Sample records for ammonium halides

  1. The creation of defects in ammonium halides by excitons

    International Nuclear Information System (INIS)

    Kim, L.M.


    The ammonium halides crystals and alkali halides crystals are analogous by kind chemical bonds and crystalline lattices. The anionic sublattice is identical in this crystals. It is known the main mechanism of defect creation by irradiation is radiationless decay of excitons in alkali halides crystals. The F-, H-centers are formation in this processes. However, F, H-centres are not detected in ammonium halides. The goal of this work is investigation the creation of defects in ammonium halides by excitons. We established that excitons in ammonium chlorides and bromides are similar to excitons in alkali halides. It is known excitons are self-trapped and have identical parameters of the exciton-phonon interaction in both kind crystals. It is supposed, that processes of radiationless disintegration of excitons are identical in ammonium and alkali halides. It is necessary to understand why F-, H-centers are absent in ammonium halides. V k -centres are created by the excitation of the ammonium halides crystals in the absorption band of excitons. It was established by thermoluminescence and spectrums of absorption. The V k -centers begin to migrate at 110-120 K in ammonium chlorides and bromides. The curve of thermoluminescence have peak with maximum at this temperatures. It is known V k -centers in ammonium chlorides have the absorption band at 380 nm. We discovered this absorption band after irradiation of crystals by ultra-violet. In alkali halides F-center is anionic vacancy with electron. The wave function of electron are spread ed at the cations around anionic vacancy. We established the cation NH 4 + in ammonium halides can to capture electron. The ion NH 4 2+ is unsteady. It is disintegrated to NH 3 + and H + . We suppose that excitons in ammonium and alkali halides are disintegrated identically. When cation NH 4 + capture electron, in the anionic sublattice the configuration are created in a direction (100) The indicated configuration is unsteady in relation to a

  2. Evaluation of quaternary ammonium halides for removal of methyl iodide from flowing air streams

    International Nuclear Information System (INIS)

    Freeman, W.P.; Mohacsi, T.G.; Kovach, J.L.


    The quaternary ammonium halides of several tertiary amines were used as impregnants on activated carbon and were tested for methyl iodide penetration in accordance with test Method A, ASTM D3803, 1979, ''Standard Test Methods for Radio-iodine Testing of Nuclear Grade Gas Phase Adsorbents''. The results suggest that the primary removal mechanism for methyl iodide-131 is isotopic exchange with the quaternary ammonium halide. For example, a 5 wt% impregnation of each of the tetramethyl, tetraethyl, tetrapropyl and tetrabutyl ammonium iodides on activated carbon yielded percent penetrations of 0.47, 0.53, 0.78, and 0.08 respectively when tested according to Method A of ASTM D3803. A sample impregnated with 5% tetramethyl ammonium hydroxide gave a methyl iodide penetration of 64.87%, thus supporting the isotopic exchange mechanism for removal. It has been a generally held belief that the success of tertiary amines as impregnants for radioiodine removal is a result of their ability to complex with the methyl iodide. The results of the work indicates that the superiority of the tertiary amines similar to triethylene diamine and quinuclidine, when compared to their straight chain analogs, is a result of their ease in reacting with methyl iodide-127 to form the quaternary ammonium iodide followed by isotopic exchange

  3. Absorption of NO and NO2in Caprolactam Tetrabutyl Ammonium Halide Ionic Liquids. (United States)

    Duan, Erhong; Guo, Bin; Zhang, Dandan; Shi, Long; Sun, Hua; Wang, Yanan


    To explore environmentally benign solvents for the absorption of NO and NO 2 , a series of caprolactam tetrabutyl ammonium halide ionic liquids were synthesized. The solubility of NO and NO 2 was measured at temperatures ranging from 298.2 to 363.2 K and atmospheric pressure, and the following trend in the solubility of NO and NO 2 in ionic liquids with various halide anions was observed, respectively: F > Br > Cl and Br > Cl > F. Moreover, as the temperature increased from 308.15 to 363.15 K and the mole ratio of caprolactam increased from 2:1 to 6:1, the solubility of NO increased. Alternatively, the solubility of NO 2 decreased as the temperature increased from 298.15 to 363.15 K, and the mole ratio of caprolactam increased from 2:1 to 6:1. The absorption and desorption of NO and NO 2 was practically reversible in the ionic liquids, which was characterized by nuclear magnetic resonance. The method, which is at least partially reversible, offers interesting possibilities for the removal of NO and NO 2 . [Box: see text].

  4. Neutron scattering study of structure and dynamics of ammonium halides under high pressure

    International Nuclear Information System (INIS)

    Kozlenko, D.P.; Balagurov, A.M.; Savenko, B.N.; Glazkov, V.P.; Somenkov, V.A.; Hull, S.


    Complete text of publication follows. Structural changes in ammonium halides ND 4 Cl, ND 4 Br and ND 4 F at pressures up to 40 kbar and ND 4 I at pressures up to 86 kbar have been studied bz means of neutron diffraction at room temperature. The pressure dependencies of the lattice parameter a and the deuterium position parameter u were obtained. It was found that the order - disorder II-IV phase transition in ND 4 Br and ND 4 Cl occurs at equal critical values of u, u cr =0.152(2). For ND 4 F, u is initially higher than u cr and only the ordered CsCl type phase III exists at high pressure. For ND 4 I, no II-IV phase transition was observed. A phase transition into the recently discovered high pressure phase V was detected in ND 4 I at 80 4 I(V) was found to be the same as the structure of the low temperature phase ND 4 I(III) - tetragonal one with antiparallel ordering of ammonium ions, space group P4/nmm. Vibrational spectra of NH 4 I and HN 4 F have been studied by means of incoherent inelastic neutron scattering at pressure up to 40 kbar. Vibration and transverse optical (TO) modes frequencies as functions of pressure were obtained. Both frequencies increase under pressure. (author)

  5. Peculiarities of the interaction of indium-tin and indium-bismuth alloys with ammonium halides

    International Nuclear Information System (INIS)

    Red'kin, A.N.; Smirnov, V.A.; Sokolova, E.A.; Makovej, Z.I.; Telegin, G.F.


    Peculiarities of fusible metal alloys interaction with ammonium halogenides in vertical reactor are considered using indium-tin and indium-bismuth binary alloys. It is shown that at the end of the process the composition of metal and salt phases is determined by the equilibrium type and constant characteristic of the given salt-metal system. As a result the interaction of indium-tin and indium-bismuth alloys with ammonium halogenides leads to preferential halogenation of indium-bismuth alloys with ammonium halogenides leads to preferential halogenation of indium which may be used in the processes of separation or purification. A model is suggested to calculate the final concentration of salt and metal phase components

  6. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed...

  7. Inhibitory action of quaternary ammonium bromide on mild steel and synergistic effect with other halide ions in 0.5 M H2SO4

    Directory of Open Access Journals (Sweden)

    A. Khamis


    Full Text Available The corrosion inhibition of mild steel in 0.5 M H2SO4 solution has been investigated using electrochemical methods, X-ray diffraction (XRD and scanning electron microscope (SEM. The adsorption and inhibition action of acid corrosion of mild steel using cetyltrimethylammonium bromide (CTABr and different halides (NaCl, NaBr and NaI has shown synergetic effect. The results showed that the protection efficiency (P% has high values at considerable high concentration of CTABr. However, in the presence of the different halides, the P increases dramatically at low concentration of CTABr. Physisorption was proposed from the the values of ΔGads0. The synergism parameter (Sθ is found to be greater than unity indicating that the enhanced P% caused by the addition of the halides to the CTABr is due to a co-operative adsorption of both species. Corrosion products phases and surface morphology were studied using X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively.

  8. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    , it cannot store hydrogen reversibly. Recently, the first ammonium metal borohydride, NH4Ca(BH4)3 was published, which may be considered as substitution of K+ by NH4+ in KCa(BH4)3, due to the similar sizes of NH4+ and K+[1]. This compound successfully stabilizes NH4BH4. In the present work, a series of novel...... halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed......, and the crystal structures and thermal decompositions are investigated. Mixtures of NH4BH4 - NaBH4 do not react, while solid solutions, K1-x(NH4)xBH4, are formed for NH4BH4 - KBH4. For the other composites, novel ammonium metal borohydrides are formed. Several of these structures have been solved from high...

  9. Photofragmentation of metal halides

    International Nuclear Information System (INIS)

    Veen, N.J.A. van.


    The author deals with photodissociation of molecules of alkali halides. It is shown that the total absorption cross section consists of two contributions arising from transitions to excited states of total electronic angular momentum Ω=0 + and Ω=1. From the inversion of the absorption continua potential energy curves of the excited states can be constructed in the Franck-Condon region. It is found that for all alkali halides the 0 + state is higher in energy than the Ω=1 state. Extensive studies are reported on three thallium halides, TlI, TlBr and TlCl at various wavelengths covering the near ultraviolet region. (Auth.)

  10. Ternary Silver Halide Nanocrystals. (United States)

    Abeyweera, Sasitha C; Rasamani, Kowsalya D; Sun, Yugang


    Nanocrystalline silver halides (AgX) such as AgCl, AgBr, and AgI, a class of semiconductor materials with characteristics of both direct and indirect band gaps, represent the most crucial components in traditional photographic processing. The nanocrystal surfaces provide sensitivity specks that can turn into metallic silver, forming an invisible latent image, upon exposure to light. The photographic processing implies that the AgX nanoparticles possess unique properties. First, pristine AgX nanoparticles absorb light only at low efficiency to convert surface AgX into tiny clusters of silver atoms. Second, AgX nanoparticles represent an excellent class of materials to capture electrons efficiently. Third, small metallic silver clusters can catalyze the reduction of AgX nanoparticles to Ag nanoparticles in the presence of mild reducing reagents, known as self-catalytic reduction. These properties indicate that AgX nanoparticles can be partially converted to metallic silver with high precision, leading to the formation of hybrid AgX/Ag nanoparticles. The nanosized metallic Ag usually exhibit intense absorption bands in the visible spectral region due to their strong surface plasmon resonances, which make the AgX/Ag nanoparticles a class of promising visible-light-driven photocatalysts for environmental remediation and CO 2 reduction. Despite the less attention paid to their ability of capturing electrons, AgX nanoparticles might be a class of ideal electron shuttle materials to bridge light absorbers and catalysts on which electrons can drive chemical transformations. In this Account, we focus on ternary silver halide alloy (TSHA) nanoparticles, containing two types of halide ions, which increase the composition complexity of the silver halide nanoparticles. Interdiffusion of halide ions between two types of AgX at elevated temperatures has been developed for fabricating ternary silver halide alloy crystals, such as silver chlorobromide optical fibers for infrared

  11. Inorganic–Organic Hybrids Incorporating a Chiral Cyclic Ammonium ...

    African Journals Online (AJOL)

    organic hybrids containing various lead halides as the inorganic motif and a chiral, primary ammonium cation as the organic constituent. The organic cation investigated is (C6H11C*H(CH3)NH3)+ and both the (R) and (S) as well as the racemic ...

  12. (II) halides: Control of racemization by quaternary ammonium sa

    Indian Academy of Sciences (India)

    for the construction of important synthetic targets via nucleophilic ring opening, cycloaddition and rearrange- ment reactions.1–5 Lewis acid (LA) mediated ring open- ing of 2-phenyl-N-tosylaziridines and azetidines with several nucleophiles to afford non-racemic products in high enantiomeric excess have been reported.

  13. (II) halides: Control of racemization by quaternary ammonium sa

    Indian Academy of Sciences (India)

    . 128 6312; (g). Crestey F, Witt M, Jaroszewski J W and Franzyk H 2009. J. Org. Chem. 74 5652; (h) Wang Z, Cui Y-T, Xu Z-. B and Qu J 2008 J. Org. Chem. 73 2270; (i) Moss T. A, Fenwick D R and Dixon D J 2008 J. Am. Chem. Soc. 130 10076 ...

  14. Halide laser glasses

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M.J.


    Energy storage and energy extraction are of prime importance for efficient laser action and are affected by the line strengths and linewidths of optical transitions, excited-state lifetimes, nonradiative decay processes, spectroscopic inhomogeneities, nonlinear refractive index, and damage threshold. These properties are all host dependent. To illustrate this, the spectroscopic properties of Nd/sup 3 +/ have been measured in numerous oxide, oxyhalide, and halide glasses. A table summarizes the reported ranges of stimulated emission cross sections, peak wavelengths, linewidths, and radiative lifetimes associated with the /sup 4/F/sub 3/2/ ..-->.. /sup 4/I/sub 11/2/ lasing transition.

  15. Halide Re-Shelled Quantum Dot Inks for Infrared Photovoltaics. (United States)

    Fan, James Z; Liu, Mengxia; Voznyy, Oleksandr; Sun, Bin; Levina, Larissa; Quintero-Bermudez, Rafael; Liu, Min; Ouellette, Olivier; García de Arquer, F Pelayo; Hoogland, Sjoerd; Sargent, Edward H


    Colloidal quantum dots are promising materials for tandem solar cells that complement silicon and perovskites. These devices are fabricated from solution phase; however, existing methods for making infrared-bandgap CQD inks suffer agglomeration and fusion during solution exchange. Here we develop a ligand exchange that provides robust surface protection and thereby avoids aggregation. First, we exchanged long oleic acid ligands to a mixed system comprising medium-chain ammonium and anionic chloride ligands; we then reshelled the surface using short halides and pseudohalide ligands that enabled transfer to a polar solvent. Absorbance and photoluminescence measurements reveal the retention of exciton sharpness, whereas X-ray photoelectron spectroscopy indicates halide capping. The best power conversion efficiency of these devices is 0.76 power points after filtering through silicon, which is 1.9× higher than previous single-step solution-processed IR-CQD solar cells.

  16. Methyl Halide Production by Fungi (United States)

    Dailey, G. D.; Varner, R. K.; Blanchard, R. O.; Sive, B. C.; Crill, P. M.


    Methyl chloride (CH3Cl), methyl bromide (CH3Br) and methyl iodide (CH3I) are methyl halide gases that contribute significant amounts of halogen radicals to the atmosphere. In an effort to better understand the global budget of methyl halides and their impact on the atmosphere, we need to identify the natural sources in addition to the known anthropogenic sources of these compounds. We are investigating the role of fungi in the production of methyl halides in the soils and wetlands in southern New Hampshire, USA. Previous research has shown that wood decay fungi and ectomycorrhizal fungi, which are within a group of fungi called basidiomycetes, emit methyl halides. In our study, measurements of headspace gas extracted from flasks containing fungi grown in culture demonstrate that a variety of fungi, including basidiomycetes and non-basidiomycetes, emit methyl halides. Our research sites include four ecosystems: an agricultural field, a temperate forest, a fresh water wetland, and coastal salt marshes. We have collected and isolated fungi at each site by culturing tissue samples of fruiting bodies and plant material, by using wood baits, and from the direct culture of soil. We compared the rates of methyl halide emissions from the fungi in the four ecosystems. In addition, we measured emissions from previously assayed fungal isolates after reintroducing them to sterilized soils that were collected from their original environments. Fungal biomass was determined by substrate-induced respiration (SIR). The emission rate by the fungus was determined by a linear regression of the concentration of methyl halide in the sample headspace over time divided by the fungal biomass.

  17. Quaternary Ammonium Polyethyleneimine: Antibacterial Activity Ira

    International Nuclear Information System (INIS)

    Farber, Y.; Domb, A.G.; Golenser, J.; Beyth, N.; Weiss, E.I.


    Quaternary ammonium polyethyleneimine- (QA-PEI-) based nanoparticles were synthesized using two synthetic methods, reductive amination and N-alkylation. According to the first method, QA-PEI nanoparticles were synthesized by cross-linking with glutaraldehyde followed by reductive amination with octanal and further N-methylation with methyl iodide. The second method is based on crosslinking with dialkyl halide followed by N-alkylation with octyl halide and further N-methylation with methyl iodide. QA-PEI nanoparticles completely inhibited bacterial growth (>106 bacteria), including both Gram-positive, that is, Staphylococcus aureus at 80 μ/mL, and Gram-negative, that is, Escherichia coli at 320 μ/mL. Activity analysis revealed that the degree of alkylation and N-methylation of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl alkylated QA-PEI alkylated at 1 : 1 mole ratio (primary amine of PEI monomer units/alkylating agent). Also, cytotoxicity studies on MAT-LyLu and MBT cell lines were performed with QA-PEI nanoparticles. These findings confirm previous reports that poly cations bearing quaternary ammonium moieties inhibit bacterial growth in vitro and have a potential use as additives in medical devices which need antibacterial properties.

