degradation and emulsification of the organic layer previously employed in organic solvent extraction methods are eliminated, and the uranium is recovered at low cost and in a highly efficient manner. (U.S.)

  14. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Abbas, E-mail: eslami@umz.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Juibari, Nafise Modanlou [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Hosseini, Seyed Ghorban [Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2016-09-15

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu{sup 2+} and Cr{sup 3+} in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  15. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    International Nuclear Information System (INIS)

    Eslami, Abbas; Juibari, Nafise Modanlou; Hosseini, Seyed Ghorban

    2016-01-01

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu 2+ and Cr 3+ in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  16. Mass spectrometric investigation into thermal decomposition of double hafnium and ammonium sulfate

    International Nuclear Information System (INIS)

    Fedoryako, L.I.; Sheka, I.A.; Vykhrestyuk, N.I.; Brodskij, E.S.

    1983-01-01

    The method of pyrolytic mass spectrometry has been used to investigate thermal decomposition doUble hafnium ammonium sulfate of the (Nr 4 ) 4 Hf(SO 4 ) 4 X4H 2 O composition during heating from 20 to 800 deg. In volatile destruction products the following ions are found: H 2 O + , NH 3 + , SO + , SO 2 + , O 2 + , H 2 S + , N 2 + , SO 3 + ion is practically absent. Removal of crystallization water occurs in the 85-285 deg range, that of ammonium and sulfur oxides - at 300-775 deg. Higher than 300 deg the ratios of intensities of peaks of SO 2 + :SO + :O 2 + ions do not exceed those standard for SO 2 , which proves a deeper destruction of sUlfUr dioxide under given conditions

  17. Study and characterization of ammonium diuranate and uranium trioxide by thermogravimetry and differential scanning calorimetry

    International Nuclear Information System (INIS)

    Dantas, J.M.

    1983-01-01

    Thermogravimetry (TG), Differential Thermogravimetry (DTG) and Differential Scanning Calorimetry (DSC) were used to characterize the thermal behavior of ammonium diuranate (ADU) and uranium trioxide (UO 3 ) produced at IPEN'S Chemical Enginnering Department. Compounds characterization was done using the molar ratios among the compounds and the oxides resulting from thermal decomposition. The TG and DTG curves registered for each sample were used for the determination of the following temperatures: - temperature of water evolution (free and crystallized water); - ammonia evolution and oxidation temperature; - ocluded ammonium nitrate decomposition temperature and - oxygen release temperature. The intermediate phases and their thermal stabilities were also identified by TG and DTG and confirmed by DSC curves, DSC curves showed also the exothermic and endothermic behavior of the processes involved. Finally, the great amount of data collected in this study can be handed as a guide by the professionals responsible for the operation of ADU,UO 3 and UF 4 pilot plants. (Author) [pt

  18. PHOSPHATE CRYSTALLURIA IN VARIOUS FORMS OF UROLITHIASIS AND POSSIBILITIES OF ITS PROGNOSTICATION IN PATIENTS WITH PHOSPHATE STONES

    Directory of Open Access Journals (Sweden)

    O. V. Konstantinova

    2017-01-01

    Full Text Available Purpose. Definition of types of crystalluria in various forms of urolithiasis and biochemical signs of phosphate crystals in the urine, while phosphate urolithiasis (infectious origin.Patients and methods. The study involved 144 patients with recurrent urolithiasis — 75 women and 69 men. Of these, 46 — diagnosed calculi with uric acid, 44 — calcium oxalate or mixed with a prevalence of calcium oxalate, in 54 — phosphate rocks (carbonate-apatite and/or struvite. The age of patients ranged from 21 to 74 years. 93 people have been under long-term, within 2–15 years, outpatient observation. The examination included the collection of anamnesis, general and microbiological analysis of urine, biochemical blood serum and urine on 10 indicators, reflecting renal function, state of the protein, water and electrolyte metabolism, uric acid metabolism, the chemical composition of the stone analysis.Results. It was found that in patients with calcium oxalate stones phosphaturia has been diagnosed in 2% of cases. And, along with calcium phosphate crystals they had oxalate crystals. In patients with phosphate urolithiasis phosphaturia observed in 96% of patients, in two patients (4% they determined except phosphates also oxalate salt in urine sediment. Patients with phosphate urolithiasis at occurrence of phosphate crystalluria have metabolic state changes: increased serum uric acid concentration from 0.322 ± 0.009 to 0.367 ± 0.018 mmol/l daily renal excretion of inorganic phosphate 23.94 ± 2.93 mmol/day to 32.12 ± 4.39 mmol/day, and reduced total calcium content in urine 6.61 ± 0.94 mmol/day to 3.37 ± 0.89 mmol/day. The results led to the following conclusion.Conclusion. Biochemical signs of occurrence of phosphate crystalluria in patients with stones of infectious origin can be: the approaching level of excretion in the urine of inorganic phosphates to 32,12 ± 4,39 mmol/day, serum uric acid concentration to 0,367 ± 0,018 mmol/l, and the

  19. Detonation Properties of Ammonium Dinitramide (ADN)

    Science.gov (United States)

    Wätterstam, A.; Östmark, H.; Helte, A.; Karlsson, S.

    1999-06-01

    Ammonium Dinitramide, ADN, has a potential as an oxidizer for underwater high explosives. Pure ADN has a large reaction-zone length and shows a strong non-ideal behaviour. The work presented here is an extension of previous work.(Sensitivity and Performance Characterization of Ammonium Dinitramide (ADN). Presented at 11th International Detonation Symposium, Snowmass, CO, 1998.) Experiments for determining the detonation velocity as a function of inverse charge radius and density, reaction-zone length and curvature, and the detonation pressure are presented. Measurements of pressure indicates that no, or weak von-Neumann spike exists, suggesting an immediate chemical decomposition. Experimental data are compared with predicted using thermochemical codes and ZND-theory.

  20. Growth and defects of explosives crystals

    Science.gov (United States)

    Cady, H. H.

    Large single crystals of PETN, RDX, and TNT can be grown easily from evaporating ethyl acetate solutions. The crystals all share a similar type of defect that may not be commonly recognized. The defect generates conical faces, ideally mosaic crystals, and may account for the 'polymorphs' of TNT and detonator grades of PETN. TATB crystals manufactured by the amination of trichlorotrinitrobenzene in dry toluene entrain two forms of ammonium chloride. One of these forms causes 'worm holes' in the TATB crystals that may be the reason for its unusually low failure diameters. Strained HMX crystals form mechanical twins that can spontaneously revert back to the untwinned form when the straining force is removed. Large strains or temperatures above 100 C lock in the mechanical twins.

  1. Anaerobic ammonium oxidation in an estuarine sediment

    OpenAIRE

    Risgaard-Petersen, N.; Meyer, R.L.; Schmid, M.C.; Jetten, M.S.M.; Enrich-Prast, A.; Rysgaard, S.; Revsbech, N.P.

    2004-01-01

    The occurrence and significance of the anammox (anaerobic ammonium oxidation) process relative to denitrification was studied in photosynthetically active sediment from 2 shallow-water estuaries: Randers Fjord and Norsminde Fjord, Denmark. Anammox accounted for 5 to 24 % of N-2 production in Randers Fjord sediment, whereas no indication was seen of the process in sediment from Norsminde Fjord, It is suggested that the presence of anammox in Randers Fjord and its absence from Norsminde Fjord i...

  2. Optical constants of concentrated aqueous ammonium sulfate.

    Science.gov (United States)

    Remsberg, E. E.

    1973-01-01

    Using experimental data obtained from applying spectroscopy to a 39-wt-% aqueous ammonium sulfate solution, it is shown that, even though specific aerosol optical constants appear quite accurate, spectral variations may exist as functions of material composition or concentration or both. Prudent users of optical constant data must then include liberal data error estimates when performing calculations or in interpreting spectroscopic surveys of collected aerosol material.

  3. The Australian national reactive phosphate rock project - Aims, experimental approach, and site characteristics

    International Nuclear Information System (INIS)

    McLaughlin, M.J.

    2002-01-01

    Field-based cutting trials were established across Australia in a range of environments to evaluate the agronomic effectiveness of 5 phosphate rocks, and 1 partially acidulated phosphate rock, relative to either single super-phosphate or triple superphosphate. The phosphate rocks differed in reactivity, as determined by the degree of carbonate substitution for phosphate in the apatite structure and solubility of phosphorus present in the fertilizers in 2% formic acid, 2% citric acid and neutral ammonium citrate. Sechura (Bayovar) and North Carolina phosphate rocks were highly reactive (>70% solubility in 2% formic acid), whilst Khouribja (Moroccan) and Hamrawein (Egypt) phosphate rock were moderately reactive. Duchess phosphate rock from Queensland was relatively unreactive ( 2 , from 4.0 to 5.1, and Colwell extractable phosphorus ranged from 3 to 47 μg/g prior to fertilizer application. Two core experiments were established at each site. The first measured the effects of phosphate rock reactivity on agronomic effectiveness, while the second core experiment measured the effects of the degree of water solubility of the phosphorus source on agronomic effectiveness. The National Reactive Phosphate Rock Project trials provided the opportunity to confirm the suitability of accepted procedures to model fertilizer response and to develop new approaches for comparing different fertilizer responses. The Project also provided the framework for subsidiary studies such as the effect of fertilizer source on soil phosphorus extractability; cadmium and fluorine concentrations in herbage; evaluation of soil phosphorus tests; and the influence of particle size on phosphate rock effectiveness. The National Reactive Phosphate Rock Project presents a valuable model for a large, Australia-wide, collaborative team approach to an important agricultural issue. The use of standard and consistent experimental methodologies at every site ensured that maximum benefit was obtained from data

  4. Investigation on mechanism of phosphate removal on carbonized sludge adsorbent.

    Science.gov (United States)

    Zhang, Lei; Liu, Junxin; Guo, Xuesong

    2018-02-01

    For the removal of phosphate (PO 4 3- ) from water, an adsorbent was prepared via carbonization of sewage sludge from a wastewater treatment plant: carbonized sludge adsorbent (CSA). The mechanism of phosphate removal was determined after studying the structure and chemical properties of the CSA and its influence on phosphate removal. The results demonstrate that phosphate adsorption by the CSA can be fitted with the pseudo second-order kinetics and Langmuir isotherm models, indicating that the adsorption is single molecular layer adsorption dominated by chemical reaction. The active sites binding phosphate on the surface are composed of mineral particles containing Si/Ca/Al/Fe. The mineral containing Ca, calcite, is the main factor responsible for phosphate removal. The phosphate removal mechanism is a complex process including crystallization via the interaction between Ca 2+ and PO 4 3- ; formation of precipitates of Ca 2+ , Al 3+ , and PO 4 3- ; and adsorption of PO 4 3- on some recalcitrant oxides composed of Si/Al/Fe. Copyright © 2017. Published by Elsevier B.V.

  5. Equation of State of Ammonium Nitrate

    Science.gov (United States)

    Robbins, David L.; Sheffield, Stephen A.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Stahl, David B.

    2009-12-01

    Ammonium nitrate (AN) is a widely used fertilizer and mining explosive. AN is commonly used in ammonium nitrate-fuel oil (ANFO), which is a mixture of explosive-grade AN prills and fuel oil in a 94:6 ratio by weight. ANFO is a non-ideal explosive with measured detonation velocities around 4 km/s. The equation of state properties and known initiation behavior of neat AN are limited. We present the results of a series of gas gun-driven plate impact experiments on pressed neat ammonium nitrate at 1.72 g/cm3. No evidence of initiation was observed under shock loading to 22 GPa. High pressure x-ray diffraction experiments in diamond anvil cells provided insight into the high pressure phase behavior over the same pressure range (to 25 GPa), as well as a static isotherm at ambient temperature. From the isotherm and thermodynamic properties at ambient conditions, a preliminary unreacted equation of state (EOS) has been developed based on the Murnaghan isotherm and Helmholtz formalism [1], which compares favorably with the available experimental Hugoniot data on several densities of AN.

  6. Microbial electricity driven anoxic ammonium removal.

    Science.gov (United States)

    Vilajeliu-Pons, Anna; Koch, Christin; Balaguer, Maria D; Colprim, Jesús; Harnisch, Falk; Puig, Sebastià

    2018-03-01

    Removal of nitrogen, mainly in form of ammonium (NH 4 + ), in wastewater treatment plants (WWTPs) is a highly energy demanding process, mainly due to aeration. It causes costs of about half a million Euros per year in an average European WWTP. Alternative, more economical technologies for the removal of nitrogen compounds from wastewater are required. This study proves the complete anoxic conversion of ammonium (NH 4 + ) to dinitrogen gas (N 2 ) in continuously operated bioelectrochemical systems at the litre-scale. The removal rate is comparable to conventional WWTPs with 35 ± 10 g N m -3 d -1 with low accumulation of NO 2 - , NO 3 - , N 2 O. In contrast to classical aerobic nitrification, the energy consumption is considerable lower (1.16 ± 0.21 kWh kg -1 N, being more than 35 times less than for the conventional wastewater treatment). Biotic and abiotic control experiments confirmed that the anoxic nitrification was an electrochemical biological process mainly performed by Nitrosomonas with hydroxylamine as the main substrate (mid-point potential, E ox  = +0.67 ± 0.08 V vs. SHE). This article proves the technical feasibility and reduction of costs for ammonium removal from wastewater, investigates the underlying mechanisms and discusses future engineering needs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Solid-phase synthesis of multivalent metal phosphates

    International Nuclear Information System (INIS)

    Konstant, Z.A.

    1984-01-01

    Some multivalent metals (Mg, Zn, Mn, Co, Ni, Sc, Ti, V, Cr, Fe, Ce) are used as examples for considering certain general problems (mechanism, phase formation) of solid-phase synthesis of phosphates from metal oxides and ammonium dihydrophosphate (t=200-1500 deg C). It is noted that the observed phenomena, such as parallel reactionS, formation of several modifications of one compound is characteristic of solid-phase synthesis of condensed phosphates when condensation is determined by the metal-phosphorus ratio, potential cation coordination and thermodynamic characteristics of polymers being prepared. The possibility of oxidation-reduction reactions with multiple changes in the valence of elements is also very important. Complex schemes of interactions, phase diagrams of the systems are presented

  8. Microscopic local elements in the phosphating process

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, D.; Munoz, A.G.; Schultze, J.W

    2003-09-30

    The addition of Ni{sup 2+} to the phosphating bath improves the corrosion stability as well as the adhesion of coating layers. This is caused by the formation of Ni deposits on the base of pores of the phosphate layer. They do not only catalyse the surface reactions but generate a more corrosion resistant surface as well. The deposition of Ni during the phosphating of electrogalvanised steel was studied in aqueous solutions by simultaneous measurement of the rest potential and electrode capacity in dependence on time, temperature and bath composition. The electrochemical response of the system was corroborated with SEM pictures, gravimetric measurements and X-ray fluorescence analysis. Rest potential patterns under different solution and initial surface conditions were interpreted by microscopic local elements. During the deposition of the phosphate layer, the cementation of Ni on the initially corroding Zn gives rise to the formation of surface Ni-Zn alloys, providing cathodic centres where the reduction of H{sup +} and accelerators (NO{sub 2}{sup -}, NO{sub 3}{sup -}) is favoured. The process matches with a quasi-instantaneous displacement of the rest potential from that corresponding to the Zn/Zn{sup 2+} couple towards the corrosion potentials of cementated Ni-rich alloys. The appearance of a simultaneous characteristic capacity peak was analysed in terms of the surface changes due to Ni-cementation together with an increment of the growth rate of phosphate crystals and the formation of oxide films. Microscopic local Ni deposits have an extension of some micrometer and a thickness of few hundred nanometer up to 1 {mu}m.

  9. Removal of Phosphate Using Red Mud: An Environmentally Hazardous Waste By-Product of Alumina Industry

    Directory of Open Access Journals (Sweden)

    Shivkumar S. Prajapati

    2016-01-01

    Full Text Available The industrial waste, bauxite residue generated in the Bayer chemical process of alumina production, commonly known as red mud (RM has been used as the adsorbent for selective removal of phosphate in aqueous solutions. RM collected from the storage area of alumina industry was characterized by chemical analysis and physical methods such as BET surface area, Scanning Electron Microscopy (SEM, particle size analysis, and X-ray diffraction (XRD methods. Among the various red mud samples (0.2–200 μ studied, the samples treated with 1 M HCl for 2 h were found better for the selective adsorption of phosphate in comparison with untreated and heat treated RM samples. The presence of phosphate in the aqueous samples collected after adsorption studies with red mud was determined by standard spectrophotometric procedure using ammonium molybdate and ascorbic acid in nitrate medium at λmax 880 nm. The studies reported significant adsorption of phosphate on acid treated red mud in comparison with adsorption of phosphate on untreated and heat treated red mud, respectively. The adsorption of phosphate on raw red mud and activated red mud was further investigated with respect to stirring time, pH of the solution, dose of adsorbent, and varying phosphate concentration. Acid treated RM is observed as an efficient and cost-effective adsorbent for selective removal of phosphate in aqueous solutions.

  10. Optimizing the modification of wood waste biochar via metal oxides to remove and recover phosphate from human urine.

    Science.gov (United States)

    Xu, Kangning; Zhang, Chuke; Dou, Xiaomin; Ma, Weifang; Wang, Chengwen

    2017-05-26

    The recovery of phosphate from human urine has been considered as one of the most attractive benefits of urine source separation because P is an essential but limited macronutrient. This study investigated the approach to modify wood waste biochar via metal oxides aiming to recover phosphate from human urine to produce a value-added biochar. Results showed the phosphate removal ability was enhanced for the modified biochar pre-treated in modification solutions of MgCl 2 , AlCl 3 , CaCl 2 and FeCl 3 , respectively, while natural biochar released phosphate to urine. Among the tested biochar, Mg-biochar presented the best capacity for phosphate removal from the hydrolyzed urine, reaching 118 mg P  g -1 at a MgCl 2 concentration of 2.3 M. However, higher MgCl 2 concentration would not further increase the adsorption capacity. Fitting of the adsorption kinetics and isotherms indicated that the phosphate removal process was probably controlled by multiple mechanisms. Both the experimental and fitting results confirmed that the content of Mg oxides was the key factor determining the adsorption rate and capacity of phosphate on Mg-biochar. pH ranges of 7-9 and the ammonium concentration higher than 108 mg N  L -1 enhanced the phosphate adsorption capacity. As such, the Mg-biochar was more favored for the treatment of hydrolyzed urine rather than fresh urine with acidic pH and lower concentration of ammonium. Further calculations were carried out using the Langmuir model to evaluate the removal of phosphate and the product. Results indicate that it is an effective technique to use Mg-biochar for phosphate removal from hydrolyzed urine and it yields phosphate-enriched biochar products.

  11. Crystal structure of a silver-, cobalt- and iron-based phosphate with an alluaudite-like structure: Ag1.655Co1.64Fe1.36(PO43

    Directory of Open Access Journals (Sweden)

    Adam Bouraima

    2017-06-01

    Full Text Available The new silver-, cobalt- and iron-based phosphate, silver cobalt iron tris(orthophosphate, Ag1.655Co1.64Fe1.36(PO43, was synthesized by solid-state reactions. Its structure is isotypic to that of Na2Co2Fe(PO43, and belongs to the alluaudite family, with a partial cationic disorder, the AgI atoms being located on an inversion centre and twofold rotation axis sites (Wyckoff positions 4a and 4e, with partial occupancies of 0.885 (2 and 0.7688 (19, respectively. One of the two P atoms in the asymmetric unit completely fills one 4e site while the Co and Fe atoms fill another 4e site, with partial occupancies of 0.86 (5 and 0.14 (5, respectively. The remaining Co2+ and Fe3+ cations are distributed on a general position, 8f, in a 0.39 (4:0.61 (4 ratio. All O atoms and the other P atoms are in general positions. The structure is built up from zigzag chains of edge-sharing [MO6] (M = Fe/Co octahedra stacked parallel to [101]. These chains are linked together through PO4 tetrahedra, forming polyhedral sheets perpendicular to [010]. The resulting framework displays two types of channels running along [001], in which the AgI atoms (coordination number eight are located.

  12. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118

    International Nuclear Information System (INIS)

    Lobley, Carina M. C.; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E.; Nettleship, Joanne E.; Brandao-Neto, Jose; Owens, Raymond J.; O’Toole, Paul W.; Walsh, Martin A.

    2012-01-01

    The crystal structure of ribose 5-phosphate isomerase has been determined to 1.72 Å resolution and is presented with a brief comparison to other known ribose 5-phosphate isomerase A structures. The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β d-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography

  13. Evaluating a Magnesium-Ammonium Phosphate Suspension as a Fertilizer Material

    Science.gov (United States)

    1974-12-12

    approximately 70 seed per square foot. assuminvg uniform distribution with,,a cyclone (hand) seeder. At the time of overseeding , new fescue growth had...established4. tall fescue sod for comparison as fertilizer material. 2. An overseeding of Korean Leopedeza was broadcast over undisturbed tall fescue

  14. Hierarchical one-dimensional ammonium nickel phosphate microrods for high-performance pseudocapacitors

    CSIR Research Space (South Africa)

    Raju, K

    2015-12-01

    Full Text Available High-performance electrochemical capacitors will drive the next-generation portable, flexible and wearable electronics. Unlike the conventional all-carbon supercapacitors (electric double layer capacitors, EDLC) with high power but poor energy...

