WorldWideScience

Sample records for ammonium oxidation anammox

  1. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification

    DEFF Research Database (Denmark)

    Chamchoi, N.; Nitisoravut, S.; Schmidt, Jens Ejbye

    2008-01-01

    A concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification was investigated in a well known UASB reactor seeding with both ANAMMOX and anaerobic granular sludges. ANAMMOX activity was confirmed by hydroxylamine test and the hybridization of biomass using the gene probes...

  2. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea

    Science.gov (United States)

    Kuypers, Marcel M. M.; Sliekers, A. Olav; Lavik, Gaute; Schmid, Markus; Jørgensen, Bo Barker; Kuenen, J. Gijs; Sinninghe Damsté, Jaap S.; Strous, Marc; Jetten, Mike S. M.

    2003-04-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean. Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N2 in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors. Nutrient profiles, fluorescently labelled RNA probes, 15N tracer experiments and the distribution of specific `ladderane' membrane lipids indicate that ammonium diffusing upwards from the anoxic deep water is consumed by anammox bacteria below the oxic zone. This is the first time that anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment. The widespread occurrence of ammonium consumption in suboxic marine settings indicates that anammox might be important in the oceanic nitrogen cycle.

  3. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Sliekers, AO; Lavik, G.

    2003-01-01

    ). Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N(2) in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing...... the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors(3). Nutrient profiles, fluorescently labelled RNA probes, (15)N tracer experiments and the distribution of specific 'ladderane' membrane lipids(4) indicate that ammonium diffusing upwards from the anoxic deep water is consumed...... by anammox bacteria below the oxic zone. This is the first time that anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment. The widespread occurrence of ammonium consumption in suboxic marine settings(5-7) indicates that anammox might...

  4. Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria

    OpenAIRE

    Li, Meng; Gu, Ji-Dong

    2011-01-01

    Anaerobic ammonium oxidation (anammox), the biochemical process oxidizing ammonium into dinitrogen gas using nitrite as an electron acceptor, has only been recognized for its significant role in the global nitrogen cycle not long ago, and its ubiquitous distribution in a wide range of environments has changed our knowledge about the contributors to the global nitrogen cycle. Currently, several groups of methods are used in detection of anammox bacteria based on their physiological and biochem...

  5. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox)

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Rijpstra, W.I.C.; Geenevasen, J.A.J.; Strous, M.; Jetten, M.S.M.

    2005-01-01

    The membrane lipid composition of planctomycetes capable of the anaerobic oxidation of ammonium (anammox), i.e. Candidatus ‘Brocadia anammoxidans’ and Candidatus ‘Kuenenia stuttgartiensis’, was shown to be composed mainly of so-called ladderane lipids. These lipids are comprised of three to five

  6. Hydroxylamine-dependent Anaerobic Ammonium Oxidation (Anammox) by “ Candidatus Brocadia sinica”

    KAUST Repository

    Oshiki, Mamoru

    2016-04-26

    Although metabolic pathways and associated enzymes of anaerobic ammonium oxidation (anammox) of “Ca. Kuenenia stuttgartiensis” have been studied, those of other anammox bacteria are still poorly understood. NO2- reduction to NO is considered to be the first step in the anammox metabolism of “Ca. K. stuttgartiensis”, however, “Ca. Brocadia” lacks the genes that encode canonical NO-forming nitrite reductases (NirS or NirK) in its genome, which is different from “Ca. K. stuttgartiensis”. Here, we studied the anammox metabolism of “Ca. Brocadia sinica”. 15N-tracer experiments demonstrated that “Ca. B. sinica” cells could reduce NO2- to NH2OH, instead of NO, with as yet unidentified nitrite reductase(s). Furthermore, N2H4 synthesis, downstream reaction of NO2- reduction, was investigated using a purified “Ca. B. sinica” hydrazine synthase (Hzs) and intact cells. Both the “Ca. B. sinica” Hzs and cells utilized NH2OH and NH4+, but not NO and NH4+, for N2H4 synthesis and further oxidized N2H4 to N2 gas. Taken together, the metabolic pathway of “Ca. B. sinica” is NH2OH-dependent and different from the one of “Ca. K. stuttgartiensis”, indicating metabolic diversity of anammox bacteria. This article is protected by copyright. All rights reserved.

  7. Anaerobic ammonium oxidation by Anammox bacteria in the Black Sea

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kuypers, M.M.M.; Sliekers, O.; Lavik, G.; Schmid, M.; Jørgensen, B.B.; Kuenen, J.G.; Strous, M.; Jetten, M.S.M.

    2003-01-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions1. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean2. Here we

  8. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox Biofilms from Digestate in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2015-01-01

    Full Text Available Microbial Fuel cells (MFCs have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  9. Development of anaerobic ammonium oxidation (anammox) for biological nitrogen removal in domestic wastewater treatment (Case study: Surabaya City, Indonesia)

    Science.gov (United States)

    Wijaya, I. Made Wahyu; Soedjono, Eddy Setiadi; Fitriani, Nurina

    2017-11-01

    Domestic wastewater effluent is the main contributor to diverse water pollution problems. The contaminants contained in the wastewater lead the low quality of water. The presence of ammonium and nitrate along with phosphorus are potentially cause eutrophication and endanger aquatic life. Excess nutrients, mostly N and P is the main cause of eutrophication which is result in oxygen depletion, biodiversity reduction, fish kills, odor and increased toxicity. Most of the domestic wastewater in Surabaya City still contains nitrogen that exceeded the threshold. The range of ammonium and orthophosphate concentration in the domestic wastewater is between 6.29 mg/L - 38.91 mg/L and 0.44 mg/L - 1.86 mg/L, respectively. An advance biological nitrogen removal process called anammox is a sustainable and cost effective alternative to the basic method of nitrogen removal, such as nitrification and denitrification. Many research have been conducted through anammox and resulted promisingly way to remove nitrogen. In this process, ammonium will be oxidized with nitrite as an electron acceptor to produce nitrogen gas and low nitrate in anoxic condition. Anammox requires less oxygen demand, no needs external carbon source, and low operational cost. Based on its advantages, anammox is possible to apply in domestic wastewater treatment in Surabaya with many further studies.

  10. Optimization of process performance in a granule-based anaerobic ammonium oxidation (anammox) upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Xing, Bao-Shan; Guo, Qiong; Zhang, Zheng-Zhe; Zhang, Jue; Wang, Hui-Zhong; Jin, Ren-Cun

    2014-10-01

    In this study, the individual and interactive effects of influent substrate concentration (TNinf), hydraulic retention time (HRT) and upflow velocity (Vup) on the performance of anaerobic ammonium oxidation (anammox) in a granule-based upflow anaerobic sludge blanket (UASB) reactor were investigated by employing response surface methodology (RSM) with a central composite design. The purpose of this work was to identify the optimal combination of TNinf, HRT and Vup with respect to the nitrogen removal efficiency (NRE) and nitrogen removal rate (NRR). The reduced cubic models developed for the responses indicated that the optimal conditions corresponded to a TNinf content of 644-728mgNL(-1), an HRT of 0.90-1.25h, and a Vup of 0.60-1.79mh(-1). The results of confirmation trials were similar to the predictions of the developed models. These results provide useful information for improving the nitrogen removal performance of the anammox process in a UASB reactor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor

    International Nuclear Information System (INIS)

    Yang Zhiquan; Zhou Shaoqi; Sun Yanbo

    2009-01-01

    A laboratory testing of simultaneous removal of ammonium and sulfate (SRAS) was studied from an anammox process in an anaerobic bioreactor filled with granular activated carbon. Two different phases of experiment were investigated to start up the SRAS process, and final batch tests were performed to analyze the SRAS process. The experiment included an anammox process and an SRAS process. During the anammox process, the highest removal efficiency of ammonium and nitrite was up to 97 and 98%, respectively. After 160 days in the stationary phase of anammox process, the ratio of ammonium to nitrite consumption was approximately 1:1.15, which is much higher than 1:1.32 in the traditional anammox process. The extra electron acceptor, such as sulfate, was thought to react with ammonium by bacteria. Synthetic wastewater containing ammonium chlorine and sodium sulfate was used as the feed for the bioreactor in the second phase of experiment. During the SRAS process, the influent concentrations of ammonium and sulfate were controlled to be 50-60 and 210-240 mg L -1 respectively. After start-up and acclimatization of this process for 60 days, the average effluent concentrations of ammonium and sulfate were 30 and 160 mg L -1 , respectively. The simultaneous ammonium and sulfate removal was detected in the reactor. In order to further validate the biochemical interaction between ammonium and sulfate, batch tests was carried out. Abiotic tests were carried out to demonstrate that the pure chemical action between ammonium and sulfate without microorganism was not possible. Biotic assays with different ammonium and sulfate concentrations were further investigated that high concentrations of ammonium and sulfate could promote simultaneous removal of ammonium and sulfate. And elemental sulfur and nitrogen gas as the products measured in the SRAS process helped to demonstrate the occurrence of new interaction between nitrogen and sulfur. The new process of SRAS in the inorganic

  12. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor.

    Science.gov (United States)

    Yang, Zhiquan; Zhou, Shaoqi; Sun, Yanbo

    2009-09-30

    A laboratory testing of simultaneous removal of ammonium and sulfate (SRAS) was studied from an anammox process in an anaerobic bioreactor filled with granular activated carbon. Two different phases of experiment were investigated to start up the SRAS process, and final batch tests were performed to analyze the SRAS process. The experiment included an anammox process and an SRAS process. During the anammox process, the highest removal efficiency of ammonium and nitrite was up to 97 and 98%, respectively. After 160 days in the stationary phase of anammox process, the ratio of ammonium to nitrite consumption was approximately 1:1.15, which is much higher than 1:1.32 in the traditional anammox process. The extra electron acceptor, such as sulfate, was thought to react with ammonium by bacteria. Synthetic wastewater containing ammonium chlorine and sodium sulfate was used as the feed for the bioreactor in the second phase of experiment. During the SRAS process, the influent concentrations of ammonium and sulfate were controlled to be 50-60 and 210-240 mg L(-1) respectively. After start-up and acclimatization of this process for 60 days, the average effluent concentrations of ammonium and sulfate were 30 and 160 mg L(-1), respectively. The simultaneous ammonium and sulfate removal was detected in the reactor. In order to further validate the biochemical interaction between ammonium and sulfate, batch tests was carried out. Abiotic tests were carried out to demonstrate that the pure chemical action between ammonium and sulfate without microorganism was not possible. Biotic assays with different ammonium and sulfate concentrations were further investigated that high concentrations of ammonium and sulfate could promote simultaneous removal of ammonium and sulfate. And elemental sulfur and nitrogen gas as the products measured in the SRAS process helped to demonstrate the occurrence of new interaction between nitrogen and sulfur. The new process of SRAS in the inorganic

  13. Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Mael; Smets, Barth F.

    2012-01-01

    with the experimental observations of the bacterial distribution, as well as the nitrogenous transformations in batch and continuous experiments. The modeling results showed that low nitrogen surface loading resulted in a lower availability of SMP leading to low heterotrophic growth in Anammox biofilm, but high...

  14. [Cultivation of ANAMMOX bacteria and the ammonium anaerobic oxidation technology in the plug flow bio-reactor].

    Science.gov (United States)

    Liu, Yin; Du, Bing; Si, Ya-an; Sun, Yan-ling; Shen, Li-xian

    2005-03-01

    It is feasible that the ANAMMOX bacteria can be enriched and cultivated to red granular in plug flow immobilized floc bioreactor. Average ammonium and nitrite removal rate are more than 98 %, and average total nitrogen removal rate is 86% combined with 14% nitrate production; the removal volumetric total nitrogen load is 2.56kg/(m3 x d). The influence of the influent substrate ratio of ammonium to nitrite on reactor's performance has been studied. The granule structure has been observed by the scan electro-microscope.

  15. Nitrous oxide production pathways in a partial nitritation-anammox reactor: Isotopic evidence for nitrous oxide production associated anaerobic ammonium oxidation?

    Science.gov (United States)

    Wunderlin, P.; Harris, E. J.; Joss, A.; Emmenegger, L.; Kipf, M.; Mohn, J.; Siegrist, H.

    2014-12-01

    Nitrous oxide (N2O) is a strong greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment N2O can be produced via several pathways. This study investigates the dynamics of N2O emissions from a nitritation-anammox reactor, and links its interpretation to the nitrogen and oxygen isotopic signature of the emitted N2O. A 400-litre single-stage nitritation-anammox reactor was operated and continuously fed with digester liquid. The isotopic composition of N2O emissions was monitored online with quantum cascade laser absorption spectroscopy (QCLAS; Aerodyne Research, Inc.; Waechter et al., 2008). Dissolved ammonium and nitrate were monitored online (ISEmax, Endress + Hauser), while nitrite was measured with test strips (Nitrite-test 0-24mgN/l, Merck). Table 1. Summary of experiments conducted to understand N2O emissions Experimental conditions O2[mgO2/L] NO2-[mgN/L] NH4+[mgN/L] N2O/NH4+[%] Normal operation in the reactor. Our data reveal that N2O emissions increased when reactor operation was not ideal, for example when dissolved oxygen was too high (Table 1). SP measurements confirmed that these N2O peaks were due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor (Figure 1; Table 1). Overall, process control via online N2O monitoring was confirmed to be an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. ReferencesWaechter H. et al. (2008) Optics Express, 16: 9239-9244. Wunderlin, P et al. (2013) Environmental Science & Technology 47: 1339-1348.

  16. Inhibition factors and Kinetic model for ammonium inhibition on the anammox process of the SNAD biofilm.

    Science.gov (United States)

    Zheng, Zhaoming; Li, Jun; Ma, Jing; Du, Jia; Wang, Fan; Bian, Wei; Zhang, Yanzhuo; Zhao, Baihang

    2017-03-01

    The aim of the present work was to evaluate the anaerobic ammonium oxidation (anammox) activity of simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm with different substrate concentrations and pH values. Kaldnes rings taken from the SNAD biofilm reactor were incubated in batch tests to determine the anammox activity. Haldane model was applied to investigate the ammonium inhibition on anammox process. As for nitrite inhibition, the NH 4 + -N removal rate of anammox process remained 87.4% of the maximum rate with the NO 2 - -N concentration of 100mg/L. Based on the results of Haldane model, no obvious difference in kinetic coefficients was observed under high or low free ammonia (FA) conditions, indicating that ammonium rather than FA was the true inhibitor for anammox process of SNAD biofilm. With the pH value of 7.0, the r max , Ks and K I of ammonium were 0.209kg NO 2 - -N/kg VSS/day, 9.5mg/L and 422mg/L, respectively. The suitable pH ranges for anammox process were 5.0 to 9.0. These results indicate that the SNAD biofilm performs excellent tolerance to adverse conditions. Copyright © 2016. Published by Elsevier B.V.

  17. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam.

    Science.gov (United States)

    van der Star, Wouter R L; Abma, Wiebe R; Blommers, Dennis; Mulder, Jan-Willem; Tokutomi, Takaaki; Strous, Marc; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2007-10-01

    The first full-scale anammox reactor in the world was started in Rotterdam (NL). The reactor was scaled-up directly from laboratory-scale to full-scale and treats up to 750 kg-N/d. In the initial phase of the startup, anammox conversions could not be identified by traditional methods, but quantitative PCR proved to be a reliable indicator for growth of the anammox population, indicating an anammox doubling time of 10-12 days. The experience gained during this first startup in combination with the availability of seed sludge from this reactor, will lead to a faster startup of anammox reactors in the future. The anammox reactor type employed in Rotterdam was compared to other reactor types for the anammox process. Reactors with a high specific surface area like the granular sludge reactor employed in Rotterdam provide the highest volumetric loading rates. Mass transfer of nitrite into the biofilm is limiting the conversion of those reactor types that have a lower specific surface area. Now the first full-scale commercial anammox reactor is in operation, a consistent and descriptive nomenclature is suggested for reactors in which the anammox process is employed.

  18. Anaerobic ammonium oxidation in an estuarine sediment

    OpenAIRE

    Risgaard-Petersen, N.; Meyer, R.L.; Schmid, M.C.; Jetten, M.S.M.; Enrich-Prast, A.; Rysgaard, S.; Revsbech, N.P.

    2004-01-01

    The occurrence and significance of the anammox (anaerobic ammonium oxidation) process relative to denitrification was studied in photosynthetically active sediment from 2 shallow-water estuaries: Randers Fjord and Norsminde Fjord, Denmark. Anammox accounted for 5 to 24 % of N-2 production in Randers Fjord sediment, whereas no indication was seen of the process in sediment from Norsminde Fjord, It is suggested that the presence of anammox in Randers Fjord and its absence from Norsminde Fjord i...

  19. Anaerobic ammonium oxidation in an estuarine sediment

    NARCIS (Netherlands)

    Risgaard-Petersen, N.; Meyer, R.L.; Schmid, M.C.; Jetten, M.S.M.; Enrich-Prast, A.; Rysgaard, S.; Revsbech, N.P.

    2004-01-01

    The occurrence and significance of the anammox (anaerobic ammonium oxidation) process relative to denitrification was studied in photosynthetically active sediment from 2 shallow-water estuaries: Randers Fjord and Norsminde Fjord, Denmark. Anammox accounted for 5 to 24 % of N-2 production in Randers

  20. Anaerobic ammonium oxidation in an estuarine sediment

    NARCIS (Netherlands)

    Risgaard-Petersen, N.; Meyer, R.L.; Schmid, M.; Jetten, M.S.M.; Enrich-Prast, A.; Rysgaard, S.; Revsbech, N.P.

    2004-01-01

    The occurrence and significance of the anammox (anaerobic ammonium oxidation) process relative to denitrification was studied in photosynthetically active sediment from 2 shallow-water estuaries: Randers Fjord and Norsminde Fjord, Denmark. Anammox accounted for 5 to 24% of N2 production in Randers

  1. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal.

    Science.gov (United States)

    Liu, Sitong; Yang, Fenglin; Gong, Zheng; Meng, Fangang; Chen, Huihui; Xue, Yuan; Furukawa, Kenji

    2008-10-01

    The simultaneous ammonium and sulfate removal was detected in an anammox reactor, consisted of ammonium oxidization with sulfate deoxidization, and subsequently traditional anammox process, in via of middle medium nitrite with solid sulfur and N2 as the terminal products. The pure anammox bacteria offered a great biotechnological potential for the completely autotrophic reaction indicated by batch tests. Denaturing gradient gel electrophoresis (DGGE) analysis further revealed that a new organism belonging to Planctomycetales was strongly enriched in the defined niche: the redox of ammonium and sulfate. The new species "Anammoxoglobussulfate" was so considered as holding a critical role in the ammonium oxidization with sulfate deoxidization to nitrite. Afterwards, the Planctomyces existing in the bacteria community performed the anammox process together to achieve the complete nitrogen and sulfate removal. The potential use of sulfate as electron acceptor for ammonium oxidizing widens the usage of anammox bacteria.

  2. ANAMMOX-like performances for nitrogen removal from ammonium-sulfate-rich wastewater in an anaerobic sequencing batch reactor.

    Science.gov (United States)

    Prachakittikul, Pensiri; Wantawin, Chalermraj; Noophan, Pongsak Lek; Boonapatcharoen, Nimaradee

    2016-01-01

    Ammonium removal by the ANaerobic AMonium OXidation (ANAMMOX) process was observed through the Sulfate-Reducing Ammonium Oxidation (SRAO) process. The same concentration of ammonium (100 mg N L(-1)) was applied to two anaerobic sequencing batch reactors (AnSBRs) that were inoculated with the same activated sludge from the Vermicelli wastewater treatment process, while nitrite was fed in ANAMMOX and sulfate in SRAO reactors. In SRAO-AnSBR, in substrates that were fed with a ratio of NH4(+)/SO4(2-) at 1:0.4 ± 0.03, a hydraulic retention time (HRT) of 48 h and without sludge draining, the Ammonium Removal Rate (ARR) was 0.02 ± 0.01 kg N m(-3).d(-1). Adding specific ANAMMOX substrates to SRAO-AnSBR sludge in batch tests results in specific ammonium and nitrite removal rates of 0.198 and 0.139 g N g(-1) VSS.d, respectively, indicating that the ANAMMOX activity contributes to the removal of ammonium in the SRAO process using the nitrite that is produced from SRAO. Nevertheless, the inability of ANAMMOX to utilize sulfate to oxidize ammonium was also investigated in batch tests by augmenting enriched ANAMMOX culture in SRAO-AnSBR sludge and without nitrite supply. The time course of sulfate in a 24-hour cycle of SRAO-AnSBR showed an increase in sulfate after 6 h. For enriched SRAO culture, the uptake molar ratio of NH4(+)/SO4(2-) at 8 hours in a batch test was 1:0.82 lower than the value of 1:0.20 ± 0.09 as obtained in an SRAO-AnSBR effluent, while the stoichiometric ratio of 1:0.5 that includes the ANAMMOX reaction was in this range. After a longer operation of more than 2 years without sludge draining, the accumulation of sulfate and the reduction of ammonium removal were observed, probably due to the gradual increase in the sulfur denitrification rate and the competitive use of nitrite with ANAMMOX. The 16S rRNA gene PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and PCR cloning analyses resulted in the detection of the ANAMMOX

  3. Engineering application of anaerobic ammonium oxidation process in wastewater treatment.

    Science.gov (United States)

    Mao, Nianjia; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke

    2017-08-01

    Anaerobic ammonium oxidation (Anammox), a promising biological nitrogen removal process, has been verified as an efficient, sustainable and cost-effective alternative to conventional nitrification and denitrification processes. To date, more than 110 full-scale anammox plants have been installed and are in operation, treating industrial NH 4 + -rich wastewater worldwide, and anammox-based technologies are flourishing. This review the current state of the art for engineering applications of the anammox process, including various anammox-based technologies, reactor selection and attempts to apply it at different wastewater plants. Process control and implementation for stable performance are discussed as well as some remaining issues concerning engineering application are exposed, including the start-up period, process disturbances, greenhouse gas emissions and especially mainstream anammox applications. Finally, further development of the anammox engineering application is proposed in this review.

  4. Ammonium removal from municipal wastewater with application of ion exchange and partial nitritation/Anammox process

    OpenAIRE

    Malovanyy, Andriy

    2014-01-01

    Nitrogen removal from municipal wastewater with application of Anammox process offers cost reduction, especially if it is combined with maximal use of organic content of wastewater for biogas production. In this study a new technology is proposed, which is based on ammonium concentration from municipal wastewater by ion exchange followed by biological removal of ammonium from the concentrated stream by partial nitritation/Anammox process. In experiments on ammonium concentration four the most...

  5. Pre-concentration of ammonium to enhance treatment of wastewater using the partial nitritation/anammox process.

    Science.gov (United States)

    Owusu-Agyeman, Isaac; Malovanyy, Andriy; Plaza, Elzbieta

    2015-01-01

    The anaerobic ammonium oxidation (anammox) process is one of the most cost-effective technologies for removing excessive nitrogen compounds from effluents of wastewater treatment plants. The study was conducted to assess the feasibility of using ion exchange (IE) and reverse osmosis (RO) methods to concentrate ammonium to support partial nitritation/anammox process, which so far has been used for treating only wastewater with high concentrations of ammonium. Upflow anaerobic sludge blanket (UASB) reactor effluents with 40.40, 37.90 and 21.80 mg NH4─N/L levels were concentrated with IE method to 367.20, 329.50 and 187.50 mg NH4─N/L, respectively, which were about nine times the initial concentrations. RO method was also used to concentrate 41.0 mg NH4─N/L of UASB effluent to 163 mg NH4─N/L at volume reduction factor 5. The rates of nitrogen removal from respective RO pretreated concentrates by partial nitritation/anammox technology were 0.60, 1.10 and 0.50 g N/m2 day. The rates were largely influenced by initial nitrogen concentration. However, rates of RO concentrates were 0.74, 0.92 and 0.81 g N/m2 day even at lower initial NH4─N concentration. It was found out from the study that higher salinity decreased the rate of nitrogen removal when using partial nitritation/anammox process. Dissolved oxygen concentration of ∼1 mg/L was optimal for the operation of the partial nitritation/anammox process when treating IE and RO concentrates. The result shows that IE and RO methods can precede a partial nitritation/anammox process to enhance the treatment of wastewater with low ammonium loads.

  6. Biogeography of anaerobic ammonia-oxidizing (anammox bacteria

    Directory of Open Access Journals (Sweden)

    Puntipar eSonthiphand

    2014-08-01

    Full Text Available Anaerobic ammonia-oxidizing (anammox bacteria are able to oxidize ammonia and reduce nitrite to produce N2 gas. After being discovered in a wastewater treatment plant (WWTP, anammox bacteria were subsequently characterized in natural environments, including marine, estuary, freshwater, and terrestrial habitats. Anammox bacteria play an important role in removing fixed N from both engineered and natural ecosystems, but broad scale anammox bacterial distributions, based on available data, have not yet been summarized. The objectives of this study were to explore global distributions and diversity of anammox bacteria and to identify factors that influence their biogeography. Over 6,000 anammox 16S rRNA gene sequences from the public database were analyzed in this current study. Data ordinations indicated that salinity was an important factor governing anammox bacterial distributions, with distinct populations inhabiting natural and engineered ecosystems. Gene phylogenies and rarefaction analysis demonstrated that freshwater environments and the marine water column harbored the highest and the lowest diversity of anammox bacteria, respectively. A co-occurrence network analysis indicated that Ca. Scalindua strongly correlated with other Ca. Scalindua taxa, whereas Ca. Brocadia co-occurred with taxa from both known and unknown anammox genera. Our survey provides a better understanding of ecological factors affecting anammox bacterial distributions and provides a comprehensive baseline for understanding the relationships among anammox communities in global environments.

  7. The anammoxosome : An intracytoplasmic compartment in anammox bacteria

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Niftrik, L.A. van; Fuerst, J.A.; Kuenen, J.G.; Jetten, M.S.M.; Strous, M.

    2004-01-01

    Anammox bacteria belong to the phylum Planctomycetes and perform anaerobic ammonium oxidation (anammox); they oxidize ammonium with nitrite as the electron acceptor to yield dinitrogen gas. The anammox reaction takes place inside the anammoxosome: an intracytoplasmic compartment bounded by a single

  8. The anammoxosome: an intracytoplasmic compartment in anammox bacteria

    NARCIS (Netherlands)

    Niftrik, L.A.M.P. van; Fuerst, J.A.; Damste, J.S.S.; Kuenen, J.G.; Jetten, M.S.M.; Strous, M.

    2004-01-01

    Anammox bacteria belong to the phylum Planctomycetes and perform anaerobic ammonium oxidation (anammox); they oxidize ammonium with nitrite as the electron acceptor to yield dinitrogen gas. The anammox reaction takes place inside the anammoxosome: an intracytoplasmic compartment bounded by a single

  9. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria.

    Science.gov (United States)

    Schouten, Stefan; Strous, Marc; Kuypers, Marcel M M; Rijpstra, W Irene C; Baas, Marianne; Schubert, Carsten J; Jetten, Mike S M; Sinninghe Damsté, Jaap S

    2004-06-01

    Isotopic analyses of Candidatus "Brocadia anammoxidans," a chemolithoautotrophic bacterium that anaerobically oxidizes ammonium (anammox), show that it strongly fractionates against (13)C; i.e., lipids are depleted by up to 47 per thousand versus CO(2). Similar results were obtained for the anammox bacterium Candidatus "Scalindua sorokinii," which thrives in the anoxic water column of the Black Sea, suggesting that different anammox bacteria use identical carbon fixation pathways, which may be either the Calvin cycle or the acetyl coenzyme A pathway.

  10. Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal.

    Science.gov (United States)

    Wang, Dong; Wang, Guowen; Zhang, Guoquan; Xu, Xiaochen; Yang, Fenglin

    2013-03-01

    Graphene oxide (GO) was applied in this study to enhance the activity of anaerobic ammonium oxidation (anammox) bacteria for nitrogen removal. A GO dose-dependent effect on anammox bacteria was observed through batch tests. The results showed that the activity increased as the GO dose was varied within 0.05-0.1gL(-1). A maximum 10.26% increase of anaerobic ammonium oxidizing activity was achieved at 0.1gL(-1) GO. Analysis of extracellular polymeric substances (EPS) indicated that the highest carbohydrate, protein, and total EPS contents (42.5, 125.7, and 168.2mg (g volatile suspended solids)(-1), respectively) were obtained with 0.1gL(-1) GO. Appropriate GO dose stimulated EPS production to promote the activity of anammox bacteria. Transmission electron microscopy showed the large surface area of GO benefited cell attachment. These findings proved that the application of GO was an effective approach to enhancing the activity of anammox bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Cell biology of anaerobic ammonium-oxidizing bacteria

    NARCIS (Netherlands)

    Niftrik, L.A.M.P. van

    2008-01-01

    Anammox bacteria perform anaerobic ammonium oxidation to dinitrogen gas and belong to the phylum Planctomycetes. Whereas most Prokaryotes consist of one compartment, the cytoplasm bounded by the cytoplasmic membrane and cell wall, the species within this phylum are compartmentalized by intracellular

  12. Nitrogen removal performance of anaerobic ammonia oxidation (ANAMMOX) in presence of organic matter.

    Science.gov (United States)

    Zhu, Weiqiang; Zhang, Peiyu; Yu, Deshuang; Dong, Huiyu; Li, Jin

    2017-06-01

    A sequencing batch reactor (SBR) was used to test the nitrogen removal performance of anaerobic ammonium oxidation (ANAMMOX) in presence of organic matter. Mesophilic operation (30 ± 0.5 °C) was performed with influent pH 7.5. The results showed, independent of organic matter species, ANAMMOX reaction was promoted when COD was lower than 80 mg/L. However, specific ANAMMOX activity decreased with increasing organic matter content. Ammonium removal efficiency decreased to 80% when COD of sodium succinate, sodium potassium tartrate, peptone and lactose were 192.5, 210, 225 and 325 mg/L, respectively. The stoichiometry ratio resulting from different OM differed largely and R 1 could be as an indicator for OM inhibition. When COD concentration was 240 mg/L, the loss of SAA resulting from lactose, peptone, sodium potassium tartrate and sodium succinate were 28, 36, 50 and 55%, respectively. Sodium succinate had the highest inhibitory effect on SAA. When ANAMMOX process was used to treat wastewater containing OM, the modified Logistic model could be employed to predict the NRE max .

  13. Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: Widespread but overlooked.

    Science.gov (United States)

    Wang, Shanyun; Peng, Yongzhen; Ma, Bin; Wang, Shuying; Zhu, Guibing

    2015-11-01

    Occurrence of anaerobic ammonium oxidation (anammox) in marine and freshwater systems has greatly changed our understanding of global nitrogen (N) cycle and promoted the investigation of the role and ecological features of anammox in anthropogenic ecosystems. This study focused on the spatio-temporal abundance, activity, and biodiversity of anammox bacteria in full-scale municipal wastewater treatment plants (WWTPs) via traditional nitrification/denitrification route with low-strength ammonium loading. The anammox bacteria were detected in all the treatment units at the five WWTPs tested, even in aerobic zones (dissolved oxygen >2 mg L(-1)) with abundance of 10(5)-10(7) hydrazine synthase (hzs) gene copies g(-1). The (15)N-isotope tracing technology revealed that the anammox rates in WWTPs ranged from 0.08 to 0.36 μmol N g(-1) h(-1) in winter and 0.12-1.20 μmol N g(-1) h(-1) in summer with contributions of 2.05-6.86% and 1.71-7.26% to N2 production, respectively. The diversity of anammox bacteria in WWTPs was distributed over only two genera, Brocadia and Kuenenia. Additionally, the exploration of potential interspecies relationships indicated that ammonia oxidation bacteria (AOB) was the major nitrite-substrate producer for anammox during nitrification, while Nitrospira, a nitrite oxidation bacteria (NOB), was the potential major competitor for nitrite. These results suggested the contribution of N-removal by the widespread of anammox has been overlooked in traditional municipal WWTPs, and the ecological habitats of anammox bacteria in anthropogenic ecosystems are much more abundant than previously assumed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Candidatus "Scalindua brodaea", spec. nov., Candidatus "Scalindua wagneri", spec. nov., two new species of anaerobic ammonium oxidizing bacteria

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schmid, M.; Walsh, K.; Webb, R.; Rijpstra, W.I.C.; Pas-Schoonen, K. van de; Verbruggen, M.J.; Hill, T.; Moffett, B.; Fuerst, J.; Schouten, S.; Harris, James; Shaw, P.; Jetten, M.S.M.; Strous, M.

    2003-01-01

    Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply

  15. The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes.

    Science.gov (United States)

    Fu, Liang; Ding, Zhao-Wei; Ding, Jing; Zhang, Fang; Zeng, Raymond J

    2015-10-01

    Methane is sparingly soluble in water, resulting in a slow reaction rate in the denitrifying anaerobic methane oxidation (DAMO) process. The slow rate limits the feasibility of research to examine the interaction between the DAMO and the anaerobic ammonium oxidation (Anammox) process. In this study, optimized 5 % (v/v) paraffin oil was added as a second liquid phase to improve methane solubility in a reactor containing DAMO and Anammox microbes. After just addition, methane solubility was found to increase by 25 % and DAMO activity was enhanced. After a 100-day cultivation, the paraffin reactor showed almost two times higher consumption rates of NO3 (-) (0.2268 mmol/day) and NH4 (+) (0.1403 mmol/day), compared to the control reactor without paraffin oil. The microbes tended to distribute in the oil-water interface. The quantitative (q) PCR result showed the abundance of gene copies of DAMO archaea, DAMO bacteria, and Anammox bacteria in the paraffin reactor were higher than those in the control reactor after 1 month. Fluorescence in situ hybridization revealed that the percentages of the three microbes were 55.5 and 77.6 % in the control and paraffin reactors after 100 days, respectively. A simple model of mass balance was developed to describe the interactions between DAMO and Anammox microbes and validate the activity results. A mechanism was proposed to describe the possible way that paraffin oil enhanced DAMO activity. It is quite clear that paraffin oil enhances not only DAMO activity but also Anammox activity via the interaction between them; both NO3 (-) and NH4 (+) consumption rates were about two times those of the control.

  16. NOx and ammonium isotopic fingerprints of anammox in natural and engineered systems: Implications for N isotope budgets and the use of NOx isotopes to diagnose process stability in wastewater treatment

    Science.gov (United States)

    Lehmann, M. F.; Stöcklin, N.; Brunner, B.; Frame, C. H.; Joss, A.; Kipf, M.; Kuhn, T.; Wunderlin, P.

    2014-12-01

    The anaerobic oxidation of ammonium with nitrite (anammox) has been identified as a very important fixed nitrogen (N) sink, accounting for a large fraction of global fixed N loss in marine, freshwater, and semi-terrestrial environments. In engineered systems, combined nitritation-anammox is an efficient process to remove N from ammonium-rich wastewater, with nitrite as the central intermediate. During the anammox process, nitrate is being produced, providing reducing equivalents for carbon fixation. Measuring the N isotope ratios in fixed N species (i.e., ammonium, nitrite, nitrate) has proven to be a valuable tool to track N cycling in freshwater and marine ecosystems, yet its application in wastewater treatment as a tool to diagnose nitrate production pathways is novel. In this presentation we will elucidate, and compare, the N isotope effects associated with anammox 1) in vitro, 2) in a lacustrine setting, and 3) in a small-scale batch reactor for wastewater treatment. We demonstrate that the anammox nitrite/nitrate isotopic signatures are modulated by the superposition of strong kinetic (normal and inverse) and equilibrium (nitrite-nitrate) N isotope fractionation. The ammonium N isotope effect is driven by kinetic N isotope fractionation, and is similar to that of nitrification. We will discuss the possible controls on the expression of the anammox N isotope effects in the natural environment. We will also evaluate the use of nitrate/nitrite N (and O) isotope signatures to distinguish between nitrate production by anammox versus nitrite oxidation, which is important for optimizing process efficiency during wastewater treatment.

  17. Present and past contribution of anaerobic ammonium oxidation to nitrogen cycling as revealed by ladderane lipids

    OpenAIRE

    Jaeschke, Andrea

    2009-01-01

    Abstract Anammox, the anaerobic oxidation of ammonium to dinitrogen gas with nitrite as the electron acceptor, constitutes a novel route to convert biologically available (fixed) nitrogen to gaseous N2. This process is mediated by specific bacteria belonging to the Planctomycetes that were initially discovered in waste water systems. Within the nine years after their discovery, anammox bacteria have been identified as key players in the global nitrogen cycle. They have been found in different...

  18. Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting.

    Science.gov (United States)

    Wang, Tingting; Cheng, Lijun; Zhang, Wenhao; Xu, Xiuhong; Meng, Qingxin; Sun, Xuewei; Liu, Huajing; Li, Hongtao; Sun, Yu

    2017-07-28

    Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene ( hzo ) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between 2.13 × 10 5 and 1.15 × 10 6 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

  19. The anammoxosome: an intracytoplasmic compartment in anammox bacteria.

    Science.gov (United States)

    van Niftrik, Laura A; Fuerst, John A; Sinninghe Damsté, Jaap S; Kuenen, J Gijs; Jetten, Mike S M; Strous, Marc

    2004-04-01

    Anammox bacteria belong to the phylum Planctomycetes and perform anaerobic ammonium oxidation (anammox); they oxidize ammonium with nitrite as the electron acceptor to yield dinitrogen gas. The anammox reaction takes place inside the anammoxosome: an intracytoplasmic compartment bounded by a single ladderane lipid-containing membrane. The anammox bacteria, first found in a wastewater treatment plant in The Netherlands, have the potential to remove ammonium from wastewater without the addition of organic carbon. Very recently anammox bacteria were also discovered in the Black Sea where they are responsible for 30-50% of the nitrogen consumption. This review will introduce different forms of intracytoplasmic membrane systems found in prokaryotes and discuss the compartmentalization in anammox bacteria and its possible functional relation to catabolism and energy transduction.

  20. Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology

    Science.gov (United States)

    Lansdown, K.; McKew, B. A.; Whitby, C.; Heppell, C. M.; Dumbrell, A. J.; Binley, A.; Olde, L.; Trimmer, M.

    2016-05-01

    Rivers are an important global sink for excess bioavailable nitrogen: they convert approximately 40% of terrestrial N runoff per year (~47 Tg) to biologically unavailable N2 gas and return it to the atmosphere. At present, riverine N2 production is conceptualized and modelled as denitrification. Anaerobic ammonium oxidation, known as anammox, is an alternative pathway of N2 production important in marine environments, but its contribution to riverine N2 production is not well understood. Here we use in situ and laboratory measurements of anammox activity using 15N tracers and molecular analyses of microbial communities to evaluate anammox in clay-, sand- and chalk-dominated river beds in the Hampshire Avon catchment, UK during summer 2013. Abundance of the hzo gene, which encodes an enzyme central to anammox metabolism, varied across the contrasting geologies. Anammox rates were similar across geologies but contributed different proportions of N2 production because of variation in denitrification rates. In spite of requiring anoxic conditions, anammox, most likely coupled to partial nitrification, contributed up to 58% of in situ N2 production in oxic, permeable riverbeds. In contrast, denitrification dominated in low-permeability clay-bed rivers, where anammox contributes roughly 7% to the production of N2 gas. We conclude that anammox can represent an important nitrogen loss pathway in permeable river sediments.

  1. Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment

    Science.gov (United States)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.

  2. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium

    NARCIS (Netherlands)

    Neumann, S.; Wessels, H.J.C.T.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Kartal, B.; Jetten, M.S.M.; van Niftrik, L.

    2014-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost-effective and environment-friendly nitrogen removal

  3. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems.

    Science.gov (United States)

    Zhu, Guibing; Jetten, Mike S M; Kuschk, Peter; Ettwig, Katharina F; Yin, Chengqing

    2010-04-01

    Anaerobic ammonium oxidation (anammox) and anaerobic methane oxidation (ANME coupled to denitrification) with nitrite as electron acceptor are two of the most recent discoveries in the microbial nitrogen cycle. Currently the anammox process has been relatively well investigated in a number of natural and man-made ecosystems, while ANME coupled to denitrification has only been observed in a limited number of freshwater ecosystems. The ubiquitous presence of anammox bacteria in marine ecosystems has changed our knowledge of the global nitrogen cycle. Up to 50% of N(2) production in marine sediments and oxygen-depleted zones may be attributed to anammox bacteria. However, there are only few indications of anammox in natural and constructed freshwater wetlands. In this paper, the potential role of anammox and denitrifying methanotrophic bacteria in natural and artificial wetlands is discussed in relation to global warming. The focus of the review is to explore and analyze if suitable environmental conditions exist for anammox and denitrifying methanotrophic bacteria in nitrogen-rich freshwater wetlands.

  4. Controlling the nitrite:ammonium ratio in a SHARON reactor in view of its coupling with an Anammox process.

    Science.gov (United States)

    Volcke, E I P; van Loosdrecht, M C M; Vanrolleghem, P A

    2006-01-01

    The combined SHARON-Anammox process for treating wastewater streams with high ammonia load is the focus of this paper. In particular, partial nitritation in the SHARON reactor should be performed to such an extent that a nitrite:ammonium ratio is generated which is optimal for full conversion in an Anammox process. In the simulation studies performed in this contribution, the nitrite:ammonium ratio produced in a SHARON process with fixed volume, as well as its effect on the subsequent Anammox process, is examined for realistic influent conditions and considering both direct and indirect pH effects on the SHARON process. Several possible operating modes for the SHARON reactor, differing in control strategies for O2, pH and the produced nitrite:ammonium ratio and based on regulating the air flow rate and/or acid/base addition, are systematically evaluated. The results are quantified through an operating cost index. Best results are obtained by means of cascade feedback control of the SHARON effluent nitrite:ammonium ratio through setting an O2 set-point that is tracked by adjusting the air flow rate, combined with single loop pH control through acid/base addition.

  5. Present and past contribution of anaerobic ammonium oxidation to nitrogen cycling as revealed by ladderane lipids

    NARCIS (Netherlands)

    Jaeschke, A.

    2009-01-01

    Anammox, the anaerobic oxidation of ammonium to dinitrogen gas with nitrite as the electron acceptor, constitutes a novel route to convert biologically available (fixed) nitrogen to gaseous N2. This process is mediated by specific bacteria belonging to the Planctomycetes that were initially

  6. Present and past contribution of anaerobic ammonium oxidation to nitrogen cycling as revealed by ladderane lipids

    NARCIS (Netherlands)

    Jaeschke, Andrea

    2009-01-01

    Abstract Anammox, the anaerobic oxidation of ammonium to dinitrogen gas with nitrite as the electron acceptor, constitutes a novel route to convert biologically available (fixed) nitrogen to gaseous N2. This process is mediated by specific bacteria belonging to the Planctomycetes that were initially

  7. Short chain ladderanes: oxic biodegradation products of anammox lipids

    NARCIS (Netherlands)

    Rush, D.; Jaeschke, A.; Hopmans, E.C.; Geenevasen, J.A.J.; Schouten, S.; Sinninghe Damsté, J.S.

    2011-01-01

    Anammox, the microbial anaerobic oxidation of ammonium by nitrite to produce dinitrogen gas, has been recognized as a key process in both the marine and freshwater nitrogen cycles, and found to be a major sink for fixed inorganic nitrogen in the oceans. Ladderane lipids are unique anammox bacterial

  8. Short chain ladderanes: Oxic biodegradation products of anammox lipids

    NARCIS (Netherlands)

    Rush, D.; Jaeschke, A.; Hopmans, E.C.; Geenevasen, J.A.J.; Schouten, S.; Sinninghe Damsté, J.S.

    2011-01-01

    Anammox, the microbial anaerobic oxidation of ammonium by nitrite to produce dinitrogen gas, has been recognized as a key process in both the marine and freshwater nitrogen cycles, and found to be a major sink for fixed inorganic nitrogen in the oceans. Ladderane lipids are unique anammox bacterial

  9. Effects of Inhibition Conditions on Anammox process

    Science.gov (United States)

    Xie, Haitao; Ji, Dandan; Zang, Lihua

    2017-12-01

    Anaerobic ammonium oxidation (Anammox) is a very suitable process for the treatment of nitrogen-rich wastewater, which is a promising new biological nitrogen removal process, and has a good application prospects. However, the Anammox process is inhibited by many factors, which hinders the process improvement and the application of the Anammox process. Such as organic,temperature,salts,heavy metals, phosphates, sulfides, pH and other inhibitors are usually present in practical applications. We have reviewed the previous researches on the inhibition of Anammox processes. The effect of the substrate on the anaerobic oxide is mainly caused by free ammonia or nitrite nitrogen. Most heavy metals inhibit Anammox growth and activity. The inhibition of organic matter depends on the content of organic matter and species. High salinity inhibits Anammox activity. Dissolved oxygen allows the flora to be in a balanced state. The optimum pH and temperature, as well as other factors, can provide a good growth environment for Anammox. The knowledge of inhibition on Anammox will help prevent the application and improvement of the Anammox process.

  10. Higher diversity of ammonia/ammonium-oxidizing prokaryotes in constructed freshwater wetland than natural coastal marine wetland

    OpenAIRE

    Wang, Yong-Feng; Gu, Ji-Dong

    2012-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria, aerobic ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) are three groups of ammonium/ammonia-oxidizing prokaryotes (AOPs) that are involved in the nitrogen cycle. This research compared the AOP communities in a constructed freshwater wetland with a natural coastal marine wetland in the subtropical Hong Kong. Both vegetated/rhizosphere and nonvegetated sediments were investigated to identify the effects of different macroph...

  11. Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., two new species of anaerobic ammonium oxidizing bacteria.

    Science.gov (United States)

    Schmid, Markus; Walsh, Kerry; Webb, Rick; Rijpstra, W Irene C; van de Pas-Schoonen, Katinka; Verbruggen, Mark Jan; Hill, Thomas; Moffett, Bruce; Fuerst, John; Schouten, Stefan; Damsté, Jaap S Sinninghe; Harris, James; Shaw, Phil; Jetten, Mike; Strous, Marc

    2003-11-01

    Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply in the Planctomycetales. Here we describe a new genus and species of anaerobic ammonium oxidizing planctomycetes, discovered in a wastewater treatment plant (wwtp) treating landfill leachate in Pitsea, UK. The biomass from this wwtp showed high anammox activity (5.0 +/- 0.5 nmol/mg protein/min) and produced hydrazine from hydroxylamine, one of the unique features of anammox bacteria. Eight new planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass. Four of these were affiliated to known anammox 16S rRNA gene sequences, but branched much closer to the root of the planctomycete line of descent. Fluorescence in situ hybridization (FISH) with oligonucleotide probes specific for these new sequences showed that two species (belonging to the same genus) together made up > 99% of the planctomycete population which constituted 20% of the total microbial community. The identification of these organisms as typical anammox bacteria was confirmed with electron microscopy and lipid analysis. The new species, provisionally named Candidatus "Scalindua brodae" and "Scalindua wagneri" considerably extend the biodiversity of the anammox lineage on the 16S rRNA gene level, but otherwise resemble known anammox bacteria. Simultaneously, another new species of the same genus, Candidatus "Scalindua sorokinii", was detected in the water column of the Black Sea, making this genus the most widespread of all anammox bacteria described so far.

  12. [Application and obstacles of ANAMMOX process].

    Science.gov (United States)

    Jin Rencun; Zhang, Zhengzhe; Ji, Yuxin; Chen, Hui; Guo, Qiong; Zhou, Yuhuang; Wu, Conghui; Jin, Rencun

    2014-12-01

    Anaerobic ammonium oxidation (ANAMMOX), as its essential advantages of high efficiency and low cost, is a promising novel biological nitrogen elimination process with attractive application prospects. Over the past two decades, many processes based on the ANAMMOX reaction have been continuously studied and applied to practical engineering, with the perspective of reaching 100 full-scale installations in operation worldwide by 2014. Our review summarizes various forms of ANAMMOX processes, including partial nitritation-ANAMMOX, completely autotrophic nitrogen removal over nitrite, oxygen limited autotrophic nitrification and denitrification, denitrifying ammonium oxidation, aerobic deammonification, simultaneous partial nitrification, ANAMMOX and denitrification, single-stage nitrogen removal using ANAMMOX and partial nitritation. We also compare the operating conditions for one-stage and two-stage processes and summarize the obstacles and countermeasures in engineering application of ANAMMOX systems, such as moving bed biofilm reactor, sequencing batch reactor and granular sludge reactor. Finally, we discuss the future research and application direction, which should focus on the optimization of operating conditions and applicability of the process to the actual wastewater, especially on automated control and the impact of special wastewater composition on process performance.

  13. Removing nitrogen from wastewater with side stream anammox: What are the trade-offs between environmental impacts?

    NARCIS (Netherlands)

    Hauck, M.; Maalcke-Luesken, F.A.; Jetten, M.S.M.; Huijbregts, M.A.J.

    2016-01-01

    Anaerobic ammonium oxidation (anammox) is a novel way to reduce nitrogen in ammonium rich wastewater. Although aquatic eutrophication will certainly be reduced, it is unknown how other environmental impacts may change by including anammox in the treatment of wastewater. Here, life cycle assessment

  14. Characteristics of aerobic and anaerobic ammonium-oxidizing bacteria in the hyporheic zone of a contaminated river.

    Science.gov (United States)

    Wang, Ziyuan; Qi, Yun; Wang, Jun; Pei, Yuansheng

    2012-09-01

    Both β-proteobacterial aerobic ammonium-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (ANAMMOX) bacteria were investigated in the hyporheic zone of a contaminated river in China containing high ammonium levels and low chemical oxygen demand. Fluorescence in-situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and cloning-sequencing were employed in this study. FISH analysis illustrated that AOB (average population of 3.5 %) coexisted with ANAMMOX bacteria (0.7 %). The DGGE profile revealed a high abundance and diversity of bacteria at the water-air-soil interface rather than at the water-soil interface. The redundancy analysis correlated analysis showed that the diversity of ANAMMOX bacteria was positively related to the redox potential. The newly detected sequences of ANAMMOX organisms principally belonged to the genus Candidatus "Brocadia", while most ammonia monooxygenase subunit-A gene amoA sequences were affiliated with Nitrosospira and Nitrosomonas. These results suggest that the water-air-soil interface performs an important function in the nitrogen removal process and that the bioresources of AOB and ANAMMOX bacteria can potentially be utilized for the eutrophication of rivers.

  15. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    Science.gov (United States)

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology

    OpenAIRE

    Lansdown, K.; McKew, B. A.; Whitby, C.; Heppell, C. M.; Dumbrell, A. J.; Binley, Andrew Mark; Olde, L.; Trimmer, Mark

    2016-01-01

    Rivers are an important global sink for excess bioavailable nitrogen: they convert approximately 40% of terrestrial N-runoff per year (~47 Tg) to biologically unavailable N2 gas and return it to the atmosphere.1 Currently, riverine N2 production is conceptualised and modelled as denitrification.2-4 The contribution of anaerobic ammonium oxidation (or anammox), an alternate pathway of N2 production important in marine environments, is not well understood.5,6 Here we use in situ and laboratory ...

  17. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’

    KAUST Repository

    Narita, Yuko

    2017-08-18

    Anaerobic ammonium-oxidation (anammox) is recognized as an important microbial process in the global nitrogen cycle and wastewater treatment. In this study, we successfully enriched a novel anammox bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and the production of hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20 − 45°C with a maximum activity at 37°C. The maximum specific growth rate (μmax) was determined to be 0.0082h−1 at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite with 11.6mM representing the 50% inhibitory concentration (IC50) but no significant inhibition was observed in the presence of formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). Comparative genome analysis revealed that the anammox bacterium enriched in present study shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The bacterium enriched in this study showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its rRNA gene sequences. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.

  18. Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels

    International Nuclear Information System (INIS)

    Tang Chongjian; Zheng Ping; Hu Baolan; Chen Jianwei; Wang Caihua

    2010-01-01

    Both ammonium and nitrite act as substrates as well as potential inhibitors of anoxic ammonium-oxidizing (Anammox) bacteria. To satisfy demand of substrates for Anammox bacteria and to prevent substrate inhibition simultaneously; two strategies, namely high or low substrate concentration, were carefully compared in the operation of two Anammox upflow anaerobic sludge blanket (UASB) reactors fed with different substrate concentrations. The reactor working at relatively low influent substrate concentration (NO 2 - N, 240 mg-N L -1 ) was shown to avoid the inhibition caused by nitrite and free ammonia. Using the strategy of low substrate concentration, a record super high volumetric nitrogen removal rate of 45.24 kg-N m -3 day -1 was noted after the operation of 230 days. To our knowledge, such a high value has not been reported previously. The evidence from transmission electron microscopy (TEM) showed that the morphology and ultrastructure of the Anammox cells in both the reactor enrichments was different.

  19. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge.

    Science.gov (United States)

    Li, Xiang; Huang, Yong; Liu, Heng-Wei; Wu, Chuan; Bi, Wei; Yuan, Yi; Liu, Xin

    2018-02-01

    In recent years, there have been a number of reports on the phenomenon in which ferric iron (Fe(III)) is reduced to ferrous iron [Fe(II)] in anaerobic environments, accompanied by simultaneous oxidation of ammonia to NO 2 - , NO 3 - , or N 2. However, studies on the relevant reaction characteristics and mechanisms are rare. Recently, in research on the effect of Fe(III) on the activity of Anammox sludge, excess ammonia oxidization has also been found. Hence, in the present study, Fe(III) was used to serve as the electron acceptor instead of NO 2 - , and the feasibility and characteristics of Anammox coupled to Fe(III) reduction (termed Feammox) were investigated. After 160days of cultivation, the conversion rate of ammonia in the reactor was above 80%, accompanied by the production of a large amount of NO 3 - and a small amount of NO 2 - . The total nitrogen removal rate was up to 71.8%. Furthermore, quantities of Fe(II) were detected in the sludge fluorescence in situ hybridization (FISH) and denaturated gradient gel electrophoresis (DGGE) analyses further revealed that in the sludge, some Anammox bacteria were retained, and some microbes were enriched during the acclimatization process. We thus deduced that in Anammox sludge, Fe(III) reduction takes place together with ammonia oxidation to NO 2 - and NO 3 - along with the Anammox process. Copyright © 2017. Published by Elsevier B.V.

  20. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process.

    Science.gov (United States)

    Fu, Liang; Ding, Jing; Lu, Yong-Ze; Ding, Zhao-Wei; Zeng, Raymond J

    2017-05-01

    The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO 3 - , NO 2 - , and NH 4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 10 8 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  1. Startup of the Anammox Process in a Membrane Bioreactor (AnMBR) from Conventional Activated Sludge.

    Science.gov (United States)

    Gutwiński, P; Cema, G; Ziembińska-Buczyńska, A; Surmacz-Górska, J; Osadnik, M

    2016-12-01

      In this study, a laboratory-scale anammox process in a membrane bioreactor (AnMBR) was used to startup the anaerobic ammonium oxidation (anammox) process from conventional activated sludge. Stable operation was achieved after 125 days. From that time, nitrogen load was gradually increased. After six months, the average nitrogen removal efficiency exceeded 80%. The highest obtained special anammox activity (SAA) achieved was 0.17 g (-N + -N) (g VSS × d)-1. Fluorescent in situ hybridization also proved the presence of the anammox bacteria, typically a genus of Brocadia anammoxidans and Kuenenia stuttgartiensis.

  2. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin

    NARCIS (Netherlands)

    Russ, L.; Kartal, B.; Op den Camp, H.J.M.; Sollai, M.; Le Bruchec, J.; Caprais, J.-C.; Godfroy, A.; Sinninghe Damsté, J.S.; Jetten, M.S.M.

    2013-01-01

    Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria

  3. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction

    Science.gov (United States)

    Yang, Wendy H.; Weber, Karrie A.; Silver, Whendee L.

    2012-08-01

    The oxidation of ammonium is a key step in the nitrogen cycle, regulating the production of nitrate, nitrous oxide and dinitrogen. In marine and freshwater ecosystems, anaerobic ammonium oxidation coupled to nitrite reduction, termed anammox, accounts for up to 67% of dinitrogen production. Dinitrogen production through anaerobic ammonium oxidation has not been observed in terrestrial ecosystems, but the anaerobic oxidation of ammonium to nitrite has been observed in wetland soils under iron-reducing conditions. Here, we incubate tropical upland soil slurries with isotopically labelled ammonium and iron(III) to assess the potential for anaerobic ammonium oxidation coupled to iron(III) reduction, otherwise known as Feammox, in these soils. We show that Feammox can produce dinitrogen, nitrite or nitrate in tropical upland soils. Direct dinitrogen production was the dominant Feammox pathway, short-circuiting the nitrogen cycle and resulting in ecosystem nitrogen losses. Rates were comparable to aerobic nitrification and to denitrification, the latter being the only other process known to produce dinitrogen in terrestrial ecosystems. We suggest that Feammox could fuel nitrogen losses in ecosystems rich in poorly crystalline iron minerals, with low or fluctuating redox conditions.

  4. Kinetic models for nitrogen inhibition in ANAMMOX and nitrification process on deammonification system at room temperature.

    Science.gov (United States)

    De Prá, Marina C; Kunz, Airton; Bortoli, Marcelo; Scussiato, Lucas A; Coldebella, Arlei; Vanotti, Matias; Soares, Hugo M

    2016-02-01

    In this study were fitted the best kinetic model for nitrogen removal inhibition by ammonium and/or nitrite in three different nitrogen removal systems operated at 25 °C: a nitrifying system (NF) containing only ammonia oxidizing bacteria (AOB), an ANAMMOX system (AMX) containing only ANAMMOX bacteria, and a deammonification system (DMX) containing both AOB and ANAMMOX bacteria. NF system showed inhibition by ammonium and was best described by Andrews model. The AMX system showed a strong inhibition by nitrite and Edwards model presented a best system representation. For DMX system, the increased substrate concentration (until 1060 mg NH3-N/L) tested was not limiting for the ammonia consumption rate and the Monod model was the best model to describe this process. The AOB and ANAMMOX sludges combined in the DMX system displayed a better activity, substrate affinity and excellent substrate tolerance than in nitrifying and ANAMMOX process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Molecular diversity and distribution of anammox community in sediments of the Dongjiang River, a drinking water source of Hong Kong.

    Science.gov (United States)

    Sun, W; Xu, M-Y; Wu, W-M; Guo, J; Xia, C-Y; Sun, G-P; Wang, A-J

    2014-02-01

    The aim of this study was to characterize anaerobic ammonium oxidation (anammox) community in sediments of the Dongjiang River, a drinking water source of Hong Kong. The diversity and distribution of the anammox community were investigated based on a comparative analyses of 16S rRNA and hydrazine oxidation (hzo) genes of anammox bacteria. Candidatus Brocadia and two new anammox bacterial clusters were detected based on phylogenetic analysis of 16S rRNA genes. In contrast, the targeting of hzo genes indicated the presence of only Candidatus Jettenia with four different clusters. It was found that the sequence diversities of hzo genes were higher than those of the 16S rRNA genes. The abundance of anammox bacteria varied significantly among the sediment samples based on qPCR. Pearson correlation analysis indicated that nitrite concentration was the key factor influencing the abundance of anammox bacteria. The redundance analysis (RDA) confirmed that the combination of the contents of nitrite and nitrate, and the ratio of total nitrogen vs total carbon (TN/TC) had significant impact on the anammox bacterial community structure. The results revealed that the diverse anammox bacteria were present in sediments of the Dongjiang River, and the community structures were associated with varied environmental factors caused by urban pollutant invasion. This is the first report about the distribution of anammox bacterial community in sediments of the Dongjiang River, which provides helpful information of anammox niche specificity and influencing factors in the river ecosystem. © 2013 The Society for Applied Microbiology.

  6. Nitrogen Removal from Digested Black Water by One-stage Partial Nitritation and Anammox

    DEFF Research Database (Denmark)

    Vlaeminck, S.E.; Terada, Akihiko; Smets, Barth F.

    2009-01-01

    anammox activity and sufficient buffering capacity, respectively. Quantitative FISH showed that aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB) made up 43 and 8% of the biofilm, respectively. Since a part of the AerAOB was probably present in anoxic biofilm zones, their specific ammonium...