  18. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka


    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  19. Development of Halide and Oxy-Halides for Isotopic Separations

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, Aaron T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pfeiffer, Jana [Idaho National Lab. (INL), Idaho Falls, ID (United States); Finck, Martha R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  20. Organic halide electroreduction on silver

    Energy Technology Data Exchange (ETDEWEB)

    Fiori, G.; Mussini, P.; Rondinini, S.; Vertova, A. [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry


    Silver, whose extraordinary electrolytically properties for organic halide reduction have been recently evidenced, has been used as cathode material for systematic preparative electrolyses in membrane-divided cells. To better elucidate the substrate role on the remarkable positive shift of reduction potentials, and on the cage effect i. e. the promotion of intermolecular reaction on adsorbed intermediates, three halide substrate patterns are here compared in terms of both voltammetric characterization and preparative electroreduction products: aliphatic halides (adamantanes), aromatic halides (phenols) and anomeric glycosyl halides. The preparative electroreductions result mainly in dimerization in the case of glycosyl halides, in H {yields} Br substitution in the case of bromophenols, in dimerization + substitution in the case of haloadamantanes. The product analysis, both at the end of the reaction and at intermediate times, allows discussing the reaction pathways in terms of intermediate stability and of active surface accessibility. The possibility of complete dehalogenation on a wider substrate variety with remarkably lower energy consumption and almost quantitative current yields makes the process potentially very interesting for environmental purposes. [Italian] L'argento, di cui sono state recentemente evidenziate straordinarie proprieta' elettrocatalitiche per la riduzione degli alogenuri organici, e' stato utilizzato come materiale catodico per sistematiche elettrolisi preparative in celle a membrana. Per mettere in risalto il ruolo del substrato organico sul notevole anticipo del potenziale di riduzione e sull'effetto gabbia, ovvero la promozione di reazioni intermolecolari su intermedi adsorbiti, vengono qui confrontate, in termini sia di caratterizzazione voltammetrica sia di prodotti di elettroriduzioni preparative, tre tipologie di alogenuri: alifatici (adamantani), aromatici (fenoli) e glicosidici. Le elettroriduzioni preparative

  1. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    International Nuclear Information System (INIS)

    Yudovin-Farber, Ira; Beyth, Nurit; Weiss, Ervin I.; Domb, Abraham J.


    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  2. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yudovin-Farber, Ira [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel); Beyth, Nurit; Weiss, Ervin I. [Hebrew University of Jerusalem, Department of Prosthodontics, Faculty of Dentistry (Israel); Domb, Abraham J., E-mail: [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel)


    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  3. Elevated ammonium levels

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Novak, Ivana; MacAulay, Nanna


    Increased ammonium (NH(4)(+)/NH(3)) in the brain is a significant factor in the pathophysiology of hepatic encephalopathy, which involves altered glutamatergic neurotransmission. In glial cell cultures and brain slices, glutamate uptake either decreases or increases following acute ammonium expos...

  4. Dehydrated rare earth halides and production process

    International Nuclear Information System (INIS)

    Picard, F.


    Rare earth chlorides, bromides or iodides containing less than 1 wt% water and less than 3 wt% oxyhalide are dehydrated by a gas flow of hydrogen halide through the halide bed. Structural water can interfer in some applications for instance metal preparation by chemical or electrochemical reduction [fr

  5. Hygroscopicity Evaluation of Halide Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, M [The University of Tennessee; Stand, L [The University of Tennessee; Wei, H [The University of Tennessee; Hobbs, C. L. [University of Tennessee, Knoxville (UTK); Boatner, Lynn A [ORNL; Ramey, Joanne Oxendine [ORNL; Burger, Arnold [Fisk University, Nashville; Rowe, E [Fisk University, Nashville; Bhattacharya, P. [Fisk University, Nashville; Tupitsyn, E [Fisk University, Nashville; Melcher, Charles L [University of Tennessee, Knoxville (UTK)


    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  6. Quaternary system of cesium halides

    International Nuclear Information System (INIS)

    Bukhalova, G.A.; Shegurova, G.A.; Yagub'yan, E.S.; Zaporozhets, E.G.


    The state diagram of the quaternary system consisting of fluorides, chlorides, bromides, and iodides of cesium has been studied by visual-polythermal, partially X-ray phase and thermographical analyses. The crystallization volume of the quaternary system involves the crystallization volume of cesium fluoride and the crystallization volume of the ternary solid solutions of the rest cesium halides. A quaternary nonvariant point corresponding to melting point 360 deg C appears on the crystallization surface which separates the cesium fluoride volume from the volume of the ternary solid solutions

  7. Structure of polyvalent metal halide melts

    International Nuclear Information System (INIS)

    Tosi, M.P.


    A short review is given of recent progress in determining and understanding the structure of molten halide salts involving polyvalent metal ions. It covers the following three main topics: (i) melting mechanisms and types of liquid structure for pure polyvalent-metal chlorides; (ii) geometry and stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides; and (iii) structure breaking and electron localization on addition of metal to the melt. (author). 28 refs, 3 figs, 1 tab

  8. Fullerenes doped with metal halides

    International Nuclear Information System (INIS)

    Martin, T.P.; Heinebrodt, M.; Naeher, U.; Goehlich, H.; Lange, T.; Schaber, H.


    The cage-like structure of fullerenes is a challenge to every experimental to put something inside - to dope the fullerenes. In fact, the research team that first identified C 60 as a football-like molecule quickly succeeded in trapping metal atoms inside and in shrinking the cage around this atom by photofragmentation. In this paper we report the results of ''shrink-wrapping'' the fullerenes around metal halide molecules. Of special interest is the critical size (the minimum number of carbon atoms) that can still enclose the dopant. A rough model for the space available inside a carbon cage gives good agreement with the measured shrinking limits. (author). 8 refs, 6 figs

  9. Methods for producing single crystal mixed halide perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai; Zhao, Yixin


    An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about C.

  10. Protein Precipitation Using Ammonium Sulfate


    Wingfield, Paul T.


    The basic theory of protein precipitation by addition of ammonium sulfate is presented and the most common applications are listed, Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution.

  11. Recent advances in technetium halide chemistry. (United States)

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P


    Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, β-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc

  12. Harmonic dynamical behaviour of thallous halides

    Indian Academy of Sciences (India)


    Nov 27, 2015 ... Harmonic dynamical behaviour of thallous halides (TlCl and TlBr) have been studied using the new van der Waals three-body force shell model (VTSM), which incorporates the effects of the van der Waals interaction along with long-range Coulomb interactions, three-body interactions and short-range ...

  13. Unraveling halide hydration: A high dilution approach (United States)

    Migliorati, Valentina; Sessa, Francesco; Aquilanti, Giuliana; D'Angelo, Paola


    The hydration properties of halide aqua ions have been investigated combining classical Molecular Dynamics (MD) with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Three halide-water interaction potentials recently developed [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)], along with three plausible choices for the value of the absolute hydration free energy of the proton (Δ G^{ominus }_{hyd}[H^+]), have been checked for their capability to properly describe the structural properties of halide aqueous solutions, by comparing the MD structural results with EXAFS experimental data. A very good agreement between theory and experiment has been obtained with one parameter set, namely LE, thus strengthening preliminary evidences for a Δ G^{ominus }_{hyd}[H^+] value of -1100 kJ mol-1 [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)]. The Cl-, Br-, and I- ions have been found to form an unstructured and disordered first hydration shell in aqueous solution, with a broad distribution of instantaneous coordination numbers. Conversely, the F- ion shows more ordered and defined first solvation shell, with only two statistically relevant coordination geometries (six and sevenfold complexes). Our thorough investigation on the effect of halide ions on the microscopic structure of water highlights that the perturbation induced by the Cl-, Br-, and I- ions does not extend beyond the ion first hydration shell, and the structure of water in the F- second shell is also substantially unaffected by the ion.

  14. Monocrystalline halide perovskite nanostructures : For optoelectronic applications

    NARCIS (Netherlands)

    Khoram, P.


    Halide perovskites are a promising class of materials for incorporation in optoelectronics with higher efficiency and lower cost. The solution processability of these materials provides unique opportunities for simple nanostructure fabrication. In the first half of the thesis (chapter 2 and 3) we

  15. Computational screening of mixed metal halide ammines

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich


    selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, a function based on e.g. stability, release temperature and storage capacity. The search space includes all alkaline, alkaline earth, 3d and 4d metals and the four lightest halides. In total...

  16. luminescence in coloured alkali halide crystals

    Indian Academy of Sciences (India)

    irradiated alkali halide crystals are similar to the luminescence excited by high energy radiation. Ueta et al [11] ... emission, a correlation between the deformation bleaching and mechanoluminescence of coloured alkali ..... [32] V P Zakrevskii, T S Orlova and A V Shuldiner, J. Solid State 37, 675 (1995). [33] C D Clark and ...

  17. luminescence in coloured alkali halide crystals

    Indian Academy of Sciences (India)

    Abstract. The present paper reports the correlation between deformation bleaching of coloration and mechanoluminescence (ML) in coloured alkali halide crystals. When the F-centre electrons captured by moving dislocations are picked up by holes, deep traps and other compatible traps, then deformation bleaching occurs.

  18. Formation of structured nanophases in halide crystals

    Czech Academy of Sciences Publication Activity Database

    Kulveit, Jan; Demo, Pavel; Polák, Karel; Sveshnikov, Alexey; Kožíšek, Zdeněk


    Roč. 5, č. 6 (2013), s. 561-564 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0891 Institutional support: RVO:68378271 Keywords : halide crystals * nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism

  19. Heterogeneous reactions of alkylamines with ammonium sulfate and ammonium bisulfate. (United States)

    Qiu, Chong; Wang, Lin; Lal, Vinita; Khalizov, Alexei F; Zhang, Renyi


    The heterogeneous reactions between alkylamines and ammonium salts (ammonium sulfate and ammonium bisulfate) have been studied using a low-pressure fast flow reactor coupled to an ion drift-chemical ionization mass spectrometer (ID-CIMS) at 293 ± 2 K. The uptake of three alkylamines, i.e., monomethylamine, dimethylamine, and trimethylamine, on ammonium sulfate shows a displacement reaction of ammonium by aminium, evidenced by the release of ammonia monitored using protonated acetone dimer as the reagent ion. For the three alkylamines, the initial uptake coefficients (γ(0)) range from 2.6 × 10(-2) to 3.4 × 10(-2) and the steady-state uptake coefficients (γ(ss)) range from 6.0 × 10(-3) to 2.3 × 10(-4) and decrease as the number of methyl groups on the alkylamine increases. A different reaction mechanism is observed for the uptake of the three alkylamines on ammonium bisulfate, which is featured by an acid-base reaction (neutralization) with irreversible alkylamine loss and no ammonia generation and occurs at a rate limited by diffusion of gaseous alkylamines to the ammonium bisulfate surface. Our results reveal that the reactions between alkylamines and ammonium salts contribute to particle growth and alter the composition of ammonium sulfate and bisulfate aerosols in the atmosphere.

  20. Ammonium on Ceres (United States)

    Ammannito, E.; De Sanctis, M. C.; Carrorro, F. G.; Ciarniello, M.; Combe, J. P.; De Angelis, S.; Ehlmann, B. L.; Frigeri, A.; Longobardo, A.; Mugnuolo, R.; Marchi, S.; Palomba, E.; Raymond, C. A.; Salatti, M.; Tosi, F.; Zambon, F.; Russell, C. T.


    Since January 2015, the surface of Ceres has been studied by the Dawn spacecraft through the measurements from the three instruments on board (1). The VIR imaging spectrometer, sensitive to the spectral range 0.25 -5.0 μm, provided information on the surficial composition of Ceres at resolutions ranging from few kilometers to about one hundred meters (2). Analysis of VIR reflectance data revealed that the average spectrum of Ceres is compatible with a mixture of low-albedo minerals, Mg- phyllosilicates, ammoniated clays, and Mg- carbonates, (3) confirming previous studies based on ground based spectra (4, 5). Mineralogical maps of the surface at about 1 km/px show that the components identified in the average spectrum are present all across the surface with variations in their relative abundance and chemical composition (6, 7). While the ammoniated clays have been already studied (6), the presence nature and distribution of additional ammoniated species has never been investigated in detail, although the spectral analysis of the bright faculae within Occator crater already revealed the potential presence of ammonium salts (8). Since the position and shape of the ammonium absorption in the VIS-NIR region are function of the hosting mineral specie (8), we did an inventory and characterization of the ammonium-rich regions, in order to analyze their spectral properties. In addition to the presence of ammonium, also the identification of the hosting species has implication for the evolution of Ceres. Our study, therefore, is a step forward in understanding of evolutionary pathway of Ceres. References: (1) Russell, C. T. et al., Science, 2016. (2) De Sanctis M.C. et al., Space Science Reviews, 2011. (3) De Sanctis M.C. et al., Nature, 2015. (4) King T. et al. Science, 1992. (5) Rivkin A.S. et al. Icarus, 2006. (6) Ammannito E. et al., Science, 2016. (7) Carrozzo F.G. et al., Science Advances, in revision. (8) De Sanctis et al., Nature, 2016. (9) Berg et al., Icarus

  1. Crystallisation of mixtures of ammonium nitrate, ammonium sulphate and soot

    NARCIS (Netherlands)

    Dougle, P.G.; Veefkind, J.P.; Brink, H.M. ten


    Crystallisation of laboratory aerosols of ammonium nitrate and of internal mixtures of this salt with ammonium sulphate were investigated using humidity controlled nephelometry. The aerosol was produced via nebulizing of solutions and then dried to 25% RH, which is a realistic minimum value for

  2. Ammonium diphosphitoindate(III

    Directory of Open Access Journals (Sweden)

    Farida Hamchaoui


    Full Text Available The crystal structure of the title compound, NH4[In(HPO32], is built up from InIII cations (site symmetry 3m. adopting an octahedral environment and two different phosphite anions (each with site symmetry 3m. exhibiting a triangular–pyramidal geometry. Each InO6 octahedron shares its six apices with hydrogen phosphite groups. Reciprocally, each HPO3 group shares all its O atoms with three different metal cations, leading to [In(HPO32]− layers which propagate in the ab plane. The ammonium cation likewise has site symmetry 3m.. In the structure, the cations are located between the [In(HPO32]− layers of the host framework. The sheets are held together by hydrogen bonds formed between the NH4+ cations and the O atoms of the framework.

  3. Protein Precipitation Using Ammonium Sulfate. (United States)


    The basic theory of protein precipitation by addition of ammonium sulfate is presented, and the most common applications are listed. Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution. Copyright © 2016 John Wiley & Sons, Inc.

  4. Computational screening of mixed metal halide ammines

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich

    the search spaces consists of millions combinations, which makes a GA ideal, to reduce the number of necessary calculations. We are screening for a one step release from either a hexa or octa ammine, and we have found promising candidates, which will be further investigated ? both computationally......Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure....... In this project we are searching for improved mixed materials with optimal desorption temperatures and kinetics, optimally releasing all ammonia in one step. We apply Density Functional Theory, DFT, calculations on mixed compounds selected by a Genetic Algorithm (GA), relying on biological principles of natural...

  5. Physicochemical properties of mixed phosphorus halides

    International Nuclear Information System (INIS)

    Sladkov, I.B.; Tugarinova, N.S.


    Certain physicochemical properties (thermodynamic characteristics at boiling point, critical constants, density of liquid on the saturation line) of mixed phosphorus halides (PI 3 , PI 2 F, PIF 2 , PI 2 Cl, PICl 2 , PI 1 Br, PIBr 2 , PIClF, PIBrCl, etc.) are determined by means of approximate methods. Reliability of the results obtained is confirmed by comparison of calculated and experimental data for phosphorus compounds of the same type. 7 refs., 3 figs., 4 tabs

  6. Thermomechanical measurements of lead halide single crystals

    Czech Academy of Sciences Publication Activity Database

    Nitsch, Karel; Rodová, Miroslava


    Roč. 234, č. 2 (2002), s. 701-709 ISSN 0370-1972 R&D Projects: GA AV ČR IAA2010926 Institutional research plan: CEZ:AV0Z1010914 Keywords : PbX 2 (X=Cl, Br, I) * coefficients of linear thermal expansion * polymorphism in lead halides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.930, year: 2002

  7. Ammonium dynamics in the disordered alpha-phase of K sub 1 sub - sub x (NH sub 4) sub x Y (Y = Cl, Br, I). A neutron scattering study

    CERN Document Server

    Natkaniec, I; Smirnov, L S


    The effect of temperature and concentration on the lattice parameters and amplitude-weighted phonon density of states in mixed salts of ammonium-potassium halides is investigated by neutron powder diffraction and incoherent inelastic neutron scattering. In the disordered alpha-phase (NaCl type) ammonium ions exhibit a fast stochastic reorientation at phonon frequency rates down to ca. 80 K. At 10 K, the incoherent inelastic neutron scattering spectra display four distinct ammonium excitations: two (resonant) modes below and two (localized) above the Debye cut-off energy of potassium halides. High-frequency localized modes correspond to translational and librational vibrations of NH sub 4 ions. These modes are typical for the ordered phases of ammonium halides. The effect of ammonium concentration on localized and resonant modes is studied for the K sub 1 sub - sub x (NH sub 4) sub x I mixed salts. The harmonic excitations of ammonium in a hypothetical low-temperature alpha-phase of NH sub 4 I are approximated...