  15. Standard characterization of phosphate rock samples from the FAO/IAEA phosphate project

    International Nuclear Information System (INIS)

    Binh, Truong; Zapata, F.

    2002-01-01

    Phosphate rocks (PR) are phosphate-bearing minerals that vary widely in their inherent characteristics and consequently their agronomic potential. In the framework of a FAO/IAEA networked research project, the evaluation of the agronomic effectiveness of natural and modified PR products under a variety of soil climate and crop management conditions was carried out. The characterization of phosphate rocks is the first and essential step in evaluating their suitability for direct application. If several PR sources are utilized, standardized methods should be used for comparison purposes to determine their agronomic potential. This paper describes the standard characterization of phosphate rock products utilized in the project, in particular the mineralogical and crystallographic analyses, physical analyses, chemical composition and solubility in conventional reagents. A total of 28 phosphate rock samples from 15 countries were collected and analyzed in specialized laboratories. The data on mineralogy, chemical composition and solubility in conventional reagents are closely interrelated. An arbitrary classification of the reactivity of the PR samples was made based on the solubility indices in conventional reagents. On another hand, the results of the crystallographic parameters, calculated indices of absolute solubility, specific surface and porosity reflect the variability of the physical state and the sample pre-conditioning treatment of the analyzed products. A proper characterization of phosphate rock samples should provide the maximum of basic information that can be obtained in a cost-effective manner in normal chemical laboratories. Based on the results of this characterization, the following determinations are recommended: a description of the sample, major elemental (total P, Ca, Mg) composition, solubility in conventional reagents (neutral ammonium citrate, citric and formic acid) and particle size analysis. The classification of PR samples for direct

  16. Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Suzuki, Sho; Shintani, Masaki; Sanchez, Zoe Kuizon; Kimura, Kohei; Numata, Mitsuru; Yamazoe, Atsushi; Kimbara, Kazuhide

    2015-12-01

    Ammonia inhibition of methane fermentation is one of the leading causes of failure of anaerobic digestion reactors. In a batch anaerobic digestion reactor with 429 mM NH3-N/L of ammonia, the addition of 25 mM phosphate resulted in an increase in methane production rate. Similar results were obtained with the addition of disodium phosphate in continuous anaerobic digestion using an upflow anaerobic sludge blanket (UASB) reactor. While methane content and production rate decreased in the presence of more than 143 mM NH3-N/L of ammonium chloride in UASB, the addition of 5 mM disodium phosphate suppressed ammonia inhibition at 214 mM NH3-N/L of ammonium chloride. The addition prevented acetate/propionate accumulation, which might be one of the effects of the phosphate on the ammonia inhibition. The effects on the microbial community in the UASB reactor was also assessed, which was composed of Bacteria involved in hydrolysis, acidogenesis, acetogenesis, and dehydrogenation, as well as Archaea carrying out methanogenesis. The change in the microbial community was observed by ammonia inhibition and the addition of phosphate. The change indicates that the suppression of ammonia inhibition by disodium phosphate addition could stimulate the activity of methanogens, reduce shift in bacterial community, and enhance hydrogen-producing bacteria. The addition of phosphate will be an important treatment for future studies of methane fermentation.

  17. Phosphates nanoparticles doped with zinc and manganese for sunscreens

    International Nuclear Information System (INIS)

    Araujo, T.S. de; Souza, S.O. de; Miyakawa, W.; Sousa, E.M.B. de

    2010-01-01

    The crescent number of skin cancer worldwide gives impulse to the development of sunscreen that can both prevent skin cancer and also permit gradual tanning. In this work, the synthesis of hydroxyapatite and tricalcium phosphate nanocrystalline powders was investigated in order to obtain materials with optical properties and appropriate size for sunscreen. Pure, Zn 2+ -doped and Mn 2+ -doped hydroxyapatite (HAP) and tricalcium phosphate (β-TCP) were produced by the wet precipitation process using diammonium phosphate, calcium nitrate, ammonium hydroxide, zinc nitrate and manganese nitrate as reagents. The pure and doped HAP precipitates were calcined at 500 deg. C for 1 h, while the β-TCP (pure and doped) were calcined at 800 deg. C for 2 h. The powder samples were characterized by X-ray diffraction (XRD), energy dispersive X-ray fluorescence (EDX), atomic force microscopy (AFM) and ultraviolet (UV)-vis spectroscopy. XRD and EDX showed the formation of the expected materials (HAP and β-TCP) without toxic components. AFM micrographs showed aggregated ellipsoidal particles with dimensions smaller than 120 nm. Optical absorption spectra showed that the calcium phosphate produced in this work absorbs in the UV region. The obtained materials presented structural, morphological and optical properties that allow their use as the active centers in sunscreens.

  18. A novel quaternized chitosan-melamine-glutaraldehyde resin for the removal of nitrate and phosphate anions.

    Science.gov (United States)

    Sowmya, Appunni; Meenakshi, Sankaran

    2014-03-01

    A terpolymer of chitosan-melamine-glutaraldehyde was prepared for the first time and it was quaternized with glycidyl trimethyl ammonium chloride (GTMAC). The quaternized chitosan-melamine-glutaraldehyde resin (QCMGR) was found to be effective for the removal of nitrate and phosphate oxyanions. The resin was characterised with FTIR, SEM, EDAX, TGA, DTA, XRD and water regain property. Batch method was followed to optimise the conditions for the removal of nitrate and phosphate. Chemical kinetics of the adsorption was well fitted by pseudo-second order and particle diffusion models and the adsorption process followed the Freundlich isotherm model well. The nitrate and phosphate adsorption capacity of QCMGR from 1000 mg/L respective solutions were 97.5 and 112.5mg/g, respectively. Nitrate and phosphate anions adsorbed effectively on QCMGR by replacing Cl(-) ions at the quaternary ammonium group by exchange mechanism. Even after 10th regeneration cycle the adsorbent fully retained its adsorption efficiency. Nitrate and phosphate removal efficiency of QCMGR was also tested by column method. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate

    International Nuclear Information System (INIS)

    Hoyt, R.C.

    1978-04-01

    A mathematical model describing the kinetics of continuous precipitation was developed which accounts for crystal nucleation, crystal growth, primary coagulation, and secondary coagulation. Population density distributions, average particle sizes, dominant particle sizes, and suspension density fractions of the crystallites, primary agglomerates, and secondary agglomerates leaving the continuous precipitator can be determined. This kinetic model was applied to the continuous precipitation of ammonium polyuranate, which consists of: (1) elementary crystals, (2) clusters or primary coagulated particles, and (3) agglomerates or secondary coagulated particles. The crystallites are thin, submicron, hexagonal platelets. The clusters had an upper size limit of about 7 μ in diameter and contained numerous small voids (less than 0.3 μm) due to the packing of the crystallites. The agglomerates had an upper size limit of about 40 μm in diameter and contained large voids (approximately 1 μm). The particle size distribution and particle structure of the ammonium polyuranate precipitate can be controlled through proper regulation of the precipitation conditions. The ratio of clusters to agglomerates can be best controlled through the uranium concentration, and the cohesiveness or internal bonding strength of the particles can be controlled with the ammonium to uranium reacting feed mole ratio. These two conditions, in conjunction with the residence time, will determine the nucleation rates, growth rates, and size distributions of the particles leaving the continuous precipitator. With proper control of these physical particle characteristics, the use of pore formers, ball-milling, and powder blending can probably be eliminated from the nuclear fuel fabrication process, substantially reducing the cost

  20. Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, R.C.

    1978-04-01

    A mathematical model describing the kinetics of continuous precipitation was developed which accounts for crystal nucleation, crystal growth, primary coagulation, and secondary coagulation. Population density distributions, average particle sizes, dominant particle sizes, and suspension density fractions of the crystallites, primary agglomerates, and secondary agglomerates leaving the continuous precipitator can be determined. This kinetic model was applied to the continuous precipitation of ammonium polyuranate, which consists of: (1) elementary crystals, (2) clusters or primary coagulated particles, and (3) agglomerates or secondary coagulated particles. The crystallites are thin, submicron, hexagonal platelets. The clusters had an upper size limit of about 7 ..mu.. in diameter and contained numerous small voids (less than 0.3 ..mu..m) due to the packing of the crystallites. The agglomerates had an upper size limit of about 40 ..mu..m in diameter and contained large voids (approximately 1 ..mu..m). The particle size distribution and particle structure of the ammonium polyuranate precipitate can be controlled through proper regulation of the precipitation conditions. The ratio of clusters to agglomerates can be best controlled through the uranium concentration, and the cohesiveness or internal bonding strength of the particles can be controlled with the ammonium to uranium reacting feed mole ratio. These two conditions, in conjunction with the residence time, will determine the nucleation rates, growth rates, and size distributions of the particles leaving the continuous precipitator. With proper control of these physical particle characteristics, the use of pore formers, ball-milling, and powder blending can probably be eliminated from the nuclear fuel fabrication process, substantially reducing the cost.

  1. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Lin, Min [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Jiang, Liqiang; Che, Shenglei [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Hu, Yangwu, E-mail: 346648086@qq.com [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Wenzhou Institute of Industry and Science, Wenzhou 325000 (China)

    2014-12-15

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection.

  2. [A stable reagent for the-single stage determination of inorganic phosphate].

    Science.gov (United States)

    Pupyshev, A B

    1991-01-01

    A recipe of a simple reagent for phosphorus detection has been developed, consisting of ammonium molybdate (4 mM), sulfuric acid (0.2 N), and Tween-80 (0.2%). The developing phosphate staining may be registered in 15 min at a wavelength of 350 nm. The product molar extinction is equal to 1.20.10(4) M-1.cm-1, this being close to that of molybdic blue. Phosphate staining is characterized by the stability of results and insensitivity to the presence of a number of substances used in enzymology. The prepared reagent is fit for experiments within a fortnight if stored in the cold.

  3. Expression, purification and crystallization of the ecto-enzymatic domain of rat E-NTPDase1 CD39

    International Nuclear Information System (INIS)

    Zhong, Xiaotian; Buddha, Madhavan; Guidotti, Guido; Kriz, Ron; Somers, Will; Mosyak, Lidia

    2008-01-01

    The ecto-enzymatic domain of rat E-NTPDase1 CD39 was expressed and purified and diffraction-quality crystals of the enzyme were obtained. CD39 is a prototype member of the ecto-nucleoside triphosphate diphosphohydrolase family that hydrolyzes extracellular nucleoside diphosphates and triphosphates in the presence of divalent cations. Here, the expression, purification and crystallization of the ecto-enzymatic domain of rat CD39, sCD39, are described. The 67 kDa secreted soluble glycoprotein was recombinantly overexpressed in a glycosylation mutant CHO line, Lec.3.2.8.1, and purified from conditioned media. Diffraction-quality crystals of sCD39 were produced by the vapor-diffusion method using PEG 3350 and ammonium dihydrogen phosphate as precipitants. The enzyme crystallized in a primitive trigonal form in space group P3 2 , with unit-cell parameters a = b = 118.1, c = 81.6 Å and with two sCD39 copies in the asymmetric unit. Several low- to medium-resolution diffraction data sets were collected using an in-house X-ray source. Analysis of the intensity statistics showed that the crystals were invariably merohedrally twinned with a high twin fraction. For initial phasing, a molecular-replacement search was performed against the complete 3.2 Å data set using a maximum-likelihood molecular-replacement method as implemented in Phaser. The initial model of the two sCD39 monomers was placed into the P3 2 lattice and rigid-body refined and position-minimized with PHENIX

  4. New sunscreen materials based on amorphous cerium and titanium phosphate

    International Nuclear Information System (INIS)

    Masui, Toshiyuki; Hirai, Hidekazu; Imanaka, Nobuhito; Adachi, Gin-ya

    2006-01-01

    Cerium-titanium pyrophosphates Ce 1-x Ti x P 2 O 7 (with x = 0, 0.50, and 1.0), which are novel phosphate materials developed as UV-shielding agents for use in cosmetics, were characterized by X-ray diffraction, X-ray fluorescent analysis, UV-vis reflectance, and Raman spectroscopy. Since the optical reflectance shifted to lower wavelengths by the crystallization of the phosphates and the stabilization of the amorphous state of the cerium-titanium pyrophosphates was carried out by doping niobium (Nb). Raman spectroscopic study of the phosphate showed that P-O-P bending and stretching modes decreased with the loading of Nb, accompanying with the formation of Nb-O stretching mode. Therefore, the increase in the amount of the non-bridging oxygen in the amorphous phosphate should be the reason for the inhibition of the crystallization. This stabilization is a significant improvement, which enables to apply these amorphous phosphates not only to cosmetics and paints, but also plastics and films

  5. Investigation of amperometric detection of phosphate Application in seawater and cyanobacterial biofilm samples.

    Science.gov (United States)

    Quintana, Josefina Calvo; Idrissi, Laila; Palleschi, Giuseppe; Albertano, Patrizia; Amine, Aziz; El Rhazi, Mama; Moscone, Danila

    2004-06-17

    Detection of phosphate using amperometry was investigated. The phosphomolybdate complex, formed by addition of nitric acid, ammonium molybdate and phosphate, was reduced at a carbon paste electrode polarised at +0.3V (versus Ag/AgCl). The major characteristics observed were simplicity of the equipment, a limited consumption of reagents and a low detection limit (0.3mumoll(-1)), with a linear range between 1 and 20mumoll(-1). The interference of silicate was completely eliminated using an appropriate concentration of nitric acid and ammonium molybdate. The amperometric detection of orthophosphate in seawater using the batch injection analysis (BIA) technique was reported. Moreover, a carbon paste microelectrode was constructed. Its use allows the analysis of small volume of samples with little dilution in supporting electrolyte. This method was applied to the determination of orthophosphate in cyanobacterial biofilms collected from Roman catacombs. There was a good statistical correlation between results obtained with the proposed method and the standard spectrophotometric method.

  6. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing.

    Science.gov (United States)

    Klammert, Uwe; Vorndran, Elke; Reuther, Tobias; Müller, Frank A; Zorn, Katharina; Gbureck, Uwe

    2010-11-01

    Synthetic bone replacement materials are of great interest because they offer certain advantages compared with organic bone grafts. Biodegradability and preoperative manufacturing of patient specific implants are further desirable features in various clinical situations. Both can be realised by 3D powder printing. In this study, we introduce powder-printed magnesium ammonium phosphate (struvite) structures, accompanied by a neutral setting reaction by printing farringtonite (Mg(3)(PO(4))(2)) powder with ammonium phosphate solution as binder. Suitable powders were obtained after sintering at 1100°C for 5 h following 20-40 min dry grinding in a ball mill. Depending on the post-treatment of the samples, compressive strengths were found to be in the range 2-7 MPa. Cytocompatibility was demonstrated in vitro using the human osteoblastic cell line MG63.

  7. Conditions promoting and restraining agronomic effectiveness of water-insoluble phosphate sources, in particular phosphate rock (PR): I. Indices of phosphate rock use opportunity (PRUOIS) and of phosphate rock suitability for direct use (PRSIDU)

    International Nuclear Information System (INIS)

    Borlan, Z.; Gavriluta, I.; Soare, M.; Stefanescu, D.; Alexandrescu, A.

    2002-01-01

    Several issues of phosphate rock (PR) use are discussed in this paper. Maize for green fodder (Zea mays L) and ryegrass (Lolium multiflorum Lam.) were grown in 7 kg of dry soil and in small pots of 1.25 kg dry soil capacity, respectively, on several base unsaturated soils belonging to Hapludoll and Hapludalf soil groups. The amount of phosphate rock (PR) to apply was based on experimental data considering soil adsorbed acidity (Ah), humus content (H 2 ), cation exchange capacity (T), sum of exchangeable bases (SEB) and mobile (easily soluble) phosphate content (P A L) in the soil. The factors were combined in a rock phosphate use, opportunity index of the soil (PRUOIS): PRUOIS=(A h *H 2 *100)/SEB*10 0.0245*P AL Rock phosphate suitability for direct use was evaluated by means of the rate of PR-P dissolution (PRPRS) in a 0.6% ammonium heptamolybdate in 0.01M calcium chloride solution (ppm P) and by carbonate content (%CaCO 3 ) in PR. Both of these parameters combined provided a phosphate rock suitability index for direct use (PRSIDU): PRSIDU [ppmP/min]=PRPRS*(1-0.03*CaCO 3 ) Water insoluble P sources studied were PR from Kola-Russia, Morocco, Kneifiss-Siria, El Hassa-Jordan, Gafsa- Tunisia, North-Carolina (USA), and Arad-Israel. All PRs were compared with TSP applied at the same rate of P. Neither PRUOIS or PRSIDU considered separately could satisfactorily explain the variance of PR efficiency. An index obtained by multiplicative combination of PRUOIS x PRSIDU did correlate significantly with indices on the agronomic efficiency of PR. (author)

  8. Amine free crystal structure: The crystal structure of d(CGCGCG)2 and methylamine complex crystal

    International Nuclear Information System (INIS)

    Ohishi, Hirofumi; Tsukamoto, Koji; Hiyama, Yoichi; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Ishida, Toshimasa

    2006-01-01

    We succeeded in the crystallization of d(CGCGCG) 2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2F o - F c map was much clear and easily traced. It is First time monoamine co-crystallizes with d(CGCGCG) 2 . However, methylamine was not found from the complex crystal of d(CGCGCG) 2 and methylamine. Five Mg ions were found around d(CGCGCG) 2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg 2+ . DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG) 2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this

  9. Effect of Boron and Phosphate compounds on Thermal and Fire Properties of wood/HDPE composites

    Science.gov (United States)

    Turgay Akbulut; Nadir Ayrilmis; Turker Dundar; Ali Durmus; Robert H. White; Murat Teker

    2011-01-01

    Melting and non-isothermal crystallization behaviors, oxidative induction time, and fire performance of the injection-molded wood flour-high density polyethylene (HDPE) composites (WPCs) incorporated with different levels (4, 8, or 12 wt %) of boron compounds [borax/boric acid (BX/BA) (0.5:0.5 wt %), zinc borate (ZB)] and phosphorus compounds [mono- and di-ammonium...

  10. Calcium phosphate coating on titanium induced by phosphating

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B. [Sichuan Univ., Chengdu (China). Engineering Research Center in Biomaterials; Sichuan Inst. of Tech., Chengdu (China). Dept. of Material Science and Engineering; Chen, J.Y.; Zhang, X.D. [Sichuan Univ., Chengdu (China). Engineering Research Center in Biomaterials

    2001-07-01

    The phosphatization has been used in anti-corrosion treatment for metals for many years. In this work, the calcium phosphate ceramic coatings (Ca-P coatings) based on titanium were prepared by phosphating titanium and then soaking in a supersaturated calcium phosphate solution. The effect of phosphatization of titanium on the formation of Ca-P coating was investigated. The analysis with a scanning electron microscopy showed microporous surfaces of titanium after phosphatization. The spectra of X-ray photoelectron spectroscopy indicated that the surfaces contained PO{sub 4}{sup 3-}, HPO{sub 4}{sup 2-} and H{sub 2}PO{sup -}. The induced couple plasma atomic emission spectroscopy suggested that precipitation of P be prior to Ca during immersion in the supersaturated calcium phosphate solution. (orig.)

  11. Nucleation and growth kinetics of zirconium hydroxide by precipitation with ammonium hydroxide

    International Nuclear Information System (INIS)

    Carleson, T.E.; Chipman, N.A.

    1987-01-01

    The results of a study of the nucleation and growth kinetics of the precipitation of zirconium hydroxide from the reaction of hexafluorozirconate solution with ammonium hydroxide are reported. The McCabe linear growth rate model was used to correlate the results. The growth rate decreased with residence time and supersaturation for studies with 7 residence times (3.5 - 90 minutes and two supersaturation ratios (0.03 - 0.04, and 0.4). The nucleation rate increased with residence time and supersaturation. A negative kinetic order of nucleation was observed that may be due to the inhibition of particle growth by adsorption of reacting species on the crystal surfaces

  12. Recovery of ammonium alum from waste solutions with a varying ratio of NH4 to Al in groundwater remediation after underground uranium leaching

    Czech Academy of Sciences Publication Activity Database

    Hostomská, Věra; Hostomský, Jiří

    2007-01-01

    Roč. 147, 1-2 (2007), s. 342-349 ISSN 0304-3894 R&D Projects: GA ČR GA203/04/1574 Institutional research plan: CEZ:AV0Z40320502 Keywords : ammonium aluminium sulphate * gypsum * crystallization Subject RIV: CA - Inorganic Chemistry Impact factor: 2.337, year: 2007

  13. Ammonium vanadate titrimetric method for determination of micro amount uranium in rock and soil by using vanadate-gold indicator

    International Nuclear Information System (INIS)

    Li Yucheng.

    1990-01-01

    A new vanadate-gold indicator was successfully applied to the ammonium vanadate titrimetric method for determination of micro amount uranium in rock and soil. Uranium in 0.1g of sample is reduced by titanium trichloride in phosphoric acid. Excessive Ti (III) and other low-valent ions are oxidized by sodium nitrite, while the complex of uranium (IV)-phosphate is not oxidized. Excessive nitrite is destroyed by urea. When the concentration of phosphoric acid is 22-24 % , adding two drops of vanadate-gold indicator, uranium (IV) is titrated by standardized ammonium vanadate solution (T = 0.02-20gU/ml) and the end-point is judged by a violet-red color appearance

  14. Barium hydrogen phosphate/gelatin composites versus gelatin-free barium hydrogen phosphate: synthesis and characterization of properties.