  7. Enhanced nitrogen removal from pharmaceutical wastewater using SBA-ANAMMOX process.

    Science.gov (United States)

    Tang, Chong-Jian; Zheng, Ping; Chen, Ting-Ting; Zhang, Ji-Qiang; Mahmood, Qaisar; Ding, Shuang; Chen, Xiao-Guang; Chen, Jian-Wei; Wu, Da-Tian

    2011-01-01

    Efficient biological nitrogen removal from pharmaceutical wastewater has been focused recently. The present study dealt with the treatment of colistin sulfate and kitasamycin manufacturing wastewater through anaerobic ammonium oxidation (ANAMMOX). The biotoxicity assay on luminescent bacterium Photobacterium phosphoreum (T3 mutation) showed that the pharmaceutical wastewater imparted severe toxicity with a relative luminosity of 3.46% ± 0.45%. During long-term operation, the cumulative toxicity from toxic pollutants in wastewater resulted in the performance collapse of conventional ANAMMOX process. A novel ANAMMOX process with sequential biocatalyst (ANAMMOX granules) addition (SBA-ANAMMOX process) was developed by combining high-rate ANAMMOX reactor with sequential biocatalyst addition (SBA). At biocatalyst addition rate of 0.025 g VSS (L wastewater)(-1) day(-1), the nitrogen removal rate of the process reached up to 9.4 kg N m(-3) day(-1) in pharmaceutical wastewater treatment. The effluent ammonium concentration was lower than 50 mg N L(-1), which met the Discharge Standard of Water Pollutants for Pharmaceutical Industry in China (GB 21903-2008). The application of SBA-ANAMMOX process in refractory ammonium-rich wastewater is promising. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Activity, Microenvironments, and Community Structure of Aerobic and Anaerobic Ammonium Oxidizing Prokaryotes in Estuarine Sediment (Randers Fjord, DK)

    DEFF Research Database (Denmark)

    Schramm, Andreas; Revsbech, Niels Peter; Dalsgaard, Tage

    2006-01-01

    stations where it accounted for 5-16% of the total N2 production and 0.1-0.25% of the total prokaryotic population. These numbers result in cell-specific anammox rates of about 6 fmol N day-1, comparable to literature values. Anammox cells occurred mainly in clusters and were related to the candidate genus......ACTIVITY, MICROENVIRONMENTS, AND COMMUNITY STRUCTURE OF AEROBIC AND ANAEROBIC AMMONIUM OXIDIZING PROKARYOTES IN ESTUARINE SEDIMENT (RANDERS FJORD, DK) A. Schramm 1, N.P. Revsbech 1, T. Dalsgaard 2, E. Piña-Ochoa 3, J. de la Torré 4, D.A. Stahl 4, N. Risgaard-Petersen 2 1 Department of Biological...

  9. The content of trace element iron is a key factor for competition between anaerobic ammonium oxidation and methane-dependent denitrification processes.

    Science.gov (United States)

    Lu, Yong-Ze; Fu, Liang; Li, Na; Ding, Jing; Bai, Ya-Nan; Samaras, Petros; Zeng, Raymond Jianxiong

    2018-05-01

    Coupling of anaerobic ammonium oxidation (Anammox) with denitrifying anaerobic methane oxidation (DAMO) is a sustainable pathway for nitrogen removal and reducing methane emissions from wastewater treatment processes. However, studies on the competitive relation between Anammox bacteria and DAMO bacteria are limited. Here, we investigated the effects of variations in the contents of trace element iron on Anammox and DAMO microorganisms. The short-term results indicated that optimal concentrations of iron, which obviously stimulated the activity of Amammox bacteria, DAMO bacteria and DAMO archaea, were 80, 20, and 80 μM, respectively. The activity of Amammox bacteria increased more significant than DAMO bacteria with increasing contents of trace element iron. After long-term incubation with high content of trace element iron of 160 μM in the medium, Candidatus Brocadia (Amammox bacteria) outcompeted Candidatus Methylomirabilis oxyfera (DAMO bacteria), and ANME-2d (DAMO archaea) remarkably increased in number and dominated the co-culture systems (64.5%). Meanwhile, with further addition of iron, the removal rate of ammonium and nitrate increased by 13.6 and 9.2 times, respectively, when compared with that noted in the control. As far as we know, this study is the first to explore the important role of trace element iron contents in the competition between Anammox bacteria and DAMO bacteria and further enrichment of DAMO archaea by regulating the contents of trace element iron. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Occurrence, activity and contribution of anammox in some freshwater extreme environments.

    Science.gov (United States)

    Zhu, Guibing; Xia, Chao; Shanyun, Wang; Zhou, Leiliu; Liu, Lu; Zhao, Siyan

    2015-12-01

    Anaerobic ammonium oxidation (anammox) widely occurs in marine ecosystems, and it plays an important role in the global nitrogen cycle. But in freshwater ecosystems its occurrence, distribution and contribution, especially in extreme environments, are still not well known. In this study, anammox process was investigated in some extreme environments of freshwater ecosystems, such as those with high (above 75°C) and low (below -35°C) temperature, high (pH > 8) and low (pH  300 mg kg(-1) ). The polymerase chain reaction (PCR) screening results showed that anammox bacteria were widespread in the examined sediments from freshwater extreme environments. Quantitative PCR showed that the abundance of anammox bacteria ranged from 6.94 × 10(4) to 8.05 × 10(6) hydrazine synthase (hzsB) gene copies g(-1) dry soil. (15) N-labelled incubation experiments indicated the occurrence of anammox in all examined sediments and the potential anammox rates ranged from 0.02 to 6.24 nmol N g(-1)  h(-1) , with a contribution of 3.45-58.74% of the total N2 production. In summary, these results demonstrate the occurrence of anammox in these extreme environments, inferring that anammox may harbour a wide ecological niche in the freshwater ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Optimization of three FISH procedures for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment.

    Science.gov (United States)

    Pavlekovic, Marko; Schmid, Markus C; Schmider-Poignee, Nadja; Spring, Stefan; Pilhofer, Martin; Gaul, Tobias; Fiandaca, Mark; Löffler, Frank E; Jetten, Mike; Schleifer, K-H; Lee, Natuschka M

    2009-08-01

    Fluorescence in situ hybridization (FISH) using fluorochrome-labeled DNA oligonucleotide probes has been successfully applied for in situ detection of anaerobic ammonium oxidizing (anammox) bacteria. However, application of the standard FISH protocols to visualize anammox bacteria in biofilms from a laboratory-scale wastewater reactor produced only weak signals. Increased signal intensity was achieved either by modifying the standard FISH protocol, using peptide nucleic acid probes (PNA FISH), or applying horse radish peroxidase- (HRP-) labeled probes and subsequent catalyzed reporter deposition (CARD-FISH). A comparative analysis using anammox biofilm samples and suspended anammox biomass from different laboratory wastewater bioreactors revealed that the modified standard FISH protocol and the PNA FISH probes produced equally strong fluorescence signals on suspended biomass, but only weak signals were obtained with the biofilm samples. The probe signal intensities in the biofilm samples could be enhanced by enzymatic pre-treatment of fixed cells, and by increasing the hybridization time of the PNA FISH protocol. CARD-FISH always produced up to four-fold stronger fluorescent signals but unspecific fluorescence signals, likely caused by endogenous peroxidases as reported in several previous studies, compromised the results. Interference of the development of fluorescence intensity with endogenous peroxidases was also observed in cells of aerobic ammonium oxidizers like Nitrosomonas europea, and sulfate-reducers like Desulfobacter postgatei. Interestingly, no interference was observed with other peroxidase-positive microorganisms, suggesting that CARD-FISH is not only compromised by the mere presence of peroxidases. Pre-treatment of cells to inactivate peroxidase with HCl or autoclavation/pasteurization failed to inactive peroxidases, but H(2)O(2) significantly reduced endogenous peroxidase activity. However, for optimal inactivation, different H(2)O(2

  12. Novel anammox bacteria and nitrogen loss from Lake Superior

    DEFF Research Database (Denmark)

    Crowe, Sean A.; Treusch, Alexander H.; Forth, Michael

    2017-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria own a central position in the global N-cycle, as they have the ability to oxidize NH4 + to N2 under anoxic conditions using NO2 -. They are responsible for up to 50% of all N2 released from marine ecosystems into the atmosphere and are thus...... indispensible for balancing the activity of N-fixing bacteria and completing the marine N-cycle. The contribution, diversity, and impact of anammox bacteria in freshwater ecosystems, however, is largely unknown, confounding assessments of their role in the global N-cycle. Here we report the activity...... within Lake Superior and those described from other locations. Our data thus reveal that novel anammox bacteria underpin N-loss from Lake Superior, and if more broadly distributed across inland waters would play an important role in continental N-cycling and mitigation of fixed nitrogen transfer from...

  13. Aeration Strategies To Mitigate Nitrous Oxide Emissions from Single-Stage Nitritation/Anammox Reactors

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Mutlu, A. Gizem; Jensen, Marlene Mark

    2014-01-01

    Autotrophic nitrogen removal is regarded as a resource efficient process to manage nitrogen-rich residual streams. However, nitrous oxide emissions of these processes are poorly documented and strategies to mitigate emissions unknown. In this study, two sequencing batch reactors performing single......-stage nitritation/anammox were operated under different aeration strategies, gradually adjusted over six months. At constant but limiting oxygen loading, synthetic reject water was fed (0.75g-N/L.d) and high nitrogen removal efficiencies (83 +/- 5 and 88 +/- 2%) obtained. Dynamics of liquid phase nitrous (N2O......) and nitric oxide (NO) concentrations were monitored and N2O emissions calculated. Significant decreases in N2O emissions were obtained when the frequency of aeration was increased while maintaining a constant air flow rate (from >6 to 1.7% Delta N2O/Delta TN). However, no significant effect on the emissions...

  14. Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels

    Energy Technology Data Exchange (ETDEWEB)

    Tang Chongjian [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Zheng Ping, E-mail: pzheng@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Hu Baolan; Chen Jianwei; Wang Caihua [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)

    2010-09-15

    Both ammonium and nitrite act as substrates as well as potential inhibitors of anoxic ammonium-oxidizing (Anammox) bacteria. To satisfy demand of substrates for Anammox bacteria and to prevent substrate inhibition simultaneously; two strategies, namely high or low substrate concentration, were carefully compared in the operation of two Anammox upflow anaerobic sludge blanket (UASB) reactors fed with different substrate concentrations. The reactor working at relatively low influent substrate concentration (NO{sub 2}{sup -}N, 240 mg-N L{sup -1}) was shown to avoid the inhibition caused by nitrite and free ammonia. Using the strategy of low substrate concentration, a record super high volumetric nitrogen removal rate of 45.24 kg-N m{sup -3} day{sup -1} was noted after the operation of 230 days. To our knowledge, such a high value has not been reported previously. The evidence from transmission electron microscopy (TEM) showed that the morphology and ultrastructure of the Anammox cells in both the reactor enrichments was different.

  15. Denitrification synergized with ANAMMOX for the anaerobic degradation of benzene: performance and microbial community structure.

    Science.gov (United States)

    Peng, Shuchan; Zhang, Lilan; Zhang, DaiJun; Lu, Peili; Zhang, Xiaoting; He, Qiang

    2017-05-01

    To evaluate the effect of anaerobic ammonium oxidation (ANAMMOX) on benzene degradation under denitrification, a sequencing batch reactor (SBR) under denitrification synergized with ANAMMOX (SBR-DenAna) for benzene degradation was established by inoculating anaerobic ammonium-oxidizing bacteria (AnAOB) into a SBR under denitrification reactor (SBR-Den) for benzene degradation. The average rate of benzene degradation and the maximum first-order kinetic constant in SBR-DenAna were 2.34- and 1.41-fold those in SBR-Den, respectively, indicating that ANAMMOX improved the degradation of benzene under denitrification synergized with ANAMMOX. However, the average rate of benzene degradation decreased by 35% in the denitrification-ANAMMOX synergistic reactor when 10 mg N L -1 NO 2 - was added; the rate recovered once NO 2 - was depleted, indicating that ANAMMOX might detoxify NO 2 - . Results from high-throughput sequencing analysis revealed that Azoarcus within the family Rhodocyclaceae might be associated with benzene degradation in the two SBRs. AnAOB affiliated with the family Candidatus Brocadiaceae were just detected in SBR-DenAna.

  16. Development of a fixed-bed anammox reactor with high treatment potential.

    Science.gov (United States)

    Okamoto, Hiroyuki; Kawamura, Kimito; Nishiyama, Takashi; Fujii, Takao; Furukawa, Kenji

    2013-02-01

    A plug-flow type anaerobic ammonium oxidation (anammox) reactor was developed using malt ceramics (MC) produced from carbonized spent grains as the biomass carriers for anammox sludge. Partial nitrified effluent of the filtrate from the sludge dehydrator of a brewery company was used as influent to a 20 L anammox reactor using MC. An average volumetric nitrogen removal rate (VNR) of 8.78 kg-N/m(3)/day was maintained stably for 76 days with 1 h of HRT. In a larger anammox reactor (400 L), an average VNR of 4.84 kg-N/m(3)/day could be maintained for 86 days during the treatment of low strength synthetic inorganic wastewater. As a result of bacterial community analysis for the 20 L anammox reactor, Asahi BRW1, probably originating from the wastewater collected at Asahi Breweries, was detected as the dominant anammox bacterium. These anammox reactors were characterized by a high NH(4)-N removal capacity for low strength wastewater with a short hydraulic retention time.

  17. Combined SHARON and ANAMMOX processes for ammoniacal nitrogen stabilisation in landfill bioreactors.

    Science.gov (United States)

    Sri Shalini, S; Joseph, Kurian

    2018-02-01

    Stabilisation of ammoniacal nitrogen from solid waste and leachate significantly improved by combining novel processes like SHARON (single reactor system for high activity ammonia removal over nitrite) and ANAMMOX (anaerobic ammonium oxidation) with advantages of lower carbon requirements, aeration and N 2 O emissions. This paper deals with establishing combined SHARON-ANAMMOX processes in situ pilot-scale landfill bioreactors (LFBR). Molecular analysis in LFBR with changes in nitrogen, hydrazine, hydroxylamine confirmed aerobic and anaerobic ammonium oxidising bacteria (AOB & ANAMMOX) as key players in SHARON-ANAMMOX processes. In situ SHARON-ANAMMOX process was established in LFBR with total nitrogen and ammoniacal nitrogen removal efficiency of 84% and 71%, respectively at NLR of 1.2 kgN/m 3 /d in 147 d, compared to ammoniacal nitrogen removal of 49% at NLR of 1.0 kgNH 4 -N/m 3 /d in 336 d feasible in Control LFBR. Nitrogen massbalance demonstrated in situ SHARON-ANAMMOX advantageous than control LFBR with higher nitrogen transformation to N 2 (50.8%) and lower residual nitrogen in solid waste (7.7%). Copyright © 2017. Published by Elsevier Ltd.

  18. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation].

    Science.gov (United States)

    Liu, Zheng-chuan; Yuan, Lin-jiang; Zhou, Guo-biao; Li, Jing

    2015-09-01

    The transformation of nitrite-reducing anaerobic ammonium oxidation to sulfate-reducing anaerobic ammonium oxidation in an UASB was performed and the changes in microbial community were studied. The result showed that the sulfate reducing anaerobic ammonium oxidation process was successfully accomplished after 177 days' operation. The removal rate of ammonium nitrogen and sulfate were up to 58. 9% and 15. 7%, the removing load of ammonium nitrogen and sulfate were 74. 3 mg.(L.d)-1 and 77. 5 mg.(L.d)-1 while concentration of ammonium nitrogen and sulfate of influent were 130 mg.(L.d)-1 and 500 mg.(L.d)-1, respectively. The lost nitrogen and sulphur was around 2 in molar ratio. The pH value of the effluent was lower than that of the influent. Instead of Candidatus brocadia in nitrite reducing anaerobic ammonium oxidation granular sludge, Bacillus benzoevorans became the dominant species in sulfate reducing anaerobic ammonium oxidation sludge. The dominant bacterium in the two kinds of anaerobic ammonium oxidation process is different. Our results imply that the two anaerobic ammonium oxidation processes are carried out by different kind of bacterium.

  19. Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater.

    Science.gov (United States)

    Rikmann, Ergo; Zekker, Ivar; Tomingas, Martin; Tenno, Taavo; Menert, Anne; Loorits, Liis; Tenno, Toomas

    2012-07-01

    After sulfate-reducing ammonium oxidation (SRAO) was first assumed in 2001, several works have been published describing this process in laboratory-scale bioreactors or occurring in the nature. In this paper, the SRAO process was performed using reject water as a substrate for microorganisms and a source of NH(4) (+), with SO(4) (2-) being added as an electron acceptor. At a moderate temperature of 20°C in a moving bed biofilm reactor (MBBR) sulfate reduction along with ammonium oxidation were established. In an upflow anaerobic sludge blanket reactor (UASBR) the SRAO process took place at 36°C. Average volumetric TN removal rates of 0.03 kg-N/m³/day in the MBBR and 0.04 kg-N/m³/day in the UASBR were achieved, with long-term moderate average removal efficiencies, respectively. Uncultured bacteria clone P4 and uncultured planctomycete clone Amx-PAn30 were detected from the biofilm of the MBBR, from sludge of the UASBR uncultured Verrucomicrobiales bacterium clone De2102 and Uncultured bacterium clone ATB-KS-1929 were found also. The stoichiometrical ratio of NH(4) (+) removal was significantly higher than could be expected from the extent of SO(4) (2-) reduction. This phenomenon can primarily be attributed to complex interactions between nitrogen and sulfur compounds and organic matter present in the wastewater. The high NH(4) (+) removal ratio can be attributed to sulfur-utilizing denitrification/denitritation providing the evidence that SRAO is occurring independently and is not a result of sulfate reduction and anammox. HCO(3) (-) concentrations exceeding 1,000 mg/l were found to have an inhibiting effect on the SRAO process. Small amounts of hydrazine were naturally present in the reaction medium, indicating occurrence of the anammox process. Injections of anammox intermediates, hydrazine and hydroxylamine, had a positive effect on SRAO process performance, particularly in the case of the UASBR.

  20. Microbial Aggregate and Functional Community Distribution in a Sequencing Batch Reactor with Anammox Granules

    KAUST Repository

    Sun, Shan

    2013-05-01

    Anammox (anaerobic ammonium oxidation) process is a one-step conversion of ammonia into nitrogen gas with nitrite as an electron acceptor. It has been developed as a sustainable technology for ammonia removal from wastewater in the last decade. For wastewater treatment, anammox biomass was widely developed as microbial aggregate where the conditions for enrichment of anammox community must be delicately controlled and growth of other bacteria especially NOB should be suppressed to enhance nitrogen removal efficiency. Little is known about the distribution of microbial aggregates in anammox process. Thus the objective of our study was to assess whether segregation of biomass occurs in granular anammox system. In this study, a laboratory-scale sequential batch reactor (SBR) was successfully operated for a period of 80 days with granular anammox biomass. Temporal and spatial distribution of microbial aggregates was studied by particle characterization system and the distribution of functional microbial communities was studied with qPCR and 16s rRNA amplicon pyrosequencing. Our study revealed the spatial and temporal distribution of biomass aggregates based on their sizes and density. Granules (>200 μm) preferentially accumulated in the bottom of the reactor while floccules (30-200 μm) were relatively rich at the top layer. The average density of aggregate was higher at the bottom than the density of those at the top layer. Degranulation caused by lack of hydrodynamic shear force in the top layer was considered responsible for this phenomenon. NOB was relatively rich in the top layer while percentage of anammox population was higher at the bottom, and anammox bacteria population gradually increased over a period of time. NOB growth was supposed to be associated with the increase of floccules based on the concurrent occurrence. Thus, segregation of biomass can be utilized to develop an effective strategy to enrich anammox and wash out NOB by shortening the settling

  1. Metal-free catalytic oxidation of sulfides to sulfoxides with ammonium nitrate, ammonium hydrogen sulfate and ammonium bromide as catalyst

    OpenAIRE

    Ghorbani-Choghamarani, Arash; Zolfigol, Mohammad Ali; Ayazi-Nasrabadi, Roia

    2010-01-01

    A general and metal-free catalytic oxidation of aliphatic and aromatic sulfides to their corresponding sulfoxides via combination of ammonium nitrate (NH4NO3), supported ammonium hydrogen sulfate on silica gel (NH4HSO4-SiO2) and a catalytic amount of ammonium bromide (NH4Br) in the presence of wet SiO2 (50%, w/w) has been investigated. The reactions were carried out heterogeneously and selectively in short reaction times in CH2Cl2 at room temperature. This protocol is mild and efficient compa...

  2. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones.

    Science.gov (United States)

    Woebken, Dagmar; Lam, Phyllis; Kuypers, Marcel M M; Naqvi, S Wajih A; Kartal, Boran; Strous, Marc; Jetten, Mike S M; Fuchs, Bernhard M; Amann, Rudolf

    2008-11-01

    The anaerobic oxidation of ammonium (anammox) contributes significantly to the global loss of fixed nitrogen and is carried out by a deep branching monophyletic group of bacteria within the phylum Planctomycetes. Various studies have implicated anammox to be the most important process responsible for the nitrogen loss in the marine oxygen minimum zones (OMZs) with a low diversity of marine anammox bacteria. This comprehensive study investigated the anammox bacteria in the suboxic zone of the Black Sea and in three major OMZs (off Namibia, Peru and in the Arabian Sea). The diversity and population composition of anammox bacteria were investigated by both, the 16S rRNA gene sequences and the 16S-23S rRNA internal transcribed spacer (ITS). Our results showed that the anammox bacterial sequences of the investigated samples were all closely related to the Candidatus Scalindua genus. However, a greater microdiversity of marine anammox bacteria than previously assumed was observed. Both phylogenetic markers supported the classification of all sequences in two distinct anammox bacterial phylotypes: Candidatus Scalindua clades 1 and 2. Scalindua 1 could be further divided into four distinct clusters, all comprised of sequences from either the Namibian or the Peruvian OMZ. Scalindua 2 consisted of sequences from the Arabian Sea and the Peruvian OMZ and included one previously published 16S rRNA gene sequence from Lake Tanganyika and one from South China Sea sediment (97.9-99.4% sequence identity). This cluster showed only anammox bacteria of Scalindua clade 2 represent a novel anammox bacterial species, for which the name Candidatus Scalindua arabica is proposed. As sequences of this new cluster were found in the Arabian Sea, the Peruvian OMZ, in Lake Tanganyika and in South China sediment, we assume a global distribution of Candidatus Scalindua arabica as it is observed for Candidatus Scalindua sorokinii/brodae (or Scalindua clade 1).

  3. ANAMMOX process start up and stabilization with an anaerobic seed in Anaerobic Membrane Bioreactor (AnMBR).

    Science.gov (United States)

    Suneethi, S; Joseph, Kurian

    2011-10-01

    ANaerobic AMMonium OXidation (ANAMMOX) process, an advanced biological nitrogen removal alternative to traditional nitrification--denitrification removes ammonia using nitrite as the electron acceptor without oxygen. The feasibility of enriching anammox bacteria from anaerobic seed culture to start up an Anaerobic Membrane Bioreactor (AnMBR) for N-removal is reported in this paper. The Anammox activity was established in the AnMBR with anaerobic digester seed culture from a Sewage Treatment Plant in batch mode with recirculation followed by semi continuous process and continuous modes of operation. The AnMBR performance under varying Nitrogen Loading Rates (NLR) and HRTs is reported for a year, in terms of nitrogen transformations to ammoniacal nitrogen, nitrite and nitrate along with hydrazine and hydroxylamine. Interestingly ANAMMOX process was evident from simultaneous Amm-N and nitrite reduction, consistent nitrate production, hydrazine and hydroxylamine presence, notable organic load reduction and bicarbonate consumption. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Concurrent Activity of Anammox and Denitrifying Bacteria in the Black Sea

    OpenAIRE

    John B. Kirkpatrick; John B. Kirkpatrick; Clara A. Fuchsman; Evgeniy eYakushev; James T. Staley; James W. Murray

    2012-01-01

    After the discovery of ANaerobic AMMonium OXidation (anammox) in the Black Sea in 2003, the role of heterotrophic denitrification as the main marine pathway for fixed N loss was questioned. A 3 part, 15 month time series investigating Black Sea nitrite reductase (nirS) mRNA transcripts at a single location was conducted in order to better understand the activity of anammox and denitrifying bacteria. Here we show that both of these groups were active, as well as being concurrent in the lower s...

  5. Concurrent activity of anammox and denitrifying bacteria in the Black Sea

    OpenAIRE

    Kirkpatrick, John B.; Fuchsman, Clara A.; Yakushev, Evgeniy; Staley, James T.; Murray, James W.

    2012-01-01

    After the discovery of ANaerobic AMMonium OXidation (anammox) in the environment, the role of heterotrophic denitrification as the main marine pathway for fixed N loss has been questioned. A 3 part, 15 month time series investigating nitrite reductase (nirS) mRNA transcripts at a single location in the Black Sea was conducted in order to better understand the activity of anammox and denitrifying bacteria. Here we show that both of these groups were active, as well as being concurrent in the l...

  6. Nitrogen Removal by Anammox Biofilm Column Reactor at Moderately Low Temperature

    Directory of Open Access Journals (Sweden)

    Tuty Emilia Agustina

    2017-10-01

    Full Text Available The anaerobic ammonium oxidation (anammox as a new biological approach for nitrogen removal has been considered to be more cost-effective compared with the combination of nitrification and denitrification process. However, the anammox bioreactors are mostly explored at high temperature (>300C in which temperature controlling system is fully required. This research was intended to develop and to apply anammox process for high nitrogen concentration removal at ambient temperature used for treating wastewater in tropical countries. An up-flow biofilm column reactor, which the upper part constructed with a porous polyester non-woven fabric material as a carrier to attach the anammox bacteria was operated without heating system. A maximum nitrogen removal rate (NRR of 1.05 kg-N m3 d-1 was reached in the operation days of 178 with a Total Nitrogen (TN removal efficiency of 74%. This showed the biofilm column anammox reactor was successfully applied to moderate high nitrogen removal from synthetic wastewater at moderately low temperature. Keywords: Anammox, biofilm column reactor, ambient temperature, nitrogen removal

  7. Impact of reactor configuration on anammox process start-up: MBR versus SBR.

    Science.gov (United States)

    Tao, Yu; Gao, Da-Wen; Fu, Yuan; Wu, Wei-Min; Ren, Nan-Qi

    2012-01-01

    Anaerobic ammonium oxidation (anammox) is an energy saving biological nitrogen removal process which was limited to slow growth rate of anammox bacteria during start-up period. This study investigated the start-up of anammox process by a laboratory sequential batch reactor (SBR) for 218 days and subsequently modified the reactor as a membrane bioreactor (MBR) for 178 days. Modification of a SBR as MBR with installation of an external membrane module resulted in acceleration of specific anammox activity by 19 times. The acceleration of specific anammox activity with MBR was further confirmed by starting-up another MBR for a 242 day period. Molecular microbial analyses showed that Candidatus "Brocadia anammoxidans" and Candidatus "Kuenenia stuttgartiensis" were the dominant species in the inocula and biomass developed in the reactor. The start-up with MBR appeared to be more effective than SBR for the enrichment of anammox bacteria due to high sludge retention property of MBR configuration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Molecular detection of Candidatus Scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China.

    Directory of Open Access Journals (Sweden)

    Hongyue Dang

    Full Text Available The Bohai Sea is a large semi-enclosed shallow water basin, which receives extensive river discharges of various terrestrial and anthropogenic materials such as sediments, nutrients and contaminants. How these terrigenous inputs may influence the diversity, community structure, biogeographical distribution, abundance and ecophysiology of the sediment anaerobic ammonium oxidation (anammox bacteria was unknown. To answer this question, an investigation employing both 16S rRNA and hzo gene biomarkers was carried out. Ca. Scalindua bacteria were predominant in the surface sediments of the Bohai Sea, while non-Scalindua anammox bacteria were also detected in the Yellow River estuary and inner part of Liaodong Bay that received strong riverine and anthropogenic impacts. A novel 16S rRNA gene sequence clade was identified, putatively representing an anammox bacterial new candidate species tentatively named "Ca. Scalindua pacifica". Several groups of environmental factors, usually with distinct physicochemical or biogeochemical natures, including general marine and estuarine physicochemical properties, availability of anammox substrates (inorganic N compounds, alternative reductants and oxidants, environmental variations caused by river discharges and associated contaminants such as heavy metals, were identified to likely play important roles in influencing the ecology and biogeochemical functioning of the sediment anammox bacteria. In addition to inorganic N compounds that might play a key role in shaping the anammox microbiota, organic carbon, organic nitrogen, sulfate, sulfide and metals all showed the potentials to participate in the anammox process, releasing the strict dependence of the anammox bacteria upon the direct availability of inorganic N nutrients that might be limiting in certain areas of the Bohai Sea. The importance of inorganic N nutrients and certain other environmental factors to the sediment anammox microbiota suggests that these

  9. Molecular Detection of Candidatus Scalindua pacifica and Environmental Responses of Sediment Anammox Bacterial Community in the Bohai Sea, China

    Science.gov (United States)

    Dang, Hongyue; Zhou, Haixia; Zhang, Zhinan; Yu, Zishan; Hua, Er; Liu, Xiaoshou; Jiao, Nianzhi

    2013-01-01

    The Bohai Sea is a large semi-enclosed shallow water basin, which receives extensive river discharges of various terrestrial and anthropogenic materials such as sediments, nutrients and contaminants. How these terrigenous inputs may influence the diversity, community structure, biogeographical distribution, abundance and ecophysiology of the sediment anaerobic ammonium oxidation (anammox) bacteria was unknown. To answer this question, an investigation employing both 16S rRNA and hzo gene biomarkers was carried out. Ca. Scalindua bacteria were predominant in the surface sediments of the Bohai Sea, while non-Scalindua anammox bacteria were also detected in the Yellow River estuary and inner part of Liaodong Bay that received strong riverine and anthropogenic impacts. A novel 16S rRNA gene sequence clade was identified, putatively representing an anammox bacterial new candidate species tentatively named “Ca. Scalindua pacifica”. Several groups of environmental factors, usually with distinct physicochemical or biogeochemical natures, including general marine and estuarine physicochemical properties, availability of anammox substrates (inorganic N compounds), alternative reductants and oxidants, environmental variations caused by river discharges and associated contaminants such as heavy metals, were identified to likely play important roles in influencing the ecology and biogeochemical functioning of the sediment anammox bacteria. In addition to inorganic N compounds that might play a key role in shaping the anammox microbiota, organic carbon, organic nitrogen, sulfate, sulfide and metals all showed the potentials to participate in the anammox process, releasing the strict dependence of the anammox bacteria upon the direct availability of inorganic N nutrients that might be limiting in certain areas of the Bohai Sea. The importance of inorganic N nutrients and certain other environmental factors to the sediment anammox microbiota suggests that these bacteria were

  10. Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor

    KAUST Repository

    Ali, Muhammad

    2016-06-16

    Nitrous oxide (N2O) production pathway in a signal-stage nitritation-anammox sequencing batch reactor (SBR) was investigated based on a multilateral approach including real-time N2O monitoring, N2O isotopic composition analysis, and in-situ analyses of spatial distribution of N2O production rate and microbial populations in granular biomass. N2O emission rate was high in the initial phase of the operation cycle and gradually decreased with decreasing NH4+ concentration. The average emission of N2O was 0.98 ± 0.42% and 1.35 ± 0.72% of the incoming nitrogen load and removed nitrogen, respectively. The N2O isotopic composition analysis revealed that N2O was produced via NH2OH oxidation and NO2− reduction pathways equally, although there is an unknown influence from N2O reduction and/or anammox N2O production. However, the N2O isotopomer analysis could not discriminate the relative contribution of nitrifier denitrification and heterotrophic denitrification in the NO2− reduction pathway. Various in-situ techniques (e.g. microsensor measurements and FISH (fluorescent in-situ hybridization) analysis) were therefore applied to further identify N2O producers. Microsensor measurements revealed that approximately 70% of N2O was produced in the oxic surface zone, where nitrifiers were predominantly localized. Thus, NH2OH oxidation and NO2 reduction by nitrifiers (nitrifier-denitrification) could be responsible for the N2O production in the oxic zone. The rest of N2O (ca. 30%) was produced in the anammox bacteria-dominated anoxic zone, probably suggesting that NO2− reduction by coexisting putative heterotrophic denitrifiers and some other unknown pathway(s) including the possibility of anammox process account for the anaerobic N2O production. Further study is required to identify the anaerobic N2O production pathways. Our multilateral approach can be useful to quantitatively examine the relative contributions of N2O production pathways. Good understanding of the key N2O

  11. Studies on a Novel Actinobacteria Species Capable of Oxidizing Ammonium under Iron Reduction Conditions

    Science.gov (United States)

    Huanh, Shan; Ruiz-Urigüen, Melany; Jaffe, Peter R.

    2014-05-01

    Ammonium (NH4+) oxidation coupled to iron reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) was noted in a forested riparian wetland in New Jersey (1,2), and in tropical rainforest soils (3), and was coined Feammox (4). Through a 180-days anaerobic incubation of soil samples collected at the New Jersey site, and using 16S rDNA PCR-DGGE, 454-pyosequecing, and qPCR analysis, we have shown that an Acidimicrobiaceae bacterium A6, belonging to the phylum Actinobacteria, is responsible for this Feammox process, described previously (1,2). We have enriched these Feammox bacteria in a high efficiency Feammox membrane reactor (with 85% NH4+removal per 48h), and isolated the pure Acidimicrobiaceae bacterium A6 strain 5, in an autotrophic medium. To determine if the Feammox bacteria found in this study are common, at least at the regional scale, we analyzed a series of local wetland-, upland-, as well as storm-water detention pond-sediments. Through anaerobic incubations and molecular biology analysis, the Feammox reaction and Acidimicrobiaceae bacterium A6 were found in three of twenty soil samples collected, indicating that the Feammox pathway might be widespread in selected soil environments. Results show that soil pH and Fe(III) content are key environmental factors controlling the distributions of Feammox bacteria, which require acidic conditions and the presence of iron oxides. Results from incubation experiments conducted at different temperatures have shown that, in contrast to another anaerobic ammonium oxidation pathways (e.g., anammox), the optimal temperature of the Feammox process is ~ 20° and that the organisms are still active when the temperature is around 10°. An incubation experiment amended with acetylene gas (C2H2) as a selected inhibitor showed that in the Feammox reaction, Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+is the electron donor, which is oxidized to NO2-. After this process, NO2- is converted to

  12. [Rapid startup and nitrogen removal characteristic of anaerobic ammonium oxidation reactor in packed bed biofilm reactor with suspended carrier].

    Science.gov (United States)

    Chen, Sheng; Sun, De-zhi; Yu, Guang-lu

    2010-03-01

    Packed bed biofilm reactor with suspended carrier was used to cultivate ANAMMOX bacteria with sludge inoculums from WWTP secondary settler. The startup of ANAMMOX reactor was comparatively studied using high nitrogen loading method and low nitrogen loading method with aerobically biofilmed on the carrier, and the nitrogen removal characteristic was further investigated. The results showed that the reactor could be started up successfully within 90 days using low nitrogen loading method, the removal efficiencies of ammonium and nitrite were nearly 100% and the TN removal efficiencywas over 75% , however, the high nitrogen loading method was proved unsuccessfully for startup of ANAMMOX reactor probably because of the inhibition effect of high concentration of ammonium and nitrite. The pH value of effluent was slightly higher than the influent and the pH value can be used as an indicator for the process of ANAMMOX reaction. The packed bed ANAMMOX reactor with suspended carrier showed good characteristics of high nitrogen loading and high removal efficiency, 100% of removal efficiency could be achieved when the influent ammonium and nitrite concentration was lower than 800 mg/L.

  13. The first report of a microdiverse anammox bacteria community in waters of Colombian Pacific, a transition area between prominent oxygen minimum zones of the eastern tropical Pacific.

    Science.gov (United States)

    Castro-González, M; Molina, V; Rodríguez-Rubio, E; Ulloa, O

    2014-12-01

    Anaerobic ammonium oxidizers contribute to the removal of fixed nitrogen in oxygen-deficient marine ecosystems such as oxygen minimum zones (OMZ). Here we surveyed for the first time the occurrence and diversity of anammox bacteria in the Colombian Pacific, a transition area between the prominent South and North Pacific OMZs. Anammox bacteria were detected in the coastal and oceanic areas of the Colombian Pacific in low oxygen (ammonium (anammox bacteria were rich [∼ 7 operational taxonomic units (OTUs), 98% cut-off) and microdiverse (Shannon index H′ Sea and Black Sea. Anammox bacteria-like sequences from the Colombian Pacific were grouped together with sequences retrieved from the distinct OMZ's marine subclusters (Peru, Northern Chile and Arabian Sea) within Candidatus ‘Scalindua spp’. Moreover, some anammox bacteria OTUs shared a low similarity with environmental phylotypes (86–94%). Our results indicated that a microdiverse anammox community inhabits the Colombian Pacific, generating new questions about the ecological and biogeochemical differences influencing its community structure.

  14. Behavior and fate of copper ions in an anammox granular sludge reactor and strategies for remediation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheng-Zhe; Deng, Rui; Cheng, Ya-Fei; Zhou, Yu-Huang; Buayi, Xiemuguli [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036 (China); Zhang, Xian; Wang, Hui-Zhong [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Jin, Ren-Cun, E-mail: jrczju@aliyun.com [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036 (China)

    2015-12-30

    Highlights: • The Cu partition in an anammox UASB reactor was predicted by models. • The distribution and form dynamics of Cu in anammox reactors were tracked. • The response of the EPS to Cu(II) was characterized by 3D-EEM spectra. • The mechanism of Cu inhibition on anammox granules was updated. • The feasibilities of two novel remediation strategies were investigated. - Abstract: In this study, the behavior, distribution and form dynamics of overloaded Cu(II) in anaerobic ammonium oxidation (anammox) granular sludge reactors were investigated. The performance and physiological characteristics were tracked by continuous-flow monitoring to evaluate the long-term effects. High Cu loading (0.24 g L{sup −1} d{sup −1}) exceeded sludge bearing capacity, and precipitation dominated the removal pathway. The Cu distribution migrated from the extracellular polymeric substances-bound to the cell-associated Cu and the Cu forms shifted from the weakly bound to strongly bound fractions over time. Pearson correlation and fluorescence spectra analyses showed that the increase in protein concentrations in the EPS was a clear self-defense response to Cu(II) stress. Two remediation strategies, i.e., ethylenediamine tetraacetic acid (EDTA) washing and ultrasound-enhanced EDTA washing, weakened the equilibrium metal partition coefficient from 5.8 to 0.45 and 0.34 L mg{sup −1}SS, respectively, thereby accelerating the external diffusion of the Cu that had accumulated in the anammox granules.

  15. Behavior and fate of copper ions in an anammox granular sludge reactor and strategies for remediation

    International Nuclear Information System (INIS)

    Zhang, Zheng-Zhe; Deng, Rui; Cheng, Ya-Fei; Zhou, Yu-Huang; Buayi, Xiemuguli; Zhang, Xian; Wang, Hui-Zhong; Jin, Ren-Cun

    2015-01-01

    Highlights: • The Cu partition in an anammox UASB reactor was predicted by models. • The distribution and form dynamics of Cu in anammox reactors were tracked. • The response of the EPS to Cu(II) was characterized by 3D-EEM spectra. • The mechanism of Cu inhibition on anammox granules was updated. • The feasibilities of two novel remediation strategies were investigated. - Abstract: In this study, the behavior, distribution and form dynamics of overloaded Cu(II) in anaerobic ammonium oxidation (anammox) granular sludge reactors were investigated. The performance and physiological characteristics were tracked by continuous-flow monitoring to evaluate the long-term effects. High Cu loading (0.24 g L −1 d −1 ) exceeded sludge bearing capacity, and precipitation dominated the removal pathway. The Cu distribution migrated from the extracellular polymeric substances-bound to the cell-associated Cu and the Cu forms shifted from the weakly bound to strongly bound fractions over time. Pearson correlation and fluorescence spectra analyses showed that the increase in protein concentrations in the EPS was a clear self-defense response to Cu(II) stress. Two remediation strategies, i.e., ethylenediamine tetraacetic acid (EDTA) washing and ultrasound-enhanced EDTA washing, weakened the equilibrium metal partition coefficient from 5.8 to 0.45 and 0.34 L mg −1 SS, respectively, thereby accelerating the external diffusion of the Cu that had accumulated in the anammox granules.

  16. Concurrent activity of anammox and denitrifying bacteria in the Black Sea.

    Science.gov (United States)

    Kirkpatrick, John B; Fuchsman, Clara A; Yakushev, Evgeniy; Staley, James T; Murray, James W

    2012-01-01

    After the discovery of ANaerobic AMMonium OXidation (anammox) in the environment, the role of heterotrophic denitrification as the main marine pathway for fixed N loss has been questioned. A 3 part, 15 month time series investigating nitrite reductase (nirS) mRNA transcripts at a single location in the Black Sea was conducted in order to better understand the activity of anammox and denitrifying bacteria. Here we show that both of these groups were active, as well as being concurrent in the lower suboxic zone over this time span. Their distributions, however, differed in that only expression of denitrification-type nirS was seen in the upper suboxic zone, where geochemistry was variable. Depth profiles covering the suboxic zone showed that the four groups of anammox-type sequences were expressed consistently in the lower suboxic zone, and were consistent with anammox 16 S rDNA gene profiles. By contrast, denitrifier-type nirS sequence groups were mixed; some groups exhibited consistent expression in the lower suboxic zone, while others appeared less consistent. Co-occurrence of both anammox and denitrifier expression was common and ongoing. Both types of transcripts were also found in samples with low concentrations of sulfide (>2 μM). Six major groups of denitrifier-type nirS transcripts were identified, and several groups of denitrifier-type nirS transcripts were closely related to sequences from the Baltic Sea. An increase in denitrifier-type nirS transcript diversity and depth range in October 2007 corresponded to a small increase in mixed layer net community productivity (NCP) as measured by O(2)/Ar gas ratios, as well as to an increase in N(2) concentrations in the suboxic zone. Taken together, the variations in expression patterns between anammox and denitrification provide one possible explanation as to how near instantaneous rate measurements, such as isotope spike experiments, may regularly detect anammox activity but underreport denitrification.

  17. Concurrent Activity of Anammox and Denitrifying Bacteria in the Black Sea

    Directory of Open Access Journals (Sweden)

    John B. Kirkpatrick

    2012-07-01

    Full Text Available After the discovery of ANaerobic AMMonium OXidation (anammox in the Black Sea in 2003, the role of heterotrophic denitrification as the main marine pathway for fixed N loss was questioned. A 3 part, 15 month time series investigating Black Sea nitrite reductase (nirS mRNA transcripts at a single location was conducted in order to better understand the activity of anammox and denitrifying bacteria. Here we show that both of these groups were active, as well as being concurrent in the lower suboxic zone over this time span. Their distributions, however, were fundamentally different; denitrification expression was much more variable. Depth profiles covering the suboxic zone showed that the four groups of anammox-type sequences were expressed consistently in the lower suboxic zone, and were consistent with anammox 16S rDNA gene profiles. By contrast, denitrifier-type nirS sequence groups were mixed; half of the groups exhibited consistent expression in the lower suboxic zone, while others varied between season and depth. Co-occurrence of both anammox and denitrifier expression was common and ongoing. Both types of transcripts were also found in samples with low concentrations of sulfide ( >2 μM. 6 major groups of denitrifier-type nirS transcripts were identified, making these transcripts more diverse than previous DNA clone libraries. Several groups of denitrifier-type nirS transcripts were closely related to sequences from the Baltic Sea. An increase in denitrifier-type nirS transcript diversity and depth range in October 2007 corresponded to an increase in mixed layer net community productivity as measured by O2/Ar gas ratios, as well as to an increase in N2 concentrations in the upper suboxic zone. Taken together, the variations in expression patterns between anammox and denitrification provide one explanation as to how near instantaneous rate measurements, such as isotope spike experiments, may regularly detect anammox activity but underreport

  18. Enrichment of anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system.

    Science.gov (United States)

    Li-dong, Shen; An-hui, Hu; Ren-cun, Jin; Dong-qing, Cheng; Ping, Zheng; Xiang-yang, Xu; Bao-lan, Hu

    2012-01-15

    Three activated sludges from a landfill leachate treatment plant (S1), a municipal sewage treatment plant (S2) and a monosodium glutamate (MSG) wastewater treatment plant (S3) were used as inocula to enrich anaerobic ammonium oxidation (anammox) bacteria for the startup of MSG industrial wastewater treatment system. After 360 days of cultivation using MSG wastewater, obvious anammox activity was observed in all three cultures. The maximum specific anammox activities of cultures S1, S2 and S3 were 0.11 kg N kg(-1) VSS day(-1), 0.09 kg N kg(-1) VSS day(-1) and 0.16 kg N kg(-1) VSS day(-1), respectively. Brownish-red anammox granules having diameters in the range of 0.2-1.0mm were visible in cultures S1 and S2, and large red granules having diameters in the range of 0.5-2.5mm were formed in culture S3 after 420 days of cultivation. Phylogenetic analysis of 16S rRNA genes showed that Kuenenia organisms were the dominant anammox species in all three cultures. The copy numbers of 16S rRNA genes of anammox bacteria in cultures S1, S2 and S3 were 6.8 × 10(7) copies mL(-1), 9.4 × 10(7) copies mL(-1) and 7.5 × 10(8) copies mL(-1), respectively. The results of this study demonstrated that anammox cultivation from conventional activated sludges was highly possible using MSG wastewater. Thus the anammox process has possibility of applying to the nitrogen removal from MSG wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria.

    Science.gov (United States)

    Jetten, M S M; Sliekers, O; Kuypers, M; Dalsgaard, T; van Niftrik, L; Cirpus, I; van de Pas-Schoonen, K; Lavik, G; Thamdrup, B; Le Paslier, D; Op den Camp, H J M; Hulth, S; Nielsen, L P; Abma, W; Third, K; Engström, P; Kuenen, J G; Jørgensen, B B; Canfield, D E; Sinninghe Damsté, J S; Revsbech, N P; Fuerst, J; Weissenbach, J; Wagner, M; Schmidt, I; Schmid, M; Strous, M

    2003-12-01

    Recently, two fresh water species, " Candidatus Brocadia anammoxidans" and " Candidatus Kuenenia stuttgartiensis", and one marine species, " Candidatus Scalindua sorokinii", of planctomycete anammox bacteria have been identified. " Candidatus Scalindua sorokinii" was discovered in the Black Sea, and contributed substantially to the loss of fixed nitrogen. All three species contain a unique organelle--the anammoxosome--in their cytoplasm. The anammoxosome contains the hydrazine/hydroxylamine oxidoreductase enzyme, and is thus the site of anammox catabolism. The anammoxosome is surrounded by a very dense membrane composed almost exclusively of linearly concatenated cyclobutane-containing lipids. These so-called 'ladderanes' are connected to the glycerol moiety via both ester and ether bonds. In natural and man-made ecosystems, anammox bacteria can cooperate with aerobic ammonium-oxidising bacteria, which protect them from harmful oxygen, and provide the necessary nitrite. The cooperation of these two groups of ammonium-oxidising bacteria is the microbial basis for a sustainable one reactor system, CANON (completely autotrophic nitrogen-removal over nitrite) to remove ammonia from high strength wastewater.

  20. Anammox for ammonia removal from pig manure effluents: Effect of organic matter content on process performance

    DEFF Research Database (Denmark)

    Salces, Beatriz Molinuevo; García, M. C.; Karakashev, Dimitar Borisov

    2009-01-01

    The anammox process, under different organic loading rates (COD), was evaluated using a semi-continous UASB reactor at 37 degrees C. Three different substrates were used: initially, synthetic wastewater, and later, two different pig manure effluents (after UASB-post-digestion and after partial...... oxidation) diluted with synthetic wastewater. High ammonium removal was achieved, up to 92.1 +/- 4.9% for diluted UASB-post-digested effluent (95 mg COD L-1) and up to 98.5 +/- 0.8% for diluted partially oxidized effluent (121 mg COD L-1). Mass balance clearly showed that an increase in organic loading...... (from 95 mg COD L-1 to 237 mg COD L-1 and from 121 mg COD L-1 to 290 mg COD L-1 for the UASB-post-digested effluent and the partially oxidized effluent, respectively) negatively affected the anammox process and facilitated heterotrophic denitrification. Partial oxidation as a pre-treatment method...

  1. Reuse of Ammonium Nitrate - Wet Air Oxidation

    National Research Council Canada - National Science Library

    Maloney, Stephen

    1999-01-01

    ... it. AN is commonly used as a fertilizer (80 percent of AN produced) and an oxidizer. Owing to the high demand and wide availability of AN for its most common use, the commercial cost is very low...

  2. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin.

    Science.gov (United States)

    Russ, Lina; Kartal, Boran; Op den Camp, Huub J M; Sollai, Martina; Le Bruchec, Julie; Caprais, Jean-Claude; Godfroy, Anne; Sinninghe Damsté, Jaap S; Jetten, Mike S M

    2013-01-01

    Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria but this has not been investigated in detail. Here we report the diversity and abundance of anammox bacteria in sediments that seep cold hydrocarbon-rich fluids and hydrothermal vent areas of the Guaymas Basin in the Cortés Sea using the unique functional anammox marker gene, hydrazine synthase (hzsA). All clones retrieved were closely associated to the "Candidatus Scalindua" genus. Phylogenetic analysis revealed two distinct clusters of hzsA sequences (Ca. Scalindua hzsA cluster I and II). Comparison of individual sequences from both clusters showed that several of these sequences had a similarity as low as 76% on nucleotide level. Based on the analysis of this phylomarker, a very high interspecies diversity within the marine anammox group is apparent. Absolute numbers of anammox bacteria in the sediments samples were determined by amplification of a 257 bp fragment of the hszA gene in a qPCR assay. The results indicate that numbers of anammox bacteria are generally higher in cold hydrocarbon-rich sediments compared to the vent areas and the reference zone. Ladderanes, lipids unique to anammox bacteria were also detected in several of the sediment samples corroborating the hzsA analysis. Due to the high concentrations of reduced sulfur compounds and its potential impact on the cycling of nitrogen we aimed to get an indication about the key players in the oxidation of sulfide in the Guaymas Basin sediments using the alpha subunit of the adenosine-5'-phosphosulfate (APS) reductase (aprA). Amplification of the aprA gene revealed a high number of gammaproteobacterial aprA genes covering the two sulfur-oxidizing bacteria aprA lineages as well as sulfate-reducers.

  3. Electrochemical oxidation of quaternary ammonium electrolytes : Unexpected side reactions in organic electrochemistry

    NARCIS (Netherlands)

    Nouri Nigjeh, Eslam; de Vries, Marcel; Bruins, Andries P.; Bischoff, Rainer; Permentier, Hjalmar P.

    Quaternary ammonium salts are among the most widely used electrolytes in organic electrochemistry, but there is little known about their unwanted side oxidation reactions. We have, therefore, studied the constant potential oxidation products of quaternary ammonium electrolytes using mass

  4. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies.

    Science.gov (United States)

    Cao, Yeshi; van Loosdrecht, Mark C M; Daigger, Glen T

    2017-02-01

    Driven by energy neutral/positive of wastewater treatment plants, significant efforts have been made on the research and development of mainstream partial nitritation and anaerobic ammonium oxidation (anammox) (PN/A) (deammonification) process since the early 2010s. To date, feasibility of mainstream PN/A process has been demonstrated and proven by experimental results at various scales although with the low loading rates and elevated nitrogen concentration in the effluent at low temperatures (15-10 °C). This review paper provides an overview of the current state of research and development of mainstream PN/A process and critically analyzes the bottlenecks for its full-scale application. The paper discusses the following: (i) the current status of research and development of mainstream PN/A process; (ii) the interactions among aerobic ammonium-oxidizing bacteria, aerobic nitrite-oxidizing bacteria, anammox bacteria, and heterotrophic bacteria; (iii) the suppression of aerobic nitrite-oxidizing bacteria; (iv) process and bioreactors; and (v) suggested further studies including efficient and robust carbon concentrating pretreatment, deepening of understanding competition between autotrophic nitrogen-converting organisms, intensification of biofilm anammox activity, reactor design, and final polishing.

  5. Faunal burrows alter the diversity, abundance, and structure of AOA, AOB, anammox and n-damo communities in coastal mangrove sediments

    OpenAIRE

    Chen, Jing; Gu, Ji-Dong

    2017-01-01

    In the present work, the diversity, community structures, and abundances of aerobic ammonia-oxidizing archaea (AOA) and bacteria (AOB), anaerobic ammonium-oxidizing (anammox) bacteria, and denitrifying anaerobic methane oxidization (n-damo) bacteria were unraveled in the bioturbated areas of the coastal Mai Po mangrove sediments. Results indicated that the bioturbation by burrowing in mangrove sediments was associated with higher concentration of NH4+ but lower concentrations of both NO2− and...

  6. Nitrogen Loss from Pristine Carbonate-Rock Aquifers of the Hainich Critical Zone Exploratory (Germany Is Primarily Driven by Chemolithoautotrophic Anammox Processes

    Directory of Open Access Journals (Sweden)

    Swatantar Kumar

    2017-10-01

    Full Text Available Despite the high relevance of anaerobic ammonium oxidation (anammox for nitrogen loss from marine systems, its relative importance compared to denitrification has less been studied in freshwater ecosystems, and our knowledge is especially scarce for groundwater. Surprisingly, phospholipid fatty acids (PLFA-based studies identified zones with potentially active anammox bacteria within two superimposed pristine limestone aquifer assemblages of the Hainich Critical Zone Exploratory (CZE; Germany. We found anammox to contribute an estimated 83% to total nitrogen loss in suboxic groundwaters of these aquifer assemblages at rates of 3.5–4.7 nmol L−1 d−1, presumably favored over denitrification by low organic carbon availability. Transcript abundances of hzsA genes encoding hydrazine synthase exceeded nirS and nirK transcript abundances encoding denitrifier nitrite reductase by up to two orders of magnitude, providing further support of a predominance of anammox. Anammox bacteria, dominated by groups closely related to Cand. Brocadia fulgida, constituted up to 10.6% of the groundwater microbial community and were ubiquitously present across the two aquifer assemblages with indication of active anammox bacteria even in the presence of 103 μmol L−1 oxygen. Co-occurrence of hzsA and amoA gene transcripts encoding ammonia mono-oxygenase suggested coupling between aerobic and anaerobic ammonium oxidation under suboxic conditions. These results clearly demonstrate the relevance of anammox as a key process driving nitrogen loss from oligotrophic groundwater environments, which might further be enhanced through coupling with incomplete nitrification.

  7. Dominance of Candidatus Scalindua species in anammox community revealed in soils with different duration of rice paddy cultivation in Northeast China

    OpenAIRE

    Wang, Jing; Gu, Ji-Dong

    2012-01-01

    The anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the oxygen-limited zone for nitrogen cycling, but their roles in agricultural ecosystems are still poorly understood. In this study, soil samples were taken from the rhizosphere and non-rhizosphere and from surface (0?5?cm) and subsurface (20?25?cm) layers with 1, 4, and 9?years of rice cultivation history on the typical albic soil of Northeast China to examine the diversity and distribution of anammox bacteria base...

  8. High-throughput profiling of microbial community structures in an ANAMMOX-UASB reactor treating high-strength wastewater.

    Science.gov (United States)

    Cao, Shenbin; Du, Rui; Li, Baikun; Ren, Nanqi; Peng, Yongzhen

    2016-07-01

    In this study, the microbial community structure was assessed in an anaerobic ammonium oxidation-upflow anaerobic sludge blanket (ANAMMOX-UASB) reactor treating high-strength wastewater (approximately 700 mg N L(-1) in total nitrogen) by employing Illumina high-throughput sequencing analysis. The reactor was started up and reached a steady state in 26 days by seeding mature ANAMMOX granules, and a high nitrogen removal rate (NRR) of 2.96 kg N m(-3) day(-1) was obtained at 13.2∼17.6 °C. Results revealed that the abundance of ANAMMOX bacteria increased during the operation, though it occupied a low proportion in the system. The phylum Planctomycetes was only 8.39 % on day 148 and Candidatus Brocadia was identified as the dominant ANAMMOX species with a percentage of 2.70 %. The phylum of Chloroflexi, Bacteroidetes, and Proteobacteria constituted a percentage up to 70 % in the community, of which the Chloroflexi and Bacteroidetes were likely to be related to the sludge granulation. In addition, it was found that heterotrophic denitrifying bacteria of Denitratisoma belonging to Proteobacteria phylum occupied a large proportion (22.1∼23.58 %), which was likely caused by the bacteria lysis and decay with the internal carbon source production. The SEM images also showed that plenty of other microorganisms existed in the ANAMMOX-UASB reactor.

  9. Current perspectives on the application of N-damo and anammox in wastewater treatment.

    Science.gov (United States)

    van Kessel, Maartje Ahj; Stultiens, Karin; Slegers, Monique Fw; Guerrero Cruz, Simon; Jetten, Mike Sm; Kartal, Boran; Op den Camp, Huub Jm

    2018-02-22

    The efficient treatment of wastewater for the removal of nitrogen is of key importance to prevent eutrophication and deoxygenation of receiving water bodies. In addition, ineffective wastewater treatment can be a source of greenhouse gasses. The application of newly discovered microbial processes, such as nitrite/nitrate-dependent methane oxidation (N-damo), can make wastewater treatment systems more sustainable; especially when they are combined with anaerobic ammonium oxidation (anammox). A treatment system based on these microbial processes will need oxygen supply for the production of nitrite. This oxygen may inhibit N-damo and anammox and careful regulation of the oxygen supply is of key importance for the success of the application of N-damo in wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Nitrous oxide production in intermittently aerated Partial Nitritation-Anammox reactor: oxic N2O production dominates and relates with ammonia removal rate

    DEFF Research Database (Denmark)

    Blum, Jan-Michael; Jensen, Marlene Mark; Smets, Barth F.

    2018-01-01

    to an effective control of accumulation of nitrogen intermediates. However, due to frequent changes of redox conditions under intermittent aeration regimes, nitrous oxide production and emissions are dynamic. In this study the production and emission dynamics of nitrous oxide in an intermittently aerated......Emissions of the greenhouse gas nitrous oxide from the Partial Nitritation-Anammox process are of concern and can determine the carbon footprint of the process. In order to reduce nitrous oxide emissions intermittent aeration regimes have been shown to be a promising mode of operation, possibly due......-production rates were observed at ammonia removal rates below 5 mg NH3-N*gVSS−1*L−1, when the fraction of nitrous oxide produced was 0.011 ± 0.004% (per ammonia removed). Based on the nitrous oxide dynamics and correlations, reactor operation at relatively low nitrogen loadings (below 100 mg NH4+-N*L−1), ammonia...

  11. High-rate nitrogen removal from waste brine by marine anammox bacteria in a pilot-scale UASB reactor.

    Science.gov (United States)

    Yokota, Nobuyuki; Watanabe, Yasutsugu; Tokutomi, Takaaki; Kiyokawa, Tomohiro; Hori, Tomoyuki; Ikeda, Daisuke; Song, Kang; Hosomi, Masaaki; Terada, Akihiko

    2018-02-01

    The goal of this study was to develop a startup strategy for a high-rate anaerobic ammonium oxidation (anammox) reactor to treat waste brine with high concentrations of ammonium from a natural gas plant. An upflow anaerobic sludge blanket (UASB) anammox reactor with an effective volume of 294 L was fed continuously with waste brine with a salinity of 3% and a NH 4 + concentration of 180 mg-N/L, as well as a NaNO 2 solution. By inoculating a methanogenic granular biomass as a biomass carrier, the reactor attained the maximum volumetric nitrogen removal rate (NRR) of 10.7 kg-N/m 3 /day on day 209, which was 1.7 times higher than the highest reported NRR for wastewater of comparable salinity. High-throughput sequencing of 16S rRNA gene amplicons revealed that Candidatus Scalindua wagneri was enriched successfully in granules in the UASB, and it replaced Methanosaeta and became dominant in the granule. The inhibitory effect of NO 2 - on the anammox reaction in the granules was assessed by a 15 N tracer method, and the results showed that anammox activity was maintained at 60% after exposure to 300 mg-N/L of NO 2 - for 24 h. Compared with previous studies of the susceptibilities of Candidatus Brocadia and Candidatus Kuenenia to NO 2 - , the enriched marine anammox bacteria were proven to have comparable or even higher tolerances for high NO 2 - concentrations after a long exposure.

  12. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (application of Feammox-bacteria.

  13. Anammox revisited: thermodynamic considerations in early studies of the microbial nitrogen cycle.

    Science.gov (United States)

    Oren, Aharon

    2015-08-01

    This paper explores the early literature on the thermodynamics of processes in the microbial nitrogen cycle, evaluating parameters of transfer of energy which depends on the initial and final states of the system, the mechanism of the reactions involved and the rates of these reactions. Processes discussed include the anaerobic oxidation of ammonium (the anammox reaction), the use of inorganic nitrogen compounds as electron donors for anoxygenic photosynthesis, and the mechanism and bioenergetics of biological nitrogen fixation. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Erratum to ;Coastal water column ammonium and nitrite oxidation are decoupled in summer;

    Science.gov (United States)

    Heiss, Elise M.; Fulweiler, Robinson W.

    2017-07-01

    Water column nitrification is a key process in the nitrogen cycle as it links reduced and oxidized forms of nitrogen and also provides the substrate (nitrate) needed for reactive nitrogen removal by denitrification. We measured potential water column ammonium and nitrite oxidation rates at four sites along an estuary to continental shelf gradient over two summers. In most cases, nitrite oxidation rates outpaced ammonium oxidation rates. Overall, ammonium and nitrite oxidation rates were higher outside of the estuary, and this trend was primarily driven by higher oxidation rates in deeper waters. Additionally, both ammonium and nitrite oxidation rates were impacted by different in situ variables. Ammonium oxidation rates throughout the water column as a whole were most positively correlated to depth and salinity and negatively correlated to dissolved oxygen, light, and temperature. In contrast, nitrite oxidation rates throughout the water column were negatively correlated with temperature, light and pH. Multivariate regression analysis revealed that surface (20 m) rates were regulated by temperature, light, and [H+] (i.e. pH). In addition, surface (20 m) nitrite oxidation rates. These results support the growing body of evidence that ammonium oxidation and nitrite oxidation are not always coupled, should be measured separately, and are influenced by different environmental conditions.