  8. Electrochemistry of plutonium in molten halides

    International Nuclear Information System (INIS)

    McCurry, L.E.; Moy, G.M.M.; Bowersox, D.F.


    The electrochemistry of plutonium in molten halides is of technological importance as a method of purification of plutonium. Previous authors have reported that plutonium can be purified by electrorefining impure plutonium in various molten haldies. Work to eluciate the mechanism of the plutonium reduction in molten halides has been limited to a chronopotentiometric study in LiCl-KCl. Potentiometric studies have been carried out to determine the standard reduction potential for the plutonium (III) couple in various molten alkali metal halides. Initial cyclic voltammetric experiments were performed in molten KCL at 1100 K. A silver/silver chloride (10 mole %) in equimolar NaCl-KCl was used as a reference electrode. Working and counter electrodes were tungsten. The cell components and melt were contained in a quartz crucible. Background cyclic voltammograms of the KCl melt at the tungsten electrode showed no evidence of electroactive impurities in the melt. Plutonium was added to the melt as PuCl/sub 3/, which was prepared by chlorination of the oxide. At low concentrations of PuCl/sub 3/ in the melt (0.01-0.03 molar), no reduction wave due to the reduction of Pu(III) was observed in the voltammograms up to the potassium reduction limit of the melt. However on scan reversal after scanning into the potassium reduction limit a new oxidation wave was observed

  9. Process and composition for drying of gaseous hydrogen halides (United States)

    Tom, Glenn M.; Brown, Duncan W.


    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  10. Lanthanide doped strontium-barium cesium halide scintillators (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew


    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  11. Investigation of surface halide modification of nitrile butadiene rubber (United States)

    Sukhareva, K. V.; Mikhailov, I. A.; Andriasyan, Yu O.; Mastalygina, E. E.; Popov, A. A.


    The investigation is devoted to the novel technology of surface halide modification of rubber samples based on nitrile butadiene rubber (NBR). 1,1,2-trifluoro-1,2,2-trichlorethane was used as halide modifier. The developed technology is characterized by production stages reduction to one by means of treating the rubber compound with a halide modifier. The surface halide modification of compounds based on nitrile butadiene rubber (NBR) was determined to result in increase of resistance to thermal oxidation and aggressive media. The conducted research revealed the influence of modification time on chemical resistance and physical-mechanical properties of rubbers under investigation.

  12. Ammonium Perchlorate and Ammonium Perchlorate- Hydroxyl Terminated Polybutadiene Simulated Combustion

    Directory of Open Access Journals (Sweden)

    Rene Francisco Boschi Gonçalves


    Full Text Available The combustion simulation of ammonium perchlorate was carried out with the software Chemkin, in two steps: the burning behavior of pure ammonium perchlorate and the one of formulated ammonium perchlorate with hydroxyl terminated polybutadiene binder. In both cases, the room pressure varied in order to verify its influence in the system. The burning environment conditions were diverse. During the combustion process, the data obtained from the kinetic chemistry simulation software were compiled. The flame structure can be described by the molar fraction of the burning products and the temperature evolution from the surface of the material.

  13. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.


    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80–150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic–inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  14. Metal halide reduction with molten sodium/potassium alloy

    International Nuclear Information System (INIS)

    Martin, W.


    A method of obtaining a desired metal, selected from the group consisting of titanium, aluminium, iron, manganese, hafnium, zirconium, tantalum, vanadium, uranium and tungsten, which comprises reacting a halide of the desired metal with an alkali metal reducing agent at temperature at which the reducing agent is molten, in order to produce the desired metal and halide of the metal reducing agent

  15. Dislocation unpinning model of acoustic emission from alkali halide ...

    Indian Academy of Sciences (India)

    theoretical and experimental results related to the AE from alkali halide crystals. Keywords. Acoustic emission; dislocation; alkali halide crystals; plastic deformation. PACS Nos 43.40.Le; 62.20.Fe; 61.72.Hh. 1. Introduction. Discrete acoustic wave packets are generated in solids during their mechanical de- formation.

  16. Radiation damage in the alkali halide crystals

    International Nuclear Information System (INIS)

    Diller, K.M.


    A general review is given of the experimental data on radiation damage in the alkali halide crystals. A report is presented of an experimental investigation of irradiation produced interstitial dislocation loops in NaCl. These loops are found to exhibit the usual growth and coarsening behaviour during thermal annealing which operates by a glide and self-climb mechanism. It is shown that the recombination of defects in these crystals is a two stage process, and that the loss of interstitials stabilized at the loops is caused by extrinsic vacancies. The theoretical techniques used in simulating point defects in ionic crystals are described. Shell model potentials are derived for all the alkali halide crystals by fitting to bulk crystal data. The fitting is supplemented by calculations of the repulsive second neighbour interactions using methods based on the simple electron gas model. The properties of intrinsic and substitutional impurity defects are calculated. The HADES computer program is used in all the defect calculations. Finally the report returns to the problems of irradiation produced interstitial defects. The properties of H centres are discussed; their structure, formation energies, trapping at impurities and dimerization. The structure, formation energies and mobility of the intermediate and final molecular defects are then discussed. The thermodynamics of interstitial loop formation is considered for all the alklai halide crystals. The nucleation of interstitial loops in NaCl and NaBr is discussed, and the recombination of interstitial and vacancy defects. The models are found to account for all the main features of the experimental data. (author)

  17. Exciton-relaxation dynamics in lead halides

    International Nuclear Information System (INIS)

    Iwanaga, Masanobu; Hayashi, Tetsusuke


    We survey recent comprehensive studies of exciton relaxation in the crystals of lead halides. The luminescence and electron-spin-resonance studies have revealed that excitons in lead bromide spontaneously dissociate and both electrons and holes get self-trapped individually. Similar relaxation has been also clarified in lead chloride. The electron-hole separation is ascribed to repulsive correlation via acoustic phonons. Besides, on the basis of the temperature profiles of self-trapped states, we discuss the origin of luminescence components which are mainly induced under one-photon excitation into the exciton band in lead fluoride, lead chloride, and lead bromide

  18. Research Update: Luminescence in lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Ajay Ram Srimath Kandada


    Full Text Available Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  19. Research Update: Luminescence in lead halide perovskites (United States)

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria


    Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  20. Feature issue introduction: halide perovskites for optoelectronics. (United States)

    White, Thomas P; Deleporte, Emmanuelle; Sum, Tze-Chien


    This joint Optics Express and Optical Materials Express feature issue presents a collection of nine papers on the topic of halide perovskites for optoelectronics. Perovskite materials have attracted significant attention over the past four years, initially for their outstanding performance in thin film solar cells, but more recently for applications in light-emitting devices (LEDs and lasers), photodetectors and nonlinear optics. At the same time, there is still much more to learn about the fundamental properties of these materials, and how these depend on composition, processing, and exposure to the environment. This feature issue provides a snapshot of some of the latest research in this rapidly-evolving multidisciplinary field.

  1. Large polarons in lead halide perovskites


    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.


    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3 ? framewor...

  2. Development of novel growth methods for halide single crystals (United States)

    Yokota, Yuui; Kurosawa, Shunsuke; Shoji, Yasuhiro; Ohashi, Yuji; Kamada, Kei; Yoshikawa, Akira


    We developed novel growth methods for halide scintillator single crystals with hygroscopic nature, Halide micro-pulling-down [H-μ-PD] method and Halide Vertical Bridgman [H-VB] method. The H-μ-PD method with a removable chamber system can grow a single crystal of halide scintillator material with hygroscopicity at faster growth rate than the conventional methods. On the other hand, the H-VB method can grow a large bulk single crystal of halide scintillator without a quartz ampule. CeCl3, LaBr3, Ce:LaBr3 and Eu:SrI2 fiber single crystals could be grown by the H-μ-PD method and Eu:SrI2 bulk single crystals of 1 and 1.5 inch in diameter could be grown by the H-VB method. The grown fiber and bulk single crystals showed comparable scintillation properties to the previous reports using the conventional methods.

  3. 21 CFR 184.1143 - Ammonium sulfate. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium sulfate. 184.1143 Section 184.1143 Food... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg... is prepared by the neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient meets...

  4. The alkali halide disk technique in infra-red spectrometry : Anomalous behaviour of some samples dispersed in alkali halide disks

    NARCIS (Netherlands)

    Tolk, A.


    Some difficulties encountered in the application of the alkali halide disk technique in infra-red spectrometry are discussed. Complications due to interaction of the sample with the alkali halide have been studied experimentally. It was found that the anomalous behaviour of benzoic acid, succinic

  5. Finding New Perovskite Halides via Machine learning

    Directory of Open Access Journals (Sweden)

    Ghanshyam ePilania


    Full Text Available Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning via building a support vector machine (SVM based classifier that uses elemental features (or descriptors to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  6. Local polar fluctuations in lead halide perovskites (United States)

    Tan, Liang; Yaffe, Omer; Guo, Yinsheng; Brus, Louis; Rappe, Andrew; Egger, David; Kronik, Leeor

    The lead halide perovskites have recently attracted much attention because of their large and growing photovoltaic power conversion efficiencies. However, questions remain regarding the temporal and spatial correlations of the structural fluctuations, their atomistic nature, and how they affect electronic and photovoltaic properties. To address these questions, we have performed a combined ab initio molecular dynamics (MD) and density functional theory (DFT) study on CsPbBr3. We have observed prevalent anharmonic motion in our MD trajectories, with local polar fluctuations involving head-to-head motion of A-site Cs cations coupled with Br window opening. We calculate Raman spectra from the polarizability auto-correlation functions obtained from these trajectories and show that anharmonic A-site cation motion manifests as a broad central peak in the Raman spectrum, which increases in intensity with temperature. A comparison of the experimental Raman spectrum of hybrid organometallic MAPbBr3 and fully inorganic CsPbBr3 suggests that structural fluctuations in lead-halide perovskites is more general than rotation of polar organic cations and is intimately coupled to the inorganic framework.

  7. Large polarons in lead halide perovskites (United States)

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.


    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3− frameworks, irrespective of the cation type. The difference lies in the polaron formation time, which, in CH3NH3PbBr3 (0.3 ps), is less than half of that in CsPbBr3 (0.7 ps). First-principles calculations confirm large polaron formation, identify the Pb-Br-Pb deformation modes as responsible, and explain quantitatively the rate difference between CH3NH3PbBr3 and CsPbBr3. The findings reveal the general advantage of the soft [PbX3]− sublattice in charge carrier protection and suggest that there is likely no mechanistic limitations in using all-inorganic or mixed-cation lead halide perovskites to overcome instability problems and to tune the balance between charge carrier protection and mobility. PMID:28819647

  8. Polymer-Supported Cinchona Alkaloid-Derived Ammonium Salts as Recoverable Phase-Transfer Catalysts for the Asymmetric Synthesis of α-Amino Acids

    Directory of Open Access Journals (Sweden)

    Carmen Nájera


    Full Text Available Alkaloids such as cinchonidine, quinine and N-methylephedrine have been N-alkylated using polymeric benzyl halides or co-polymerized and then N-alkylated, thus affording a series of polymer-supported chiral ammonium salts which have been employed as phase-transfer catalysts in the asymmetric benzylation of an N-(diphenylmethyleneglycine ester. These new polymeric catalysts can be easily recovered by simple filtration after the reaction and reused. The best ee’s were achieved when Merrifield resin-anchored cinchonidinium ammonium salts were employed.

  9. Metal halide-group III halide gas complexes with emphasis on aluminum chloride

    International Nuclear Information System (INIS)

    Oeye, H.A.; Gruen, D.M.


    The thermodynamics of the presently known gas complexation reactions between metal halides and group III halides are treated in a self-consistent manner. By focusing on aluminum chloride as a complexing agent, certain systematic trends are revealed. The partial pressures of the gaseous complexes display shallow minima near 800 0 K whenever the complex molecules involve more than one molecule of AlCl 3 . Increasing the aluminum chloride pressure from 1 atm. to 10 3 atm. decreases somewhat the differences in the partial pressures among the various gaseous complexes which span two to three orders of magnitude. The methods developed for characterizing the complexes, and their structures as well as some applications of gas complexation are discussed

  10. Synthesis, Reactivity and Stability of Aryl Halide Protecting Groups towards Di-Substituted Pyridines

    Directory of Open Access Journals (Sweden)

    Ptoton Mnangat Brian


    Full Text Available This paper reports the synthesis and reactivity of different Benzyl derivative protecting groups. The synthesis and stability of Benzyl halides, 4-methoxybenzyl halides, 3,5-dimethoxybenzyl halides, 3,4-dimethoxybenzyl halides, 3,4,5-trimethoxybenzyl halide protecting groups and their reactivity towards nitrogen atom of a di-substituted pyridine ring in formation of pyridinium salts is also reported.

  11. Alkali metal and alkali earth metal gadolinium halide scintillators (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.


    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  12. Solubility of ammonium metavanadate in ammonium carbonate and sodium bicarbonate solutions at 25 deg C

    International Nuclear Information System (INIS)

    Fedorov, P.I.; Andreev, V.K.; Slotvinskij-Sidak, N.P.


    Solubility at 25 deg C has been studied in the system ammonium metavanadate - sodium bicarbonate - water which is a stable section of the corresponding quaternary mutual system. In the eutonic point the content of ammonium metavanadate is 4.95% and of sodium bicarbonate 12.1%. The crystallization branch of ammonium metavanadate has been studied in the system ammonium metavanadate - ammonium carbonate - water at 25 deg C. Metavanadate solubility attains minimum (0.14%) at ammonium carbonate concentration 2.6%. Three sections have been studied of the quaternary system ammonium - metavanadate - ammonium carbonate - sodium bicarbonate-water at 25 deg C in the crystallization region of ammonium metavanadate at a ratio of sodium bicarbonate to ammonium carbonate 3:1, 1:1, and 1:3. A region of minimum solubility of ammonium metavanadate has been detected (0.1%)

  13. Novel Silver Cobaltacarborane Complexes with a Linearly Bridging Halide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Seo; Bae, Hye Jin; Do, Youngkyu [KAIST, Daejeon (Korea, Republic of); Park, Youngwhan [LG Chem/Research Park, Daejeon (Korea, Republic of); Go, Min Jeong; Lee, Junseong [Chonnam National Univ., Gwangju (Korea, Republic of)


    The structural versatility of halides mainly originates from their coordinating abilities of adopting a bridging bond between two or more metal atoms, as well as a terminal bond. Moreover, a halide bridging bond angle is so flexible that thermodynamic stability can be endowed with proper geometry, which conceptually varies from acute to right, obtuse, and linear. In spite of innumerable reports on molecular metal halides, examples of the linearly bridging fashion are very scarce. The reason for the rarity of the linear M. X. M arrangement can be easily explained by the VSEPR (Valence Shell Electron Pair Repulsion) concept. The linear M. X. M formation has only been achieved by adopting a macrocyclic chelate ligand, which is structurally demanding, so that the VSEPR repulsions among lone-pair electrons on the halide atom could be overcome.

  14. Dislocation unpinning model of acoustic emission from alkali halide ...

    Indian Academy of Sciences (India)

    AE) from alkali halide crystals. ... School of Studies in Physics, Pt. Ravi Shankar Shukia University, Raipur 492 010, India; Department of Electronics and Telecommunication, Raipur Institute of Technology, Raipur 492 101, India; Department of ...

  15. Systemic analysis of thermodynamic properties of lanthanide halides

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Badalov, A.; Marufi, V.K.


    System analysis of thermodynamic characteristics of lanthanide halides was carried out. A method making allowances for the influence of spin and orbital moments of momentum of the main states of lanthanide trivalent ions in their natural series was employed. Unknown in literature thermodynamic values were calculated and corrected for certain compounds. The character of lanthanide halide thermodynamic parameter change depending on ordinal number of the metals was ascertained. Pronouncement of tetrad-effect in series of compounds considered was pointed out

  16. Study of ammonium sulfates electric conductivity

    International Nuclear Information System (INIS)

    Dobrynin, D.V.; Tulegulov, A.D.