    Science.gov (United States)

    Gashti, Mazeyar Parvinzadeh; Burgener, Matthias; Stir, Manuela; Hulliger, Jürg

    2014-10-01

    Recently, attention has been spent on crystal growth of phosphate compounds in gels for studying the mechanism of in vitro crystallization processes. Here, we present a gel-based approach for the synthesis of barium hydrogen phosphate (BHP) crystals using single and double diffusion techniques in gelatin. The composite crystals were compared with analytical grade BHP powder, single and polycrystalline BHP materials using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), scanning pyroelectric microscopy (SPEM), optical microscopy (OM), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). FTIR spectra showed surface adsorption of gelatin molecules by using BHP stacked sheets due to CH2 stretching, CH2 bending and amide I vibrations are found in a gelatin content of about 2% determined by dissolution. SEM shows various crystal morphologies of the BHP/gelatin composites forming bundled micro-flakes to irregular bundled needles and spheres different from gel-free crystals. The variety in morphology depends on the ion concentration, pH of gel as well as the method of crystal growth. SPEM investigation of BHP/gelatin aggregates revealed polar domains showing alteration of the polarization. Moreover, BHP/gelatin composite crystals showed a higher thermal stability in comparison with analytical grade BHP or/and BHP single crystals due to strong interactions between gelatin and BHP. The XRD diffraction analysis demonstrated that the single and double diffusion techniques in gelatin led to the formation of orthorhombic BHP. This study demonstrates that gelatin is a useful high molecular weight biomacromolecule for controlling the crystallization of a composite material by producing a variety of morphological forms. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation].

    Science.gov (United States)

    Liu, Zheng-chuan; Yuan, Lin-jiang; Zhou, Guo-biao; Li, Jing

    2015-09-01

    The transformation of nitrite-reducing anaerobic ammonium oxidation to sulfate-reducing anaerobic ammonium oxidation in an UASB was performed and the changes in microbial community were studied. The result showed that the sulfate reducing anaerobic ammonium oxidation process was successfully accomplished after 177 days' operation. The removal rate of ammonium nitrogen and sulfate were up to 58. 9% and 15. 7%, the removing load of ammonium nitrogen and sulfate were 74. 3 mg.(L.d)-1 and 77. 5 mg.(L.d)-1 while concentration of ammonium nitrogen and sulfate of influent were 130 mg.(L.d)-1 and 500 mg.(L.d)-1, respectively. The lost nitrogen and sulphur was around 2 in molar ratio. The pH value of the effluent was lower than that of the influent. Instead of Candidatus brocadia in nitrite reducing anaerobic ammonium oxidation granular sludge, Bacillus benzoevorans became the dominant species in sulfate reducing anaerobic ammonium oxidation sludge. The dominant bacterium in the two kinds of anaerobic ammonium oxidation process is different. Our results imply that the two anaerobic ammonium oxidation processes are carried out by different kind of bacterium.

  16. Triphenyl phosphate allergy from spectacle frames

    DEFF Research Database (Denmark)

    Carlsen, Lars; Andersen, Klaus E.; Egsgaard, Helge

    1986-01-01

    A case of triphenyl phosphate allergy from spectacle frames is reported. Patch tests with analytical grade triphenyl phosphate, tri-m-cresyl phosphate, and tri-p-cresyl phosphate in the concentrations 5%, 0.5% and 0.05% pet. showed positive reactions to 0.05% triphenyl phosphate and 0.5% tri...... triphenyl phosphate allergy in our patient....

  17. 21 CFR 184.1434 - Magnesium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O...

  18. Phosphates in pallasite meteorites as probes of mantle processes in small planetary bodies

    Science.gov (United States)

    Davis, Andrew M.; Olsen, Edward J.

    1991-01-01

    Trace element analyses of the phosphates minerals in stony-iron pallasite meteorites are used here to investigate the magmatic history of the silicate portions of pallasites. In Eagle Station and seven other pallasites, the phosphates have relatively low concentrations of REEs and are strongly enriched in heavy relative to light REE. These patterns are consistent with formation of phosphate by subsolidus reactions between metal and silicate, in which phosphate inherits the REE pattern of olivine. In Springwater and Santa Rosalia, calcium-rich phosphates have higher concentrations of REE, are enriched in light relative to heavy REE, and have negative europium anomalies. These patterns are consistent with crystallization of phosphate from a europium-depleted chondritic liquid. This is unlikely to have happened near the base of the differentiating parent-body mantle; it suggests that some pallasites may come from regions of their parent bodies much nearer the surface than the core-mantle boundary.

  19. Nevadaite, (Cu2+, Al, V3+)6 [Al8 (PO4)8 F8] (OH 2 (H2O)22, a new phosphate mineral species from the Gold Quarry mine, Carlin, Eureka County, Nevada: description and crystal structure

    Science.gov (United States)

    Cooper, M.A.; Hawthorne, F.C.; Roberts, Andrew C.; Foord, E.E.; Erd, Richard C.; Evans, H.T.; Jensen, M.C.

    2004-01-01

    Nevadaite, (Cu2+, ???, Al, V3+)6 (PO4)8 F8 (OH)2 (H2O)22, is a new supergene mineral species from the Gold Quarry mine, near Carlin, Eureka County, Nevada, U.S.A. Nevadaite forms radiating clusters to 1 mm of prismatic crystals, locally covering surfaces more that 2 cm across; individual crystals are elongate on [001] with a length:width ratio of > 10:1 and a maximum diameter of ???30 ??m. It also occurs as spherules and druses associated with colorless to purple-black fluellite, colorless wavellite, strengitevariscite, acicular maroon-to-red hewettite, and rare anatase, kazakhstanite, tinticite, leucophosphite, torbernite and tyuyamunite. Nevadaite is pale green to turquoise blue with a pale powder-blue streak and a vitreous luster; it does not fluoresce under ultra-violet light. It has no cleavage, a Mohs hardness of ???3, is brittle with a conchoidal fracture, and has measured and calculated densities of 2.54 and 2.55 g/cm3, respectively. Nevadaite is biaxial negative, with ?? 1.540, ?? 1.548, ?? 1.553, 2V(obs.) = 76??, 2V(calc.) = 76??, pleochroic with X pale greenish blue, Y very pale greenish blue, Z blue, and with absorption Z ??? X > Y and orientation X = c, Y = a, Z = b. Nevadaite is orthorhombic, space group P21mn, a 12.123(2), b 18.999(2), c 4.961(1) A?? , V 1142.8(2) A??3, Z = 1, a:b:c = 0.6391:1:0.2611. The strongest seven lines in the X-ray powder-diffraction pattern [d in A??(I)(hkl)] are: 6.077(10)(200), 5.618(9)(130), 9.535(8)(020), 2.983(6)(241), 3.430(4)(041), 2.661(4)(061 , and 1.844(4)(352). A chemical analysis with an electron microprobe gave P2O5 32.54, Al2O3 27.07, V2O3 4.24, Fe2O3 0.07, CuO 9.24, ZnO 0.11, F 9.22, H2O (calc.) 23.48, OH ??? F -3.88, sum 102.09 wt.%; the valence states of V and Fe, and the amount of H2O, were determined by crystal-structure analysis. The resulting empirical formula on the basis of 63.65 anions (including 21.65 H2O pfu) is (CU2+2.00 Zn0.02 V3+0.98 Fe3+0.01 Al1.15)??4.16 Al8 P7.90 O32 [F8.37 (OH 1.63]??10 (H2O

  20. Ammonium dichromate poisoning: A rare cause of acute kidney injury

    Directory of Open Access Journals (Sweden)

    H Radhakrishnan

    2014-01-01

    Full Text Available Ammonium dichromate is an inorganic compound frequently used in screen and color printing. Being a strong oxidizing agent, it causes oxygen free radical injury resulting in organ failure. We report a 25-year-old female who presented with acute kidney injury after consumption of ammonium dichromate. She was managed successfully with hemodialysis and supportive measures. This case is reported to highlight the toxicity of ammonium dichromate.

  1. Renal phosphate handling: Physiology

    Directory of Open Access Journals (Sweden)

    Narayan Prasad

    2013-01-01

    Full Text Available Phosphorus is a common anion. It plays an important role in energy generation. Renal phosphate handling is regulated by three organs parathyroid, kidney and bone through feedback loops. These counter regulatory loops also regulate intestinal absorption and thus maintain serum phosphorus concentration in physiologic range. The parathyroid hormone, vitamin D, Fibrogenic growth factor 23 (FGF23 and klotho coreceptor are the key regulators of phosphorus balance in body.

  2. Synthesis and Characterization of Metal Phosphates for Photocatalytic Applications

    KAUST Repository

    Al-Sabban, Bedour

    2012-07-01

    Solar energy is the most abundant efficient and important source of renewable energy. The objective of this study is to develop highly efficient visible light responsive photocatalysts for overall water splitting. This is done by using silver or copper containing materials. Phosphate compounds have caught much attention due to their rigid structure, thermal stability and resistance to chemical attacks. Solid phosphates can be prepared by direct solid-state reaction between metal cations and phosphate anions at high temperatures. Double metal phosphates of the Nasion-type structure had shown further technological importance. It has been reported that well-crystallized double metal phosphate particles have excellent ordering and cationic conduction channels in the Nasicon framework. In this study, several Nasion-type structured materials have been synthesized by solid-state method (e.g. CuTi2(PO4)3 and AgTi2(PO4)3) heated up under different temperatures (400–1100C) in N2 or air atmosphere. These materials were characterized by XRD, SEM, DR-UV-Vis spectroscopy and tested for photocatalytic applications. A new method for direct synthesis of photoelectrode on Ti Plate had been demonstrated. Further investigations on controlling the size and morphology for better performance of single and double metal phosphates will be done.

  3. Quaternary Ammonium Polyethyleneimine: Antibacterial Activity Ira

    International Nuclear Information System (INIS)

    Farber, Y.; Domb, A.G.; Golenser, J.; Beyth, N.; Weiss, E.I.

    2010-01-01

    Quaternary ammonium polyethyleneimine- (QA-PEI-) based nanoparticles were synthesized using two synthetic methods, reductive amination and N-alkylation. According to the first method, QA-PEI nanoparticles were synthesized by cross-linking with glutaraldehyde followed by reductive amination with octanal and further N-methylation with methyl iodide. The second method is based on crosslinking with dialkyl halide followed by N-alkylation with octyl halide and further N-methylation with methyl iodide. QA-PEI nanoparticles completely inhibited bacterial growth (>106 bacteria), including both Gram-positive, that is, Staphylococcus aureus at 80 μ/mL, and Gram-negative, that is, Escherichia coli at 320 μ/mL. Activity analysis revealed that the degree of alkylation and N-methylation of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl alkylated QA-PEI alkylated at 1 : 1 mole ratio (primary amine of PEI monomer units/alkylating agent). Also, cytotoxicity studies on MAT-LyLu and MBT cell lines were performed with QA-PEI nanoparticles. These findings confirm previous reports that poly cations bearing quaternary ammonium moieties inhibit bacterial growth in vitro and have a potential use as additives in medical devices which need antibacterial properties.

  4. Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing

    Directory of Open Access Journals (Sweden)

    S. T. Martin

    2004-01-01

    Full Text Available The effect of aqueous versus crystalline sulfate-nitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global three-dimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US and once for lower side (LS of the hysteresis loop of particle phase. On the LS, the sulfate mass budget is 40% solid ammonium sulfate, 12% letovicite, 11% ammonium bisulfate, and 37% aqueous. The LS nitrate mass budget is 26% solid ammonium nitrate, 7% aqueous, and 67% gas-phase nitric acid release due to increased volatility upon crystallization. The LS ammonium budget is 45% solid ammonium sulfate, 10% letovicite, 6% ammonium bisulfate, 4% ammonium nitrate, 7% ammonia release due to increased volatility, and 28% aqueous. LS aerosol water mass partitions as 22% effloresced to the gas-phase and 78% remaining as aerosol mass. The predicted US/LS global fields of aerosol mass are employed in a Mie scattering model to generate global US/LS aerosol optical properties, including scattering efficiency, single scattering albedo, and asymmetry parameter. Global annual average LS optical depth and mass scattering efficiency are, respectively, 0.023 and 10.7 m2 (g SO4-2-1, which compare to US values of 0.030 and 13.9 m2 (g SO4-2-1. Radiative transport is computed, first for a base case having no aerosol and then for the two global fields corresponding to the US and LS of the hysteresis loop. Regional, global, seasonal, and annual averages of top-of-the-atmosphere aerosol radiative forcing on the LS and US (FL and FU, respectively, in W m-2 are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of FL=-0.750, FU=-0.930, and DFU,L=24% for full sky calculations without clouds and FL=-0.485, FU=-0.605, and DFU,L=25% when clouds are included. Regionally, DFU,L=48% over the USA, 55% over Europe

  5. INFLUENCE OF THE COMPOSITION OF PHOSPHATE ROCK ON THE AMOUNT OF WATER-INSOLUBLE PHOSPHATE IMPURITIES IN SEMI-HYDRATE PHOSPHOGYPSUM

    Directory of Open Access Journals (Sweden)

    Nora Kybartiene

    2015-03-01

    Full Text Available In this work a chemical and mineral composition of phosphate rock and phosphogypsum was investigated in order to identify which impurities of phosphate rock prevent natural phosphates from decomposing in full during the production of phosphoric acid and increase the amount of water-insoluble phosphate impurities in phosphogypsum. The analysis of X-ray diffraction (XRF, X-ray fluorescence (XRD, scanning electron microscopy with energy dispersive X-Ray spectrometry (SEM-EDS and granulometry was carried out. The results showed that phosphate rocks (Kovdor and Kirovsk apatites and the semi-hydrate phosphogypsums differ by their chemical composition. The apatites and phosphogypsums differ in the amount of the major components, as well as other components (MgO, Al2O3, SrO, BaO, ZrO2, Ln2O3. In phosphate rock, Ln2O3 can be found in the composition of the mineral monazite. The SEM-EDS analysis revealed that the minerals of the apatite group and monazite form aggregate crystals. Monazite dissolves in sulphuric and phosphoric acids very marginal, therefore it prevents the apatites from full decomposition, thus influencing the quantity of insoluble phosphates in semi-hydrate phosphogypsum. The higher is the amount of minerals containing Ln2O3 in phosphate rock, the more water-insoluble phosphates remain in phosphogypsum. It was found that influence of Ln2O3 impurity is significant higher than influence of particles size of apatite.

  6. Crystallization of Chicken Egg White Lysozyme from Sulfate Salts

    Science.gov (United States)

    Forsythe, Elizabeth; Pusey, Marc

    1998-01-01

    It has been "known" that chicken egg white lysozyme does not crystallize from sulfate, particularly ammonium sulfate, salts, but instead gives amorphous precipitates. This has been the basis of several studies using lysozyme comparing macromolecule crystal nucleation and amorphous precipitation. Recently Ries-Kautt et al (Acta Cryst D50, (1994) 366) have shown that purified isoionic CEWL could be crystallized from low concentrations of sulfate at basic pH, and we subsequently showed that in fact CEWL could be purified in both the tetragonal and orthorhombic forms using ammonium sulfate over the pH range 4.0 to 7.8 (Acta Cryst D53, (1997) 795). We have now extended these observations to include a range of common sulfate salts, specifically sodium, potassium, rubidium, magnesium, and manganese sulfates. In all cases but the manganese sulfates both the familiar tetragonal and orthorhombic forms were obtained, with unit cell dimensions close to those known for the "classic" sodium chloride crystallized forms. Manganese sulfate has only yielded orthorhombic crystals to date. All crystallizations were carried out using low (typically less than or equal to 6 M) salt and high (greater than approximately 90 mg/ml) protein concentrations. As with ammonium sulfate, the tetragonal - orthorhombic phase shift appears to be a function of both the temperature and the protein concentration, with higher temperatures and concentrations favoring the orthorhombic and lower the tetragonal form. The phase change range is somewhat reduced for the sulfate salts, depending upon conditions being typically between approximately 15 - 20 C. Both the magnesium and manganese sulfates gave crystals at salt concentrations over 0.6 M as well, with magnesium sulfate giving a very slowly nucleating and growing hexagonal form. A triclinic crystal form, characterized by aggressively small crystals (typically 0.1 mm in size) has been occasionally obtained from ammonium sulfate. Finally, preliminary spot

  7. Triphenyl phosphate allergy from spectacle frames

    DEFF Research Database (Denmark)

    Carlsen, L; Andersen, K E; Egsgaard, Helge

    1986-01-01

    A case of triphenyl phosphate allergy from spectacle frames is reported. Patch tests with analytical grade triphenyl phosphate, tri-m-cresyl phosphate, and tri-p-cresyl phosphate in the concentrations 5%, 0.5% and 0.05% pet. showed positive reactions to 0.05% triphenyl phosphate and 0.5% tri......-m-cresyl phosphate, but no reaction to tri-p-cresyl phosphate. Gas chromatography of the tricresyl phosphate 5% pet. patch test material supplied from Trolab showed that it contained a mixture of a wide range of triaryl phosphates, including 0.08% triphenyl phosphate which is above the threshold for detecting...

  8. Characterization of a calcium phosphate cement based on alpha-tricalcium phosphate obtained by wet precipitation process

    International Nuclear Information System (INIS)

    Thurmer, M.B.; Diehl, C.E.; Vieira, R.S.; Coelho, W.T.G.; Santos, L.A.

    2012-01-01

    There are several systems of calcium phosphate cements being studied. Those based on alpha-tricalcium phosphate are of particular interest. After setting they produce calcium deficient hydroxyapatite similar to bone like hydroxyapatite. This work aims to obtain alpha-tricalcium phosphate powders by the wet precipitation process, using calcium nitrate and phosphoric acid as reagents. This powder was characterized by infrared spectroscopy, X-ray diffraction and particle size distribution. In order to prepare the calcium phosphate cement, the powder was mixed with an accelerator in an aqueous solution. The mechanical properties of the cement were assessed and it was evaluated by means of apparent density, X-ray diffraction and scanning electron microscopy. The described method produced crystalline alpha-tricalcium phosphate as the major phase. The calcium phosphate cement showed high values of compression strength (50 MPa). The soaking of the cement in a simulated body fluid (SBF) formed a layer of hydroxyapatite like crystals in the surface of the samples. (author)

  9. Ammonium Production in Sediments Inhibited with Molybdate: Implications for the Sources of Ammonium in Anoxic Marine Sediments †

    OpenAIRE

    Jacobson, Myrna E.; Mackin, James E.; Capone, Douglas G.

    1987-01-01

    Ammonium production in the presence of specific inhibitors of sulfate reduction and methanogenesis was investigated in six marine sediments which differed in bulk properties and organic matter input. In all cases, little effect of the inhibitors on ammonium production was observed, although sulfate reduction was suppressed by molybdate. This gives evidence that the processes of fermentation and hydrolysis are of primary importance in ammonium generation at the sites studied. Although sulfate ...

  10. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  11. Crystal Engineering

    Indian Academy of Sciences (India)

    Nangia (2002). “Today, research areas under the wide umbrella of crystal engineering include: supramolecular synthesis; nanotechnology; separation science and catalysis; supramolecular materials and devices; polymorphism; cocrystals, crystal structure prediction; drug design and ligand–protein binding.”

  12. Integrated assessment of the phosphate industry

    International Nuclear Information System (INIS)

    Ryan, M.T.; Cotter, S.J.

    1980-05-01

    The phosphate industry in the United States includes three major activities, namely, mining and milling of phosphate rock, phosphate product manufacture, and phosphate product use. Phosphatic materials contain uranium, thorium, and their decay products in greater than background amounts. This assessment of the radiological impacts associated with the redistribution of radioactive components of phosphate materials may provide insight into the effects of uranium extraction from phosphate materials for use in the nuclear fuel cycle

  13. Pyridoxal phosphate-dependent neonatal epileptic encephalopathy

    OpenAIRE

    Bagci, S; Zschocke, J; Hoffmann, G F; Bast, T; Klepper, J; Müller, A; Heep, A; Bartmann, P; Franz, A R

    2009-01-01

    Pyridox(am)ine-5′-phosphate oxidase converts pyridoxine phosphate and pyridoxamine phosphate to pyridoxal phosphate, a cofactor in many metabolic reactions, including neurotransmitter synthesis. A family with a mutation in the pyridox(am)ine-5′-phosphate oxidase gene presenting with neonatal seizures unresponsive to pyridoxine and anticonvulsant treatment but responsive to pyridoxal phosphate is described. Pyridoxal phosphate should be considered in neonatal epileptic encephalopathy unrespons...