  15. Comprehensive study for Anammox process via multistage anaerobic baffled reactors

    Science.gov (United States)

    Ismail, Sherif; Tawfik, Ahmed

    2017-11-01

    Continuous anaerobic ammonia oxidation (Anammox) process in multistage anaerobic baffled (MABR) reactor was investigated. The reactor was operated for approximately 150 days at constant hydraulic retention time (HRT) of 48 h and was fed with synthetic wastewater containing nitrite and ammonium as main substrates. The MABR was inoculated with mixed culture bacteria collected from activated sludge plant (41.6 g MLSS/L and 19.1 g MLVSS/L). The MABR reactor exhibited excellent performance for the start-up of Anammox process within a period of 35 days. The start-up period was divided into four successive phases; cell lysis, lag, activity elevation and steady state. Total inorganic nitrogen (TIN) removal efficiency of 96.8± 0.9% was achieved at steady state conditions, corresponding to nitrogen removal rate (NRR) of 50.2±1.7 mg N/L·d. Moreover, the effect of HRT on the Anammox process was assessed with applying five different HRTs of (48, 38.4, 28.8, 19.2 and 9.6 h). Decreasing HRT from 48 to 9.6 h reduced the removal efficiencies of NH4-N, NO2-N and TIN from 97.7±2.2 to 49.0±9.8%, from 95.7±1.9 to 71.0±8.5% and from 96.8±0.9 to 57.9±9.1%, respectively, that corresponding to reduction in NRR from 50.8±1.2 mg N/L·d at HRT of 48 h to 32.5±5.0 mg N/L·d at HRT of 9.6 h.

  16. Comprehensive study for Anammox process via multistage anaerobic baffled reactors

    Directory of Open Access Journals (Sweden)

    Ismail Sherif

    2017-01-01

    Full Text Available Continuous anaerobic ammonia oxidation (Anammox process in multistage anaerobic baffled (MABR reactor was investigated. The reactor was operated for approximately 150 days at constant hydraulic retention time (HRT of 48 h and was fed with synthetic wastewater containing nitrite and ammonium as main substrates. The MABR was inoculated with mixed culture bacteria collected from activated sludge plant (41.6 g MLSS/L and 19.1 g MLVSS/L. The MABR reactor exhibited excellent performance for the start-up of Anammox process within a period of 35 days. The start-up period was divided into four successive phases; cell lysis, lag, activity elevation and steady state. Total inorganic nitrogen (TIN removal efficiency of 96.8± 0.9% was achieved at steady state conditions, corresponding to nitrogen removal rate (NRR of 50.2±1.7 mg N/L·d. Moreover, the effect of HRT on the Anammox process was assessed with applying five different HRTs of (48, 38.4, 28.8, 19.2 and 9.6 h. Decreasing HRT from 48 to 9.6 h reduced the removal efficiencies of NH4-N, NO2-N and TIN from 97.7±2.2 to 49.0±9.8%, from 95.7±1.9 to 71.0±8.5% and from 96.8±0.9 to 57.9±9.1%, respectively, that corresponding to reduction in NRR from 50.8±1.2 mg N/L·d at HRT of 48 h to 32.5±5.0 mg N/L·d at HRT of 9.6 h.

  17. Evaluation of oxygen adaptation and identification of functional bacteria composition for anammox consortium in non-woven biological rotating contactor.

    Science.gov (United States)

    Liu, Sitong; Yang, Fenglin; Xue, Yuan; Gong, Zheng; Chen, Huihui; Wang, Tao; Su, Zhencheng

    2008-11-01

    In this study, the anammox consortium was found to adapt to the wastewater containing dissolved oxygen (DO), as the DO was gradually increased. Batch tests indicated the maximum aerobic ammonium oxidizing activity of the consortium was 1.38mmolNH4+-N(gVSS)(-1)day(-1), which played key roles in the oxygen consumption process; the maximum anaerobic ammonium oxidizing activity was slightly decreased after long-term oxygen exposure, but only from 21.23mmolNH4+-N(gVSS)(-1)day(-1) to 20.23mmolNH4+-N(gVSS)(-1)day(-1). Microbiological community analysis identified two strains similar to Nitrosomonas eutropha were responsible for oxygen consumption, which were able to exist in the autotrophic anaerobic condition for long periods and protect anammox bacteria Planctomycetales from the influence of oxygen. Microbiological composition analysis showed Nitrosomonas and Planctomycetales approximately accounted for 10% and 70% of the bacteria, respectively. The possibility of cultivation anammox consortium in presence of DO will lead to substantial savings of energy and resource in the industrial application.

  18. An autotrophic nitrogen removal process: short-cut nitrification combined with ANAMMOX for treating diluted effluent from an UASB reactor fed by landfill leachate.

    Science.gov (United States)

    Liu, Jie; Zuo, Jian'e; Yang, Yang; Zhu, Shuquan; Kuang, Sulin; Wang, Kaijun

    2010-01-01

    A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow anaerobic sludge bed (UASB) reactor treating high ammonium municipal landfill leachate. The SN process was performed in an aerated upflow sludge bed (AUSB) reactor (working volume 3.05 L), treating about 50% of the diluted raw wastewater. The ammonium removal efficiency and the ratio of NO2- -N to NOx- -N in the effluent were both higher than 80%, at a maximum nitrogen loading rate of 1.47 kg/(m3 x ay). The ANAMMOX process was performed in an UASB reactor (working volume 8.5 L), using the mix of SN reactor effluent and diluted raw wastewater at a ratio of 1:1. The ammonium and nitrite removal efficiency reached over 93% and 95%, respectively, after 70-day continuous operation, at a maximum total nitrogen loading rate of 0.91 kg/(m3 x day), suggesting a successful operation of the combined process. The average nitrogen loading rate of the combined system was 0.56 kg/(m3 x day), with an average total inorganic nitrogen removal efficiency 87%. The nitrogen in the effluent was mostly nitrate. The results provided important evidence for the possibility of applying SN-ANAMMOX after UASB reactor to treat municipal landfill leachate.

  19. Microbial dynamics of biofilm and suspended flocs in anammox membrane bioreactor: The effect of non-woven fabric membrane.

    Science.gov (United States)

    Ren, Long-Fei; Lv, Lu; Kang, Qi; Gao, Baoyu; Ni, Shou-Qing; Chen, Yi-Han; Xu, Shiping

    2018-01-01

    Membrane bioreactor with non-woven fabric membranes (NWMBR) is developing into a suitable method for anaerobic ammonium oxidation (anammox). As a carrier, non-woven fabric membrane divided total biomass into biofilm and suspended flocs gradually. Total nitrogen removal efficiency was maintained around 82.6% under nitrogen loading rate of 567.4mgN/L/d after 260days operation. Second-order substrate removal and Stover-Kincannon models were successfully used to simulate the nitrogen removal performance in NWMBR. High-throughput sequence was employed to elucidate the underlying microbial community dynamics. Candidatus Brocadia, Kuenenia, Jettenia were detected to affirm the dominant status of anammox microorganisms and 98.2% of anammox microorganisms distributed in biofilm. In addition, abundances of functional genes (hzs, nirK) in biofilm and suspended flocs were assessed by quantitative PCR to further investigate the coexistence of anammox and other microorganisms. Potential nitrogen removal pathways were established according to relevant nitrogen removal performance and microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Denitrification and Anammox in Tropical Aquaculture Settlement Ponds: An Isotope Tracer Approach for Evaluating N2 Production

    Science.gov (United States)

    Castine, Sarah A.; Erler, Dirk V.; Trott, Lindsay A.; Paul, Nicholas A.; de Nys, Rocky; Eyre, Bradley D.

    2012-01-01

    Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling) and biological (microbial transformation) processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N) removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox) in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N2) was produced in all ponds, although potential rates were low (0–7.07 nmol N cm−3 h−1) relative to other aquatic systems. Denitrification was the main driver of N2 production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous) and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3) or methanol (paired t-Test; P = 0.744, n = 3) did not stimulate production of N2. A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors) to enhance N2 production and N removal from aquaculture wastewater. PMID:22962581

  1. Denitrification and anammox in tropical aquaculture settlement ponds: an isotope tracer approach for evaluating N2 production.

    Directory of Open Access Journals (Sweden)

    Sarah A Castine

    Full Text Available Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling and biological (microbial transformation processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N(2 was produced in all ponds, although potential rates were low (0-7.07 nmol N cm(-3 h(-1 relative to other aquatic systems. Denitrification was the main driver of N(2 production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3 or methanol (paired t-Test; P = 0.744, n = 3 did not stimulate production of N(2. A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors to enhance N(2 production and N removal from aquaculture wastewater.

  2. Copolymerization of poly (ethylene oxide) and poly (methyl methacrylate) initiated by ceric ammonium nitrate

    International Nuclear Information System (INIS)

    Gomes, A.S.; Ferreira, A.A.; Coutinho, F.M.B.; Marinho, J.R.D.

    1984-01-01

    Cerium (IV) salts such as the ceric ammonium nitrate and ceric ammonium sulfate in aqueous acid solution with reducing agents such as alcohols, thiols, glycols, aldehydes and amines are well known initiators of vinyl polymerization. In this work, the polymerization of methyl methacrylate initiated by ceric ammonium nitrate/HNO 3 -poly(ethylene oxide) with hydroxyl end group system was studied in aqueous solution at 25 0 C to obtain block copolymers. (Author) [pt

  3. Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant.

    Science.gov (United States)

    Hao, Feifei; Guo, Weilin; Wang, Anqi; Leng, Yanqiu; Li, Helian

    2014-03-01

    Ammonium perfluorooctanoate (APFO) is an emerging environmental pollutant attracting significant attention due to its global distribution, high persistence, and bioaccumulation properties. The decomposition of APFO in aqueous solution with a combination of persulfate oxidant and ultrasonic irradiation was investigated. The effects of operating parameters, such as ultrasonic power, persulfate concentration, APFO concentration, and initial media pH on APFO degradation were discussed. In the absence of persulfate, 35.5% of initial APFO in 46.4 μmol/L solution under ultrasound irradiation, was decomposed rapidly after 120 min with the defluorination ratio reaching 6.73%. In contrast, when 10 mmol/L persulfate was used, 51.2% of initial APFO (46.4 μmol/L) was decomposed and the defluorination ratio reached 11.15% within 120 min reaction time. Enhancement of the decomposition of APFO can be explained by acceleration of substrate decarboxylation, induced by sulfate radical anions formed from the persulfate during ultrasonic irradiation. The SO4(-•)/APFO reactions at the bubble-water interface appear to be the primary pathway for the sonochemical degradation of the perfluorinated surfactants. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Lina eRuss

    2013-08-01

    Full Text Available Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox bacteria but this has not been investigated in detail. Here we report the diversity and abundance of anammox bacteria in sediments that seep cold hydrocarbon-rich fluids and hydrothermal vent areas of the Guaymas Basin in the Cortés Sea using the unique functional anammox marker gene, hydrazine synthase (hzsA. All clones retrieved were closely associated to the ‘Candidatus Scalindua’ genus. Phylogenetic analysis revealed two distinct clusters of hzsA sequences (Ca. Scalindua hzsA cluster I and II. Comparison of individual sequences from both clusters showed that several of these sequences had a similarity as low as 76% on nucleotide level. Based on the analysis of this phylomarker, a very high interspecies diversity within the marine anammox group is apparent. Absolute numbers of anammox bacteria in the sediments samples were determined by amplification of a 257 bp fragment of the hszA gene in a qPCR assay. The results indicate that numbers of anammox bacteria are generally higher in cold hydrocarbon-rich sediments compared to the vent areas and the reference zone. Ladderanes, lipids unique to anammox bacteria were also detected in several of the sediment samples corroborating the hzsA analysis. Due to the high concentrations of reduced sulfur compounds and its potential impact on the cycling of nitrogen we aimed to get an indication about the key players in the oxidation of sulfide in the Guaymas Basin sediments using the alpha subunit of the adenosine-5’-phosphosulfate (APS reductase (aprA. Amplification of the aprA gene revealed a high number of gammaproteobacterial aprA genes covering the two sulfur-oxidizing bacteria aprA lineages as well as

  5. Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Michela eLangone

    2014-02-01

    Full Text Available Elevated nitrogen removal efficiencies from ammonium-rich wastewaters have been demonstrated by several applications, that combine nitritation and anammox processes. Denitrification will occur simultaneously when organic carbon is also present. In this study, the activity of aerobic ammonia oxidizing, anammox and denitrifying bacteria in a full scale Sequencing Batch Reactor, treating digester supernatants, was studied by means of batch-assays. AOB and anammox activities were maximum at pH of 8.0 and 7.8-8.0, rispectively. Short term effect of nitrite on anammox activity was studied, showing nitrite up to 42 mg/L did not result in inhibition. Both denitrification via nitrate and nitrite were measured. To reduce nitrite-oxidizing activity, high of NH3 – N (1.9-10 mg N-NH3/L and low nitrite (3-8 mg TNN/L are required conditions during the whole SBR cycle.Molecular analysis showed the nitritation-anammox sludge harbored a high microbial diversity, where each microorganism has a specific role. Using ammonia monooxygenase α –subunit (amoA gene as a marker, our analyses suggested different macro- and micro-environments in the reactor strongly affect the AOB community, allowing the development of different AOB species, such as N. europaea/eutropha and N. oligotropha groups, which improve the stability of nitritation process. A specific PCR primer set, used to target the 16S rRNA gene of anammox bacteria, confirmed the presence of the Ca. Brocadia fulgida type, able to grow in precence of organic matter and to tolerate high nitrite concentrations. The diversity of denitrifiers was assessed by using dissimilatory nitrite reductase (nirS gene-based analyses, who showed denitifiers were related to different betaproteobacterial genera, such as Thauera, Pseudomonas, Dechloromonas and Aromatoleum, able to assist in forming microbial aggregates. Concerning possible secondary processes, no n-damo bacteria were found while NOB from the genus of Nitrobacter

  6. Sustainable operation of submerged Anammox membrane bioreactor with recycling biogas sparging for alleviating membrane fouling.

    Science.gov (United States)

    Li, Ziyin; Xu, Xindi; Xu, Xiaochen; Yang, FengLin; Zhang, ShuShen

    2015-12-01

    A submerged anaerobic ammonium oxidizing (Anammox) membrane bioreactor with recycling biogas sparging for alleviating membrane fouling has been successfully operated for 100d. Based on the batch tests, a recycling biogas sparging rate at 0.2m(3)h(-1) was fixed as an ultimate value for the sustainable operation. The mixed liquor volatile suspended solid (VSS) of the inoculum for the long operation was around 3000mgL(-1). With recycling biogas sparging rate increasing stepwise from 0 to 0.2m(3)h(-1), the reactor reached an influent total nitrogen (TN) up to 1.7gL(-1), a stable TN removal efficiency of 83% and a maximum specific Anammox activity (SAA) of 0.56kg TNkg(-1) VSSd(-1). With recycling biogas sparging rate at 0.2 m(3) h(-1) (corresponding to an aeration intensity of 118m(3)m(-2)h(-1)), the membrane operation circle could prolong by around 20 times compared to that without gas sparging. Furthermore, mechanism of membrane fouling was proposed. And with recycling biogas sparging, the VSS and EPS content increasing rate in cake layer were far less than the ones without biogas sparging. The TN removal performance and sustainable membrane operation of this system showed the appealing potential of the submerged Anammox MBR with recycling biogas sparging in treating high-strength nitrogen-containing wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A coupled system of half-nitritation and ANAMMOX for mature landfill leachate nitrogen removal.

    Science.gov (United States)

    Li, Yun; Li, Jun; Zhao, Baihang; Wang, Xiujie; Zhang, Yanzhuo; Wei, Jia; Bian, Wei

    2017-09-01

    A coupled system of membrane bioreactor-nitritation (MBR-nitritation) and up-flow anaerobic sludge blanket-anaerobic ammonium oxidation (UASB-ANAMMOX) was employed to treat mature landfill leachate containing high ammonia nitrogen and low C/N. MBR-nitritation was successfully realized for undiluted mature landfill leachate with initial concentrations of 900-1500 mg/L [Formula: see text] and 2000-4000 mg/L chemical oxygen demand. The effluent [Formula: see text] concentration and the [Formula: see text] accumulation efficiency were 889 mg/L and 97% at 125 d, respectively. Half-nitritation was quickly realized by adjustment of hydraulic retention time and dissolved oxygen (DO), and a low DO control strategy could allow long-term stable operation. The UASB-ANAMMOX system showed high effective nitrogen removal at a low concentration of mature landfill leachate. The nitrogen removal efficiency was inhibited at excessive influent substrate concentration and the nitrogen removal efficiency of the system decreased as the concentration of mature landfill leachate increased. The MBR-nitritation and UASB-ANAMMOX processes were coupled for mature landfill leachate treatment and together resulted in high effective nitrogen removal. The effluent average total nitrogen concentration and removal efficiency values were 176 mg/L and 83%, respectively. However, the average nitrogen removal load decreased from 2.16 to 0.77 g/(L d) at higher concentrations of mature landfill leachate.

  8. Shotgun metagenomic data reveals signifcant abundance but low diversity of Candidatus Scalindua marine anammox bacteria in the Arabian Sea oxygen minimum zone

    Directory of Open Access Journals (Sweden)

    laura eVillanueva

    2014-02-01

    Full Text Available Anaerobic ammonium oxidizing (anammox bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in both water columns and sediments worldwide belong almost exclusively to Candidatus Scalindua species. Recently the genome assembly of a marine anammox enrichment culture dominated by Candidatus Scalindua profunda became available and can now be used as a template to study metagenome data obtained from various oxygen minimum zones. Here, we sequenced genomic DNA from suspended particulate matter recovered at the upper (170 m deep and center (600 m area of the oxygen minimum zone in the Arabian Sea by SOLiD and Ion Torrent technology. The genome of Candidatus Scalindua profunda served as a template to collect reads. Based on the mapped reads marine anammox Abundance was estimated to be at least 0.4% in the upper and 1.7% in the center area. Single nucleotide variation (SNV analysis was performed to assess diversity of the Candidatus Scalindua populations. Most highly covered were the two diagnostic anammox genes hydrazine synthase (scal_01318c, hzsA and hydrazine dehydrogenase (scal_03295, hdh, while other genes involved in anammox metabolism (narGH, nirS, amtB, focA and ACS had a lower coverage but could still be assembled and analyzed. The results show that Candidatus Scalindua is abundantly present in the Arabian Sea OMZ, but that the diversity within the ecosystem is relatively low.

  9. The Increasing Interest of ANAMMOX Research in China: Bacteria, Process Development, and Application

    Science.gov (United States)

    Chai, Li-Yuan; Tang, Chong-Jian; Zheng, Ping; Min, Xiao-Bo; Yang, Zhi-Hui; Song, Yu-Xia

    2013-01-01

    Nitrogen pollution created severe environmental problems and increasingly has become an important issue in China. Since the first discovery of ANAMMOX in the early 1990s, this related technology has become a promising as well as sustainable bioprocess for treating strong nitrogenous wastewater. Many Chinese research groups have concentrated their efforts on the ANAMMOX research including bacteria, process development, and application during the past 20 years. A series of new and outstanding outcomes including the discovery of new ANAMMOX bacterial species (Brocadia sinica), sulfate-dependent ANAMMOX bacteria (Anammoxoglobus sulfate and Bacillus benzoevorans), and the highest nitrogen removal performance (74.3–76.7 kg-N/m3/d) in lab scale granule-based UASB reactors around the world were achieved. The characteristics, structure, packing pattern and floatation mechanism of the high-rate ANAMMOX granules in ANAMMOX reactors were also carefully illustrated by native researchers. Nowadays, some pilot and full-scale ANAMMOX reactors were constructed to treat different types of ammonium-rich wastewater including monosodium glutamate wastewater, pharmaceutical wastewater, and leachate. The prime objective of the present review is to elucidate the ongoing ANAMMOX research in China from lab scale to full scale applications, comparative analysis, and evaluation of significant findings and to set a design to usher ANAMMOX research in culmination. PMID:24381935

  10. The Increasing Interest of ANAMMOX Research in China: Bacteria, Process Development, and Application

    Directory of Open Access Journals (Sweden)

    Mohammad Ali

    2013-01-01

    Full Text Available Nitrogen pollution created severe environmental problems and increasingly has become an important issue in China. Since the first discovery of ANAMMOX in the early 1990s, this related technology has become a promising as well as sustainable bioprocess for treating strong nitrogenous wastewater. Many Chinese research groups have concentrated their efforts on the ANAMMOX research including bacteria, process development, and application during the past 20 years. A series of new and outstanding outcomes including the discovery of new ANAMMOX bacterial species (Brocadia sinica, sulfate-dependent ANAMMOX bacteria (Anammoxoglobus sulfate and Bacillus benzoevorans, and the highest nitrogen removal performance (74.3–76.7 kg-N/m3/d in lab scale granule-based UASB reactors around the world were achieved. The characteristics, structure, packing pattern and floatation mechanism of the high-rate ANAMMOX granules in ANAMMOX reactors were also carefully illustrated by native researchers. Nowadays, some pilot and full-scale ANAMMOX reactors were constructed to treat different types of ammonium-rich wastewater including monosodium glutamate wastewater, pharmaceutical wastewater, and leachate. The prime objective of the present review is to elucidate the ongoing ANAMMOX research in China from lab scale to full scale applications, comparative analysis, and evaluation of significant findings and to set a design to usher ANAMMOX research in culmination.

  11. Effect of increase in salinity on ANAMMOX-UASB reactor stability.

    Science.gov (United States)

    Xing, Hui; Wang, Han; Fang, Fang; Li, Kai; Liu, Lianwei; Chen, Youpeng; Guo, Jinsong

    2017-05-01

    The effect of salinity on the anaerobic ammonium oxidation (ANAMMOX) process in a UASB reactor was investigated by analysing ammonium, nitrite, nitrate and TN concentrations, and TN removal efficiency. Extracellular polymeric substances (EPSs) and specific ANAMMOX activity (SAA) were evaluated. Results showed the effluent deteriorated after salinity was increased from 8 to 13 g/L and from 13 to 18 g/L, and TN removal efficiency decreased from 80% to 30% and 80% to 50%, respectively. However, ANAMMOX performance recovered and TN removal efficiency increased to 80% after 40 days when the influent concentrations of [Formula: see text] and [Formula: see text] were 200 mg/L and salinity levels were at 13 and 18 g/L, respectively. The amount of EPSs decreased from 58.9 to 37.1 mg/g volatile suspended solids (VSS) when the reactor was shocked by salinity of 13 g/L, and then increased to 57.2 mg/g VSS when the reactor recovered and ran stably at 13 g/L. The amount of EPSs decreased from 57.2 to 49.1 mg/g VSS when the reactor was shocked by salinity of 18 g/L, and then increased to 60.7 mg/g VSS when the reactor recovered and ran stably at 18 g/L. The amount of EPS and the amounts of polysaccharide, protein and humus showed no evident difference when the reactor recovered from different levels of salinity shocks. Batch tests showed salinity shock load from 8 to 38 g/L inhibited the SAA. However, when the reactor recovered from salinity shocks, SAA was higher compared to that when the reactor was subjected to the same level of salinity shock.

  12. Tandem Brook Rearrangement/Silicon Polonovski Reaction via Oxidative Generation of Ammonium Ylides.

    Science.gov (United States)

    Shibuya, Hiromasa; Nakago, Takahiro; Inoue, Seiichi; Hoshino, Yujiro; Honda, Kiyoshi

    2017-08-01

    A tandem Brook rearrangement/silicon Polonovski reaction has been achieved by in situ generation of ammonium ylides via the oxidation of α-silyl-tertiary amines. Furthermore, we found that the oxidation of N-(1-cyano-1-silyl)methyl-tertiary amines with peracids induced the tandem Brook rearrangement/silicon Polonovski reaction/fragmentation to give formamide derivatives in moderate yields.

  13. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water

    Directory of Open Access Journals (Sweden)

    Ruifeng Zhang

    2017-07-01

    Full Text Available An iron-manganese co-oxide filter film (MeOx has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeOx was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeOx was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6–8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeOx included both biological (accounted for about 41.05% and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%. The investigation of the characterizations suggested that MeOx was formed by abiotic ways and the main elements on the surface of MeOx were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeOx as both ammonia molecules and ammonium ions and the active species of O2 were possibly •O and O2−.

  14. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Abbas, E-mail: eslami@umz.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Juibari, Nafise Modanlou [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Hosseini, Seyed Ghorban [Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2016-09-15

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu{sup 2+} and Cr{sup 3+} in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  15. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    International Nuclear Information System (INIS)

    Eslami, Abbas; Juibari, Nafise Modanlou; Hosseini, Seyed Ghorban

    2016-01-01

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu 2+ and Cr 3+ in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  16. Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1996-01-01

    and denitrifiers. The results indicate that potential activities (enzyme contents) in the four bacterial groups were less dependent on their inorganic N substrates in the bulk and rhizosphere soils, but showed distinct and different responses to duration of soil wetting after rainfall.......Potential activities (enzyme contents) of ammonium (NH4+) oxidizing, nitrite (NO2-) oxidizing, nitrate (NO3-) reducing and denitrifying bacteria were measured in bulk and rhizosphere soil obtained from young barley plants in the field. The activities as well as pools of inorganic N (NH4+, NO2......- and NO3-) were followed for 3 weeks in the beginning of the growth season (May-June). During the 3 weeks two separate periods of rain gave dramatic changes in soil water content. A rainfall in the beginning of the sampling period, resulting in a short-term wetting of the soil, stimulated the potential...

  17. Characterization of Anammox Hydrazine Dehydrogenase, a Key N2-producing Enzyme in the Global Nitrogen Cycle.

    Science.gov (United States)

    Maalcke, Wouter J; Reimann, Joachim; de Vries, Simon; Butt, Julea N; Dietl, Andreas; Kip, Nardy; Mersdorf, Ulrike; Barends, Thomas R M; Jetten, Mike S M; Keltjens, Jan T; Kartal, Boran

    2016-08-12

    Anaerobic ammonium-oxidizing (anammox) bacteria derive their energy for growth from the oxidation of ammonium with nitrite as the electron acceptor. N2, the end product of this metabolism, is produced from the oxidation of the intermediate, hydrazine (N2H4). Previously, we identified N2-producing hydrazine dehydrogenase (KsHDH) from the anammox organism Kuenenia stuttgartiensis as the gene product of kustc0694 and determined some of its catalytic properties. In the genome of K. stuttgartiensis, kustc0694 is one of 10 paralogs related to octaheme hydroxylamine (NH2OH) oxidoreductase (HAO). Here, we characterized KsHDH as a covalently cross-linked homotrimeric octaheme protein as found for HAO and HAO-related hydroxylamine-oxidizing enzyme kustc1061 from K. stuttgartiensis Interestingly, the HDH trimers formed octamers in solution, each octamer harboring an amazing 192 c-type heme moieties. Whereas HAO and kustc1061 are capable of hydrazine oxidation as well, KsHDH was highly specific for this activity. To understand this specificity, we performed detailed amino acid sequence analyses and investigated the catalytic and spectroscopic (electronic absorbance, EPR) properties of KsHDH in comparison with the well defined HAO and kustc1061. We conclude that HDH specificity is most likely derived from structural changes around the catalytic heme 4 (P460) and of the electron-wiring circuit comprising seven His/His-ligated c-type hemes in each subunit. These nuances make HDH a globally prominent N2-producing enzyme, next to nitrous oxide (N2O) reductase from denitrifying microorganisms. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Decomposition of aluminum oxide, titanium(IV) oxide and niobium(V) oxide by fusion with ammonium sulfate

    International Nuclear Information System (INIS)

    Hashiba, Minoru; Miura, Eiji; Nurishi, Yukio; Hibino, Taizo

    1980-01-01

    A decomposition method with ammonium sulfate for Al 2 O 3 , TiO 2 and Nb 2 O 5 is presented. Al 2 O 3 and TiO 2 were fused at 400 and 450 0 C, for 2 h and 1 h, respectively, in the presence of ammonium sulfate (oxide/ammonium sulfate = 1/20 in weight). The fused products were dissolved and extracted into 4N H 2 SO 4 aqueous solution by warming on the water bath or gently boiling on asbestos. The degree of decomposition by fusion was confirmed from the amount of the oxides recovered in the following manner; with the aid of filter pulp, the residue was completely separated by filtration and washed thoroughly by hot water. To the filtrate was added ammonia water in order to precipitate aluminum and titanium hydroxide. The precipitates were ignited in platinum crucible at 1000 0 C and weighed in oxide form. Nb 2 O 5 was fused at 400 0 C for 1 h in the presence of ammonium sulfate (niobium pentoxide/ammonium sulfate = 1/10 in weight). The fused product was extracted with 20% tartaric acid aqueous solution. The degree of decomposition by fusion was confirmed from the amount of the oxide recovered as follows; after separation of the residue by a filter paper with the aid of filter pulp and washed thoroughly by 2% tartaric acid aqueous solution, freshly prepared 6% aqueous solution of cupferron was added to the filtrate and the precipitate formed was filtered immediately. The precipitate was ignited in platinum crucible at 1000 0 C and weighed as Nb 2 O 5 . The recovery of Al 2 O 3 , TiO 2 and Nb 2 O 5 by the present method was (99.2 +- 0.4), (100.1 +- 0.2) and (100.1 +- 0.2)%, respectively. It is concluded that Al 2 O 3 , TiO 2 and Nb 2 O 5 could be completely decomposed with ammonium sulfate. (author)

  19. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria.

    Science.gov (United States)

    Bollmann, Annette; Bär-Gilissen, Marie-José; Laanbroek, Hendrikus J

    2002-10-01

    In nature, ammonia-oxidizing bacteria have to compete with heterotrophic bacteria and plants for limiting amounts of ammonium. Previous laboratory experiments conducted with Nitrosomonas europaea suggested that ammonia-oxidizing bacteria are weak competitors for ammonium. To obtain a better insight into possible methods of niche differentiation among ammonia-oxidizing bacteria, we carried out a growth experiment at low ammonium concentrations with N. europaea and the ammonia oxidizer G5-7, a close relative of Nitrosomonas oligotropha belonging to Nitrosomonas cluster 6a, enriched from a freshwater sediment. Additionally, we compared the starvation behavior of the newly enriched ammonia oxidizer G5-7 to that of N. europaea. The growth experiment at low ammonium concentrations showed that strain G5-7 was able to outcompete N. europaea at growth-limiting substrate concentrations of about 10 micro M ammonium, suggesting better growth abilities of the ammonia oxidizer G5-7 at low ammonium concentrations. However, N. europaea displayed a more favorable starvation response. After 1 to 10 weeks of ammonium deprivation, N. europaea became almost immediately active after the addition of fresh ammonium and converted the added ammonium within 48 to 96 h. In contrast, the regeneration time of the ammonia oxidizer G5-7 increased with increasing starvation time. Taken together, these results provide insight into possible mechanisms of niche differentiation for the ammonia-oxidizing bacteria studied. The Nitrosomonas cluster 6a member, G5-7, is able to grow at ammonium concentrations at which the growth of N. europaea, belonging to Nitrosomonas cluster 7, has already ceased, providing an advantage in habitats with continuously low ammonium concentrations. On the other hand, the ability of N. europaea to become active again after longer periods of starvation for ammonium may allow better exploitation of irregular pulses of ammonium in the environment.

  20. Mass transfer characteristics, rheological behavior and fractal dimension of anammox granules: The roles of upflow velocity and temperature.

    Science.gov (United States)

    Shi, Zhi-Jian; Guo, Qiong; Xu, Yi-Qun; Wu, Dan; Liao, Si-Mo; Zhang, Fu-Yue; Zhang, Zheng-Zhe; Jin, Ren-Cun

    2017-11-01

    In this study, the mass transfer, rheological behavior and fractal dimension of anaerobic ammonium oxidation (anammox) granules in upflow anaerobic sludge blanket reactors at various temperatures (8.5-34.5°C) and upflow velocities (0.06, 0.18mh -1 ) were investigated. The results demonstrated that a lower temperature increased the external mass transfer coefficient and apparent viscosity and impaired the performance of anammox granules. The external mass transfer coefficient was decreased, but efficient nitrogen removal of up to 96% was achieved under high upflow velocity, which also decreased the apparent viscosity. Furthermore, a fractal dimension of up to 2.93 achieved at low temperature was higher than the previously reported values for mesophilic anammox granules. A higher upflow velocity was associated with the lower fractal dimension. Because of the disturbance in granule flaking, the effectiveness factor was less suitable than the external mass transfer coefficient for characterization of mass transfer resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria

    NARCIS (Netherlands)

    Bollmann, A.; Bär-Gilissen, M.J.; Laanbroek, H.J.

    2002-01-01

    In nature, ammonia-oxidizing bacteria have to compete with heterotrophic bacteria and plants for limiting amounts of ammonium. Previous laboratory experiments conducted with Nitrosomonas europaea suggested that ammonia-oxidizing bacteria are weak competitors for ammonium. To obtain a better

  2. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria

    NARCIS (Netherlands)

    Bollmann, A.; Bär-Gilissen, M.J.; Laanbroek, H.J.

    2002-01-01

    In nature, ammonia-oxidizing bacteria have to compete with heterotrophic bacteria and plants for limiting amounts of ammonium. Previous laboratory experiments conducted with Nitrosomonas europaea suggested that ammonia-oxidizing bacteria are weak competitors for ammonium. To obtain a better insight

  3. O processo ANAMMOX como alternativa para tratamento de águas residuárias, contendo alta concentração de nitrogênio The ANAMMOX process as an alternative for treatment of water with high containing nitrogen

    Directory of Open Access Journals (Sweden)

    Marina B. Scheeren

    2011-12-01

    Full Text Available O aumento da escala de produção agropecuária e agroindustrial traz, como consequência, a necessidade por alternativas para a mitigação dos impactos ambientais. As cadeias produtivas de proteína animal (ex.: suinocultura, bovinocultura e avicultura produzem efluentes com elevada concentração de compostos nitrogenados. Neste contexto, o processo ANAMMOX (do inglês Anaerobic Ammonium Oxidation se constitui em uma nova estratégia de alto desempenho visando remover compostos nitrogenados de águas residuárias, agropecuárias e agroindustriais, sob condições quimiolitoautotróficas. Este artigo apresenta uma revisão bibliográfica de trabalhos publicados nos últimos 15 anos sobre estudos deste processo, discutindo sua rota metabólica, demonstrando os micro-organismos envolvidos e os parâmetros de controle do processo, além de estudos desenvolvidos no Brasil e possíveis aplicações.The increase in agriculture and agro-industrial scale production brings the necessity for alternatives to mitigate environmental impacts. The animal protein production chains (e.g. swine, cattle and poultry produce effluents with high concentration of nitrogen compounds. In this context, the ANAMMOX (Anaerobic Ammonium Oxidation process is a new strategy for nitrogen removal in a high rate from agricultural and agro-industrial wastewaters under chemolithoautotrophic conditions. This paper presents a literature review of papers published in the last 15 years about the ANAMMOX process, discussing their metabolic pathway, microorganisms, main control parameters as well as studies conducted in Brazil and application possibilities.

  4. Preparation of ammonium sulfate, calcium oxide and rare earth concentrate from phospho-gypsum

    International Nuclear Information System (INIS)

    Andrianov, A.M.; Rusin, N.F.; Dejneka, G.F.; Zinchenko, T.A.; Burova, T.I.

    1978-01-01

    A technological scheme is proposed which gives ammonium sulfate, purified (from admixtures of silicon, iron, titanium, aluminium) calcium oxide with direct yield of calcium 91% and rare-earth concentrate, containing 5.6% of Ln 2 O 3 with direct yield of 99.5%

  5. Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations

    NARCIS (Netherlands)

    Bollmann, A.; Laanbroek, H.J.

    2001-01-01

    Until now enrichments of ammonia-oxidizing bacteria from natural ammonium-limited environments have been performed mainly in the presence of much higher ammonia concentrations than those present in the natural environment and many have resulted in the enrichment and isolation of environmentally less

  6. Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges.

    Science.gov (United States)

    Mohamed, Naglaa M; Saito, Keiko; Tal, Yossi; Hill, Russell T

    2010-01-01

    Aerobic ammonia-oxidizing bacteria (AAOB) are known to have an important function in the marine nitrogen cycle. Anaerobic ammonium oxidation (anammox) carried out by some members of Planctomycetales is also an important process in marine ecosystems. Ammonia-monooxygenase gene (amoA) fragments were amplified to investigate the potential for nitrification and the diversity of the AAOB in two marine sponges Ircinia strobilina and Mycale laxissima. All of the AmoA sequences obtained from the two sponges clustered with the AmoA sequences of the Betaproteobacteria Nitrosospira spp. To investigate the anaerobic ammonia-oxidizing bacteria (AnAOB) in sponges, 16S rRNA gene fragments of Planctomycetales and anammox bacteria were also amplified with specific primers, and clone libraries were constructed. The Planctomycetales diversity detected in the two sponges was different. The Planctomycetales community in M. laxissima was affiliated with Pirellula, Planctomyces and anammox bacteria, while all of the I. strobilina Planctomycetales clones were solely affiliated with the candidate phylum 'Poribacteria'. Interestingly, sequences related to anammox genera were recovered only from M. laxissima. This is the first report of anammox bacteria in marine sponges. It is intriguing to find AAOB and AnAOB in M. laxissima, but the nature of their interaction with the sponge host and with each other remains unclear. This work further supports the potential of sponge-associated microorganisms for nitrification and sheds light on anammox as a new aspect of the nitrogen cycle in marine sponges.

  7. Anaerobic ammonium oxidation by marine and fresh water planctomycete-like bacteria

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Jetten, M.S.M.; Sliekers, O.; Kuypers, M.; Dalsgaard, T.; Niftrik, L. van; Cirpus, I.; Pas-Schoonen, K. van de; Lavik, G.; Thamdrup, B.; Le Paslier, D.; Camp, S. op den; Hulth, S.; Nielen, L.P.; Abma, W.; Third, K.; Engström, P.; Kuenen, J.G.; Jørgensen, B.B.; Canfield, D.E.; Revsbech, N.P.; Fuerst, J.; Weissenbach, J.; Wagner, M.; Schmidt, I.; Schmid, M.; Strous, M.

    2003-01-01

    Recently, two fresh water species, 'Candidatus Brocadia anammoxidans' and 'Candidatus Kuenenia stuttgartiensis', and one marine species, 'Candidatus Scalindua sorokinii', of planctomycete anammox bacteria have been identified. 'Candidatus Scalindua sorokinii' was discovered in the Black Sea, and

  8. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  9. A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden

    DEFF Research Database (Denmark)

    Brandsma, Joost; van de Vossenberg; Risgaard-Petersen, Nils

    2011-01-01

    bacteria in marine sediments of the Gullmar Fjord, and compared the results obtained with each technique. 15N labelling experiments showed that nitrogen removal through N(2) production was essentially limited to the upper 2 cm of the sediment, where anammox contributed 23-47% of the total production....... The presence of marine anammox bacteria belonging to the genus 'Candidatus Scalindua' was shown by 16S rRNA gene sequence comparison. FISH counts of anammox bacteria correlated well with anammox activity, while quantitative PCR may have underestimated the number of anammox bacterial 16S rRNA gene copies...

  10. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    Science.gov (United States)

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. High pressure structural, elastic and vibrational properties of green energetic oxidizer ammonium dinitramide

    Science.gov (United States)

    Yedukondalu, N.; Ghule, Vikas D.; Vaitheeswaran, G.

    2016-08-01

    Ammonium DiNitramide (ADN) is one of the most promising green energetic oxidizers for future rocket propellant formulations. In the present work, we report a detailed theoretical study on structural, elastic, and vibrational properties of the emerging oxidizer under hydrostatic compression using various dispersion correction methods to capture weak intermolecular (van der Waals and hydrogen bonding) interactions. The calculated ground state lattice parameters, axial compressibilities, and equation of state are in good accord with the available experimental results. Strength of intermolecular interactions has been correlated using the calculated compressibility curves and elastic moduli. Apart from this, we also observe discontinuities in the structural parameters and elastic constants as a function of pressure. Pictorial representation and quantification of intermolecular interactions are described by the 3D Hirshfeld surfaces and 2D finger print maps. In addition, the computed infra-red (IR) spectra at ambient pressure reveal that ADN is found to have more hygroscopic nature over Ammonium Perchlorate (AP) due to the presence of strong hydrogen bonding. Pressure dependent IR spectra show blue- and red-shift of bending and stretching frequencies which leads to weakening and strengthening of the hydrogen bonding below and above 5 GPa, respectively. The abrupt changes in the calculated structural, mechanical, and IR spectra suggest that ADN might undergo a first order structural transformation to a high pressure phase around 5-6 GPa. From the predicted detonation properties, ADN is found to have high and low performance characteristics (DCJ = 8.09 km/s and PCJ = 25.54 GPa) when compared with ammonium based energetic oxidizers (DCJ = 6.50 km/s and PCJ = 17.64 GPa for AP, DCJ = 7.28 km/s and PCJ = 18.71 GPa for ammonium nitrate) and well-known secondary explosives for which DCJ = ˜8-10 km/s and PCJ = ˜30-50 GPa, respectively.

  12. Start-Up Characteristics of a Granule-Based Anammox UASB Reactor Seeded with Anaerobic Granular Sludge

    Directory of Open Access Journals (Sweden)

    Lei Xiong

    2013-01-01

    Full Text Available The granulation of anammox sludge plays an important role in the high nitrogen removal performance of the anammox reactor. In this study, anaerobic granular sludge was selected as the seeding sludge to start up anammox reactor in order to directly obtain anammox granules. Results showed that the anammox UASB reactor was successfully started up by inoculating anaerobic granular sludge, with substrate capacity of 4435.2 mg/(L·d and average ammonium and nitrite removal efficiency of 90.36% and 93.29%, respectively. During the start-up course, the granular sludge initially disintegrated and then reaggregated and turned red, suggesting the high anammox performance. Zn-Fe precipitation was observed on the surface of granules during the operation by SEM-EDS, which would impose inhibition to the anammox activity of the granules. Accordingly, it is suggested to relatively reduce the trace metals concentrations, of Fe and Zn in the conventional medium. The findings of this study are expected to be used for a shorter start-up and more stable operation of anammox system.

  13. Start-Up Characteristics of a Granule-Based Anammox UASB Reactor Seeded with Anaerobic Granular Sludge

    Science.gov (United States)

    Wang, Yun-Yan; Tang, Chong-Jian; Chai, Li-Yuan; Xu, Kang-Que; Song, Yu-Xia

    2013-01-01

    The granulation of anammox sludge plays an important role in the high nitrogen removal performance of the anammox reactor. In this study, anaerobic granular sludge was selected as the seeding sludge to start up anammox reactor in order to directly obtain anammox granules. Results showed that the anammox UASB reactor was successfully started up by inoculating anaerobic granular sludge, with substrate capacity of 4435.2 mg/(L·d) and average ammonium and nitrite removal efficiency of 90.36% and 93.29%, respectively. During the start-up course, the granular sludge initially disintegrated and then reaggregated and turned red, suggesting the high anammox performance. Zn-Fe precipitation was observed on the surface of granules during the operation by SEM-EDS, which would impose inhibition to the anammox activity of the granules. Accordingly, it is suggested to relatively reduce the trace metals concentrations, of Fe and Zn in the conventional medium. The findings of this study are expected to be used for a shorter start-up and more stable operation of anammox system. PMID:24455691

  14. Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria RID B-8834-2011 RID B-5428-2008 RID C-3269-2011 RID D-1875-2009

    DEFF Research Database (Denmark)

    Jetten, MSM; Sliekers, O.; Kuypers, M.

    2003-01-01

    Recently, two fresh water species, 'Candidatus Brocadia anammoxidans' and 'Candidatus Kuenenia stuttgartiensis', and one marine species, 'Candidatus Scalindua sorokinii', of planctomycete anammox bacteria have been identified. 'Candidatus Scalindua sorokinii' was discovered in the Black Sea...... membrane composed almost exclusively of linearly concatenated cyclobutane-containing lipids. These so-called 'ladderanes' are connected to the glycerol moiety via both ester and ether bonds. In natural and man-made ecosystems, anammox bacteria can cooperate with aerobic ammonium-oxidising bacteria, which...... protect them from harmful oxygen, and provide the necessary nitrite. The cooperation of these two groups of ammonium-oxidising bacteria is the microbial basis for a sustainable one reactor system, CANON (completely autotrophic nitrogen-removal over nitrite) to remove ammonia from high strength wastewater....

  15. Nitrogen Cycling in Seagrass Beds Dominated by Thalassia testudinum and Halodule wrightii: the Role of Nitrogen Fixation and Ammonium Oxidation in Regulating Ammonium Availability

    Science.gov (United States)

    Capps, R.; Caffrey, J. M.; Hester, C.

    2016-02-01

    Seagrass meadows provide key ecosystem services including nursery and foraging grounds, storm and erosion buffers, biodiversity enhancers and global carbon and nutrient cycling. Nitrogen concentrations are often very low in coastal waters and sediments, which may limit primary productivity. Biological nitrogen fixation is a microbial process that converts dinitrogen to ammonium, which is readily taken up by seagrasses. In the oxygenated rhizospheres, diazotrophs provide the plant with ammonium and use root exudates as an energy source. Nitrogen fixation rates and nutrient concentrations differ between seagrass species and substrate types. Thalassia testudinum has a higher biomass and is a climax species than Halodule wrightii, which is a pioneer species. Nitrogen fixation rates are relatively consistent in Thalassia testudinum dominated sediments. However, it is relatively variable in sediments occupied by Halodule wrightii. Nitrogen fixation rates are higher in bare substrate compared to areas with Thalassia testudinum, which may be due to T. testudinum's greater efficiency in nutrient retention because it is a climax species. We hypothesize that seasonal shifts in nitrogen fixation will coincide with seasonal shifts in seagrass biomass due to higher nutrient requirements during peak growth and lower requirements during senescence and dormancy. The ratio of porewater ammonium to phosphate suggests that seagrass growth may be nitrogen limited as does nitrogen demand, estimated from gross primary productivity. Significant rates of ammonium oxidation in both surface and rhizosphere sediments contribute to this imbalance. Thus, nitrogen fixation may be critical in supporting plant growth.

  16. In-situ leaching of South Texas uranium ores - 2. Oxidative removal of adsorbed ammonium ions with sodium hypochlorite

    International Nuclear Information System (INIS)

    Paul, J.M.; Johnson, W.F.; Fletcher, A.; Venuto, P.B.

    1981-01-01

    This paper reports a laboratory study of the oxidative destruction, by sodium hypochlorite, of ammonium ions adsorbed on relatively reduced South Texas uranium ore. Included are an assessment of reaction stoichiometry, determination of some major reaction pathways and side reactions, and identification of several intermediates. Adsorbed ammonium ions were completely removed by 0.5% sodium hypochlorite with the concentration of ammonia in the effluent falling to a very low value after 10-15 pore volumes of the oxidant. Substantial quantities of sulfate, reflecting oxidation of sulfide minerals such as pyrite, were formed. Large amounts of uranium were leached out, and substantial amounts of calcium and magnesium ions were also produced during the pre-saturation with ammonium bicarbonate during the oxidation stage. 28 refs

  17. Hydrothermal synthesis of one-dimensional tungsten oxide nanostructures using cobalt ammonium sulfate as a structure-directing agent

    International Nuclear Information System (INIS)

    Rajagopal, Shanmugasundaram; Lee, Hae-Min; Kim, Chang-Koo; Lee, Kangtaek

    2013-01-01

    Hydrothermal synthesis of one-dimensional tungsten oxide nanostructures was performed using cobalt ammonium sulfate as a structure-directing agent, and the effect of the concentration of cobalt ammonium sulfate on the characteristics of the tungsten oxide nanostructures was investigated. XRD measurements showed that hexagonal tungsten oxide (h-WO 3 ) structures were obtained at a higher concentration of cobalt ammonium sulfate (0.2 M), while cubic tungsten oxide (c-WO 3 ) structures were obtained at a lower concentration of cobalt ammonium sulfate (0.01M). Mixed structures of h-WO 3 and c-WO 3 were observed at an intermediate concentration of cobalt ammonium sulfate. Morphological studies revealed that h-WO 3 appeared as nanowires with a diameter of about 40 nm and an average length of 1 µm. c-WO 3 was shaped in pillar-like nanorods with a diameter of about 30 nm. A red-shift in the UV/Vis absorption peak was observed with different phases of tungsten oxide nanostructures

  18. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone.

    Science.gov (United States)

    Ding, Bangjing; Li, Zhengkui; Qin, Yunbin

    2017-12-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction (termed Feammox) is a recently discovered pathway of nitrogen cycling. However, little is known about the pathways of N transformation via Feammox process in riparian zones. In this study, evidence for Feammox in riparian zones with or without vegetation cover was demonstrated using isotope tracing technique and high-throughput sequencing technology. The results showed that Feammox could occur in riparian zones, and demonstrated that N 2 directly from Feammox was dominant Feammox pathway. The Feammox rates in vegetated soil samples was 0.32-0.37 mg N kg -1 d -1 , which is higher than that in un-vegetated soil samples (0.20 mg N kg -1 d -1 ). Moreover, the growth of vegetation led to a 4.99-6.41% increase in the abundance of iron reducing bacteria (Anaeromyxobacter, Pseudomonas and Geobacter) and iron reducing bacteria play an essential role in Feammox process. An estimated loss of 23.7-43.9 kg N ha -1 year -1 was associated with Feammox in the examined riparian zone. Overall, the co-occurrence of ammonium oxidation and iron reduction suggest that Feammox can play an essential role in the pathway of nitrogen removal in riparian zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Ammonium carbonate and/or bicarbonate plus alkaline chlorate oxidant for recovery of uranium values

    International Nuclear Information System (INIS)

    Stapp, P.R.

    1983-01-01

    In accordance with the present invention, uranium values are extracted from materials containing uranium in valence states lower than its hexavalent state by contacting the materials containing uranium with an aqueous alkaline leach solution containing an alkaline chlorate in an amount sufficient to oxidize at least a portion of the uranium in valence states lower than its hexavalent state to its hexavalent state. In a further embodiment of the present invention, the alkaline leach solution is an aqueous solution of a carbonate selected from the group consisting of ammonium carbonate, ammonium bicarbonate and mixtures thereof. In yet another embodiment of the present invention, at least one catalytic compound of a metal selected from the group consisting of copper, cobalt, iron, nickel, chromium and mixtures thereof adapted to assure the presence of the ionic species Cu ++ , Co ++ , Fe +++ , Ni ++ , Cr +++ and mixtures thereof, respectively, during the contacting of the material containing uranium with the alkaline leach solution and in an amount sufficient to catalyze the oxidation of at least a portion of the uranium in its lower valence states to its hexavalent state, is present

  20. Startup of a Partial Nitritation-Anammox MBBR and the Implementation of pH-Based Aeration Control.

    Science.gov (United States)

    Klaus, Stephanie; Baumler, Rick; Rutherford, Bob; Thesing, Glenn; Zhao, Hong; Bott, Charles

    2017-06-01

      The single-stage deammonification moving bed biofilm reactor (MBBR) is a process for treating high strength nitrogen waste streams. In this process, partial nitritation and anaerobic ammonia oxidation (anammox) occur simultaneously within a biofilm attached to plastic carriers. An existing tank at the James River Treatment Plant (76 ML/d) in Newport News, Virginia was modified to install a sidestream deammonification MBBR process. This was the second sidestream deammonification process in North America and the first MBBR type installation. After 4 months the process achieved greater than 85% ammonia removal at the design loading rate of 2.4 g /m2·d (256 kg /d) signaling the end of startup. Based on observations during startup and process optimization phases, a novel pH-based control system was developed that maximizes ammonium removal and results in stable aeration and effluent alkalinity.

  1. Feasibility and interest of the anammox process as treatment alternative for anaerobic digester supernatants in manure processing--an overview.

    Science.gov (United States)

    Magrí, Albert; Béline, Fabrice; Dabert, Patrick

    2013-12-15

    Completely autotrophic nitrogen removal (ANR) is based on the combination of partial nitritation (PN) and anaerobic ammonium oxidation (anammox). It is a promising alternative for the subsequent treatment of biogas digester supernatants in livestock manure processing and nitrogen surplus scenarios. However, as no full-scale experiences in the treatment of manure digestates by ANR have been published to date, future field studies addressing treatment of this kind of effluent would be of great interest. Some topics to be considered in these studies would be coupling anaerobic digestion and ANR, analysis of the factors that affect the process, comparing reactor configurations, microbial ecology, gas emissions, and achieving robust performance. This paper provides an overview of published studies on ANR. Specific issues related to the applicability of the process for treating manure digestates are discussed. The energy requirements of ANR are compared with those of other technological alternatives aimed at recovering nitrogen from digester supernatants. The results of the assessment were shown to depend on the composition of the supernatant. In this regard, the PN-anammox process was shown to be more competitive than other alternatives particularly at concentrations of up to 2 kg NH4(+)-N m(-3). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. LEACHING OF MALACHITE ORE IN AMMONIUM SULFATE SOLUTIONS AND PRODUCTION OF COPPER OXIDE

    Directory of Open Access Journals (Sweden)

    A. Ekmekyapar

    2015-03-01

    Full Text Available Abstract Malachite ore is one of the most important of oxidized copper ores. Copper production can be performed by using this ore. In this work, the leaching kinetics of malachite in ammonium sulfate solutions was investigated, and metallic copper was recovered by a cementation method from the resulting actual leach solution. Copper (II oxide was prepared by an isothermal oxidation method from the cement copper. In the leaching experiments, the effects of reaction temperature, particle size, and stirring speed on copper leaching from malachite ore were studied. In the cementation experiments, metallic zinc was used as the reductant metal to recover the copper from the solution. Thermal oxidation of cement copper was performed under isothermal conditions. It was found that the leaching rate increased with increasing stirring speed and temperature, and decreased with particle size. It was observed that the leaching reaction fit to diffusion through the product layer. The activation energy of the leaching process was determined to be 25.4 kJ/mol. It was determined that the copper content of the metallic product obtained by the cementation method increased up to 96%. It was found that copper oxide prepared from cement copper had a tenorite structure.

  3. The Zeolite-Anammox Treatment Process for Nitrogen Removal from Wastewater—A Review

    Directory of Open Access Journals (Sweden)

    Mark E. Grismer

    2017-11-01

    Full Text Available Water quality in San Francisco Bay has been adversely affected by nitrogen loading from wastewater treatment plants (WWTPs discharging around the periphery of the Bay. While there is documented use of zeolites and anammox bacteria in removing ammonia and possibly nitrate during wastewater treatment, there is little information available about the combined process. Though relatively large, zeolite beds have a finite ammonium adsorption potential and require periodic re-generation depending on the wastewater nitrogen loading. Use of anammox bacteria reactors for wastewater treatment have shown that ammonium (and to some degree, nitrate can be successfully removed from the wastewater, but the reactors require careful attention to loading rates and internal redox conditions. Generally, their application has been limited to treatment of high-ammonia strength wastewater at relatively warm temperatures. Moreover, few studies are available describing commercial or full-scale application of these reactors. We briefly review the literature considering use of zeolites or anammox bacteria in wastewater treatment to set the stage for description of an integrated zeolite-anammox process used to remove both ammonium and nitrate without substrate regeneration from mainstream WWTP effluent or anaerobic digester filtrate at ambient temperatures.

  4. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    OpenAIRE

    Bollmann, A.; Sedlacek, C.J.; Norton, J.; Laanbroek, H.J.; Suwa, Y.; Stein, L.Y.; Klotz, M.G.; Arp, D.; Sayavedra-Soto, L.; Lu, M.; Bruce, D.; Detter, C.; Tapia, R.; Han, J.; Woyke, T.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromos...

  5. Quaternary ammonium salts with tetrafluoroborate anion: Phytotoxicity and oxidative stress in terrestrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Biczak, Robert, E-mail: r.biczak@ajd.czest.pl

    2016-03-05

    Highlights: • The level of oxidative stress in mono- and dicotyledonous plants was comparable. • Chlorophyll content in the plants was correlated with QAS concentration in the soil. • POD activity increased in plants cultivated in soil with high QAS content. - Abstract: This paper discusses the impact of four quaternary ammonium salts (QAS) such as tetraethylammonium tetrafluoroborate [TEA][BF{sub 4}], tetrabutylammonium tetrafluoroborate [TBA][BF{sub 4}], tetrahexylammonium tetrafluoroborate [THA][BF{sub 4}], and tetraoctylammonium tetrafluoroborate [TOA][BF{sub 4}] on the growth and development of spring barley and common radish. Analogous tests were performed with the inorganic salt ammonium tetrafluoroborate [A][BF{sub 4}] for comparison purposes. Results indicated that the phytotoxicity of the QAS applied is dependent on the concentration of the substance and their number of carbon atoms. The most toxic compound was [TBA][BF{sub 4}], causing the greatest drop in fresh weight of both study plants, similar to the phytotoxic effects of [A][BF{sub 4}]. All the tested compounds caused oxidative stress in spring barley and common radish seedlings due to a drop in the chlorophyll content. Stress was also observed in plants, which was indicated by the increased level of ROS (reactive oxygen species) such as H{sub 2}O{sub 2} and lipid peroxidation of MDA (malondialdehyde). Due to the stress, both plants displayed changes in the activity of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). Based on the results of the study, it was concluded that changes in chlorophyll levels and peroxidase activity are the best biomarkers to determine oxidative stress in plants.

  6. Ammonium conversion and its feedback effect on methane oxidation of Methylosinus sporium.

    Science.gov (United States)

    He, Ruo; Chen, Min; Ma, Ruo-Chan; Su, Yao; Zhang, Xuan

    2017-04-01

    Ammonium (NH 4 + ) is not only nitrogen source that can support methanotrophic growth, but also it can inhibit methane (CH 4 ) oxidation by competing with CH 4 for the active site of methane monooxygenase. NH 4 + conversion and its feedback effect on the growth and activity of methanotrophs were evaluated with Methylosinus sporium used as a model methanotroph. Nitrogen sources could affect the CH 4 -derived carbon distribution, which varied with incubation time and nitrogen concentrations. More CH 4 -derived carbon was incorporated into biomass in the media with NH 4 + -N, compared to nitrate-nitrogen (NO 3 - -N), as sole nitrogen source at the nitrogen concentrations of 10-18 mmol L -1 . Although ammonia (NH 3 ) oxidation activity of methanotrophs was considerably lower, only accounting for 0.01-0.06% of CH 4 oxidation activity in the experimental cultures, NH 4 + conversion could lead to the pH decrease and toxic intermediates accumulation in the their habits. Compared with NH 4 + , nitrite (NO 2 - ) accumulation in the NH 4 + conversion of methanotroph had stronger inhibition on its activity, especially the joint inhibition of NO 2 - accumulation and the pH decrease during the NH 4 + -N conversion. These results suggested that more attention should be paid to the feedback effects of NH 4 + conversion by methanotrophs to understand effects of NH 4 + on CH 4 oxidation in the environments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Destruction of organic wastes by ammonium peroxydisulfate with electrolytic regeneration of the oxidant

    International Nuclear Information System (INIS)

    Cooper, J.F.; Wang, J.F.; Krueger, R.; King, K.

    1997-01-01

    Research is reported concerning a new aqueous process for oxidative destruction of solid- and liquid organic wastes. This process uses acidified ammonium peroxydisulfate and operates at ambient pressure and at 80- to 100 degrees C. The oxidant may be efficiently regenerated by electrolysis of the sulfate by-product at Pt anodes, even in the presence of organic and inorganic contaminants expected to be entrained in the cycle. Integral rate constants were determined for the oxidation of 25 diverse organic compounds at low (50 ppm) concentrations through fixed-time experiments with excess oxidant and a Pt wire catalyst. For high initial concentrations, uncatalyzed mineralization rates were measured for waste surrogates including kerosene, triethylamine, ion exchange resin, oxalic acid, trinitrotoluene, and cellulose. A packed bed reactor was tested with ethylene glycol, with offgas analysis by mass spectroscopy. Rate data extrapolate to throughputs of approximately 200 kg/m 3 -day. The process may benefit the destruction of highly toxic or specialized industrial wastes as well as the organic fraction of mixed wastes

  8. Perfluorinated quaternary ammonium salts of polyoxometalate anions: Fluorous biphasic oxidation catalysis with and without fluorous solvents

    Energy Technology Data Exchange (ETDEWEB)

    Maayan, Galia; Fish, Richard H.; Neumann, Ronny

    2003-05-28

    Perfluorinated quaternary ammonium cations, [CF{sub 3}(CF{sub 2}){sub 7}(CH{sub 2}){sub 3}]{sub 3}CH{sub 3}N{sup +} (RFN{sup +}), were synthesized and used as counter cations for the [WZnM{sub 2}(H{sub 2}O){sub 2}(ZnW{sub 9}O{sub 34}){sub 2}]{sup 12-} (M = Mn(II), Zn(II)), polyoxometalate. The (RFN{sup +}){sub 12}[WZnM{sub 2}(H{sub 2}O){sub 2}(ZnW9O{sub 34}){sub 2}] compounds were fluorous biphasic catalysts for alcohol and alkenol oxidation, and alkene epoxidation with aqueous hydrogen peroxide. Reaction protocols with or without a fluorous solvent were tested. The catalytic activity and selectivity was affected both by the hydrophobicity of the solvent and the substrate.