    In the work results of research of ammonium sulfate electroconductivity are given. The influence effecting on ammonium sulfate conductivity is investigated. The various circuits of inclusion tetra ohmmeter are given. (author)

  17. Genetic control of methyl halide production in Arabidopsis. (United States)

    Rhew, Robert C; Østergaard, Lars; Saltzman, Eric S; Yanofsky, Martin F


    Methyl chloride (CH(3)Cl) and methyl bromide (CH(3)Br) are the primary carriers of natural chlorine and bromine, respectively, to the stratosphere, where they catalyze the destruction of ozone, whereas methyl iodide (CH(3)I) influences aerosol formation and ozone loss in the boundary layer. CH(3)Br is also an agricultural pesticide whose use is regulated by international agreement. Despite the economic and environmental importance of these methyl halides, their natural sources and biological production mechanisms are poorly understood. Besides CH(3)Br fumigation, important sources include oceans, biomass burning, tropical plants, salt marshes, and certain crops and fungi. Here, we demonstrate that the model plant Arabidopsis thaliana produces and emits methyl halides and that the enzyme primarily responsible for the production is encoded by the HARMLESS TO OZONE LAYER (HOL) gene. The encoded protein belongs to a group of methyltransferases capable of catalyzing the S-adenosyl-L-methionine (SAM)-dependent methylation of chloride (Cl(-)), bromide (Br(-)), and iodide (I(-)) to produce methyl halides. In mutant plants with the HOL gene disrupted, methyl halide production is largely eliminated. A phylogenetic analysis with the HOL gene suggests that the ability to produce methyl halides is widespread among vascular plants. This approach provides a genetic basis for understanding and predicting patterns of methyl halide production by plants.

  18. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    International Nuclear Information System (INIS)

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.


    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10 25 /m 3 . The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics

  19. 21 CFR 184.1133 - Ammonium alginate. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium alginate. 184.1133 Section 184.1133 Food... Specific Substances Affirmed as GRAS § 184.1133 Ammonium alginate. (a) Ammonium alginate (CAS Reg. No. 9005... accordance with § 184.1(b)(2), the ingredient is used in food only within the following specific limitations...

  20. 21 CFR 582.1141 - Ammonium phosphate. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b) Conditions...

  1. 76 FR 47238 - Ammonium Nitrate From Russia (United States)


    ... COMMISSION Ammonium Nitrate From Russia Determination On the basis of the record \\1\\ developed in the subject... order on ammonium nitrate from Russia would be likely to lead to continuation or recurrence of material... Commission are contained in USITC Publication 4249 (August 2011), entitled Ammonium Nitrate from Russia...

  2. 21 CFR 582.1143 - Ammonium sulfate. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance...

  3. The effect of illumination on the formation of metal halide perovskite films (United States)

    Ummadisingu, Amita; Steier, Ludmilla; Seo, Ji-Youn; Matsui, Taisuke; Abate, Antonio; Tress, Wolfgang; Grätzel, Michael


    Optimizing the morphology of metal halide perovskite films is an important way to improve the performance of solar cells when these materials are used as light harvesters, because film homogeneity is correlated with photovoltaic performance. Many device architectures and processing techniques have been explored with the aim of achieving high-performance devices, including single-step deposition, sequential deposition and anti-solvent methods. Earlier studies have looked at the influence of reaction conditions on film quality, such as the concentration of the reactants and the reaction temperature. However, the precise mechanism of the reaction and the main factors that govern it are poorly understood. The consequent lack of control is the main reason for the large variability observed in perovskite morphology and the related solar-cell performance. Here we show that light has a strong influence on the rate of perovskite formation and on film morphology in both of the main deposition methods currently used: sequential deposition and the anti-solvent method. We study the reaction of a metal halide (lead iodide) with an organic compound (methylammonium iodide) using confocal laser scanning fluorescence microscopy and scanning electron microscopy. The lead iodide crystallizes before the intercalation of methylammonium iodide commences, producing the methylammonium lead iodide perovskite. We find that the formation of perovskite via such a sequential deposition is much accelerated by light. The influence of light on morphology is reflected in a doubling of solar-cell efficiency. Conversely, using the anti-solvent method to form methyl ammonium lead iodide perovskite in a single step from the same starting materials, we find that the best photovoltaic performance is obtained when films are produced in the dark. The discovery of light-activated crystallization not only identifies a previously unknown source of variability in opto-electronic properties, but also opens up

  4. A Novel and Chemoselective Process of N-Alkylation of Aromatic Nitrogen Compounds Using Quaternary Ammonium Salts as Starting Material

    Directory of Open Access Journals (Sweden)

    Carlos A. González-González


    Full Text Available The process of N-alkylation of several pyrroles, indoles, and derivative heterocycles is herein described, using quaternary ammonium salts as the source of an alkylating agent. These reactions were carried out on several heterocyclic rings with triethylbenzylammonium chloride or tetradecyltrimethylammonium bromide and an NaOH solution at 50%, leading to a chemoselective N-alkylated product and an average yield of 73%. This is an alternative process to the traditional benzylation and methylation of N-heterocycles with direct handling of alkyl halides.

  5. Structured alkali halides for medical applications

    International Nuclear Information System (INIS)

    Schmitt, B.; Fuchs, M.; Hell, E.; Knuepfer, W.; Hackenschmied, P.; Winnacker, A.


    Image plates based on storage phosphors are a major application of radiation defects in insulators. Storage phosphors absorb X-ray quanta creating trapped electron-hole pairs in the material. Optical stimulation of the electron causes recombination leading to light emission. Application of image plates requires an optimal compromise between resolution (represented by the modulation transfer function (MTF)) and sensitivity. In our paper we present a new solution of the problem of combining a high MTF with a high sensitivity by structuring the image plates in form of thin needles acting as light guides. This suppresses the lateral spread of light which is detrimental to resolution. As doped CsBr, e.g. CsBr:Ga [Physica Medica XV (1999) 301], can pose a good storage phosphor evaporated layers are of interest in computed radiography. Needle structured CsI:Tl is used as scintillator in direct radiography [IEEE Trans. Nucl. Sci. 45 (3) (1998)]. CsBr layers have been produced by evaporation in vacuum and in inert gas atmosphere varying pressure and temperature. The resulting structures are of fibrous or columnar nature being in good agreement with the zone model of Thornton [Ann. Rev. Mater. Sci. 7 (1977) 239]. A zone model for CsBr has been developed. Measurements on doped alkali halide image plates having needle structure show good MTF at high sensitivity making a significant progress in image plate technology

  6. Amine-Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light-Emitting Diodes

    KAUST Repository

    Yassitepe, Emre


    Cesium lead halide perovskite quantum dots (PQDs) have attracted significant interest for optoelectronic applications in view of their high brightness and narrow emission linewidth at visible wavelengths. A remaining challenge is the degradation of PQDs during purification from the synthesis solution. This is attributed to proton transfer between oleic acid and oleylamine surface capping agents that leads to facile ligand loss. Here, a new synthetic method is reported that enhances the colloidal stability of PQDs by capping them solely using oleic acid (OA). Quaternary alkylammonium halides are used as precursors, eliminating the need for oleylamine. This strategy enhances the colloidal stability of OA capped PQDs during purification, allowing us to remove excess organic content in thin films. Inverted red, green, and blue PQD light-emitting diodes (LED) are fabricated for the first time with solution-processed polymer-based hole transport layers due to higher robustness of OA capped PQDs to solution processing. The blue and green LEDs exhibit threefold and tenfold improved external quantum efficiency (EQE), respectively, compared to prior related reports for amine/ammonium capped cross-linked PQDs. The brightest blue LED based on all inorganic CsPb(Br1- xClx)3 PQDs is also reported. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Treating ammonium-rich wastewater with sludge from water treatment plant to produce ammonium alum

    Directory of Open Access Journals (Sweden)

    Wen-Po Cheng


    Full Text Available This study applies a process to treat ammonium-rich wastewater using alum-generated sludge form water purification plant, and gain economic benefit by producing ammonium alum (Al(NH4(SO42·12H2O. The factors affecting production of ammonium alum include molar ratio of ammonium to aluminum concentration, sulfuric acid concentration, mixing speed, mixing time, standing time, and temperature. According to the equation for the ammonium removal reaction, the theoretical quantity of ammonium alum was calculated based on initial and final concentrations of ammonium. Then, the weight of ammonium alum crystal was divided by the theoretical weight to derive the recovery ratio. The optimum sludge and sulfuric acid dosage to treat about 17 g L−1 ammonium wastewater are 300 g L−1 and 100 mL L−1, respectively. The optimal dosage for wastewater is molar ratio of ammonium to aluminum of about 1 due to the aluminum dissolving in acidified wastewater. The ammonium removal efficiency is roughly 70% and the maximum recovery ratio for ammonium alum is 93% when the wastewater is mixed for 10 min at the mixing velocity gradient of 100 s−1. Ammonium alum production or ammonium removal can be enhanced by controlling the reaction at low temperatures.

  8. Theoretical problems associated with the use of acetic anhydride as a co-solvent for the non-aqueous titration of hydrohalides of organic bases and quaternary ammonium salts. (United States)

    Völgyi, Gergely; Béni, Szabolcs; Takács-Novák, Krisztina; Görög, Sándor


    A potentiometric titration study of organic base hydrohalides and quaternary ammonium salts using perchloric acid as the titrant and a mixture of acetic anhydride and acetic acid as the solvent was carried out and the titration mixture was analysed by NMR in order to clarify the chemistry of the reactions involved. It was found that in contrast to the general belief the formation of acetyl halides and titratable free acetate ion does not take place prior to the titration but NMR spectra proved the formation of acetyl halides in the course of the titration. This observation and the fact that the shape of the titration curves depends on the nature of the hydrohaloic acid bound to the base or of the anion in the quaternary ammonium salts led to the conclusion that the titrating agent is acetyl perchlorate formed in situ during the titration. Equations of the reactions involved in the titration process are shown in the paper.

  9. Local polar fluctuations in lead halide perovskite crystals

    International Nuclear Information System (INIS)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor


    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH 3 NH 3 PbBr 3 ) and all-inorganic (CsPbBr 3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. Furthermore, MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr 3 .

  10. Local Polar Fluctuations in Lead Halide Perovskite Crystals (United States)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.


    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3 NH3 PbBr3 ) and all-inorganic (CsPbBr3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3 .

  11. Solvated Positron Chemistry. Competitive Positron Reactions with Halide Ions in Water

    DEFF Research Database (Denmark)

    Christensen, Palle; Pedersen, Niels Jørgen; Andersen, J. R.


    It is shown by means of the angular correlation technique that the binding of positrons to halides is strongly influenced by solvation effects. For aqueous solutions we find increasing values for the binding energies between the halide and the positron with increasing mass of the halide...

  12. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.


    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making organometallic halide perovskite monocrystalline film, and the like.

  13. Ammonium azide under hydrostatic compression (United States)

    Landerville, A. C.; Steele, B. A.; Oleynik, I. I.


    The properties of ammonium azide NH4N3 upon compression were investigated using first-principles density functional theory. The equation of state was calculated and the mechanism of a phase transition experimentally observed at 3.3 GPa is elucidated. Novel polymorphs of NH4N3 were found using a simple structure search algorithm employing random atomic displacements upon static compression. The structures of three new polymorphs, labelled as B, C, and D, are similar to those of other metal azides.

  14. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    KAUST Repository

    Buin, Andrei


    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention both at the experimental and theoretical levels. These materials, in particular methylammonium triiodide, are still limited by poor chemical and structural stability under ambient conditions. Today this represents one of the major challenges for polycrystalline perovskite-based photovoltaic technology. In addition to this, the performance of perovskite-based devices is degraded by deep localized states, or traps. To achieve better-performing devices, it is necessary to understand the nature of these states and the mechanisms that lead to their formation. Here we show that the major sources of deep traps in the different halide systems have different origin and character. Halide vacancies are shallow donors in I-based perovskites, whereas they evolve into a major source of traps in Cl-based perovskites. Lead interstitials, which can form lead dimers, are the dominant source of defects in Br-based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability in relation to the reaction enthalpies of mixtures of bulk precursors with respect to final perovskite product. Methylammonium lead triiodide is characterized by the lowest reaction enthalpy, explaining its low stability. At the opposite end, the highest stability was found for the methylammonium lead trichloride, also consistent with our experimental findings which show no observable structural variations over an extended period of time.

  15. Isolation and stable nitrogen isotope analysis of ammonium ions in ammonium nitrate prills using sodium tetraphenylborate. (United States)

    Howa, John D; Lott, Michael J; Ehleringer, James R


    Because of the threat of bombings using improvised explosives containing ammonium nitrate (AN), law enforcement and intelligence communities have been interested in stable isotope techniques for tracking and discriminating AN sources. Separate analysis of the AN component ions ammonium and nitrate would add discriminatory power to these techniques. Ammonium ions in dissolved AN solution were isolated from samples by precipitation using sodium tetraphenylborate solution. We tested the isolation of ammonium from nitrates using solutions of ammonium and nitrate salts with different (15)N/(14)N isotope ratios. Ammonium tetraphenylborate and AN were separately analyzed for their (15)N/(14)N isotope ratios using EA-ConFlo-IRMS, and the (15)N/(14)N isotope ratios of the nitrate ions were calculated using mass balance. Ammonium and nitrate nitrogen isotope ratios were plotted as two separate variables. Isolation of ammonium precipitate from solutions containing dissolved nitrates did not influence the nitrogen isotope ratios of test ammonium salts. A survey set of 42 AN samples showed that the ammonium and nitrate (15)N/(14)N isotope ratios were not significantly correlated, and the paired mean differences were not statistically significant. Both ammonium and nitrate were depleted in (15)N relative to their theoretical atmospheric sources. Isolation of the ammonium ion from AN adds another dimension for the discrimination of forensic AN samples. This technique using sodium tetraphenylborate is robust and does not require specialized equipment. Our observations indicated that ammonium nitrogen and nitrate nitrogen have independent sources of isotopic variation. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Local coordination of polyvalent metal ions in molten halide mixtures

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.


    Ample experimental evidence is available in the literature on the geometry and the stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides. Recent schemes for classifying this evidence are discussed. Dissociation of tetrahedral halocomplexes in good ionic systems can be viewed as a classical Mott problem of bound-state stability in a conducting matrix. More generally, structural coordinates can be constructed from properties of the component elements, to separate out systems with long-lived fourfold or sixfold coordination and to distinguish between these. (author). 11 refs, 1 fig

  17. Halide Edib Adıvar and University Education


    Erdal, Kelime


    As a writer worked at a university, Halide Edib Adıvar points out the problems of the university students and the people work there. The students studying abroad with many difficulties, can’t find an appropriate occupation related with the subject they have studied. Carefully choosing students who will be sent to abroad and their education in the light of our country’s needs is very important. In this article, Halide Edib’s ideas about financial problems of university members, students not wo...

  18. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei


    With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single

  19. 21 CFR 184.1138 - Ammonium chloride. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg..._locations.html. (c) In accordance with § 184.1(b)(1), the ingredient is used in food with no limitation...

  20. 21 CFR 184.1137 - Ammonium carbonate. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium carbonate. 184.1137 Section 184.1137 Food... Specific Substances Affirmed as GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3, CAS.../code_of_federal_regulations/ibr_locations.html. (c) In accordance with § 184.1(b)(1), the ingredient is...

  1. Producing ammonium uranate in spherical particulate form

    International Nuclear Information System (INIS)

    Dugua, J.


    A novel easily handled substantially particulate ammonium uranate with a mean diameter between 30 and 150 micrometers, an apparent untamped bulk density of 2 to 2.8 g/cm 3 , and a flowability measured on the Carr scale equal to or greater than 95, with a low sulfate ion content between 0.5 and 1%, is calimed together with a fluidized bed process for preparing such ammonium uranate by precipitation of a super-saturated solution of ammonium uranate. The ammonium uranate is obtained by reacting a uranium sulfate solution and an ammoniacal solution, operating at a pH of about 6.6 to 7.2

  2. Glufosinate ammonium selection of transformed Arabidopsis. (United States)

    Weigel, Detlef; Glazebrook, Jane


    INTRODUCTIONOne of the most commonly used markers for the selection of transgenic Arabidopsis is resistance to glufosinate ammonium, an herbicide that is sold under a variety of trade names including Basta and Finale. Resistance to glufosinate ammonium is conferred by the bacterial bialophos resistance gene (BAR) encoding the enzyme phosphinotricin acetyl transferase (PAT). This protocol describes the use of glufosinate ammonium to select transformed Arabidopsis plants. The major advantage of glufosinate ammonium selection is that it can be performed on plants growing in soil and does not require the use of sterile techniques.