  14. Resorption Rate Tunable Bioceramic: Si, Zn-Modified Tricalcium Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiang [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This dissertation is organized in an alternate format. Several manuscripts which have already been published or are to be submitted for publication have been included as separate chapters. Chapter 1 is a general introduction which describes the dissertation organization and introduces the human bone and ceramic materials as bone substitute. Chapter 2 is the background and literature review on dissolution behavior of calcium phosphate, and discussion of motivation for this research. Chapter 3 is a manuscript entitled ''Si,Zn-modified tricalcium phosphate: a phase composition and crystal structure study'', which was published in ''Key Engineering Materials'' [1]. Chapter 4 gives more crystal structure details by neutron powder diffraction, which identifies the position for Si and Zn substitution and explains the stabilization mechanism of the structure. A manuscript entitled ''Crystal structure analysis of Si, Zn-modified Tricalcium phosphate by Neutron Powder Diffraction'' will be submitted to Biomaterials [2]. Chapter 5 is a manuscript, entitled ''Dissolution behavior and cytotoxicity test of Si, Zn-modified tricalcium phosphate'', which is to be submitted to Biomaterials [3]. This paper discusses the additives effect on the dissolution behavior of TCP, and cytotoxicity test result is also included. Chapter 6 is the study of hydrolysis process of {alpha}-tricalcium phosphate in the simulated body fluid, and the phase development during drying process is discussed. A manuscript entitled ''Hydrolysis of {alpha}-tricalcium phosphate in simulated body fluid and phase transformation during drying process'' is to be submitted to Biomaterials [4]. Ozan Ugurlu is included as co-authors in these two papers due to his TEM contributions. Appendix A is the general introduction of the materials synthesis, crystal structure and preliminary dissolution result. A manuscript entitled

  15. The Stereochemical Course of the α-Hydroxyphosphonate–Phosphate Rearrangement

    Science.gov (United States)

    Pallitsch, Katharina; Roller, Alexander; Hammerschmidt, Friedrich

    2015-01-01

    The phosphonate–phosphate rearrangement is an isomerisation of α-hydroxyphosphonates bearing electron-withdrawing substituents at the α-carbon atom. We studied the stereochemical course of this rearrangement with respect to phosphorus. A set of four diastereomeric α-hydroxyphosphonates was prepared by a Pudovik reaction from two diastereomeric cyclic phosphites. The hydroxyphosphonates were separated and rearranged with Et3N as base. In analogy to trichlorphon, which was the first reported compound undergoing this rearrangement. All four hydroxyphosphonates could be rearranged to 2,2-dichlorovinyl phosphates. Single-crystal X-ray structure analyses of the α-hydroxyphosphonates and the corresponding phosphates allowed us to show that the rearrangement proceeds with retention of configuration on the phosphorus atom. PMID:26059025

  16. Formation of color centers in ammonium perchlorate by x-ray irradiation at room temperature

    International Nuclear Information System (INIS)

    Levy, P.W.; Goldberg, M.; Herley, P.J.

    1978-01-01

    Radiation induced color center formation has been studied in single crystal ammonium perchlorate. Large, high purity, water clear single crystals were uniformly irradiated normal to the c or 001 face with filtered 60 kV x-rays at room temperature. The radiation induced coloring, measured through the c face, can be resolved into four Gaussian shaped absorption bands whose peak energies and full widths are 6.72, 1.62; 4.81, 0.88; 3.91, 1.12; and 2.47, 0.72 eV. The 6.72 band lies at the 'band-gap' or 'edge' and could represent either a shift in the edge or the superposition of one or more bands on the edge. The other bands are, most likely, defect related color centers or trapped molecular species. The coloring contains a small unstable component, at most 10%, consisting of these bands and an additional one at 5.78 eV, width 0.35 eV, which has a negligible effect on coloring kinetic determinations. The color-centers vs. dose curves for the bands at 6.72 and 2.47 eV are linear. The curves for the 4.81 and 3.91 eV bands contain a linear and one saturating exponential component. The linear components appear to be related to a linear dose induced process observed in the thermal decomposition of irradiated ammonium perchlorate. (author)

  17. Efficient cellulose solvent: quaternary ammonium chlorides.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; El Seoud, Omar A; Heinze, Thomas

    2013-10-01

    Pure quaternary tetraalkylammonium chlorides with one long alkyl chain dissolved in various organic solvents constitute a new class of cellulose solvents. The electrolytes are prepared in high yields and purity by Menshutkin quaternization, an inexpensive and easy synthesis route. The pure molten tetraalkylammonium chlorides dissolve up to 15 wt% of cellulose. Cosolvents, including N,N-dimethylacetamide (DMA), may be added in large excess, leading to a system of decreased viscosity. Contrary to the well-established solvent DMA/LiCl, cellulose dissolves in DMA/quaternary ammonium chlorides without any pretreatment. Thus, the use of the new solvent avoids some disadvantages of DMA/LiCl and ionic liquids, the most extensively employed solvents for homogeneous cellulose chemistry. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo

    2010-11-25

    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  19. Kinetics of barium sulphate reaction crystallization in crystallizers with internal circulation

    Directory of Open Access Journals (Sweden)

    J. Koralewska

    2008-06-01

    Full Text Available Kinetic calculation results describing the observed nucleation and growth rates of barium sulphate crystals precipitated in an integrated reaction-crystallization process in a barium sulphate-ammonium chloride-water system are presented and analyzed. The scope of experiments included two continuous model DTM-type crystallizers (Draft Tube Magma with internal circulation of the suspension forced by a liquid jet-pump device responsible for stable and intensive enough ascending/descending flow of BaSO4 crystal magma in a mixing chamber. For comparison purposes the experimental data corresponding to a continuous DT (Draft Tube crystallizer with propeller agitator are presented and discussed. The various types of laboratory crystallizers used were fed with concentrated water solution of barium chloride (of 10 or 24 mass % and - in a stoichiometric proportion - crystalline ammonium sulphate, assuming isothermal (348 K and hydrodynamic (average residence time of suspension in a crystallizer: 900 s process conditions. The observed nucleation and growth rates of barium sulphate crystals were estimated on the basis of crystal size distributions (CSDs using convenient calculation scheme derived for an MSMPR (Mixed Suspension Mixed Product Removal model approach. Considering the experimental population density distribution courses, a size-dependent growth (SDG phenomenon was taken into account in the kinetic calculations. Five SDG kinetic models recommended in the accessible literature were used for kinetic parameter values estimation. It was proved statistically, that Rojkowski’s two SDG models (hyperbolic and exponential best suit for our own experimental data description. The experimental data presented can be practically applied for improving the constructions of liquid jet-pump DTM crystallizers recommended for reaction crystallization of sparingly soluble inorganic salts (especially for high concentrations of reaction substrates in the modern

  20. Ammonium removal from aqueous solution by ion-exchange using ...

    African Journals Online (AJOL)

    Ammonium removal from aqueous solution by a natural ion-exchange resin was investigated by considering the factors affecting the ammonium-exchange capacity including the zeolites' particle size, the loading flow rates and the impact of a number of regenerations upon the ion-exchange capacity. The resin column was ...

  1. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION Food Preservatives § 172.165 Quaternary ammonium chloride combination. The food... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Quaternary ammonium chloride combination. 172.165 Section 172.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  2. Modelling nitrogen assimilation of Escherichia coli at low ammonium concentration.

    NARCIS (Netherlands)

    Ma, H.; Boogerd, F.C.; Goryanin, I.

    2009-01-01

    Modelling is an important methodology in systems biology research. In this paper, we presented a kinetic model for the complex ammonium assimilation regulation system of Escherichia coli. Based on a previously published model, the new model included AmtB mediated ammonium transport and AmtB

  3. Ginger-supplemented diet ameliorates ammonium nitrate-induced ...

    African Journals Online (AJOL)

    The present study was designed to evaluate the capacity of ginger to repair the oxidative stress induced by ammonium nitrate. 50 male rats were divided into 5 groups; they underwent an oral treatment of ammonium nitrate and/or ginger (N mg/kg body weight + G% in diet) during 30 days. Group I served as control (C); ...

  4. 78 FR 32690 - Certain Ammonium Nitrate From Ukraine

    Science.gov (United States)

    2013-05-31

    ... From Ukraine Determination On the basis of the record \\1\\ developed in the subject five-year review... certain ammonium nitrate from Ukraine would be likely to lead to continuation or recurrence of material... Ammonium Nitrate from Ukraine: Investigation No. 731-TA-894 (Second Review). By order of the Commission...

  5. The Rh complex exports ammonium from human red blood cells

    NARCIS (Netherlands)

    Hemker, Mirte B.; Cheroutre, Goedele; van Zwieten, Rob; Maaskant-van Wijk, Petra A.; Roos, Dirk; Loos, Johannes A.; van der Schoot, C. Ellen; von dem Borne, Albert E. G. Kr

    2003-01-01

    The Rh blood group system represents a major immunodominant protein complex on red blood cells (RBC). Recently, the Rh homologues RhAG and RhCG were shown to promote ammonium ion transport in yeast. In this study, we showed that also in RBC the human Rh complex functions as an exporter of ammonium

  6. Ceric ammonium nitrate catalysed three component one-pot efficient ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Ceric ammonium nitrate (CAN) is used as an efficient catalyst for the synthesis of 2,4,5- triaryl-1H-imidazoles via condensation of benzoin/benzil, ammonium acetate, and aromatic aldehydes. The easy work-up, higher yields and shorter reaction time are the advantages of the method presented here. Keywords.

  7. Effects of dietary ammonium sulphate (AS) on the performance and ...

    African Journals Online (AJOL)

    Two experiments were designed to investigate the response of broilers to dietary inclusion of ammonium sulphate. In experiment 1, day old chicks were fed diets with 0,1,2 or 3 % ammonium sulphate (AS) during the starter phase (0 –4 weeks). In experiment 2, broilers chicks were raised on a standard diet from 0 – 4 weeks ...

  8. Ceric ammonium nitrate catalysed three component one-pot efficient ...

    Indian Academy of Sciences (India)

    Ceric ammonium nitrate (CAN) is used as an efficient catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles via condensation of benzoin/benzil, ammonium acetate, and aromatic aldehydes. The easy work-up, higher yields and shorter reaction time are the advantages of the method presented here.

  9. Flotation separation of strontium via phosphate precipitation.

    Science.gov (United States)

    Thanh, Luong H V; Liu, J C

    2017-06-01

    Flotation separation of strontium (Sr) from wastewater via phosphate precipitation was investigated. While 37.33% of Sr precipitated at highly alkaline pH in the absence of PO 4 3- , it completely precipitated as Sr 3 (PO 4 ) 2 at a molar ratio ([PO 4 3- ]:[Sr 2+ ]) of 0.62 at a lower pH value. The presence of Ca 2+ hindered Sr precipitation, yet it could be overcome by increasing the PO 4 3- dose. Sodium dodecyl sulfate (SDS) was a better collector for dispersed air flotation of Sr 3 (PO 4 ) 2 than cetyl trimethyl ammonium bromide, or mixed collector systems of SDS and saponin. The highest separation efficiency of 97.5% was achieved at an SDS dose of 40 mg/L. The main mechanism in the precipitate flotation is adsorption of anionic SDS on the positively charged surface of colloidal Sr 3 (PO 4 ) 2 via electrostatic interaction. SDS enhanced the aggregation of Sr 3 (PO 4 ) 2 precipitates as the size increased from 1.65 to 28.0 μm, which was beneficial to separation as well.

  10. Crystallization and Preliminary Crystallographic Characterization of Endo-polygalacturonase II from Aspergillus niger

    NARCIS (Netherlands)

    Schröter, K.-H.; Arkema, A.; Kester, H.C.M.; Visser, J.; Dijkstra, B.W.

    1994-01-01

    The endo-polygalacturonase II from Aspergillus niger has been crystallized from an ammonium sulfate solution by the hanging drop method. The crystals belong to the monoclinic space group P2(1), with cell dimensions a = 60.6 Angstrom, b = 152.6 Angstrom, c = 74.0 Angstrom and beta = 91.2 degrees with

  11. Laser Sintered Calcium Phosphate Bone

    National Research Council Canada - National Science Library

    Vail, Neil

    1999-01-01

    ...) technology selective laser sintering (SLS). BME has successfully implemented a pilot facility to fabricate calcium phosphate implants using anatomical data coupled with the selective laser sintering process...

  12. Shock wave synthesis of amino acids from solutions of ammonium formate and ammonium bicarbonate

    Science.gov (United States)

    Suzuki, Chizuka; Furukawa, Yoshihiro; Kobayashi, Takamichi; Sekine, Toshimori; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2015-07-01

    The emergence of life's building blocks, such as amino acids and nucleobases, on the prebiotic Earth was a critical step for the beginning of life. Reduced species with low mass, such as ammonia, amines, or carboxylic acids, are potential precursors for these building blocks of life. These precursors may have been provided to the prebiotic ocean by carbonaceous chondrites and chemical reactions related to meteorite impacts on the early Earth. The impact of extraterrestrial objects on Earth occurred more frequently during this period than at present. Such impacts generated shock waves in the ocean, which have the potential to progress chemical reactions to form the building blocks of life from reduced species. To simulate shock-induced reactions in the prebiotic ocean, we conducted shock-recovery experiments on ammonium bicarbonate solution and ammonium formate solution at impact velocities ranging from 0.51 to 0.92 km/s. In the products from the ammonium formate solution, several amino acids (glycine, alanine, ß-alanine, and sarcosine) and aliphatic amines (methylamine, ethylamine, propylamine, and butylamine) were detected, although yields were less than 0.1 mol % of the formic acid reactant. From the ammonium bicarbonate solution, smaller amounts of glycine, methylamine, ethylamine, and propylamine were formed. The impact velocities used in this study represent minimum cases because natural meteorite impacts typically have higher velocities and longer durations. Our results therefore suggest that shock waves could have been involved in forming life's building blocks in the ocean of prebiotic Earth, and potentially in aquifers of other planets, satellites, and asteroids.

  13. Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light.

    Science.gov (United States)

    Jia, Huijun; Yuan, Qiuyan

    2018-04-01

    In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.

  14. Phosphate Recovery From Sewage Sludge Containing Iron Phosphate

    NARCIS (Netherlands)

    Wilfert, P.K.

    2018-01-01

    The scope of this thesis was to lay the basis for a phosphate recovery technology that can be applied on sewage sludge containing iron phosphate. Such a technology should come with minimal changes to the existing sludge treatment configuration while keeping the use of chemicals or energy as small as

  15. The Use of Rock Phosphate and Phosphate Solubilising Fungi ...

    African Journals Online (AJOL)

    User

    Department of Soil Science, University of Ghana, Legon. *Corresponding author; Email: sbrempong@yahoo.com. Abstract. Field experiment was conducted to study the effect of rock phosphate (RP) and phosphate solubilizing fungi application on upland rice yield intercropped with pigeon pea from 2009 to 2011 at the ...

  16. Thermophysical properties of ammonium and hydroxylammonium protic ionic liquids

    International Nuclear Information System (INIS)

    Chhotaray, Pratap K.; Gardas, Ramesh L.

    2014-01-01

    Highlights: • Density, viscosity and sound velocity measured for five ammonium and hydroxylammonium based protic ionic liquids. • Experimental density and viscosity data estimated using Gardas and Coutinho model and Vogel–Tamman–Fulcher equation. • Effects of cation, anion and alkyl chain length on studied properties have been discussed. • The intermolecular interactions were analyzed on the basis of derived properties. - Abstract: In this work, five protic ionic liquids having propylammonium, 3-hydroxy propylammonium as cations and formate, acetate, trifluoroacetate as anions have been synthesized. Thermophysical properties such as density (ρ), viscosity (η) and sound velocity (u) have been measured at various temperatures ranging from (293.15 to 343.15) K at atmospheric pressure. The experimental density and viscosity were fitted with second order polynomial and Vogel–Tamman–Fulcher (VTF) equations, respectively. Also experimental densities were correlated with the estimated density proposed by Gardas and Coutinho model. The coefficient of thermal expansion (α) and isentropic compressibility (β s ) values have been calculated from the experimental density and sound velocity data using empirical correlations. Lattice potential energy (U POT ) has been calculated to understand the strength of ionic interaction between the ions. Thermal decomposition temperature (T d ) and glass transition temperature (T g ) along with crystallization and melting point were investigated using TGA and DSC analysis, respectively. The effect of alkyl chain length and electronegative fluorine atoms on anionic fragment as well as hydroxyl substituent on cationic side chain in the protic ionic liquids has been discussed for studied properties. The effect of ΔpK a over the studied properties has also been analyzed

  17. 21 CFR 137.175 - Phosphated flour.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Phosphated flour. 137.175 Section 137.175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and phosphated...

  18. Ion-selective solid-phase electrode sensitive to ammonium ions

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Milonova, M.S.; Antonov, P.P.; Bychkov, E.A.; Ehfa, A.Ya.

    1983-01-01

    Ammonium phosphomolybdate is investigated for the purpose of using it as membrane material of ammonium-selective solid-phase electrodes. Estimation of proton mobility and ion conductivity of ammonium phosphomolybdate is performed

  19. The effect of deposition temperature on the surface coverage and morphology of iron-phosphate coatings on low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Popic, J.P. [ICTM-Department of Electrochemistry, University of Belgrade, Njegoseva 12, Belgrade (Serbia); Jegdic, B.V., E-mail: borejegdic@yahoo.com [Institute GOSA, Milana Rakica 35, 11000 Belgrade (Serbia); Bajat, J.B.; Veljovic, D. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P.O. Box 3503, 11120 Belgrade (Serbia); Stevanovic, S.I. [ICTM-Department of Electrochemistry, University of Belgrade, Njegoseva 12, Belgrade (Serbia); Miskovic-Stankovic, V.B. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P.O. Box 3503, 11120 Belgrade (Serbia)

    2011-10-01

    The influence of deposition temperature and concentration of NaNO{sub 2} in the phosphating bath on the surface morphology and coverage of iron-phosphate coatings on low carbon steel was investigated. The phosphate coatings were chemically deposited on steel from phosphate bath at different temperatures (30-70 deg. C) and with the addition of different amounts of accelerator, NaNO{sub 2} (0.1, 0.5 and 1.0 g dm{sup -3}). The morphology of phosphate coatings was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The composition of iron-phosphate coatings was determined using energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Surface coverage was evaluated by the voltammetric anodic dissolution (VAD) technique. It was shown that the increase in temperature of the NaNO{sub 2}-free phosphating bath up to 70 deg. C caused an increase in surface coverage. The addition of NaNO{sub 2} in the phosphating bath significantly increased the surface coverage of phosphate coatings deposited at temperatures lower than 50 deg. C. The phosphate crystals were of laminated and needle-like structures for deposits obtained at temperatures lower than 50 deg. C, while at higher temperatures needle-like structure was transformed to laminated structure. The increase in NaNO{sub 2} concentration in the phosphating bath from 0.1 to 1.0 g dm{sup -3} did not significantly increase the surface coverage, but decreased the crystals size, consequently favouring the phosphate nucleation and better packing of the crystals.

  20. Uranium extraction from ores with salicylic acid; I - uranium extraction from input phosphate ore of Abu Zaabal phosphate plant, Egypt

    International Nuclear Information System (INIS)

    Hussein, E.M.

    1997-01-01

    Salicylic acid has been tested (for environmental importance) to extract U from input phosphate ore of Abu-Zaabal phosphate plant, Egypt prior to its processing for production of phosphatic fertilizers. Uranyl ion forms with this acid three stable complexes; namely [UO 2 Sal] degree, [U O 2 SaL 2 ] 2- and UO 2 SaL-3] 4- depending on the total uranyl and salicylic acid concentrations and their ratios. Study of relevant extraction factors revealed however that, the extraction process is controlled by the amount of salicylic acid used, alcohol/aqueous ratio, solid/liquid ratio and time of agitation. The obtained results showed that uranium is selectively leached by the application of such a leaching reagent. In order to recover U from the obtained pregnant leach liquor, the latter is adjusted by ammonia to PH 5-6.5, where the crystalline pp t of N H 4 [UO 2 SaL 3 ] 4 H 2 O has formed. This precipitation has been carried out after concentrating the obtained pregnant leach liquor by its recycle for U extraction from new ore batches. The precipitated ammonium uranyl tri salicylate is calcined at 500 degree C for obtaining pure orange yellow trioxide (UO 3 ) powder. On the basis of one ton ore treatment, an economic flowsheet for U recover y from the study ore material has been suggested

  1. Hydrothermal synthesis and optical properties of hexagonal tungsten oxide nanocrystals assisted by ammonium tartrate

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Hua-Feng; Li, Zhi-Jie [Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu (China); Xiang, Xia; Zu, Xiao-Tao [Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu (China); International Center for Material Physics, Chinese Academy of Sciences, Shenyang (China); Fu, Yong-Qing [Thin Film Center, Scottish Universities of Physics Alliance (SUPA), University of the West of Scotland, Paisley (United Kingdom)

    2012-03-15

    Crystals of hexagonal tungsten oxides (hex-WO{sub 3}) have been synthesized using hydrothermal method at 150 C, assisted by the capping reagent of ammonium tartrate (AT). The XRD and EDX results reveal that the lattice distortion exists in all the samples, possibly due to the defects and the intercalation of the residual sodium ions. Different crystal shapes including plate-like, urchin-like, and particle structures were obtained by varying concentration of AT and pH values in the precursor solution. Beside the absorption action of the NH{sub 4}{sup +} and Na{sup +} ions, the capping effect can be reinforced by the hydrogen bonding from the tartrate groups in the crystallization process. The bandgap energies were modulated by the size of the nanostructured hex-WO{sub 3} crystals due to quantum confinement effect, which increases from 2.74 to 3.04 eV. Based on the analysis of the photoluminescence and X-ray photoelectron spectroscopy, the enhancement of the blue emission of the nanocrystals is assigned as a result of a complex of the local intercalation of the residual sodium ions and the oxygen vacancies or defects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Growth and characterization of ammonium nickel-cobalt sulfate Tutton's salt for UV light applications

    Science.gov (United States)

    Ghosh, Santunu; Oliveira, Michelle; Pacheco, Tiago S.; Perpétuo, Genivaldo J.; Franco, Carlos J.