  9. The optical constants of several atmospheric aerosol species - Ammonium sulfate, aluminum oxide, and sodium chloride

    Science.gov (United States)

    Toon, O. B.; Pollack, J. B.; Khare, B. N.

    1976-01-01

    An investigation is conducted of problems which are related to a use of measured optical constants in the simulation of the optical constants of real atmospheric aerosols. The techniques of measuring optical constants are discussed, taking into account transmission measurements through homogeneous and inhomogeneous materials, the immersion of a material in a liquid of a known refractive index, the consideration of the minimum deviation angle of prism measurement, the interference of multiply reflected light, reflectivity measurements, and aspects of mathematical analysis. Graphs show the real and the imaginary part of the refractive index as a function of wavelength for aluminum oxide, NaCl, and ammonium sulfate. Tables are provided for the dispersion parameters and the optical constants.

  10. The Experiment Study of Anaerobic Ammonia Oxidation Start-up by Using the Upflow Double Layer Anaerobic Filter

    Directory of Open Access Journals (Sweden)

    YAO Li

    2018-02-01

    Full Text Available Anammox is an efficient nitrogen removal process, but it is difficult to start-up and operate, and ananammox reactor is the efficient way to resolve this problem. The start-up of anammox reactor by upflow anaerobic filter was studied. Denitrifying sludge, anaerobic sludge, and mixed sludge was inoculated on the packing materials, respectively and an autotrophic denitrification condition was provided by the simulated wastewater influent. Along with the gradual increase of matrix concentration and hydraulic load, the microflora was converted to the anaerobic ammonium oxidation(anammoxreaction. The results showed that the anammox reaction could be started by all the three sludge, and the time of start-up of denitrifying sludge, anaerobic sludge, mixed sludge was 42, 54 days and 45 days, respectively. The best result was that inoculated with denitrifying sludge with 82.2% of the total nitrogen removal rate, which started-up quickly and nitrogen was removed efficiently. Double packing effectively improved the stability of anammox process in the reactor, in which the suitable influent concentration loading for the anammox bacteria was 270 mg·L-1 and 360 mg·L-1 for ammonia nitrogen and nitrite nitrogen, respectively, and the COD concentration could not be more than 150 mg· L-1. Furthermore, there was a coexist-effect for anaerobic ammonia oxidation and methanation in this reactor system.

  11. The formation processes of oxide phases from polymer-salt complexes of ammonium molybdate and wolframate

    International Nuclear Information System (INIS)

    Valiev, E.; Bogdanov, S.; Pirogov, A.; Teplykh, A.; Ostroushko, A.; Mogilnikov, Yu.

    1999-01-01

    Complete text of publication follows. The thermal decomposition processes of the polymer-salt solutions of ammonium molybdate and wolframate are the basic methods to synthesize the powder catalysts MoO 3 and WO 3 . The results of the investigations of these processes by small angle neutron scattering and X-ray diffraction methods are presented. The parameters of the crystal structure of the oxide phase particles, a particle size distribution function, a specific surface and fractal dimension of particles surface, a volume part and mean particle size have been obtained. It is shown that the best catalytic properties are reached by heating initial samples up to 400 deg C. This state is defined by the mean particle size ∼ 15 nm, the specific surface ∼ 10 m 2 /g, the volume concentrations of particles ∼ 5 x 10 -2 and the fractal dimension of particles surface ∼ 2,5. A general mechanism for the formation of the oxide phases from different polymer-salt solution are established. The processes of the oxide phase formations occurs as the phase transition of the first kind, is also shown. This work has partly supported by state program 'Neutron Matter Investigations' (Project N96/104 and 96/305). (author)

  12. Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.

    Science.gov (United States)

    Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia

    2011-11-01

    Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Growth of thermal oxide layers on GaAs and InP in the presence of ammonium heptamolybdate

    International Nuclear Information System (INIS)

    Mittova, I.Ya.; Lavrushina, S.S.; Afonchikova, A.V.

    2004-01-01

    Processes of thermal oxidation of GaAs and InP in the presence of ammonium heptamolybdate were studied using the methods of X-ray fluorescence analysis and IR spectroscopy at temperatures 480-580 Deg C. It was ascertained that introduction of the activator into the system results in accelerated growth of layers on semiconductors due to participation of anionic component of the chemostimulator in oxidation processes. The activator is integrated into the salts formed [ru

  14. Enrichment and biofilm formation of Anammox bacteria in a non-woven membrane reactor.

    Science.gov (United States)

    Ni, Shou-Qing; Lee, Po-Heng; Fessehaie, Anania; Gao, Bao-Yu; Sung, Shihwu

    2010-03-01

    An innovative reactor configuration for Anammox enrichment by connecting a non-woven membrane module with an anaerobic reactor was developed in this study. The Anammox non-woven membrane reactor (ANMR) exhibited high biomass retention ability through the formation of aggregates in the reactor and biofilm on the interior surface of the non-woven membrane. No fouling problems occurred on the membrane after the development of mature biofilms. After 8 months of operation, the nitrogen loading rate (NLR) and nitrogen removal rate (NRR) reached 1263 mg N/l/d and 1047.5 mg N/l/d, respectively, with a maximum specific ammonium consumption (SAC) of 51 nmol/mg protein/min. At steady state, the average ammonium and nitrite removal efficiencies were 90.9% and 95.0%, respectively. Morphological observation of Anammox aggregates and biofilm showed a high degree of compactness. Also, enrichment of Anammox bacteria was quantified by real-time polymerase chain reaction (PCR) analysis as 97.7%. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. Influencing factors analysis of anammox bacteria cultured by mixing denitrifying-anammox

    OpenAIRE

    Sihui WANG; Yuanyuan SONG; Yunman LIU; Yankai GUO; Jing LIAN; Jianbo GUO

    2017-01-01

    In order to get the optimal growth conditions of anammox bacteria, the mature-cultured anammox granule sludge is used to investigate the influencing factors. The effects of temperature, pH value, COD and influent substrate (NO-2-N and NH+4-N) on anammox bacteria activity are investigated. The results demonstrate that the optimal temperature is 40 ℃ and the optimal pH value is between 7.0~8.0 for anammox bacteria. The anammox bacteria activity is not inhibited severely when COD concentration i...

  16. High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman

    DEFF Research Database (Denmark)

    Abed, Raeid M M; Lam, Phyllis; De Beer, Dirk

    2013-01-01

    Using a combination of process rate determination, microsensor profiling and molecular techniques, we demonstrated that denitrification, and not anaerobic ammonium oxidation (anammox), is the major nitrogen loss process in biological soil crusts from Oman. Potential denitrification rates were 584...... that nitrogen loss via denitrification is a dominant process in crusts from Oman, which leads to N 2 O gas emission and potentially reduces desert soil fertility....

  17. Community N and O isotope fractionation by sulfide-dependent denitrification and anammox in a stratified lacustrine water column

    Science.gov (United States)

    Wenk, Christine B.; Zopfi, Jakob; Blees, Jan; Veronesi, Mauro; Niemann, Helge; Lehmann, Moritz F.

    2014-01-01

    We investigated the community nitrogen (N) and oxygen (O) isotope effects of fixed N loss in the northern basin of Lake Lugano, where sulfide-dependent denitrification and anammox are the main drivers of suboxic N2 production. A decrease in nitrate (NO3-) concentration toward the redox transition zone (RTZ) at mid-water depth was paralleled by an increase in δ15N and δ18O from approximately 5‰ to >20‰ and from 0‰ to >10‰, respectively. Ammonium (NH4+) concentrations were highest in the near-bottom water and decreased toward the RTZ concomitant with an increase in δ15N-NH4+ from ∼7‰ to >15‰. A diffusion-reaction model yielded N and O isotope enrichment factors that are significantly smaller than isotope effects reported previously for microbial NO3- reduction and NH4+ oxidation (15εNO3 ≈ 10‰, 18εNO3 ≈ 7‰, and 15εNH4 ≈ 10-12‰). For the Lake Lugano north basin, we constrain the apparent under-expression of the N isotope effects to: (1) environmental conditions (e.g., substrate limitation, low cell specific N transformation rates), or (2) low process-specific (chemolithotrophic denitrification and anammox) isotope fractionation. Our results have confirmed the robust nature of the co-linearity between N and O isotope enrichment during microbial denitrification beyond its organotrophic mode. However, the ratio of 18O to 15N enrichment (18εNO3:15εNO3) associated with NO3- reduction in the RTZ was ∼0.89, which is lower than observed in marine environments and in most culture experiments. We propose that chemolithotrophic NO3- reduction in the Lake Lugano north basin was partly catalyzed by the periplasmic dissimilatory nitrate reductase (Nap) (rather than the membrane-bound dissimilatory Nar), which is known to express comparably low 18εNO3:15εNO3 ratios in the ambient NO3- pool. However, NO2- re-oxidation, e.g., during anammox or microaerobic nitrification, could have contributed to the lowered 18O to 15N enrichment ratios. Although

  18. Hydrothermal synthesis and optical properties of hexagonal tungsten oxide nanocrystals assisted by ammonium tartrate

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Hua-Feng; Li, Zhi-Jie [Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu (China); Xiang, Xia; Zu, Xiao-Tao [Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu (China); International Center for Material Physics, Chinese Academy of Sciences, Shenyang (China); Fu, Yong-Qing [Thin Film Center, Scottish Universities of Physics Alliance (SUPA), University of the West of Scotland, Paisley (United Kingdom)

    2012-03-15

    Crystals of hexagonal tungsten oxides (hex-WO{sub 3}) have been synthesized using hydrothermal method at 150 C, assisted by the capping reagent of ammonium tartrate (AT). The XRD and EDX results reveal that the lattice distortion exists in all the samples, possibly due to the defects and the intercalation of the residual sodium ions. Different crystal shapes including plate-like, urchin-like, and particle structures were obtained by varying concentration of AT and pH values in the precursor solution. Beside the absorption action of the NH{sub 4}{sup +} and Na{sup +} ions, the capping effect can be reinforced by the hydrogen bonding from the tartrate groups in the crystallization process. The bandgap energies were modulated by the size of the nanostructured hex-WO{sub 3} crystals due to quantum confinement effect, which increases from 2.74 to 3.04 eV. Based on the analysis of the photoluminescence and X-ray photoelectron spectroscopy, the enhancement of the blue emission of the nanocrystals is assigned as a result of a complex of the local intercalation of the residual sodium ions and the oxygen vacancies or defects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Nitrous Oxide and Methane Fluxes Following Ammonium Sulfate and Vinasse Application on Sugar Cane Soil.

    Science.gov (United States)

    Paredes, Debora da S; Alves, Bruno J R; dos Santos, Marco A; Bolonhezi, Denizart; Sant'Anna, Selenobaldo A C; Urquiaga, Segundo; Lima, Magda A; Boddey, Robert M

    2015-09-15

    This study aimed to quantify nitrous oxide (N2O) and methane (CH4) emission/sink response from sugar cane soil treated with fertilizer nitrogen (N) and vinasse applied separately or in sequence, the latter being investigated with regard to the time interval between applications for a possible effect on emissions. The study was carried out in a traditional area of unburned sugar cane in São Paulo state, Brazil. Two levels of N fertilization (0 and 100 kg N ha(-1)) with no added vinasse and combined with vinasse additions at different times (100 m(-3) ha(-1) at 3 and 15 days after N fertilization) were evaluated. Methane and N2O fluxes were monitored for 211 days. On average, the soil was a sink for CH4, which was not affected by the treatments. Emissions of N2O were induced by N fertilizer and vinasse applications. For ammonium sulfate, 0.6% of the added N was emitted as N2O, while for vinasse, this ranged from 1.0 to 2.2%. Changes in N2O fluxes were detected the day after application of vinasse on the N fertilized areas, but although the emission factor (EF) was 34% greater, the EF was not significantly different from fertilizer N alone. Nevertheless, we recommend to not apply vinasse after N fertilization to avoid boosting N2O emissions.

  20. Oxide growth on aluminium alloys in the presence of ammonium fluoborate

    International Nuclear Information System (INIS)

    Oliver, J.; Paterson, P.; Flavell, T.; Biddle, G.

    1996-01-01

    The aim of this study as to determine the mechanisms involved in using ammonium fluoborate as a reducing atmosphere when preheating a high magnesium content aluminium alloy. Rutherford Backscattering (RBS) has been the major technique used in the analysis of samples, it revealed significant reduction in both the diffusion of magnesium to the surface and the calculated oxide thickness in the presence of NH 4 BF 4 . At temperatures above 500 deg C in air, SEM images revealed depressions and voids due to incipient melting at various stages, around the grain boundaries. Grain boundaries effectively acted as pipes aiding the diffusion of magnesium to the surface. These results have been verified through compositional analysis with both RBS and auger electron spectroscopy (AES). Results from NH 4 BF 4 atmosphere preheat conditions showed significant improvements. It was verified experimentally that above 500 deg C , AA5182 alloys undergo incipient melting at the grain boundaries with magnesium diffusing through to the surface. 5 refs., 1 fig

  1. Oxide growth on aluminium alloys in the presence of ammonium fluoborate

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, J.; Paterson, P.; Flavell, T. [Royal Melbourne Inst. of Tech., VIC (Australia); Biddle, G. [Alcoa Rolled Products (Australia)

    1996-12-31

    The aim of this study as to determine the mechanisms involved in using ammonium fluoborate as a reducing atmosphere when preheating a high magnesium content aluminium alloy. Rutherford Backscattering (RBS) has been the major technique used in the analysis of samples, it revealed significant reduction in both the diffusion of magnesium to the surface and the calculated oxide thickness in the presence of NH{sub 4}BF{sub 4}. At temperatures above 500 deg C in air, SEM images revealed depressions and voids due to incipient melting at various stages, around the grain boundaries. Grain boundaries effectively acted as pipes aiding the diffusion of magnesium to the surface. These results have been verified through compositional analysis with both RBS and auger electron spectroscopy (AES). Results from NH{sub 4}BF{sub 4} atmosphere preheat conditions showed significant improvements. It was verified experimentally that above 500 deg C , AA5182 alloys undergo incipient melting at the grain boundaries with magnesium diffusing through to the surface. 5 refs., 1 fig.

  2. Ammonium Oxidation Kinetics in the Presence of Nitrification Inhibitor Dicyandiamide (DCD in some Calcareous Soils of Chaharmahal va Bakhtiari Province

    Directory of Open Access Journals (Sweden)

    roza kazemi

    2017-02-01

    Full Text Available Introduction: Nitrification inhibitors (NIs are compounds that retard the biological oxidation of ammonium to nitrite by depressing the activity of Nitrosomonas bacteria in the soil. Many popular NIs such as nitrapyrine (NP, dicyandiamide (DCD and 3,4-dimethylpyrazole phosphate (DMPP are produced and used in agricultural soils. Dicyandiamide is a very popular NI in some of the world countries. It delays nitrification process in the soil through its bacterial static property. It is easy to blend with commercial fertilizers such as urea, due to its low volatile nature. Application of urea in combination with nitrification inhibitor DCD lengthens nitrogen presence in soil as ammonium form. It has several beneficial effects for agriculture and enhances environmental protection. Studying the ammonium oxidation kinetics in the presence of nitrification inhibitor DCD can provide the experts in agriculture with very useful information regarding the ammoniumdurability in different soils. This research has been done to study the effect of using NI dicyandiamide on the kinetics of ammoniumloss in some calcareous soils of Chaharmahal Va Bakhtiari province, Iran. Materials and Methods: This research was conducted as factorial using completely randomized design with two factors of nitrogen fertilizer type and soil type with three replications at laboratory conditions. In this experiment, nitrogen fertilizer type included 2 levels of: 1- urea 2- urea plus nitrification inhibitor DCD (3.2%. A no added nitrogen fertilizer was considered as control treatment.The soil factor also consisted of 5different soils with a wide variation in soil physical and chemical characteristics. Five selected soils were non-saline (EC1:2=0.14-0.76 dS m-1 and alkaline (pH1:2=7.5-8.2. Organic carbon and cation exchange capacity (CEC ranged from 0.48 to 2.34% and 10 to 30 cmolc kg-1, respectively. The dose of applied nitrogen in all experimental treatments was 50 mg kg-1 N as urea

  3. Ammonium Oxidation Under Iron Reducing Conditions: Environmental Factors Characterization and Process Optimization

    Science.gov (United States)

    Huang, Shan; Ruiz, Melany; Jaffe, Peter

    2015-04-01

    Ammonium (NH4+) oxidation coupled to iron (Fe) reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) has been reported by several investigators and is referred to as Feammox. Feammox is a biological reaction, where Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+ is the electron donor, which is oxidized to NO2-. An Acidimicrobiaceae bacterium named A6, a previously unreported species in the Acidimicrobiaceae family, has been identified as being responsible for the Feammox process(1, 2) Feammox process was noted in riparian wetland soils in New Jersey(1,3), in tropical rainforest soils in Puerto Rico (4) and in paddy soils in China (5). In addition to these published locations, Feammox process was also found in samples collected from a series of local wetland-, upland-, as well as storm-water detention pond-sediments in New Jersey, river sediments from South Carolina, and forested soils near an acid mine drainage (Dabaoshan, Guangdong province) in China. Using primers acm342f - 439r (2), Acidimicrobiaceae bacterium A6 was detected in samples where Feammox was observed, after strictly anaerobic incubations. According to a canonical correspondence analysis with environmental characteristics and soil microbial communities, the species-environment relationship indicated that pH and Fe oxides content were the primary factors controlling Feammox process. Anaerobic incubations of Feammox enrichment cultures adjusted to different pH, revealed that the optimal pH for Feammox is 4 ~ 5, and the reaction does not proceed when pH > 7. No correlation was found between the distributions of Feammox bacteria and other NH4+ oxidation bacteria. Pure Acidimicrobiaceae bacterium A6 strain was isolated in an autotrophic medium, from an active Feammox membrane reactor (A6 was enriched to 65.8% of the total bacteria). A 13C labeled CO2 amendment was conducted, and the 13C in cells of A6 increased from 1.80% to 10.3% after 14 days incubation. In a separate

  4. Effect of organic matter strength on anammox for modified greenhouse turtle breeding wastewater treatment.

    Science.gov (United States)

    Chen, Chongjun; Huang, Xiaoxiao; Lei, Chenxiao; Zhang, Tian C; Wu, Weixiang

    2013-11-01

    Anaerobic ammonium-N removal from modified greenhouse turtle breeding wastewater with different chemical oxygen demand (COD) strengths (194.0-577.8 mg L(-1)) at relatively fixed C/N ratios (≈ 2) was investigated using a lab-scale up-flow anaerobic sludge blanket (UASB) anammox reactor. During the entire experiment, the total nitrogen (TN) removal efficiency was about 85% or higher, while the average COD removal efficiency was around 56.5 ± 7.9%. Based on the nitrogen and carbon balance, the nitrogen removal contribution was 79.6 ± 4.2% for anammox, 12.7 ± 3.0% for denitrification+denitritation and 7.7 ± 4.9% for other mechanisms. Denaturing gradient gel electrophoresis (DGGE) analyses revealed that Planctomycete, Proteobacteria and Chloroflexi bacteria were coexisted in the reactor. Anammox was always dominant when the reactor was fed with different COD concentrations, which indicated the stability of the anammox process with the coexistence of the denitrification process in treating greenhouse turtle breeding wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen

    Science.gov (United States)

    Lipsewers, Yvonne A.; Hopmans, Ellen C.; Meysman, Filip J. R.; Sinninghe Damsté, Jaap S.; Villanueva, Laura

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution) at three different locations before (March) and during summer hypoxia (August). The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers, and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen-, and sulfur cycling in Lake Grevelingen sediments. PMID:27812355

  6. Abundance and diversity of denitrifying and anammox bacteria in seasonally hypoxic and sulfidic sediments of the saline Lake Grevelingen

    Directory of Open Access Journals (Sweden)

    Yvonne A. Lipsewers

    2016-10-01

    Full Text Available Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution at three different locations before (March and during summer hypoxia (August. The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen- and sulfur cycling in Lake Grevelingen sediments.

  7. [Effects of Total Nitrogen and BOD5/TN on Anaerobic Ammonium Oxidation-Denitrification Synergistic Interaction of Mature Landfill Leachate in Aged Refuse Bioreactor].

    Science.gov (United States)

    Yang, Ying-ying; Chen, Yi; Lj, Ming-jie; Xie, Bing

    2015-04-01

    Mature landfill leachate, featured with high ammonium (NH4+) content and low biodegrade ability (low BOD5/COD ratio), is hard to be treated. This study mainly focused on the effects of influent TN (total nitrogen) loading and BOD5/TN ratios on the nitrogen removal efficiency of landfill leachate by landfill bioreactors. The results showed that when the influent total nitrogen loading was in the range of 15 g x (m3 x d)(-1) to 25 g x (m3 x d)(-1), the TN removal loading could remain stable between 10 g x (m3 x d)(-1) and 12 g x (m3 x d)(-1), while the TN removal efficiency decreased from 67.7% to 60.2% with the increasing loading. Therefore, TN loading shocks would lower the bioreactor's TN removal rate, but would not affect its TN removal loading. When the influent BOD5/TN ratio was increased from 0.3 to 0.4 and the TN loading was controlled at 9 g x (m3 x d)(-1), the TN removal rates were increased from 79.9% to 89.9% and 86.2% in anaerobic and aerobic, respectively. This implied that properly enhancing BOD5/TN ratio could significantly increase the TN removal efficiency of the bioreactor, and the effect was more significant under anaerobic condition. Analysis of nitrogen removal pathways showed that denitrification and anammox could take place synergistically in landfill bioreactor.

  8. Oxidation of ferrocene by thiocyanic acid in the presence of ammonium oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Ruslin, Farah bt; Yamin, Bohari M. [School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (Malaysia)

    2014-09-03

    A flake-like crystalline salt was obtained from the reaction of ferrocene, oxalic acid and ammonium thiocyanate in ethanol The elemental analysis and spectroscopic data were in agreement with the preliminary X-ray molecular structure. The compound consists of four ferrocenium moieties and a counter anion consisting of two (tetraisothiocyanato)iron(III) linked by an oxalato bridging group in such a way that both iron central atoms adopt octahedral geometries.

  9. Application of Ammonium Persulfate for Selective Oxidation of Guanines for Nucleic Acid Sequencing

    Directory of Open Access Journals (Sweden)

    Yafen Wang

    2017-07-01

    Full Text Available Nucleic acids can be sequenced by a chemical procedure that partially damages the nucleotide positions at their base repetition. Many methods have been reported for the selective recognition of guanine. The accurate identification of guanine in both single and double regions of DNA and RNA remains a challenging task. Herein, we present a new, non-toxic and simple method for the selective recognition of guanine in both DNA and RNA sequences via ammonium persulfate modification. This strategy can be further successfully applied to the detection of 5-methylcytosine by using PCR.

  10. The fate of ammonium in anoxic manganese oxide-rich marine sediment

    Science.gov (United States)

    Thamdrup, Bo; Dalsgaard, Tage

    2000-12-01

    The possibility for anaerobic NH 4+ oxidation and N 2 formation was explored in a Mn oxide-rich continental basin sediment from Skagerrak. The surface sediment contained 2.9 weight-% Mn(IV), and reactive Mn oxide persisted to ≥10 cm depth. Microbial Mn reduction completely dominated anaerobic carbon oxidation, whereas neither Fe reduction nor sulfate reduction were significant. Accumulation rates of soluble NH 4+ during anoxic incubations scaled with Mn reduction rates and did not indicate any substantial oxidation of NH 4+. No sustained production of 15N-labelled N 2 from added 15NH 4+ was detectable during the four-day incubations, which constrains the rate of NH 4+ conversion to N 2 to coupled nitrification/denitrification resulting from sediment handling. Oxidation of NH 4+ to NO 3- was also insignificant as there was no accumulation of NO 3- during the incubations and added 15NO 3- was rapidly consumed with N 2 as a major product. Although the oxidation of NH 4+ with Mn oxide is thermodynamically favorable, our results demonstrate that such oxidation was insignificant and that NH 4+ can be considered the end product of nitrogen mineralization in this anoxic Mn oxide-rich sediment.

  11. Metagenome analysis of a complex community reveals the metabolic blueprint of anammox bacterium ‘Candidatus Jettenia asiatica’

    Directory of Open Access Journals (Sweden)

    Ziye eHu

    2012-10-01

    Full Text Available Anammox bacteria are key players in the global nitrogen cycle and responsible for up to 50% of global nitrogen loss. Because of their cost effective application in anaerobic nitrogen removal, the anammox bacteria are widely implemented in wastewater treatment. Currently, five genera of anammox bacteria have been identified, together forming a deep branching order in the Planctomycetes-Verrucomicrobium- Chlamydiae (PVC superphylum. Members of all genera have been detected in wastewater treatment plants, but metagenomic information is not yet available for all genera. Here we report the metagenomic analysis of an enrichment dominated by ‘Candidatus Jettenia asiatica’. The whole microbial community of a granular sludge anammox reactor was sequenced using both illumina and 454 pyrosequencing. The sludge was previously shown to have a ~50% enrichment of the anammox bacterium ‘Candidatus Jettenia asiatica’ by 16S rRNA gene analysis. After de novo assembly 37,432 contigs with an average length of 571 nt were obtained. The contigs were then analyzed by BLASTx searches against the protein sequences of ‘Candidatus Kuenenia stuttgartiensis’ and a set of 25 genes essential in anammox metabolism were detected. Additionally all reads were mapped to the genome of an anammox strain KSU-1 and de novo assembly was performed again using the reads that could be mapped on KSU-1. Using this approach, a gene encoding copper-containing nitrite reductase NirK was identified in the genome, instead of cytochrome cd1-type nitrite reductase NirS that is responsible for the nitrite reduction of ‘Ca. Kuenenia stuttgartiensis’ and ‘Ca. Scalindua profunda’. Finally, the community composition was investigated through MetaCluster analysis, 16S rRNA gene analysis and read mapping, which showed the presence of other important community members such as aerobic ammonia-oxidizing bacteria, methane producing microorganisms and denitrifying methanotroph 'Ca

  12. [Simultaneous removal of carbon and nitrogen from organic-rich wastewater with Anammox].

    Science.gov (United States)

    Chen, Chongjun; Zhu, Weijing; Huang, Xiaoxiao; Wu, Weixiang

    2014-12-01

    In order to simultaneously remove carbon and nitrogen from organic-rich wastewater, we used an up-flow anaerobic sludge bed/blanket (UASB) reactor that was started up with anammox with high concentration of carbon and nitrogen by gradually raising the organic loading of influent. We optimized the removal of nitrogen and carbon when the chemical oxygen demand (COD) concentration varied from 172 to 620 mg/L. During the entire experiment, the ammonium and total nitrogen removal efficiency was higher than 85%, while the average COD removal efficiency was 56.6%. The high concentration of organic matter did not restrain the activity of anammox bacteria. Based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and tapping sequencing analyses, the Planctomycete, Proteobacteria, Chloroflexi, Chlorobi bacteria are detected in the UASB reactor, which indicated complex removal pathway of carbon and nitrogen coexisted in the reactor. However, a part of Planctomycete which referred to anammox bacteria could tolerate a high content of organic carbon, and it provided help for high performance of nitrogen removal in UASB reactor.

  13. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones.

    Science.gov (United States)

    Kalvelage, Tim; Jensen, Marlene M; Contreras, Sergio; Revsbech, Niels Peter; Lam, Phyllis; Günter, Marcel; LaRoche, Julie; Lavik, Gaute; Kuypers, Marcel M M

    2011-01-01

    Nutrient measurements indicate that 30-50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ~0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O(2)) on anammox, NH(3) oxidation and NO(3)(-) reduction in (15)N-labeling experiments with varying O(2) concentrations (0-25 µmol L(-1)) in the Namibian and Peruvian OMZs. Our results show that O(2) is a major controlling factor for anammox activity in OMZ waters. Based on our O(2) assays we estimate the upper limit for anammox to be ~20 µmol L(-1). In contrast, NH(3) oxidation to NO(2)(-) and NO(3)(-) reduction to NO(2)(-) as the main NH(4)(+) and NO(2)(-) sources for anammox were only moderately affected by changing O(2) concentrations. Intriguingly, aerobic NH(3) oxidation was active at non-detectable concentrations of O(2), while anaerobic NO(3)(-) reduction was fully active up to at least 25 µmol L(-1) O(2). Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O(2) concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O(2)-sensitivity of anammox itself, and not by any effects of O(2) on the tightly coupled pathways of aerobic NH(3) oxidation and NO(3)(-) reduction. With anammox bacteria in the marine environment being active at O(2) levels ~20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O(2) sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling. © 2011 Kalvelage et al.

  14. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones.

    Directory of Open Access Journals (Sweden)

    Tim Kalvelage

    Full Text Available Nutrient measurements indicate that 30-50% of the total nitrogen (N loss in the ocean occurs in oxygen minimum zones (OMZs. This pelagic N-removal takes place within only ~0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O(2 on anammox, NH(3 oxidation and NO(3(- reduction in (15N-labeling experiments with varying O(2 concentrations (0-25 µmol L(-1 in the Namibian and Peruvian OMZs. Our results show that O(2 is a major controlling factor for anammox activity in OMZ waters. Based on our O(2 assays we estimate the upper limit for anammox to be ~20 µmol L(-1. In contrast, NH(3 oxidation to NO(2(- and NO(3(- reduction to NO(2(- as the main NH(4(+ and NO(2(- sources for anammox were only moderately affected by changing O(2 concentrations. Intriguingly, aerobic NH(3 oxidation was active at non-detectable concentrations of O(2, while anaerobic NO(3(- reduction was fully active up to at least 25 µmol L(-1 O(2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O(2 concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O(2-sensitivity of anammox itself, and not by any effects of O(2 on the tightly coupled pathways of aerobic NH(3 oxidation and NO(3(- reduction. With anammox bacteria in the marine environment being active at O(2 levels ~20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O(2 sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling.

  15. UV-Vis spectrophotometric studies of self-oxidation/dissociation of quaternary ammonium permanganates (QAP) - impact of solvent polarity

    Science.gov (United States)

    Bank, Suraj Prakash; Guru, Partha Sarathi; Dash, Sukalyan

    2015-05-01

    Self-oxidation/dissociation of some quaternary ammonium permanganates (QAPs), such as cetyltrimethylammonium permanganate (CTAP) and tetrabutylammonium permanganate (TBAP), have been studied spectrophotometrically in six different organic solvent media of different polarities wherein the compounds show good solubility and stability. The optical densities of the substrates at zero time (ODo) and first-order rate constants of dissociation (k1) have been determined from their successive scanning for 40 min. At comparable experimental conditions, absorption capabilities of the substrates are compared from the ODo values in various organic media; the stability of the solutions is compared from the successive scan spectra in those media. The ODo values and the k1 values have been plotted against some solvent parameters to understand their effects on the absorbance and reactivity of the QAPs. These data are also subjected to multiple regression analysis to explain the influence of various solvent parameters on the ion-pairing properties of the substrates, thus elucidating their effects on the process of self-oxidation/dissociation of the substrates.

  16. Biological Nitrogen Removal in a Photosequencing Batch Reactor with an Algal-Nitrifying Bacterial Consortium and Anammox Granules

    NARCIS (Netherlands)

    Manser, Nathan D.; Wang, Meng; Ergas, Sarina J.; Mihelcic, James R.; Mulder, Arnold; van de Vossenberg, Jack; van Lier, J.B.; Van Der Steen, Peter

    2016-01-01

    This study demonstrates the feasibility of combining microalgae, ammonia-oxidizing bacteria (AOB), and Anammox in a photosequencing batch reactor. Alternating light and dark periods were applied to achieve biological nitrogen removal without mechanical aeration or external electron donor

  17. Vanadium Oxide Thin Film Formation on Graphene Oxide by Microexplosive Decomposition of Ammonium Peroxovanadate and Its Application as a Sodium Ion Battery Anode.

    Science.gov (United States)

    Mikhaylov, Alexey A; Medvedev, Alexander G; Grishanov, Dmitry A; Sladkevich, Sergey; Gun, Jenny; Prikhodchenko, Petr V; Xu, Zhichuan J; Nagasubramanian, Arun; Srinivasan, Madhavi; Lev, Ovadia

    2018-02-27

    Formation of vanadium oxide nanofilm-coated graphene oxide (GO) is achieved by thermally induced explosive disintegration of a microcrystalline ammonium peroxovanadate-GO composite. GO sheets isolate the microcrystalline grains and capture and contain the microexplosion products, resulting in the deposition of the nanoscale products on the GO. Thermal treatment of the supported nanofilm yields a sequence of nanocrystalline phases of vanadium oxide (V 3 O 7 , VO 2 ) as a function of temperature. This is the first demonstration of microexplosive disintegration of a crystalline peroxo compound to yield a nanocoating. The large number of recently reported peroxide-rich crystalline materials suggests that the process can be a useful general route for nanofilm formation. The V 3 O 7 @GO composite product was tested as a sodium ion battery anode and showed high charge capacity at high rate charge-discharge cycling (150 mAh g -1 at 3000 mA g -1 vs 300 mAh g -1 at 100 mA g -1 ) due to the nanomorphology of the vanadium oxide.

  18. Effect of chain length and electrical charge on properties of ammonium-bearing bisphosphonate-coated superparamagnetic iron oxide nanoparticles: formulation and physicochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Ali [Inserm U646, Universite d' Angers (France); Denizot, Benoit, E-mail: BDenizot@chi-annemasse-bonneville.f [Centre Hospitalier Annemasse-Bonneville (France); Hindre, Francois [Inserm U646, Universite d' Angers (France); Filmon, Robert [Universite d' Angers, Service Commun d' Imagerie et d' Analyses Microscopiques (France); Greneche, Jean-Marc [Universite du Mans, Laboratoire de Physique de I' Etat Condense UMR 6087 (France); Laurent, Sophie [NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, Department of General, Organic and Biochemical Chemistry (Belgium); Daou, T. Jean [UMR CNRS-ULP 7504, Institut de Physique et Chimie des Materiaux de Strasbourg (France); Begin-Colin, Sylvie [Universite de Haute Alsace, Laboratoire de Materiaux a Porosite Controlee, UMR CNRS 7016 (France); Jeune, Jean-Jacques Le [Inserm U646, Universite d' Angers (France)

    2010-05-15

    Bisphosphonates BP molecules have shown to be efficient for coating superparamagnetic iron oxide particles. In order to clarify the respective roles of electrical charge and the length of the molecules, bisphosphonates with one or two ammonium moieties with an intermediate aliphatic group of 3, 5 or 7 carbons were synthesized and iron oxide nanoparticles coated. The evaluation on their iron core properties was made by transmission electron microscopy (TEM), nuclear magnetic relaxation dispersion (NMRD) profiles and Moessbauer spectra. The core size is close to 5 nm, with a global superparamagnetic behaviour modified by a paramagnetic Fe-based layer, probably due to surface crystal alteration. The hydrodynamic sizes increase slightly with aliphatic chain length (from 9.8 to 18.6 nm). The presence of one or two ammonium group(s) lowers the negative electrophoretic mobility up to bear zero values but reduces their colloidal stability. These BP-coated iron oxide nanoparticles are promising Magnetic Resonance Imaging (MRI) contrast agents.

  19. Thermodynamics and kinetics of extracting zinc from zinc oxide ore by the ammonium sulfate roasting method

    Science.gov (United States)

    Sun, Yi; Shen, Xiao-yi; Zhai, Yu-chun

    2015-05-01

    Thermodynamic analyses and kinetic studies were performed on zinc oxide ore treatment by (NH4)2SO4 roasting technology. The results show that it is theoretically feasible to realize a roasting reaction between the zinc oxide ore and (NH4)2SO4 in a temperature range of 573-723 K. The effects of reaction temperature and particle size on the extraction rate of zinc were also examined. It is found that a surface chemical reaction is the rate-controlling step in roasting kinetics. The calculated activation energy of this process is about 45.57 kJ/mol, and the kinetic model can be expressed as follows: 1 - (1 - α)1/3 = 30.85 exp(-45.57/ RT)· t. An extraction ratio of zinc as high as 92% could be achieved under the optimum conditions.

  20. Effect of Low-Density Static Magnetic Field on the Oxidation of Ammonium by Nitrosomonas europaea and by Activated Sludge in Municipal Wastewater

    Science.gov (United States)

    Filipič, Jasmina; Kraigher, Barbara; Tepuš, Brigita; Kokol, Vanja

    2015-01-01

    Summary Ammonium removal is a key step in biological wastewater treatment and novel approaches that improve this process are in great demand. The aim of this study is to test the hypothesis that ammonium removal from wastewater can be stimulated by static magnetic fields. This was achieved by analysis of the effects of static magnetic field (SMF) on the growth and activity of Nitrosomonas europaea, a key ammonia-oxidising bacterium, where increased growth and increased ammonia oxidation rate were detected when bacteria were exposed to SMF at 17 mT. Additionally, the effect of SMF on mixed cultures of ammonia oxidisers in activated sludge, incubated in sequencing batch bioreactors simulating wastewater treatment process, was assessed. SMFs of 30 and 50 mT, but not of 10 mT, increased ammonium oxidation rate in municipal wastewater by up to 77% and stimulated ammonia oxidiser growth. The results demonstrate the potential for use of static magnetic fields in increasing ammonium removal rates in biological wastewater treatment plants. PMID:27904349

  1. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea.

    Science.gov (United States)

    Dodsworth, Jeremy A; Hungate, Bruce A; Hedlund, Brian P

    2011-08-01

    Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrification occurred mainly in sediments. Ammonia oxidation rates measured using (15)N-NO(3)(-) pool dilution ranged from 5.5 ± 0.8 to 8.6 ± 0.9 nmol N g(-1) h(-1) and were unaffected or only mildly stimulated by amendment with NH(4) Cl. Denitrification rates measured using acetylene block ranged from 15.8 ± 0.7 to 51 ± 12 nmol N g(-1) h(-1) and were stimulated by amendment with NO(3)(-) and complex organic compounds. The DNRA rate in one spring sediment measured using an (15)N-NO(3)(-) tracer was 315 ± 48 nmol N g(-1) h(-1). Both springs harboured distinct planktonic and sediment microbial communities. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both spring sediments by 16S rRNA gene pyrotag analysis. Quantitative PCR (qPCR) indicated that 'Ca. N. yellowstonii'amoA and 16S rRNA genes were present at 3.5-3.9 × 10(8) and 6.4-9.0 × 10(8) copies g(-1) sediment. Potential denitrifiers included members of the Aquificales and Thermales. Thermus spp. comprised springs and suggest that ammonia oxidation may be a major source of energy fuelling primary production. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Jensen, Marlene Mark; Contreras, Sergio

    2011-01-01

    on the global N-cycle. We examined the effect of oxygen (O2) on anammox, NH3 oxidation and NO3 2 reduction in 15N-labeling experiments with varying O2 concentrations (0–25 mmol L21) in the Namibian and Peruvian OMZs. Our results show that O2 is a major controlling factor for anammox activity in OMZ waters...... of ocean de-oxygenation on oceanic N-cycling.......Nutrient measurements indicate that 30–50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ,0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact...

  3. Intact polar lipids of Thaumarchaeota and anammox bacteria as indicators of N cycling in the eastern tropical North Pacific oxygen-deficient zone

    NARCIS (Netherlands)

    Sollai, M.; Hopmans, E.C.; Schouten, S.; Keil, R.G.; Sinninghe Damsté, J.S.

    2015-01-01

    In the last decade our understanding of the marine nitrogen cycle has improved considerably thanks to the discovery of two novel groups of microorganisms: ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria. Both groups are important in oxygen-deficient zones (ODZs),

  4. Intact polar lipids of Thaumarchaeota and anammox bacteria as indicators of N cycling in the eastern tropical North Pacific oxygen-deficient zone

    NARCIS (Netherlands)

    Sollai, M.; Hopmans, Ellen C.; Schouten, Stefan; Keil, R.G.; Sinninghe Damste, J.S.

    2015-01-01

    . In the last decade our understanding of the marine nitrogen cycle has improved considerably thanks to the discovery of two novel groups of microorganisms: ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria. Both groups are important in oxygen-deficient zones (ODZs),

  5. Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: a comparative study.

    Science.gov (United States)

    Pathak, Ashish; Dastidar, M G; Sreekrishnan, T R

    2009-11-15

    The potential of indigenous iron-oxidizing microorganisms enriched at initial neutral pH of the sewage sludge for bioleaching of heavy metals was investigated at initial neutral pH of the sludge using ammonium ferrous sulfate (FAS) and ferrous sulfate (FS) as an energy sources in two different sets of experiments. After 16 days of bioleaching, 56% Cu, 48% Ni, 68% Zn and 42% C were removed from the sludge using ammonium ferrous sulfate as an energy source. On the other hand, 64% Cu, 58% Ni, 76% Zn and 52% Cr were removed using ferrous sulfate. Further, 32% nitrogen and 24% phosphorus were leached from the sludge using ferrous sulfate, whereas only 22% nitrogen and 17% phosphorus were removed using ammonium ferrous sulfate. The BCR sequential extraction study on speciation of metals showed that using ammonium ferrous sulfate and ferrous sulfate, all the metals remained in bioleached sludge as stable form (F4 fraction). The results of the present study indicate that the bioleached sludge would be safer for land application. Also, the fertilizing property was largely conserved in the bioleached sludge using both the substrates.

  6. In-situ leaching of south Texas uranium ores--part 2: Oxidative removal of adsorbed ammonium ions with sodium hypochlorite

    International Nuclear Information System (INIS)

    Paul, J.M.; Fletcher, A.; Johnson, W.F.; Venuto, P.B.

    1983-01-01

    This paper reports a laboratory study of the oxidative destruction by sodium hypochlorite (NaOCl) of ammonium ions adsorbed on relatively reduced south Texas uranium ore. Included are an assessment of reaction stoichiometry, determination of some major reaction pathways and side reactions, and identification of several intermediates. Adsorbed ammonium ions were completely removed by 0.5% NaOCl, with the concentration of NH 3 in the effluent falling to a very low value after 10 to 15 PV NaOCl oxidant. A small fraction (5 to 10%) of NaOCl was utilized in reacting with NH 3 . After the NH 3 was nearly depleted, mono-, di-, and trichloramines, the expected intermediates in NaOCl oxidation of NH 3 , were observed. Chloramine decomposition studies showed that all three decomposed completely within 12 days. Since the ore was relatively highly reducing, the major part of the NaOCl was, not unexpectedly, consumed in side reactions. Substantial quantities of sulfate, reflecting oxidation of sulfide minerals such as pyrite, were formed, large amounts of uranium were leached out, and substantial amounts of calcium and magnesium ions were also produced during the presaturation with NH 4 HCO 3 preceding the oxidation stage

  7. In-situ leaching of south Texas uranium ores--part 2: oxidative removal of adsorbed ammonium ions with sodium hypochlorite

    International Nuclear Information System (INIS)

    Paul, J.M.; Fletcher, A.; Johnson, W.F.; Venuto, P.B.

    1983-01-01

    This paper reports a laboratory study of the oxidative destruction by sodium hypochlorite (NaOCl) of ammonium ions adsorbed on relatively reduced south Texas uranium ore. Included are an assessment of reaction stoichiometry, determination of some major reaction pathways and side reactions, and identification of several intermediates. Adsorbed ammonium ions were completely removed by 0.5% NaOCl, with the concentration of NH 3 in the effluent falling to a very low value after 10 to 15 PV NaOCl oxidant. A small fraction (5 to 10%) of NaOCl was utilized in reacting with NH 3 . After the NH 3 was nearly depleted, mono-, di-, and trichloramines, the expected intermediates in NaOCl oxidation of NH 3 , were observed. Chloramine decomposition studies showed that all three decomposed completely within 12 days. Since the ore was relatively highly reducing, the major part of the NaOCl was, not unexpectedly, consumed in side reactions. Substantial quantities of sulfate, reflecting oxidation of sulfide minerals such as pyrite, were formed, large amounts of uranium were leached out, and substantial amounts of calcium and magnesium ions were also produced during the presaturation with NH 4 HCO 3 preceding the oxidation stage

  8. Microbial community structure and biodiversity of size-fractionated granules in a partial nitritation-anammox process.

    Science.gov (United States)

    Luo, Jinghuan; Chen, Hui; Han, Xiaoyu; Sun, Yanfang; Yuan, Zhiguo; Guo, Jianhua

    2017-06-01

    The performance of a granule-based partial nitritation-anammox process is expected to be affected by the granule size distribution, but little is known about the impact of granule size on microbial community structure and diversity. To reveal how the microbial composition and diversity vary with granule size, granules from a partial nitritation-anammox reactor were size-fractionated into five classes (1.0 mm). Microbial communities and diversity in these size-fractionated granules were investigated using 16S rRNA gene high-throughput sequencing. It was found that larger granules harbor more diverse microbial communities than small granules. Both quantitative PCR and 16S rRNA gene sequencing indicated that the abundance of anammox bacteria (dominated by Candidatus Brocadia) exhibited an increasing trend with granule size. In contrast, the abundance of ammonia-oxidizing bacteria (Nitrosomonas) decreased with increasing granule size. Moreover, larger granules harbored more diverse anammox bacteria, with four genera found in the largest granules while only two with limited abundance were detected in the smallest granules. The findings highlight an important role for granule size in shaping community structure and biodiversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Comparison of different ecological remediation methods for removing nitrate and ammonium in Qinshui River, Gonghu Bay, Taihu Lake.

    Science.gov (United States)

    Wang, Hao; Li, Zhengkui; Han, Huayang

    2017-01-01

    Ecological remediation is one of the most practical methods for removing nutrients from river ecosystems. In this study, transformation and fate of nitrate and ammonium among four different ecological restoration treatments were investigated by stable 15 N isotope pairing technique combined with quantitative polymerase chain reaction and high-throughput sequencing technology. The results of 15 N mass-balance model showed that there were three ways to the fate of nitrogen: precipitated in the sediment, absorbed by Elodea nuttallii (E. nuttallii), and consumed by microbial processes (denitrification and anaerobic ammonium oxidation (anammox)). The results shown that the storage of 15 NH 4 + in sediments was about 1.5 times as much as that of 15 NO 3 - . And much more 15 NH 4 + was assimilated by E. nuttallii, about 2 times as much as 15 NO 3 - . Contrarily, the rate of microbial consuming 15 NO 3 - was higher than converting 15 NH 4 + . As for the group with 15 NO 3 - added, 29.61, 45.26, 30.66, and 51.95 % were accounted for 15 N-labeled gas emission. The proportions of 15 NH 4 + loss as 15 N-labeled gas were 16.06, 28.86, 16.93, and 33.09 % in four different treatments, respectively. Denitrification and anammox were the bacterial primary processes in N 2 and N 2 O production. The abundances of denitrifying and anammox functional genes were relatively higher in the treatment with E. nuttallii-immobilized nitrogen cycling bacteria (E-INCB) assemblage technology applied. Besides, microbial diversity increased in the treatment with E. nuttallii and INCB added. The 15 NO 3 - removal rates were 35.27, 49.42, 50.02, and 65.46 % in four different treatments. And the removal rates of 15 NH 4 + were 24, 34.38, 48.84, and 57.74 % in treatments A, B, C, and D, respectively. The results indicated that E-INCB assemblage technology could significantly promote the nitrogen cycling and improve nitrogen removal efficiency.

  10. Polyethylene Glycols as Efficient Catalysts for the Oxidation of Xanthine Alkaloids by Ceric Ammonium Nitrate in Acetonitrile: A Kinetic and Mechanistic Approach

    Directory of Open Access Journals (Sweden)

    S. Shylaja

    2013-01-01

    Full Text Available Kinetics of oxidation of xanthine alkaloids, such as Xanthine (XAN, hypoxanthine (HXAN, caffeine (CAF, theophylline (TPL, and theobromine (TBR, have been studied with ceric ammonium nitrate (CAN using poly ethylene glycols (PEG as catalysts. Reaction obeyed first order kinetics in both [CAN] and [Xanthine alkaloid]. Highly sluggish CAN-xanthine alkaloid reactions (in acetonitrile media even at elevated temperatures are enhanced in presence PEGs (PEG-200, -300, -400, -600. An increase in [PEG] increased the rate of oxidation linearly. This observation coupled with a change in absorption of CAN in presence of PEG, [H–(OCH2–CH2n–O–NH4Ce(NO34(CH3CN] (PEG bound CAN species, is considered to be more reactive than CAN. The mechanism of oxidation in PEG media has been explained by Menger-Portnoy’s enzymatic model.

  11. New method for synthesis of N-alkyl and N,N-dialkyl-O-ethyl and O-isopropylthiocarbamates by oxidation of ammonium salt of xhantogenic acid

    Directory of Open Access Journals (Sweden)

    Milisavljević Smiljka S.

    2010-01-01

    Full Text Available A synthesis of N-alkyl and N,N-dialkyl-O-ethyl and O-isopropyl thiocarbamates by oxidation of ammonium salt of ethyl and isopropylxanthogenic acid in a presence of sodium hypochlorite and hydrogen peroxide were performed. Ammonium salt of ethyl and isopropylxanthogenic acid was obtained by the reaction of alkylammonium sulfate and sodium ethyl and isopropyl xanthate. Studies on a dependence of N-ethyl-O-isopropylthiocarbamate yield and purity with respect to reaction parameters (reaction time, molar ratio of oxidant and ethylamonium salt of isopropylxanthogenic acid were performed. Optimal reaction conditions for synthesis of N-alkyl and N,N-dialkyl-O-ethyl and O-isopropyl thiocarbamates were established. Synthesized compounds have been fully characterized by FTIR, 1H NMR and MS data, while purity has been determined by GC method. A plausible pathway for the N-alkyl and N,N-dialkyl-O-ethyl and O-isopropyl thiocarbamates synthesis, in the presence of the oxidative agents sodium hypochlorite and hydrogen peroxide, was proposed. The presented synthetic methods has been developed at laboratory and applied at semi-industrial level. The developed optimal method provides a powerful and versatile method for the preparation of N-alkyl and N,N-dialkyl-O-ethyl and O-isopropyl thiocarbamates. This new optimized method offer several benefits, namely, simple operation, mild reaction conditions, bypass of hazardous organic solvents, moderately toxic and inexpensive reagents, and also short reaction times and high product yields.

  12. Fabrication of porous tungsten oxide via anodizing in an ammonium nitrate/ethylene glycol/water mixture for visible light-driven photocatalyst

    Science.gov (United States)

    Kikuchi, Tatsuya; Kawashima, Jun; Natsui, Shungo; Suzuki, Ryosuke O.

    2017-11-01

    Fabrication of a nanoporous tungsten oxide film via anodizing of tungsten in an ammonium nitrate (NH4NO3)/ethylene glycol (EG)/water (H2O) mixture is reported for use as a visible light-driven photocatalyst. Anodizing of tungsten in a 1.0 M NH4NO3/EG solution containing less than 0.1 vol% H2O resulted in active dissolution of the tungsten substrate. As the H2O concentration increased to more than 25 vol%, a thin barrier oxide film was formed on the tungsten substrate. A thick porous tungsten oxide with numerous nanopores measuring several tens of nanometer in diameter was fabricated via anodizing at a moderate H2O concentration of 1.0 vol%. The porous oxide consisted of a double-layered structure with an outer porous layer and an inner dense layer, and the outer porous layer became thinner as the NH4NO3 concentration decreased. A uniform porous oxide film from the top surface to the bottom interface was fabricated via anodizing at 20 V in a 0.02 M NH4NO3/EG solution containing 1.0 vol% H2O at 313 K. The porous tungsten oxide exhibited visible light-driven photocatalytic activity for the photocatalytic decomposition of methylene blue.

  13. Effect of HCO3- concentration on anammox nitrogen removal rate in a moving bed biofilm reactor.

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Vabamäe, Priit; Kroon, Kristel; Loorits, Liis; Saluste, Alar; Tenno, Taavo

    2012-01-01

    Anammox biomass enriched in a moving bed biofilm reactor (MBBR) fed by actual sewage sludge reject water and synthetically added NO2- was used to study the total nitrogen (TN) removal rate of the anammox process depending on bicarbonate (HCO3-) concentration. MBBR performance resulted in the maximum TN removal rate of 1100 g N m(-3) d(-1) when the optimum HCO3- concentration (910 mg L(-1)) was used. The average reaction ratio of NO2- removal, NO3- production and NH4+ removal were 1.18/0.20/1. When the HCO3- concentration was increased to 1760mg L(-1) the TN removal rate diminished to 270 g N m(-3) d(-1). The process recovered from bicarbonate inhibition within 1 week. The batch tests performed with biomass taken from the MBBR showed that for the HCO3- concentration of 615 mg L(-1) the TN removal rate was 3.3 mg N L(-1) h(-1), whereas for both lower (120 mg L(-1)) and higher (5750 mg L(-1)) HCO3- concentrations the TN removal rates were 2.3 (+/- 0.15) and 1.6 (+/- 0.12) mg N L(-1) d(-1), respectively. PCR and DGGE analyses resulted in the detection of uncultured Planctomycetales bacterium clone P4 and, surprisingly, low-oxygen-tolerant aerobic ammonia oxidizers. The ability of anammox bacteria for mixotrophy was established by diminished amounts of nitrate produced when comparing the experiments with an organic carbon source and an inorganic carbon source.

  14. Microbial Community Composition and Ultrastructure of Granules from a Full-Scale Anammox Reactor

    KAUST Repository

    Gonzalez-Gil, Graciela

    2014-12-11

    Granules in anammox reactors contain besides anammox bacteria other microbial communities whose identity and relationship with the anammox bacteria are not well understood. High calcium concentrations are often supplied to anammox reactors to obtain sufficient bacterial aggregation and biomass retention. The aim of this study was to provide the first characterization of bacterial and archaeal communities in anammox granules from a full-scale anammox reactor and to explore on the possible role of calcium in such aggregates. High magnification imaging using backscattered electrons revealed that anammox bacteria may be embedded in calcium phosphate precipitates. Pyrosequencing of 16S rRNA gene fragments showed, besides anammox bacteria (Brocadiacea, 32 %), substantial numbers of heterotrophic bacteria Ignavibacteriacea (18 %) and Anaerolinea (7 %) along with heterotrophic denitrifiers Rhodocyclacea (9 %), Comamonadacea (3 %), and Shewanellacea (3 %) in the granules. It is hypothesized that these bacteria may form a network in which heterotrophic denitrifiers cooperate to achieve a well-functioning denitrification system as they can utilize the nitrate intrinsically produced by the anammox reaction. This network may provide a niche for the proliferation of archaea. Hydrogenotrophic methananogens, which scavenge the key fermentation product H2, were the most abundant archaea detected. Cells resembling the polygon-shaped denitrifying methanotroph Candidatus Methylomirabilis oxyfera were observed by electron microscopy. It is hypothesized that the anammox process in a full-scale reactor triggers various reactions overall leading to efficient denitrification and a sink of carbon as biomass in anammox granules.

  15. Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios.

    Science.gov (United States)

    Jenni, Sarina; Vlaeminck, Siegfried E; Morgenroth, Eberhard; Udert, Kai M

    2014-02-01

    The nitritation/anammox process has been mainly applied to high-strength nitrogenous wastewaters with very low biodegradable organic carbon content (wastewaters have biodegradable organic carbon to nitrogen (COD/N) ratios between 0.5 and 1.7 g COD∙g N(-1) and thus, contain elevated amounts of organic carbon but not enough for heterotrophic denitrification. In this study, the influence of elevated COD/N ratios was studied on a nitritation/anammox process with suspended sludge. In a step-wise manner, the influent COD/N ratio was increased to 1.4 g COD∙g N(-1) by supplementing digester supernatant with acetate. The increasing availability of COD led to an increase of the nitrogen removal efficiency from around 85% with pure digester supernatant to >95% with added acetate while the nitrogen elimination rate stayed constant (275 ± 40 mg N∙L(-1)∙d(-1)). Anammox activity and abundance of anammox bacteria (AMX) were strongly correlated, and with increasing influent COD/N ratio both decreased steadily. At the same time, heterotrophic denitrification with nitrite and the activity of ammonia oxidising bacteria (AOB) gradually increased. Simultaneously, the sludge retention time (SRT) decreased significantly with increasing COD loading to about 15 d and reached critical values for the slowly growing AMX. When the SRT was increased by reducing biomass loss with the effluent, AMX activity and abundance started to rise again, while the AOB activity remained unaltered. Fluorescent in-situ hybridisation (FISH) showed that the initial AMX community shifted within only 40 d from a mixed AMX community to "Candidatus Brocadia fulgida" as the dominant AMX type with an influent COD/N ratio of 0.8 g COD∙g N(-1) and higher. "Ca. Brocadia fulgida" is known to oxidise acetate, and its ability to outcompete other types of AMX indicates that AMX participated in acetate oxidation. In a later phase, glucose was added to the influent instead of acetate. The new substrate

  16. Enhancing the Process of Anaerobic Ammonium Oxidation Coupled to Iron Reduction in Constructed Wetland Mesocosms with Supplementation of Ferric Iron Hydroxides

    Science.gov (United States)

    Shuai, W.; Jaffe, P. R.

    2017-12-01

    Effective ammonium (NH4+) removal has been a challenge in wastewater treatment processes. Aeration, which is required for the conventional NH4+ removal approach by ammonium oxidizing bacteria, is an energy intensive process during the operation of wastewater treatment plant. The efficiency of NH4+ oxidation in natural systems is also limited by oxygen transfer in water and sediments. The objective of this study is to enhance NH4+ removal by applying a novel microbial process, anaerobic NH4+ oxidation coupled to iron (Fe) reduction (also known as Feammox), in constructed wetlands (CW). Our studies have shown that an Acidimicrobiaceae bacterium named A6 can carry out the Feammox process using ferric Fe (Fe(III)) minerals like ferrihydrite as their electron acceptor. To investigate the properties of the Feammox process in CW as well as the influence of electrodes, Feammox bacterium A6 was inoculated in planted CW mesocosms with electrodes installed at multiple depths. CW mesocosms were operated using high NH4+ nutrient solution as inflow under high or low sediment Fe(III) level. During the operation, NH4+ and ferrous Fe concentration, pore water pH, voltages between electrodes, oxidation reduction potential and dissolved oxygen were measured. At the end of the experiment, CW sediment samples at different depths were taken, DNAs were extracted and quantitative polymerase chain reaction and pyrosequencing were performed to analyze the microbial communities. The results show that the high Fe level CW mesocosm has much higher NH4+ removal ability than the low Fe level CW mesocosm after Fe-reducing conditions are developed. This indicates the enhanced NH4+ removal can be attributed to elevated Feammox activity in high Fe level CW mesocosm. The microbial community structures are different in high or low Fe level CW mesocosms and on or away from the installed electrodes. The voltages between cathode and anode increased after the injection of A6 enrichment culture in low Fe

  17. Energy upcycle in anaerobic treatment: Ammonium, methane, and carbon dioxide reformation through a hybrid electrodeionization–solid oxide fuel cell system

    International Nuclear Information System (INIS)

    Xu, Linji; Dong, Feifei; Zhuang, Huichuan; He, Wei; Ni, Meng; Feng, Shien-Ping; Lee, Po-Heng

    2017-01-01

    Highlights: • EDI-SOFC integrated with AD is introduced for energy extraction from C and N pollutants. • NH 4 + dissociation to NH 3 and H 2 in EDI avoids C deposition in SOFC. • EDI exhibits nutrient and heavy metal recovery. • SOFCs display its adaptability with NH 3 , H 2 , and biogas. • Energy balance ratio boosts from 1.11 to 1.75 by EDI-SOFC in a HK landfill plant. - Abstract: To create possibilities for a more sustainable wastewater management, a novel system consisting of electrodeionization (EDI) and solid oxide fuel cells (SOFCs) is proposed in this study. This system is integrated with anaerobic digestion/landfills to capture energy from carbonaceous and nitrogenous pollutants. Both EDI and SOFCs showed good performances. EDI removed 95% and 76% ammonium-nitrogen (NH 4 + -N) from diluted (0.025 M) to concentrated (0.5 M) synthetic ammonium wastewaters, respectively, accompanied by hydrogen production. SOFCs converted the recovered fuels, biogas mixtures of methane and carbon dioxide, to electricity. Under the optimal conditions of EDI (3.0 V applied voltage and 7.5 mm internal electrode distance (IED), and SOFCs (750 °C operating temperature), the system achieved 60% higher net energy output as compared to conventional systems. The estimated energy benefit of this proposed system showed that the net energy balance ratio is enhanced from 1.11 (existing system) to 1.75 (this study) for a local Hong Kong active landfill facility with 10.0 g L −1 chemical oxygen demand (COD) and 0.21 M NH 4 + -N. Additionally, an average of 80% inorganic ions (heavy metals and nutrient elements) can be removed from the raw landfill leachate by EDI cell. The results are successful demonstrations of the upgrades of anaerobic processes for energy extraction from wastewater streams.