  3. Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites. (United States)

    Turkevych, Ivan; Kazaoui, Said; Ito, Eisuke; Urano, Toshiyuki; Yamada, Koji; Tomiyasu, Hiroshi; Yamagishi, Hideo; Kondo, Michio; Aramaki, Shinji


    Hybrid CPbX 3 (C: Cs, CH 3 NH 3 ; X: Br, I) perovskites possess excellent photovoltaic properties but are highly toxic, which hinders their practical application. Unfortunately, all Pb-free alternatives based on Sn and Ge are extremely unstable. Although stable and non-toxic C 2 ABX 6 double perovskites based on alternating corner-shared AX 6 and BX 6 octahedra (A=Ag, Cu; B=Bi, Sb) are possible, they have indirect and wide band gaps of over 2 eV. However, is it necessary to keep the corner-shared perovskite structure to retain good photovoltaic properties? Here, we demonstrate another family of photovoltaic halides based on edge-shared AX 6 and BX 6 octahedra with the general formula A a B b X x (x=a+3 b) such as Ag 3 BiI 6 , Ag 2 BiI 5 , AgBiI 4 , AgBi 2 I 7 . As perovskites were named after their prototype oxide CaTiO 3 discovered by Lev Perovski, we propose to name these new ABX halides as rudorffites after Walter Rüdorff, who discovered their prototype oxide NaVO 2 . We studied structural and optoelectronic properties of several highly stable and promising Ag-Bi-I photovoltaic rudorffites that feature direct band gaps in the range of 1.79-1.83 eV and demonstrated a proof-of-concept FTO/c-m-TiO 2 /Ag 3 BiI 6 /PTAA/Au (FTO: fluorine-doped tin oxide, PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], c: compact, m: mesoporous) solar cell with photoconversion efficiency of 4.3 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis of cerous ammonium nitrate using ceric ammonium nitrate and anhydrous ammonia as a reducing agent

    International Nuclear Information System (INIS)

    Bourleaux, G.; Colombet, P.; Rouxel, J.; Gradeff, P.S.; Mauermann, H.


    The reduction of ceric ammonium nitrate by anhydrous ammonia has been studied. The reaction yields cerous ammonium nitrate complex. This is an easy method to prepare an anhydrous Ce (III) salt, suitable for synthesis of organo cerium (III) derivatives [fr

  5. Efficient and convenient oxidation of benzyl halides to carbonyl ...

    African Journals Online (AJOL)

    ketones in good to high yields by phase transfer catalysis combined with sodium nitrate and acetic acid at reflux. As a result, a simple and high yield procedure has been developed. KEY WORDS: Oxidation, Benzyl halides, Phase transfer catalyst, ...


    NARCIS (Netherlands)


    This paper reports enthalpies of micellization for a series of 1-methyl-4-alkylpyridinium halide surfactants at 303.2 K with different lengths and degrees of branching of the 4-alkyl chain and different sizes of counterions using two microcalorimeters (LKB 2277 and Omega Microcal). The standard

  7. Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals

    NARCIS (Netherlands)

    Brenes, Roberto; Guo, D.; Osherov, Anna; Noel, Nakita K.; Eames, Christopher; Hutter, E.M.; Pathak, Sandeep K.; Niroui, Farnaz; Friend, Richard H.; Islam, M. Saiful; Snaith, Henry J.; Bulović, Vladimir; Savenije, T.J.; Stranks, Samuel D.


    Metal halide perovskites are generating enormous excitement for use in solar cells and light-emission applications, but devices still show substantial non-radiative losses. Here, we show that by combining light and atmospheric treatments, we can increase the internal luminescence quantum

  8. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry (United States)

    Cruz-Ramirez de Arellano, Daniel


    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  9. Miscellaneous Lasing Actions in Organo-Lead Halide Perovskite Films. (United States)

    Duan, Zonghui; Wang, Shuai; Yi, Ningbo; Gu, Zhiyuan; Gao, Yisheng; Song, Qinghai; Xiao, Shumin


    Lasing actions in organo-lead halide perovskite films have been heavily studied in the past few years. However, due to the disordered nature of synthesized perovskite films, the lasing actions are usually understood as random lasers that are formed by multiple scattering. Herein, we demonstrate the miscellaneous lasing actions in organo-lead halide perovskite films. In addition to the random lasers, we show that a single or a few perovskite microparticles can generate laser emissions with their internal resonances instead of multiple scattering among them. We experimentally observed and numerically confirmed whispering gallery (WG)-like microlasers in polygon shaped and other deformed microparticles. Meanwhile, owing to the nature of total internal reflection and the novel shape of the nanoparticle, the size of the perovskite WG laser can be significantly decreased to a few hundred nanometers. Thus, wavelength-scale lead halide perovskite lasers were realized for the first time. All of these laser behaviors are complementary to typical random lasers in perovskite film and will help the understanding of lasing actions in complex lead halide perovskite systems.

  10. Empirical formula for the parameters of metallic monovalent halides ...

    African Journals Online (AJOL)

    By collating the data on melting properties and transport coefficients obtained from various experiments and theories for certain halides of monovalent metals, allinclusive linear relationship has been fashioned out. This expression holds between the change in entropy and volume on melting; it is approximately obeyed by ...

  11. Crystal growth, structure and phase studies on gold halides

    NARCIS (Netherlands)

    Janssen, Eugenius Maria Wilhelmus Janssen


    Only very corrosive substances attack gold, the most noble metal. In this study the reactivity and the phase diagrams of gold with the halogens chlorine, bromine and iodine have been investigated. owing to the noble behaviour of gold, its halides are sensitive to heat; on heating they decompose into

  12. Methyl halide emission estimates from domestic biomass burning in Africa (United States)

    Mead, M. I.; Khan, M. A. H.; White, I. R.; Nickless, G.; Shallcross, D. E.

    Inventories of methyl halide emissions from domestic burning of biomass in Africa, from 1950 to the present day and projected to 2030, have been constructed. By combining emission factors from Andreae and Merlet [2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955-966], the biomass burning estimates from Yevich and Logan [2003. An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochemical Cycles 17(4), 1095, doi:10.1029/2002GB001952] and the population data from the UN population division, the emission of methyl halides from domestic biomass usage in Africa has been estimated. Data from this study suggest that methyl halide emissions from domestic biomass burning have increased by a factor of 4-5 from 1950 to 2005 and based on the expected population growth could double over the next 25 years. This estimated change has a non-negligible impact on the atmospheric budgets of methyl halides.

  13. On the interpretation of luminescence of lead halide crystals

    Czech Academy of Sciences Publication Activity Database

    Babin, V.; Krasnikov, A.; Nikl, Martin; Stolovits, A.; Zazubovich, S.


    Roč. 229, č. 3 (2002), s. 1295-1304 ISSN 0370-1972 Institutional research plan: CEZ:AV0Z1010914 Keywords : luminescence * lead halide * exciton Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.930, year: 2002

  14. International Symposium on Halide Glasses (2nd) (Extended Abstracts). (United States)


    Glasses In the CuCI -CsBr-PbBr, System" T. Yamagishi, J. Nishii and Y. Kaite, Nippon Sheet Glass Co., Itami City, Japan The glass forming ability of...PbBr2 melts which contained various other halides have been investigated. Among the systems studied, the ternary system CuCI -CsBr-PbBr2 showed a

  15. Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors

    NARCIS (Netherlands)

    Pedesseau, Laurent; Sapori, Daniel; Traore, Boubacar; Robles, Roberto; Fang, Hong-Hua; Loi, Maria Antonietta; Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda; Tretiak, Sergei; Mohite, Aditya D.; Katan, Claudine; Even, Jacky; Kepenekian, Mikael


    Layered halide hybrid organic inorganic perovskites (HOP) have been the subject of intense investigation before the rise of three-dimensional (3D) HOP and their impressive performance in solar cells. Recently, layered HOP have also been proposed as attractive alternatives for photostable solar cells

  16. Strong Carrier-Phonon Coupling in Lead Halide Perovskite Nanocrystals

    NARCIS (Netherlands)

    Iaru, Claudiu M; Geuchies, Jaco J|info:eu-repo/dai/nl/370526090; Koenraad, Paul M; Vanmaekelbergh, Daniël|info:eu-repo/dai/nl/304829137; Silov, Andrei Yu


    We highlight the importance of carrier-phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL

  17. Dislocation unpinning model of acoustic emission from alkali halide ...

    Indian Academy of Sciences (India)

    AE) from alkali halide crystals. Equations are derived for the strain dependence of the transient AE pulse rate, peak value of the AE pulse rate and the total number of AE pulse emitted. It is found that the AE pulse rate should be maximum for a ...

  18. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won


    on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems...

  19. Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides (United States)

    Waas, Jack R.


    Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree-Fock method, and two DFT methods. These calculated values were compared to experimental values where possible. All five methods agreed generally with the expected empirically known trends in the…

  20. Atmospheric behaviour of ammonia and ammonium

    NARCIS (Netherlands)

    Asman, W.A.H.


    1.4.1 Scope of this thesis

    A few models for ammonia and ammonium exist. Russell et al. (1983) made a multi-layer Lagrangian transport model describing the transport and formation of ammonium nitrate aerosol for California. They did not take reactions of ammonia and sulphuric acid

  1. 21 CFR 582.1135 - Ammonium bicarbonate. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium bicarbonate. 582.1135 Section 582.1135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1135 Ammonium bicarbonate. (a)...

  2. Optimization of nutritional requirements and ammonium feeding ...

    African Journals Online (AJOL)



    Sep 7, 2011 ... defined medium and to develop an ammonium control strategy to optimize the specific vitamin B12 production rate (Yp) ... Key words: Statistical designs, Pseudomonas denitrificans, chemically defined medium, ammonium controlling strategy ... analysis provides a powerful tool for effective quanti- fication of ...

  3. 76 FR 46907 - Ammonium Nitrate Security Program (United States)


    ... located in, under, or adjacent to any waters subject to the jurisdiction of the United States. Through its..., marking, labeling, placarding, security plans, emergency response information, training, etc.). f... ``solid ammonium nitrate that is chiefly the ammonium salt of nitric acid and contains not less than 33...

  4. Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell

    NARCIS (Netherlands)

    Kuntke, P.; Geleij, M.; Bruning, H.; Zeeman, G.; Hamelers, H.V.M.; Buisman, C.J.N.


    Ammonium recovery using a 2 chamber microbial fuel cell (MFC) was investigated at high ammonium concentration. Increasing the ammonium concentration (from 0.07 g to 4 g ammonium-nitrogen/L) by addition of ammonium chloride did not affect the performance of the MFC. The obtained current densities by

  5. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation (United States)

    Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania; Stavrakas, Camille; Philippe, Bertrand; Richter, Johannes M.; Alsari, Mejd; Booker, Edward P.; Hutter, Eline M.; Pearson, Andrew J.; Lilliu, Samuele; Savenije, Tom J.; Rensmo, Håkan; Divitini, Giorgio; Ducati, Caterina; Friend, Richard H.; Stranks, Samuel D.


    Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can

  6. Metal-free catalytic oxidation of sulfides to sulfoxides with ammonium nitrate, ammonium hydrogen sulfate and ammonium bromide as catalyst


    Ghorbani-Choghamarani, Arash; Zolfigol, Mohammad Ali; Ayazi-Nasrabadi, Roia


    A general and metal-free catalytic oxidation of aliphatic and aromatic sulfides to their corresponding sulfoxides via combination of ammonium nitrate (NH4NO3), supported ammonium hydrogen sulfate on silica gel (NH4HSO4-SiO2) and a catalytic amount of ammonium bromide (NH4Br) in the presence of wet SiO2 (50%, w/w) has been investigated. The reactions were carried out heterogeneously and selectively in short reaction times in CH2Cl2 at room temperature. This protocol is mild and efficient compa...

  7. Ammonium sulfate preparation from phosphogypsum waste

    Directory of Open Access Journals (Sweden)

    Abdel-Hakim T. Kandil


    Full Text Available The Egyptian phosphogypsum waste is treated using sulfuric acid prior the ammonium sulfate production. The relevant factors that would affect the removal efficiencies of some impurities are studied. The optimum conditions of the treatment are 8 M sulfuric acid solution and 1/4 solid/liquid ratio for 30 min contact time at 80 °C. Moreover, the optimum conditions of the ammonium sulfate preparation are 10 g of the suspended impure or purified phosphogypsum in 40 ml of 3% ammonium sulfate solution (as initiator, 1/4 solid/liquid ratio at pH7 at an addition of an excess ammonium carbonate, and 150 rpm stirring speed for 4.0 h contact time at 55 °C as well as the 5 mg of barium chloride is added to remove the radium in the ammonium sulfate product. Finally, the ammonium sulfate is crystallized and the chemical analysis of the product shows 20% nitrogen and 23.6% sulfur. Therefore, the purity of the obtained ammonium sulfate is 95% from the purified phosphogypsum.

  8. Ammonium sulfate preparation from phosphogypsum waste


    Kandil, Abdel-Hakim T.; Cheira, Mohamed F.; Gado, Hady S.; Soliman, Madiha H.; Akl, Hesham M.


    The Egyptian phosphogypsum waste is treated using sulfuric acid prior the ammonium sulfate production. The relevant factors that would affect the removal efficiencies of some impurities are studied. The optimum conditions of the treatment are 8 M sulfuric acid solution and 1/4 solid/liquid ratio for 30 min contact time at 80 °C. Moreover, the optimum conditions of the ammonium sulfate preparation are 10 g of the suspended impure or purified phosphogypsum in 40 ml of 3% ammonium sulfate soluti...

  9. Ab-Initio Calculation of Electronic Structure of Lead Halide Perovskites with Formamidinium Cation as an Active Material for Perovskite Solar Cells (United States)

    Indari, E. D.; Wungu, T. D. K.; Hidayat, R.


    Organic lead halide perovskite material based solar cells show impressive power conversion efficiencies, which can reach above 19 percent for perovskite solar cell with methyl-ammonium cations. These efficiencies are originated from efficient photoexcitation and charge carrier transport and not observed in conventional perovskite crystals. In this preliminary research work, we therefore performed Density Functional Theory (DFT) calculation of formamidinium lead iodide (FAPI), an alternative to methyl-ammonium lead iodide (MAPI), to predict their electronic structure and density of state (DOS). The calculation result at the most stable lattice parameters show a good agreement with the experiment results. The obtained band gap energy is 1.307 eV. The valence band is dominantly formed by the 5p orbitals of I- anions, while the conduction band is dominantly formed by the 6p orbitals of Pb2+ cations. The DOS of valence band of this perovskite seems smaller compared to the case of methyl-ammonium lead iodide perovskite, which then may explain the observation of smaller power conversion efficiencies in perovskite solar cells with this formamidinium cations.

  10. Heterofacial alkylation of alkylenediamines by higher alkyl halides

    International Nuclear Information System (INIS)

    Semenov, V.A.; Kryshko, G.M.; Sokal'skaya, L.I.; Zhukova, N.G.


    A study of the physiochemical properties of alkylenediamines substituted by lower alkyls, showed that they possess increased complex-forming ability with respect to salts of different metals as titanium, niobium, zirconium, molybdenum, and zinc. To create a simpler method of synthesis of higher tetraaklyalkylalklyenediamines, based on the use of the accessible domestic raw material, the authors investigated the reaction of alkylenediamines with various alkyl halides. It was established that the best reagents can be obtained using alkyl bromides. It is concluded that the procedure of alkylation of alkylenediamines by higher alkyl halides in the presence of water developed permits the production of terraalkylalkylenediamines in one step with good yield and with purity acceptable for use as extraction reagents

  11. Double Charged Surface Layers in Lead Halide Perovskite Crystals

    KAUST Repository

    Sarmah, Smritakshi P.


    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  12. Laser Direct Write Synthesis of Lead Halide Perovskites. (United States)

    Chou, Stanley S; Swartzentruber, Brian S; Janish, Matthew T; Meyer, Kristin C; Biedermann, Laura B; Okur, Serdal; Burckel, D Bruce; Carter, C Barry; Kaehr, Bryan


    Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. Here we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We demonstrate arbitrary pattern formation of crystalline CH 3 NH 3 PbBr 3 on a range of substrates and fabricate and characterize a microscale photodetector using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.

  13. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.


    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) leadhalide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-tohead Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.

  14. Alkali Halide Microstructured Optical Fiber for X-Ray Detection (United States)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.


    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  15. Phase holograms formed by silver halide (sensitized) gelatin processing. (United States)

    Graver, W R; Gladden, J W; Eastes, J W


    A novel recording process for the formation of phase volume holograms at up to 1500 cycles/mm is described. The term silver halide (sensitized) gelatin or SHG denotes an all-gelatin phase material, which records the initial image information through photon absorption by the silver halide. Our process uses a reversal bleach that dissolves the developed silver image and cross-links the gelatin molecules in the vicinity of the developed image. Experiments have determined the stored image as refractive-index differences within the remaining gelatin. The major attributes of SHG holograms are (1) panchromatic response, (2) 100:1 greater light sensitivity than dichromate (sensitized) gelatin, and (3) elimination of darkening (printout) effects.

  16. Electrolytic systems and methods for making metal halides and refining metals (United States)

    Holland, Justin M.; Cecala, David M.