    2018-04-01

    We have obtained a set of sample crystals of the family of Tutton's salt comprise in the isomorphic series with general chemical formula (NH4)2NixCo(1-x) (SO4)2·6H2O, by employing growth from solutions by slow evaporation technique. The samples crystals were characterized by ICP-AES, X-ray powder diffraction analysis, thermogravimetric analysis, UV-Vis-NIR, Raman and FTIR spectroscopy. This type of material has been studied because of its physical and chemical properties not yet understood and they have potential technological applications. Chemical analysis of the samples by ICP-AES method allowed us to investigate the efficiency of the method of growth used. Thermogravimetric analysis provides the information about the thermal stability of the obtained crystals for high temperature applications, and powder X-ray diffraction analysis at ambient and high temperature reveals the structural quality and structural change of the samples respectively. We have used Raman spectroscopy in the range 100-4000 cm-1 and FTIR spectroscopy in the range 400-4000 cm-1 to understand the internal vibrational mode of the octahedral complexes [Ni(H2O)6]2+ and [Co(H2O)6]2+, SO42- and NH4+ tetrahedra. The transmittance of our mixed ammonium nickel cobalt sulfate hexahydrate (ACNSH) crystals is 75% in the UV region, which indicates that they are ideal to use in UV light filters and UV sensors.

  3. Decontamination of liquid radioactive waste by thorium phosphate

    International Nuclear Information System (INIS)

    Rousselle, J.; Grandjean, S.; Dacheux, N.; Genet, M.

    2004-01-01

    In the field of the complete reexamination of the chemistry of thorium phosphate and of the improvement of the homogeneity of Thorium Phosphate Diphosphate (TPD, Th 4 (PO 4 ) 4 P 2 O 7 ) prepared at high temperature, several crystallized compounds were prepared as initial powdered precursors. Due to the very low solubility products associated to these phases, their use in the field of the efficient decontamination of high-level radioactive liquid waste containing actinides (An) was carefully considered. Two main processes (called 'oxalate' and 'hydrothermal' chemical routes) were developed through a new concept combining the decontamination of liquid waste and the immobilization of the actinides in a ceramic matrix (TPD). In phosphoric media ('hydrothermal route'), the key-precursor was the Thorium Phosphate Hydrogen Phosphate hydrate (Th 2 (PO 4 ) 2 (HPO 4 ). H 2 O, TPHP, solubility product log(K S,0 0 ) ∼ - 67). The replacement of thorium by other tetravalent actinides (U, Np, Pu) in the structure, leading to the preparation of Th 2-x/2 An x/2 (PO 4 ) 2 (HPO 4 ). H 2 O solid solutions, was examined. A second method was also considered in parallel to illustrate this concept using the more well-known precipitation of oxalate as the initial decontamination step. For this method, the final transformation to single phase TPD containing actinides was purchased by heating a mixture of phosphate ions with the oxalate precipitate at high temperature. (authors)

  4. Amorphous calcium phosphate and its application in dentistry

    Directory of Open Access Journals (Sweden)

    Sun Wei-bin

    2011-07-01

    Full Text Available Abstract Amorphous Calcium Phosphate (ACP is an essential mineral phase formed in mineralized tissues and the first commercial product as artificial hydroxyapatite. ACP is unique among all forms of calcium phosphates in that it lacks long-range, periodic atomic scale order of crystalline calcium phosphates. The X-ray diffraction pattern is broad and diffuse with a maximum at 25 degree 2 theta, and no other different features compared with well-crystallized hydroxyapatite. Under electron microscopy, its morphological form is shown as small spheroidal particles in the scale of tenths nanometer. In aqueous media, ACP is easily transformed into crystalline phases such as octacalcium phosphate and apatite due to the growing of microcrystalline. It has been demonstrated that ACP has better osteoconductivity and biodegradability than tricalcium phosphate and hydroxyapatite in vivo. Moreover, it can increase alkaline phosphatase activities of mesoblasts, enhance cell proliferation and promote cell adhesion. The unique role of ACP during the formation of mineralized tissues makes it a promising candidate material for tissue repair and regeneration. ACP may also be a potential remineralizing agent in dental applications. Recently developed ACP-filled bioactive composites are believed to be effective anti-demineralizing/remineralizing agents for the preservation and repair of tooth structures. This review provides an overview of the development, structure, chemical composition, morphological characterization, phase transformation and biomedical application of ACP in dentistry.

  5. Optimization of calcium phosphate fine ceramic powders preparation

    Science.gov (United States)

    Sezanova, K.; Tepavitcharova, S.; Rabadjieva, D.; Gergulova, R.; Ilieva, R.

    2013-12-01

    The effect of biomimetic synthesis method, reaction medium and further precursor treatments on the chemical and phase composition, crystal size and morphology of calcium phosphates was examined. Nanosized calcium phosphate precursors were biomimetically precipitated by the method of continuous precipitation in three types of reaction media at pH 8: (i) SBF as an inorganic electrolyte system; (ii) organic (glycerine) modified SBF (volume ratio of 1:1); (iii) polymer (10 g/l xanthan gum or 10 g/l guar gum) modified SBF (volume ratio of 1:1). After maturation (24 h) the samples were lyophilized, calcinated at 300°C for 3 hours, and washed with water, followed by new gelation, lyophilization and step-wise (200, 400, 600, 800, and 1000°C, each for 3 hours) sintering. The reaction medium influenced the chemical composition and particle size but not the morphology of the calcium phosphate powders. In all studied cases bi-phase calcium phosphate fine powders with well-shaped spherical grains, consisting of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) with a Ca/P ratio of 1.3 - 1.6 were obtained. The SBF modifiers decreased the particle size of the product in the sequence guar gum ˜ xanthan gum < glycerin < SBF medium.

  6. Kinetics Modeling and Isotherms for Adsorption of Phosphate from Aqueous Solution by Modified Clinoptilolit

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2012-01-01

    Full Text Available The Phosphorous discharge into the surface water led to excessive growth of algae and eutrophication in lakes and rivers. Therefore the phosphorus removal is important due to negative effect on water resources. The aim of this study was to investigat the modification of clinoptilolite and application of modified clinoptilolite for phosphorous adsorption from aqueous solution and isotherms and kinetics modeling. Hexadecyl Trimethyl Ammonium bromide (HDTMA-Br, Hexadecyl trimethyl Ammonium Chloride (HDTMA-Cl, Sodium Decyl Sulphate (SDS and Cetrimide-C were used for modification of clinoptilolite. Experiments were conducted using jar apparatus and batch system. The effect of pH, adsorbent doses, contact time, phosphate initial concentration and particle size were studied surveyed on phosphate adsorption by modified clinoptilolite. The most common isotherms and the kinetics adsorption equations were used for determination of adsorption rate and dynamic reaction. The results showed that maximum phosphate adsorption was obtained in the pH of 7 and contact time 90min. Also it was found with the increasing of phosphate initial concentration, phosphate removal efficiency decreased significantly. Langmuir No 2 showed a good correlation compared to other isotherms (R2=0.997. Maximum adsorption capacity was obtained in 20g/L adsorbent dose (22.73mg/g. Also Interaparticle diffusion kinetics well fits with experimental data (R2=0.999 with constant rate of 3.84mg/g min0.5. The result showed that modified clinoptilolite can be used successfully as low cost and effective absorbent for phosphate removal.

  7. Size-dependent reactions of ammonium bisulfate clusters with dimethylamine.

    Science.gov (United States)

    Bzdek, Bryan R; Ridge, Douglas P; Johnston, Murray V

    2010-11-04

    The reaction kinetics of ammonium bisulfate clusters with dimethylamine (DMA) gas were investigated using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Clusters ranged in size from 1 to 10 bisulfate ions. Although displacement of the first several ammonium ions by DMA occurred with near unit efficiency, displacement of the final ammonium ion was cluster size dependent. For small clusters, all ammonium ions are exposed to incoming DMA molecules, allowing for facile exchange ("surface" exchange). However, with increasing cluster size, an ammonium ion can be trapped in an inaccessible region of the cluster ("core" exchange), thereby rendering exchange difficult. DMA was also observed to add onto existing dimethylaminium bisulfate clusters above a critical size, whereas ammonia did not add onto ammonium bisulfate clusters. The results suggest that as the cluster size increases, di-dimethylaminium sulfate formation becomes more favorable. The results of this study give further evidence to suggest that ambient sub-3 nm diameter particles are likely to contain aminium salts rather than ammonium salts.

  8. Preliminary X-ray crystallographic analysis of the d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis

    International Nuclear Information System (INIS)

    Petrareanu, Georgiana; Balasu, Mihaela C.; Zander, Ulrich; Scheidig, Axel J.; Szedlacsek, Stefan E.

    2010-01-01

    The expression, purification, preliminary crystallization and crystallographic analysis of phosphoketolase from L. lactis ssp. lactis (strain IL 1403) are reported. Phosphoketolases are thiamine diphosphate-dependent enzymes which play a central role in the pentose-phosphate pathway of heterofermentative lactic acid bacteria. They belong to the family of aldehyde-lyases and in the presence of phosphate ion cleave the carbon–carbon bond of the specific substrate d-xylulose 5-phosphate (or d-fructose 6-phosphate) to give acetyl phosphate and d-glyceraldehyde 3-phosphate (or d-erythrose 4-phosphate). Structural information about phosphoketolases is particularly important in order to fully understand their mechanism as well as the steric course of phosphoketolase-catalyzed reactions. Here, the purification, preliminary crystallization and crystallographic characterization of d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis are reported. The presence of thiamine diphosphate during purification was essential for the enzymatic activity of the purified protein. The crystals belonged to the monoclinic space group P2 1 . Diffraction data were obtained to a resolution of 2.2 Å

  9. Phosphating of hot-dipped zinc-aluminum coated steel: Formation and properties of the coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowski, L.; Radzikowski, M. [Inst. of Precision Mechanics, Warsaw (Poland)

    1995-11-01

    55%Al-Zn and 5%Al-Zn were phosphated in comparison with electrolytic zinc coatings. Potential measurements during phosphating were carried out in order to find the interpretation of differences in the crystal size. impedance measurements were performed for the assessment of the corrosion properties of the phosphate coatings. It was found that there is no differences between coatings formed from the high or low-zinc baths. The best results were obtained for the phosphated 55%Al-Zn, however one may find also suitable treatment for 5%Al-Zn surface. From the X-ray diffraction data de and rehydration tendency of the coating components were recorded. In the case of high zinc processes it was found that the slowest rehydration rate occurs on the phosphated 5% Al-Zn surfaces. It was also found that depending on the kind of the bath, hopeite formed on the metal surface exhibited various thermal stabilities.

  10. Folding of RNA tertiary structure: Linkages between backbone phosphates, ions, and water.

    Science.gov (United States)

    Draper, David E

    2013-12-01

    The functional forms of many RNAs have compact architectures. The placement of phosphates within such structures must be influenced not only by the strong electrostatic repulsion between phosphates, but also by networks of interactions between phosphates, water, and mobile ions. This review first explores what has been learned of the basic thermodynamic constraints on these arrangements from studies of hydration and ions in simple DNA molecules, and then gives an overview of what is known about ion and water interactions with RNA structures. A brief survey of RNA crystal structures identifies several interesting architectures in which closely spaced phosphates share hydration shells or phosphates are buried in environments that provide intramolecular hydrogen bonds or site-bound cations. Formation of these structures must require strong coupling between the uptake of ions and release of water. Copyright © 2013 Wiley Periodicals, Inc.

  11. Light weight phosphate cements

    Science.gov (United States)

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  12. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  13. Fluorescence and physical properties of the organic salt 2-chloro-4-nitrobenzoate–3-ammonium-phenol

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Rajaboopathi, E-mail: mrajaboopathi@gmail.com [Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); Rietveld, Ivo B.; Nicolaï, Béatrice [Laboratoire de Chimie Physique, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris (France); Varadharajan, Krishnakumar, E-mail: vkrishna_kumar@yahoo.com [Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); Louhi-Kultanen, Marjatta [Department of Chemical Technology, Lappeenranta University of Technology, Lappeenranta 53851 (Finland); Narasimhan, Surumbarkuzhali [Department of Physics, Government Arts College (Autonomous), Salem 636 007, Tamilnadu (India)

    2015-09-08

    Highlights: • Organic salt of 2-chloro-4-nitrobenzoate–3-ammonium-phenol (CNBA{sup −} · AP{sup +}) was grown by solution growth technique. • Single crystal X-ray diffraction demonstrate that two molecules were linked via N{sup +}–H⋯O{sup −} interactions. • The narrow spatial overlap between HOMO and LUMO leads to low ΔE{sub ST} = 73 meV. • The fluorescence emission was observed at ≈338 nm with Stokes shift of 53 nm. • The melting point of CNBA{sup −} · AP{sup +} is 187 °C which is higher than the individual components. - Abstract: Organic salt 2-chloro-4-nitrobenzoate (CNBA{sup −}) 3-ammonium-phenol (AP{sup +}) exhibits fluorescence at 338 nm in solution and frontier molecular orbitals generated from TDDFT calculations indicate that the ground state and the excited state are physically separated on AP{sup +} and CNBA{sup −}. The crystal structure and physical–chemical properties of the CNBA{sup −} · AP{sup +} were investigated using X-ray single crystal and powder diffraction, SEM, FTIR, UV–Vis–NIR, and fluorescence spectrometry. X-ray diffraction demonstrates that the two molecules are linked via N{sup +}–H⋯O{sup −} ammonium–carboxylate interactions, as expected considering their interaction propensities. Proton transfer has been confirmed by FTIR analysis. The melting point of CNBA{sup −} · AP{sup +} was observed at 186 °C, which is higher than pure CNBA (140 °C) or AP (120 °C). The observation of a spatially separated HOMO and LUMO possessing a narrow ΔE{sub ST} = 73.3 meV and an emission in the blue region is promising as an alternative method for the production of OLED materials.

  14. Modelling an Ammonium Transporter with SCLS

    Directory of Open Access Journals (Sweden)

    Angelo Troina

    2009-10-01

    Full Text Available The Stochastic Calculus of Looping Sequences (SCLS is a recently proposed modelling language for the representation and simulation of biological systems behaviour. It has been designed with the aim of combining the simplicity of notation of rewrite systems with the advantage of compositionality. It also allows a rather simple and accurate description of biological membranes and their interactions with the environment.In this work we apply SCLS to model a newly discovered ammonium transporter. This transporter is believed to play a fundamental role for plant mineral acquisition, which takes place in the arbuscular mycorrhiza, the most wide-spread plant-fungus symbiosis on earth. Due to its potential application in agriculture this kind of symbiosis is one of the main focuses of the BioBITs project. In our experiments the passage of NH3 / NH4+ from the fungus to the plant has been dissected in known and hypothetical mechanisms; with the model so far we have been able to simulate the behaviour of the system under different conditions. Our simulations confirmed some of the latest experimental results about the LjAMT2;2 transporter. The initial simulation results of the modelling of the symbiosis process are promising and indicate new directions for biological investigations.

  15. Life cycle energy and greenhouse gas profile of a process for the production of ammonium sulfate from nitrogen-fixing photosynthetic cyanobacteria.

    Science.gov (United States)

    Razon, Luis F

    2012-03-01

    In this paper, an alternative means for nitrogen fixation that may consume less energy and release less greenhouse gases than the Haber-Bosch process is explored. A life-cycle assessment was conducted on a process to: culture the cyanobacterium, Anabaena sp. ATCC 33047, in open ponds; harvest the biomass and exopolysaccharides and convert these to biogas; strip and convert the ammonia from the biogas residue to ammonium sulfate; dry the ammonium sulfate solution to ammonium sulfate crystals and transport the finished product. The results suggest that substantial reductions in non-renewable energy use and greenhouse gas emissions may be realized. The study opens the possibility that Haber-Bosch ammonia may be replaced with ammonia from a biomass process which simultaneously generates renewable energy. The process is intrinsically safer than the Haber-Bosch process. However, there are trade-offs in terms of land use and possibly, water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Construction and Systematical Symmetric Studies of a Series of Supramolecular Clusters with Binary or Ternary Ammonium Triphenylacetates.

    Science.gov (United States)

    Sasaki, Toshiyuki; Ida, Yoko; Yuge, Tetsuharu; Yamamoto, Atsushi; Hisaki, Ichiro; Tohnai, Norimitsu; Miyata, Mikiji

    2016-02-15

    Functions of clusters in nano or sub-nano scale significantly depend on not only kinds of their components but also arrangements, or symmetry, of their components. Therefore, the arrangements in the clusters have been precisely characterized, especially for metal complexes. Contrary to this, characterizations of molecular arrangements in supramolecular clusters composed of organic molecules are limited to a few cases. This is because construction of the supramolecular clusters, especially obtaining a series of the supramolecular clusters, is difficult due to low stability of non-covalent bonds compare to covalent bonds. From this viewpoint, utilization of organic salts is one of the most useful strategies. A series of the supramolecules could be constructed by combinations of a specific organic molecule with various counter ions. Especially, primary ammonium carboxylates are suitable as typical examples of supramolecules because various kinds of carboxylic acids and primary amines are commercially available, and it is easy to change their combinations. Previously, it was demonstrated that primary ammonium triphenylacetates using various kinds of primary amines specifically construct supramolecular clusters, which are composed of four ammoniums and four triphenylacetates assembled by charge-assisted hydrogen bonds, in crystals obtained from non-polar solvents. This study demonstrates an application of the specific construction of the supramolecular clusters as a strategy to conduct systematical symmetric study for clarification of correlations between molecular arrangements in supramolecules and kinds and numbers of their components. In the same way with binary salts composed of triphenylacetates and one kind of primary ammoniums, ternary organic salts composed of triphenylacetates and two kinds of ammoniums construct the supramolecular clusters, affording a series of the supramolecular clusters with various kinds and numbers of the components.

  17. Temperature dependence measurements and structural characterization of trimethyl ammonium ionic liquids with a highly polar solvent.

    Science.gov (United States)

    Attri, Pankaj; Venkatesu, Pannuru; Hofman, T

    2011-08-25

    We report the synthesis and characterization of a series of an ammonium ionic liquids (ILs) containing acetate, dihydrogen phosphate, and hydrogen sulfate anions with a common cation. To characterize the thermophysical properties of these newly synthesized ILs with the highly polar solvent N,N-dimethylformamide (DMF), precise measurements such as densities (ρ) and ultrasonic sound velocities (u) over the whole composition range have been performed at atmospheric pressure and over wide temperature ranges (25-50 °C). The excess molar volume (V(E)) and the deviation in isentropic compressibilities (Δκ(s)) were predicted using these temperature dependence properties as a function of the concentration of ILs. The Redlich-Kister polynomial was used to correlate the results. The ILs investigated in the present study included trimethylammonium acetate [(CH(3))(3)NH][CH(3)COO] (TMAA), trimethylammonium dihydrogen phosphate [(CH(3))(3)NH][H(2)PO(4)] (TMAP), and trimethylammonium hydrogen sulfate [(CH(3))(3)NH][HSO(4)] (TMAS). The intermolecular interactions and structural effects were analyzed on the basis of the measured and the derived properties. In addition, the hydrogen bonding between ILs and DMF has been demonstrated using semiempirical calculations with help of Hyperchem 7. A qualitative analysis of the results is discussed in terms of the ion-dipole, ion-pair interactions, and hydrogen bonding between ILs and DMF molecules and their structural factors. The influence of the anion of the protic IL, namely, acetate (CH(3)COO), dihydrogen phosphate (H(2)PO(4)), and hydrogen sulfate (HSO(4)), on the thermophysical properties is also provided. © 2011 American Chemical Society

  18. The effect of farmyard manure and calcium ammonium nitrate ...

    African Journals Online (AJOL)

    The effect of farmyard manure and calcium ammonium nitrate fertilisers on micronutrient density (iron, zinc, manganese, calcium and potassium) and seed yields of solanium villosum (black nightshade) and cleome gynandra (cat whiskers) on uetric nitisol.

  19. Stability and Concentration Verification of Ammonium Perchlorate Dosing Solutions

    National Research Council Canada - National Science Library

    Tsui, David

    1998-01-01

    Stability and concentration verification was performed for the ammonium perchlorate dosing solutions used in the on-going 90-Day Oral Toxicity Study conducted by Springborn Laboratories, Inc. (SLI Study No. 3433.1...

  20. Direct esterification of ammonium salts of carboxylic acids

    Science.gov (United States)

    Halpern, Yuval [Skokie, IL

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  1. The effect of farmyard manure and calcium ammonium nitrate on ...

    African Journals Online (AJOL)

    The effect of farmyard manure and calcium ammonium nitrate on vegetative growth, leaf yield and nutritive quality of Cleome gynadra (Cat Whiskers) in Keiyo District, Rift Valley Province. MJ Hutchinson, LK Kipkosgei, E Obudho, LSM Akundabweni ...