  18. Quaternary ammonium oxidative demethylation: X-ray crystallographic, resonance Raman, and UV-visible spectroscopic analysis of a Rieske-type demethylase.

    Science.gov (United States)

    Daughtry, Kelly D; Xiao, Youli; Stoner-Ma, Deborah; Cho, Eunsun; Orville, Allen M; Liu, Pinghua; Allen, Karen N

    2012-02-08

    Herein, the structure resulting from in situ turnover in a chemically challenging quaternary ammonium oxidative demethylation reaction was captured via crystallographic analysis and analyzed via single-crystal spectroscopy. Crystal structures were determined for the Rieske-type monooxygenase, stachydrine demethylase, in the unliganded state (at 1.6 Å resolution) and in the product complex (at 2.2 Å resolution). The ligand complex was obtained from enzyme aerobically cocrystallized with the substrate stachydrine (N,N-dimethylproline). The ligand electron density in the complex was interpreted as proline, generated within the active site at 100 K by the absorption of X-ray photon energy and two consecutive demethylation cycles. The oxidation state of the Rieske iron-sulfur cluster was characterized by UV-visible spectroscopy throughout X-ray data collection in conjunction with resonance Raman spectra collected before and after diffraction data. Shifts in the absorption band wavelength and intensity as a function of absorbed X-ray dose demonstrated that the Rieske center was reduced by solvated electrons generated by X-ray photons; the kinetics of the reduction process differed dramatically for the liganded complex compared to unliganded demethylase, which may correspond to the observed turnover in the crystal.

  19. Interaction of anammox bacteria and inactive methanogenic granules under high nitrogen selective pressure.

    Science.gov (United States)

    Ni, Shou-Qing; Fessehaie, Anania; Lee, Po-Heng; Gao, Bao-Yu; Xu, Xing; Sung, Shihwu

    2010-09-01

    Granular anammox reactors usually adopted anaerobic/aerobic granules as source sludge, in which the washout of other species and enrichment of anammox biomass were very slow because of the competition of the coexisting bacteria. In this study, inactive methanogenic granules were proved to be suitable for rapid anammox granulation under high nitrogen concentrations by investigating their interaction with anammox bacteria. The start-up nitrite concentration was significantly higher than the published toxic level for anammox bacteria and other lab-scale studies. The nitrogen loading rate increased from 141 to 480 mg/L/d in 120 days operation with a total nitrogen removal efficiency of 96.0+/-0.6%. Anammox granules with a diameter of 1.3+/-0.4mm were observed over the course of three months. Molecular analysis showed that over 67% of the cells in the anammox granules were anammox bacteria after 90 days. The accommodations and proliferations of anammox bacteria in the inactive methanogenic granules might be the main reason for the high anammox purity in a short period. The important role of the extracellular polymer in the granule structure was observed via morphological observation. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Modeling the competitive effect of ammonium oxidizers and heterotrophs on the degradation of MTBE in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    where the co-contaminants were oxidized. The results of the model further indicate that contradicting findings in the literature about the effects of BTEX on the degradation of MTBE are mainly due to differences in the study methodologies. Effects such as short-term toxicity of BTEX and the lack...

  1. Modelling and control design for SHARON/Anammox reactor sequence

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work presents a complete model of the SHARON/Anammox reactor sequence. The dynamics of the reactor were explored pointing out the different scales of the rates in the system: slow microbial...

  2. Anammox sludge immobilized in polyvinyl alcohol (PVA) cryogel carriers

    Science.gov (United States)

    This study evaluated the use of polyvinyl alcohol (PVA) cryogels to encapsulate slow-growing anammox bacteria for deammonification treatment of wastewater. The cryogel pellets were prepared by a freezing-thawing procedure at -8 oC. On average, pellets contained 11.8 mg TSS/g-pellet of enriched anamm...

  3. On the Mechanisms Linking Nitrogen Oxides to Trends in Ammonium Nitrate Aerosol over the Last Decade in the San Joaquin Valley

    Science.gov (United States)

    Pusede, S. E.; Zhang, Q.; Parworth, C.; Kim, H.; Shusterman, A.; Saleh, A.; Duffey, K.; Wooldridge, P. J.; Valin, L. C.; Fried, A.; Nowak, J. B.; Crawford, J. H.; Cohen, R. C.

    2014-12-01

    Nitrogen oxide (NOx) abundances across the U.S. have fallen steadily over the last fifteen years. Patterns in anthropogenic sources result in 2-fold lower NOx on weekends than weekdays largely without co-occurring changes in other emissions. These trends taken together provide a near perfect NOx constraint on the nonlinear chemistry of ozone, on the key oxidants nitrate radical (NO3) and hydroxyl radical (OH), and on secondary aerosol formation. We use this NOx constraint to interpret trends in wintertime PM2.5 over the last decade in San Joaquin Valley, California, a location with severe aerosol pollution and where a large portion of the total aerosol mass is ammonium nitrate (NH4NO3). We combine the 12-year routine monitoring record and the air- and ground-based DISCOVER-AQ-2013 datasets to quantify the impact of NOx emission controls on the frequency of wintertime exceedances of the national PM2.5 standard. Nitrate ion (NO3-) is the oxidation product of NO2 and is formed by distinct daytime and nighttime pathways, both of which are nonlinear functions of the NO2 abundance. We present observationally derived decadal trends in both pathways and show that NOx reductions have worked to simultaneously increase daytime and decrease nighttime NH4NO3 production over the last 15 years. The net effect has been a substantial decrease in NH4NO3 via decreased NO3-radical initiated production in the nocturnal residual layer, a layer largely separated from nighttime emissions at the surface. Whereas NO3- production in the nocturnal residual layer drove NH4NO3 chemistry over the last decade, OH-initiated chemistry at the surface is poised to be the most important source of NH4NO3 in the next decade.

  4. A multi-defense strategy: Enhancing bactericidal activity of a medical grade polymer with a nitric oxide donor and surface-immobilized quaternary ammonium compound.

    Science.gov (United States)

    Pant, Jitendra; Gao, Jing; Goudie, Marcus J; Hopkins, Sean P; Locklin, Jason; Handa, Hitesh

    2017-08-01

    Although the use of biomedical devices in hospital-based care is inevitable, unfortunately, it is also one of the leading causes of the nosocomial infections, and thus demands development of novel antimicrobial materials for medical device fabrication. In the current study, a multi-defense mechanism against Gram-positive and Gram-negative bacteria is demonstrated by combining a nitric oxide (NO) releasing agent with a quaternary ammonium antimicrobial that can be covalently grafted to medical devices. Antibacterial polymeric composites were fabricated by incorporating an NO donor, S-nitroso-N-acetyl-penicillamine (SNAP) in CarboSil® polymer and top coated with surface immobilized benzophenone based quaternary ammonium antimicrobial (BPAM) small molecule. The results suggest that SNAP and BPAM individually have a different degree of toxicity towards Gram-positive and Gram-negative bacteria, while the SNAP-BPAM combination is effective in reducing both types of adhered viable bacteria equally well. SNAP-BPAM combinations reduced the adhered viable Pseudomonas aeruginosa by 99.0% and Staphylococcus aureus by 99.98% as compared to the control CarboSil films. Agar diffusion tests demonstrate that the diffusive nature of NO kills bacteria beyond the direct point of contact which the non-leaching BPAM cannot achieve alone. This is important for potential application in biofilm eradication. The live-dead bacteria staining shows that the SNAP-BPAM combination has more attached dead bacteria (than live) as compared to the controls. The SNAP-BPAM films have increased hydrophilicity and higher NO flux as compared to the SNAP films useful for preventing blood protein and bacterial adhesion. Overall the combination of SNAP and BPAM imparts different attributes to the polymeric composite that can be used in the fabrication of antimicrobial surfaces for various medical device applications. A significant increase in the biomedical device related infections (BDRIs), inability of

  5. Hot topics and application trends of the anammox biotechnology: a review by bibliometric analysis

    OpenAIRE

    Zhang, Zuotao; Liu, Sitong

    2014-01-01

    Anammox has been extensively identified as a novel and sustained biotechnology for wastewater treatment. This study was conducted to evaluate the hot topics and application trends of anammox biotechnology by bibliometric analysis. The results show that “Water science and technology” and “Environmental science ecology” are the prevalent journal and category in this field. Many researches about “process” and “inhibition” have been carried out to conquer common challenges of anammox biotechnolog...

  6. Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salenCo(III complex tethering four quaternary ammonium salts

    Directory of Open Access Journals (Sweden)

    Jong Yeob Jeon

    2014-08-01

    Full Text Available The (salenCo(III complex 1 tethering four quaternary ammonium salts, which is a highly active catalyst in CO2/epoxide copolymerizations, shows high activity for propylene oxide/phthalic anhydride (PO/PA copolymerizations and PO/CO2/PA terpolymerizations. In the PO/PA copolymerizations, full conversion of PA was achieved within 5 h, and strictly alternating copolymers of poly(1,2-propylene phthalates were afforded without any formation of ether linkages. In the PO/CO2/PA terpolymerizations, full conversion of PA was also achieved within 4 h. The resulting polymers were gradient poly(1,2-propylene carbonate-co-phthalates because of the drift in the PA concentration during the terpolymerization. Both polymerizations showed immortal polymerization character; therefore, the molecular weights were determined by the activity (g/mol-1 and the number of chain-growing sites per 1 [anions in 1 (5 + water (present as impurity + ethanol (deliberately fed], and the molecular weight distributions were narrow (Mw/Mn, 1.05–1.5. Because of the extremely high activity of 1, high-molecular-weight polymers were generated (Mn up to 170,000 and 350,000 for the PO/PA copolymerization and PO/CO2/PA terpolymerization, respectively. The terpolymers bearing a substantial number of PA units (fPA, 0.23 showed a higher glass-transition temperature (48 °C than the CO2/PO alternating copolymer (40 °C.

  7. Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salen)Co(III) complex tethering four quaternary ammonium salts.

    Science.gov (United States)

    Jeon, Jong Yeob; Eo, Seong Chan; Varghese, Jobi Kodiyan; Lee, Bun Yeoul

    2014-01-01

    The (salen)Co(III) complex 1 tethering four quaternary ammonium salts, which is a highly active catalyst in CO2/epoxide copolymerizations, shows high activity for propylene oxide/phthalic anhydride (PO/PA) copolymerizations and PO/CO2/PA terpolymerizations. In the PO/PA copolymerizations, full conversion of PA was achieved within 5 h, and strictly alternating copolymers of poly(1,2-propylene phthalate)s were afforded without any formation of ether linkages. In the PO/CO2/PA terpolymerizations, full conversion of PA was also achieved within 4 h. The resulting polymers were gradient poly(1,2-propylene carbonate-co-phthalate)s because of the drift in the PA concentration during the terpolymerization. Both polymerizations showed immortal polymerization character; therefore, the molecular weights were determined by the activity (g/mol-1) and the number of chain-growing sites per 1 [anions in 1 (5) + water (present as impurity) + ethanol (deliberately fed)], and the molecular weight distributions were narrow (M w/M n, 1.05-1.5). Because of the extremely high activity of 1, high-molecular-weight polymers were generated (M n up to 170,000 and 350,000 for the PO/PA copolymerization and PO/CO2/PA terpolymerization, respectively). The terpolymers bearing a substantial number of PA units (f PA, 0.23) showed a higher glass-transition temperature (48 °C) than the CO2/PO alternating copolymer (40 °C).

  8. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    KAUST Repository

    Bagchi, Samik

    2016-06-20

    Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment.

  9. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed...

  10. Enrichment of Anammox biomass from municipal activated sludge: experimental and modelling results

    NARCIS (Netherlands)

    Dapena-Mora, A.; Hulle, S.W.H. van; Campos, J.L.; Mendez, R.; Rolleghem, P.A. van; Jetten, M.S.M.

    2004-01-01

    Anaerobic Ammonia Oxidising (Anammox) biomass was enriched from sludge collected at a municipal wastewater treatment plant, employing a Sequential Batch Reactor (SBR). After 60 days Anammox activity started to be detected, by consumption of stoichiometric amounts of NO2- and NH4+ in the system.

  11. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  12. Comparison between MBR and SBR on Anammox start-up process from the conventional activated sludge.

    Science.gov (United States)

    Wang, Tao; Zhang, Hanmin; Gao, Dawen; Yang, Fenglin; Zhang, Guangyi

    2012-10-01

    Anammox start-up performances from the conventional activated sludge were compared between a MBR and SBR. Both the reactors successfully started up Anammox process. The start-up period in the MBR (59 days) was notably shorter than that in the SBR (101 days), and the max nitrogen (NH(4)(+)+NO(2)(-)) removal capacity of 345.2 mg N L(-1) d(-1) in the MBR was also higher than that of 292.0 mg N L(-1) d(-1) in the SBR. FISH analysis showed that Anammox bacteria predominated in both reactors. Phylogenetic analysis further disclosed that the MBR had the better biodiversity of Anammox bacteria and gained a higher ecological stability. Generally, the results showed that MBR exhibited a more excellent performance for Anammox start-up. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  13. Influence of biomass acclimation on the performance of a partial nitritation-anammox reactor treating industrial saline effluents.

    Science.gov (United States)

    Giustinianovich, Elisa A; Campos, José-Luis; Roeckel, Marlene D; Estrada, Alejandro J; Mosquera-Corral, Anuska; Val Del Río, Ángeles

    2018-03-01

    The performance of the partial nitritation/anammox processes was evaluated for the treatment of fish canning effluents. A sequencing batch reactor (SBR) was fed with industrial wastewater, with variable salt and total ammonium nitrogen (TAN) concentrations in the range of 1.75-18.00 g-NaCl L -1 and 112 - 267 mg-TAN L -1 . The SBR operation was divided into two experiments: (A) progressive increase of salt concentrations from 1.75 to 18.33 g-NaCl L -1 ; (B) direct application of high salt concentration (18 g-NaCl L -1 ). The progressive increase of NaCl concentration provoked the inhibition of the anammox biomass by up to 94% when 18 g-NaCl L -1 were added. The stable operation of the processes was achieved after 154 days when the nitrogen removal rate was 0.021 ± 0.007 g N/L·d (corresponding to 30% of removal efficiency). To avoid the development of NOB activity at low salt concentrations and to stabilize the performance of the processes dissolved oxygen was supplied by intermittent aeration. A greater removal rate of 0.029 ± 0.017 g-N L -1 d -1 was obtained with direct exposure of the inoculum to 18 g-NaCl L -1 in less than 40 days. Also, higher specific activities than those from the inoculum were achieved for salt concentrations of 15 and 20 g-NaCl L -1 after 39 days of operation. This first study of the performance of the partial nitritation/anammox processes, to treat saline wastewaters, indicates that the acclimation period can be avoided to shorten the start-up period for industrial application purposes. Nevertheless, further experiments are needed in order to improve the efficiency of the processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Long-term operation of oxygen-limiting membrane bioreactor (MBR) for the development of simultaneous partial nitrification, anammox and denitrification (SNAD) process.

    Science.gov (United States)

    Zhao, Chuanqi; Wang, Gang; Xu, Xiaochen; Yang, Yuesuo; Yang, Fenglin

    2017-07-18

    In this study, an oxygen-limiting membrane bioreactor (MBR) with recirculation of biogas for relieving membrane fouling was successfully operated to realize the simultaneous partial nitrification, anammox and denitrification (SNAD) process. The MBR operation was considered effective in the long-term test with total nitrogen (TN) and chemical oxygen demand (COD) removal efficiencies of 94.86% and 98.91%, respectively. Membrane fouling was significantly alleviated due to the recirculation of biogas and the membrane had been cleaned four times with a normal filtration period of 52 days. The co-existence of ammonia-oxidizing bacteria (AOB), anammox and denitrifying bacteria in MBR was confirmed by scanning electron microscopy (SEM) and fluorescence in situ hybridizations (FISH) analysis. Furthermore, AOB were found close to the granule surface, while denitrifying bacteria and anammox were in the deeper layer of granules. Potential in excellent TN and COD removal, operational stability and sustainability, as well as in alleviating membrane fouling is expected by using this oxygen-limiting MBR.

  15. Online and offline mass spectrometric study of the impact of oxidation and ageing on glyoxal chemistry and uptake onto ammonium sulfate aerosols.

    Science.gov (United States)

    Hamilton, Jacqueline F; Baeza-Romero, M Teresa; Finessi, Emanuela; Rickard, Andrew R; Healy, Robert M; Peppe, Salvatore; Adams, Thomas J; Daniels, Mark J S; Ball, Stephen M; Goodall, Iain C A; Monks, Paul S; Borrás, Esther; Muñoz, Amalia

    2013-01-01

    Recent laboratory and modelling studies have shown that reactive uptake of low molecular weight alpha-dicarbonyls such as glyoxal (GLY) by aerosols is a potentially significant source of secondary organic aerosol (SOA). However, previous studies disagree in the magnitude of the uptake of GLY, the mechanism involved and the physicochemical factors affecting particle formation. In this study, the chemistry of GLY with ammonium sulfate (AS) in both bulk laboratory solutions and in aerosol particles is investigated. For the first time, Aerosol Time of Flight Mass Spectrometry (ATOFMS), a single particle technique, is used together with offline (ESI-MS and LC-MS2) mass spectrometric techniques to investigate the change in composition of bulk solutions of GLY and AS resulting from aqueous photooxidation by OH and from ageing of the solutions in the dark. The mass spectral ions obtained in these laboratory studies were used as tracers of GLY uptake and chemistry in AS seed particles in a series of experiments carried out under dark and natural irradiated conditions at the outdoor European Photo-reactor (EUPHORE). Glyoxal oligomers formed were not detected by the ATOFMS, perhaps due to inefficient absorption at the laser wavelength. However, the presence of organic nitrogen compounds, formed by reaction of GLY with ammonia was confirmed, resulting in an increase in the absorption efficiency of the aerosol, and this increased the number of particles successfully ionised by the ATOFMS. A number of light absorbing organic nitrogen species, including 1H-imidazole, 1H-imidazole-2-carboxaldehyde, 2,2'-bis-imidazole and a glyoxal substituted 2,2'-bisimidazole, previously identified in aqueous laboratory solutions, were also identified in chamber aerosol and formed on atmospherically relevant timescales. An additional compound, predicted to be 1,2,5-oxadiazole, had an enhanced formation rate when the chamber was open and is predicted to be formed via a light activated pathway

  16. Microbial competition among anammox bacteria in nitrite-limited bioreactors

    KAUST Repository

    Zhang, Lei

    2017-08-26

    Phylogenetically diverse anammox bacteria have been detected in most of anoxic natural and engineered ecosystems and thus regarded as key players in the global nitrogen cycle. However, ecological niche differentiation of anammox bacteria remains unresolved despite its ecological and practical importance. In this study, the microbial competitions for a common substrate (nitrite) among three anammox species (i.e. “Candidatus Brocadia sinica”, “Candidatus Jettenia caeni” and “Candidatus Kuenenia stuttgartiensis”) were systematically investigated in nitrite-limited gel-immobilized column reactors (GICR) and membrane bioreactors (MBRs) under different nitrogen loading rates (NLRs). 16 S rRNA gene-based population dynamics revealed that “Ca. J. caeni” could proliferate only at low NLRs, whereas “Ca. B. sinica” outcompeted other two species at higher NLRs in both types of reactors. Furthermore, FISH analysis revealed that “Ca. J. caeni” was mainly present as spherical microclusters at the inner part (low NO2− environment), whereas “Ca. B. sinica” was present throughout the gel beads and granules. This spatial distribution supports the outcomes of the competition experiments. However, the successful competition of “Ca. J. caeni” at low NLR could not be explained with the Monod model probably due to inaccuracy of kinetic parameters such as half saturation constant (Ks) for nitrite and a difference in the maintenance rate (m). In addition, the growth of “Ca. K. stuttgartiensis” could not be observed in any experimental conditions, suggesting possible unknown factor(s) is missing. Taken together, NLR was one of factors determining ecological niche differentiation of “Ca. B. sinica” and “Ca. J. caeni”.

  17. Mathematical modeling of high-rate Anammox UASB reactor based on granular packing patterns

    International Nuclear Information System (INIS)

    Tang, Chong-Jian; He, Rui; Zheng, Ping; Chai, Li-Yuan; Min, Xiao-Bo

    2013-01-01

    Highlights: ► A novel model was conducted to estimate volumetric nitrogen conversion rates. ► The packing patterns of the granules in Anammox reactor are investigated. ► The simple cubic packing pattern was simulated in high-rate Anammox UASB reactor. ► Operational strategies concerning sludge concentration were proposed by the modeling. -- Abstract: A novel mathematical model was developed to estimate the volumetric nitrogen conversion rates of a high-rate Anammox UASB reactor based on the packing patterns of granular sludge. A series of relationships among granular packing density, sludge concentration, hydraulic retention time and volumetric conversion rate were constructed to correlate Anammox reactor performance with granular packing patterns. It was suggested that the Anammox granules packed as the equivalent simple cubic pattern in high-rate UASB reactor with packing density of 50–55%, which not only accommodated a high concentration of sludge inside the reactor, but also provided large pore volume, thus prolonging the actual substrate conversion time. Results also indicated that it was necessary to improve Anammox reactor performance by enhancing substrate loading when sludge concentration was higher than 37.8 gVSS/L. The established model was carefully calibrated and verified, and it well simulated the performance of granule-based high-rate Anammox UASB reactor

  18. Mathematical modeling of high-rate Anammox UASB reactor based on granular packing patterns

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chong-Jian, E-mail: chjtangzju@yahoo.com.cn [Department of Environmental Engineering, School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083 (China); He, Rui; Zheng, Ping [Department of Environmental Engineering, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Chai, Li-Yuan; Min, Xiao-Bo [Department of Environmental Engineering, School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A novel model was conducted to estimate volumetric nitrogen conversion rates. ► The packing patterns of the granules in Anammox reactor are investigated. ► The simple cubic packing pattern was simulated in high-rate Anammox UASB reactor. ► Operational strategies concerning sludge concentration were proposed by the modeling. -- Abstract: A novel mathematical model was developed to estimate the volumetric nitrogen conversion rates of a high-rate Anammox UASB reactor based on the packing patterns of granular sludge. A series of relationships among granular packing density, sludge concentration, hydraulic retention time and volumetric conversion rate were constructed to correlate Anammox reactor performance with granular packing patterns. It was suggested that the Anammox granules packed as the equivalent simple cubic pattern in high-rate UASB reactor with packing density of 50–55%, which not only accommodated a high concentration of sludge inside the reactor, but also provided large pore volume, thus prolonging the actual substrate conversion time. Results also indicated that it was necessary to improve Anammox reactor performance by enhancing substrate loading when sludge concentration was higher than 37.8 gVSS/L. The established model was carefully calibrated and verified, and it well simulated the performance of granule-based high-rate Anammox UASB reactor.

  19. Thermal decomposition of phase-stabilised ammonium nitrate (PSAM), HTPB based propellants. The effect of iron(III)oxide burning-rate catalyst

    NARCIS (Netherlands)

    Carvalheira, P.; Gadiot, G.M.H.J.L.; Klerk, W.P.C. de

    1995-01-01

    Phase-stabilised ammonium nitrate (PSAN) and hydroxyl-terminated polybutadiene (HTPB) are the main ingredients of propellants used with success in some pyrotechnic igniter components of the VULCAIN liquid rocket engine for the ARIANE 5. Small amounts of selected additives play an important role in

  20. Production and mitigation of N2O in sequentially membrane-aerated redox-stratified nitritation/anammox biofilms

    DEFF Research Database (Denmark)

    Smets, Barth F.; Pellicer i Nàcher, Carles; Thamdrup, Bo

    batch incubations with biofilm samples revealed a significant N2O assimilatory activity. Anoxic incubations with N-15 enriched nitrite, nitrate, or ammonium, in presence or absence of acetate revealed the following: a very high conversion of original nitrite or nitrate N to N2O over N2, no stimulatory......Combining partial nitritation with anaerobic ammonium oxidation maybe a cost- and energy-efficient alternative to remove reduced nitrogen from nitrogen rich waste streams. However, increased N2O emissions (upto several % of the incoming N flux) have been observed for reactors performing partial...... nitritation, which is likely due to the stimulatory effect of combined elevated nitrite and ammonium concentrations and reduced oxygen concentrations on nitrous oxide formation by ammonium oxidizing bacteria. Because increased N2O emission may be inherent to partial nitrification systems, we have explored how...

  1. Elevated ammonium levels

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Novak, Ivana; MacAulay, Nanna

    2012-01-01

    Increased ammonium (NH(4)(+)/NH(3)) in the brain is a significant factor in the pathophysiology of hepatic encephalopathy, which involves altered glutamatergic neurotransmission. In glial cell cultures and brain slices, glutamate uptake either decreases or increases following acute ammonium expos...

  2. Ammonium dichromate poisoning: A rare cause of acute kidney injury

    Directory of Open Access Journals (Sweden)

    H Radhakrishnan

    2014-01-01

    Full Text Available Ammonium dichromate is an inorganic compound frequently used in screen and color printing. Being a strong oxidizing agent, it causes oxygen free radical injury resulting in organ failure. We report a 25-year-old female who presented with acute kidney injury after consumption of ammonium dichromate. She was managed successfully with hemodialysis and supportive measures. This case is reported to highlight the toxicity of ammonium dichromate.

  3. Isotopic Monitoring of N2O Emissions from Wastewater Treatment: Evidence for N2O Production Associated with Anammox Metabolism?

    Science.gov (United States)

    Harris, E. J.; Wunderlin, P.; Joss, A.; Emmenegger, L.; Kipf, M.; Wolf, B.; Mohn, J.

    2015-12-01

    Microbial production is the major source of N2O, the strongest greenhouse gas produced within the nitrogen cycle, and the most important stratospheric ozone destructant released in the 21st century. Wastewater treatment is an important and growing source of N2O, with best estimates predicting N2O emissions from this sector will have increased by >25% by 2020. Novel treatment employing partial nitritation-anammox, rather than traditional nitrification-denitrification, has the potential to achieve a neutral carbon footprint due to increased biogas production - if N2O production accounts for treatment can be applied to our understanding of N cycling in the natural environment. This study presents the first online isotopic measurements of offgas N2O from a partial-nitritation anammox reactor 1. The measured N2O isotopic composition - in particular the N2O isotopic site preference (SP = δ15Nα - δ15Nβ) - was used to understand N2O production pathways in the reactor. When N2O emissions peaked due to high dissolved oxygen concentrations, low SP showed that N2O was produced primarily via nitrifier denitrification by ammonia oxidizing bacteria (AOBs). N2O production by AOBs via NH2OH oxidation, in contrast, did not appear to be important under any conditions. Over the majority of the one-month measurement period, the measured SP was much higher than expected following our current understanding of N2O production pathways 2. SP reached 41‰ during normal operating conditions and achieved a maximum of 45‰ when nitrite was added under anoxic conditions. These results could be explained by unexpectedly strong heterotrophic N2O reduction despite low dissolved organic matter concentrations, or by an incomplete understanding of isotopic fractionation during N2O production from NH2OH oxidation by AOBs - however the explanation most consistent with all results is a previously unknown N2O production pathway associated with anammox metabolism. Harris et al. (2015) Water Res., 83

  4. Ginger-supplemented diet ameliorates ammonium nitrate-induced ...

    African Journals Online (AJOL)

    The present study was designed to evaluate the capacity of ginger to repair the oxidative stress induced by ammonium nitrate. 50 male rats were divided into 5 groups; they underwent an oral treatment of ammonium nitrate and/or ginger (N mg/kg body weight + G% in diet) during 30 days. Group I served as control (C); ...

  5. Achieve efficient nitrogen removal from real sewage in a plug-flow integrated fixed-film activated sludge (IFAS) reactor via partial nitritation/anammox pathway.

    Science.gov (United States)

    Yang, Yandong; Zhang, Liang; Cheng, Jun; Zhang, Shujun; Li, Baikun; Peng, Yongzhen

    2017-09-01

    This study tested the feasibility of plug-flow integrated fixed-film activated sludge (IFAS) reactor in applying sewage partial nitritation/anammox (PN/A) process. The IFAS reactor was fed with real pre-treated sewage (C/N ratio=1.3) and operated for 200days. High nitrogen removal efficiency of 82% was achieved with nitrogen removal rates of 0.097±0.019kgN/(m 3 ·d). Therefore, plug-flow IFAS reactor could be an alternative to applying sewage PN/A process. Besides, it was found that the stability of sewage PN/A process was significantly affected by residual ammonium. Nitrate accumulated in effluent and PN/A performance deteriorated when residual ammonium was below 1mg/L. On the contrary, long-term stable PN/A operation was achieved when residual ammonium was over 3mg/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Anammox biomass carrying efficiency of polyethylene non-woven sheets as a carrier material.

    Science.gov (United States)

    Cho, Sunja; Jung, Minki; Ju, Dongjin; Lee, Young-Hee; Cho, Kuk; Okabe, Satoshi

    2017-07-31

    To access the effects of the surface modification and fabric structure of polyethylene (PE) non-woven fabric sheets on retaining the attachment efficiency of anammox biomass, three different non-woven sheets were prepared and inserted in an anammox reactor. The hydrophobic surface modification with 10% KMnO 4 and gelatin did not improve the attachment efficiency of the anammox biomass on the surface of the PE non-woven fibers. Densely packed PE-755 having the highest specific surface area to volume ratio (SA/V) (755) retained 221.4 mg biomass per unit sheet, whereas PE-181 having the lowest SA/V (181) retained only 66.4 mg biomass per unit. Accordingly, the volumetric anammox activity of non-woven sheet PE-755 was the highest among the three PE non-woven sheets because of the strong positive relationship between the specific anammox activity and biomass amount (R = 0.835, P non-woven biocarriers for anammox biomass.

  7. Influences of Temperature on the Conversion of Ammonium Tungstate Pentahydrate to Tungsten Oxide Particles with Controllable Sizes, Crystallinities, and Physical Properties

    Directory of Open Access Journals (Sweden)

    Asep Bayu Dani Nandiyanto

    2016-08-01

    Full Text Available The purpose of this study was to investigate influences of temperature on the conversion of ammonium tungstate pentahydrate (ATP powder to tungsten trioxide (WO3 particles with controllable sizes, crystallinities, and physicochemical properties. In this study, we used a simple thermal decomposition method. In the experimental procedure, we explored the effect of temperature on the physicochemical properties of ATP by testing various heating temperatures (from 100 to 900 °C. The heated ATP samples were then characterized by a physical observation (i.e. color and various analysis methods (i.e. a thermal gravimetric and differential thermal analysis, infrared spectroscopy, an X-ray diffraction, and a scanning electron microscope. Experimental results showed that increases in temperature had an impact to the decreases in particle size, the change in material crystallinity, and the change in physical properties (e.g. change of color from white, orange, to yellowish green. The relationships between the reaction temperatures and the physicochemical properties of the ATP were also investigated in detail along with the theoretical consideration and the proposal of the WO3 particle formation mechanism. In simplification, the phenomena can be described into three zones of temperatures. (1 Below 250 °C (release of water molecules and some ammonium ions.; (2 At 250-400 °C (release of water molecules and ammonium ions, restructurization of tungsten and oxygen elements, and formation of amorphous tungsten trioxide. (3 At higher than 400 °C (crystallization of tungsten trioxide. Since ATP possessed reactivity on temperature, its physicochemical properties changing could be observed easily, and the experimental procedure could be done easily. The present study will benefit not only for “chemistry and material science” but also potentially to be used as a model material for explaining the thermal behavior of material to undergraduate students (suitable

  8. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    , it cannot store hydrogen reversibly. Recently, the first ammonium metal borohydride, NH4Ca(BH4)3 was published, which may be considered as substitution of K+ by NH4+ in KCa(BH4)3, due to the similar sizes of NH4+ and K+[1]. This compound successfully stabilizes NH4BH4. In the present work, a series of novel...... halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed......, and the crystal structures and thermal decompositions are investigated. Mixtures of NH4BH4 - NaBH4 do not react, while solid solutions, K1-x(NH4)xBH4, are formed for NH4BH4 - KBH4. For the other composites, novel ammonium metal borohydrides are formed. Several of these structures have been solved from high...

  9. Sub micrometric fibrillar structures of codoped poly aniline obtained by co-oxidation using the NaCl O/ammonium peroxydisulfate system: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Osorio F, J. E.; Gomez Y, C.; Hernandez P, M. A.; Corea T, M. L., E-mail: josorio@ipn.mx [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, U. P. Adolfo Lopez Mateos, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2013-07-01

    A mixture of ammonium peroxydisulfate and sodium hypochlorite (NaCl O) (co-oxi dating system) were used to obtain poly aniline (PANi) doped with HCl and camphorsulfonic acid (CsA) (co-doping). The effect of HCl/CsA ratio added during polymerization structure, morphology and electrical conductivity of the conducting polymer was investigated. When NaCl O is used, the polymerization rate is substantially increased and the morphology changes from micrometric granular to nano metric fibrillar. CsA was used as complementary dopant but also to improve the solubility of PANi in common solvents. However, results suggest that quinone-like heterocycles containing carbonyl radicals as well as phenazine-type aromatic rings might be impeding an efficient doping in detriment of the conductivity. For the characterization X-Ray diffraction analysis, UV visible spectroscopy and scanning electron microscopy were used. (Author)

  10. Abundance and diversity of denitrifying and anammox bacteria in seasonally hypoxic and sulfidic sediments of the saline lake grevelingen

    NARCIS (Netherlands)

    Lipsewers, Yvonne A.; Hopmans, Ellen C.; Meysman, Filip J.R.; Sinninghe Damsté, Jaap S.; Villanueva, Laura

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox,

  11. Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen

    NARCIS (Netherlands)

    Lipsewers, Y.A.; Hopmans, E.C.; Meysman, F.J.R.; Sinninghe Damsté, J.S.; Villanueva, L.

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox,

  12. Mathematical modeling of high-rate Anammox UASB reactor based on granular packing patterns.

    Science.gov (United States)

    Tang, Chong-Jian; He, Rui; Zheng, Ping; Chai, Li-Yuan; Min, Xiao-Bo

    2013-04-15

    A novel mathematical model was developed to estimate the volumetric nitrogen conversion rates of a high-rate Anammox UASB reactor based on the packing patterns of granular sludge. A series of relationships among granular packing density, sludge concentration, hydraulic retention time and volumetric conversion rate were constructed to correlate Anammox reactor performance with granular packing patterns. It was suggested that the Anammox granules packed as the equivalent simple cubic pattern in high-rate UASB reactor with packing density of 50-55%, which not only accommodated a high concentration of sludge inside the reactor, but also provided large pore volume, thus prolonging the actual substrate conversion time. Results also indicated that it was necessary to improve Anammox reactor performance by enhancing substrate loading when sludge concentration was higher than 37.8 gVSS/L. The established model was carefully calibrated and verified, and it well simulated the performance of granule-based high-rate Anammox UASB reactor. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Competition for Ammonium between Plant-Roots and Nitrifying and Heterotrophic Bacteria and the Effects of Protozoan Grazing

    NARCIS (Netherlands)

    Verhagen, F.J.M.; Laanbroek, H.J.; Woldendorp, J.W.

    1995-01-01

    The competition for limiting amounts of ammonium between the chemolithotrophic ammonium-oxidizing species Nitrosomonas europaea, the heterotrophic species Arthrobacter globiformis and roots of Plantago lanceolata (Ribwort plantain) was studied in a series of model systems of increasing complexity,

  14. Ammonium ions determination with polypyrrole modified electrode

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available The present work relates the preparation of polypyrrole films (PPy deposited on surfaces of glass carbon, nickel and ITO (tin oxide doped with indium on PET plastic, in order to study the ammonium detection. The popypyrrole films were polymerized with dodecylbenzenesulfonate (DBSA on the electrodes, at + 0,70 V vs. Ag/AgCl, based on a solution containing the pyrrole monomer and the amphiphilic salt. Films deposited on glass carbon presented better performance. Cyclic voltammetries, between – 1,50 to + 0,5 V vs. Ag/AgCl, were repeated adding different concentrations of NH4Cl, in order to observe the behavior of the film as a possible detector of ions NH4+. The peak current for oxidation varies with the concentration of ammonium. A linear region can be observed in the band of 0 to 80 mM, with a sensibility (Sppy approximately similar to 4,2 mA mM-1 cm-2, showing the efficacy of the electrodes as sensors of ammonium ions. The amount of deposited polymer, controlled by the time of growth, does not influence on the sensor sensibility. The modified electrode was used to determine ammonium in grounded waters.

  15. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene Mark

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrifica...

  16. Protein Precipitation Using Ammonium Sulfate

    OpenAIRE

    Wingfield, Paul T.

    2001-01-01

    The basic theory of protein precipitation by addition of ammonium sulfate is presented and the most common applications are listed, Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution.

  17. Rocket Solid Propellant Alternative Based on Ammonium Dinitramide

    Directory of Open Access Journals (Sweden)

    Grigore CICAN

    2017-03-01

    Full Text Available Due to the continuous run for a green environment the current article proposes a new type of solid propellant based on the fairly new synthesized oxidizer, ammonium dinitramide (ADN. Apart of having a higher specific impulse than the worldwide renowned oxidizer, ammonium perchlorate, ADN has the advantage, of leaving behind only nitrogen, oxygen and water after decomposing at high temperatures and therefore totally avoiding the formation of hydrogen chloride fumes. Based on the oxidizer to fuel ratios of the current formulations of the major rocket solid booster (e.g. Space Shuttle’s SRB, Ariane 5’s SRB which comprises mass variations of ammonium perchlorate oxidizer (70-75%, atomized aluminum powder (10-18% and polybutadiene binder (12-20% a new solid propellant was formulated. As previously stated, the new propellant formula and its variations use ADN as oxidizer and erythritol tetranitrate as fuel, keeping the same polybutadiene as binder.

  18. Predicting settling performance of ANAMMOX granular sludge based on fractal dimensions.

    Science.gov (United States)

    Wang, Zhiyao; Zheng, Ping

    2017-09-01

    The settling performance of ANAMMOX granular sludge determines the biomass retention in reactors, and finally determines the potential reaction capacity. In this paper, Stokes equation was modified by fractal dimensions to describe the settling performance of ANAMMOX granular sludge. A new method was developed to obtain fractal dimensions, and a fractal settling model was established for ANAMMOX granular sludge. The fractal settling model was excellent with only a small deviation of 0.8% from the experimental data. Assuming normal distribution of all Feret diameters, 88% experimental data fell into the 90% confidence interval of settling velocities. Further assuming logarithmic normal distribution, 95% experimental data fell into the 90% confidence interval. The fractal settling model is helpful for the prediction of settling velocities of granular sludge and the optimization of bioreactor performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influência da quantidade de amônio na síntese de nanopartículas de óxido de ferro por microemulsão The influence of ammonium quantity on the synthesis of iron oxide nanoparticles in microemulsion

    Directory of Open Access Journals (Sweden)

    Maria Tereza Cortez Fernandes

    2010-01-01

    Full Text Available Iron oxide nanoparticles were synthesized in microemulsion systems composed by Triton X-100/hexyl alcohol/cyclohexane/aqueous solution. The nanoparticles were synthesized in microemulsions containing different amounts of ammonium, in order to evaluate the influence of this parameter on the size of the nanoparticles and on the phase transformation after heat treatment. Powder materials were obtained after centrifugation, washing and drying, and they were analyzed as synthesized and after heating at 350, 500 and 1000 °C. It was observed that the higher amount of ammonium induced smaller particles and minor phase transformation, possibly due to a preferential nucleation process.

  20. Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2013-03-01

    Full Text Available We use a chemical transport model to examine the change of sulfate-nitrate-ammonium (SNA aerosols over China due to anthropogenic emission changes of their precursors (SO2, NOx and NH3 from 2000 to 2015. From 2000 to 2006, annual mean SNA concentrations increased by about 60% over China as a result of the 60% and 80% increases in SO2 and NOx emissions. During this period, sulfate is the dominant component of SNA over South China (SC and Sichuan Basin (SCB, while nitrate and sulfate contribute equally over North China (NC. Based on emission reduction targets in the 12th (2011–2015 Five-Year Plan (FYP, China's total SO2 and NOx emissions are projected to change by −16% and +16% from 2006 to 2015, respectively. The amount of NH3 emissions in 2015 is uncertain, given the lack of sufficient information on the past and present levels of NH3 emissions in China. With no change in NH3 emissions, SNA mass concentrations in 2015 will decrease over SCB and SC compared to their 2006 levels, but increase over NC where the magnitude of nitrate increase exceeds that of sulfate reduction. This suggests that the SO2 emission reduction target set by the 12th FYP, although effective in reducing SNA over SC and SCB, will not be successful over NC, for which NOx emission control needs to be strengthened. If NH3 emissions are allowed to keep their recent growth rate and increase by +16% from 2006 to 2015, the benefit of SO2 reduction will be completely offset over all of China due to the significant increase of nitrate, demonstrating the critical role of NH3 in regulating nitrate. The effective strategy to control SNA and hence PM2.5 pollution over China should thus be based on improving understanding of current NH3 emissions and putting more emphasis on controlling NH3 emissions in the future.

  1. Constructing Sheet-On-Sheet Structured Graphitic Carbon Nitride/Reduced Graphene Oxide/Layered MnO2 Ternary Nanocomposite with Outstanding Catalytic Properties on Thermal Decomposition of Ammonium Perchlorate

    Science.gov (United States)

    Xu, Jianhua; Li, Dongnan; Chen, Yu; Tan, Linghua; Kou, Bo; Wan, Fushun; Jiang, Wei; Li, Fengsheng

    2017-01-01

    We unprecedentedly report that layered MnO2 nanosheets were in situ formed onto the surface of covalently bonded graphitic carbon nitride/reduced graphene oxide nanocomposite (g-C3N4/rGO), forming sheet-on-sheet structured two dimension (2D) graphitic carbon nitride/reduced graphene oxide/layered MnO2 ternary nanocomposite (g-C3N4/rGO/MnO2) with outstanding catalytic properties on thermal decomposition of ammonium perchlorate (AP). The covalently bonded g-C3N4/rGO was firstly prepared by the calcination of graphene oxide-guanidine hydrochloride precursor (GO-GndCl), following by its dispersion into the KMnO4 aqueous solution to construct the g-C3N4/rGO/MnO2 ternary nanocomposite. FT-IR, XRD, Raman as well as the XPS results clearly demonstrated the chemical interaction between g-C3N4, rGO and MnO2. TEM and element mapping indicated that layered g-C3N4/rGO was covered with thin MnO2 nanosheets. Furthermore, the obtained g-C3N4/rGO/MnO2 nanocomposite exhibited promising catalytic capacity on thermal decomposition of AP. Upon addition of 2 wt % g-C3N4/rGO/MnO2 ternary nanocomposite as catalyst, the thermal decomposition temperature of AP was largely decreased up by 142.5 °C, which was higher than that of pure g-C3N4, g-C3N4/rGO and MnO2, respectively, demonstrating the synergistic catalysis of the as-prepared nanocomposite. PMID:29244721

  2. Constructing Sheet-On-Sheet Structured Graphitic Carbon Nitride/Reduced Graphene Oxide/Layered MnO2 Ternary Nanocomposite with Outstanding Catalytic Properties on Thermal Decomposition of Ammonium Perchlorate

    Directory of Open Access Journals (Sweden)

    Jianhua Xu

    2017-12-01

    Full Text Available We unprecedentedly report that layered MnO2 nanosheets were in situ formed onto the surface of covalently bonded graphitic carbon nitride/reduced graphene oxide nanocomposite (g-C3N4/rGO, forming sheet-on-sheet structured two dimension (2D graphitic carbon nitride/reduced graphene oxide/layered MnO2 ternary nanocomposite (g-C3N4/rGO/MnO2 with outstanding catalytic properties on thermal decomposition of ammonium perchlorate (AP. The covalently bonded g-C3N4/rGO was firstly prepared by the calcination of graphene oxide-guanidine hydrochloride precursor (GO-GndCl, following by its dispersion into the KMnO4 aqueous solution to construct the g-C3N4/rGO/MnO2 ternary nanocomposite. FT-IR, XRD, Raman as well as the XPS results clearly demonstrated the chemical interaction between g-C3N4, rGO and MnO2. TEM and element mapping indicated that layered g-C3N4/rGO was covered with thin MnO2 nanosheets. Furthermore, the obtained g-C3N4/rGO/MnO2 nanocomposite exhibited promising catalytic capacity on thermal decomposition of AP. Upon addition of 2 wt % g-C3N4/rGO/MnO2 ternary nanocomposite as catalyst, the thermal decomposition temperature of AP was largely decreased up by 142.5 °C, which was higher than that of pure g-C3N4, g-C3N4/rGO and MnO2, respectively, demonstrating the synergistic catalysis of the as-prepared nanocomposite.

  3. Constructing Sheet-On-Sheet Structured Graphitic Carbon Nitride/Reduced Graphene Oxide/Layered MnO₂ Ternary Nanocomposite with Outstanding Catalytic Properties on Thermal Decomposition of Ammonium Perchlorate.

    Science.gov (United States)

    Xu, Jianhua; Li, Dongnan; Chen, Yu; Tan, Linghua; Kou, Bo; Wan, Fushun; Jiang, Wei; Li, Fengsheng

    2017-12-15

    We unprecedentedly report that layered MnO₂ nanosheets were in situ formed onto the surface of covalently bonded graphitic carbon nitride/reduced graphene oxide nanocomposite (g-C₃N₄/rGO), forming sheet-on-sheet structured two dimension (2D) graphitic carbon nitride/reduced graphene oxide/layered MnO₂ ternary nanocomposite (g-C₃N₄/rGO/MnO₂) with outstanding catalytic properties on thermal decomposition of ammonium perchlorate (AP). The covalently bonded g-C₃N₄/rGO was firstly prepared by the calcination of graphene oxide-guanidine hydrochloride precursor (GO-GndCl), following by its dispersion into the KMnO₄ aqueous solution to construct the g-C₃N₄/rGO/MnO₂ ternary nanocomposite. FT-IR, XRD, Raman as well as the XPS results clearly demonstrated the chemical interaction between g-C₃N₄, rGO and MnO₂. TEM and element mapping indicated that layered g-C₃N₄/rGO was covered with thin MnO₂ nanosheets. Furthermore, the obtained g-C₃N₄/rGO/MnO₂ nanocomposite exhibited promising catalytic capacity on thermal decomposition of AP. Upon addition of 2 wt % g-C₃N₄/rGO/MnO₂ ternary nanocomposite as catalyst, the thermal decomposition temperature of AP was largely decreased up by 142.5 °C, which was higher than that of pure g-C₃N₄, g-C₃N₄/rGO and MnO₂, respectively, demonstrating the synergistic catalysis of the as-prepared nanocomposite.

  4. Development of partial nitrification as a first step of nitrite shunt process in a Sequential Batch Reactor (SBR) using Ammonium Oxidizing Bacteria (AOB) controlled by mixing regime.

    Science.gov (United States)

    Soliman, Moomen; Eldyasti, Ahmed

    2016-12-01

    Shortcut biological nitrogen removal is a non-conventional way of removing nitrogen from wastewater using two processes either nitrite shunt or deammonification. In the nitrite shunt process, the ammonia oxidation step stops at the nitrite stage, which is known as partial nitrification, then nitrite is directly reduced to nitrogen gas. Effective partial nitrification could be achieved by accumulating Ammonia Oxidizing Bacteria (AOB) and inhibiting Nitrite Oxidizing Bacteria (NOB). In this research, a novel control strategy has been developed to control the DO using the variable mixing regime in a suspended growth system using a Sequential Batch Reactor (SBR) in order to achieve a stable ammonia removal efficiency (ARE) and nitrite accumulation rate (NAR) at a high nitrogen loading rate (NLR). The new controlled SBR system has been successfully running at NLR up to 1.2kg/(m 3 .day) and achieved an ARE of 98.6±2.8% and NAR of 93.0±0.7%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Substrate inhibition and concentration control in an UASB-Anammox process.

    Science.gov (United States)

    Ma, Haiyuan; Niu, Qigui; Zhang, Yanlong; He, Shilong; Li, Yu-You

    2017-08-01

    An UASB-Anammox reactor was operated for more than one year to study the process performance variations respond to the nitrogen loading rate (NLR) and substrate concentration. The IC 10 (451.1mg/L) , IC 50 (725.3mg/L) and the prospected threshold of influent total nitrogen (TN) concentration were simulated. A stable TN removal efficiency was obtained when the TN influent was controlled. The disequilibrium distribution of the substrate following the plug flow with the height of the reactor resulted in significant variations in specific Anammox activity from the bottom to the top of the reactor (348→3mgN/gVSS/d). With long term acclimation, the nitrogen removal capacity of Anammox sludge varied significantly, with the most activated sludge obtained in the bottom part a 100 times capacity greater than that of the top. A stable performance with high removal efficiency in the constructed UASB-Anammox reactor was obtained when the influent TN concentration was below 451.1mg/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Systematic design of an optimal control system for the SHARON-Anammox process

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2016-01-01

    A systematic design of an optimal control structure for the SHARON-Anammox nitrogen removal process is studied. The methodology incorporates two novel features to assess the controllability of the design variables candidate for the regulatory control layer: (i) H- control method, which formulates...

  7. Incremental design of control system of SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON-Anammox reactor sequence. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine...

  8. Ammonium Transformation in 14 Lakes along a Trophic Gradient

    Directory of Open Access Journals (Sweden)

    Barbara Leoni

    2018-03-01

    Full Text Available Ammonia is a widespread pollutant in aquatic ecosystems originating directly and indirectly from human activities, which can strongly affect the structure and functioning of the aquatic foodweb. The biological oxidation of NH4+ to nitrite, and then nitrate is a key part of the complex nitrogen cycle and a fundamental process in aquatic environments, having a profound influence on ecosystem stability and functionality. Environmental studies have shown that our current knowledge of physical and chemical factors that control this process and the abundance and function of involved microorganisms are not entirely understood. In this paper, the efficiency and the transformation velocity of ammonium into oxidised compounds in 14 south-alpine lakes in northern Italy, with a similar origin, but different trophic levels, are compared with lab-scale experimentations (20 °C, dark, oxygen saturation that are performed in artificial microcosms (4 L. The water samples were collected in different months to highlight the possible effect of seasonality on the development of the ammonium oxidation process. In four-liter microcosms, concentrations were increased by 1 mg/L NH4+ and the process of ammonium oxidation was constantly monitored. The time elapsed for the decrease of 25% and 95% of the initial ion ammonium concentration and the rate for that ammonium oxidation were evaluated. Principal Component Analysis and General Linear Model, performed on 56 observations and several chemical and physical parameters, highlighted the important roles of total phosphorus and nitrogen concentrations on the commencement of the oxidation process. Meanwhile, the natural concentration of ammonium influenced the rate of nitrification (µg NH4+/L day. Seasonality did not seem to significantly affect the ammonium transformation. The results highlight the different vulnerabilities of lakes with different trophic statuses.

  9. Heterogeneous reactions of alkylamines with ammonium sulfate and ammonium bisulfate.

    Science.gov (United States)

    Qiu, Chong; Wang, Lin; Lal, Vinita; Khalizov, Alexei F; Zhang, Renyi

    2011-06-01

    The heterogeneous reactions between alkylamines and ammonium salts (ammonium sulfate and ammonium bisulfate) have been studied using a low-pressure fast flow reactor coupled to an ion drift-chemical ionization mass spectrometer (ID-CIMS) at 293 ± 2 K. The uptake of three alkylamines, i.e., monomethylamine, dimethylamine, and trimethylamine, on ammonium sulfate shows a displacement reaction of ammonium by aminium, evidenced by the release of ammonia monitored using protonated acetone dimer as the reagent ion. For the three alkylamines, the initial uptake coefficients (γ(0)) range from 2.6 × 10(-2) to 3.4 × 10(-2) and the steady-state uptake coefficients (γ(ss)) range from 6.0 × 10(-3) to 2.3 × 10(-4) and decrease as the number of methyl groups on the alkylamine increases. A different reaction mechanism is observed for the uptake of the three alkylamines on ammonium bisulfate, which is featured by an acid-base reaction (neutralization) with irreversible alkylamine loss and no ammonia generation and occurs at a rate limited by diffusion of gaseous alkylamines to the ammonium bisulfate surface. Our results reveal that the reactions between alkylamines and ammonium salts contribute to particle growth and alter the composition of ammonium sulfate and bisulfate aerosols in the atmosphere.

  10. Ammonium on Ceres

    Science.gov (United States)

    Ammannito, E.; De Sanctis, M. C.; Carrorro, F. G.; Ciarniello, M.; Combe, J. P.; De Angelis, S.; Ehlmann, B. L.; Frigeri, A.; Longobardo, A.; Mugnuolo, R.; Marchi, S.; Palomba, E.; Raymond, C. A.; Salatti, M.; Tosi, F.; Zambon, F.; Russell, C. T.

    2017-12-01

    Since January 2015, the surface of Ceres has been studied by the Dawn spacecraft through the measurements from the three instruments on board (1). The VIR imaging spectrometer, sensitive to the spectral range 0.25 -5.0 μm, provided information on the surficial composition of Ceres at resolutions ranging from few kilometers to about one hundred meters (2). Analysis of VIR reflectance data revealed that the average spectrum of Ceres is compatible with a mixture of low-albedo minerals, Mg- phyllosilicates, ammoniated clays, and Mg- carbonates, (3) confirming previous studies based on ground based spectra (4, 5). Mineralogical maps of the surface at about 1 km/px show that the components identified in the average spectrum are present all across the surface with variations in their relative abundance and chemical composition (6, 7). While the ammoniated clays have been already studied (6), the presence nature and distribution of additional ammoniated species has never been investigated in detail, although the spectral analysis of the bright faculae within Occator crater already revealed the potential presence of ammonium salts (8). Since the position and shape of the ammonium absorption in the VIS-NIR region are function of the hosting mineral specie (8), we did an inventory and characterization of the ammonium-rich regions, in order to analyze their spectral properties. In addition to the presence of ammonium, also the identification of the hosting species has implication for the evolution of Ceres. Our study, therefore, is a step forward in understanding of evolutionary pathway of Ceres. References: (1) Russell, C. T. et al., Science, 2016. (2) De Sanctis M.C. et al., Space Science Reviews, 2011. (3) De Sanctis M.C. et al., Nature, 2015. (4) King T. et al. Science, 1992. (5) Rivkin A.S. et al. Icarus, 2006. (6) Ammannito E. et al., Science, 2016. (7) Carrozzo F.G. et al., Science Advances, in revision. (8) De Sanctis et al., Nature, 2016. (9) Berg et al., Icarus

  11. Detonation Properties of Ammonium Dinitramide (ADN)

    Science.gov (United States)

    Wätterstam, A.; Östmark, H.; Helte, A.; Karlsson, S.

    1999-06-01

    Ammonium Dinitramide, ADN, has a potential as an oxidizer for underwater high explosives. Pure ADN has a large reaction-zone length and shows a strong non-ideal behaviour. The work presented here is an extension of previous work.(Sensitivity and Performance Characterization of Ammonium Dinitramide (ADN). Presented at 11th International Detonation Symposium, Snowmass, CO, 1998.) Experiments for determining the detonation velocity as a function of inverse charge radius and density, reaction-zone length and curvature, and the detonation pressure are presented. Measurements of pressure indicates that no, or weak von-Neumann spike exists, suggesting an immediate chemical decomposition. Experimental data are compared with predicted using thermochemical codes and ZND-theory.

  12. Start-up and long-term operation of the Anammox process in a fixed bed reactor (FBR) filled with novel non-woven ring carriers.

    Science.gov (United States)

    Wang, Tao; Zhang, Hanmin; Yang, Fenglin; Li, Yifei; Zhang, Guangyi

    2013-04-01

    A novel kind of non-woven ring carriers was used to improve a fixed bed reactor (FBR) as Anammox reactor. The improved FBR was operated for about 1 year. The Anammox activity occurred on day 39. On day 367, the maximum total nitrogen removal rate reached 9.2 kg Nm(-3)d(-1). FISH analysis showed that Anammox bacteria predominated in the mature sludge and accounted for 78% of the total bacteria. Phylogenetic analysis further showed that Candidatus Kuenenia stuttgartiensis occupied 70% of Anammox bacteria, which benefited keeping the stability of Anammox reactor. The FBR was proved to be a suitable reactor for start-up and long-term operation of Anammox process. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  13. Crystallisation of mixtures of ammonium nitrate, ammonium sulphate and soot

    NARCIS (Netherlands)

    Dougle, P.G.; Veefkind, J.P.; Brink, H.M. ten

    1998-01-01

    Crystallisation of laboratory aerosols of ammonium nitrate and of internal mixtures of this salt with ammonium sulphate were investigated using humidity controlled nephelometry. The aerosol was produced via nebulizing of solutions and then dried to 25% RH, which is a realistic minimum value for

  14. Ammonium diphosphitoindate(III

    Directory of Open Access Journals (Sweden)

    Farida Hamchaoui

    2013-04-01

    Full Text Available The crystal structure of the title compound, NH4[In(HPO32], is built up from InIII cations (site symmetry 3m. adopting an octahedral environment and two different phosphite anions (each with site symmetry 3m. exhibiting a triangular–pyramidal geometry. Each InO6 octahedron shares its six apices with hydrogen phosphite groups. Reciprocally, each HPO3 group shares all its O atoms with three different metal cations, leading to [In(HPO32]− layers which propagate in the ab plane. The ammonium cation likewise has site symmetry 3m.. In the structure, the cations are located between the [In(HPO32]− layers of the host framework. The sheets are held together by hydrogen bonds formed between the NH4+ cations and the O atoms of the framework.

  15. Protein Precipitation Using Ammonium Sulfate.

    Science.gov (United States)

    2016-04-01

    The basic theory of protein precipitation by addition of ammonium sulfate is presented, and the most common applications are listed. Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution. Copyright © 2016 John Wiley & Sons, Inc.

  16. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene Mark

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrifica......Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic...... and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results...... suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein....

  17. Ammonium Perchlorate and Ammonium Perchlorate- Hydroxyl Terminated Polybutadiene Simulated Combustion

    Directory of Open Access Journals (Sweden)

    Rene Francisco Boschi Gonçalves

    2012-03-01

    Full Text Available The combustion simulation of ammonium perchlorate was carried out with the software Chemkin, in two steps: the burning behavior of pure ammonium perchlorate and the one of formulated ammonium perchlorate with hydroxyl terminated polybutadiene binder. In both cases, the room pressure varied in order to verify its influence in the system. The burning environment conditions were diverse. During the combustion process, the data obtained from the kinetic chemistry simulation software were compiled. The flame structure can be described by the molar fraction of the burning products and the temperature evolution from the surface of the material.

  18. Microbial resource management of one‐stage partial nitritation/anammox

    OpenAIRE

    Vlaeminck, S. E.; De Clippeleir, H.; Verstraete, W.

    2012-01-01

    Summary About 30 full‐scale partial nitritation/anammox plants are established, treating mostly sewage sludge reject water, landfill leachate or food processing digestate. Although two‐stage and one‐stage processes each have their advantages, the one‐stage configuration is mostly applied, termed here as oxygen‐limited autotrophic nitrification/denitrification (OLAND), and is the focus of this review. The OLAND application domain is gradually expanding, with technical‐scale plants on source‐se...

  19. The kinetics of nitrogen removal and biogas production in an anammox non-woven membrane reactor.

    Science.gov (United States)

    Ni, Shou-Qing; Lee, Po-Heng; Sung, Shihwu

    2010-08-01

    The anammox non-woven membrane reactor (ANMR) is a novel reactor configuration to culture the slowly growing anammox bacteria. Different mathematical models were used to study the process kinetics of the nitrogen removal in the ANMR. The kinetics of nitrogen gas production of anammox process was first evaluated in this paper. For substrate removal kinetics, the modified Stover-Kincannon model and the Grau second-order model were more applicable to the ANMR than the first-order model and the Monod model. For nitrogen gas production kinetics, the Van der Meer and Heertjes model was more appropriate than the modified Stover-Kincannon model. Model evaluation was carried out by comparing experimental data with predicted values calculated from suitable models. Both model kinetics study and model testing showed that the Grau second-order model and the Van der Meer and Heertjes model seemed to be the best models to describe the nitrogen removal and nitrogen gas production in the ANMR, respectively. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Phosphate limitation in biological rapid sand filters used to remove ammonium from drinking water

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    2013-01-01

    Removing ammonium from drinking water is important for maintaining biological stability in distribution systems. This is especially important in regions that do not use disinfectants in the treatment process or keep a disinfectant residual in the distribution system. Problems with nitrification can...... occur with increased ammonium loads caused by seasonal or operational changes and can lead to extensive periods of elevated ammonium and nitrite concentrations in the effluent. One possible cause of nitrification problems in these filters maybe due to phosphate limitation. This was investigated using...... the total number of ammonium oxidizing bacteria in the column. © 2013 American Water Works Association AWWA WQTC Conference Proceedings All Rights Reserved....