    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  17. Influence of the Print Run on Silver Halide Printing Plates

    Directory of Open Access Journals (Sweden)

    Tomislav Cigula


    Full Text Available The most common printing technique today is lithography. The difference between printing and nonprinting areason a printing plate is accomplished by opposite physical and chemical properties of those areas (MacPhee, 1998.The printing areas are made of photoactive layer that attracts oil and chemical substances with oil solvent – printinginks. The nonprinting areas are made of aluminium-oxide which attracts water based substances – the fountainsolution.There are many of various types of photoactive layer which are used for production of offset printing plates, amongothers is silver halide layer. The usage of the silver halide technology in the graphic reproduction is not a novelty.The filmmaking phase is based on the usage of the silver halide as the photographically active ingredient, for instance,AgBr (silver bromide. The new, digital plate making technology (Computer to Plate, CtP eliminates thefilmmaking phase and therefore enables control of the printing plate’s exposure made by computer. CtP technologyeliminates the filmmaking phase, but it also results with the reduction of needed material quantities and requiredtime for the production (Limburg, 1994; Seydel, 1996.In this paper the basis of the graphic reproduction by using the silver halide digital printing plates was described.The changes of the AgX copying layer and the surface of the aluminium base in the printing process have beenobserved. The surface characteristics were determined by measuring the relevant surface roughness parameters. Inaddition, measurements of coverage values on the prints, detailed at smaller print run, were conducted.Results showed that surface changes on the printing plate are changing during printing process and that thesechanges influence transfer of the printing ink on the printing substrate. These measurements proved to be of greatinterest in the graphic reproduction as they enable us to determine consistency of the printing plates during theprinting

  18. Development and melt growth of novel scintillating halide crystals

    Czech Academy of Sciences Publication Activity Database

    Yoshikawa, A.; Yokota, Y.; Shoji, Y.; Král, Robert; Kamada, K.; Kurosawa, S.; Ohashi, Y.; Arakawa, M.; Chani, V.I.; Kochurikhin, V.V.; Yamaji, A.; Medvedev, A.; Nikl, Martin


    Roč. 74, Dec (2017), s. 109-119 ISSN 0925- 3467 Institutional support: RVO:68378271 Keywords : scintillator * halide * crystal growth from the melt * Bridgman method * Czochralski method * edge-defined film-fed method * micro-pulling-down method Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.238, year: 2016

  19. Electrochemically and Bioelectrochemically Induced Ammonium Recovery (United States)

    Gildemyn, Sylvia; Luther, Amanda K.; Andersen, Stephen J.; Desloover, Joachim; Rabaey, Korneel


    Streams such as urine and manure can contain high levels of ammonium, which could be recovered for reuse in agriculture or chemistry. The extraction of ammonium from an ammonium-rich stream is demonstrated using an electrochemical and a bioelectrochemical system. Both systems are controlled by a potentiostat to either fix the current (for the electrochemical cell) or fix the potential of the working electrode (for the bioelectrochemical cell). In the bioelectrochemical cell, electroactive bacteria catalyze the anodic reaction, whereas in the electrochemical cell the potentiostat applies a higher voltage to produce a current. The current and consequent restoration of the charge balance across the cell allow the transport of cations, such as ammonium, across a cation exchange membrane from the anolyte to the catholyte. The high pH of the catholyte leads to formation of ammonia, which can be stripped from the medium and captured in an acid solution, thus enabling the recovery of a valuable nutrient. The flux of ammonium across the membrane is characterized at different anolyte ammonium concentrations and currents for both the abiotic and biotic reactor systems. Both systems are compared based on current and removal efficiencies for ammonium, as well as the energy input required to drive ammonium transfer across the cation exchange membrane. Finally, a comparative analysis considering key aspects such as reliability, electrode cost, and rate is made. This video article and protocol provide the necessary information to conduct electrochemical and bioelectrochemical ammonia recovery experiments. The reactor setup for the two cases is explained, as well as the reactor operation. We elaborate on data analysis for both reactor types and on the advantages and disadvantages of bioelectrochemical and electrochemical systems. PMID:25651406

  20. Methyl halide emissions from greenhouse-grown mangroves (United States)

    Manley, Steven L.; Wang, Nun-Yii; Walser, Maggie L.; Cicerone, Ralph J.


    Two mangrove species, Avicennia germinans and Rhizophora mangle, were greenhouse grown for nearly 1.5 years from saplings. A single individual of each species was monitored for the emission of methyl halides from aerial tissue. During the first 240 days, salinity was incrementally increased with the addition of seawater, and was maintained between 18 and 28‰ for the duration of the study. Exponential growth occurred after 180 days. Methyl halide emissions normalized to leaf area were measured throughout the study and varied dramatically. Emission rates normalized to land area (mg m-2 y-1), assuming a LAI = 5, yielded 82 and 29 for CH3Cl, 10 and 1.6 for CH3Br, and 26 and 11 for CH3I, for A. germinans and R. mangle, respectively. From these preliminary determinations, only CH3I emissions emerge as being of possible global atmospheric significance. This study emphasizes the need for field studies of methyl halide emissions from mangrove forests.

  1. Lasing in robust cesium lead halide perovskite nanowires (United States)

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong


    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  2. Effects of halides on plasmid-mediated silver resistance in Escherichia coli. (United States)

    Gupta, A; Maynes, M; Silver, S


    Silver resistance of sensitive Escherichia coli J53 and resistance plasmid-containing J53(pMG101) was affected by halides in the growth medium. The effects of halides on Ag+ resistance were measured with AgNO3 and silver sulfadiazine, both on agar and in liquid. Low concentrations of chloride made the differences in MICs between sensitive and resistant strains larger. High concentrations of halides increased the sensitivities of both strains to Ag+.

  3. High Pressure phase transition in some alkali halides using interatomic potential model

    International Nuclear Information System (INIS)

    Yazar, H.R.


    We have predicted the phase transition pressure in some alkali halides using an interatomic potential approach based on rigid ion model.The phase transition pressures(28.69 and 2.4 GPa) obtained by us for two alkali halides (NaCl and KCl ) are in closer agreement with their corresponding experimental data(29.0 and 2.0 GPa).This potential is promising with respect to prediction of the phase transition pressure of other alkali halides as well

  4. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate... (United States)


    ..., combustible liquids, corrosive liquids, chlorates, permanganates, finely divided metals, caustic soda... molten ammonium nitrate if a fire occurred (and thus become potential detonators for the storage piles...

  5. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. (United States)


    ... ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with..., blasting, type B, and Explosives, blasting, type E, Division 1.5 compatibility group D. (f) No mixture...

  6. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. (United States)

    Liu, Sitong; Yang, Fenglin; Gong, Zheng; Meng, Fangang; Chen, Huihui; Xue, Yuan; Furukawa, Kenji


    The simultaneous ammonium and sulfate removal was detected in an anammox reactor, consisted of ammonium oxidization with sulfate deoxidization, and subsequently traditional anammox process, in via of middle medium nitrite with solid sulfur and N2 as the terminal products. The pure anammox bacteria offered a great biotechnological potential for the completely autotrophic reaction indicated by batch tests. Denaturing gradient gel electrophoresis (DGGE) analysis further revealed that a new organism belonging to Planctomycetales was strongly enriched in the defined niche: the redox of ammonium and sulfate. The new species "Anammoxoglobussulfate" was so considered as holding a critical role in the ammonium oxidization with sulfate deoxidization to nitrite. Afterwards, the Planctomyces existing in the bacteria community performed the anammox process together to achieve the complete nitrogen and sulfate removal. The potential use of sulfate as electron acceptor for ammonium oxidizing widens the usage of anammox bacteria.

  7. Seasonal variations in halides in marine brown algae from Porbandar and Okha coasts (NW coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Ch.K.; Singbal, S.Y

    Seasonal variation of halides and their ratios were estimated in three brown algae, namely Cystoseira indica, Sargassum tenerrimum) and S. johnstonii from Porbandar and Okha Coasts. Halides were found to be higher in early stages of growth. The Br...

  8. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures. (United States)


    ... lamp, and the capacitor when the capacitor is provided, shall constitute a nominal system in accordance... designed to be operated with a metal halide lamp and a ballast for a metal halide lamp. Probe-start metal... discharge and then power to sustain the discharge through the glow-to-arc transition. Test Procedures ...

  9. Broadly tunable metal halide perovskites for solid-state light-emission applications

    NARCIS (Netherlands)

    Adjokatse, Sampson; Fang, Hong-Hua; Loi, Maria Antonietta


    The past two years have witnessed heightened interest in metal-halide perovskites as promising optoelectronic materials for solid-state light emitting applications beyond photovoltaics. Metal-halide perovskites are low-cost solution-processable materials with excellent intrinsic properties such as

  10. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition (United States)

    Carlsten, R.W.; Nissen, D.A.


    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  11. Reduction in Ammonium Ions in Sludge Liquor

    Directory of Open Access Journals (Sweden)

    Eglė Šlajūtė


    Full Text Available Liquor rejected from the centrifugation of the digested sludge can contain the concentrations of ammonium ions up to 1750 mg/L. These loads are usually returned to the intake of wastewater treatment plants (WWTP without additional treatment and can have a negative impact on biological wastewater and/or sludge treatment processes, e.g. phosphorus and nitrogen removal. This article deals with the use of naturally obtained sorbent, zeolite, in batch and column test procedure for removing ammonium from the rejected liquor. This research study was carried out using different sizes of zeolite particles: 0.8–1.6 mm and 1.6–2.5 mm. The highest efficiency of ammonium removal (up to 98 % was achieved by applying the zeolite particles of 0.8–1.6 mm.Article in Lithuanian

  12. The ammonium sulfate inhibition of human angiogenin. (United States)

    Chatzileontiadou, Demetra S M; Tsirkone, Vicky G; Dossi, Kyriaki; Kassouni, Aikaterini G; Liggri, Panagiota G V; Kantsadi, Anastassia L; Stravodimos, George A; Balatsos, Nikolaos A A; Skamnaki, Vassiliki T; Leonidas, Demetres D


    In this study, we investigate the inhibition of human angiogenin by ammonium sulfate. The inhibitory potency of ammonium sulfate for human angiogenin (IC50 = 123.5 ± 14.9 mm) is comparable to that previously reported for RNase A (119.0 ± 6.5 mm) and RNase 2 (95.7 ± 9.3 mm). However, analysis of two X-ray crystal structures of human angiogenin in complex with sulfate anions (in acidic and basic pH environments, respectively) indicates an entirely distinct mechanism of inhibition. While ammonium sulfate inhibits the ribonucleolytic activity of RNase A and RNase 2 by binding to the active site of these enzymes, sulfate anions bind only to peripheral substrate anion-binding subsites of human angiogenin, and not to the active site. © 2016 Federation of European Biochemical Societies.

  13. Calcium phosphate cements with strontium halides as radiopacifiers. (United States)

    López, Alejandro; Montazerolghaem, Maryam; Engqvist, Håkan; Ott, Marjam Karlsson; Persson, Cecilia


    High radiopacity is required to monitor the delivery and positioning of injectable implants. Inorganic nonsoluble radiopacifiers are typically used in nondegradable bone cements; however, their usefulness in resorbable cements is limited due to their low solubility. Strontium halides, except strontium fluoride, are ionic water-soluble compounds that possess potential as radiopacifiers. In this study, we compare the radiopacity, mechanical properties, composition, and cytotoxicity of radiopaque brushite cements prepared with strontium fluoride (SrF2 ), strontium chloride (SrCl2 ·6H2 O), strontium bromide (SrBr2 ), or strontium iodide (SrI2 ). Brushite cements containing 10 wt % SrCl2 ·6H2 O, SrBr2 , or SrI2 exhibited equal to or higher radiopacity than commercial radiopaque cements. Furthermore, the brushite crystal lattice in cements that contained the ionic radiopacifiers was larger than in unmodified cements and in cements that contained SrF2 , indicating strontium substitution. Despite the fact that the strontium halides increased the solubility of the cements and affected their mechanical properties, calcium phosphate cements containing SrCl2 ·6H2 O, SrBr2 , and SrI2 showed no significant differences in Saos-2 cell viability and proliferation with respect to the control. Strontium halides: SrCl2 ·6H2 O, SrBr2 , and SrI2 may be potential candidates as radiopacifiers in resorbable biomaterials although their in vivo biocompatibility, when incorporated into injectable implants, is yet to be assessed. Copyright © 2013 Wiley Periodicals, Inc.

  14. 10 CFR 431.324 - Uniform test method for the measurement of energy efficiency of metal halide ballasts. (United States)


    ... energy efficiency of metal halide ballasts. (b) Testing and Calculations. [Reserved] Energy Conservation... efficiency of metal halide ballasts. 431.324 Section 431.324 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and...

  15. Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts (United States)

    Gorin, Everett


    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.

  16. Transport phenomena of aluminium oxide in metal halide lamps

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S; Markus, T [Institute for Energy Research, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Niemann, U [Philips GmbH, Research Laboratories, PO Box 500145, Aachen, D-52085 (Germany)], E-mail:


    A better understanding of the transport phenomena observed in metal halide lamps can be achieved using computer-based model calculations. The chemical transport of aluminium oxide in advanced high-pressure discharge vessels was calculated as a function of temperature and composition of the salt mixture relevant to the lamp. Below 1773 K chemical transport is the prevailing process; above this temperature the vaporization and condensation of the envelope material-aluminium oxide-become more important. The results of the calculations show that the amount of transported alumina increases linearly with the number of iteration cycles and exponentially with the temperature gradient.

  17. Status quo of ceramic material for metal halide discharge lamps

    International Nuclear Information System (INIS)

    Kappen, Theo G M M


    Polycrystalline alumina is an excellent ceramic material for use as the envelope for metal halide discharge lamps. Although this material was introduced in the mid-1960s, and is thus already known for several decades, recent years have seen considerable effort aimed at further development of these ceramic envelope materials. Developments are not only in the field of ceramic shaping technologies, but are also concentrated on the material properties of the ceramic material itself. Optical, mechanical as well as the chemical properties of the ceramic envelope are strongly controlled by the shape as well as the microstructure of the ceramics used

  18. Evaluation of field test equipment for halide and DOP testing

    International Nuclear Information System (INIS)

    Schreiber, K.L.; Kovach, J.L.


    The Nucon Testing Services Department, field testing at power reactor sites, has performed tests using R-11, R-12, and R-112 in conjunction with gas chromatographs and direct reading halide detectors. The field operational experience with these detector systems, thus sensitivity, precision, and manner of field calibration, are presented. Laboratory experiments regarding 3 H-tagged methyl iodide for in place leak testing of adsorber systems indicate a low hazard, high reliability process for leak testing in facilities where atmospheric cross contamination occurs. (U.S.)

  19. Synthesis of halide- and solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Richter, Bo

    have challenges due to their high desorption kinetics and limited reversibility at moderate conditions.[2],[3],[4] In this work, we present a new approach to synthesize halide- and solvent free metal borohydrides starting from the respective metal hydride. The synthetic strategy ensures that no metal...... to the metal. Hence, the powdered M(BH4)3∙DMS is heated to 140 °C for 4 hours to obtain pure M(BH4)3. The rare-earth metal borohydrides have been investigated by infrared spectroscopy and thermal analysis (TGA-DSC-MS). Furthermore, the structural trends are investigated by synchrotron radiation powder X...

  20. On the evaporation of ammonium sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.


    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  1. On the evaporation of ammonium sulfate solution

    International Nuclear Information System (INIS)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.


    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 ± 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  2. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    David T. Moore


    Full Text Available The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  3. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    KAUST Repository

    Moore, David T.


    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material.Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt\\'s anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films. © 2014 Author(s).

  4. Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts (United States)

    Houriez, Céline; Vallet, Valérie; Réal, Florent; Meot-Ner Mautner, Michael; Masella, Michel


    We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in CH3 COO-/CH3 NH3+ solutions at the 0.2-0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the HCOO-/NH4+ pair and 3.3 ± 1.2 molecules for the CH3COO-/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.

  5. Effects of Aromatic Ammoniums on Methyl Ammonium Lead Iodide Hybrid Perovskite Materials

    Directory of Open Access Journals (Sweden)

    Jianli Yang


    Full Text Available The introduction of bulky ammoniums into methyl ammonium lead iodide hybrid perovskites (MAPbI3 has emerged as a promising strategy to improve the properties of these materials. In the present work, we studied the effects of several aromatic ammoniums onto the structural, electronic, and optical properties of MAPbI3. Although powder XRD data suggest that the bulky cations are not involved in the bulk phase of the MAPbI3, a surprisingly large effect of the bulky cations onto the photoluminescence properties was observed.