  2. Quaternary ammonium salt N-(dodecyloxycarboxymethyl)- N,N,N ...

    Indian Academy of Sciences (India)

    2016-10-22

    N-(dodecyloxycarboxymethyl)-. N,N,N-trimethyl ammonium chloride) on yeast cells of the parental strain and the IM-resistant mutant (EO25 IMR) growth. The phenotype of this mutant was pleiotropic. The IMR mutant exhibited ...

  3. Crystal Data

    Science.gov (United States)

    SRD 3 NIST Crystal Data (PC database for purchase)   NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.

  4. An immunoglobulin E assay using radiolabelled Fab' and ammonium sulfate

    International Nuclear Information System (INIS)

    Wilcsek, R.J.; Hamburger, R.N.

    1978-01-01

    An immunochemical assay is described in which a radiolabelled antibody fragment, Fab', is bound specifically to immunoglobulin E (IgE), and precipitated with ammonium sulfate. The radioactivity in the precipitate is a measure of the amount of IgE in the sample. Results for six serum samples are compared using the double antibody and ammonium sulfate methods as well as the papωr radioimmunosorbent test (PRIST)

  5. Crystal Structure and Dynamics of K$_{2-x}$(NH$_{4}$)$_{x}$SeO$_{4}$ Mixed Crystals Studied by X-ray and Neutron Scattering

    CERN Document Server

    Smirnov, L S; Loose, A; Martínez-Sarrion, M L; Melnyk, G; Mestres, L; Natkaniec, I; Nowak, D; Pawlukojc, A; Wozniak, K; Zink, N

    2006-01-01

    The K$_{2-x}$(NH$_{4}$)$_{x}$SeO$_{4}$ mixed crystals have been studied by powder X-ray and neutron diffraction and inelastic incoherent neutron scattering in a wide temperature range from 300 to 16 K. No phase transition is observed in (NH$_{4}$)$_{2}$SeO$_{4}$ in the range from room temperature to 20 K. The reorientation potential barriers of ammonium ions in the K$_{2-x}$(NH$_{4}$)$_{x}$SeO$_{4}$ mixed crystals increase with the increasing concentration of ammonium ions.

  6. Crystal structure and dynamics of K2-x(NH4)xSeO4 mixed crystals studied by x-ray and neutron scattering

    International Nuclear Information System (INIS)

    Smirnov, L.S.; Natkaniec, I.; Loose, A.

    2006-01-01

    The K 2-x (NH 4 ) x SeO 4 mixed crystals have been studied by powder X-ray and neutron diffraction and inelastic incoherent neutron scattering in a wide temperature range from 300 to 16 K. No phase transition is observed in (NH 4 ) 2 SeO 4 in the range from room temperature to 20 K. The reorientation potential barriers of ammonium ions in the K 2-x (NH 4 ) x SeO 4 mixed crystals increase with the increasing concentration of ammonium ions

  7. The thermal decomposition behavior of ammonium perchlorate and of an ammonium-perchlorate-based composite propellant

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, R.; Minier, L.

    1998-03-24

    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl, and is shown to occur in the solid phase within the AP particles. 200{micro} diameter AP particles undergo 25% decomposition in the solid phase, whereas 20{micro} diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH{sub 3} + HClO{sub 4} followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  8. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea

    Science.gov (United States)

    Kuypers, Marcel M. M.; Sliekers, A. Olav; Lavik, Gaute; Schmid, Markus; Jørgensen, Bo Barker; Kuenen, J. Gijs; Sinninghe Damsté, Jaap S.; Strous, Marc; Jetten, Mike S. M.

    2003-04-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean. Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N2 in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors. Nutrient profiles, fluorescently labelled RNA probes, 15N tracer experiments and the distribution of specific `ladderane' membrane lipids indicate that ammonium diffusing upwards from the anoxic deep water is consumed by anammox bacteria below the oxic zone. This is the first time that anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment. The widespread occurrence of ammonium consumption in suboxic marine settings indicates that anammox might be important in the oceanic nitrogen cycle.

  9. Mutagenicity of quaternary ammonium salts containing carbohydrate moieties

    Energy Technology Data Exchange (ETDEWEB)

    Dmochowska, Barbara [Department of Carbohydrate Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Piosik, Jacek; Woziwodzka, Anna [Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk (Poland); Sikora, Karol; Wisniewski, Andrzej [Department of Carbohydrate Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Wegrzyn, Grzegorz, E-mail: wegrzyn@biotech.univ.gda.pl [Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk (Poland)

    2011-10-15

    Highlights: {yields} A series of quaternary ammonium salts containing carbohydrate moieties, with configuration D-galacto, D-gluco and D-manno, was synthesized and characterized. {yields} The quaternary ammonium salts containing carbohydrate moieties revealed potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. {yields} The N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. {yields} We suggest that quaternary ammonium salts may be more hazardous than previously supposed. - Abstract: Quaternary ammonium salts are widely used in industrial, agricultural, healthcare and domestic applications. They are believed to be safe compounds, with little or no health hazard to humans. However, in this report, we demonstrate that a series of newly synthesized quaternary ammonium salts containing carbohydrate moieties reveal potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. D-Gluco- and D-galacto-derivatives were found to have a higher mutagenic potential than D-manno-derivatives. Among the former groups of compounds, the N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. These results suggest that the safety of quaternary ammonium salts may be lower than previously supposed, indicating a need for testing such compounds for their mutagenicity.

  10. Synthesis and anticoagulant activity of the quaternary ammonium chitosan sulfates.

    Science.gov (United States)

    Fan, Lihong; Wu, Penghui; Zhang, Jinrong; Gao, Song; Wang, Libo; Li, Mingjia; Sha, Mingming; Xie, Weiguo; Nie, Min

    2012-01-01

    Quaternary ammonium chitosan sulfates with diverse degrees of substitution (DS) ascribed to sulfate groups between 0.52 and 1.55 were synthesized by reacting quaternary ammonium chitosan with an uncommon sulfating agent (N(SO(3)Na)(3)) that was prepared from sodium bisulfite (NaHSO(3)) through reaction with sodium nitrite (NaNO(2)) in the aqueous system homogeneous. The structures of the derivatives were characterized by FTIR, (1)H NMR and (13)C NMR. The factors affecting DS of quaternary ammonium chitosan sulfates which included the molar ratio of NaNO(2) to quaternary ammonium chitosan, sulfated temperature, sulfated time and pH of sulfated reaction solution were investigated in detail. Its anticoagulation activity in vitro was determined by an activated partial thromboplastin time (APTT) assay, a thrombin time (TT) assay and a prothrombin time (PT) assay. Results of anticoagulation assays showed quaternary ammonium chitosan sulfates significantly prolonged APTT and TT, but not PT, and demonstrated that the introduction of sulfate groups into the quaternary ammonium chitosan structure improved its anticoagulant activity obviously. The study showed its anticoagulant properties strongly depended on its DS, concentration and molecular weight. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  11. Mutagenicity of quaternary ammonium salts containing carbohydrate moieties

    International Nuclear Information System (INIS)

    Dmochowska, Barbara; Piosik, Jacek; Woziwodzka, Anna; Sikora, Karol; Wisniewski, Andrzej; Wegrzyn, Grzegorz

    2011-01-01

    Highlights: → A series of quaternary ammonium salts containing carbohydrate moieties, with configuration D-galacto, D-gluco and D-manno, was synthesized and characterized. → The quaternary ammonium salts containing carbohydrate moieties revealed potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. → The N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. → We suggest that quaternary ammonium salts may be more hazardous than previously supposed. - Abstract: Quaternary ammonium salts are widely used in industrial, agricultural, healthcare and domestic applications. They are believed to be safe compounds, with little or no health hazard to humans. However, in this report, we demonstrate that a series of newly synthesized quaternary ammonium salts containing carbohydrate moieties reveal potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. D-Gluco- and D-galacto-derivatives were found to have a higher mutagenic potential than D-manno-derivatives. Among the former groups of compounds, the N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. These results suggest that the safety of quaternary ammonium salts may be lower than previously supposed, indicating a need for testing such compounds for their mutagenicity.

  12. Ammonium as sole N source improves grain quality in wheat.

    Science.gov (United States)

    Fuertes-Mendizábal, Teresa; González-Torralba, Jon; Arregui, Luis M; González-Murua, Carmen; González-Moro, M Begoña; Estavillo, José M

    2013-07-01

    The skilful handling of N fertilizer, including N source type and its timing, is necessary to obtain maximum profitability in wheat crops in terms of production and quality. Studies on grain yield and quality with ammonium as sole N source have not yet been conducted. The aim of this study was to evaluate the effect of N source management (nitrate vs. ammonium), and splitting it into two or three amendments during the wheat life cycle, on grain yield and quality under irrigated conditions. This experiment demonstrates that Cezanne wheat plants growing with ammonium as exclusive N source are able to achieve the same yield as plants growing with nitrate and that individual wheat plants grown in irrigated pots can efficiently use late N applied in GS37. Ammonium nutrition increased both types of grain reserve proteins (gliadins and glutenins) and also increased the ratio gli/glu with respect to nitrate nutrition. The splitting of the N rate enhanced the ammonium effect on grain protein composition. The application of ammonium N source, especially when split into three amendments, has an analogous effect on grain protein content and composition to applications at a higher N rate, leading to higher N use efficiency. © 2012 Society of Chemical Industry.

  13. Synthesis and characterization of niobium and iron phosphate glasses for U3O8 immobilization

    International Nuclear Information System (INIS)

    Ghussn, Luciana

    2005-01-01

    Niobium and iron phosphate glasses were produced by melting inorganic compound mixtures in electric furnaces and microwave ovens. The chemical durability was compared among niobium phosphate glasses produced by both processes, and equivalent results were obtained. Leaching tests were also performed to compare the chemical durability among monolithic glass blocks and sintered glasses. The glass transition, crystallization and melting temperatures as well the Hruby parameter (K H ) and the activation energy for crystallization were determined from differential thermal analysis of niobium phosphate glasses produced in electric furnaces. Niobium phosphate glasses are thermally more stable (K H =0.82 +- 0.04) than iron phosphate glasses (K H = 0.42 +- 0.03). Sintered glasses were produced from particles with different particle size distributions and sintering temperatures in the range of 720 - 800 deg C for niobium phosphate and 530 - 680 deg C for iron phosphate glasses. The sintering process was suitable because a glass with composition 37P 2 O 5 -23K 2 O-40Nb 2 O 5 showing leaching rate of 10 -6 g.cm -2 .d -1 , 99 % of the monolithic density and none crystalline phases was obtained. This glass only crystallizes itself after re heating at temperatures above 800 deg C , showing two crystalline phases identified as KNb 3 O 8 e K 3 NbP 2 O 9 . The activation energies for crystallization are 496 +- 7 kJ/mol and 513 +- 14 kJ/mol. Niobium phosphate sintered glasses are better densified than sintered iron phosphate glasses. The leaching rate of sintered glasses that show open porosity is higher than monolithic glass blocks. This effect is related to an increase of the surface area associated to open porous and, a correction of the value of the surface area used to calculate the leaching rate is required. A model was proposed based on the surface area of spherical porous to take in account that effect. Even after correcting the surface area, the leaching rates of sintered

  14. Preliminary time-of-flight neutron diffraction studies of Escherichia coli ABC transport receptor phosphate-binding protein at the Protein Crystallography Station.

    Science.gov (United States)

    Sippel, K H; Bacik, J; Quiocho, F A; Fisher, S Z

    2014-06-01

    Inorganic phosphate is an essential molecule for all known life. Organisms have developed many mechanisms to ensure an adequate supply, even in low-phosphate conditions. In prokaryotes phosphate transport is instigated by the phosphate-binding protein (PBP), the initial receptor for the ATP-binding cassette (ABC) phosphate transporter. In the crystal structure of the PBP-phosphate complex, the phosphate is completely desolvated and sequestered in a deep cleft and is bound by 13 hydrogen bonds: 12 to protein NH and OH donor groups and one to a carboxylate acceptor group. The carboxylate plays a key recognition role by accepting a phosphate hydrogen. PBP phosphate affinity is relatively consistent across a broad pH range, indicating the capacity to bind monobasic (H2PO4-) and dibasic (HPO4(2-)) phosphate; however, the mechanism by which it might accommodate the second hydrogen of monobasic phosphate is unclear. To answer this question, neutron diffraction studies were initiated. Large single crystals with a volume of 8 mm3 were grown and subjected to hydrogen/deuterium exchange. A 2.5 Å resolution data set was collected on the Protein Crystallography Station at the Los Alamos Neutron Science Center. Initial refinement of the neutron data shows significant nuclear density, and refinement is ongoing. This is the first report of a neutron study from this superfamily.

  15. Reuse of ammonium fluoride generated in the uranium hexafluoride conversion; Reutilizacao do fluoreto de amonio gerado na reconversao do hexafluoreto de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, J.B.; Carvalho, E.F. Urano de; Durazzo, M., E-mail: jbsneto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Riella, H.G [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2010-07-01

    The Nuclear Fuel Centre of IPEN / CNEN - SP develops and manufactures dispersion fuel with high uranium concentration to meet the demand of the IEA-R1 reactor and future research reactors planned to be constructed in Brazil. The fuel uses uranium silicide (U{sub 3}Si{sub 2}) dispersed in aluminum. For producing the fuel, the processes for uranium hexafluoride (UF{sub 6}) conversion consist in obtaining U{sub 3}Si{sub 2} and / or U{sub 3}O{sub 8} through the preparation of intermediate compounds, among them ammonium uranyl carbonate - AUC, ammonium diuranate - DUA and uranium tetrafluoride - UF{sub 4}. This work describes a procedure for preparing uranium tetrafluoride by a dry route using as raw material the filtrate generated when producing routinely ammonium uranyl carbonate. The filtrate consists primarily of a solution containing high concentrations of ammonium (NH{sub 4}{sup +}), fluoride (F{sup -}), carbonate (CO{sub 3}{sup --}) and low concentrations of uranium. The procedure is basically the recovery of NH{sub 4}F and uranium, as UF{sub 4}, through the crystallization of ammonium bifluoride (NH{sub 4}HF{sub 2}) and, in a later step, the addition of UO{sub 2}, occurring fluoridation and decomposition. The UF{sub 4} obtained is further diluted in the UF{sub 4} produced routinely at IPEN / CNEN-SP by a wet route process. (author)

  16. Growth kinetics for the precipitation of zirconium hydroxide from aqueous zirconium and tin bearing solutions by the addition of ammonium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Carleson, T.E. [Idaho Univ., Moscow, ID (United States). Dept. of Chemical Engineering; Chipman, N.A. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States)

    1989-09-11

    The precipitation of zirconium hydroxide from an aqueous solution of ammonium hexafluorozirconate occurs rapidly upon addition of ammonium hydroxide. Experimental data indicate growth and nucleation rates between 0.06 and 0.28 microns/minute and around 10 {times} 107 number/L-min, respectively. Experiments with a mixed suspension mixed product removal crystallizer for concentrations of reactants of about 0.05 M ammonium hexafluorozirconate precipitating with 0.002 M ammonium hydroxide showed apparent nonlinear growth rates in some cases but not others. Batch studies indicated that growth rate dispersion is probably not present. When the AFL nonlinear model was used to fit the data, the power coefficient obtained was greater than 1, in disagreement with theory. In addition, for some of the data ``S`` shaped curves of the logarithm of the cumulative number greater than versus size were obtained. These curves can not be fit by the AFL model. A program developed at the University of Arizona was used to simulate the crystallization runs. The program results indicated that some of the nonlinear behavior may be attributed to transient conditions. Experimental data also illustrated this behavior. The effect of trace amounts of tin fluoride (0.008 M) on the nucleation and growth kinetics was also evaluated. For some residence times, the presence of tin resulted in reduced median particle diameters, higher growth rates, and lower number counts.

  17. Neutron structural, X-ray powder and vibrational studies of the mixed solid solution rubidium ammonium sulfate tellurate

    International Nuclear Information System (INIS)

    Ktari, L.; Dammak, M.; Kolsi, A.W.; Cousson, A.

    2009-01-01

    At room temperature the rubidium ammonium sulfate tellurate salt Rb 1.12 (NH 4 ) 0.88 SO 4 .Te(OH) 6 (RbNST) has been prepared using the reaction of the rubidium sulfate, ammonium sulfate and telluric acid. Its structure has been determined from single crystal using neutron diffraction data. The RbNST crystal is monoclinic structure with P2 1 /a space group. The parameters are: a = 11.440(9) A, b = 6.640(7) A, c = 13.700(1) A, β = 106.90(7) deg. and Z = 4. The main result is the presence of two different and independent anionic groups (TeO 6 6- and SO 4 2- ) in the same crystal. The structure is like built by planes of pure SO 4 tetrahedra and pure TeO 6 octahedra altering with Rb + and NH 4 + cations statistically disordered on one atomic position. Differential scanning calorimetry traces show one anomaly at 418 K, two epaulments at 483 and 510 K corresponding to three phase transitions and one strong peak at 517 K dealing with the decomposition of the salt. Raman scattering and X-ray powder diffraction measurements on RbNST material, taken between 300 and 620 K are reported in this paper. The spectrums confirm and characterize clearly these phase transitions detected by DSC.

  18. 40 CFR 418.60 - Applicability; description of the ammonium sulfate production subcategory.

    Science.gov (United States)

    2010-07-01

    ... ammonium sulfate production subcategory. 418.60 Section 418.60 Protection of Environment ENVIRONMENTAL... CATEGORY Ammonium Sulfate Production Subcategory § 418.60 Applicability; description of the ammonium... production of ammonium sulfate by the synthetic process and by coke oven by-product recovery. The provisions...

  19. Calcium phosphates for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Pena, P.; Aza, A.H. de; Rodriguez, M.A.

    2017-07-01

    The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies. (Author)

  20. Calcium phosphates for biomedical applications

    Directory of Open Access Journals (Sweden)

    Maria Canillas

    2017-05-01

    Full Text Available The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies.

  1. Inducing Mineral Precipitation in Groundwater by Addition of Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Karen E. Wright; Yoshiko Fujita; Thomas Hartmann; Mark Conrad

    2011-10-01

    Induced precipitation of phosphate minerals to scavenge trace metals and radionuclides from groundwater is a potential remediation approach for contaminated aquifers. Phosphate minerals can sequester trace elements by primary mineral formation, solid solution formation and/or adsorption, and they are poorly soluble under many environmental conditions, making them attractive for long-term sustainable remediation. The success of such engineered schemes will depend on the particular mineral phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for induced phosphate mineral precipitation rely on the stimulation of native groundwater populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 ml-1) within the precipitation medium. We also tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM). The experiments showed that the general progression of mineral precipitation was similar under all of the conditions, with initial formation of amorphous calcium carbonate, and transformation to poorly crystalline hydroxyapatite (HAP) by the end of the week-long experiments. The presence of the bacterial cells appeared to delay precipitation, although by the end of 7 days the overall extent of precipitation was similar for all of the treatments. The stoichiometry of the final precipitates as well as results of Rietveld refinement of x-ray diffraction data indicated that the treatments including organic acids and bacterial cells resulted in increased distortion of the HAP crystal lattice, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the phosphate minerals was decreased in the treatments

  2. Ambient Volatility of Triethyl Phosphate

    Science.gov (United States)

    2017-08-01

    AMBIENT VOLATILITY OF TRIETHYL PHOSPHATE ECBC-TR-1476 James H. Buchanan John J. Mahle RESEARCH AND...2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) Oct 2016 – Jan 2017 4. TITLE: Ambient Volatility of Triethyl Phosphate 5a. CONTRACT...humidity on TEPO volatility is nearly as predicted by Raoult’s law, that is, vapor pressure suppression is proportional to ambient relative humidity. An

  3. Study on the relation between uranium content and total phosphorus in some sudanese phosphate ore samples

    International Nuclear Information System (INIS)

    Eltayeb, M. A. H.; Mohammed, A. A.

    2003-01-01

    In the present work uranium content and total phosphorus were determined in 30 phosphate ore samples collected from Kurun and Uro areas in Nuba Mountains in Sudan. Spectrophotometry technique was used for this purpose. Uranium analysis is based on the use of nitrogen (V) acid for leaching the rock, and treatment with ammonium carbonate solution, whereby uranium (Vi) is kept in solution as its carbonate complex. The ion exchange technique was used for the recovery of uranium. Uranium was eluted from the resin with 1 M hydrochloric acid. In the elute, uranium was determined spectrophotometrically by measurement of absorbance of the yellow uranium (Vi)-8-hydroxyquinolate complex at λ 400 nm. The total phosphorus was measured as (P 2 O 5 %) by treatment of the total liquor with ammonium molybdate solution. The absorbance of the blue complex was measured at λ 880 nm. The results show that a limited relation is existed between uranium content and total phosphorus in phosphate samples from kurun area, which contain 58.8 ppm uranium in average, where there are no relation is existed in phosphate samples from uro area, which contain 200 ppm uranium in average. (Author)

  4. Study on the relation between uranium content and total phosphorus in some sudanese phosphate ore samples

    International Nuclear Information System (INIS)

    Mohammed, A.A.; Eltayeb, M.A.H.