  1. Startup and operating characteristics of an external air-lift reflux partial nitritation-ANAMMOX integrative reactor.

    Science.gov (United States)

    Li, Xiang; Huang, Yong; Yuan, Yi; Bi, Zhen; Liu, Xin

    2017-08-01

    The differences in the physiological characteristics between AOB and ANAMMOX bacteria lead to suboptimal performance when used in a single reactor. In this study, aerobic and anaerobic zones with different survival environments were constructed in a single reactor to realize partitioned culture of AOB and ANAMMOX bacteria. An external air-lift reflux system was formed which used the exhaust from the aeration zone as power to return the effluent to the aeration zone. The reflux system effectively alleviated the large pH fluctuations and promoted NO 2 - -N to rapidly use by ANAMMOX bacteria, effectively inhibiting the activity of NOB. After 95d of running, the nitrogen removal rate increased from the initial 0.21kg/(m 3 ·d) to 3.1kg/(m 3 ·d). FISH analyses further demonstrated that AOB and ANAMMOX bacteria acquired efficient enrichment in the corresponding zone. Thus, this type of integrative reactor may create the environments needed for the partial nitritation-ANAMMOX processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 21 CFR 184.1143 - Ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium sulfate. 184.1143 Section 184.1143 Food... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg... is prepared by the neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient meets...

  3. Effect of freshwater mussels on the vertical distribution of anaerobic ammonia oxidizers and other nitrogen-transforming microorganisms in upper Mississippi river sediment

    Directory of Open Access Journals (Sweden)

    Ellen M. Black

    2017-07-01

    Full Text Available Targeted qPCR and non-targeted amplicon sequencing of 16S rRNA genes within sediment layers identified the anaerobic ammonium oxidation (anammox niche and characterized microbial community changes attributable to freshwater mussels. Anammox bacteria were normally distributed (Shapiro-Wilk normality test, W-statistic =0.954, p = 0.773 between 1 and 15 cm depth and were increased by a factor of 2.2 (p < 0.001 at 3 cm below the water-sediment interface when mussels were present. Amplicon sequencing of sediment at depths relevant to mussel burrowing (3 and 5 cm showed that mussel presence reduced observed species richness (p = 0.005, Chao1 diversity (p = 0.005, and Shannon diversity (p < 0.001, with more pronounced decreases at 5 cm depth. A non-metric, multidimensional scaling model showed that intersample microbial species diversity varied as a function of mussel presence, indicating that sediment below mussels harbored distinct microbial communities. Mussel presence corresponded with a 4-fold decrease in a majority of operational taxonomic units (OTUs classified in the phyla Gemmatimonadetes, Actinobacteria, Acidobacteria, Plantomycetes, Chloroflexi, Firmicutes, Crenarcheota, and Verrucomicrobia. 38 OTUs in the phylum Nitrospirae were differentially abundant (p < 0.001 with mussels, resulting in an overall increase from 25% to 35%. Nitrogen (N-cycle OTUs significantly impacted by mussels belonged to anammmox genus Candidatus Brocadia, ammonium oxidizing bacteria family Nitrosomonadaceae, ammonium oxidizing archaea genus Candidatus Nitrososphaera, nitrite oxidizing bacteria in genus Nitrospira, and nitrate- and nitrite-dependent anaerobic methane oxidizing organisms in the archaeal family “ANME-2d” and bacterial phylum “NC10”, respectively. Nitrosomonadaceae (0.9-fold (p < 0.001 increased with mussels, while NC10 (2.1-fold (p < 0.001, ANME-2d (1.8-fold (p < 0.001, and Candidatus Nitrososphaera (1.5-fold (p < 0

  4. Extraction Factor Of Pure Ammonium Paratungstate From Tungsten Scraps

    Directory of Open Access Journals (Sweden)

    Pee J.-H.

    2015-06-01

    Full Text Available Typical oxidation process of tungsten scraps was modified by the rotary kiln with oxygen burner to increase the oxidation rate of tungsten scraps. Also to accelerate the solubility of solid oxidized products, the hydrothermal reflux method was adapted. By heating tungsten scraps in rotary kiln with oxygen burner at around 900° for 2hrs, the scraps was oxidized completely. Then oxidized products (WO3 and CoWO4 was fully dissolved in the solution of NaOH by hydrothermal reflux method at 150° for 2hrs. The dissolution rate of oxidized products was increased with increasing the reaction temperature and concentration of NaOH. And then CaWO4 and H2WO4 could be generated from the aqueous sodium tungstate solution. Ammonium paratungstate (APT also could be produced from tungstic acid using by aqueous ammonium solution. The morphologies (cubic and plate types of APT was controlled by the stirring process of purified solution of ammonium paratungstate.

  5. Shotgun metagenomic data reveals significant abundance but low diversity of "

    NARCIS (Netherlands)

    Villanueva, L.; Speth, D.R.; van Alen, T.; Hoischen, A.; Jetten, M.S.M.

    2014-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in both water columns and sediments worldwide belong almost

  6. Diversity of total and functional microbiome of anammox reactors fed with complex and synthetic nitrogen-rich wastewaters

    DEFF Research Database (Denmark)

    Gülay, Arda; Pellicer i Nàcher, Carles; Mutlu, Ayten Gizem

    implementations treating complex nitrogen-rich wastewaters and 14 were lab-scale implementations treating synthetic wastewaters. We found that nitritation/anammox bioreactors treating complex nitrogen-rich wastewaters were more diverse in terms of total microbial diversity but less diverse at anammox functional...... diversity than the bioreactors treating synthetic wastewaters inferred from observed OTUs0.03, Chao1, Shannon index and Phylogenetic distance calculations. Differences in total microbial diversity agreed with the ecological theory concerning the positive correlation between substrate complexity...... weighted UniFrac algorithm explained 29% of the variance where the bioreactor samples of complex nitrogen-rich wastewater feeding was clearly separated from the bioreactor samples of synthetic feeding. Here we examined and compared for the first time microbial diversity of nitritation-anammox reactors...

  7. Establishment of anammox process in sludge samples collected from swine wastewater treatment system Estabelecimento do processo anammox a partir de lodo de sistema de tratamento de efluente da suinocultura

    Directory of Open Access Journals (Sweden)

    Caroline G Casagrande

    2011-12-01

    Full Text Available The high load of nitrogen present in swine wastewater is one of the biggest management challenges of the activity. The Anammox process emerges as a good alternative for biological removal of nitrogen. This study aims to acclimate sludge collected from swine effluent treatment systems to establish the Anammox process. Two sludge samples were collected at Embrapa Swine and Poultry, Concordia - SC, Brazil, one from the bottom of an inactive anaerobic pond (inoculum A and another from an aeration tank (inoculum B. Both were acclimated until the depletion of NO3-N, being subsequently inoculated in two reactors (Reactor A - Inoculum A and Reactor B - Inoculum B. The Reactor A showed activity after 110 days of operation, while the Reactor B needed 170 days. The difference in the start-up time could be explained by the different environmental conditions to which each sludge was submitted. FISH and PCR analyses confirmed the presence of microorganisms with Anammox activity, demonstrating that the sludge of swine wastewater treatment systems is a good source of inoculum for the development of the Anammox process.A elevada carga de nitrogênio presente em efluentes da suinocultura é um dos maiores desafios de manejo da atividade. O processo Anammox surge como boa alternativa para a remoção biológica desse nutriente. Este trabalho teve como objetivo aclimatar diferentes amostras de lodos de sistemas de tratamento de efluentes da suinocultura com vistas ao estabelecimento do processo Anammox. Dois inóculos foram coletados na Embrapa Suínos e Aves, Concórdia - SC, um dos quais no fundo de uma lagoa anaeróbia inativa (Inóculo A e o outro, em um tanque de aeração (Inóculo B. Ambos foram aclimatados até cessar o consumo de N-NO3- e, posteriormente, inoculados em dois reatores (Reator A - Inóculo A e Reator B - Inóculo B. O Reator A apresentou atividade, após aproximadamente 110 dias de operação, enquanto o Reator B precisou de aproximadamente

  8. Reactive Uptake of Dimethylamine by Ammonium Sulfate and Ammonium Sulfate-Sucrose Mixed Particles.

    Science.gov (United States)

    Chu, Yangxi; Chan, Chak K

    2017-01-12

    Short-chain alkyl amines can undergo gas-to-particle partitioning via reactive uptake by ammonium salts, whose phases have been thought to largely influence the extent of amine uptake. Previous studies mainly focused on particles of single ammonium salt at either dry or wet conditions without any addition of organic compounds. Here we report the uptake of dimethylamine (DMA) by ammonium sulfate (AS) and AS-sucrose mixed particles at different relative humidities (RHs) using an electrodynamic balance coupled with in situ Raman spectroscopy. DMA is selected as a representative of short-chain alkyl amines, and sucrose is used as a surrogate of viscous and hydrophilic organics. Effective DMA uptake was observed for most cases, except for the water-limiting scenario at <5% RH and the formation of an ultraviscous sucrose coating at 10% RH and below. DMA uptake coefficients (γ) were estimated using the particle mass measurements during DMA uptake. Addition of sucrose can increase γ by absorbing water or inhibiting AS crystallization and decrease γ by elevating the particle viscosity and forming a coating layer. DMA uptake can be facilitated for crystalline AS or retarded for aqueous AS with hydrophilic viscous organics (e.g., secondary organic material formed via the oxidation of biogenic volatile organic compounds) present in aerosol particles.

  9. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones

    Digital Repository Service at National Institute of Oceanography (India)

    Woebken, D.; Lam, P.; Kuypers, M.M.M.; Naqvi, S.W.A.; Kartal, B.; Strous, M.; Jetten, M.S.M.; Fuchs, B.M.; Amann, R.

    periods of starvation. FISH with probes targeting the ITS region (Oerther et al., 2000) has already been applied for anammox bacteria (Schmid et al., 2001). Hence, in addition to anammox bacterial abundance, the level of denovo rRNA synthesis as a central..., the cruise leaders V. Brüchert (Namibia) and G. Lavik and D. Gutiérrez (Peru) for organizing the cruises. Furthermore, the excellent technical assistance of Judith Ufkes and Christoph Walcher is acknowledged. The work was supported by the Deutsche...

  10. Relations of ammonium minerals at several hydrothermal systems in the western U.S.

    Science.gov (United States)

    Krohn, M.D.; Kendall, C.; Evans, J.R.; Fries, T.L.

    1993-01-01

    Ammonium bound to silicate and sulfate minerals has recently been located at several major hydrothermal systems in the western U.S. utilizing newly-discovered near-infrared spectral properties. Knowledge of the origin and mineralogic relations of ammonium minerals at known hydrothermal systems is critical for the proper interpretation of remote sensing data and for testing of possible links to mineralization. Submicroscopic analysis of ammonium minerals from two mercury- and gold-bearing hot-springs deposits at Ivanhoe, Nevada and McLaughlin, California shows that the ammonium feldspar, buddingtonite, occurs as fine-grained euhedral crystals coating larger sulfide and quartz crystals. Ammonium feldspar seems to precipitate relatively late in the crystallization sequence and shows evidence for replacement of NH4+ by K+ or other monovalent cations. Some buddingtonite is observed in close association with mercury, but not with gold. Ammonioalunite is found in a variety of isolated crystal forms at both deposits. Nitrogen isotopic values for ammonium-bearing minerals show a 14??? range in composition, precluding assignment of a specific provenance to the nitrogen. The correlations of nitrogen isotopic values with depth and ammonium content suggest some loss of nitrogen in the oxidizing supergene environment, possibly as a metastable mineral. The high ammonium content in these hydrothermal systems, the close association to mercury, and the small crystal size of the ammonium-bearing minerals all suggest that ammonium may be transported in a late-stage vapor phase or as an organic volatile. Such a process could lead to the formation of a non-carbonaceous organic aureole above a buried geothermal source. The discovery of a 10-km outcrop of ammonium minerals confirms that significant substitution of ammonium in minerals is possible over an extensive area and that remote sensing is a feasible means to detect such aureoles. ?? 1993.

  11. Using low frequency and intensity ultrasound to enhance start-up and operation performance of Anammox process inoculated with the conventional sludge.

    Science.gov (United States)

    Wang, Tao; Zhang, Diandian; Sun, Yating; Zhou, Shanshan; Li, Lin; Shao, Jingjing

    2018-04-01

    A lab-scale ultrasound enhancing Anammox reactor (R1) was established and irradiated once a week by ultrasound with the optimal parameter (frequency of 25 kHz, intensity of 0.2 W cm -2 and exposure time of 3 min) obtained by batch experiments. R1 and the controlled Anammox reactor (R2) without exposure to the ultrasound were operated in parallel. The start-up period of Anammox process (53 days) in R1 was shorter than that (61 days) in R2. The nitrogen loading-enhancing period (day 53-day 135) in R1 was also shorter than that (day 61-day 151) in R2. At the end of the nitrogen loading-enhancing period, NLR (0.76 kg N m -3  d -1 ) and NRR (0.68 kg N m -3  d -1 ) of R1 were both higher than NLR (0.66 kg N m -3  d -1 ) and NRR (0.56 kg N m -3  d -1 ) of R2. Moreover, The stability of Anammox process in R1 was better than that in R2. The results demonstrated that the periodical irradiation of ultrasound enhanced the start-up and operational performance of Anammox reactor. Microbial community analysis indicated that the ultrasound accelerated the microbial succession from some other bacteria to Anammox bacteria so that shorten the start-up period of Anammox process from the conventional activated sludge. It also indicated that the ultrasound strengthened the competitive advantage of Candidatus Kuenenia stuttgartiensis in Anammox bacteria of the mature sludge so as to enhance the nitrogen removal performance of the Anammox reactor under the operation condition of high nitrogen loading. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Solubility of ammonium metavanadate in ammonium carbonate and sodium bicarbonate solutions at 25 deg C

    International Nuclear Information System (INIS)

    Fedorov, P.I.; Andreev, V.K.; Slotvinskij-Sidak, N.P.

    1978-01-01

    Solubility at 25 deg C has been studied in the system ammonium metavanadate - sodium bicarbonate - water which is a stable section of the corresponding quaternary mutual system. In the eutonic point the content of ammonium metavanadate is 4.95% and of sodium bicarbonate 12.1%. The crystallization branch of ammonium metavanadate has been studied in the system ammonium metavanadate - ammonium carbonate - water at 25 deg C. Metavanadate solubility attains minimum (0.14%) at ammonium carbonate concentration 2.6%. Three sections have been studied of the quaternary system ammonium - metavanadate - ammonium carbonate - sodium bicarbonate-water at 25 deg C in the crystallization region of ammonium metavanadate at a ratio of sodium bicarbonate to ammonium carbonate 3:1, 1:1, and 1:3. A region of minimum solubility of ammonium metavanadate has been detected (0.1%)

  13. Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems

    DEFF Research Database (Denmark)

    Lindblom, E.; Arnell, M.; Flores-Alsina, X.

    2014-01-01

    The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O pr...

  14. Study of ammonium sulfates electric conductivity

    International Nuclear Information System (INIS)

    Dobrynin, D.V.; Tulegulov, A.D.

    2006-01-01

    In the work results of research of ammonium sulfate electroconductivity are given. The influence effecting on ammonium sulfate conductivity is investigated. The various circuits of inclusion tetra ohmmeter are given. (author)

  15. Selection of controlled variables in bioprocesses. Application to a SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    Selecting the right controlled variables in a bioprocess is challenging since the objectives of the process (yields, product or substrate concentration) are difficult to relate with a given actuator. We apply here process control tools that can be used to assist in the selection of controlled var...... variables to the case of the SHARON-Anammox process for autotrophic nitrogen removal....

  16. [Influence of alkalinity and DO on ANAMMOX bioreactor at normal temperature and low substrate concentration].

    Science.gov (United States)

    Ren, Yu-Hui; Wang, Ke; Li, Xiang-Kun; Ma, Kai-Li; Zhang, Jie

    2014-11-01

    A lab-scale up-flow ANAMMOX bioreactor with ceramics as biomass carrier was started up. The influence of alkalinity and dissolved oxygen on ANAMMOX reaction at normal temperature and low substrate concentration was investigated. The results showed that, at (20 ± 2) degrees C and an HRT of 3 h, when the alkalinity was between 44 mg x L(-1) and 350 mg x L(-1), the ammonia removal efficiency was decreased from 97.2% to 75.6% and the TN removal efficiency was decreased from 89.7% to 75.1% as the alkalinity reduced. Meanwhile, the nitrite removal efficiency was stabilized at 99.7%. When the alkalinity was 0 mg x L(-1), the effluent nitrite concentration was increased to 4.9 mg x L(-1). Ammonia removal efficiency was decreased by 12.3% because of light. When the HRT was 1.5 h, the DO value was < 3 mg x L(-1), the average removal efficiencies of ammonia and nitrite were 99.7% and 100%, respectively, the nitrogen removal rate was 1.0 kg x (m3 x d)(-1). 16S rRNA phylogenic analysis was applied to analyze the microbial community structure. Results revealed that Candidatus Jettenia asiatica and Candidatus Brocadia sp. were adapted to normal temperature.

  17. Removal of ammonium ions from wastewater: A short review in development of efficient methods

    Directory of Open Access Journals (Sweden)

    V.K. Gupta

    2015-04-01

    Full Text Available Ammonium ions wastewater pollution has become one of the most serious environmental problems today. The treatment of ammonium ions is a special concern due to their recalcitrance and persistence in the environment. In recent years, various methods for ammonium ion removal from wastewater have been extensively studied. This paper reviews the current methods that have been used to treat ammonium ion wastewater and evaluates these techniques. These technologies include ion exchange, adsorption, biosorption, wet air oxidation, biofiltration, diffused aeration, nitrification and denitrification methods. About 75 published studies (1979-2015 are reviewed in this paper. It is evident from the literature survey articles that ion exchange, adsorption and biological technology are the most frequently studied for the treatment of ammonium ion wastewater.

  18. Unexpectedly high degree of anammox and DNRA in seagrass sediments: Description and application of a revised isotope pairing technique

    Science.gov (United States)

    Salk, Kateri R.; Erler, Dirk V.; Eyre, Bradley D.; Carlson-Perret, Natasha; Ostrom, Nathaniel E.

    2017-08-01

    Understanding the magnitude of nitrogen (N) loss and recycling pathways is crucial for coastal N management efforts. However, quantification of denitrification and anammox by a widely-used method, the isotope pairing technique, is challenged when dissimilatory NO3- reduction to NH4+ (DNRA) occurs. In this study, we describe a revised isotope pairing technique that accounts for the influence of DNRA on NO3- reduction (R-IPT-DNRA). The new calculation procedure improves on previous techniques by (1) accounting for N2O production, (2) distinguishing canonical anammox from coupled DNRA-anammox, and (3) including the production of 30N2 by anammox in the quantification of DNRA. This approach avoids the potential for substantial underestimates of anammox rates and overestimates of denitrification rates in systems where DNRA is a significant NO3- reduction pathway. We apply this technique to simultaneously quantify rates of anammox, denitrification, and DNRA in intact sediments adjacent to a seagrass bed in subtropical Australia. The effect of organic carbon lability on NO3- reduction was also addressed by adding detrital sources with differing C:N (phytoplankton- or seagrass-derived). DNRA was the predominant pathway, contributing 49-74% of total NO3- reduction (mean 0.42 μmol N m-2 h-1). In this high C:N system, DNRA outcompetes denitrification for NO3-, functioning to recycle rather than remove N. Anammox exceeded denitrification (mean 0.18 and 0.04 μmol N m-2 h-1, respectively) and accounted for 64-86% of N loss, a rare high percentage in shallow coastal environments. Owing to low denitrification activity, N2O production was ∼100-fold lower than in other coastal sediments (mean 7.7 nmol N m-2 h-1). All NO3- reduction pathways were stimulated by seagrass detritus but not by phytoplankton detritus, suggesting this microbial community is adapted to process organic matter that is typically encountered. The R-IPT-DNRA is widely applicable in other environments where the

  19. 21 CFR 184.1133 - Ammonium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium alginate. 184.1133 Section 184.1133 Food... Specific Substances Affirmed as GRAS § 184.1133 Ammonium alginate. (a) Ammonium alginate (CAS Reg. No. 9005... accordance with § 184.1(b)(2), the ingredient is used in food only within the following specific limitations...

  20. 21 CFR 582.1141 - Ammonium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b) Conditions...

  1. 76 FR 47238 - Ammonium Nitrate From Russia

    Science.gov (United States)

    2011-08-04

    ... COMMISSION Ammonium Nitrate From Russia Determination On the basis of the record \\1\\ developed in the subject... order on ammonium nitrate from Russia would be likely to lead to continuation or recurrence of material... Commission are contained in USITC Publication 4249 (August 2011), entitled Ammonium Nitrate from Russia...

  2. 21 CFR 582.1143 - Ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance...

  3. Preparation of nanodispersed titania using stabilized ammonium nitrate melts

    KAUST Repository

    Raciulete, Monica

    2010-10-01

    An expedite one-step approach using simple precursors has been proposed to obtain metallic oxide compounds and exemplified by preparation of highly dispersed TiO2. The technique consists in heating to 400500 °C of molten ammonium nitrate stabilized with an organic nitrogen-containing compound (urea, melamine, ammonium oxalate) and containing dissolved metal salt precursor (TiOCl2). The crystallites of the resulting TiO2 demonstrated variable size and shape as a function of stabilizer used. Their activity in photocatalytic oxidation of formic acid also depends on the nature of the stabilizer. The catalysts as-prepared showed high photocatalytic performance, superior to that of the Degussa P25 reference. Nitrogen containing stabilizers play a double role of increasing the process safety and modifying the properties of the solid products. © 2010 Elsevier Inc. All rights reserved.

  4. Phosphate limitation in biological rapid sand filters used to remove ammonium from drinking water

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    2013-01-01

    Removing ammonium from drinking water is important for maintaining biological stability in distribution systems. This is especially important in regions that do not use disinfectants in the treatment process or keep a disinfectant residual in the distribution system. Problems with nitrification can...... the total number of ammonium oxidizing bacteria in the column. © 2013 American Water Works Association AWWA WQTC Conference Proceedings All Rights Reserved....

  5. Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes

    Science.gov (United States)

    Yang, Jian; Jiang, Hongchen; Wu, Geng; Hou, Weiguo; Sun, Yongjuan; Lai, Zhongping; Dong, Hailiang

    2012-12-01

    Nitrite-dependent anaerobic methane-oxidizing (n-damo) bacteria and anaerobic ammonia oxidizing (anammox) bacteria are two groups of microorganisms involved in global carbon and nitrogen cycling. In order to test whether the n-damo and anammox bacteria co-occur in natural saline environments, the DNA and cDNA samples obtained from the surficial sediments of two saline lakes (with salinity of 32 and 84 g/L, respectively) on the Tibetan Plateau were PCR-amplified with the use of anammox- and n-damo-specific primer sets, followed by clone library construction and phylogenetic analysis. DNA and cDNA-based clones affiliated with n-damo and anammox bacteria were successfully retrieved from the two samples, indicating that these two groups of bacteria can co-occur in natural saline environments with salinity as high as 84 g/L. Our finding has great implications for our understanding of the global carbon and nitrogen cycle in nature.

  6. Treating ammonium-rich wastewater with sludge from water treatment plant to produce ammonium alum

    Directory of Open Access Journals (Sweden)

    Wen-Po Cheng

    2016-03-01

    Full Text Available This study applies a process to treat ammonium-rich wastewater using alum-generated sludge form water purification plant, and gain economic benefit by producing ammonium alum (Al(NH4(SO42·12H2O. The factors affecting production of ammonium alum include molar ratio of ammonium to aluminum concentration, sulfuric acid concentration, mixing speed, mixing time, standing time, and temperature. According to the equation for the ammonium removal reaction, the theoretical quantity of ammonium alum was calculated based on initial and final concentrations of ammonium. Then, the weight of ammonium alum crystal was divided by the theoretical weight to derive the recovery ratio. The optimum sludge and sulfuric acid dosage to treat about 17 g L−1 ammonium wastewater are 300 g L−1 and 100 mL L−1, respectively. The optimal dosage for wastewater is molar ratio of ammonium to aluminum of about 1 due to the aluminum dissolving in acidified wastewater. The ammonium removal efficiency is roughly 70% and the maximum recovery ratio for ammonium alum is 93% when the wastewater is mixed for 10 min at the mixing velocity gradient of 100 s−1. Ammonium alum production or ammonium removal can be enhanced by controlling the reaction at low temperatures.

  7. Implications of full-scale implementation of an anammox-based process as post-treatment of a municipal anaerobic sludge digester operated with co-digestion.

    Science.gov (United States)

    Vázquez-Padín, J R; Morales, N; Gutiérrez, R; Fernández, R; Rogalla, F; Barrio, J P; Campos, J L; Mosquera-Corral, A; Méndez, R

    2014-01-01

    The feasibility of treating the supernatant of a municipal sludge digester supplemented with co-substrates by means of an anammox-based process (ELAN(®)) was tested in Guillarei (NW of Spain). Ammonia concentration measured in the supernatant of the sludge digester varied in the range 800-1,500 g N/m(3) due to the fact that the sludge produced in the plant was co-digested with wastes coming from surrounding food industries. Treating this supernatant in the ELAN(®) reactor, nitrogen removal rates up to 1.1 kg N/(m(3) d) were reached in experiments run in a pilot plant reactor operated in batch mode. No nitrite oxidation was registered after several months of operation despite the average dissolved oxygen (DO) concentrations being 1.5 g O2/m(3) and the temperature reaching values as low as 18 °C. By keeping the DO set point at 1-2 g O2/m(3) and tuning the hydraulic retention time, the stability of the process was guaranteed and the presence of co-substrates in the anaerobic digester did not affect negatively the operation of the autotrophic nitrogen removal process. Due to the success of the pilot plant experiment, an upscale of the process to full scale is proposed. Mass balances applied to Guillarei wastewater treatment plant revealed that in the main stream line the average denitrification rate calculated with the data of year 2011 was 226 kg N/d. Since the nitrogen removal efficiency is limited by the amount of readily biodegradable organic matter available to carry out denitrification in the water line, the implementation of an anammox-based process to treat the supernatant seems the best option to improve the effluent quality in terms of nitrogen content. The nitrogen removal rate in the sludge line would be 30 times higher than the one in the water line. The implementation of the process would improve the energetic balance and the nitrogen removal performance of the plant.

  8. Ammonium-tungstate-promoted growth of boron nitride nanotubes

    Science.gov (United States)

    E, Songfeng; Li, Chaowei; Li, Taotao; Geng, Renjie; Li, Qiulong; Lu, Weibang; Yao, Yagang

    2018-05-01

    Ammonium tungstate ((NH4)10W12O41 · xH2O) is a kind of oxygen-containing ammonium salt. The following study proves that it can be successfully used as a metal oxide alternative to produce boron oxide (B2O2) by oxidizing boron (B) in a traditional boron oxide chemical vapor deposition (BOCVD) process. This special oxidant promotes the simplistic fabrication of boron nitride nanotubes (BNNTs) in a conventional horizontal tube furnace, an outcome which may have resulted from its strong oxidizability. The experimental results demonstrate that the mole ratio of B and (NH4)10W12O41 · xH2O is a key parameter in determining the formation, quality and quantity of BNNTs when stainless steel is employed as a catalyst. We also found that Mg(NO3)2 and MgO nanoparticles (NPs) can be used as catalysts to grow BNNTs with the same precursor. The BNNTs obtained from the Mg(NO3)2 catalyst were straighter than those obtained from the MgO NP catalyst. This could have been due to the different physical forms of the catalysts that were used.

  9. Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process

    DEFF Research Database (Denmark)

    Volcke, Eveline; Gernaey, Krist; Vrecko, Darko

    2006-01-01

    treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios......In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water...... streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where...

  10. Microbial resource management of one-stage partial nitritation/anammox.

    Science.gov (United States)

    Vlaeminck, S E; De Clippeleir, H; Verstraete, W

    2012-05-01

    About 30 full-scale partial nitritation/anammox plants are established, treating mostly sewage sludge reject water, landfill leachate or food processing digestate. Although two-stage and one-stage processes each have their advantages, the one-stage configuration is mostly applied, termed here as oxygen-limited autotrophic nitrification/denitrification (OLAND), and is the focus of this review. The OLAND application domain is gradually expanding, with technical-scale plants on source-separated domestic wastewater, pre-treated manure and sewage, and liquors from organic waste bioenergy plants. A 'microbial resource management' (MRM) OLAND framework was elaborated, showing how the OLAND engineer/operator (1: input) can design/steer the microbial community (2: biocatalyst) to obtain optimal functionality (3: output). In the physicochemical toolbox (1), design guidelines are provided, as well as advantages of different reactor technologies. Particularly the desirable aeration regime, feeding regime and shear forces are not clear yet. The development of OLAND trickling filters, membrane bioreactors and systems with immobilized biomass is awaited. The biocatalyst box (2) considers 'Who': biodiversity and its dynamic patterns, 'What': physiology, and 'Where': architecture creating substrate gradients. Particularly community dynamics and extracellular polymeric substances (EPS) still require insights. Performant OLAND (3) comprises fast start-up (storage possibility; fast growth of anammox bacteria), process stability (endured biomass retention; stress resilience), reasonable overall costs, high nitrogen removal efficiency and a low environmental footprint. Three important OLAND challenges are elaborated in detailed frameworks, demonstrating how to maximize nitrogen removal efficiency, minimize NO and N(2)O emissions and obtain through OLAND a plant-wide net energy gain from sewage treatment. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied

  11. Ammonium azide under hydrostatic compression

    Science.gov (United States)

    Landerville, A. C.; Steele, B. A.; Oleynik, I. I.

    2014-05-01

    The properties of ammonium azide NH4N3 upon compression were investigated using first-principles density functional theory. The equation of state was calculated and the mechanism of a phase transition experimentally observed at 3.3 GPa is elucidated. Novel polymorphs of NH4N3 were found using a simple structure search algorithm employing random atomic displacements upon static compression. The structures of three new polymorphs, labelled as B, C, and D, are similar to those of other metal azides.

  12. Isolation and stable nitrogen isotope analysis of ammonium ions in ammonium nitrate prills using sodium tetraphenylborate.

    Science.gov (United States)

    Howa, John D; Lott, Michael J; Ehleringer, James R

    2014-07-15

    Because of the threat of bombings using improvised explosives containing ammonium nitrate (AN), law enforcement and intelligence communities have been interested in stable isotope techniques for tracking and discriminating AN sources. Separate analysis of the AN component ions ammonium and nitrate would add discriminatory power to these techniques. Ammonium ions in dissolved AN solution were isolated from samples by precipitation using sodium tetraphenylborate solution. We tested the isolation of ammonium from nitrates using solutions of ammonium and nitrate salts with different (15)N/(14)N isotope ratios. Ammonium tetraphenylborate and AN were separately analyzed for their (15)N/(14)N isotope ratios using EA-ConFlo-IRMS, and the (15)N/(14)N isotope ratios of the nitrate ions were calculated using mass balance. Ammonium and nitrate nitrogen isotope ratios were plotted as two separate variables. Isolation of ammonium precipitate from solutions containing dissolved nitrates did not influence the nitrogen isotope ratios of test ammonium salts. A survey set of 42 AN samples showed that the ammonium and nitrate (15)N/(14)N isotope ratios were not significantly correlated, and the paired mean differences were not statistically significant. Both ammonium and nitrate were depleted in (15)N relative to their theoretical atmospheric sources. Isolation of the ammonium ion from AN adds another dimension for the discrimination of forensic AN samples. This technique using sodium tetraphenylborate is robust and does not require specialized equipment. Our observations indicated that ammonium nitrogen and nitrate nitrogen have independent sources of isotopic variation. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Review of Options for Ammonia/Ammonium Management

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-06

    This report is a review of literature supporting practical ammonia/ammonium destruction processes. Melter research supporting Hanford Low Activity Waste (LAW) glass production has shown that significant amounts of ammonia will be in the melter offgas condensate. Further work with secondary waste forms indicates the potential need to remove the ammonia, perhaps by an oxidative process. This review finds likely practical chemical methods to oxidize ammonia in aqueous solution at moderate temperatures and atmospheric pressure, using easily obtained reagents. Leading candidates include nitrite oxidation to produce nitrogen gas, various peroxide oxidative processes, and air stripping. This work reviews many other processes and provides reasoning to not consider those processes further for this application.

  14. 21 CFR 184.1138 - Ammonium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg..._locations.html. (c) In accordance with § 184.1(b)(1), the ingredient is used in food with no limitation...

  15. 21 CFR 184.1137 - Ammonium carbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium carbonate. 184.1137 Section 184.1137 Food... Specific Substances Affirmed as GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3, CAS.../code_of_federal_regulations/ibr_locations.html. (c) In accordance with § 184.1(b)(1), the ingredient is...

  16. Producing ammonium uranate in spherical particulate form

    International Nuclear Information System (INIS)

    Dugua, J.

    1984-01-01

    A novel easily handled substantially particulate ammonium uranate with a mean diameter between 30 and 150 micrometers, an apparent untamped bulk density of 2 to 2.8 g/cm 3 , and a flowability measured on the Carr scale equal to or greater than 95, with a low sulfate ion content between 0.5 and 1%, is calimed together with a fluidized bed process for preparing such ammonium uranate by precipitation of a super-saturated solution of ammonium uranate. The ammonium uranate is obtained by reacting a uranium sulfate solution and an ammoniacal solution, operating at a pH of about 6.6 to 7.2

  17. Glufosinate ammonium selection of transformed Arabidopsis.

    Science.gov (United States)

    Weigel, Detlef; Glazebrook, Jane

    2006-12-01

    INTRODUCTIONOne of the most commonly used markers for the selection of transgenic Arabidopsis is resistance to glufosinate ammonium, an herbicide that is sold under a variety of trade names including Basta and Finale. Resistance to glufosinate ammonium is conferred by the bacterial bialophos resistance gene (BAR) encoding the enzyme phosphinotricin acetyl transferase (PAT). This protocol describes the use of glufosinate ammonium to select transformed Arabidopsis plants. The major advantage of glufosinate ammonium selection is that it can be performed on plants growing in soil and does not require the use of sterile techniques.

  18. Synthesis of cerous ammonium nitrate using ceric ammonium nitrate and anhydrous ammonia as a reducing agent

    International Nuclear Information System (INIS)

    Bourleaux, G.; Colombet, P.; Rouxel, J.; Gradeff, P.S.; Mauermann, H.

    1988-01-01

    The reduction of ceric ammonium nitrate by anhydrous ammonia has been studied. The reaction yields cerous ammonium nitrate complex. This is an easy method to prepare an anhydrous Ce (III) salt, suitable for synthesis of organo cerium (III) derivatives [fr

  19. Facile synthesis of ammonium vanadate nanofibers by using reflux in aqueous V{sub 2}O{sub 5} solution with ammonium persulfate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Hun [Department of Convergence Nanoscience, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Koo, Jun Mo [Department of Organic and Nano Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Oh, Seong Geun, E-mail: seongoh@hanyang.ac.kr [Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Im, Seung Soon, E-mail: imss007@hanyang.ac.kr [Department of Convergence Nanoscience, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Department of Organic and Nano Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2017-06-15

    Ammonium vanadate nanofibers were synthesized by simple reflux method in aqueous V{sub 2}O{sub 5} solution with ammonium persulfate without relying on surfactants, catalysts, harmful solvents and autoclave. The degree of intercalation by cationic ammonium ions into the crystal structure of vanadium oxide along with its change in chemical composition were analyzed by thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR). The morphological changes toward nanofiber structure, having diameter of 20–30 nm and a few μm length, were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The influences of synthetic conditions, such as reaction time and concentration of sulfate (SO{sub 4}{sup 2-}), on the crystal structures and morphologies of the resulting products have investigated. As a result, the ammonium vanadate nanofiber was formed in a short reaction time through a simple reflux method and yielded comparable electrical conductivity 1.47 × 10{sup -2} S/cm. - Highlights: • Ammonium vanadate nanofiber (AVFr) was prepared by simple reflux method. • AVFr yielded comparable electrical conductivity 1.47 × 10{sup -2} S/cm. • The electrical conductivity was improved by the increased amount of ammonium ion. • Sulfate ions (SO{sub 4}{sup 2-}) play a crucial role in controlling the morphology of nanofiber.

  20. Atmospheric behaviour of ammonia and ammonium

    NARCIS (Netherlands)

    Asman, W.A.H.

    1987-01-01

    1.4.1 Scope of this thesis

    A few models for ammonia and ammonium exist. Russell et al. (1983) made a multi-layer Lagrangian transport model describing the transport and formation of ammonium nitrate aerosol for California. They did not take reactions of ammonia and sulphuric acid

  1. 21 CFR 582.1135 - Ammonium bicarbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium bicarbonate. 582.1135 Section 582.1135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1135 Ammonium bicarbonate. (a)...

  2. Optimization of nutritional requirements and ammonium feeding ...

    African Journals Online (AJOL)

    tounukarin

    2011-09-07

    Sep 7, 2011 ... defined medium and to develop an ammonium control strategy to optimize the specific vitamin B12 production rate (Yp) ... Key words: Statistical designs, Pseudomonas denitrificans, chemically defined medium, ammonium controlling strategy ... analysis provides a powerful tool for effective quanti- fication of ...

  3. 76 FR 46907 - Ammonium Nitrate Security Program

    Science.gov (United States)

    2011-08-03

    ... located in, under, or adjacent to any waters subject to the jurisdiction of the United States. Through its..., marking, labeling, placarding, security plans, emergency response information, training, etc.). f... ``solid ammonium nitrate that is chiefly the ammonium salt of nitric acid and contains not less than 33...

  4. Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell

    NARCIS (Netherlands)

    Kuntke, P.; Geleij, M.; Bruning, H.; Zeeman, G.; Hamelers, H.V.M.; Buisman, C.J.N.

    2011-01-01

    Ammonium recovery using a 2 chamber microbial fuel cell (MFC) was investigated at high ammonium concentration. Increasing the ammonium concentration (from 0.07 g to 4 g ammonium-nitrogen/L) by addition of ammonium chloride did not affect the performance of the MFC. The obtained current densities by

  5. The Properties of Ammonium Dinitramine (ADN): Part 2: Melt Casting

    Science.gov (United States)

    Hahma, A.; Edvinsson, H.; Östmark, H.

    2010-04-01

    A melt casting technique for ammonium dinitramine (ADN) and ADN/aluminum was developed. ADN proved relatively easy to cast, when 1% of magnesium oxide was used as a stabilizer and crystallization kernels. Densities of ADN/MgO 99/1 were 92 to 97% of theoretical mean density (TMD) and those of ADN/Al/MgO 64/35/1 were between 95 and 99% of TMD. Sedimentation of Al in the melt was prevented and the particle wetting was ensured by selecting a suitable particle size for Al. No gelling agents or other additives were used. The casting process and factors influencing it are discussed.

  6. Ammonium sulfate preparation from phosphogypsum waste

    Directory of Open Access Journals (Sweden)

    Abdel-Hakim T. Kandil

    2017-01-01

    Full Text Available The Egyptian phosphogypsum waste is treated using sulfuric acid prior the ammonium sulfate production. The relevant factors that would affect the removal efficiencies of some impurities are studied. The optimum conditions of the treatment are 8 M sulfuric acid solution and 1/4 solid/liquid ratio for 30 min contact time at 80 °C. Moreover, the optimum conditions of the ammonium sulfate preparation are 10 g of the suspended impure or purified phosphogypsum in 40 ml of 3% ammonium sulfate solution (as initiator, 1/4 solid/liquid ratio at pH7 at an addition of an excess ammonium carbonate, and 150 rpm stirring speed for 4.0 h contact time at 55 °C as well as the 5 mg of barium chloride is added to remove the radium in the ammonium sulfate product. Finally, the ammonium sulfate is crystallized and the chemical analysis of the product shows 20% nitrogen and 23.6% sulfur. Therefore, the purity of the obtained ammonium sulfate is 95% from the purified phosphogypsum.

  7. Oxygen at nanomolar levels reversibly suppresses process rates and gene expression of anammox and denitrification in the oxygen minimum zone off northern Chile

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank J.; Thamdrup, Bo

    2014-01-01

    UNLABELLED: A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O2 and the sensitivity of the anaerobic N2-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O2...... at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification were reversibly suppressed, most likely at the enzyme level. Fiftypercent inhibition of N2 and N2O production by denitrification....... This O2 concentration did not suppress the transcription of other dissimilatory nitrogen cycle genes, including nitrate reductase (narG), hydrazine oxidoreductase (hzo), and nitrite reductase (nirK). However, taxonomic characterization of transcripts suggested inhibition of narG transcription...

  8. Ammonium sulfate preparation from phosphogypsum waste

    OpenAIRE

    Kandil, Abdel-Hakim T.; Cheira, Mohamed F.; Gado, Hady S.; Soliman, Madiha H.; Akl, Hesham M.

    2017-01-01

    The Egyptian phosphogypsum waste is treated using sulfuric acid prior the ammonium sulfate production. The relevant factors that would affect the removal efficiencies of some impurities are studied. The optimum conditions of the treatment are 8 M sulfuric acid solution and 1/4 solid/liquid ratio for 30 min contact time at 80 °C. Moreover, the optimum conditions of the ammonium sulfate preparation are 10 g of the suspended impure or purified phosphogypsum in 40 ml of 3% ammonium sulfate soluti...

  9. Roles of EDTA washing and Ca{sup 2+} regulation on the restoration of anammox granules inhibited by copper(II)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheng-Zhe; Cheng, Ya-Fei; Zhou, Yu-Huang; Buayi, Xiemuguli [Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036 (China); Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036 (China); Jin, Ren-Cun, E-mail: jrczju@aliyun.com [Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036 (China); Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036 (China)

    2016-01-15

    Highlights: • 80.5% of the Cu in anammox granules was introduced via adsorption. • Cu(II) internalized on/into AnAOB cells plays a crucial role in toxicity. • EDTA washing contributes to the detoxification of anammox granules. • Ca{sup 2+} can stimulate the re-growth of damaged anammox consortium. - Abstract: We investigated the feasibility of using ethylene diamine tetraacetic acid (EDTA) washing followed by Ca{sup 2+} enhancement for the recovery of anammox reactors inhibited by Cu(II). Kinetic experiments and batch activity assays were employed to determine the optimal concentration of EDTA and washing time; and the performance and physiological dynamics were tracked by continuous-flow monitoring to evaluate the long-term effects. The two-step desorption process revealed that the Cu in anammox granules was primarily introduced via adsorption (approximately, 80.5%), and the portion of Cu in the dispersible layer was predominant (accounting for 71.1%). Afterwards, the Cu internalized in the cells (approximately, 14.7%) could diffuse out of the cells and be gradually washed out of the reactor over the next 20 days. The Ca{sup 2+} addition that followed led to an accelerated nitrogen removal rate recovery slope (0.1491 kgN m{sup −3} d{sup −2}) and a normal biomass growth rate (0.054 d{sup −1}). The nitrogen removal rate returned to normal levels within 90 days and gradual improvements in granular characteristics were also achieved. Therefore, this study provides a new insight that externally removing the adsorbed heavy metals followed by internally repairing the metabolic system may represent an optimal restoration strategy for anammox consortium damaged by heavy metals.

  10. Electrochemically and Bioelectrochemically Induced Ammonium Recovery

    Science.gov (United States)

    Gildemyn, Sylvia; Luther, Amanda K.; Andersen, Stephen J.; Desloover, Joachim; Rabaey, Korneel

    2015-01-01

    Streams such as urine and manure can contain high levels of ammonium, which could be recovered for reuse in agriculture or chemistry. The extraction of ammonium from an ammonium-rich stream is demonstrated using an electrochemical and a bioelectrochemical system. Both systems are controlled by a potentiostat to either fix the current (for the electrochemical cell) or fix the potential of the working electrode (for the bioelectrochemical cell). In the bioelectrochemical cell, electroactive bacteria catalyze the anodic reaction, whereas in the electrochemical cell the potentiostat applies a higher voltage to produce a current. The current and consequent restoration of the charge balance across the cell allow the transport of cations, such as ammonium, across a cation exchange membrane from the anolyte to the catholyte. The high pH of the catholyte leads to formation of ammonia, which can be stripped from the medium and captured in an acid solution, thus enabling the recovery of a valuable nutrient. The flux of ammonium across the membrane is characterized at different anolyte ammonium concentrations and currents for both the abiotic and biotic reactor systems. Both systems are compared based on current and removal efficiencies for ammonium, as well as the energy input required to drive ammonium transfer across the cation exchange membrane. Finally, a comparative analysis considering key aspects such as reliability, electrode cost, and rate is made. This video article and protocol provide the necessary information to conduct electrochemical and bioelectrochemical ammonia recovery experiments. The reactor setup for the two cases is explained, as well as the reactor operation. We elaborate on data analysis for both reactor types and on the advantages and disadvantages of bioelectrochemical and electrochemical systems. PMID:25651406

  11. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Science.gov (United States)

    2010-07-01

    ..., combustible liquids, corrosive liquids, chlorates, permanganates, finely divided metals, caustic soda... molten ammonium nitrate if a fire occurred (and thus become potential detonators for the storage piles...

  12. High-pressure structural study of Ammonium Perchlorate

    Science.gov (United States)

    Stavrou, Elissaios; Zaug, Joseph; Bastea, Sorin; Grivickas, Paulius; Greenberg, Eran; Kunz, Martin

    Ammonium perchlorate (AP) with the chemical formula NH4ClO4 is a powerful energetic oxidizer used as an ingredient in rocket propellants and explosive formulations. For this reason, its structural properties under extreme conditions have attracted considerable attention (M. Dunuwille et al., S. Hunter et al.). However, its structural properties under pressure are not completely understood. In addition to its importance as an energetic oxidizer, AP is one of the simplest supramolecular systems. Thus, a structural study of AP under pressure can provide crucial information in the context of the emerging field of high pressure supramolecular chemistry. Ammonium perchlorate has been studied using x-ray diffraction and Raman spectroscopy up to the record pressure of 40 GPa. The results reveal a pressure-induced first order phase transition at 4 GPa, in agreement with previous studies. However, preliminary analysis of our results contradicts with the previously proposed high-pressure phase, as determined by neutron diffraction. No further structural phase transitions have been observed up to the highest pressure of this study. Intermolecular bonding between NH4 and ClO4 ions will be discussed based on Raman spectroscopy measurements. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  13. 21 CFR 184.1545 - Nitrous oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nitrous oxide. 184.1545 Section 184.1545 Food and... Substances Affirmed as GRAS § 184.1545 Nitrous oxide. (a) Nitrous oxide (empirical formula N2O, CAS Reg. No.... Nitrous oxide is manufactured by the thermal decomposition of ammonium nitrate. Higher oxides of nitrogen...

  14. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    Science.gov (United States)

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage.

  15. Uncertainty evaluation on the determination of uranium ores by volumetry of ammonium vanadate

    International Nuclear Information System (INIS)

    Ma Likui; Wang Yao; Luo Yuanyuan; Li Jinbiao; Zhu Lejie

    2012-01-01

    Uncertainty evaluation on the criteria of 'ferrous sulfate deoxidization/ammonium vanadate oxidation titrimetry to measure uranium' (EJ 267.2-84) issued by Ministry of Nuclear Industry was analyzed. The uncertainty brought by the method itself was obtained through the identification of uncertainty sources, quantification of uncertainty components and determination of uranium content by titration with calibrated ammonium vanadate solution. With the analytical study to uncertainty sources of entire process and components, and the application of statistical treatment based on scientific data, the combined standard uncertainty and expanded uncertainty about different levels of uranium content was reported. (authors)

  16. High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman.

    Science.gov (United States)

    Abed, Raeid M M; Lam, Phyllis; de Beer, Dirk; Stief, Peter

    2013-09-01

    Using a combination of process rate determination, microsensor profiling and molecular techniques, we demonstrated that denitrification, and not anaerobic ammonium oxidation (anammox), is the major nitrogen loss process in biological soil crusts from Oman. Potential denitrification rates were 584±101 and 58±20 μmol N m(-2) h(-1) for cyanobacterial and lichen crust, respectively. Complete denitrification to N2 was further confirmed by an (15)NO3(-) tracer experiment with intact crust pieces that proceeded at rates of 103±19 and 27±8 μmol N m(-2) h(-1) for cyanobacterial and lichen crust, respectively. Strikingly, N2O gas was emitted at very high potential rates of 387±143 and 31±6 μmol N m(-2) h(-1) from the cyanobacterial and lichen crust, respectively, with N2O accounting for 53-66% of the total emission of nitrogenous gases. Microsensor measurements revealed that N2O was produced in the anoxic layer and thus apparently originated from incomplete denitrification. Using quantitative PCR, denitrification genes were detected in both the crusts and were expressed either in comparable (nirS) or slightly higher (narG) numbers in the cyanobacterial crusts. Although 99% of the nirS sequences in the cyanobacterial crust were affiliated to an uncultured denitrifying bacterium, 94% of these sequences were most closely affiliated to Paracoccus denitrificans in the lichen crust. Sequences of nosZ gene formed a distinct cluster that did not branch with known denitrifying bacteria. Our results demonstrate that nitrogen loss via denitrification is a dominant process in crusts from Oman, which leads to N2O gas emission and potentially reduces desert soil fertility.

  17. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Science.gov (United States)

    2010-10-01

    ... ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with..., blasting, type B, and Explosives, blasting, type E, Division 1.5 compatibility group D. (f) No mixture...

  18. A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment.

    Science.gov (United States)

    Wang, Gang; Xu, Xiaochen; Zhou, Liang; Wang, Chao; Yang, Fenglin

    2017-10-01

    Treatment of sludge digester liquor was successfully accomplished using a pilot-scale partial nitrification-anammox (PN/A) reactor with a nitrogen removal rate (NRR) of 1.23kgN/m 3 /d. A stable and efficient PN process was attained by controlling the concentration of free ammonia (0.7-8.4mg/L) and free nitrous acid (0.02-1.0mg/L). The application of hydroxylamine played a vital role in the reactivation of anammox bacteria. The bacteria exhibited improved granule properties at a specific input power between 0.065 and 0.097kW/m 3 , and achieved a specific anammox activity (SAA) of 1.01kgN/kgVSS/d on day 148. From day 0 to 120, the heme c content in the granules increased from 0.42±0.1 to 5.77±1.0µmol/gVSS, with a corresponding increase in NRRs and SAAs. High-throughput sequencing techniques revealed that the dominant anammox bacterial genus was Candidatus Brocadia. These conclusions provide valuable information for the full-scale treatment of sludge digester liquor. Copyright © 2017. Published by Elsevier Ltd.

  19. Stoichiometric variation and loading capacity of a high-loading anammox attached film expanded bed (AAEEB) reactor.

    Science.gov (United States)

    Zhang, Yanlong; Ma, Haiyuan; Chen, Rong; Niu, Qigui; Li, Yu-You

    2018-04-01

    The nitrogen loading rate (NLR) of an anammox attached film expanded bed (AAFEB) reactor was increased from 5.0 to 60.0 gN/L/d. During the stable operational period, the TN removal efficiency maintained at 87.3 ± 2.5%, and a maximum nitrogen removal rate (NRR) of 44.9 ± 0.3 gN/L/d was achieved. Overload resulted in the sharp deterioration of reactor performance, the ratio of (Food/Microorganism)/SAA should be maintained at lower than 66 ± 7% to ensure the stable operation of the AAFEB reactor. New stoichiometric equations for the anammox process under the low NLR condition (5.0 gN/L/d) and the high NLR condition (50.0 gN/L/d) were proposed. The quantitative SAA-cytochrome heme C relationship was established for the first time that providing a simple way for monitoring the reactor performance. Substrate tolerance ability was significantly increased that proving the stability of the AAFEB reactor was continuously enhanced during the stable operational periods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    Science.gov (United States)

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  1. Anammox-based systems for nitrogen removal from mainstream municipal wastewater

    OpenAIRE

    Malovanyy, Andriy

    2017-01-01

    Nitrogen removal from municipal wastewater with the application of deammonification process offers an operational cost reduction, especially if it is combined with a maximal use of organic content of wastewater for biogas production. In this thesis, two approaches for integration of the deammonification process into the municipal wastewater treatment scheme were studied. The first approach is based on ammonium concentration from municipal wastewater by ion exchange followed by biological remo...

  2. Reduction in Ammonium Ions in Sludge Liquor

    Directory of Open Access Journals (Sweden)

    Eglė Šlajūtė

    2013-12-01

    Full Text Available Liquor rejected from the centrifugation of the digested sludge can contain the concentrations of ammonium ions up to 1750 mg/L. These loads are usually returned to the intake of wastewater treatment plants (WWTP without additional treatment and can have a negative impact on biological wastewater and/or sludge treatment processes, e.g. phosphorus and nitrogen removal. This article deals with the use of naturally obtained sorbent, zeolite, in batch and column test procedure for removing ammonium from the rejected liquor. This research study was carried out using different sizes of zeolite particles: 0.8–1.6 mm and 1.6–2.5 mm. The highest efficiency of ammonium removal (up to 98 % was achieved by applying the zeolite particles of 0.8–1.6 mm.Article in Lithuanian

  3. The ammonium sulfate inhibition of human angiogenin.

    Science.gov (United States)

    Chatzileontiadou, Demetra S M; Tsirkone, Vicky G; Dossi, Kyriaki; Kassouni, Aikaterini G; Liggri, Panagiota G V; Kantsadi, Anastassia L; Stravodimos, George A; Balatsos, Nikolaos A A; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2016-09-01

    In this study, we investigate the inhibition of human angiogenin by ammonium sulfate. The inhibitory potency of ammonium sulfate for human angiogenin (IC50 = 123.5 ± 14.9 mm) is comparable to that previously reported for RNase A (119.0 ± 6.5 mm) and RNase 2 (95.7 ± 9.3 mm). However, analysis of two X-ray crystal structures of human angiogenin in complex with sulfate anions (in acidic and basic pH environments, respectively) indicates an entirely distinct mechanism of inhibition. While ammonium sulfate inhibits the ribonucleolytic activity of RNase A and RNase 2 by binding to the active site of these enzymes, sulfate anions bind only to peripheral substrate anion-binding subsites of human angiogenin, and not to the active site. © 2016 Federation of European Biochemical Societies.

  4. On the evaporation of ammonium sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  5. On the evaporation of ammonium sulfate solution

    International Nuclear Information System (INIS)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-01-01

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 ± 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  6. Efficient ozone, sulfate, and ammonium free resist stripping process

    Science.gov (United States)

    Dattilo, Davide; Dietze, Uwe

    2014-07-01

    In recent years, photomask resist strip and cleaning technology development was substantially driven by the industry's need to prevent surface haze formation through the elimination of sulfuric acid and ammonium hydroxide from these processes. As a result, conventional SPM (H2SO4 + H2O2) was replaced with Ozone water (DIO3) for resist stripping and organic removal to eliminate chemical haze formation [1, 2]. However, it has been shown that DIO3 basted strip and clean process causes oxidative degradation of photomask materials [3, 4]. Such material damage can affect optical properties of funcitional mask layers, causeing CD line-width, phase, transmission and reflection changes, adversely affecting image transfer during the Lithography process. To overcome Ozone induced surface damage, SUSS MicroTec successfully developed a highly efficient strip process, where photolysis of DIO3 is leading to highly reactive hydroxyl radical formation, as the main contribution to hydrocarbon removal without surface damage [5]. This technology has been further extended to a final clean process, which is utilizing pure DI water for residual organic material removal during final clean [6]. Recently, SUS MicroTec did also successfully release strip and clean processes which completely remove NH4OH, eliminating any chemicals known today to induce haze [7]. In this paper we show the benefits of these new technologies for highly efficient sulfate and ammonium free stripping and cleaning processes.

  7. Relating dynamic conditions to the performance of biological rapid sand filters used to remove ammonium, iron, and manganese from drinking water

    DEFF Research Database (Denmark)

    Lee, Carson; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    ), nitrite oxidizing bacteria (NOBs), and total bacteria with both depth and time. Similar analyses were performed in the full scale filters. The data is used to validate a mathematical model that can both predict process performance and is used to gain an understanding of how dynamic conditions can...... on the roles of both Ammonium oxidizing bacteria (AOBs) and Ammonium oxidizing archea (AOAs) in the biological removal of ammonium in rapid sand filters and how varying substrate loadings and operating conditions can affect the biological performance of these filters....... consistently meeting regulatory guidelines for compounds like ammonium and reduced forms of iron and manganese. These compounds can cause biological instability in the distribution system and can lead to many problems including the growth of pathogens and aesthetic problems (taste, odor, and color...

  8. Effects of Aromatic Ammoniums on Methyl Ammonium Lead Iodide Hybrid Perovskite Materials

    Directory of Open Access Journals (Sweden)

    Jianli Yang

    2017-01-01

    Full Text Available The introduction of bulky ammoniums into methyl ammonium lead iodide hybrid perovskites (MAPbI3 has emerged as a promising strategy to improve the properties of these materials. In the present work, we studied the effects of several aromatic ammoniums onto the structural, electronic, and optical properties of MAPbI3. Although powder XRD data suggest that the bulky cations are not involved in the bulk phase of the MAPbI3, a surprisingly large effect of the bulky cations onto the photoluminescence properties was observed.

  9. Oxidation by metal salts

    International Nuclear Information System (INIS)

    Makhon'kov, D.I.; Cheprakov, A.V.; Rodkin, M.A.; Mil'chenko, A.Yu.; Beletskaya, I.P.

    1986-01-01

    Oxidation of toluene and para-substituted toluenes containing electron acceptor groups: p-toluic acid, p-methyltoluylate and p-nitrotoluene by ammonium cerium (4) nitrate and ammonium cerium (4) sulfate in aqueous solutions of trifluoroacetic acid in the presence of chlorides and bromides of alkali metals is studied. The rate and selectivity of oxidative halogenation in side chain and/or aromatic ring under the conditions studied depend both on the nature of substrate and halogenide-ion and on the reaction conditions and ligand surrounding of cerium (4) atom

  10. 21 CFR 558.340 - Maduramicin ammonium.

    Science.gov (United States)

    2010-04-01

    .... Feed continuously as sole ration. Do not feed to laying hens. Withdraw 5 days before slaughter. (2... DRUGS, FEEDS, AND RELATED PRODUCTS NEW ANIMAL DRUGS FOR USE IN ANIMAL FEEDS Specific New Animal Drugs for Use in Animal Feeds § 558.340 Maduramicin ammonium. (a) Approvals. Type A medicated articles: 4.54...

  11. Lectin status, protein contents and ammonium assimilating ...

    African Journals Online (AJOL)

    activity of the ammonium assimilatory enzyme glutamine synthetase. M. nigra and M. alba extracts contained potent phytoagglutinins in various tissues with highest contents in M. nigra. The leaves and roots of both species of mulberry were used to determine the glutamine synthetase activity and high level of activity was ...

  12. Ammonium conversion in liquid organic fertilisers

    NARCIS (Netherlands)

    Blok, C.; Streminska, M.; Vermeulen, T.

    2017-01-01

    Liquid organic fertilisers allow growers to abandon the use of conventional de novo (mined or synthesised) fertilisers without major technological adaptions to the cultivation system. In prior experiments the conversion by aerobic substrate born bacteria of ammonium into nitrate was plant growth

  13. Effects of ammonium nitrate, cesium chloride and ...

    African Journals Online (AJOL)

    Jane

    2011-10-12

    Oct 12, 2011 ... Key words: Potassium, high affinity transporters, channel blockers, ammonium. .... channel AtAKT1, indicating that channels may be involved in high-affinity. K+ uptake in a range of K+ concentrations (Hirsch et al.,. 1998; Spalding et al., ...... and tissue potassium concentrations by negative feedback effects.

  14. 21 CFR 184.1135 - Ammonium bicarbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium bicarbonate. 184.1135 Section 184.1135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 18...

  15. Optimization of nutritional requirements and ammonium feeding ...

    African Journals Online (AJOL)

    Through Plackett-Burman design, the major factors of glucose, ammonium sulfate and KCl were selected as the significant factors affecting vitamin B12 biosynthesis and these were further optimized by central composite design with response surface methodology. The maximum Yp of 34.2 μg/gDCW/h was obtained in batch ...

  16. Effect of Ethylenediaminetetraacetic Acid and Ammonium Oxalate ...

    African Journals Online (AJOL)

    This research was carried out to investigate effect of ethylenediaminetetraacetic acid and ammonium oxalate on the prevalence of microorganisms and removal of aluminum in soil by bitter leaf plant (Vernonia amygdalina). The test plant was sown in aluminium-polluted soil (conc. = 150mg Al kg-1 soil). One gram of each ...

  17. Non-ammonium reduced nitrogen species in atmospheric aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Dod, R.L.; Gundel, L.A.; Benner, W.H.; Novakov, T.