  6. A vibrational model of F centres in alkali halides

    Energy Technology Data Exchange (ETDEWEB)

    Salis, M. [Universita di Cagliari, Dipt. di Fisica, Istituto Nazionale di Fisica della Materia, Monserrato, CA (Italy)


    Halide vacancies in ionic crystals originate localized positive extra-charges which can trap electrons when crystals are excited by ionizing radiations. A model of F-centres in alkali halides, which relates absorption energies in F-bands to the dynamic parameters of host lattices, is proposed. According to this model, the electrons trapped in F-centres are treated as classical particles with a proper mass, m{sup *} = m*{epsilon}{sub loc}{sup 4} / {epsilon}{sub {infinity}}{sup 2}, m standing for the actual electron mass, and {epsilon}{sub loc} and {epsilon}{sub {infinity}} for local high frequency and optical dielectric constants, respectively. Hence, by considering the trapped electrons as substitutional impurities of small mass, the dynamics of the lattice is investigated by means of the theory of local modes with the assumption of isotopy. A simple equation allowing calculation of the local mode frequencies is obtained. Knowledge of the Debye frequency and of transverse and longitudinal mode frequencies at the long wavelength limit is required. With this model, F-band absorption energy is reasonably well accounted for. (author)

  7. Low -Dimensional Halide Perovskites and Their Advanced Optoelectronic Applications (United States)

    Zhang, Jian; Yang, Xiaokun; Deng, Hui; Qiao, Keke; Farooq, Umar; Ishaq, Muhammad; Yi, Fei; Liu, Huan; Tang, Jiang; Song, Haisheng


    Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A-1, respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W-1 and a specific normalized detectivity of the order of 1012 Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.

  8. Subsurface Ectomycorrhizal Fungi: A New Source of Atmospheric Methyl Halides? (United States)

    Treseder, K. K.; Redeker, K. R.; Allen, M. F.


    Incomplete source budgets for methyl halides---compounds that release inorganic halogen radicals which, in turn, catalyze atmospheric ozone depletion---limit our abilities to predict the fate of the stratospheric ozone layer. We tested the ability ectomycorrhizal fungi to produce methyl bromide and methyl iodide. These fungi are abundant in temperate forests, where they colonize tree roots and provide nutrients to their symbiotic plants in exchange for carbon compounds. The observed range of emissions from seven different species in culture is 0.001- to 100-μ g g-1 fungi d-1 for methyl bromide, and 0.5- to 500-μ g g-1 fungi d-1 for methyl iodide. While methyl chloride was not specifically tested, large emissions were observed from several species with little to no emissions observed from others. Further analyses of the effects of substrate concentration, headspace concentration, and temperature were performed on the species Cenococcum geophilum, one of the most abundant ectomycorrhizal fungi. Our results suggest that subsurface fungal emissions may be a significant global source of methyl halides.

  9. Cation Dynamics Governed Thermal Properties of Lead Halide Perovskite Nanowires. (United States)

    Wang, Yuxi; Lin, Renxing; Zhu, Pengchen; Zheng, Qinghui; Wang, Qianjin; Li, Deyu; Zhu, Jia


    Metal halide perovskite (MHP) nanowires such as hybrid organic-inorganic CH 3 NH 3 PbX 3 (X = Cl, Br, I) have drawn significant attention as promising building blocks for high-performance solar cells, light-emitting devices, and semiconductor lasers. However, the physics of thermal transport in MHP nanowires is still elusive even though it is highly relevant to the device thermal stability and optoelectronic performance. Through combined experimental measurements and theoretical analyses, here we disclose the underlying mechanisms governing thermal transport in three different kinds of lead halide perovskite nanowires (CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr 3 and CsPbBr 3 ). It is shown that the thermal conductivity of CH 3 NH 3 PbBr 3 nanowires is significantly suppressed as compared to that of CsPbBr 3 nanowires, which is attributed to the cation dynamic disorder. Furthermore, we observed different temperature-dependent thermal conductivities of hybrid perovskites CH 3 NH 3 PbBr 3 and CH 3 NH 3 PbI 3 , which can be attributed to accelerated cation dynamics in CH 3 NH 3 PbBr 3 at low temperature and the combined effects of lower phonon group velocity and higher Umklapp scattering rate in CH 3 NH 3 PbI 3 at high temperature. These data and understanding should shed light on the design of high-performance MHP based thermal and optoelectronic devices.

  10. Ultralow thermal conductivity in all-inorganic halide perovskites. (United States)

    Lee, Woochul; Li, Huashan; Wong, Andrew B; Zhang, Dandan; Lai, Minliang; Yu, Yi; Kong, Qiao; Lin, Elbert; Urban, Jeffrey J; Grossman, Jeffrey C; Yang, Peidong


    Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here, we report ultralow lattice thermal conductivities of solution-synthesized, single-crystalline all-inorganic halide perovskite nanowires composed of CsPbI 3 (0.45 ± 0.05 W·m -1 ·K -1 ), CsPbBr 3 (0.42 ± 0.04 W·m -1 ·K -1 ), and CsSnI 3 (0.38 ± 0.04 W·m -1 ·K -1 ). We attribute this ultralow thermal conductivity to the cluster rattling mechanism, wherein strong optical-acoustic phonon scatterings are driven by a mixture of 0D/1D/2D collective motions. Remarkably, CsSnI 3 possesses a rare combination of ultralow thermal conductivity, high electrical conductivity (282 S·cm -1 ), and high hole mobility (394 cm 2 ·V -1 ·s -1 ). The unique thermal transport properties in all-inorganic halide perovskites hold promise for diverse applications such as phononic and thermoelectric devices. Furthermore, the insights obtained from this work suggest an opportunity to discover low thermal conductivity materials among unexplored inorganic crystals beyond caged and layered structures.

  11. Sodium-metal halide and sodium-air batteries. (United States)

    Ha, Seongmin; Kim, Jae-Kwang; Choi, Aram; Kim, Youngsik; Lee, Kyu Tae


    Impressive developments have been made in the past a few years toward the establishment of Na-ion batteries as next-generation energy-storage devices and replacements for Li-ion batteries. Na-based cells have attracted increasing attention owing to low production costs due to abundant sodium resources. However, applications of Na-ion batteries are limited to large-scale energy-storage systems because of their lower energy density compared to Li-ion batteries and their potential safety problems. Recently, Na-metal cells such as Na-metal halide and Na-air batteries have been considered to be promising for use in electric vehicles owing to good safety and high energy density, although less attention is focused on Na-metal cells than on Na-ion cells. This Minireview provides an overview of the fundamentals and recent progress in the fields of Na-metal halide and Na-air batteries, with the aim of providing a better understanding of new electrochemical systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Halide salts accelerate degradation of high explosives by zerovalent iron

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Shea, Patrick J.; Yang, Jae E.; Kim, Jang-Eok


    Zerovalent iron (Fe 0 , ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe 0 (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24 h also restored ZVI reactivity, resulting in complete degradation within 8 h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl - and Br - was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br - was present in solution. - The addition of halide ions promotes the degradation of high explosives by zerovalent iron

  13. Anaerobic ammonium oxidation in an estuarine sediment

    NARCIS (Netherlands)

    Risgaard-Petersen, N.; Meyer, R.L.; Schmid, M.C.; Jetten, M.S.M.; Enrich-Prast, A.; Rysgaard, S.; Revsbech, N.P.


    The occurrence and significance of the anammox (anaerobic ammonium oxidation) process relative to denitrification was studied in photosynthetically active sediment from 2 shallow-water estuaries: Randers Fjord and Norsminde Fjord, Denmark. Anammox accounted for 5 to 24 % of N-2 production in Randers

  14. Anaerobic ammonium oxidation in an estuarine sediment

    NARCIS (Netherlands)

    Risgaard-Petersen, N.; Meyer, R.L.; Schmid, M.; Jetten, M.S.M.; Enrich-Prast, A.; Rysgaard, S.; Revsbech, N.P.


    The occurrence and significance of the anammox (anaerobic ammonium oxidation) process relative to denitrification was studied in photosynthetically active sediment from 2 shallow-water estuaries: Randers Fjord and Norsminde Fjord, Denmark. Anammox accounted for 5 to 24% of N2 production in Randers

  15. 21 CFR 558.340 - Maduramicin ammonium. (United States)


    .... Feed continuously as sole ration. Do not feed to laying hens. Withdraw 5 days before slaughter. (2... DRUGS, FEEDS, AND RELATED PRODUCTS NEW ANIMAL DRUGS FOR USE IN ANIMAL FEEDS Specific New Animal Drugs for Use in Animal Feeds § 558.340 Maduramicin ammonium. (a) Approvals. Type A medicated articles: 4.54...

  16. Lectin status, protein contents and ammonium assimilating ...

    African Journals Online (AJOL)

    activity of the ammonium assimilatory enzyme glutamine synthetase. M. nigra and M. alba extracts contained potent phytoagglutinins in various tissues with highest contents in M. nigra. The leaves and roots of both species of mulberry were used to determine the glutamine synthetase activity and high level of activity was ...

  17. Ammonium ions determination with polypyrrole modified electrode

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia


    Full Text Available The present work relates the preparation of polypyrrole films (PPy deposited on surfaces of glass carbon, nickel and ITO (tin oxide doped with indium on PET plastic, in order to study the ammonium detection. The popypyrrole films were polymerized with dodecylbenzenesulfonate (DBSA on the electrodes, at + 0,70 V vs. Ag/AgCl, based on a solution containing the pyrrole monomer and the amphiphilic salt. Films deposited on glass carbon presented better performance. Cyclic voltammetries, between – 1,50 to + 0,5 V vs. Ag/AgCl, were repeated adding different concentrations of NH4Cl, in order to observe the behavior of the film as a possible detector of ions NH4+. The peak current for oxidation varies with the concentration of ammonium. A linear region can be observed in the band of 0 to 80 mM, with a sensibility (Sppy approximately similar to 4,2 mA mM-1 cm-2, showing the efficacy of the electrodes as sensors of ammonium ions. The amount of deposited polymer, controlled by the time of growth, does not influence on the sensor sensibility. The modified electrode was used to determine ammonium in grounded waters.

  18. Ammonium conversion in liquid organic fertilisers

    NARCIS (Netherlands)

    Blok, C.; Streminska, M.; Vermeulen, T.


    Liquid organic fertilisers allow growers to abandon the use of conventional de novo (mined or synthesised) fertilisers without major technological adaptions to the cultivation system. In prior experiments the conversion by aerobic substrate born bacteria of ammonium into nitrate was plant growth

  19. Effects of ammonium nitrate, cesium chloride and ...

    African Journals Online (AJOL)



    Oct 12, 2011 ... Key words: Potassium, high affinity transporters, channel blockers, ammonium. .... channel AtAKT1, indicating that channels may be involved in high-affinity. K+ uptake in a range of K+ concentrations (Hirsch et al.,. 1998; Spalding et al., ...... and tissue potassium concentrations by negative feedback effects.

  20. 21 CFR 184.1135 - Ammonium bicarbonate. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium bicarbonate. 184.1135 Section 184.1135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 18...

  1. Optimization of nutritional requirements and ammonium feeding ...

    African Journals Online (AJOL)

    Through Plackett-Burman design, the major factors of glucose, ammonium sulfate and KCl were selected as the significant factors affecting vitamin B12 biosynthesis and these were further optimized by central composite design with response surface methodology. The maximum Yp of 34.2 μg/gDCW/h was obtained in batch ...

  2. Effect of Ethylenediaminetetraacetic Acid and Ammonium Oxalate ...

    African Journals Online (AJOL)

    This research was carried out to investigate effect of ethylenediaminetetraacetic acid and ammonium oxalate on the prevalence of microorganisms and removal of aluminum in soil by bitter leaf plant (Vernonia amygdalina). The test plant was sown in aluminium-polluted soil (conc. = 150mg Al kg-1 soil). One gram of each ...

  3. PRN 88-2: Clustering of Quaternary Ammonium Compounds (United States)

    This Notice announces that EPA has clustered the Quaternary Ammonium Compounds into four groups for the purpose of testing chemicals to build a database that will support continued registration of the entire family of quaternary ammonium compounds

  4. Formability of ABX3 (X=F,Cl,Br,I) halide perovskites

    International Nuclear Information System (INIS)

    Li Chonghea; Lu Xionggang; Ding Weizhong; Feng Liming; Gao Yonghui; Guo Ziming


    In this study a total of 186 complex halide systems were collected; the formabilities of ABX 3 (X = F, Cl, Br and I) halide perovskites were investigated using the empirical structure map, which was constructed by Goldschmidt's tolerance factor and the octahedral factor. A model for halide perovskite formability was built up. In this model obtained, for all 186 complex halides systems, only one system (CsF-MnF 2 ) without perovskite structure and six systems (RbF-PbF 2 , CsF- BeF 2 , KCl-FeCl 2 , TlI-MnI 2 , RbI-SnI 2 , TlI-PbI 2 ) with perovskite structure were wrongly classified, so its predicting accuracy reaches 96%. It is also indicated that both the tolerance factor and the octahedral factor are a necessary but not sufficient condition for ABX 3 halide perovskite formability, and a lowest limit of the octahedral factor exists for halide perovskite formation. This result is consistent with our previous report for ABO 3 oxide perovskite, and may be helpful to design novel halide materials with the perovskite structure. (orig.)

  5. Refined global methyl halide budgets with respect to rapeseed (Brassica napus) by life-cycle measurements (United States)

    Jiao, Y.; Acdan, J.; Xu, R.; Deventer, M. J.; Rhew, R. C.


    A precise quantification of global methyl halide budgets is needed to evaluate the ozone depletion potential of these compounds and to predict future changes of stratospheric ozone. However, the global budgets of methyl halides are not balanced between currently identified and quantified sources and sinks. Our study re-evaluated the methyl bromide budget from global cultivated rapeseed (Brassica napus) through life-cycle flux measurements both in the greenhouse and in the field, yielding a methyl bromide emission rate that scales globally to 1.0 - 1.2 Gg yr-1. While this indicates a globally significant source, it is much smaller than the previously widely cited value of 5 - 6 Gg yr-1(Mead et al., 2008), even taking into account the near tripling of annual global yield of rapeseed since the previous evaluation was conducted. Our study also evaluated the methyl chloride and methyl iodide emission levels from rapeseed, yielding emission rates that scale to 5.4 Gg yr-1 for methyl chloride and 1.8 Gg yr-1 of methyl iodide. The concentrations of the methyl donor SAM (S-adenosyl methionine) and the resultant product SAH (S-Adenosyl-L-homocysteine) were also analyzed to explore their role in biogenic methyl halide formation. Halide gradient incubations showed that the magnitude of methyl halide emissions from rapeseed is highly correlated to soil halide levels, thus raising the concern that the heterogeneity of soil halide contents geographically should be considered when extrapolating to global budget.

  6. Uptake and accumulation of ammonium by Alexandrium catenella ...

    African Journals Online (AJOL)

    Following nitrogen exhaustion from the medium, ammonium pulses of varying magnitudes were induced, and measurements of extra- and intra-cellular ammonium were carried out for 24–72h along with measurements of ammonium incorporation (15N tracer) and inorganic carbon fixation (13C tracer). During vegetative ...

  7. Spectrometric determination of ammonium-nitrogen with quinol in ...

    African Journals Online (AJOL)

    Quinol is proposed as a reagent for the spectrometric determination of ammonium-nitrogen (NH4+-N) in aqueous medium. Quinol forms a pink complex with ammonium salt in aqueous medium. Hydrogen peroxide is needed for colour accentuation. The quinol/ammonium charge transfer complex has absorption maximum ...

  8. 21 CFR 582.1127 - Aluminum ammonium sulfate. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of...

  9. 21 CFR 182.1127 - Aluminum ammonium sulfate. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  10. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts

    KAUST Repository

    Falivene, Laura


    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol-1. This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. © 2013 The Royal Society of Chemistry.

  11. Electrochemical mechanism of silver nanoprisms transformation in aqueous solutions containing the halide ions (United States)

    Abkhalimov, E. V.; Timofeev, A. A.; Ershov, B. G.


    The transformation process of 20-50 nm silver nanoprisms in the presence of Cl-, Br-, and I- ions was studied. The threshold concentrations of halide ions that initiate the transformation do not depend on the size of nanoprisms. It was shown that the structure change is caused by the formation of poorly soluble silver complexes on nanoprisms and occurs by an electrochemical mechanism. The induction period preceding the onset of shape transformation is related to the formation of silver halide nanoelectrodes. The electrochemical reactions involving silver and silver halide nanoelectrodes induce restructuring of silver particles the efficiency of which is determined by electrode potentials. [Figure not available: see fulltext.

  12. Detonation Properties of Ammonium Dinitramide (ADN) (United States)

    Wätterstam, A.; Östmark, H.; Helte, A.; Karlsson, S.


    Ammonium Dinitramide, ADN, has a potential as an oxidizer for underwater high explosives. Pure ADN has a large reaction-zone length and shows a strong non-ideal behaviour. The work presented here is an extension of previous work.(Sensitivity and Performance Characterization of Ammonium Dinitramide (ADN). Presented at 11th International Detonation Symposium, Snowmass, CO, 1998.) Experiments for determining the detonation velocity as a function of inverse charge radius and density, reaction-zone length and curvature, and the detonation pressure are presented. Measurements of pressure indicates that no, or weak von-Neumann spike exists, suggesting an immediate chemical decomposition. Experimental data are compared with predicted using thermochemical codes and ZND-theory.