    2003-01-01

    In the present work uranium content and total phosphorous were determined in 30 phosphate ore samples collected from Kurun and Uro areas in Nuba mountains in sudan. Spectrophotometry technique was used for this purpose. Uranium analysis is based on the use of nitrogen (V) acid for leaching the rock, and treatment with ammonium carbonate solution, whereby uranium (VI) is kept in solution as its carbonate complex. The ion-exchange technique was used for the recovery of uranium. Uranium was eluted from the resin with 1 M hydrochloric acid. In the elute, uranium was determined spectrophotometrically by measurement of the absorbance of the yellow uranium (VI) - 8- hydroxyquinolate complex at λ 400 nm. The total phosphorus was measured as (P 2 O 5 %) by treatment of the leach liquor with ammonium molybdate solution. The absorbance of the blue complex was measured at λ 880 nm. The results show that a limited relation is existed between uranium content and total phosphorus in phosphate samples from Kurun area, which contain 58.8 ppm uranium in average, where there are no relation is existed in phosphate samples samples from Uro area, which contain 200 ppm uranium in average

  5. Prilling and Coating of Ammonium Dinitramide (ADN Solid Green Propellant in Toluene Mixture Using Ultrasound Sonication

    Directory of Open Access Journals (Sweden)

    Asad Rahman

    2018-03-01

    Full Text Available Ammonium Dinitramide (ADN in its generic form has a long needle shaped structure, which hinders higher solid loading. Therefore, it is of utmost importance to optimize its crystal morphology into octagonal shapes. Moreover, the low critical humidity level of ADN renders it unusable in a humid climate. Hence, encapsulation with a hydrophobic polymer is necessary. In the present work, ADN was synthesized by nitration of potassium sulfamate with mixed acid nitration. The product was then mixed with toluene, graphene, citryl ammonium butyl, Cab-o-sil, and coating polymer (Polystyrene or HTPB and treated with ultrasound to obtain semi-spherical ADN-coated particles. The method offers a reduction in operating temperature and elimination of ADN melting in the shape-altering process. In addition, the ADN product has a similar particle size and thermal stability compared to those in a conventional ADN melt-prilling method. The ADN product investigated under SEM confirms the particle morphological change from long needles into semi-spherical shapes. The particle size obtained, in the micrometer range, is ideal for higher theoretical maximum density. Furthermore, the ultrasound-treated ADN particles show significant reduction in moisture absorption, from 68% to 16% at 65% relative humidity. The DSC result shows no degradation of thermal stability of the coated particles.

  6. short communication agronomic effectiveness of novel phosphate

    African Journals Online (AJOL)

    A review of literature shows that work on non-conventional phosphate fertilisers has been done exclusively on sedimentary phosphate rocks. The potential of using novel phosphate fertiliser materials derived from unreactive igneous Dorowa (Zimbabwe) phosphate rock was investigated in a greenhouse experiment.

  7. Phosphate solubilization and multiple plant growth promoting ...

    African Journals Online (AJOL)

    Phosphate solubilizing efficiencies of the strains were analyzed using different insoluble phosphorus sources and the results show that most isolates released a substantial amount of soluble phosphate from tricalcium phosphate, rock phosphate and bone meal. Screening for multiple plant growth promoting attributes ...

  8. 21 CFR 573.320 - Diammonium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diammonium phosphate. 573.320 Section 573.320 Food... Additive Listing § 573.320 Diammonium phosphate. The food additive diammonium phosphate may be safely used... crude protein from diammonium phosphate, adequate directions for use and a prominent statement, “Warning...

  9. Crystal structures of the apo and ATP bound Mycobacterium tuberculosis nitrogen regulatory PII protein

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Nishant D.; Reddy, Manchi C.M.; Palaninathan, Satheesh K.; Owen, Joshua L.; Sacchettini, James C. (TAM)

    2010-10-11

    PII constitutes a family of signal transduction proteins that act as nitrogen sensors in microorganisms and plants. Mycobacterium tuberculosis (Mtb) has a single homologue of PII whose precise role has as yet not been explored. We have solved the crystal structures of the Mtb PII protein in its apo and ATP bound forms to 1.4 and 2.4 {angstrom} resolutions, respectively. The protein forms a trimeric assembly in the crystal lattice and folds similarly to the other PII family proteins. The Mtb PII:ATP binary complex structure reveals three ATP molecules per trimer, each bound between the base of the T-loop of one subunit and the C-loop of the neighboring subunit. In contrast to the apo structure, at least one subunit of the binary complex structure contains a completely ordered T-loop indicating that ATP binding plays a role in orienting this loop region towards target proteins like the ammonium transporter, AmtB. Arg38 of the T-loop makes direct contact with the {gamma}-phosphate of the ATP molecule replacing the Mg{sup 2+} position seen in the Methanococcus jannaschii GlnK1 structure. The C-loop of a neighboring subunit encloses the other side of the ATP molecule, placing the GlnK specific C-terminal 3{sub 10} helix in the vicinity. Homology modeling studies with the E. coli GlnK:AmtB complex reveal that Mtb PII could form a complex similar to the complex in E. coli. The structural conservation and operon organization suggests that the Mtb PII gene encodes for a GlnK protein and might play a key role in the nitrogen regulatory pathway.

  10. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  11. Use of Ferrihydrite-Coated Pozzolana and Biogenic Green Rust to Purify Waste Water Containing Phosphate and Nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, Christian; Naille, Sébastien; Ona-Nguema, Georges; Morin, Guillaume; Mallet, Martine; Guerbois, Delphine; Barthélémy, Kévin; Etique, Marjorie; Zegeye, Asfaw; Zhang, Yuhai; Boumaïza, Hella; Al-Jaberi, Muayad; Renard, Aurélien; Noël, Vincent; Binda, Paul; Hanna, Khalil; Despas, Christelle; Abdelmoula, Mustapha; Kukkadapu, Ravi; Sarrias, Joseph; Albignac, Magali; Rocklin, Pascal; Nauleau, Fabrice; Hyvrard, Nathalie; Génin, Jean-Marie

    2016-06-27

    The activated sludge treatments combined to the addition of ferric chloride is commonly used to eliminate nitrate and phosphate from waste water in urban area. These processes that need costly infrastructures are not suitable for rural areas and passive treatments (lagoons, reed bed filters…) are more frequently performed. Reed bed filters are efficient for removing organic matter but are not suitable for treating phosphate and nitrate as well. Passive water treatments using various materials (hydroxyapatite, slag…) were already performed, but those allowing the elimination of both nitrate and phosphate are not actually available. The goal of this work is to identify the most suitable iron based materials for such treatments and to determine their optimal use conditions, in particular in hydrodynamic mode. The reactivity of the iron based minerals was measured either by using free particles in suspension or by depositing these particles on a solid substrate. Pouzzolana that is characterized by a porous sponge-like structure suits for settling a high amount of iron oxides. The experimental conditions enabling to avoid any ammonium formation when green rust encounters nitrate were determined within the framework of a full factorial design. The process is divided into two steps that will be performed inside two separated reactors. Indeed, the presence of phosphate inhibits the reduction of nitrate by green rust and the dephosphatation process must precede the denitrification process. In order to remove phosphate, ferrihydrite coated pouzzolana is the best materials. The kinetics of reaction of green rust with nitrate is relatively slow and often leads to the formation of ammonium. The recommendation of the identified process is to favor the accumulation of nitrite in a first step, these species reacting much more quickly with green rust and do not transform into ammonium.

  12. Synthesis and physicochemical properties of uranyl molybdate complexes of ammonium, potassium, rubidium, and cesium ions

    International Nuclear Information System (INIS)

    Fedoseev, A.M.; Budantseva, N.A.; Shirokova, I.B.; Yurik, T.K.; Andreev, G.B.; Krupa, Zh-K.

    2001-01-01

    Effect of experimental conditions on composition and intimacy of yield of crystal phases in the UO 2 MoO 4 -M 2 MoO 4 -H 2 O system, where M is cation of alkali metal or ammonium, is studied. The compounds of morphotropic raw with overall formula M 2 UO 2 (MoO 4 ) 2 ·H 2 O, where M=K, Ru, Cs, NH 4 , are synthesized by hydrothermal method from aqueous solutions at 160-180 Deg C. The dependence of composition and certain physico-chemical properties of the binary uranyl molybdates is investigated from the nature of out-spherical cation as well as IR-spectra and thermal behavior of synthesized compounds are inspected [ru

  13. Calcium phosphate formation in gelatin matrix using free ion precursors of Ca2+ and phosphate ions.

    Science.gov (United States)

    Chang, Myung Chul; DeLong, Ralph

    2009-02-01

    Hydroxyapatite (HAp)/gelatin (GEL) nanocomposite has been developed as a bone substitute. The nanocomposite formation in the GEL matrix is greatly affected by the reaction between Ca(2+) and phosphate ions. The mineralization of GEL macromolecules was investigated through a co-precipitation of calcium phosphates (Ca-P) by using free ions of Ca(2+) and phosphate ions, Pi. The purpose of this study was to prepare a dense HAp/GEL nanocomposite through a free ion production process. Free ionic calcium, Ca(2+), was produced through electrodialysis process using a cation membrane (CMV). Triprotic acid ions were diffused through an anion membrane (AMV) from an aqueous solution of H(3)PO(4). The HAp/GEL nanocomposite was prepared by the co-precipitation process. As a reference material for comparison, Ca(OH)(2) and H(3)PO(4) were used for the preparation of a HAp/GEL nanocomposite. The dense compact body of dried Ca-P/GEL nanocomposite was obtained through the fine chemical reaction of Ca(2+) and Pi. The free calcium ion Ca(2+), diffused from the CMV of the cation reactor greatly affected the formation of Ca-P phase. Phosphate ion species diffused through the AMV in the anion reactor definitely influenced the reaction with Ca(2+). For the formation of the Ca-P phase in the GEL matrix, the organic-inorganic interaction was analyzed using FT-IR. The crystal growth of HAp in the GEL matrix increased with the increase of GEL from XRD, FT-IR and TEM. The mineralization reaction in GEL macromolecules was critically influenced by the free ions of Ca(2+) and inorganic phosphate ions, Pi. The interaction between Ca(2+) and Pi in the GEL matrix was very fine compared to the HAp/GEL nanocomposite prepared from Ca(OH)(2) and H(3)PO(4) with the GEL. The dense compact body of HAp/GEL nanocomposite was obtained for an artificial bone application.

  14. Deuteron NMR study of the role of ammonium ions in the antiferroelectric transition in ND4D2AsO4

    International Nuclear Information System (INIS)

    Blinc, R.; Slak, J.; Luzar, M.

    1977-01-01

    The antiferroelectric transition mechanism, the temperature dependence of the quadrupole coupling tensor of the ND 4 deuterons in a partially deuterated NH 4 H 2 AsO 4 (ADA) single crystal is determined. The antiferroelectric transition in ADA is connected by an ordering of the 0 - H...0 hydrogen as well as by a significant distortion of the ammonium ions, the direction of which depends on the orientation of the sublattice polarization

  15. Ammonium inhibition of nitrogenase activity in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Fu, H.; Burris, R.H. (Univ. of Wisconsin, Madison (USA))

    1989-06-01

    The effect of oxygen, ammonium ion, and amino acids on nitrogenase activity in the root-associated N{sub 2}-fixing bacterium Herbaspirillum seropedicae was investigated in comparison with Azospirillum spp. and Rhodospirillum rubrum. H. seropedicae is microaerophilic, and its optimal dissolved oxygen level is from 0.04 to 0.2 kPa for dinitrogen fixation but higher when it is supplied with fixed nitrogen. No nitrogenase activity was detected when the dissolved O{sub 2} level corresponded to 4.0 kPa. Ammonium, a product of the nitrogenase reaction, reversible inhibited nitrogenase activity when added to derepressed cell cultures. However, the inhibition of nitrogenase activity was only partial even with concentrations of ammonium chloride as high as 20 mM. Amides such as glutamine and asparagine partially inhibited nitrogenase activity, but glutamate did not. Nitrogenase in crude extracts prepared from ammonium-inhibited cells showed activity as high as in extracts from N{sub 2}-fixing cells. The pattern of the dinitrogenase and the dinitrogenase reductase revealed by the immunoblotting technique did not change upon ammonium chloride treatment of cells in vivo. No homologous sequences were detected with the draT-draG probe from Azospirillum lipoferum. There is no clear evidence that ADP-ribosylation of the dinitrogenase reductase is involved in the ammonium inhibition of H. seropedicae. The uncoupler carbonyl cyanide m-chlorophenylhydrazone decreased the intracellular ATP concentration and inhibited the nitrogenase activity of whole cells. The ATP pool was significantly disturbed when cultures were treated with ammonium in vivo.

  16. Ammonium Transformation in 14 Lakes along a Trophic Gradient

    Directory of Open Access Journals (Sweden)

    Barbara Leoni

    2018-03-01

    Full Text Available Ammonia is a widespread pollutant in aquatic ecosystems originating directly and indirectly from human activities, which can strongly affect the structure and functioning of the aquatic foodweb. The biological oxidation of NH4+ to nitrite, and then nitrate is a key part of the complex nitrogen cycle and a fundamental process in aquatic environments, having a profound influence on ecosystem stability and functionality. Environmental studies have shown that our current knowledge of physical and chemical factors that control this process and the abundance and function of involved microorganisms are not entirely understood. In this paper, the efficiency and the transformation velocity of ammonium into oxidised compounds in 14 south-alpine lakes in northern Italy, with a similar origin, but different trophic levels, are compared with lab-scale experimentations (20 °C, dark, oxygen saturation that are performed in artificial microcosms (4 L. The water samples were collected in different months to highlight the possible effect of seasonality on the development of the ammonium oxidation process. In four-liter microcosms, concentrations were increased by 1 mg/L NH4+ and the process of ammonium oxidation was constantly monitored. The time elapsed for the decrease of 25% and 95% of the initial ion ammonium concentration and the rate for that ammonium oxidation were evaluated. Principal Component Analysis and General Linear Model, performed on 56 observations and several chemical and physical parameters, highlighted the important roles of total phosphorus and nitrogen concentrations on the commencement of the oxidation process. Meanwhile, the natural concentration of ammonium influenced the rate of nitrification (µg NH4+/L day. Seasonality did not seem to significantly affect the ammonium transformation. The results highlight the different vulnerabilities of lakes with different trophic statuses.

  17. Non-phosphate degradation products of tributyl phosphate

    International Nuclear Information System (INIS)

    Tashiro, Y.; Kodama, R.; Sugai, H.

    1995-01-01

    Tributyl phosphate(TBP) was compulsively degraded with nitric acid and/or uranium nitrate at elevated temperature around 105 degrees C. Experimental results indicates major non-phosphate degradation products are butyl nitrate (C 4 H 9 NO 3 ), propionic acid (C 2 H 5 COOH), acetic acid (CH 3 COOH), butyric acid (C 3 H 7 COOH) and butyl alcohol (C 4 H 9 OH) in ascending order of quantity. Degrading rate in uranium free system is less than that in uranium coexisting system. Carboxylic acids were not produced in uranium free system, and only acetic acid was identified in case of without supplying nitric acid from aqueous phase. Moreover, from the experimental study on the reactivity of each non-phosphate product with nitric acid, carboxylic acids were identified as byproducts of butyl alcohol and butyl nitrate, and each carboxylic acid was stable in these degrading conditions. Finally, butyl alcohol is considered as one of intermediate products to butyl nitrate and carboxylic acids. From this study, the non-phosphate degradation products of TBP is identified and the degrading reaction pass is proposed. Extraction behavior of each non-phosphate product and reactivity of degraded TBP are also elucidated

  18. Crystal structure of Pyrococcus furiosus phosphoglucose isomerase: Implications for substrate binding and catalysis

    NARCIS (Netherlands)

    Berrisford, J.M.; Akerboom, A.P.; Turnbull, A.P.; Geus, de D.; Sedelnikova, S.E.; Staton, I.; McLeod, C.W.; Verhees, C.H.; Oost, van der J.; Rice, D.W.; Baker, P.J.

    2003-01-01

    Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization between D-fructose 6-phosphate and D-glucose 6-phosphate as part of the glycolytic pathway. PGI from the Archaea Pyrococcus furiosus (Pfu) was crystallized, and its structure was determined by x-ray diffraction to a 2-Angstrom

  19. Ammonium Oxidation Kinetics in the Presence of Nitrification Inhibitor Dicyandiamide (DCD in some Calcareous Soils of Chaharmahal va Bakhtiari Province

    Directory of Open Access Journals (Sweden)

    roza kazemi

    2017-02-01

    Full Text Available Introduction: Nitrification inhibitors (NIs are compounds that retard the biological oxidation of ammonium to nitrite by depressing the activity of Nitrosomonas bacteria in the soil. Many popular NIs such as nitrapyrine (NP, dicyandiamide (DCD and 3,4-dimethylpyrazole phosphate (DMPP are produced and used in agricultural soils. Dicyandiamide is a very popular NI in some of the world countries. It delays nitrification process in the soil through its bacterial static property. It is easy to blend with commercial fertilizers such as urea, due to its low volatile nature. Application of urea in combination with nitrification inhibitor DCD lengthens nitrogen presence in soil as ammonium form. It has several beneficial effects for agriculture and enhances environmental protection. Studying the ammonium oxidation kinetics in the presence of nitrification inhibitor DCD can provide the experts in agriculture with very useful information regarding the ammoniumdurability in different soils. This research has been done to study the effect of using NI dicyandiamide on the kinetics of ammoniumloss in some calcareous soils of Chaharmahal Va Bakhtiari province, Iran. Materials and Methods: This research was conducted as factorial using completely randomized design with two factors of nitrogen fertilizer type and soil type with three replications at laboratory conditions. In this experiment, nitrogen fertilizer type included 2 levels of: 1- urea 2- urea plus nitrification inhibitor DCD (3.2%. A no added nitrogen fertilizer was considered as control treatment.The soil factor also consisted of 5different soils with a wide variation in soil physical and chemical characteristics. Five selected soils were non-saline (EC1:2=0.14-0.76 dS m-1 and alkaline (pH1:2=7.5-8.2. Organic carbon and cation exchange capacity (CEC ranged from 0.48 to 2.34% and 10 to 30 cmolc kg-1, respectively. The dose of applied nitrogen in all experimental treatments was 50 mg kg-1 N as urea

  20. Mechanical characterization and single asperity scratch behaviour of dry zinc and manganese phosphate coatings

    NARCIS (Netherlands)

    Ernens, D.; de Rooij, M. B.; Pasaribu, H. R.; van Riet, E.J.; van Haaften, W.M.; Schipper, D. J.

    The goal of this study is to characterise the mechanical properties of zinc and manganese phosphate coatings before and after running in. The characterization is done with nano-indentation to determine the individual crystal hardness and single asperity scratch tests to investigate the deformation

  1. The precipitation of magnesium potassium phosphate hexahydrate for P and K recovery from synthetic urine.

    Science.gov (United States)

    Xu, Kangning; Li, Jiyun; Zheng, Min; Zhang, Chi; Xie, Tao; Wang, Chengwen

    2015-09-01

    Nutrients recovery from urine to close the nutrient loop is one of the most attractive benefits of source separation in wastewater management. The current study presents an investigation of the thermodynamic modeling of the recovery of P and K from synthetic urine via the precipitation of magnesium potassium phosphate hexahydrate (MPP). Experimental results show that maximum recovery efficiencies of P and K reached 99% and 33%, respectively, when the precipitation process was initiated only through adding dissolvable Mg compound source. pH level and molar ratio of Mg:P were key factors determining the nutrient recovery efficiencies. Precipitation equilibrium of MPP and magnesium sodium phosphate heptahydrate (MSP) was confirmed via precipitates analysis using a Scanning Electron Microscope/Energy Dispersive Spectrometer and an X-ray Diffractometer. Then, the standard solubility products of MPP and MSP in the synthetic urine were estimated to be 10(-12.2 ± 0.0.253) and 10(-11.6 ± 0.253), respectively. The thermodynamic model formulated on chemical software PHREEQC could well fit the experimental results via comparing the simulated and measured concentrations of K and P in equilibrium. Precipitation potentials of three struvite-type compounds were calculated through thermodynamic modeling. Magnesium ammonium phosphate hexahydrate (MAP) has a much higher tendency to precipitate than MPP and MSP in normal urine while MSP was the main inhibitor of MPP in ammonium-removed urine. To optimize the K recovery, ammonium should be removed prior as much as possible and an alternative alkaline compound should be explored for pH adjustment rather than NaOH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Lithium increases ammonium excretion leading to altered urinary acid-base buffer composition.