    1983-08-01

    The traditional belief that ambient aerosol particles contain nitrogen predominantly in the form of inorganic ionic species such as NH/sub 4//sup +/ and NO/sub 3//sup -/ was challenged about 10 years ago by results from x-ray photoelectron spectroscopic analysis (ESCA) of California aerosol particles. A significant fraction (approx. 50%) of the reduced nitrogen was observed to have an oxidation state more reduced than ammonium, characteristic of organic nitrogen species. We have used a recently developed thermal evolved gas analysis method (NO/sub x/) in conjunction with ESCA to confirm the existence of these species in aerosol particles collected in both the United States and Europe. The agreement of EGA and ESCA analyses indicates that these species are found not only on the surface but also throughout the particles. 9 references, 6 figures.

  18. PRN 88-2: Clustering of Quaternary Ammonium Compounds

    Science.gov (United States)

    This Notice announces that EPA has clustered the Quaternary Ammonium Compounds into four groups for the purpose of testing chemicals to build a database that will support continued registration of the entire family of quaternary ammonium compounds

  19. Uptake and accumulation of ammonium by Alexandrium catenella ...

    African Journals Online (AJOL)

    Following nitrogen exhaustion from the medium, ammonium pulses of varying magnitudes were induced, and measurements of extra- and intra-cellular ammonium were carried out for 24–72h along with measurements of ammonium incorporation (15N tracer) and inorganic carbon fixation (13C tracer). During vegetative ...

  20. Spectrometric determination of ammonium-nitrogen with quinol in ...

    African Journals Online (AJOL)

    Quinol is proposed as a reagent for the spectrometric determination of ammonium-nitrogen (NH4+-N) in aqueous medium. Quinol forms a pink complex with ammonium salt in aqueous medium. Hydrogen peroxide is needed for colour accentuation. The quinol/ammonium charge transfer complex has absorption maximum ...

  1. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of...

  2. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  3. Study and characterization of ammonium diuranate and uranium trioxide by thermogravimetry and differential scanning calorimetry

    International Nuclear Information System (INIS)

    Dantas, J.M.

    1983-01-01

    Thermogravimetry (TG), Differential Thermogravimetry (DTG) and Differential Scanning Calorimetry (DSC) were used to characterize the thermal behavior of ammonium diuranate (ADU) and uranium trioxide (UO 3 ) produced at IPEN'S Chemical Enginnering Department. Compounds characterization was done using the molar ratios among the compounds and the oxides resulting from thermal decomposition. The TG and DTG curves registered for each sample were used for the determination of the following temperatures: - temperature of water evolution (free and crystallized water); - ammonia evolution and oxidation temperature; - ocluded ammonium nitrate decomposition temperature and - oxygen release temperature. The intermediate phases and their thermal stabilities were also identified by TG and DTG and confirmed by DSC curves, DSC curves showed also the exothermic and endothermic behavior of the processes involved. Finally, the great amount of data collected in this study can be handed as a guide by the professionals responsible for the operation of ADU,UO 3 and UF 4 pilot plants. (Author) [pt

  4. Anaerobic ammonium oxidation in the old trickling filters at Daspoort ...

    African Journals Online (AJOL)

    The century-old trickling filters at the Daspoort Wastewater Treatment Works in Pretoria (Gauteng, South Africa) are known for their remarkable removal of nitrogen from municipal wastewater. Our study was conducted to identify the microbiological processes responsible for this phenomenon and to establish whether ...

  5. Interactions between archaeal ammonia oxidizers, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grasslands soils

    NARCIS (Netherlands)

    Daebeler, A.; Bodelier, P.L.E.; Yan, Z; Hefting, Mariet|info:eu-repo/dai/nl/256197628; Laanbroek, Riks|info:eu-repo/dai/nl/070378282

    2014-01-01

    Ammonium/ammonia is the sole energy substrate of ammonia oxidizers, and is also an essential nitrogen source for other microorganisms. Ammonia oxidizers therefore must compete with other soil microorganisms such as methane-oxidizing bacteria (MOB) in terrestrial ecosystems when ammonium

  6. Pathways in bacterial and archaeal communities dictated by ammonium stress in a high solid anaerobic digester with dewatered sludge.

    Science.gov (United States)

    Li, Ning; He, Jin; Yan, Han; Chen, Sisi; Dai, Xiaohu

    2017-10-01

    Metagenomic comparisons of microbial profiles were conducted to investigate differences between the samples from steady (Day 42), ammonium-adjusting (Day 63), and ammonium-stressed (Day 102) periods during the 110-day operation of a high solid anaerobic digester of sewage sludge. Comparing to the steady period, biogas production was slightly inhibited after ammonium adjustment, during which the microbes showed higher abundance in 6 of the total 22 ammonium-related genes. In addition, among the 19 amino-acid-related genes, 9 genes involved in amino acid generation and utilization were reduced, which partially revealed the reason of deterioration of volatile solids (VSs) degradation following ammonium stress. Furthermore, although the acetoclastic pathway was to some extent inhibited with the decrease of biogas amount and content, no enhancement of genes involved in hydrogenotrophic methanogenesis was observed, elucidating the distinct role of ammonium stress in directing bacterial community structure toward the enhanced syntrophic acetate oxidation reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge.

    Science.gov (United States)

    Dai, Xiaohu; Yan, Han; Li, Ning; He, Jin; Ding, Yueling; Dai, Lingling; Dong, Bin

    2016-06-17

    A high solid digester with dewatered sludge was operated for 110 days to ascertain the interactions between bacterial and archaeal communities under ammonium stress, as well as the corresponding changes in bio-degradation mechanisms. The volatile solids reduction (95% confidence intervals in mean) changed from 31.6 ± 0.9% in the stable period (day 40-55) to 21.3 ± 1.5% in the last period (day 71-110) when ammonium concentration was elevated to be within 5,000-6,000 mgN/L. Biogas yield dropped accordingly from 11.9 ± 0.3 to 10.4 ± 0.2 L/d and carbon dioxide increased simultaneously from 35.2% to 44.8%. Anaerobranca better adapted to the ammonium stress, while the initially dominant protein-degrading microbes-Tepidimicrobium and Proteiniborus were suppressed, probably responsible for the increase of protein content in digestate. Meanwhile, Methanosarcina, as the dominant Archaea, was resistant to ammonium stress with the constant relative abundance of more than 92% during the whole operation. Nonmetric Multidimensional Scaling (NMDS) analysis was thus conducted which indicated that the gradually increased TAN dictated the bacterial clusters. The dominant Methanosarcina and the increased carbon dioxide content under ammonium stress suggested that, rather than the commonly acknowledged syntrophic acetate oxidation (SAO) with hydrogenotrophic methanogenesis, only SAO pathway was enhanced during the initial 'ammonium inhibition'.

  8. High-throughput sequencing-based microbial characterization of size fractionated biomass in an anoxic anammox reactor for low-strength wastewater at low temperatures.

    Science.gov (United States)

    Liu, Wenru; Yang, Dianhai; Chen, Wenjing; Gu, Xiao

    2017-05-01

    The microbial characterization of three size-fractionated sludge obtained from a suspended-growth anoxic anammox reactor treating low-strength wastewater at low temperatures were investigated by using high-throughput sequencing. Particularly, the spatial variability in relative abundance of microorganisms involved in nitrogen metabolism were analyzed in detail. Results showed that population segregation did occur in the reactor. It was found, for the first time, that the genus Nitrotoga was enriched only in large granules (>400μm). Three anammox genus including Candidatus Jettenia, Brocadia and Kuenenia were detected. Among them, Candidatus Brocadia and Kuenenia preferred to grow in large-sized granules (>400μm), whereas Candidatus Jettenia dominated in small- and moderate-sized sludge (biomass. However, further studies are required to identify the activity of different-size sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Optical constants of concentrated aqueous ammonium sulfate.

    Science.gov (United States)

    Remsberg, E. E.

    1973-01-01

    Using experimental data obtained from applying spectroscopy to a 39-wt-% aqueous ammonium sulfate solution, it is shown that, even though specific aerosol optical constants appear quite accurate, spectral variations may exist as functions of material composition or concentration or both. Prudent users of optical constant data must then include liberal data error estimates when performing calculations or in interpreting spectroscopic surveys of collected aerosol material.

  10. Proton dynamics investigation for dimethyl ammonium cation

    International Nuclear Information System (INIS)

    Pislewski, N.; Tritt-Goc, J.; Jakubas, R.

    1995-01-01

    Proton dynamics in dimethyl ammonium cation has been investigated by means of NMR and spin echo methods in polycrystalline salts [NH 2 (CH 3 ) 2 ] + Bi 2 J 9 - and [NH 2 (CH 3 ) 2 ] + SbJ 9 - . Spin-lattice relaxation time as well as second moment of NMR line have been measured for influence study of crystal structure changes on proton dynamics

  11. Equation of State of Ammonium Nitrate

    Science.gov (United States)

    Robbins, David L.; Sheffield, Stephen A.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Stahl, David B.

    2009-12-01

    Ammonium nitrate (AN) is a widely used fertilizer and mining explosive. AN is commonly used in ammonium nitrate-fuel oil (ANFO), which is a mixture of explosive-grade AN prills and fuel oil in a 94:6 ratio by weight. ANFO is a non-ideal explosive with measured detonation velocities around 4 km/s. The equation of state properties and known initiation behavior of neat AN are limited. We present the results of a series of gas gun-driven plate impact experiments on pressed neat ammonium nitrate at 1.72 g/cm3. No evidence of initiation was observed under shock loading to 22 GPa. High pressure x-ray diffraction experiments in diamond anvil cells provided insight into the high pressure phase behavior over the same pressure range (to 25 GPa), as well as a static isotherm at ambient temperature. From the isotherm and thermodynamic properties at ambient conditions, a preliminary unreacted equation of state (EOS) has been developed based on the Murnaghan isotherm and Helmholtz formalism [1], which compares favorably with the available experimental Hugoniot data on several densities of AN.

  12. Microbial electricity driven anoxic ammonium removal.

    Science.gov (United States)

    Vilajeliu-Pons, Anna; Koch, Christin; Balaguer, Maria D; Colprim, Jesús; Harnisch, Falk; Puig, Sebastià

    2018-03-01

    Removal of nitrogen, mainly in form of ammonium (NH 4 + ), in wastewater treatment plants (WWTPs) is a highly energy demanding process, mainly due to aeration. It causes costs of about half a million Euros per year in an average European WWTP. Alternative, more economical technologies for the removal of nitrogen compounds from wastewater are required. This study proves the complete anoxic conversion of ammonium (NH 4 + ) to dinitrogen gas (N 2 ) in continuously operated bioelectrochemical systems at the litre-scale. The removal rate is comparable to conventional WWTPs with 35 ± 10 g N m -3 d -1 with low accumulation of NO 2 - , NO 3 - , N 2 O. In contrast to classical aerobic nitrification, the energy consumption is considerable lower (1.16 ± 0.21 kWh kg -1 N, being more than 35 times less than for the conventional wastewater treatment). Biotic and abiotic control experiments confirmed that the anoxic nitrification was an electrochemical biological process mainly performed by Nitrosomonas with hydroxylamine as the main substrate (mid-point potential, E ox  = +0.67 ± 0.08 V vs. SHE). This article proves the technical feasibility and reduction of costs for ammonium removal from wastewater, investigates the underlying mechanisms and discusses future engineering needs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The mechanism of water oxidation catalyzed by nanolayered manganese oxides: New insights.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Abbasi Isaloo, Mohsen

    2015-11-01

    Herein we consider the mechanism of water oxidation by nanolayered manganese oxide in the presence of cerium(IV) ammonium nitrate. Based on membrane-inlet mass spectrometry results, the rate of H2((18))O exchange of μ-O groups on the surface of the nanolayered Mn-K oxide, and studies on water oxidation in the presence of different ratios of acetonitrile/water we propose a mechanism for water oxidation by nanolayered Mn oxides in the presence of cerium(IV) ammonium nitrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The contrast study of anammox-denitrifying system in two non-woven fixed-bed bioreactors (NFBR) treating different low C/N ratio sewage.

    Science.gov (United States)

    Gao, Fan; Zhang, Hanmin; Yang, Fenglin; Qiang, Hong; Zhang, Guangyi

    2012-06-01

    Two non-woven fixed-bed bioreactors (NFBR) based on different substrates (nitrite and nitrate) were constructed to study the environmental adaptability for temperature and organic matter of anammox-denitrifying system and nitrogen removal performance. The two reactors were successfully operated for 200 days. The average removal rates of nitrogen and COD of R2 were 81% and 93%, respectively. Besides, the nitrogen removal rate of R1 was 95% under not more than 105 mg/l of COD. The experimental results indicated that the R2 based on nitrate had a good nitrogen removal performance at room temperature (25 °C). Additionally, the analysis results of fluorescence in situ hybridization (FISH) showed that the percentage compositions of anammox in R1 and R2 were 84% and 65% on day 189. Finally, the possible nitrogen removal model of anammox-denitrifying system was constructed. According to nitrogen balance and C/N ratios of denitrification, the nitrogen removal approaches of R1 and R2 were obtained. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, J.W. [Institutes of the Environment, Pennsylvania State University, University Park, PA 16802 (United States); Lynch, J.A. [School of Forest Resources, Pennsylvania State University, 311 Forest Resources Lab, University Park, PA 16802 (United States)]. E-mail: jal@psu.edu

    2005-06-15

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8 km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8 km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate. - A linear least-squares regression approach was used to develop daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed.

  16. Simultaneous desulfurization and denitrification by microwave reactor with ammonium bicarbonate and zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Wei Zaishan [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)], E-mail: weizaishan98@163.com; Lin Zhehang; Niu Hejingying; He Haiming; Ji Yongfeng [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2009-03-15

    Microwave reactor with ammonium bicarbonate (NH{sub 4}HCO{sub 3}) and zeolite was set up to study the simultaneous removal of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas. The results showed that the microwave reactor filled with NH{sub 4}HCO{sub 3} and zeolite could reduce SO{sub 2} to sulfur with the best desulfurization efficiency of 99.1% and reduce NO{sub x} to nitrogen with the best NO{sub x} purifying efficiency of 86.5%. Microwave desulfurization and denitrification effect of the experiment using ammonium bicarbonate and zeolite together is much higher than that using ammonium bicarbonate or zeolite only. NO{sub x} concentration has little effect on denitrification but has no influence on desulfurization, SO{sub 2} concentration has no effect on denitrification. The optimal microwave power and empty bed residence time (EBRT) on simultaneous desulfurization and dentrification are 211-280 W and 0.315 s, respectively. The mechanism for microwave reduced desulfurization and denitrification can be described as the microwave-induced catalytic reduction reaction between SO{sub 2}, NO{sub x} and ammonium bicarbonate with zeolite being the catalyst and microwave absorbent.

  17. Potential substitution of ammonium chloride in Ruhr coal hydrogenation. (Previous test results)

    Energy Technology Data Exchange (ETDEWEB)

    Grassl

    1943-10-20

    The report related that ammonium chloride could be nearly totally replaced by equivalent amounts of elemental chlorine in the form of gas, chlorinated grinding oil, moderately chlorinated coal, as well as hydrogen chloride. Similar results were obtained using organic chloride compounds, such as carbon tetrachloride. Sulfur monochloride was also considered a substitute for ammonium chloride, since sulfuric acid and ammonium fluoride were considered unfavorable at the time. At a reaction temperature 1/2 mV higher than usual, phosphoric acid gave results similar to those of ammonium chloride except for splitting. By using metal powders (Fe, Al, Zn, Sn, etc.), the amount of chlorine could be reduced from 1/3 to 1/2, yet to attain a favorable reduction in asphalt as with NH/sub 4/Cl, a slight temperature increase was necessary. Tests with chlorine-containing water-soluble aluminum oxide as well as aqueous aluminum chloride appeared to be good prospects and were to be followed up. A number of summaries were referred to in relation to this report.

  18. Partial nitrification performance and mechanism of zeolite biological aerated filter for ammonium wastewater treatment.

    Science.gov (United States)

    Yang, Yongyuan; Chen, Zhenguo; Wang, Xiaojun; Zheng, Lei; Gu, Xiaoyang

    2017-10-01

    A zeolite biological aerated filter (ZBAF) with continuous feeding was successfully applied for achieving stable partial nitrification. Excellent nitrite accumulation (higher than 98.0%) and high nitrite/nitrate production rate (NPR) (approximately 0.760kg/m 3 /d) were obtained with increase influent ammonium concentration from 250 to 550mg/L within a nitrogen loading rate (NLR) of 0.854-1.200kg/m 3 /d. Owning to the adsorption of zeolite to ammonium, free ammonia (FA) concentration could remain at an appropriate range for inhibition of nitrite oxidizing bacteria (NOB) and dominance of ammonia-oxidizing bacteria (AOB), which should be responsible for the excellent partial nitrification realized in ZBAF. Kinetic study showed that the production of nitrite in ZBAF followed the zero-order kinetics model and high-throughput sequencing analysis further presented the enrichment of AOB and inhibition of NOB in ZBAF. All the results demonstrated that ZBAF hold a great potential in the application of partial nitrification for ammonium wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Investigation of Ammonium and Nitrite Removal by Zeolite Material Synthesized on Red Mud Base

    Directory of Open Access Journals (Sweden)

    Pham Thi Mai Huong

    2017-07-01

    Full Text Available The zeolite with the unit formula of Na8(Al6Si6O24S.4H2O was synthesized directly on red mud base with addition of single silicon (signed as RH-ZeO-Si and both silicon and aluminum portions (signed as RM-ZeO-SiAl to original Tan Rai (Vietnam red mud. The structure of the zeolite was studied by X-Ray difration and FT-IR absorption spectra. The synthesized materials were studied on their adsorption ability of ammonium and nitrite ions. The results showed that, the adsorption of ammonium cation was mostly allowing ion-exchange mechanism and the zeolite crystaline forms played predominantly role besids minor one of single metal oxides. For nitrite anions, it is otherwise, the adsorption mechanism was mostly leant to electrostatic attraction between nitrite anions and electropositive effect of the hematite surface in light acidic condition. The adsorption isotherms of all ammonium and nitrite ions on both synthesized materials were nearly conformable with Freundlich model than Langmuir model. Those showed that, both materials have unhomogeneous adsorption surface. The maximum adsorption capacity of ammonium and nitrite on RM-ZeO-Si was 5.71 mg/g and 2.73 mg/g respectively, and on RM-ZeO-SiAl was 5.61 mg/g and 3.12 mg/g respectively. The initial test of competitive ions influencing on adsorption ability showed that, for all cases the competition of cations to ammonium ion was more significance than those of anions to nitrite ion in the same conditions.

  20. Mass spectrometric investigation into thermal decomposition of double hafnium and ammonium sulfate

    International Nuclear Information System (INIS)

    Fedoryako, L.I.; Sheka, I.A.; Vykhrestyuk, N.I.; Brodskij, E.S.

    1983-01-01

    The method of pyrolytic mass spectrometry has been used to investigate thermal decomposition doUble hafnium ammonium sulfate of the (Nr 4 ) 4 Hf(SO 4 ) 4 X4H 2 O composition during heating from 20 to 800 deg. In volatile destruction products the following ions are found: H 2 O + , NH 3 + , SO + , SO 2 + , O 2 + , H 2 S + , N 2 + , SO 3 + ion is practically absent. Removal of crystallization water occurs in the 85-285 deg range, that of ammonium and sulfur oxides - at 300-775 deg. Higher than 300 deg the ratios of intensities of peaks of SO 2 + :SO + :O 2 + ions do not exceed those standard for SO 2 , which proves a deeper destruction of sUlfUr dioxide under given conditions

  1. Quaternary Ammonium Polyethyleneimine: Antibacterial Activity Ira

    International Nuclear Information System (INIS)

    Farber, Y.; Domb, A.G.; Golenser, J.; Beyth, N.; Weiss, E.I.

    2010-01-01

    Quaternary ammonium polyethyleneimine- (QA-PEI-) based nanoparticles were synthesized using two synthetic methods, reductive amination and N-alkylation. According to the first method, QA-PEI nanoparticles were synthesized by cross-linking with glutaraldehyde followed by reductive amination with octanal and further N-methylation with methyl iodide. The second method is based on crosslinking with dialkyl halide followed by N-alkylation with octyl halide and further N-methylation with methyl iodide. QA-PEI nanoparticles completely inhibited bacterial growth (>106 bacteria), including both Gram-positive, that is, Staphylococcus aureus at 80 μ/mL, and Gram-negative, that is, Escherichia coli at 320 μ/mL. Activity analysis revealed that the degree of alkylation and N-methylation of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl alkylated QA-PEI alkylated at 1 : 1 mole ratio (primary amine of PEI monomer units/alkylating agent). Also, cytotoxicity studies on MAT-LyLu and MBT cell lines were performed with QA-PEI nanoparticles. These findings confirm previous reports that poly cations bearing quaternary ammonium moieties inhibit bacterial growth in vitro and have a potential use as additives in medical devices which need antibacterial properties.

  2. Ammonium Production in Sediments Inhibited with Molybdate: Implications for the Sources of Ammonium in Anoxic Marine Sediments †

    OpenAIRE

    Jacobson, Myrna E.; Mackin, James E.; Capone, Douglas G.

    1987-01-01

    Ammonium production in the presence of specific inhibitors of sulfate reduction and methanogenesis was investigated in six marine sediments which differed in bulk properties and organic matter input. In all cases, little effect of the inhibitors on ammonium production was observed, although sulfate reduction was suppressed by molybdate. This gives evidence that the processes of fermentation and hydrolysis are of primary importance in ammonium generation at the sites studied. Although sulfate ...

  3. Ammonium removal pathways and microbial community in GAC-sand dual media filter in drinking water treatment.

    Science.gov (United States)

    Feng, Shuo; Xie, Shuguang; Zhang, Xiaojian; Yang, Zhiyu; Ding, Wei; Liao, Xiaobin; Liu, Yuanyuan; Chen, Chao

    2012-01-01

    A GAC-sand dual media filter (GSF) was devised as an alternative solution for drinking water treatment plant to tackle the raw water polluted by ammonium in place of expensive ozone-GAC processes or bio-pretreatments. The ammonium removal pathways and microbial community in the GSFs were investigated. The concentrations of ammonium, nitrite and nitrate nitrogen were monitored along the filter. Total inorganic nitrogen (TIN) loss occurred during the filtration. For 1 mg ammonium removal, the TIN loss was as high as 0.35 mg, DO consumption was 3.06 mg, and alkalinity consumption was 5.55 mg. It was assumed that both nitrification and denitrification processes occur in the filters to fit the TIN loss and low DO consumption. During the filtration, nitritation, nitrification and nitritation-anaerobic ammonium oxidation processes probably occur, while traditional nitrification and denitrification and simultaneous nitrification and denitrification processes may occur. In the GSFs, Nitrosomonas and Nitrospira are likely to be involved in nitrification processes, while Novosphingobium, Comamonadaceae and Oxalobacteraceae may be involved in denitrification processes.

  4. Study of the reaction between ammonium thiocyanate and Fe (II or Fe (III using infrared spectroscopy: an experiment of prebiotic chemistry

    Directory of Open Access Journals (Sweden)

    Dimas Augusto Morozin Zaia

    2010-09-01

    Full Text Available The prebiotic chemistry studies the reactions that could be played an important role on origins of life on Earth. However, these reactions should be carried out under conditions that existed on the prebiotic Earth. The laboratory experiments of heating substances in solid state could be corresponding to the following prebiotic environments: cooling lava from volcanoes on the ground and impact of meteorites or comets on the earth. The present study examined the reaction in solid state between ammonium thiocyanate and Fe (II or Fe (III. The samples were heated at 220 ºC in several different times (6 hours, 24 hours, 7 days. The most important finding of this work is that a reaction of oxidation-reduction is occurring between Fe (II and ammonium thiocyanate, the infrared spectrum of the reaction product ammonium thiocyanate/Fe (II showed a band that it is characteristic of ferricyanate. The infrared spectra also showed bands that they are characteristics of guanidine thiocyanate. Thus, the heating of ammonium thiocyanate with Fe (II in solid state is synthesizing guanidine thiocyanate and at the same time oxidizing Fe (II to Fe (III. The product of reaction between Fe (III and ammonium thiocyanate is guanidine thiocyanate. Fe (II and Fe (III are reacting with ammonium thiocyanate in different way.

  5. Toxic fumes from explosives: ammonium nitrate-fuel oil mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Chaiken, R.F.; Cook, E.B.; Ruhe, T.C.

    1974-01-01

    The Bureau of Mines has carried out experimental and theoretical studies with prilled and pulverized ammonium nitrate-fuel oil (AN-FO) mixtures containing varying amounts of fuel oil in an attempt to quantify the effects of stoichiometric composition, nonideal detonation behavior, and expansion volume on the production of CO, NO, and NO/sub 2/ fumes. Experimental fume measurements were obtained in the Bureau's large closed gallery facility (7.2 x 10/sup 4/ liter expansion chamber) and in the standard Crawshaw-Jones apparatus (90-liter expansion chamber) using a prepackaged charge configuration containing about 450 g of explosives. The theoretical calculation of toxic fumes was achieved with an equilibrium detonation code called TIGER. Contrary to initial expectations, the NO/sub x/ (= NO + NO/sub 2/) fumes from the large gallery test were found to be in essential agreement with the Crawshaw-Jones results. It was also concluded that TIGER calculations offer a good approach to the prediction of toxic fumes; there is a basic problem in extrapolating laboratory measurements of CO fumes to mine conditions, this being due to postdetonation oxidation of CO to CO/sub 2/; and the detonation velocity decay rate of an explosive is a useful experimental parameter for correlating toxic fumes production with nonideal detonation behavior.

  6. Electrochemical properties of quaternary ammonium salts for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ue, Makoto; Takeda, Masayuki; Takehara, Masahiro; Mori, Shoichiro [Mitsubishi Chemical Corp., Inashiki, Ibaraki (Japan). Tsukuba Research Center

    1997-08-01

    The limiting reduction and oxidation potentials and electrolytic conductivities of new quaternary ammonium salts were examined for electrochemical capacitor applications, whose anions have already been tested as lithium salts for lithium battery applications. The anodic stability was in the following order BR{sub 4}{sup {minus}} < ClO{sub 4}{sup {minus}} {le} CF{sub 3}SO{sub 3}{sup {minus}} < (CF{sub 3}SO{sub 2}){sub 2}N{sup {minus}} {le} C{sub 4}F{sub 9}SO{sub 3}{sup {minus}} < BF{sub 4}{sup {minus}} < PF{sub 6}{sup {minus}} {le} AsF{sub 6}{sup {minus}} < SbF{sub 6}{sup {minus}}. The electrolytic conductivities of Me{sub 4{minus}n}Et{sub n}N(CF{sub 3}SO{sub 2}){sub 2}N (n = 0--4) were examined in comparison with Me{sub 4{minus}n}Et{sub n}NBF{sub 4} counterparts. These imide salts showed good solubility, relatively high conductivity, and anodic stability in propylene carbonate. Et{sub 4}N(CF{sub 3}SO{sub 2}){sub 2}N was found to be a good supporting salt for low permittivity organic solvents, and it afforded a highly conductive electrolyte system based on the ethylene carbonate-dimethyl carbonate mixed solvent, which is useful for electrochemical capacitor applications.

  7. Efficient cellulose solvent: quaternary ammonium chlorides.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; El Seoud, Omar A; Heinze, Thomas

    2013-10-01

    Pure quaternary tetraalkylammonium chlorides with one long alkyl chain dissolved in various organic solvents constitute a new class of cellulose solvents. The electrolytes are prepared in high yields and purity by Menshutkin quaternization, an inexpensive and easy synthesis route. The pure molten tetraalkylammonium chlorides dissolve up to 15 wt% of cellulose. Cosolvents, including N,N-dimethylacetamide (DMA), may be added in large excess, leading to a system of decreased viscosity. Contrary to the well-established solvent DMA/LiCl, cellulose dissolves in DMA/quaternary ammonium chlorides without any pretreatment. Thus, the use of the new solvent avoids some disadvantages of DMA/LiCl and ionic liquids, the most extensively employed solvents for homogeneous cellulose chemistry. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo

    2010-11-25

    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  9. Double selenates of rare earths and ammonium

    International Nuclear Information System (INIS)

    Iskhakova, L.D.; Kozlova, N.P.; Makarevich, L.G.

    1991-01-01

    Double selenates of rare earths with ammonium were prepared in result of crystallization. It is shown that NH 4 Ln(SeO 4 ) · nH 2 O crystalline hydrates are presented by penta-and trihydrates. Existance of two modifications was revealed for NH 4 Ln(SeO 4 ) · 5H 2 O: monoclinic form of NH 4 La(SeO 4 ) 2 · 5H 2 O, isostructural RbCe(SeO 4 ) 2 · 5H 2 O, and earlier unknown rhombic form of salts with Ln = Pr, Nd. Trihydrates with Ln = Sm-Yb belong to structural type of RbNd(SeO 4 ) 2 · 3H 2 O. Anhydrous salts NH 4 Ln(SeO 4 ) 2 are isostructural with monoclinic KNd(SO 4 ) 2 modification. Lattice parameters of binary selenates are presented

  10. Diversity and distribution of Planctomycetes and related bacteria in the suboxic zone of the Black Sea.

    Science.gov (United States)

    Kirkpatrick, John; Oakley, Brian; Fuchsman, Clara; Srinivasan, Sujatha; Staley, James T; Murray, James W

    2006-04-01

    Samples from six depths of the Black Sea's suboxic zone were analyzed for 16S rRNA gene sequence information. A gradient in phylotype diversity was found. The distributions of known anaerobic ammonium oxidation (anammox) bacteria, many unknown Planctomycetes, and other phylotypes were examined in relation to the local nutrient and redox conditions.

  11. Diversity and Distribution of Planctomycetes and Related Bacteria in the Suboxic Zone of the Black Sea

    OpenAIRE

    Kirkpatrick, John; Oakley, Brian; Fuchsman, Clara; Srinivasan, Sujatha; Staley, James T.; Murray, James W.

    2006-01-01

    Samples from six depths of the Black Sea's suboxic zone were analyzed for 16S rRNA gene sequence information. A gradient in phylotype diversity was found. The distributions of known anaerobic ammonium oxidation (anammox) bacteria, many unknown Planctomycetes, and other phylotypes were examined in relation to the local nutrient and redox conditions.

  12. Fixed-nitrogen loss associated with sinking zooplankton carcasses in a coastal oxygen minimum zone (Golfo Dulce, Costa Rica)

    DEFF Research Database (Denmark)

    Stief, Peter; Lundgaard, Ann Sofie Birch; Morales Ramirez, Alvaro

    2017-01-01

    Oxygen minimum zones (OMZs) in the ocean are of key importance for pelagic fixed-nitrogen loss (N-loss) through microbial denitrification and anaerobic ammonium oxidation (anammox). Recent studies document that zooplankton is surprisingly abundant in and around OMZs and that the microbial community...

  13. Sustainable nitrification in fluidised bed reactor with immobilised ...

    African Journals Online (AJOL)

    2012-02-01

    Feb 1, 2012 ... receivers. Regulatory agencies in many countries, including. China, have required increasingly stringent water quality crite- ria for ammonium and total nitrogen (TN) removal. Partial nitrification, i.e., the ...... oxidation (Anammox) using membrane aeration bioreactor. J. Biosci. Bioeng. 104 182–187.

  14. 21 CFR 184.1296 - Ferric ammonium citrate.

    Science.gov (United States)

    2010-04-01

    ... occurs as thin transparent green scales, as granules, as a powder, or as transparent green crystals. (b) The ingredients meet the specifications of the Food Chemicals Codex, 3d Ed. (1981), pp. 116-117 (Ferric ammonium citrate, brown) and p. 117 (Ferric ammonium citrate, green), which is incorporated by...

  15. Ammonium removal from aqueous solution by ion-exchange using ...

    African Journals Online (AJOL)

    Ammonium removal from aqueous solution by a natural ion-exchange resin was investigated by considering the factors affecting the ammonium-exchange capacity including the zeolites' particle size, the loading flow rates and the impact of a number of regenerations upon the ion-exchange capacity. The resin column was ...

  16. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION Food Preservatives § 172.165 Quaternary ammonium chloride combination. The food... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Quaternary ammonium chloride combination. 172.165 Section 172.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  17. Modelling nitrogen assimilation of Escherichia coli at low ammonium concentration.

    NARCIS (Netherlands)

    Ma, H.; Boogerd, F.C.; Goryanin, I.

    2009-01-01

    Modelling is an important methodology in systems biology research. In this paper, we presented a kinetic model for the complex ammonium assimilation regulation system of Escherichia coli. Based on a previously published model, the new model included AmtB mediated ammonium transport and AmtB

  18. Studies on the Effects of Ammonium Phosphates on the ...

    African Journals Online (AJOL)

    ……..(2). Ammonium dihydrogen tetraoxophosphate (V): (NH4)2HPO4 → NH4H2PO4 + NH3 ……(3a). NH4H2PO4 → H3PO4 + NH3 …...........(3b). Scheme 1: Equations for the combustion of the three ammonium phosphates used in filling the ...

  19. Thiourea-doped ammonium dihydrogen phosphate: A single crystal ...

    Indian Academy of Sciences (India)

    Thiourea-doped ammonium dihydrogen phosphate (TADP) exhibits nonlinear optical property and the second harmonic generation efficiency of these crystals is three times that of pure ammonium dihydrogen phosphate (ADP) crystal. In this context, the study of structural distortion in the thiourea-doped ADP crystal is ...

  20. 78 FR 32690 - Certain Ammonium Nitrate From Ukraine

    Science.gov (United States)

    2013-05-31

    ... From Ukraine Determination On the basis of the record \\1\\ developed in the subject five-year review... certain ammonium nitrate from Ukraine would be likely to lead to continuation or recurrence of material... Ammonium Nitrate from Ukraine: Investigation No. 731-TA-894 (Second Review). By order of the Commission...

  1. The Rh complex exports ammonium from human red blood cells

    NARCIS (Netherlands)

    Hemker, Mirte B.; Cheroutre, Goedele; van Zwieten, Rob; Maaskant-van Wijk, Petra A.; Roos, Dirk; Loos, Johannes A.; van der Schoot, C. Ellen; von dem Borne, Albert E. G. Kr

    2003-01-01

    The Rh blood group system represents a major immunodominant protein complex on red blood cells (RBC). Recently, the Rh homologues RhAG and RhCG were shown to promote ammonium ion transport in yeast. In this study, we showed that also in RBC the human Rh complex functions as an exporter of ammonium

  2. Synthesis, antimicrobial activity of lamotrigine and its ammonium ...

    Indian Academy of Sciences (India)

    Antiepileptic drug lamotrigine and its thirteen ammonium salt complexes (4a-4m) were synthesized and characterized by IR, elemental analysis, 1H-NMR, and MS spectral methods. Many of the ammonium salts (4a-4m) were first reported. Furthermore, the crystal structure of compound 3 was determined by single crystal ...

  3. Ceric ammonium nitrate catalysed three component one-pot efficient ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Ceric ammonium nitrate (CAN) is used as an efficient catalyst for the synthesis of 2,4,5- triaryl-1H-imidazoles via condensation of benzoin/benzil, ammonium acetate, and aromatic aldehydes. The easy work-up, higher yields and shorter reaction time are the advantages of the method presented here. Keywords.

  4. Effects of dietary ammonium sulphate (AS) on the performance and ...

    African Journals Online (AJOL)

    Two experiments were designed to investigate the response of broilers to dietary inclusion of ammonium sulphate. In experiment 1, day old chicks were fed diets with 0,1,2 or 3 % ammonium sulphate (AS) during the starter phase (0 –4 weeks). In experiment 2, broilers chicks were raised on a standard diet from 0 – 4 weeks ...

  5. Ceric ammonium nitrate catalysed three component one-pot efficient ...

    Indian Academy of Sciences (India)

    Ceric ammonium nitrate (CAN) is used as an efficient catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles via condensation of benzoin/benzil, ammonium acetate, and aromatic aldehydes. The easy work-up, higher yields and shorter reaction time are the advantages of the method presented here.

  6. Shock wave synthesis of amino acids from solutions of ammonium formate and ammonium bicarbonate

    Science.gov (United States)

    Suzuki, Chizuka; Furukawa, Yoshihiro; Kobayashi, Takamichi; Sekine, Toshimori; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2015-07-01

    The emergence of life's building blocks, such as amino acids and nucleobases, on the prebiotic Earth was a critical step for the beginning of life. Reduced species with low mass, such as ammonia, amines, or carboxylic acids, are potential precursors for these building blocks of life. These precursors may have been provided to the prebiotic ocean by carbonaceous chondrites and chemical reactions related to meteorite impacts on the early Earth. The impact of extraterrestrial objects on Earth occurred more frequently during this period than at present. Such impacts generated shock waves in the ocean, which have the potential to progress chemical reactions to form the building blocks of life from reduced species. To simulate shock-induced reactions in the prebiotic ocean, we conducted shock-recovery experiments on ammonium bicarbonate solution and ammonium formate solution at impact velocities ranging from 0.51 to 0.92 km/s. In the products from the ammonium formate solution, several amino acids (glycine, alanine, ß-alanine, and sarcosine) and aliphatic amines (methylamine, ethylamine, propylamine, and butylamine) were detected, although yields were less than 0.1 mol % of the formic acid reactant. From the ammonium bicarbonate solution, smaller amounts of glycine, methylamine, ethylamine, and propylamine were formed. The impact velocities used in this study represent minimum cases because natural meteorite impacts typically have higher velocities and longer durations. Our results therefore suggest that shock waves could have been involved in forming life's building blocks in the ocean of prebiotic Earth, and potentially in aquifers of other planets, satellites, and asteroids.

  7. Hybrid organic-inorganic crystals based on ammonium dihydrogen phosphate and ammonium salicylate

    Science.gov (United States)

    Voronov, A. P.; Salo, V. I.; Puzikov, V. M.; Babenko, G. N.; Roshal, A. D.; Tkachenko, V. F.

    2011-11-01

    ADP-NH 4Sal hybrid crystals are grown from aqueous solutions. The influence of the acidity of the mixed solution on the conditions of co-crystallization of the components is studied. The spectral and scintillation characteristics are determined. Co-crystallization of ammonium salicylate (NH 4Sal) and ammonium dihydrogen phosphate (ADP, NH 4H 2PO 4) is shown to be feasible, the structure of the doping addition being defined by the solution рН. In basic and weak acidic media the hybrid crystals ADP:NH 4Sal are formed in which salicylate anions are located in the interplanar space between the {110}-type planes in the lattice of ADP. The luminescence spectra contain an emission band maximum with λ max=360 nm. In acidic solutions there are ADP:HSal crystals in which salicylic acid molecules captured by the growth macrosteps are located in the interplanar space of the prismatic {100} and pyramidal {101} growth sectors. The luminescence band undergoes bathochromic shift to λmax=400 nm. The sensitivity of ADP:NH 4Sal scintillation crystals to fast neutrons depends on the concentration of ammonium salicylate in ADP matrix. The highest neutron sensitivity is characteristic of the co-doped ADP:NH 4Sal/Tl scintillation crystals.

  8. Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light.

    Science.gov (United States)

    Jia, Huijun; Yuan, Qiuyan

    2018-04-01

    In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.

  9. Pathways and Controls of N2O Production in Nitritation-Anammox Biomass

    DEFF Research Database (Denmark)

    Ma, Chun; Jensen, Marlene Mark; Smets, Barth F.

    2017-01-01

    of N2O production from hydroxylamine oxidation at low O2 was unexpected and suggests that more than one enzymatic pathway may be involved in this process. N2O production by hydroxylamine oxidation was further stimulated by NH4+, whereas nitrifier denitrification at low O2 levels was stimulated by NO2...... contributed substantially to N2O accumulation across a wide range of conditions with varying concentrations of O2, NH4+, and NO2-. The O2 concentration exerted the strongest control on net N2O production with both production pathways stimulated by low O2, independent of NO2- concentrations. The stimulation......- at levels as low as 0.2 mM. Our study shows that 15N and 18O isotope labeling is a useful approach for direct quantification of N2O production pathways applicable to diverse environments....

  10. Ion-selective solid-phase electrode sensitive to ammonium ions

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Milonova, M.S.; Antonov, P.P.; Bychkov, E.A.; Ehfa, A.Ya.

    1983-01-01

    Ammonium phosphomolybdate is investigated for the purpose of using it as membrane material of ammonium-selective solid-phase electrodes. Estimation of proton mobility and ion conductivity of ammonium phosphomolybdate is performed

  11. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed.

    Science.gov (United States)

    Grimm, J W; Lynch, J A

    2005-06-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate.

  12. Volumetric determination of methanol in ammonium uranil carbonate of nuclear purity

    International Nuclear Information System (INIS)

    Lorenzatto, R.L.

    1989-01-01

    The method developed allows to determine methanol in ammonium uranil carbonate (AUC) from a concentration of 0.01 % with great accuracy. The ammonium uranil carbonate is dissolved in pre-established volumes of a potassium dichromate and concentrated sulfuric acid standardized solution. Instantaneously, the methanol presents oxidates at formic acid, reducing an equivalent amount of dichromate. The remaining dichromate still present, is reduced by adding in excess a standardized solution of ferrous sulphate. The titration of this excess with a standardized solution of potassium permanganate, using ferrous o- phenanthroline as indicator, will give a net and sensitive final point which allows to obtain by a simple estimate the percentage of methanol in the analyzed sample with great precision. Besides, essays are included which were carried out with the aim of proving and putting into evidence in a practical way that the high volatility of the methanol contained in an ammonium uranil carbonate will be the main disadvantage causing errors in defect. Observations for those requesting these analyses and for analysts performing them are mentioned in order to minimize the error factor abovementioned. (Author) [es

  13. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    Energy Technology Data Exchange (ETDEWEB)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2017-03-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  14. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    Science.gov (United States)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  15. Ammonium vanadate titrimetric method for determination of micro amount uranium in rock and soil by using vanadate-gold indicator

    International Nuclear Information System (INIS)

    Li Yucheng.

    1990-01-01

    A new vanadate-gold indicator was successfully applied to the ammonium vanadate titrimetric method for determination of micro amount uranium in rock and soil. Uranium in 0.1g of sample is reduced by titanium trichloride in phosphoric acid. Excessive Ti (III) and other low-valent ions are oxidized by sodium nitrite, while the complex of uranium (IV)-phosphate is not oxidized. Excessive nitrite is destroyed by urea. When the concentration of phosphoric acid is 22-24 % , adding two drops of vanadate-gold indicator, uranium (IV) is titrated by standardized ammonium vanadate solution (T = 0.02-20gU/ml) and the end-point is judged by a violet-red color appearance

  16. Effect of Bisulfate, Ammonia, and Ammonium on the Clustering of Organic Acids and Sulfuric Acid.

    Science.gov (United States)

    Myllys, Nanna; Olenius, Tinja; Kurtén, Theo; Vehkamäki, Hanna; Riipinen, Ilona; Elm, Jonas

    2017-06-29

    We investigate the effect of the bisulfate anion HSO 4 - , ammonium cation NH 4 + , and ammonia NH 3 on the clustering of sulfuric acid and pinic acid or 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA). The systems were chosen based on their expected relevance in atmospheric new particle formation. Using quantum chemical methods together with kinetic calculations, we study the ability of these compounds to enhance cluster formation and growth. The cluster structures are obtained and frequencies are calculated using three different DFT functionals (M06-2X, PW91, and ωB97X-D) with the 6-31++G(d,p) basis set. The electronic energies are corrected using an accurate DLPNO-CCSD(T)/def2-QZVPP level of theory. The evaporation rates are evaluated based on the calculated Gibbs free energies. The interaction between the ions and sulfuric acid or carboxylic acid group is strong, and thereby small two-component ionic clusters are found to be very stable against evaporation. The presence of bisulfate stimulates the cluster formation through addition of the sulfuric acid, whereas the presence of ammonium favors the addition of organic acids. Bisulfate and ammonium enhance the first steps of cluster formation; however, at atmospheric conditions further cluster growth is limited due to the weak interaction and fast evaporation of the larger three-component clusters. On the basis of our results it is therefore unlikely that the studied organic acids and sulfuric acid, even together with bisulfate, ammonia, or ammonium can drive new-particle formation via clustering mechanisms. Other mechanisms such as chemical reactions are needed to explain observed new-particle formation events in the presence of oxidized organic compounds resembling the acids studied here.

  17. Size-dependent reactions of ammonium bisulfate clusters with dimethylamine.

    Science.gov (United States)

    Bzdek, Bryan R; Ridge, Douglas P; Johnston, Murray V

    2010-11-04

    The reaction kinetics of ammonium bisulfate clusters with dimethylamine (DMA) gas were investigated using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Clusters ranged in size from 1 to 10 bisulfate ions. Although displacement of the first several ammonium ions by DMA occurred with near unit efficiency, displacement of the final ammonium ion was cluster size dependent. For small clusters, all ammonium ions are exposed to incoming DMA molecules, allowing for facile exchange ("surface" exchange). However, with increasing cluster size, an ammonium ion can be trapped in an inaccessible region of the cluster ("core" exchange), thereby rendering exchange difficult. DMA was also observed to add onto existing dimethylaminium bisulfate clusters above a critical size, whereas ammonia did not add onto ammonium bisulfate clusters. The results suggest that as the cluster size increases, di-dimethylaminium sulfate formation becomes more favorable. The results of this study give further evidence to suggest that ambient sub-3 nm diameter particles are likely to contain aminium salts rather than ammonium salts.

  18. Technological and economic evaluation of the oxidizer for vanadium

    International Nuclear Information System (INIS)

    Cherkashin, V.I.; Denisova, L.V.; Sklyar, A.V.; Khlopkov, L.P.

    1978-01-01

    Vanadium oxidizers, applied to processing vanadium-containing scrap resulted from titanium production are characterized and evaluated according to their technological properties and economic expenses. Advantages of potassium perchlorate, ammonium persulphate, and pyrolusite over sodium and calcium hypochlorites are shown

  19. The creation of defects in ammonium halides by excitons

    International Nuclear Information System (INIS)

    Kim, L.M.

    2002-01-01

    The ammonium halides crystals and alkali halides crystals are analogous by kind chemical bonds and crystalline lattices. The anionic sublattice is identical in this crystals. It is known the main mechanism of defect creation by irradiation is radiationless decay of excitons in alkali halides crystals. The F-, H-centers are formation in this processes. However, F, H-centres are not detected in ammonium halides. The goal of this work is investigation the creation of defects in ammonium halides by excitons. We established that excitons in ammonium chlorides and bromides are similar to excitons in alkali halides. It is known excitons are self-trapped and have identical parameters of the exciton-phonon interaction in both kind crystals. It is supposed, that processes of radiationless disintegration of excitons are identical in ammonium and alkali halides. It is necessary to understand why F-, H-centers are absent in ammonium halides. V k -centres are created by the excitation of the ammonium halides crystals in the absorption band of excitons. It was established by thermoluminescence and spectrums of absorption. The V k -centers begin to migrate at 110-120 K in ammonium chlorides and bromides. The curve of thermoluminescence have peak with maximum at this temperatures. It is known V k -centers in ammonium chlorides have the absorption band at 380 nm. We discovered this absorption band after irradiation of crystals by ultra-violet. In alkali halides F-center is anionic vacancy with electron. The wave function of electron are spread ed at the cations around anionic vacancy. We established the cation NH 4 + in ammonium halides can to capture electron. The ion NH 4 2+ is unsteady. It is disintegrated to NH 3 + and H + . We suppose that excitons in ammonium and alkali halides are disintegrated identically. When cation NH 4 + capture electron, in the anionic sublattice the configuration are created in a direction (100) The indicated configuration is unsteady in relation to a

  20. Modelling an Ammonium Transporter with SCLS

    Directory of Open Access Journals (Sweden)

    Angelo Troina

    2009-10-01

    Full Text Available The Stochastic Calculus of Looping Sequences (SCLS is a recently proposed modelling language for the representation and simulation of biological systems behaviour. It has been designed with the aim of combining the simplicity of notation of rewrite systems with the advantage of compositionality. It also allows a rather simple and accurate description of biological membranes and their interactions with the environment.In this work we apply SCLS to model a newly discovered ammonium transporter. This transporter is believed to play a fundamental role for plant mineral acquisition, which takes place in the arbuscular mycorrhiza, the most wide-spread plant-fungus symbiosis on earth. Due to its potential application in agriculture this kind of symbiosis is one of the main focuses of the BioBITs project. In our experiments the passage of NH3 / NH4+ from the fungus to the plant has been dissected in known and hypothetical mechanisms; with the model so far we have been able to simulate the behaviour of the system under different conditions. Our simulations confirmed some of the latest experimental results about the LjAMT2;2 transporter. The initial simulation results of the modelling of the symbiosis process are promising and indicate new directions for biological investigations.

  1. Process stability and the recovery control associated with inhibition factors in a UASB-anammox reactor with a long-term operation.

    Science.gov (United States)

    Niu, Qigui; He, Shilong; Zhang, Yanlong; Ma, Haiyuan; Liu, Yuan; Li, Yu-You

    2016-03-01

    A UASB-anammox reactor was operated for 900 days to study its process stability. The negative effects of free ammonia (FA) and free nitrous acid (FNA) were investigated over three separate inhibitions and recoveries. The IC10, IC50 and IC90 (inhibitory concentration/a 10%, 50% and 90% activity loss) of FNA and FA responding to the NH4(+)-N, NO2(-)-N and TN removal efficiency were evaluated. In the 1st inhibition, the average FNA-IC10 observed was 0.67 μg L(-1) and the FA-IC10 for TN removal was 4.85 mg L(-1). In the 2nd inhibition, an FNA-IC10 of 0.44μ g L(-1) and an FA-IC10 of 3.56 were found. In the 3rd inhibition, however, both the FNA-IC10 and FA-IC10 were found to have increased, with values of 0.50 μg L(-1) and 4.42 mg L(-1), respectively. A clear control region was established for multiple inhibitions and the recoveries, which followed (pH 7.5-8.5, FA below 10mg/100mg NH4(+)-N and an FNA below 0.005 mg/100 mg NO2(-)-N) for the purpose of optimizing the operation conditions of the UASB-anammox reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Achieve single-stage autotrophic biological nitrogen removal process by controlling the concentration of free ammonia].

    Science.gov (United States)

    Ji, Li-Li; Yang, Zhao-Hui; Xu, Zheng-Yong; Li, Xiao-Jiang; Tang, Zhi-Gang; Deng, Jiu-Hu

    2011-01-01

    Through controlling the concentration of free ammonia in the sequencing batch reactor (SBR), the single-stage autotrophic biological nitrogen removal process was achieved, including partial nitrification and anaerobic ammonium oxidation. The experiment was completed via two steps, the enrichment of nitrite bacteria and the inoculation of the mixture of anammox biomass. The operating temperature in the SBR was (31 +/- 2) degrees C. During the step of the enrichment of nitrite bacteria, pH was about 7.8. Changes of FA concentration were achieved by controlling the concentration of influent NH4(+) -N(56-446 mg x L(-1)), in order to inhibit and eliminate the nitrate bacteria. The activity tests of the sludge, 55d after enrichment, showed strong activity of aerobic ammonium oxidation [2.91 kg x (kg x d)(-1)] and low activity of nitrite oxidation [0.03 kg x(kg x d)(-1)]. During the inoculation of the mixture of anammox biomass, changes of FA concentration were achieved by controlling the concentration of influent NH4(+) -N and pH. As the inoculation of anammox biomass, abundant of bacteria and nutrient content were into the reactor and there kept high activity of aerobic ammonium oxidation [2.83 kg x (kg x d)(-1)] and a certain activity of nitrite oxidation, at the same time, the activity of anammox and heterotrophic denitrification reached 0.65 kg x (kg x d)(-1) and 0.11 kg x (kg x d)(-1), respectively.

  3. The effect of farmyard manure and calcium ammonium nitrate ...

    African Journals Online (AJOL)

    The effect of farmyard manure and calcium ammonium nitrate fertilisers on micronutrient density (iron, zinc, manganese, calcium and potassium) and seed yields of solanium villosum (black nightshade) and cleome gynandra (cat whiskers) on uetric nitisol.

  4. Stability and Concentration Verification of Ammonium Perchlorate Dosing Solutions

    National Research Council Canada - National Science Library

    Tsui, David

    1998-01-01

    Stability and concentration verification was performed for the ammonium perchlorate dosing solutions used in the on-going 90-Day Oral Toxicity Study conducted by Springborn Laboratories, Inc. (SLI Study No. 3433.1...

  5. Direct esterification of ammonium salts of carboxylic acids

    Science.gov (United States)

    Halpern, Yuval [Skokie, IL

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  6. The effect of farmyard manure and calcium ammonium nitrate on ...

    African Journals Online (AJOL)

    The effect of farmyard manure and calcium ammonium nitrate on vegetative growth, leaf yield and nutritive quality of Cleome gynadra (Cat Whiskers) in Keiyo District, Rift Valley Province. MJ Hutchinson, LK Kipkosgei, E Obudho, LSM Akundabweni ...

  7. Quaternary ammonium salt N-(dodecyloxycarboxymethyl)- N,N,N ...

    Indian Academy of Sciences (India)

    2016-10-22

    N-(dodecyloxycarboxymethyl)-. N,N,N-trimethyl ammonium chloride) on yeast cells of the parental strain and the IM-resistant mutant (EO25 IMR) growth. The phenotype of this mutant was pleiotropic. The IMR mutant exhibited ...

  8. An immunoglobulin E assay using radiolabelled Fab' and ammonium sulfate

    International Nuclear Information System (INIS)

    Wilcsek, R.J.; Hamburger, R.N.

    1978-01-01

    An immunochemical assay is described in which a radiolabelled antibody fragment, Fab', is bound specifically to immunoglobulin E (IgE), and precipitated with ammonium sulfate. The radioactivity in the precipitate is a measure of the amount of IgE in the sample. Results for six serum samples are compared using the double antibody and ammonium sulfate methods as well as the papωr radioimmunosorbent test (PRIST)

  9. Removal of NO {sub x} by microwave reactor with ammonium bicarbonate and Ga-A zeolites at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Z.S. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)]. E-mail: weizaishan98@163.com; Du, Z.Y. [School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Lin, Z.H. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); He, H.M. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Qiu, R.L. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2007-08-15

    Microwave reactor with the mixture of ammonium bicarbonate (NH{sub 4}HCO{sub 3}) and Ga-A zeolites was set up to study the removal of nitrogen oxides (NO {sub x} ) from waste gas with excess oxygen concentration (14-19%) at low temperature (80-120 deg. C). The results showed that the microwave reactor filled with NH{sub 4}HCO{sub 3} and Ga-A zeolites could reduce NO {sub x} to nitrogen with the best purifying efficiency of 95.45% and the best denitrification amount of 89.28 mg h{sup -1}. The optimal microwave power and residence time (RT) on denitrification was 259-280 W and 0.259 s, respectively. Microwave denitrification effect of the experiment using ammonium bicarbonate and Ga-A zeolites was much higher than that using ammonium bicarbonate or Ga-A zeolites only. The mechanism for microwave-induced NO {sub x} reduction can be explained as the microwave-induced catalytic reaction between NO {sub x} and ammonium bicarbonate with Ga-A zeolites being the catalyst and microwave absorbent.

  10. The thermal decomposition behavior of ammonium perchlorate and of an ammonium-perchlorate-based composite propellant

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, R.; Minier, L.

    1998-03-24

    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl, and is shown to occur in the solid phase within the AP particles. 200{micro} diameter AP particles undergo 25% decomposition in the solid phase, whereas 20{micro} diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH{sub 3} + HClO{sub 4} followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  11. Mutagenicity of quaternary ammonium salts containing carbohydrate moieties

    Energy Technology Data Exchange (ETDEWEB)

    Dmochowska, Barbara [Department of Carbohydrate Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Piosik, Jacek; Woziwodzka, Anna [Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk (Poland); Sikora, Karol; Wisniewski, Andrzej [Department of Carbohydrate Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Wegrzyn, Grzegorz, E-mail: wegrzyn@biotech.univ.gda.pl [Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk (Poland)

    2011-10-15

    Highlights: {yields} A series of quaternary ammonium salts containing carbohydrate moieties, with configuration D-galacto, D-gluco and D-manno, was synthesized and characterized. {yields} The quaternary ammonium salts containing carbohydrate moieties revealed potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. {yields} The N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. {yields} We suggest that quaternary ammonium salts may be more hazardous than previously supposed. - Abstract: Quaternary ammonium salts are widely used in industrial, agricultural, healthcare and domestic applications. They are believed to be safe compounds, with little or no health hazard to humans. However, in this report, we demonstrate that a series of newly synthesized quaternary ammonium salts containing carbohydrate moieties reveal potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. D-Gluco- and D-galacto-derivatives were found to have a higher mutagenic potential than D-manno-derivatives. Among the former groups of compounds, the N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. These results suggest that the safety of quaternary ammonium salts may be lower than previously supposed, indicating a need for testing such compounds for their mutagenicity.

  12. Synthesis and anticoagulant activity of the quaternary ammonium chitosan sulfates.

    Science.gov (United States)

    Fan, Lihong; Wu, Penghui; Zhang, Jinrong; Gao, Song; Wang, Libo; Li, Mingjia; Sha, Mingming; Xie, Weiguo; Nie, Min

    2012-01-01

    Quaternary ammonium chitosan sulfates with diverse degrees of substitution (DS) ascribed to sulfate groups between 0.52 and 1.55 were synthesized by reacting quaternary ammonium chitosan with an uncommon sulfating agent (N(SO(3)Na)(3)) that was prepared from sodium bisulfite (NaHSO(3)) through reaction with sodium nitrite (NaNO(2)) in the aqueous system homogeneous. The structures of the derivatives were characterized by FTIR, (1)H NMR and (13)C NMR. The factors affecting DS of quaternary ammonium chitosan sulfates which included the molar ratio of NaNO(2) to quaternary ammonium chitosan, sulfated temperature, sulfated time and pH of sulfated reaction solution were investigated in detail. Its anticoagulation activity in vitro was determined by an activated partial thromboplastin time (APTT) assay, a thrombin time (TT) assay and a prothrombin time (PT) assay. Results of anticoagulation assays showed quaternary ammonium chitosan sulfates significantly prolonged APTT and TT, but not PT, and demonstrated that the introduction of sulfate groups into the quaternary ammonium chitosan structure improved its anticoagulant activity obviously. The study showed its anticoagulant properties strongly depended on its DS, concentration and molecular weight. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  13. Mutagenicity of quaternary ammonium salts containing carbohydrate moieties

    International Nuclear Information System (INIS)

    Dmochowska, Barbara; Piosik, Jacek; Woziwodzka, Anna; Sikora, Karol; Wisniewski, Andrzej; Wegrzyn, Grzegorz

    2011-01-01

    Highlights: → A series of quaternary ammonium salts containing carbohydrate moieties, with configuration D-galacto, D-gluco and D-manno, was synthesized and characterized. → The quaternary ammonium salts containing carbohydrate moieties revealed potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. → The N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. → We suggest that quaternary ammonium salts may be more hazardous than previously supposed. - Abstract: Quaternary ammonium salts are widely used in industrial, agricultural, healthcare and domestic applications. They are believed to be safe compounds, with little or no health hazard to humans. However, in this report, we demonstrate that a series of newly synthesized quaternary ammonium salts containing carbohydrate moieties reveal potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. D-Gluco- and D-galacto-derivatives were found to have a higher mutagenic potential than D-manno-derivatives. Among the former groups of compounds, the N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. These results suggest that the safety of quaternary ammonium salts may be lower than previously supposed, indicating a need for testing such compounds for their mutagenicity.

  14. Ammonium as sole N source improves grain quality in wheat.

    Science.gov (United States)

    Fuertes-Mendizábal, Teresa; González-Torralba, Jon; Arregui, Luis M; González-Murua, Carmen; González-Moro, M Begoña; Estavillo, José M

    2013-07-01

    The skilful handling of N fertilizer, including N source type and its timing, is necessary to obtain maximum profitability in wheat crops in terms of production and quality. Studies on grain yield and quality with ammonium as sole N source have not yet been conducted. The aim of this study was to evaluate the effect of N source management (nitrate vs. ammonium), and splitting it into two or three amendments during the wheat life cycle, on grain yield and quality under irrigated conditions. This experiment demonstrates that Cezanne wheat plants growing with ammonium as exclusive N source are able to achieve the same yield as plants growing with nitrate and that individual wheat plants grown in irrigated pots can efficiently use late N applied in GS37. Ammonium nutrition increased both types of grain reserve proteins (gliadins and glutenins) and also increased the ratio gli/glu with respect to nitrate nutrition. The splitting of the N rate enhanced the ammonium effect on grain protein composition. The application of ammonium N source, especially when split into three amendments, has an analogous effect on grain protein content and composition to applications at a higher N rate, leading to higher N use efficiency. © 2012 Society of Chemical Industry.