    Science.gov (United States)

    Trepiccione, Francesco; Altobelli, Claudia; Capasso, Giovambattista; Christensen, Birgitte Mønster; Frische, Sebastian

    2017-11-24

    Previous reports identify a voltage dependent distal renal tubular acidosis (dRTA) secondary to lithium (Li + ) salt administration. This was based on the inability of Li + -treated patients to increase the urine-blood (U-B) pCO 2 when challenged with NaHCO 3 and, the ability of sodium neutral phosphate or Na 2 SO 4 administration to restore U-B pCO 2 in experimental animal models. The underlying mechanisms for the Li + -induced dRTA are still unknown. To address this point, a 7 days time course of the urinary acid-base parameters was investigated in rats challenged with LiCl, LiCitrate, NaCl, or NaCitrate. LiCl induced the largest polyuria and a mild metabolic acidosis. Li + -treatment induced a biphasic response. In the first 2 days, proper urine volume and acidification occurred, while from the 3rd day of treatment, polyuria developed progressively. In this latter phase, the LiCl-treated group progressively excreted more NH 4 + and less pCO 2 , suggesting that NH 3 /NH 4 + became the main urinary buffer. This physiological parameter was corroborated by the upregulation of NBCn1 (a marker of increased ammonium recycling) in the inner stripe of outer medulla of LiCl treated rats. Finally, by investigating NH 4 + excretion in ENaC-cKO mice, a model resistant to Li + -induced polyuria, a primary role of the CD was confirmed. By definition, dRTA is characterized by deficient urinary ammonium excretion. Our data question the presence of a voltage-dependent Li + -induced dRTA in rats treated with LiCl for 7 days and the data suggest that the alkaline urine pH induced by NH 3 /NH 4 + as the main buffer has lead to the interpretation dRTA in previous studies.

  3. Amine templated zinc phosphates phases for membrane separations

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, T.M.; Chavez, A.V.; Thoma, S.G.; Provencio, P. [Sandia National Labs., Albuquerque, NM (United States); Harrison, W.T.A. [Univ. of Western Australia, Nedlands (Australia); Phillips, M.L.F. [Gemfire Corp., Palo Alto, CA (United States)

    1998-08-01

    This research is focused on developing inorganic molecular sieve membranes for light gas separations such as hydrogen recovery and natural gas purification, and organic molecular separations, such as chiral enantiomers. The authors focus on zinc phosphates because of the ease in crystallization of new phases and the wide range of pore sizes and shapes obtained. With hybrid systems of zinc phosphate crystalline phases templated by amine molecules, the authors are interested in better understanding the association of the template molecules to the inorganic phase, and how the organic transfers its size, shape, and (in some cases) chirality to the bulk. Furthermore, the new porous phases can also be synthesized as thin films on metal oxide substrates. These films allow one to make membranes from organic/inorganic hybrid systems, suitable for diffusion experiments. Characterization techniques for both the bulk phases and the thin films include powder X-ray diffraction, TGA, Scanning Electron Micrograph (SEM) and Electron Dispersive Spectrometry (EDS).

  4. Structure of a second crystal form of Bence-Jones protein Loc: Strikingly different domain associations in two crystal forms of a single protein

    International Nuclear Information System (INIS)

    Schiffer, M.; Ainsworth, C.; Xu, Z.B.; Carperos, W.; Olsen, K.; Solomon, A.; Stevens, F.J.; Chang, C.H.

    1989-01-01

    The authors have determined the structure of the immunoglobulin light-chain dimer Loc in a second crystal form that was grown from distilled water. The crystal structure was determined to 2.8-angstrom resolution; the R factor is 0.22. The two variable domains are related by local 2-fold axes and form an antigen binding pocket. The variable domain-variable domain interaction observed in this crystal form differs from the one exhibited by the protein when crystallized from ammonium sulfate in which the two variable domains formed a protrusion. The structure attained in the distilled water crystals is similar to, but not identical with, the one observed for the Mcg light-chain dimer in crystals grown from ammonium sulfate. Thus, two strikingly different structures were attained by this multisubunit protein in crystals grown under two different, commonly used, crystallization techniques. The quaternary interactions exhibited by the protein in the two crystal forms are sufficiently different to suggest fundamentally different interpretations of the structural basis for the function of this protein. This observation may have general implications regarding the use of single crystallographic determinations for detailed identification of structural and functional relationships. On the other hand, proteins whose structures can be altered by manipulation of crystallization conditions may provide useful systems for study of fundamental structural chemistry

  5. THERMODINAMIC PARAMETERS ON THE SORPTION OF PHOSPHATE IONS BY MONTMORILLONITE

    Directory of Open Access Journals (Sweden)

    Ikhsan Jaslin

    2016-04-01

    Full Text Available The sorption of phosphate by montmorillonite at 10, 30, and 50 oC were investigated aiming to mainly determine thermodynamic parameters for the formation of surface complexes in the adsorption of phosphate ions by montmorillonite. Data were collected by adsorption edge experiments investigating the effect of pH, adsorption isotherms enabling the effect of sorbate concentration, and acid-base titration calculating protons released or taken up by adsorption process. Data analysis was carried out using surface complexation model to fit the data collected in this study using the parameters obtained from previous study, as well as to calculate the values of ΔH and ΔS. Previous study reported that phosphate ions formed two outer-sphere surface complexes with active sites of montmorillonite through hydrogen bonding. In the first complex,  [(XH0– H2L─]─, the phosphate was held to permanent-charge X─ sites on the tetrahedral siloxane faces, and the second complex, [[(SO─(SOH]– – [H2L]─] 2─ was formed through the interaction between the phosphate and variable charge surface hydroxyl groups at the edges of montmorillonite crystals and on the octahedral alumina faces. The values of ΔH for the first and second reactions are 39.756 and 3.765x10-7 kJ mol‒1 respectively. Since both reactions have positive enthalpy values, it can be concluded that the reactions are endothermic. Large energy for the first reaction is needed by X─  sites (permanent negatively charge sites of montmorillonite to be partially desolvated, on which K+ or other surface cations are replaced by H+ ions in the surface protonated process, and are then ready to interact phosphate ions in the solution. Small values of ΔH for the second reactions indicates that hydrogen bonds formed by phosphate and SOH sites in the second reaction are easily broken out, and the phosphate can easily desorbed from the surface. The values of ΔS for the first and second reactions are

  6. Polyether esters of zirconium phosphate

    International Nuclear Information System (INIS)

    Ortiz-Avila, C.Y.

    1984-01-01

    The reaction of ethylene oxide with α-zirconium phosphate, α-Zr(HPO 4 ) 2 .2H 2 O was investigated. γ-Zirconium phosphate, Zr(HPO 4 ) 2 .2H 2 O, with a 12.2A interlayer spacing is known to react with ethylene oxide solutions to esterify the monohydrogen phosphate groups. It has been shown that α-zirconium phosphate with a smaller interlayer distance, 7.6 A, also behaves similarly. With highly crystalline samples of α-zirconium phosphate, reaction takes place only at the surface. However, if the interlayer distance is first increased (by means of amine, alcohol, or glycol intercalates, or by use of the more hydrated theta-phase, with a 10.4 A of interlayer spacing) so that ethylene oxide can diffuse into the interior, complete reaction occurs. Less crystalline samples were found to react directly with ethylene oxide, either gaseous or as a solution. Attempts to form long chains by direct reaction with ethylene oxide were unsuccessful

  7. Bone mineral response to ammonium sulphate offered as a lick supplement in beef calves

    Directory of Open Access Journals (Sweden)

    L.E. Motsei

    2006-06-01

    Full Text Available Sixteen Bonsmara calves (4 males, 12 females between 10 and 18 months of age were blocked according to age and sex and randomly assigned to 2 groups. They were offered licks containing bone meal and salt (50:50 ratio (control and bone meal and ammonium sulphate (NH4SO4 at 1.25, 2.5, 5, 10, 15, and 18 % (treatment to evaluate the effects of dietary anions on bone phosphate (P concentration. Bone P concentration was significantly (P<0.05 higher in the NH4SO4 group compared with the control group, indicating that NH4SO4 was able to increase the P content of bone at each of the 6 concentrations used in the lick relative to the control animals, thereby improving the P status of the animals. Ammonium sulphate at 15% and 18% in the lick also significantly (P <0.05 increased bone P compared with the lower concentrations of NH4SO4. Bone calcium (Ca fluctuated as a result of the acidogenic lick. There was absorption of Ca when P was being resorbed and resorption of Ca when P was being absorbed into and out of bone. Bone Ca:P ratio ranged from 3.2 to 6.4 among the control group and 1.6 to 4.3 among the treatment group. Animals receiving the acidogenic lick had a higher percentage ash compared to the control group for most of the experimental period. Bone magnesium (Mg fluctuated in response to the acidogenic lick, and it was difficult to show a relationship between bone Mg and Ca or P. The overall mean cortical bone thickness was significantly (P < 0.05 greater in treatment (1.60 mm compared with control (1.43 mm calves and this was also true at sampling periods 2, 4, 5 and 6. Bone thickness followed bone P and not bone Ca. Results from this research indicate that the addition of ammonium sulphate to a lick had a beneficial effect in improving the P status by increasing bone P and improving the mineral status of bone by increasing the thickness of cortical bone and percentage ash.

  8. Study on mechanism of isomerization between ammonium thiocyanate and thiourea

    Science.gov (United States)

    Zhang, Chao-Zhi; Niu, Meng-Xiao

    2016-12-01

    Application of ammonium thiocyanate that can be separated from wastewater in coking plant is limited. It may isomerize to thiourea which has widely applied in industry. However, the isomerization yield is low. Moreover, the isomerization temperature is more than 145 °C. In this paper, the isomerization was investigated. The mechanism of the isomerization was supposed based on quantum chemistry calculations. Ammonia was employed as a catalyst to lower isomerization temperature and improved the yield of thiourea in the isomerization reaction. Results of quantum chemical calculation and experiments support the supposed mechanism. The mechanism can be applied in production of thiourea from isomerization of ammonium thiocyanate. The paper suggests a useful way of resourcizing ammonium thiocyanate in wastewater.

  9. Investigation into kinetics of obtaining sodium and ammonium sulfate zirconates

    International Nuclear Information System (INIS)

    Gavrilova, R.V.; Kolenkova, M.A.; Sazhina, V.A.

    1981-01-01

    The kinetics of the process of sodium and ammonium sulfate zirconates precipitation is studied. The following optimum conditions of their separation are determined: ZrO 2 concentration in sulfate solution (with αsub(s)=2.0) is 200 g/dm 3 , the quantity of precipitator-sodium (ammonium) chloride-is 3.5 mole per 1 mole ZrO 2 , the temperature is 90 deg C, the duration of mixing is 1 hr. It is established that the process of precipitation of sulfatozirconates is within the kinetic region. The average values of activation energy constitute 40 and 50 kJ/mol for sodium and ammonium sulfate zirconates respectively [ru

  10. Temperature rising characteristics of ammonium diurante in microwave fields

    International Nuclear Information System (INIS)

    Liu Bingguo; Peng JinHui; Huang Daifu; Zhang Libo; Hu Jinming; Zhuang Zebiao; Kong Dongcheng; Guo Shenghui; Li Chunxiang

    2010-01-01

    The temperature rising characteristics of ammonium diurante, triuranium octaoxide (U 3 O 8 ), and their mixture were investigated under microwave irradiation, aiming at exploring newly theoretical foundation for advanced metallurgical methods. The temperature rising curves showed that ammonium diurante had weak capability to absorb microwave energy, while triuranium octaoxide had the very strong absorption capability. The temperature of mixture containing 20% of U 3 O 8 could rise from room temperature to 1171 K within 280 s. The ability to absorb microwave energy for the mixture with different ratios increased with the increase in the amount of U 3 O 8 . These are in good agreement with the results of Maxwell-Garnett effective medium theory. It is feasible to calcine ammonium diurante by adding of small amounts of U 3 O 8 in microwave fields.

  11. Rocket Solid Propellant Alternative Based on Ammonium Dinitramide

    Directory of Open Access Journals (Sweden)

    Grigore CICAN

    2017-03-01

    Full Text Available Due to the continuous run for a green environment the current article proposes a new type of solid propellant based on the fairly new synthesized oxidizer, ammonium dinitramide (ADN. Apart of having a higher specific impulse than the worldwide renowned oxidizer, ammonium perchlorate, ADN has the advantage, of leaving behind only nitrogen, oxygen and water after decomposing at high temperatures and therefore totally avoiding the formation of hydrogen chloride fumes. Based on the oxidizer to fuel ratios of the current formulations of the major rocket solid booster (e.g. Space Shuttle’s SRB, Ariane 5’s SRB which comprises mass variations of ammonium perchlorate oxidizer (70-75%, atomized aluminum powder (10-18% and polybutadiene binder (12-20% a new solid propellant was formulated. As previously stated, the new propellant formula and its variations use ADN as oxidizer and erythritol tetranitrate as fuel, keeping the same polybutadiene as binder.

  12. Formation of calcium phosphates by vapour diffusion in highly concentrated ionic micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Iafisco, M. [Alma Mater Studiorum Universita di Bologna, Dipartimento di Chimica ' ' G. Ciamician' ' , Via Selmi 2, 40126 Bologna (Italy); Universita del Piemonte Orientale, Dipartimento di Scienze Mediche, Via Solaroli 4, 28100 Novara (Italy); Delgado-Lopez, J.M.; Gomez-Morales, J.; Hernandez-Hernandez, M.A.; Rodriguez-Ruiz, I. [Laboratorio de Estudios Cristalograficos, IACT CSIC-UGR, Edificio Lopez Neyra, Avenida del Conocimiento, s/n 18100 Armilla (Spain); Roveri, N. [Alma Mater Studiorum Universita di Bologna, Dipartimento di Chimica ' ' G. Ciamician' ' , Via Selmi 2, 40126 Bologna (Italy)

    2011-08-15

    In this work we have used the sitting drop vapour diffusion technique, employing the ''crystallization mushroom '' to analyze the evolution of calcium phosphate crystallization in micro-droplets containing high initial concentrations of Ca{sup 2+} and HPO{sub 4}{sup 2-}. The decomposition of NH{sub 4}HCO{sub 3} solution produces vapours of NH{sub 3} and CO{sub 2} which diffuse through the droplets containing an aqueous solution of Ca(CH{sub 3}COO){sub 2} and (NH{sub 4}){sub 2}HPO{sub 4}. The result is the increase of pH by means of the diffusion of NH{sub 3} gas and the doping of the calcium phosphate with CO{sub 3}{sup 2-} ions by means of the diffusion of CO{sub 2} gas. The pH of the crystallization process is monitored and the precipitates at different times are characterized by XRD, FTIR, TGA, SEM and TEM techniques. The slow increase of pH and the high concentration of Ca{sup 2+} and HPO{sub 4}{sup 2-} in the droplets induce the crystallization of three calcium phosphate phases: dicalcium phosphate dihydrate (DCPD, brushite), octacalcium phosphate (OCP) and carbonate-hydroxyapatite (HA). The amount of HA nanocrystals with needle-like morphology and dimensions of about 100 nm, closely resembling the inorganic phase of bones, gradually increases, with the precipitation time up to 7 days, whereas the amount of DCPD, growing along the b axis, increases up to 3 days. Then, DCDP crystals start to hydrolyze yielding OCP nanoribbons and HA nanocrystals. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Spectrophotometric determination of trace uranium in phosphate ore samples from kurum and uro areas, Nuba mountains, Sudan

    International Nuclear Information System (INIS)

    Mohamed, A. A.; Ali, A. H.; Altayeb, M. A. H.

    2004-01-01

    A method was proposed for the spectrophotometric determination of uranium content in phosphate ores. the method is based on the use of nitrogen (v) acid for leaching the rock, and treatment with ammonium carbonate solution, whereby uranium (Vi) is kept in solution as its carbonate complex. The ion-exchange technique was used for the recovery of uranium. Uranium was determined spectrophotometrically by measurement of the absorbance of the yellow uranium (Vi)-8-hydroxyquinolate complex at λ 425 nm. The procedure was used for the determination of trace uranium content in 30 phosphate ore samples collected from Kurun and Uro areas in Nuba mountains in Sudan. X-ray fluorescence technique was employed for the assessment of the method used. The spectrophotometric method results show a high similarity with those obtained by XRF technique. This agreement indicates that the procedure proposed here has been successfully applied for the determination of uranium in phosphate ores. (Author)

  14. Uranium endowments in phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Andrea E., E-mail: andrea.ulrich@env.ethz.ch [Institute for Environmental Decisions (IED), Natural and Social Science Interface, ETH Zurich Universitässtrasse 22, 8092 Zurich (Switzerland); Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau (Switzerland); Schnug, Ewald, E-mail: e.schnug@tu-braunschweig.de [Department of Life Sciences, Technical University of Braunschweig, Pockelsstraße 14, D-38106 Braunschweig (Germany); Prasser, Horst-Michael, E-mail: prasser@lke.mavt.ethz.ch [Institute of Energy Technology, Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8092 Zurich (Switzerland); Frossard, Emmanuel, E-mail: emmanuel.frossard@usys.ethz.ch [Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau (Switzerland)

    2014-04-01

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. - Highlights: • We identify components that underlie the recovery of uranium from phosphate rock. • We estimate that 11,000 tU may have been recoverable from phosphoric acid in 2010. • Recovery is a resource conservation and environmental pollution control strategy. • To ensure investment in recovery technology, profitability needs to be secured.

  15. Effects of liquid phase on basic properties of alpha-tricalcium phosphate-based apatite cement.

    Science.gov (United States)

    Oda, Makoto; Takeuchi, Akari; Lin, Xin; Matsuya, Shigeki; Ishikawa, Kunio

    2008-09-01

    Effects of liquid phase on the basic properties of alpha-tricalcuim phosphate (alpha-TCP)-based cement, BIOPEX, were investigated by employing three liquid phases: distilled water, neutral sodium hydrogen phosphate solution, and succinic acid disodium salt solution containing sodium salt of chondroitin sulfate. When mixed with neutral sodium hydrogen phosphate or succinic acid disodium salt solution, the initial setting times of the cement were 19.4 +/- 0.55 and 11.8 +/- 0.45 minutes respectively. These setting times were much shorter than that of distilled water, 88.4 +/- 0.55 minutes. Formation of needle-like crystals typical of apatite was much faster when neutral sodium hydrogen phosphate solution was used, as compared to distilled water or succinic acid disodium salt solution. Moreover, at 24 hours after mixing, the largest amount of apatite was formed when neutral sodium hydrogen phosphate solution was used, whereas use of succinic acid resulted in the least. On the final mechanical strength of the cement, that yielded with neutral sodium hydrogen phosphate solution was the highest. In contrast, lower mechanical strength was observed--especially at the initial stage--when succinic acid sodium salt was used. It was thus concluded that alpha-TCP-based cement allowed accelerated transformation to apatite, and that higher mechanical strength since the initial stage was achieved when neutral sodium hydrogen phosphate solution was used as the liquid phase.

  16. Chemical treatment of ammonium fluoride solution in uranium reconversion plant

    International Nuclear Information System (INIS)

    Carvalho Frajndlich, E.U. de.

    1992-01-01

    A chemical procedure is described for the treatment of the filtrate, produced from the transformation of uranium hexafluoride (U F 6 ) into ammonium uranyl carbonate (AUC). This filtrate is an intermediate product in the U F 6 to uranium dioxide (U O 2 ) reconversion process. The described procedure recovers uranium as ammonium peroxide fluoro uranate (APOFU) by precipitation with hydrogen peroxide (H 2 O 2 ), and as later step, its calcium fluoride (CaF 2 ) co-precipitation. The recovered uranium is recycled to the AUC production plant. (author)

  17. The influence of a magnetic field on the microhardness of K, Rb, Cs, NH4, and Tl acid phthalate crystals

    Science.gov (United States)

    Koldaeva, M. V.; Turskaya, T. N.; Zakalyukin, R. M.; Darinskaya, E. V.

    2009-11-01

    The influence of a magnetic field on the microhardness of potassium acid phthalate has been studied for different magnetic inductions, exposure times, sample orientations in a magnetic field, and impurity compositions of the crystals. It was shown that the magnetic field effect is multiply repeated on the (010) face after relaxation. The influence of magnetic treatment on ammonium, rubidium, thallium, and cesium acid phthalate crystals is analyzed. The reasons for the observed changes in the crystal microhardness in the magnetic field are discussed.

  18. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    Science.gov (United States)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1999-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4 C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15 C were generally tetragonal, with space group P4(sub 3)2(sub 1)2. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P2(sub 1)2(sub 1)2(sub 1). The tetragonal reversible reaction orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3(sub 1)2(sub 1), a = b = 87.4, c = 73.7, gamma = 120 deg, which diffracted to 2.8 A. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form. space group C2, a = 65.6, b = 95.0, c = 41.2, beta = 119.2 deg. A crystal of approximately 0.2 x 0.2 x 0.5 mm grown from bulk solution diffracted to approximately 3.5 A.

  19. Crystallization of chicken egg white lysozyme from assorted sulfate salts

    Science.gov (United States)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1999-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4°C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15°C were generally tetragonal, with space group P4 32 12. Crystallization at 20°C typically resulted in the formation of orthorhombic crystals, space group P2 12 12 1. The tetragonal ↔ orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20°C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3 12 1, a= b=87.4, c=73.7, γ=120°, which diffracted to 2.8 Å. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form, space group C2, a=65.6, b=95.0, c=41.2, β=119.2°. A crystal of ˜0.2×0.2×0.5 mm grown from bulk solution diffracted to ˜3.5 Å.

  20. Nucleation and crystal growth in batch crystallizers

    NARCIS (Netherlands)

    Janse, A.H.

    1977-01-01

    The aim of the present work is to gain knowledge of the mechanism of formation of the crystal size distribution in batch crystallizers in order to give directives for design and operation of batch crystallizers. The crystal size distribution is important for the separation of crystals and mother