  15. Antioxidant Potential of Momordica Charantia in Ammonium Chloride-Induced Hyperammonemic Rats

    Directory of Open Access Journals (Sweden)

    A. Justin Thenmozhi

    2011-01-01

    Full Text Available The present study was aimed to investigate the antioxidant potential of Momordica charantia fruit extract (MCE in ammonium chloride-induced (AC hyperammonemic rats. Experimental hyperammonemia was induced in adult male Wistar rats (180–200 g by intraperitoneal injections of ammonium chloride (100 mg kg−1 body weight thrice a week. The effect of oral administration (thrice a week for 8 consecutive weeks of MCE (300 mg kg−1 body weight on blood ammonia, plasma urea, serum liver marker enzymes and oxidative stress biomarkers in normal and experimental animals was analyzed. Hyperammonemic rats showed a significant increase in the activities of thiobarbituric acid reactive substances, hydroperoxides and liver markers (alanine transaminase, aspartate transaminase and alkaline phosphatase, and the levels of glutathione peroxidase, superoxide dismutase, catalase and reduced glutathione were decreased in the liver and brain tissues. Treatment with MCE normalized the above-mentioned changes in hyperammonemic rats by reversing the oxidant-antioxidant imbalance during AC-induced hyperammonemia, and offered protection against hyperammonemia. Our results indicate that MCE exerting the antioxidant potentials and maintaining the cellular integrity of the liver tissue could offer protection against AC-induced hyperammonemia. However, the exact underlying mechanism is yet to be investigated, and examination of the efficacy of the active constituents of the M. charantia on hyperammonemia is desirable.

  16. Recovery of gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate.

    Science.gov (United States)

    Alzate, Andrea; López, Maria Esperanza; Serna, Claudia

    2016-11-01

    This paper presents a novel methodology to recover gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate ((NH 4 ) 2 S 2 O 8 ). Gold was recovered as a fine coating using substrate oxidation without shredding or grinding process. The WEEE sample was characterized giving values of Au: 1.05g/kg, Fe: 86.00g/kg, Ni: 73.64g/kg, Cu: 26.65g/kg. The effect of (NH 4 ) 2 S 2 O 8 concentration (0.22-1.10M), oxygen (0.0-1.4L/min) and L/S ratio (10-30mL/g) on the main responses (substrate oxidation and Au recovery) was investigated implementing response surface methodology with numerical optimization. A quadratic model was developed and quantities greater than 98% of Au were recovered. The findings presented suggest that, optimized quantities of ammonium persulfate in aqueous highly oxygenated media could be used to extract superficial gold from WEEE. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. 40 CFR 418.60 - Applicability; description of the ammonium sulfate production subcategory.

    Science.gov (United States)

    2010-07-01

    ... ammonium sulfate production subcategory. 418.60 Section 418.60 Protection of Environment ENVIRONMENTAL... CATEGORY Ammonium Sulfate Production Subcategory § 418.60 Applicability; description of the ammonium... production of ammonium sulfate by the synthetic process and by coke oven by-product recovery. The provisions...

  18. Ammonium inhibition of nitrogenase activity in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Fu, H.; Burris, R.H. (Univ. of Wisconsin, Madison (USA))

    1989-06-01

    The effect of oxygen, ammonium ion, and amino acids on nitrogenase activity in the root-associated N{sub 2}-fixing bacterium Herbaspirillum seropedicae was investigated in comparison with Azospirillum spp. and Rhodospirillum rubrum. H. seropedicae is microaerophilic, and its optimal dissolved oxygen level is from 0.04 to 0.2 kPa for dinitrogen fixation but higher when it is supplied with fixed nitrogen. No nitrogenase activity was detected when the dissolved O{sub 2} level corresponded to 4.0 kPa. Ammonium, a product of the nitrogenase reaction, reversible inhibited nitrogenase activity when added to derepressed cell cultures. However, the inhibition of nitrogenase activity was only partial even with concentrations of ammonium chloride as high as 20 mM. Amides such as glutamine and asparagine partially inhibited nitrogenase activity, but glutamate did not. Nitrogenase in crude extracts prepared from ammonium-inhibited cells showed activity as high as in extracts from N{sub 2}-fixing cells. The pattern of the dinitrogenase and the dinitrogenase reductase revealed by the immunoblotting technique did not change upon ammonium chloride treatment of cells in vivo. No homologous sequences were detected with the draT-draG probe from Azospirillum lipoferum. There is no clear evidence that ADP-ribosylation of the dinitrogenase reductase is involved in the ammonium inhibition of H. seropedicae. The uncoupler carbonyl cyanide m-chlorophenylhydrazone decreased the intracellular ATP concentration and inhibited the nitrogenase activity of whole cells. The ATP pool was significantly disturbed when cultures were treated with ammonium in vivo.

  19. Early metabolic effects and mechanism of ammonium transport in yeast

    International Nuclear Information System (INIS)

    Pena, A.; Pardo, J.P.; Ramirez, J.

    1987-01-01

    Studies were performed to define the effects and mechanism of NH+4 transport in yeast. The following results were obtained. Glucose was a better facilitator than ethanol-H 2 O 2 for ammonium transport; low concentrations of uncouplers or respiratory inhibitors could inhibit the transport with ethanol as the substrate. With glucose, respiratory inhibitors showed only small inhibitory effects, and only high concentrations of azide or trifluoromethoxy carbonylcyanide phenylhydrazone could inhibit ammonium transport. Ammonium in the free state could be concentrated approximately 200-fold by the cells. Also, the addition of ammonium produced stimulation of both respiration and fermentation; an increased rate of H+ extrusion and an alkalinization of the interior of the cell; a decrease of the membrane potential, as monitored by fluorescent cyanine; an immediate decrease of the levels of ATP and an increase of ADP, which may account for the stimulation of both fermentation and respiration; and an increase of the levels of inorganic phosphate. Ammonium was found to inhibit 86Rb+ transport much less than K+. Also, while K+ produced a competitive type of inhibition, that produced by NH4+ was of the noncompetitive type. From the distribution ratio of ammonium and the pH gradient, an electrochemical potential gradient of around -180 mV was calculated. The results indicate that ammonium is transported in yeast by a mechanism similar to that of monovalent alkaline cations, driven by a membrane potential. The immediate metabolic effects of this cation seem to be due to an increased [H+]ATPase, to which its transport is coupled. However, the carriers seem to be different. The transport system studied in this work was that of low affinity

  20. Reuse of ammonium fluoride generated in the uranium hexafluoride conversion

    International Nuclear Information System (INIS)

    Silva Neto, J.B.; Carvalho, E.F. Urano de; Durazzo, M.; Riella, H.G

    2010-01-01

    The Nuclear Fuel Centre of IPEN / CNEN - SP develops and manufactures dispersion fuel with high uranium concentration to meet the demand of the IEA-R1 reactor and future research reactors planned to be constructed in Brazil. The fuel uses uranium silicide (U 3 Si 2 ) dispersed in aluminum. For producing the fuel, the processes for uranium hexafluoride (UF 6 ) conversion consist in obtaining U 3 Si 2 and / or U 3 O 8 through the preparation of intermediate compounds, among them ammonium uranyl carbonate - AUC, ammonium diuranate - DUA and uranium tetrafluoride - UF 4 . This work describes a procedure for preparing uranium tetrafluoride by a dry route using as raw material the filtrate generated when producing routinely ammonium uranyl carbonate. The filtrate consists primarily of a solution containing high concentrations of ammonium (NH 4 + ), fluoride (F - ), carbonate (CO 3 -- ) and low concentrations of uranium. The procedure is basically the recovery of NH 4 F and uranium, as UF 4 , through the crystallization of ammonium bifluoride (NH 4 HF 2 ) and, in a later step, the addition of UO 2 , occurring fluoridation and decomposition. The UF 4 obtained is further diluted in the UF 4 produced routinely at IPEN / CNEN-SP by a wet route process. (author)

  1. Radionuclide flow during the conversion of phosphogypsum to ammonium sulfate

    International Nuclear Information System (INIS)

    Burnett, W.C.; Schultz, M.K.; Hull, C.D.

    1996-01-01

    Approximately 30 million tons of the by-product phosphogypsum are currently produced annually by the phosphate fertilizer industry in Florida. Nearly all of this material is stockpiled because radioactive impurities prevent utilization of what could otherwise be a useful agricultural amendment or construction material. Long-term storage and maintenance of this material presents economic as well as potential environmental concerns. One partial solution to this problem may be conversion of phosphogypsum to ammonium sulfate by the so-called Merseberg ammonocarbonation process. Ammonium sulfate is an excellent fertilizer which supplies sulfur as well as nitrogen to soils. We have assessed the flow of the natural decay-series radionuclides 238 U, 226 Ra, 210 Pb and 210 Po through the Merseberg process by the analysis of starting materials and products from overseas industrial-scale plants. Results indicate that the radionuclides associated with phosphogypsum do not report to the ammonium sulfate product but are found instead almost exclusively in the by-product calcium carbonate. Thus, the radiochemical results are encouraging in terms of using this process as an option for partial removal of waste phosphogypsum. Although there is a clear and recognized need for increased sulfur addition to many crops, the price of sulfur has been so low and alternative supplies of ammonium so common that investment in this process has been discouraged. Recent price increases and demand for ammonium sulfate may make the Merseberg process more attractive. (author)

  2. Modeling the Performance of Biological Rapid Sand Filters Used to Remove Ammonium, Iron, and Manganese From Drinking Water

    DEFF Research Database (Denmark)

    Lee, Carson; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    activated carbon and are often used following ozonation to remove additional biodegradable organics created during ozonation. In Europe, biological filters are also used to remove ammonium and reduced forms of iron and manganese. These compounds can cause biological instability in the distribution system...... for chlorine addition following treatment. Under the normal conditions found in many water treatment plants, reduced iron can be oxidized through aeration and the precipitates can be captured by the filter media. Ammonium and manganese can be removed biologically. This research uses both pilot and full scale...... studies to determine how operating conditions affect the performance of the filters. Substrate concentrations, particle/precipitate accumulation, and biomass kinetics are monitored throughout the depth of the filter and over the operational cycle of the filter. Tracer tests, using a conservative salt...

  3. The ferrous ammonium sulfate solid system, as dosemeter for processes at low temperatures and high doses of gamma radiation

    International Nuclear Information System (INIS)

    Juarez C, J.M.; Ramos B, S.; Negron M, A.

    2005-01-01

    This paper presents the results obtained from a study of the radiation induced oxidation of crystalline ferrous ammonium sulfate with gamma rays at 295 K, 263 K and 77 K and dose from 0 to 300 kGy. The radiation induced decomposition of ferrous ammonium sulfate has been studied by the dissolution of the irradiated salt in 0,8 N sulfuric acid. The main product is Fe 3+ and molar concentration of ferric ion was determined spectrophotometrically in the UV region at 304 nm. The optical density values showed a linear dependence with dose, indicating that the data obtained might be used to create a calibrating curve. Color in irradiated salt changes from blue to green, yellow and orange according to the absorbed dose. The accuracy and the reproducibility of the system were tested. In addition, some other characteristics make possible the use of this system as a dosimeter, similar to Fricke chemical dosemeter, at low temperatures and high dose. (Author)

  4. Nitritation and N2O Emission in a Denitrification and Nitrification Two-Sludge System Treating High Ammonium Containing Wastewater

    Directory of Open Access Journals (Sweden)

    Guangxue Wu

    2014-10-01

    Full Text Available The effective management of high ammonium containing wastewater is important for the sustainable development of the wastewater industry. A pre-denitrification and post-nitrification two-sludge system was proposed to treat high ammonium containing wastewater with low carbon-to-nitrogen (C/N ratios. In the system, pre-denitrification was adopted to use organic carbon in raw wastewater efficiently for nitrogen removal, while post-nitrification was adopted to achieve nitritation. System performance and the characteristics of nitrous oxide (N2O emission were examined. As to the influent chemical oxygen demand (COD and ammonium nitrogen (NH4-N concentration, both 800 mg/L, nitrogen removal was mainly through pre-denitrification, and the nitrogen removal percentage was 43.4%. In post-nitrification, nitritation was achieved with a nitrite accumulation efficiency of 97.8% and a NH4-N removal loading rate of 0.45 g/(L·d. With nitrite as the electron acceptor during denitrification, its removal rate increased, while the N2O emission factor decreased with increasing C/N ratios. Nitrification was affected significantly by the aeration rate. When the aeration rate was below 0.6 L/min, the NH4-N removal rate increased, while the N2O emission rate decreased with increasing aeration rates. However, when the aeration rate was above 0.6 L/min, it had little influence on N2O emission. During nitrification, N2O emission factors decreased exponentially with increasing ammonium oxidation rates.

  5. Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity

    Energy Technology Data Exchange (ETDEWEB)

    Bláha, Michal, E-mail: blaha@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Prokeš, Jan [Charles University, Faculty of Mathematics and Physics, 180 00 Prague 8 (Czech Republic); Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic)

    2017-06-15

    Aniline was oxidized with three strong inorganic oxidants (ammonium peroxydisulfate, cerium(IV) sulfate, potassium dichromate), two weak inorganic oxidants (iron(III) chloride, silver nitrate), and one organic oxidant (p-benzoquinone) in aqueous solutions of methanesulfonic acid (MSA) of various concentration. Whereas oxidation of aniline with ammonium peroxydisulfate yielded high-molecular-weight conducting polyaniline (PANI) in the whole acidity range, the oxidation with cerium(IV) sulfate led also to a single product close to PANI with considerably lower molecular weight and lower conductivity. Potassium dichromate gave PANI only at high concentration of MSA. The use of iron(III) chloride yielded composite mixtures of PANI and low-molecular-weight aniline oligomers. The oxidation of aniline with silver nitrate led to composites of silver and an organic part, which was constituted either by aniline oligomers or conducting polyaniline or both. p-Benzoquinone as oxidant produced mainly aniline oligomers with poor conductivity and 2,5-dianilino-p-benzoquinone-like structure detected in FTIR and Raman spectra when oxidation proceeded with weak oxidants. A general model of oxidation with strong and weak oxidants was formulated. - Highlights: • Comparison of aniline oxidation with oxidants of different redox potential. • UV–vis, FTIR and Raman spectroscopies combined with size-exclusion chromatography. • The contents of polymer and oligomers were analyzed and discussed. • General model of aniline oxidation with strong and weak oxidants was formulated.

  6. Study on mechanism of isomerization between ammonium thiocyanate and thiourea

    Science.gov (United States)

    Zhang, Chao-Zhi; Niu, Meng-Xiao

    2016-12-01

    Application of ammonium thiocyanate that can be separated from wastewater in coking plant is limited. It may isomerize to thiourea which has widely applied in industry. However, the isomerization yield is low. Moreover, the isomerization temperature is more than 145 °C. In this paper, the isomerization was investigated. The mechanism of the isomerization was supposed based on quantum chemistry calculations. Ammonia was employed as a catalyst to lower isomerization temperature and improved the yield of thiourea in the isomerization reaction. Results of quantum chemical calculation and experiments support the supposed mechanism. The mechanism can be applied in production of thiourea from isomerization of ammonium thiocyanate. The paper suggests a useful way of resourcizing ammonium thiocyanate in wastewater.

  7. Investigation into kinetics of obtaining sodium and ammonium sulfate zirconates

    International Nuclear Information System (INIS)

    Gavrilova, R.V.; Kolenkova, M.A.; Sazhina, V.A.

    1981-01-01

    The kinetics of the process of sodium and ammonium sulfate zirconates precipitation is studied. The following optimum conditions of their separation are determined: ZrO 2 concentration in sulfate solution (with αsub(s)=2.0) is 200 g/dm 3 , the quantity of precipitator-sodium (ammonium) chloride-is 3.5 mole per 1 mole ZrO 2 , the temperature is 90 deg C, the duration of mixing is 1 hr. It is established that the process of precipitation of sulfatozirconates is within the kinetic region. The average values of activation energy constitute 40 and 50 kJ/mol for sodium and ammonium sulfate zirconates respectively [ru

  8. Temperature rising characteristics of ammonium diurante in microwave fields

    International Nuclear Information System (INIS)

    Liu Bingguo; Peng JinHui; Huang Daifu; Zhang Libo; Hu Jinming; Zhuang Zebiao; Kong Dongcheng; Guo Shenghui; Li Chunxiang

    2010-01-01

    The temperature rising characteristics of ammonium diurante, triuranium octaoxide (U 3 O 8 ), and their mixture were investigated under microwave irradiation, aiming at exploring newly theoretical foundation for advanced metallurgical methods. The temperature rising curves showed that ammonium diurante had weak capability to absorb microwave energy, while triuranium octaoxide had the very strong absorption capability. The temperature of mixture containing 20% of U 3 O 8 could rise from room temperature to 1171 K within 280 s. The ability to absorb microwave energy for the mixture with different ratios increased with the increase in the amount of U 3 O 8 . These are in good agreement with the results of Maxwell-Garnett effective medium theory. It is feasible to calcine ammonium diurante by adding of small amounts of U 3 O 8 in microwave fields.

  9. Intracellular salicylic acid is involved in signal cascade regulating low ammonium-induced taxoid biosynthesis in suspension cultures of Taxus chinensis.

    Science.gov (United States)

    Zhou, Xin; Zhong, Jian-Jiang

    2011-05-01

    It was previously reported that low initial ammonium (2 mM) in medium had significant stimulating effects on the biosynthesis of taxuyunnanine C (Tc) by Taxus chinensis cells. However, the secondary metabolism induction mechanism of the low initial ammonium is yet unknown in plant cells. To provide an insight into the defense signals response to the low initial ammonium, oxidative burst and intracellular salicylic acid (SA) were detected, and their influences on the expression of important genes in taxoid biosynthetic pathway were examined in the cell cultures of T. chinensis. Induced H(2)O(2) production, elevated phenylalanine ammonia-lyase (PAL) activity, and enhanced SA biosynthesis were observed. Interestingly, inhibition of SA biosynthesis by paclobutrazol and (BOC-aminooxy) acetic acid significantly depressed the Tc stimulation and up-regulation of Tc biosynthetic genes of geranylgeranyl diphosphate synthase and taxadiene synthase. The role of intracellular SA in regulating Tc biosynthesis was further confirmed by applying exogenous SA in normal ammonium (20 mM) medium. The results indicated that SA acted as a signal in low initial ammonium-induced Tc biosynthesis. A signal transduction cascade from defense signal response to activated transcription of taxoid biosynthetic genes and enhanced Tc production is proposed.

  10. Effect of potential electron acceptors on anoxic ammonia oxidation in the presence of organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Sabumon, P.C., E-mail: pcsabumon@yahoo.co.in [Environmental Engineering Division, School of Mechanical and Building Sciences, VIT University, Vellore 632 014 (India)

    2009-12-15

    A novel route of anoxic ammonia removal in the presence of organic carbon was identified recently from ecosystems contaminated with ammonia. Sequencing batch reactor (SBR) studies were carried out in anoxic condition at oxidation-reduction potential varied from -185 to -275 mV for anoxic ammonia oxidation with adapted biomass (mixed culture). SBR studies were carried out in absence and in the presence of externally added organic carbon and/or in the presence of inorganic electron acceptors like NO{sub 2}{sup -}, NO{sub 3}{sup -} and SO{sub 4}{sup 2-}. The results showed anoxic ammonia oxidation to nitrate (in contrast to reported anammox process) in the presence of organic carbon available through endogenous respiration whereas anoxic ammonia oxidation was effective in the presence of externally added organic compound for nitrogen removal. The presence of externally added inorganic electron acceptors like NO{sub 2}{sup -}, NO{sub 3}{sup -} and SO{sub 4}{sup 2-} was effective in anoxic ammonia oxidation, but failed to follow the reported anammox reaction's stoichiometry in nitrogen removal in the presence of organic carbon. However, the presence of NO{sub 2}{sup -} affected best in total nitrogen removal compared to other electron acceptors and maximum ammonia removal rate was 100 mg NH{sub 4}{sup +}/g MLVSS/d. Based on the results, it is possible to suggest that rate of anoxic ammonia oxidation depends up on the respiration activities of mixed culture involving organic carbon, NO{sub 2}{sup -}, NO{sub 3}{sup -} and SO{sub 4}{sup 2-}. The process shows possibilities of new pathways of ammonia oxidation in organic contaminated sediments and/or wastewater in anoxic conditions.

  11. Chemical treatment of ammonium fluoride solution in uranium reconversion plant

    International Nuclear Information System (INIS)

    Carvalho Frajndlich, E.U. de.

    1992-01-01

    A chemical procedure is described for the treatment of the filtrate, produced from the transformation of uranium hexafluoride (U F 6 ) into ammonium uranyl carbonate (AUC). This filtrate is an intermediate product in the U F 6 to uranium dioxide (U O 2 ) reconversion process. The described procedure recovers uranium as ammonium peroxide fluoro uranate (APOFU) by precipitation with hydrogen peroxide (H 2 O 2 ), and as later step, its calcium fluoride (CaF 2 ) co-precipitation. The recovered uranium is recycled to the AUC production plant. (author)

  12. Recovery of valuable metals from waste diamond cutters through ammonia-ammonium sulfate leaching

    Science.gov (United States)

    Xue, Ping; Li, Guang-qiang; Yang, Yong-xiang; Qin, Qin-wei; Wei, Ming-xing

    2017-12-01

    Copper and zinc were recovered from waste diamond cutters through leaching with an ammonia-ammonium sulfate system and air as an oxidant. The effects of experimental parameters on the leaching process were investigated, and the potential-pH ( E-pH) diagrams of Cu-NH3-SO4 2--H2O and Zn-NH3-SO4 2--H2O at 25°C were drawn. Results showed that the optimal parameters for the leaching reaction are as follows: reaction temperature, 45°C; leaching duration, 3 h; liquid-to-solid ratio, 50:1 (mL/g); stirring speed, 200 r/min; ammonia concentration, 4.0 mol/L; ammonium sulfate concentration, 1.0 mol/L; and air flow rate, 0.2 L/min. The results of the kinetics study indicated that the leaching is controlled by the surface chemical reaction at temperatures below 35°C, and the leaching is controlled by diffusion through the product layer at temperatures above 35°C.

  13. On the kinetics of organic pollutant degradation with Co2+/peroxymonosulfate process: When ammonium meets chloride.

    Science.gov (United States)

    Huang, Ying; Yang, Fei; Ai, Luoyan; Feng, Min; Wang, Chi; Wang, Zhaohui; Liu, Jianshe

    2017-07-01

    A large amount of chloride and ammonium ions were produced and released from industrial processes with non-biodegradable organic pollutants to affect efficiencies of advanced oxidation processes (AOPs). Here, the influences of chloride and ammonium ions on Co/peroxymonosulfate (Co/PMS) reaction system, a widely used AOPs to produce sulfate radicals, were investigated by examining the degradation efficiency of an azo dye (Acid Orange 7, AO7). The experimental results showed that a significant decrease in the degradation rate of AO7 was observed in the presence of NH 4 + , while a dual effect of chloride on AO7 bleaching appeared. The presence of NH 4 Cl was unfavorable for AO7 degradation at low concentration (20 mM) apparently accelerated AO7 discoloration rate. The apparent effects of the two co-existing inorganic ions were determined by roles of the dominating ions at varied molar ratio of [NH 4 + ]/[Cl - ]. The present study may have technical implications for the treatment of industrial wastewater containing diverse ions in practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Extraction of Iron and Manganese from Pyrolusite Absorption Residue by Ammonium Sulphate Roasting–Leaching Process

    Directory of Open Access Journals (Sweden)

    Lin Deng

    2018-01-01

    Full Text Available The residue from desulfurization and denitrification of exhaust gas treatment process with pyrolusite ore as absorbent is regarded as a potential source of iron and manganese. In this study, an extraction process is proposed for recovery of iron and manganese with ammonium sulphate roasting followed by sulphuric acid leaching. Firstly, the conversion mechanism was analyzed through mineral phase analysis of roasting products at different roasting temperature by means of X-ray diffraction (XRD technology. Then, the parameters of the roasting procedure such as roasting temperature and time, ammonium sulphate dosage, leaching temperature, leaching time, and sulphuric acid concentration are examined. The results implicate that the iron oxide and manganese dioxide in the residue are firstly converted into the water-soluble ( NH 4 3 Fe ( SO 4 3 and ( NH 4 2 Mn 2 ( SO 4 3 at 200–350 °C, and then the more stable NH 4 Fe ( SO 4 2 and MnSO 4 are formed, at temperature higher than 350 °C. Under optimum conditions, 95.2% Fe and 97.0% Mn can be extracted. Reactant diffusion through inert layer of silicon dioxide was considered as the rate-limiting step for iron extraction with an activation energy of 20.56 kJ/mol, while, the recovery process of Mn was controlled by both reactant diffusion and chemical reaction with an activation energy of 29.52 kJ/mol.

  15. Solid ferrous ammonium sulfate as a dosimeter at low temperatures and high doses

    International Nuclear Information System (INIS)

    Juarez-calderon, J.M.; Ramos B, S.; Negron M, A.

    2006-01-01

    This paper presents the results obtained from a study of the radiation induced oxidation of crystalline ferrous ammonium sulfate with gamma rays at 295 K, 263 K and 77 K and doses from 0 to 300 kGy. The radiation induced decomposition of ferrous ammonium sulfate has been studied by the dissolution of the irradiated salt in 0,8 N sulfuric acid. The main product is ferric ion (Fe 3+ ) and its molar concentration was determined spectrophotometrically in the UV region at 304 nm. The optical density values showed a linear dependence with dose, indicating that the data obtained might be used to create a calibrating curve. Color in irradiated salt changes from blue to green, yellow and orange according to the absorbed dose. The accuracy and the reproducibility of the system were tested. In addition, some other characteristics make possible the use of this system as a dosimeter, similar to Fricke chemical dosimeter, for studies and works at low temperatures and high doses. (authors)

  16. Solid ferrous ammonium sulfate as a dosimeter at low temperatures and high doses

    Energy Technology Data Exchange (ETDEWEB)

    Juarez-calderon, J.M.; Ramos B, S.; Negron M, A. [Mexico Univ. Nacional Autonoma, Instituto de Ciencias Nucleares (Mexico)

    2006-07-01

    This paper presents the results obtained from a study of the radiation induced oxidation of crystalline ferrous ammonium sulfate with gamma rays at 295 K, 263 K and 77 K and doses from 0 to 300 kGy. The radiation induced decomposition of ferrous ammonium sulfate has been studied by the dissolution of the irradiated salt in 0,8 N sulfuric acid. The main product is ferric ion (Fe{sup 3+}) and its molar concentration was determined spectrophotometrically in the UV region at 304 nm. The optical density values showed a linear dependence with dose, indicating that the data obtained might be used to create a calibrating curve. Color in irradiated salt changes from blue to green, yellow and orange according to the absorbed dose. The accuracy and the reproducibility of the system were tested. In addition, some other characteristics make possible the use of this system as a dosimeter, similar to Fricke chemical dosimeter, for studies and works at low temperatures and high doses. (authors)

  17. β-CD assisted dissolution of quaternary ammonium permanganates in aqueous medium.

    Science.gov (United States)

    Bank, Suraj Prakash; Guru, Partha Sarathi; Dash, Sukalyan

    2014-10-13

    The non-polar internal cavity of β-cyclodextrin (β-CD) has been exploited for the entrapment of the hydrophobic tails of two water insoluble quaternary ammonium permanganates (QAPs): cetyltrimethylammonium permanganate (CTAP) and tetrabutylammonium permanganate (TBAP), for solubilization in aqueous medium. The solubilization and organizational behavior of the QAPs in aqueous β-CD solution have been determined from the comparison of their rates of self-oxidation in presence and in absence of β-CD. Effect of QAP concentration on their observed rate constants (k(obs)) at a fixed β-CD concentration, phase solubility analysis in varying β-CD concentration, impact of quaternary ammonium bromides (QABs) on the kobs values of CTAP and TBAP at fixed QAP and β-CD concentrations, and the temperature effect have been reported. A scheme to explain the solvation of QAPs in aqueous β-CD has been proposed based on dynamic light scattering (DLS) analysis of the samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Ammonium transformation in a nitrogen-rich tidal freshwater marsh

    DEFF Research Database (Denmark)

    Gribsholt, B.; Andersson, M.; Boschker, H.T.S.

    2006-01-01

    The fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrient rich Scheldt River, Belgium, was quantified in a whole ecosystem 15N labeling experiment. In late summer (September) we added 15N-NH4+ to the flood water entering a 3477 m2 tidal freshwater marsh...

  19. Inorganic–Organic Hybrids Incorporating a Chiral Cyclic Ammonium ...

    African Journals Online (AJOL)

    organic hybrids containing various lead halides as the inorganic motif and a chiral, primary ammonium cation as the organic constituent. The organic cation investigated is (C6H11C*H(CH3)NH3)+ and both the (R) and (S) as well as the racemic ...

  20. Structural characterization of ammonium uranate by infrared spectroscopy

    International Nuclear Information System (INIS)

    Rodriguez S, A.

    1994-01-01

    Infrared spectroscopy have been used to investigate the chemical composition of some ammonium uranates. In this study, I have attempted to establish the interrelationship between the structure of the products, the character of their infrared spectra and x-ray diffraction data capable of consistent interpretation in terms of defining the compounds. (Author)

  1. Increase of water resistance of ammonium nitrate explosives

    Directory of Open Access Journals (Sweden)

    Zulkhair Mansurov

    2012-03-01

    Full Text Available Developed a method of kapsulating of ammonium nitrate with liquid paraffin increase finding explosives in water for 60 minutes. Placing explosives in the plastic shell, the explosive was, as in standing or running water during the day. When conducting field tests failures were absent.

  2. Ammonia loss, ammonium and nitrate accumulation from mixing ...

    African Journals Online (AJOL)

    user

    2011-04-25

    Apr 25, 2011 ... Ammonia loss from urea significantly hinders efficient use of urea in agriculture. In order to reduce ammonia loss and, at the same time, improve beneficial accumulation of soil exchangeable ammonium and nitrate for efficient utilization by plants, this laboratory study was conducted to determine the effect.

  3. Ammonia loss, ammonium and nitrate accumulation from mixing ...

    African Journals Online (AJOL)

    Ammonia loss from urea significantly hinders efficient use of urea in agriculture. In order to reduce ammonia loss and, at the same time, improve beneficial accumulation of soil exchangeable ammonium and nitrate for efficient utilization by plants, this laboratory study was conducted to determine the effect of mixing urea with ...

  4. 21 CFR 172.430 - Iron ammonium citrate.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION... citrate. (b) The additive is used, or intended for use as an anticaking agent in salt for human consumption so that the level of iron ammonium citrate does not exceed 25 parts per million (0.0025 percent...

  5. Producing ammonium sulfate from flue gas desulfurization by-products

    Science.gov (United States)

    Chou, I.-Ming; Bruinius, J.A.; Benig, V.; Chou, S.-F.J.; Carty, R.H.

    2005-01-01

    Emission control technologies using flue gas desulfurization (FGD) have been widely adopted by utilities burning high-sulfur fuels. However, these technologies require additional equipment, greater operating expenses, and increased costs for landfill disposal of the solid by-products produced. The financial burdens would be reduced if successful high-volume commercial applications of the FGD solid by-products were developed. In this study, the technical feasibility of producing ammonium sulfate from FGD residues by allowing it to react with ammonium carbonate in an aqueous solution was preliminarily assessed. Reaction temperatures of 60, 70, and 80??C and residence times of 4 and 6 hours were tested to determine the optimal conversion condition and final product evaluations. High yields (up to 83%) of ammonium sulfate with up to 99% purity were achieved under relatively mild conditions. The optimal conversion condition was observed at 60??C and a 4-hour residence time. The results of this study indicate the technical feasibility of producing ammonium sulfate fertilizer from an FGD by-product. Copyright ?? Taylor & Francis Inc.

  6. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems.

    Science.gov (United States)

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte

    2017-03-09

    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.

  7. Growth features of ammonium hydrogen d-tartrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Ammonium hydrogen d-tartrate (d-AHT) single crystals were grown in silica gel. The growth fea- tures of these crystals with variation of parameters like specific gravity of the gel, gel pH, acid concentrations, concentration of the feed solution and gel age were studied in detail. Keywords. d-AHT single crystals; growth features ...

  8. Response of higveld grass species to ammonium and nitrate nitrogen

    African Journals Online (AJOL)

    Forty-one populations in twenty-two species of highveld grasses were grown in pots of soil fertilized with solutions for comparing ammonium and nitrate nutrition. Cotton, tomato, cereal crops and pasture grasses were included for comparison. Roots and shoots were harvested separately, weighed and analysed for major ...

  9. Nitrate and ammonium levels of some water bodies and their ...

    African Journals Online (AJOL)

    The present study examined the nitrate (NO3-) and ammonium (NH4+) levels of Rivers Wouri and Dibamba and some streams that feed them. The interaction of NO3- and NH4+ with some soil properties was also investigated. It was necessitated by the usage of these rivers for livelihood, despite the deposition of discharges ...

  10. Quaternary ammonium salt N-(dodecyloxycarboxymethyl)- N,N,N ...

    Indian Academy of Sciences (India)

    2016-10-22

    Oct 22, 2016 ... viruses like HIV (human immunodeficiency virus) and HBV. (hepatitis B virus), but not nonenveloped viruses ( ..... To investigate whether quaternary ammonium salt IM impacts yeast growth in the presence of ... To investigate the influence of IM on plasma membrane lipid composition, the ergosterol and fatty ...

  11. Acid mine water neutralisation with ammonium hydroxide and ...

    African Journals Online (AJOL)

    This study showed that NH4OH can be used for treatment of acid mine drainage rich in sulphates and NH4OH can be recycled in the process. Hydrated lime treatment resulted in removal of the remaining ammonia using a rotary evaporator. Keywords: acid mine water, ammonium hydroxide, barium hydroxide, sulphate ...

  12. Ceric ammonium nitrate catalysed three component one-pot efficient ...

    Indian Academy of Sciences (India)

    Wintec

    For this reason, the development of mild, efficient and versatile method is still important. Ceric (IV) ammonium nitrate (CAN) is a conven- ient and widely used reagent for affecting a wide ar- ray of synthetic transformations due to its many advantages such as solubility in organic solvents, low toxicity, high reactivity, and ease ...

  13. Ammonium derivatives of chromenones and quinolinones as lead ...

    Indian Academy of Sciences (India)

    A series of novel ammonium derivatives were synthesized and examined for their antimicrobial efficacy. Comparison of antimicrobial spectrum revealed that compounds 9, 11, 16 and 23 had strong potential against pathogens in vitro. Cytotoxicity results showed compound 9 to be least toxic, it is non-toxic to A549 and U87 ...

  14. Effect of Ammonium Nitrate Solutions on Fertilization and ...

    African Journals Online (AJOL)

    ... 10 and 100 p.p.m. ammonium nitrate and the percentage fertilization as weD as the subsequent development of the embryos compared with controls. At 10 and 100 p.p.m. there is a marked reduction in fertilization. Abnormal forms are common at 100 p.p.m. and some 95 % of the population fail to reach the gastrula stage.

  15. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    Science.gov (United States)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  16. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    Directory of Open Access Journals (Sweden)

    Tim Kalvelage

    Full Text Available Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100% in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  17. Deliquescence, efflorescence, and phase miscibility of mixed particles of ammonium sulfate and isoprene-derived secondary organic material

    Directory of Open Access Journals (Sweden)

    M. L. Smith

    2012-10-01

    Full Text Available The hygroscopic phase transitions of ammonium sulfate mixed with isoprene-derived secondary organic material were investigated in aerosol experiments. The organic material was produced by isoprene photo-oxidation at 40% and 60% relative humidity. The low volatility fraction of the photo-oxidation products condensed onto ammonium sulfate particles. The particle-phase organic material had oxygen-to-carbon ratios of 0.67 to 0.74 (±0.2 for mass concentrations of 20 to 30 μg m−3. The deliquescence, efflorescence, and phase miscibility of the mixed particles were investigated using a dual arm tandem differential mobility analyzer. The isoprene photo-oxidation products induced deviations in behavior relative to pure ammonium sulfate. Compared to an efflorescence relative humidity (ERH of 30 to 35% for pure ammonium sulfate, efflorescence was eliminated for aqueous particles having organic volume fractions ϵ of 0.6 and greater. Compared to a deliquescence relative humidity (DRH of 80% for pure ammonium sulfate, the DRH steadily decreased with increasing ϵ, approaching a DRH of 40% for ϵ of 0.9. Parameterizations of the DRH(ϵ and ERH(ϵ curves were as follows: DRH(ϵ= ∑i ci,d ϵi valid for 0 ≤ ϵ ≤0.86 and ERH(ϵ= ∑ i ci,e ϵi valid for 0 ≤ ϵ ≤ 0.55 for the coefficients c0,d= 80.67, c0,e = 28.35, c1,d = −11.45, c1,e = −13.66, c2,d = 0, c2,e = 0, c3,d = 57.99, c3,e = -83.80, c4,d = −106.80, and

  18. Interaction of ammonium with birnessite: Evidence of a chemical and structural transformation in alkaline aqueous medium

    Science.gov (United States)

    Boumaiza, Hella; Coustel, Romain; Despas, Christelle; Ruby, Christian; Bergaoui, Latifa

    2018-02-01

    The ammonium cation interaction with Na-birnessite in aqueous alkaline medium was studied. Solution and solid analysis give evidence that birnessite is not only acting as a cationic exchanger toward NH4+. The surface analysis performed by XPS showed that N1s spectra are characterized by the existence of two different environments: one assignable to an interlayer NH4+ and the second to a chemisorbed N-species. Structural and chemical transformations were observed on birnessite with nitrogen mass balance deficit. The monitoring of NH4+, Na+, Mn2+, NO3- and NO2- and solid changes (average oxidation state of Mn, cation exchange capacity, solid nitrogen content and symmetry evolution identified by XRD and FTIR) indicate unambiguously that NH4+ reacts chemically with the birnessite.

  19. Intumescent flame retardants for polymers. I. The poly(acrylonitrile)-ammonium polyphosphate-hexabromocyclododecane system

    Energy Technology Data Exchange (ETDEWEB)

    Ballistreri, A.; Montaudo, G.; Puglisi, C.; Scamporrino, E.; Vitalini, D.

    1983-05-01

    The influence of ammonium polyphosphate (APP) and hexabromocyclododecane (HBCD) as flame retardant (FR) on poly(acrylonitrile) (PAN) has been examined. The APP-HBCD system behaves as an intumescent flame retardant (IFR) formulation, APP being the char-forming agent and HBCD the blowing agent. A negligible gas-phase mode of action was ascertained for HBCD with this substrate. A synergism between the two FR agents was observed, corresponding to about 50% increased efficacy with respect to the separate effects of the two components. Thermogravimetry (TG), oxygen index (OI), nitrous oxide index (NOI) experiments and phosphorous residue measurements were performed to substantiate the conclusion that a condensed phase mechanism of action accounts for all the facts observed.

  20. Water- and organo-dispersible gold nanoparticles supported by using ammonium salts of hyperbranched polystyrene: preparation and catalysis.

    Science.gov (United States)

    Gao, Lei; Nishikata, Takashi; Kojima, Keisuke; Chikama, Katsumi; Nagashima, Hideo

    2013-12-01

    Gold nanoparticles (1 nm in size) stabilized by ammonium salts of hyperbranched polystyrene are prepared. Selection of the R groups provides access to both water- and organo-dispersible gold nanoparticles. The resulting gold nanoparticles are subjected to studies on catalysis in solution, which include reduction of 4-nitrophenol with sodium borohydride, aerobic oxidation of alcohols, and homocoupling of phenylboronic acid. In the reduction of 4-nitrophenol, the catalytic activity is clearly dependent on the size of the gold nanoparticles. For the aerobic oxidation of alcohols, two types of biphasic oxidation are achieved: one is the catalyst dispersing in the aqueous phase, whereas the other is in the organic phase. The catalysts are reusable more than four times without loss of the catalytic activity. Selective synthesis of biphenyl is achieved by the homocoupling of phenylboronic acid catalyzed by organo-dispersible gold nanoparticles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nitrogen content determinations in different stages of thermal treatment involved in conversion of ammonium diuranate to uranium metal

    International Nuclear Information System (INIS)

    Shrivastava, K.C.; Shelke, G.P.

    2017-01-01

    Determination of nitrogen content in the uranium metal and uranium oxide based reactor fuels is important to meet the requirement of specifications given by fuel designer. Therefore, a systematic study was carried out to determine the variations in nitrogen content during the conversion of ammonium diuranate (ADU) to uranium oxides (UO 3 and UO 2 ), and finally to uranium metal by inert gas fusion-thermal conductivity detection (IGF-TCD) technique. To understand the measured nitrogen content variations, the thermal decomposition study of ADU was carried out using thermogravimetry (TG)/differential thermogravimetry (DTG) and differential thermal analysis (DTA) in the temperature range of 25-1073 K. Powder X-ray diffraction (XRD) technique was used to confirm the formation of uranium oxide precursors at different temperature. (author)

  2. Thermal Signature Measurements for Ammonium Nitrate/Fuel Mixtures by Laser Heating.

    Science.gov (United States)

    Nazarian, Ashot; Presser, Cary

    2016-01-10

    Measurements were carried out to obtain thermal signatures of several ammonium nitrate/fuel (ANF) mixtures, using a laser-heating technique referred to as the laser-driven thermal reactor (LDTR). The mixtures were ammonium nitrate (AN)/kerosene, AN/ethylene glycol, AN/paraffin wax, AN/petroleum jelly, AN/confectioner's sugar, AN/cellulose (tissue paper), nitromethane/cellulose, nitrobenzene/cellulose, AN/cellulose/nitromethane, AN/cellulose/nitrobenzene. These mixtures were also compared with AN/nitromethane and AN/diesel fuel oil, obtained from an earlier investigation. Thermograms for the mixtures, as well as individual constituents, were compared to better understand how the sample thermal signature changes with mixture composition. This is the first step in development of a thermal-signature database, to be used along with other signature databases, to improve identification of energetic substances of unknown composition. The results indicated that each individual thermal signature was associated unambiguously with a particular mixture composition. The signature features of a particular mixture were shaped by the individual constituent signatures. It was also uncovered that the baseline signature was modified after an experiment due to coating of unreacted residue on the substrate surface and a change in the reactor sphere oxide layer. Thus, care was required to pre-oxidize the sphere prior to an experiment. A minimum sample mass (which was dependent on composition) was required to detect the signature characteristics. Increased laser power served to magnify signal strength while preserving the signature features. For the mixtures examined, the thermal response of each ANF mixture was found to be different, which was based on the mixture composition and the thermal behavior of each mixture constituent.

  3. Thermal signature measurements for ammonium nitrate/fuel mixtures by laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Nazarian, Ashot; Presser, Cary, E-mail: cpresser@nist.gov

    2016-01-10

    Highlights: • LDTR is a useful diagnostic for characterizing AN/fuel mixture thermochemical behavior. • Each AN/fuel mixture thermal signature was different. • AN/fuel mixture signature features were defined by the individual constituents. • Baseline signatures changed after an experiment. - Abstract: Measurements were carried out to obtain thermal signatures of several ammonium nitrate/fuel (ANF) mixtures, using a laser-heating technique referred to as the laser-driven thermal reactor (LDTR). The mixtures were ammonium nitrate (AN)/kerosene, AN/ethylene glycol, AN/paraffin wax, AN/petroleum jelly, AN/confectioner's sugar, AN/cellulose (tissue paper), nitromethane/cellulose, nitrobenzene/cellulose, AN/cellulose/nitromethane, AN/cellulose/nitrobenzene. These mixtures were also compared with AN/nitromethane and AN/diesel fuel oil, obtained from an earlier investigation. Thermograms for the mixtures, as well as individual constituents, were compared to better understand how sample thermal signature changes with mixture composition. This is the first step in development of a thermal-signature database, to be used along with other signature databases, to improve identification of energetic substances of unknown composition. The results indicated that each individual thermal signature was associated unambiguously with a particular mixture composition. The signature features of a particular mixture were shaped by the individual constituent signatures. It was also uncovered that the baseline signature was modified after an experiment due to coating of unreacted residue on the substrate surface and a change in the reactor sphere oxide layer. Thus, care was required to pre-oxidize the sphere prior to an experiment. A minimum sample mass (which was dependent on composition) was required to detect the signature characteristics. Increased laser power served to magnify signal strength while preserving the signature features. For the mixtures examined, the thermal

  4. Composition, Structural Evolution and the Related Property Variations in Preparation of Mixed Cesium/Ammonium Acidic Salts of Heteropolyacids

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2016-11-01

    Full Text Available The composition, structural evolution and the related property variations of mixed cesium/ammonium acidic salts of heteropolyacids were investigated in detail by tracking and analyzing the initial precipitates, evaporation residues and the calcined products in their preparation process. Results show that V cannot completely enter the heteropolyanions in the initial precipitates when the Cs+ added amount is low, and the increase in Cs+ adding amount improves the substitution of V for Mo in the heteropolyanions. Both the initial precipitates and the evaporation residues are mixtures of cesium and ammonium salts of heteropolyacids before calcination. Thermal treatment causes the decomposition of the ammonium salts and the formation of single-phase solid solutions from mechanical mixtures. The calcined products of the initial precipitates and the evaporation residues vary greatly in textural properties. The determinants of the catalytic performance for the oxidation of methacrolein to methacrylic acid are acidity and specific surface area of the compounds. The increase in specific surface area mainly improves the conversion of methacrolein, but not the selectivity of methacrylic acid. Insufficient acidity caused by high Cs+ content in the compounds is responsible for the low selectivity.

  5. LBA-ECO ND-07 Nitric Oxide Flux from Cerrado Soils, Brasilia, Brazil: 2004

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the results of soil nitric oxide (NO) flux, soil moisture, and soil nitrate (NO3) and ammonium (NH4) concentration measurements on Cerrado...

  6. LBA-ECO ND-07 Nitric Oxide Flux from Cerrado Soils, Brasilia, Brazil: 2004

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the results of soil nitric oxide (NO) flux, soil moisture, and soil nitrate (NO3) and ammonium (NH4) concentration measurements on...

  7. Investigation of electric discharge treatment of water for ammonium nitrogen removal

    International Nuclear Information System (INIS)

    Nazarenko, O.B.; Shubin, B.G.

    2007-01-01

    The possibility of water purification from ammonium nitrogen using pulsed electric discharge in water-air mixtures was investigated. The model solution of chlorous ammonium was used in experiments. The concentration of ions ammonium was about 300 mg/l. Achieved reduction of ammonium concentration was about 35%. In this paper the mechanism of this process is discussed. The ways to increasing efficiency of this method are proposed

  8. Nitrogen doping in atomic layer deposition grown titanium dioxide films by using ammonium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, M.-L., E-mail: marja-leena.kaariainen@lut.fi; Cameron, D.C.

    2012-12-30

    Titanium dioxide films have been created by atomic layer deposition using titanium chloride as the metal source and a solution of ammonium hydroxide in water as oxidant. Ammonium hydroxide has been used as a source of nitrogen for doping and three thickness series have been deposited at 350 Degree-Sign C. A 15 nm anatase dominated film was found to possess the highest photocatalytic activity in all film series. Furthermore almost three times better photocatalytic activity was discovered in the doped series compared to undoped films. The doped films also had lower resistivity. The results from X-ray photoemission spectroscopy showed evidence for interstitial nitrogen in the titanium dioxide structure. Besides, there was a minor red shift observable in the thickest samples. In addition the film conductivity was discovered to increase with the feeding pressure of ammonium hydroxide in the oxidant precursor. This may indicate that nitrogen doping has caused the decrease in the resistivity and therefore has an impact as an enhanced photocatalytic activity. The hot probe test showed that all the anatase or anatase dominant films were p-type and all the rutile dominant films were n-type. The best photocatalytic activity was shown by anatase-dominant films containing a small amount of rutile. It may be that p-n-junctions are formed between p-type anatase and n-type rutile which cause carrier separation and slow down the recombination rate. The combination of nitrogen doping and p-n junction formation results in superior photocatalytic performance. - Highlights: Black-Right-Pointing-Pointer We found all N-doped and undoped anatase dominating films p-type. Black-Right-Pointing-Pointer We found all N-doped and undoped rutile dominating films n-type. Black-Right-Pointing-Pointer We propose that p-n junctions are formed in anatase-rutile mixture films. Black-Right-Pointing-Pointer We found that low level N-doping has increased TiO{sub 2} conductivity. Black

  9. Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles

    Directory of Open Access Journals (Sweden)

    N. K. Meyer

    2009-01-01

    Full Text Available The volatile and hygroscopic properties of ammonium sulphate seeded and unseeded secondary organic aerosol (SOA derived from the photo-oxidation of atmospherically relevant concentrations of α-pinene were studied. The seed particles were electrospray generated ammonium sulphate ((NH42SO4 having diameters of approximately 33 nm with a quasi-mono-disperse size distribution (geometric standard deviation σg=1.3. The volatile and hygroscopic properties of both seeded and unseeded SOA were simultaneously measured with a VH-TDMA (volatility – hygroscopicity tandem differential mobility analyzer. VH-TDMA measurements of unseeded SOA show a decrease in the hygroscopic growth (HGF factor for increased volatilisation temperatures such that the more volatile compounds appear to be more hygroscopic. This is opposite to the expected preferential evaporation of more volatile but less hygroscopic material, but could also be due to enhanced oligomerisation occurring at the higher temperature in the thermodenuder. In addition, HGF measurements of seeded SOA were measured as a function of time at two relative humidities, below (RH 75% and above (RH 85% the deliquescence relative humidity (DRH of the pure ammonium sulphate seeds. As these measurements were conducted during the onset phase of photo-oxidation, during particle growth, they enabled us to find the dependence of the HGF as a function of the volume fraction of the SOA coating. HGF's measured at RH of 85% showed a continuous decrease as the SOA coating thickness increased. The measured growth factors show good agreements with ZSR predictions indicating that, at these RH values, there are only minor solute-solute interactions. At 75% RH, as the SOA fraction increased, a rapid increase in the HGF was observed indicating that an increasing fraction of the (NH42SO4 is subject to a phase transition, going into solution, with an

  10. Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles

    Science.gov (United States)

    Meyer, N. K.; Duplissy, J.; Gysel, M.; Metzger, A.; Dommen, J.; Weingartner, E.; Alfarra, M. R.; Prevot, A. S. H.; Fletcher, C.; Good, N.; McFiggans, G.; Jonsson, Â. M.; Hallquist, M.; Baltensperger, U.; Ristovski, Z. D.

    2009-01-01

    The volatile and hygroscopic properties of ammonium sulphate seeded and unseeded secondary organic aerosol (SOA) derived from the photo-oxidation of atmospherically relevant concentrations of α-pinene were studied. The seed particles were electrospray generated ammonium sulphate ((NH4)2SO4) having diameters of approximately 33 nm with a quasi-mono-disperse size distribution (geometric standard deviation σg=1.3). The volatile and hygroscopic properties of both seeded and unseeded SOA were simultaneously measured with a VH-TDMA (volatility - hygroscopicity tandem differential mobility analyzer). VH-TDMA measurements of unseeded SOA show a decrease in the hygroscopic growth (HGF) factor for increased volatilisation temperatures such that the more volatile compounds appear to be more hygroscopic. This is opposite to the expected preferential evaporation of more volatile but less hygroscopic material, but could also be due to enhanced oligomerisation occurring at the higher temperature in the thermodenuder. In addition, HGF measurements of seeded SOA were measured as a function of time at two relative humidities, below (RH 75%) and above (RH 85%) the deliquescence relative humidity (DRH) of the pure ammonium sulphate seeds. As these measurements were conducted during the onset phase of photo-oxidation, during particle growth, they enabled us to find the dependence of the HGF as a function of the volume fraction of the SOA coating. HGF's measured at RH of 85% showed a continuous decrease as the SOA coating thickness increased. The measured growth factors show good agreements with ZSR predictions indicating that, at these RH values, there are only minor solute-solute interactions. At 75% RH, as the SOA fraction increased, a rapid increase in the HGF was observed indicating that an increasing fraction of the (NH4)2SO4 is subject to a phase transition, going into solution, with an increasing volume fraction of SOA. To our knowledge this is the first time that SOA derived

  11. Synthesis and characterization of zinc oxide thin films prepared by ...

    African Journals Online (AJOL)

    Zinc oxide thin films were prepared with ammonia/ammonium chloride buffer as the reaction moderating agent in the chemical bath deposition technique. An observable color change during the reaction due to variations in the reactants concentration indicated the existence of the cupric (CuO) and cuprous (Cu2O) oxides ...

  12. 40 CFR 418.40 - Applicability; description of the ammonium nitrate subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the ammonium nitrate subcategory. 418.40 Section 418.40 Protection of Environment ENVIRONMENTAL PROTECTION... Ammonium Nitrate Subcategory § 418.40 Applicability; description of the ammonium nitrate subcategory. The...

  13. 40 CFR 721.10170 - Polyoxyethylene polyalkylarylphenylether sulfate ammonium salt (generic).

    Science.gov (United States)

    2010-07-01

    ... polyalkylarylphenylether sulfate ammonium salt (generic). 721.10170 Section 721.10170 Protection of Environment... polyalkylarylphenylether sulfate ammonium salt (generic). (a) Chemical substance and significant new uses subject to... sulfate ammonium salt (PMN P-03-197) is subject to reporting under this section for the significant new...

  14. Influence of Ammonium Salt and Fermentation pH on Acarbose ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of ammonium salts and fermentation pH on the biosynthesis of acarbose by Streptomyces M37. Methods: Different ammonium salts were added to the fermentation broth of Streptomyces M37 to explore their effects on acarbose production. The concentration and addition time of ammonium ...

  15. Airborne Measurements of Ammonia and Implications for Ammonium Nitrate Formation in the Central Valley and the South Coast Air Basin of California

    Science.gov (United States)

    Nowak, J. B.; Neuman, J.; Bahreini, R.; Middlebrook, A. M.; Brock, C. A.; Frost, G. J.; Holloway, J. S.; McKeen, S. A.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Trainer, M.; Parrish, D. D.

    2010-12-01

    Ammonia (NH3) is the dominant gas-phase base in the troposphere. As a consequence, NH3 abundance influences aerosol formation and composition. Ammonium nitrate aerosol is formed from the reaction of gas phase NH3 and nitric acid (HNO3). Anthropogenic emissions of NH3 and NOx (NO + NO2), which in sunlight can be oxidized to form HNO3, can react to form ammonium nitrate aerosol. Agricultural activity (i.e., dairy farms), and urban centers (i.e., Fresno, Los Angeles) are sources of ammonium nitrate gas-phase precursors in both the Central Valley and the South Coast Air Basin. Airborne measurements of NH3, HNO3, particle composition, and particle size distribution were made aboard the NOAA WP-3D research aircraft during May and June 2010 in the Central Valley and the South Coast Air Basin of California, as part of CalNex 2010 (California Research at the Nexus of Air Quality and Climate Change). The highest mixing ratios of NH3, well over 100 parts-per-billion by volume (ppbv), were measured downwind of dairy farms. The high NH3 mixing ratios were highly anti-correlated with HNO3 mixing ratios on fast time scales (~1 s) that correspond to short flight distances (~100 m). During these periods particulate nitrate (NO3-) concentrations increased, indicating ammonium nitrate formation. The meteorological and chemical environments during these periods will be studied to determine the factors driving or limiting ammonium nitrate formation and the resulting regional differences. Finally, the relationship between the NH3 observations and NH3 sources will be examined to assess the emissions and their contribution to ammonium nitrate abundance.

  16. Studies on the removal of interference of iron in the determination of uranium by direct titration with ammonium meta vanadate method

    International Nuclear Information System (INIS)

    Chavan, A.A.; Charyulu, M.M.

    2009-01-01

    To determine the uranium content in metal powder and alloys, routinely used method in NUMAC control Lab is dissolution of sample in 10 M phosphoric acid under heating and determination of uranium by ammonium meta vanadate method-visual indicator end point. If iron is present, it interferes quantitatively. The method is modified for removing the interference of iron by dissolving the samples in conc. phosphoric acid and Fe 2+ is quantitatively oxidized to Fe 3+ by nitric acid prior to analysis. (author)

  17. Sources et marché du sulfate d'ammonium Sources of and Market for Ammonium Sulfate

    Directory of Open Access Journals (Sweden)

    Loussouarn C.

    2006-11-01

    Full Text Available Engrais azoté le plus utilisé dans le monde jusqu'en 1970, le sulfate d'ammonium ne représente plus aujourd'hui que 4 % de la fertilisation azotée. Avec une teneur en azote de 21 % seulement, il a été peu à peu remplacé comme engrais universel par des produits plus concentrés, notamment l'urée et le nitrate d'ammonium. Obtenu pour plus de 40 % comme sous-produit dans la synthèse de monomères comme le caprolactame, l'acrylonitrile ou le méthacrylate de méthyle, et pour près de 10 % dans le traitement des gaz de cokerie, sa production dépend largement des développements du marché des fibres synthétiques, et, dans une moindre mesure, de la sidérurgie et de la métallurgie. Dans les pays développés, où la production est essentiellement fatale, le volume du marché est et sera plus fonction de la disponibilité du sulfate d'ammonium que de la demande ou de facteurs de marché; sa consommation ne résidera plus que dans des applications spécifiques pour lesquelles il sera bien adapté. Par contre, l'intérêt croissant pour compenser le déficit en soufre de certains sols, et les qualités agronomiques propres du sulfate d'ammonium laissent entrevoir la possibilité d'un essor de son utilisation dans certaines régions en voie de développernent. Ammonium sulfate was the most worldwide nitrogenous fertilizer used up to 1970. Today, it makes up only 4% of nitrogenous fertilization. With a nitrogen content of only 21%, it has gradually been replaced as a universal fertilizer by more concentrated products, particularly urea and ammonium nitrate. More than 40% of the ammonium sulfate is obtained as a by-product from the synthesis of monomers such as caprolactam, acrylonitrile or methyl methacrylate, and nearly 10% from coking gas processing. Its production depends extensively on the development of the market for synthetic fibers and, to a lesser extent, on the steel and metallurgical industries. In the industrialized countries

  18. The nature of electron acceptor (MnIV/NO3) triggers differential expression of genes associated with stress and ammonium limitation responses in Shewanella algae C6G3.

    Science.gov (United States)

    Aigle, Axel; Bonin, Patricia; -Nunez, Nicolas Fernandez; Loriod, Béatrice; Guasco, Sophie; Bergon, Aurélie; Armougom, Fabrice; Iobbi-Nivol, Chantal; Imbert, Jean; Michotey, Valérie

    2018-03-16

    Shewanella algae C6G3 can reduce dissimilatively nitrate into ammonium and manganese-oxide (MnIV) into MnII. It has the unusual ability to produce anaerobically nitrite from ammonium in the presence of MnIV. To gain insight into their metabolic capabilities, global mRNA expression patterns were investigated by RNA-seq and qRT-PCR in cells growing with lactate and ammonium as carbon and nitrogen sources and with either MnIV or nitrate as electron acceptors. Gene exhibiting higher expression levels in the presence of MnIV belonged to functional categories of carbohydrate, coenzyme, lipid metabolisms and inorganic ion transport. Comparative transcriptomic pattern between MnIV and NO3 revealed that the strain presented an ammonium limitation status with MnIV, despite the presence of non-limiting concentration of ammonium under both culture conditions. In addition, in presence of MnIV, ntrB/nrtC regulators, ammonium channel, nitrogen regulatory protein P-II, glutamine synthetase and asparagine synthetase glutamine dependent genes were over-represented. Under nitrate condition, the expression of genes involved in the synthesis of several amino acids was increased. Finally, expression level of genes associated with the general stress response was also amplified and among them, katE, a putative catalase/peroxidase present on several Shewanella genomes, was highly expressed with a relative median value higher in MnIV condition.

  19. Recent Advances in the Synthesis of Ammonium-Based Rotaxanes

    Directory of Open Access Journals (Sweden)

    Dominic Thibeault

    2010-05-01

    Full Text Available The number of synthetic methods enabling the preparation of ammonium-based rotaxanes has increased very rapidly in the past ten years. The challenge in the synthesis of rotaxanes results from the rather weak interactions between the ammonium-containing rod and the crown ether macrocycle in the pseudorotaxane structure that rely mostly on O•H hydrogen bonds. Indeed, no strong base or polar solvent that could break up H-bonding can be used during the formation of rotaxanes because the two components will separate as two distinct entities. Moreover, most of the reactions have to be performed at room temperature to favor the formation of pseudorotaxane in solution. These non-trivial prerequisites have been taken into account to develop efficient reaction conditions for the preparation of rotaxanes and those are described in detail along this review.

  20. Influence quaternary ammonium salt in the organophilization of an bentonite

    International Nuclear Information System (INIS)

    Oliveira, S.V.; Alves, G.P.; Wanderley, A.S.D.; Araujo, E.M.

    2011-01-01

    Clays are natural materials, earthy, fine-grained particles with diameters generally less than 2μm, and formed by chemically hydrated silicates of aluminum, iron and magnesium. The clays have a range of applications, both in pottery and in other technology areas. This work aimed to study the influence of a quaternary ammonium salt to increase the basal distance of a bentonite clay powder obtained thereby promoting to a new structural profile characteristic with organoclay. The bentonite clay was treated with salt Praepragem WB. The following methods were used: X-ray diffraction (XRD) and X-ray fluorescence (XRF). The results indicated the intercalation of ammonium ions of the salt studied within the layers of silicate and expansion of basal spacing d 001 , ie the clay in the study showed 2θ angle shifts to smaller angles, indicating that the clay was organophilization. (author)