  13. Strong Turbulence in Alkali Halide Negative Ion Plasmas (United States)

    Sheehan, Daniel


    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 Fusion 4, 91 (1978).

  14. Feshbach resonances associated with Rydberg states of the hydrogen halides

    International Nuclear Information System (INIS)

    Spence, D.; Noguchi, T.


    Using an electron transmission spectrometer we locate Feshbach resonances in the hydrogen halides HF, HCl, HBr, and HI. These resonances consist of two Rydberg electrons bound to a positive ion core grandparent state. By analysis of previously published data, we determine the electron configurations of resonances observed in the isoelectronic rare gases and hence deduce the electron configurations of the resonances observed in HCl, HBr, and HI. We find that most of the observed resonances whose grandparent positive ion states have term value X 2 Pi are associated with Rydberg parent states of symmetry X 2 Pinssigma, X 2 Pinpsigma, and X 2 Pindlambda. In HF, only one resonance series, associated with the X 2 Pi3ssigma 1 , 3 Pi Rydberg state is observed

  15. The Effect of Radiation "Memory" in Alkali-Halide Crystals (United States)

    Korovkin, M. V.; Sal'nikov, V. N.


    The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.

  16. Charged-soft-sphere potentials for trivalent metal halides

    International Nuclear Information System (INIS)

    Erbolukbas, A.; Akdeniz, Z.; Tosi, M.P.


    Octahedral-type coordination by halogens in the liquid state has been reported for a number of trivalent metal ions from diffraction and Raman scattering experiments on their molten trihalides and from Raman scattering spectroscopy of liquid mixtures of trihalides with alkali halides. We analyze the available data on bond lengths and Raman frequencies by treating an isolated (MX 6 ) 3- species within a model which adopts charged-soft-sphere interionic potentials supplemented by an account of ionic polarization. The trivalent metal ions that we consider are M = La, Ce, Pr, Nd, Sm, Gd, Dy and Y for X = Cl and M = Al for X = F. The main result of the analysis is the prediction of trends in the soft-sphere repulsive parameters for the trivalent metal ions, leading to estimates of all the vibrational frequencies and the binding energy of such octahedral species. (author). 26 refs, 1 fig., 4 tabs

  17. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals (United States)

    Kovalenko, Maksym V.; Protesescu, Loredana; Bodnarchuk, Maryna I.


    Semiconducting lead halide perovskites (LHPs) have not only become prominent thin-film absorber materials in photovoltaics but have also proven to be disruptive in the field of colloidal semiconductor nanocrystals (NCs). The most important feature of LHP NCs is their so-called defect-tolerance—the apparently benign nature of structural defects, highly abundant in these compounds, with respect to optical and electronic properties. Here, we review the important differences that exist in the chemistry and physics of LHP NCs as compared with more conventional, tetrahedrally bonded, elemental, and binary semiconductor NCs (such as silicon, germanium, cadmium selenide, gallium arsenide, and indium phosphide). We survey the prospects of LHP NCs for optoelectronic applications such as in television displays, light-emitting devices, and solar cells, emphasizing the practical hurdles that remain to be overcome.

  18. White-Light Emission from Layered Halide Perovskites. (United States)

    Smith, Matthew D; Karunadasa, Hemamala I


    With nearly 20% of global electricity consumed by lighting, more efficient illumination sources can enable massive energy savings. However, effectively creating the high-quality white light required for indoor illumination remains a challenge. To accurately represent color, the illumination source must provide photons with all the energies visible to our eye. Such a broad emission is difficult to achieve from a single material. In commercial white-light sources, one or more light-emitting diodes, coated by one or more phosphors, yield a combined emission that appears white. However, combining emitters leads to changes in the emission color over time due to the unequal degradation rates of the emitters and efficiency losses due to overlapping absorption and emission energies of the different components. A single material that emits broadband white light (a continuous emission spanning 400-700 nm) would obviate these problems. In 2014, we described broadband white-light emission upon near-UV excitation from three new layered perovskites. To date, nine white-light-emitting perovskites have been reported by us and others, making this a burgeoning field of study. This Account outlines our work on understanding how a bulk material, with no obvious emissive sites, can emit every color of the visible spectrum. Although the initial discoveries were fortuitous, our understanding of the emission mechanism and identification of structural parameters that correlate with the broad emission have now positioned us to design white-light emitters. Layered hybrid halide perovskites feature anionic layers of corner-sharing metal-halide octahedra partitioned by organic cations. The narrow, room-temperature photoluminescence of lead-halide perovskites has been studied for several decades, and attributed to the radiative recombination of free excitons (excited electron-hole pairs). We proposed that the broad white emission we observed primarily stems from exciton self-trapping. Here, the

  19. Recent progress in efficient hybrid lead halide perovskite solar cells. (United States)

    Cui, Jin; Yuan, Huailiang; Li, Junpeng; Xu, Xiaobao; Shen, Yan; Lin, Hong; Wang, Mingkui


    The efficiency of perovskite solar cells (PSCs) has been improved from 9.7 to 19.3%, with the highest value of 20.1% achieved in 2014. Such a high photovoltaic performance can be attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths of the hybrid lead halide perovskite materials. In this review, some fundamental details of hybrid lead iodide perovskite materials, various fabrication techniques and device structures are described, aiming for a better understanding of these materials and thus highly efficient PSC devices. In addition, some advantages and open issues are discussed here to outline the prospects and challenges of using perovskites in commercial photovoltaic devices.

  20. Water-Induced Dimensionality Reduction in Metal-Halide Perovskites

    KAUST Repository

    Turedi, Bekir


    Metal-halide perovskite materials are highly attractive materials for optoelectronic applications. However, the instability of perovskite materials caused by moisture and heat-induced degradation impairs future prospects of using these materials. Here we employ water to directly transform films of the three-dimensional (3D) perovskite CsPbBr3 to stable two-dimensional (2D) perovskite-related CsPb2Br5. A sequential dissolution-recrystallization process governs this water induced transformation under PbBr2 rich condition. We find that these post-synthesized 2D perovskite-related material films exhibit excellent stability against humidity and high photoluminescence quantum yield. We believe that our results provide a new synthetic method to generate stable 2D perovskite-related materials that could be applicable for light emitting device applications.

  1. Vacuum-Deposited Organometallic Halide Perovskite Light-Emitting Devices. (United States)

    Chiang, Kai-Ming; Hsu, Bo-Wei; Chang, Yi-An; Yang, Lin; Tsai, Wei-Lun; Lin, Hao-Wu


    In this work, a sequential vacuum deposition process of bright, highly crystalline, and smooth methylammonium lead bromide and phenethylammonium lead bromide perovskite thin films are investigated and the first vacuum-deposited organometallic halide perovskite light-emitting devices (PeLEDs) are demonstrated. Exceptionally low refractive indices and extinction coefficients in the emission wavelength range are obtained for these films, which contributed to a high light out-coupling efficiency of the PeLEDs. By utilizing these perovskite thin films as emission layers, the vacuum-deposited PeLEDs exhibit a very narrow saturated green electroluminescence at 531 nm, with a spectral full width at half-maximum bandwidth of 18.6 nm, a promising brightness of up to 6200 cd/m 2 , a current efficiency of 1.3 cd/A, and an external quantum efficiency of 0.36%.

  2. Anaerobic ammonium oxidation in an estuarine sediment


    Risgaard-Petersen, N.; Meyer, R.L.; Schmid, M.C.; Jetten, M.S.M.; Enrich-Prast, A.; Rysgaard, S.; Revsbech, N.P.


    The occurrence and significance of the anammox (anaerobic ammonium oxidation) process relative to denitrification was studied in photosynthetically active sediment from 2 shallow-water estuaries: Randers Fjord and Norsminde Fjord, Denmark. Anammox accounted for 5 to 24 % of N-2 production in Randers Fjord sediment, whereas no indication was seen of the process in sediment from Norsminde Fjord, It is suggested that the presence of anammox in Randers Fjord and its absence from Norsminde Fjord i...

  3. Optical constants of concentrated aqueous ammonium sulfate. (United States)

    Remsberg, E. E.


    Using experimental data obtained from applying spectroscopy to a 39-wt-% aqueous ammonium sulfate solution, it is shown that, even though specific aerosol optical constants appear quite accurate, spectral variations may exist as functions of material composition or concentration or both. Prudent users of optical constant data must then include liberal data error estimates when performing calculations or in interpreting spectroscopic surveys of collected aerosol material.

  4. Proton dynamics investigation for dimethyl ammonium cation

    International Nuclear Information System (INIS)

    Pislewski, N.; Tritt-Goc, J.; Jakubas, R.


    Proton dynamics in dimethyl ammonium cation has been investigated by means of NMR and spin echo methods in polycrystalline salts [NH 2 (CH 3 ) 2 ] + Bi 2 J 9 - and [NH 2 (CH 3 ) 2 ] + SbJ 9 - . Spin-lattice relaxation time as well as second moment of NMR line have been measured for influence study of crystal structure changes on proton dynamics

  5. Phase space investigation of the lithium amide halides

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rosalind A. [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hydrogen and Fuel Cell Group, School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hewett, David R.; Korkiakoski, Emma [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Thompson, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Anderson, Paul A., E-mail: [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)


    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li{sub 3}(NH{sub 2}){sub 2}I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li{sub 7}(NH{sub 2}){sub 6}Cl. • New low-chloride phase maintained improved H{sub 2} desorption properties of Li{sub 4}(NH{sub 2}){sub 3}Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH{sub 2}). It was found that the lithium amide iodide Li{sub 3}(NH{sub 2}){sub 2}I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li{sub 7}(NH{sub 2}){sub 6}Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li{sub 4}(NH{sub 2}){sub 3}Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li{sub 7}(NH{sub 2}){sub 6}Cl was observed. In comparison to LiNH{sub 2}, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li{sub 4}(NH{sub 2}){sub 3}Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful.

  6. Equation of State of Ammonium Nitrate (United States)

    Robbins, David L.; Sheffield, Stephen A.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Stahl, David B.


    Ammonium nitrate (AN) is a widely used fertilizer and mining explosive. AN is commonly used in ammonium nitrate-fuel oil (ANFO), which is a mixture of explosive-grade AN prills and fuel oil in a 94:6 ratio by weight. ANFO is a non-ideal explosive with measured detonation velocities around 4 km/s. The equation of state properties and known initiation behavior of neat AN are limited. We present the results of a series of gas gun-driven plate impact experiments on pressed neat ammonium nitrate at 1.72 g/cm3. No evidence of initiation was observed under shock loading to 22 GPa. High pressure x-ray diffraction experiments in diamond anvil cells provided insight into the high pressure phase behavior over the same pressure range (to 25 GPa), as well as a static isotherm at ambient temperature. From the isotherm and thermodynamic properties at ambient conditions, a preliminary unreacted equation of state (EOS) has been developed based on the Murnaghan isotherm and Helmholtz formalism [1], which compares favorably with the available experimental Hugoniot data on several densities of AN.

  7. Microbial electricity driven anoxic ammonium removal. (United States)

    Vilajeliu-Pons, Anna; Koch, Christin; Balaguer, Maria D; Colprim, Jesús; Harnisch, Falk; Puig, Sebastià


    Removal of nitrogen, mainly in form of ammonium (NH 4 + ), in wastewater treatment plants (WWTPs) is a highly energy demanding process, mainly due to aeration. It causes costs of about half a million Euros per year in an average European WWTP. Alternative, more economical technologies for the removal of nitrogen compounds from wastewater are required. This study proves the complete anoxic conversion of ammonium (NH 4 + ) to dinitrogen gas (N 2 ) in continuously operated bioelectrochemical systems at the litre-scale. The removal rate is comparable to conventional WWTPs with 35 ± 10 g N m -3 d -1 with low accumulation of NO 2 - , NO 3 - , N 2 O. In contrast to classical aerobic nitrification, the energy consumption is considerable lower (1.16 ± 0.21 kWh kg -1 N, being more than 35 times less than for the conventional wastewater treatment). Biotic and abiotic control experiments confirmed that the anoxic nitrification was an electrochemical biological process mainly performed by Nitrosomonas with hydroxylamine as the main substrate (mid-point potential, E ox  = +0.67 ± 0.08 V vs. SHE). This article proves the technical feasibility and reduction of costs for ammonium removal from wastewater, investigates the underlying mechanisms and discusses future engineering needs. Copyright © 2017 Elsevier Ltd. All rights reserved.


    Directory of Open Access Journals (Sweden)



    Full Text Available Five new S2- adducts with SbIII and SbV halides have been synthesized and studied by infrared. Discrete structures have been suggested, the environment around the antimony being tetrahedral, trigonal bipyramidal or octahedral.

  9. Lightweight and Flexible Metal Halide Perovskite Thin Films for High Temperature Solar Cells (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop metal halide perovskites (MHPs) based solar cells for high temperature operation. MHPs have been recently discovered as high...

  10. Non-hydrolytic metal oxide films for perovskite halide overcoating and stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Alex B.; Kim, In Soo


    A method of protecting a perovskite halide film from moisture and temperature includes positioning the perovskite halide film in a chamber. The chamber is maintained at a temperature of less than 200 degrees Celsius. An organo-metal compound is inserted into the chamber. A non-hydrolytic oxygen source is subsequently inserted into the chamber. The inserting of the organo-metal compound and subsequent inserting of the non-hydrolytic oxygen source into the chamber is repeated for a predetermined number of cycles. The non-hydrolytic oxygen source and the organo-metal compound interact in the chamber to deposit a non-hydrolytic metal oxide film on perovskite halide film. The non-hydrolytic metal oxide film protects the perovskite halide film from relative humidity of greater than 35% and a temperature of greater than 150 degrees Celsius, respectively.

  11. Growth and Characterization of PDMS-Stamped Halide Perovskite Single Microcrystals

    NARCIS (Netherlands)

    Khoram, P.; Brittman, S.; Dzik, W.I.; Reek, J.N.H.; Garneett, E.C.


    Recently, halide perovskites have attracted considerable attention for optoelectronic applications, but further progress in this field requires a thorough understanding of the fundamental properties of these materials. Studying perovskites in their single-crystalline form provides a model system for

  12. On-line separation of volatile fission products by thermochromatography: Comparison of halide systems

    International Nuclear Information System (INIS)

    Hickmann, U.; Greulich, N.; Trautmann, N.; Herrmann, G.


    The volatilization and deposition of fission product fluorides, bromides, iodides and of complexes with aluminum trichloride were investigated with an on-line system. The activity was transported by a gas jet from the target area to a quartz-powder column. Volatile halides were generated with various reagents at the entrance into the column and deposited along the column in a descending temperature gradient. Adsorption enthalpies for some fission product halides on quartz surfaces were derived. (orig.)

  13. Electro-optic response of metal halide : A first-principles study

    Indian Academy of Sciences (India)

    Amreen Bano


    Jul 8, 2017 ... A theoretical study of electronic and optical properties of metal-halide cubic perovskite, CsPbI3, ... In the case of conductors, the ... To the best of our knowledge, no attempts have been made to study the optical properties of cubic CsPbI3. In this paper, we assess the properties of halide perovskite CsPbI3 ...

  14. Organometallic halide perovskite single crystals having low deffect density and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.


    The present disclosure presents a method of making a single crystal organometallic halide perovskites, with the formula: AMX3, wherein A is an organic cation, M is selected from the group consisting of: Pb, Sn, Cu, Ni, Co, Fe, Mn, Pd, Cd, Ge, and Eu, and X is a halide. The method comprises the use of two reservoirs containing different precursors and allowing the vapor diffusion from one reservoir to the other one. A solar cell comprising said crystal is also disclosed.

  15. Mechanistic Aspects of Aryl-Halide Oxidative Addition, Coordination Chemistry, and Ring-Walking by Palladium. (United States)

    Zenkina, Olena V; Gidron, Ori; Shimon, Linda J W; Iron, Mark A; van der Boom, Milko E


    This contribution describes the reactivity of a zero-valent palladium phosphine complex with substrates that contain both an aryl halide moiety and an unsaturated carbon-carbon bond. Although η(2) -coordination of the metal center to a C=C or C≡C unit is kinetically favored, aryl halide bond activation is favored thermodynamically. These quantitative transformations proceed under mild reaction conditions in solution or in the solid state. Kinetic measurements indicate that formation of η(2) -coordination complexes are not nonproductive side-equilibria, but observable (and in several cases even isolated) intermediates en route to aryl halide bond cleavage. At the same time, DFT calculations show that the reaction with palladium may proceed through a dissociation-oxidative addition mechanism rather than through a haptotropic intramolecular process (i.e., ring walking). Furthermore, the transition state involves coordination of a third phosphine to the palladium center, which is lost during the oxidative addition as the C-halide bond is being broken. Interestingly, selective activation of aryl halides has been demonstrated by adding reactive aryl halides to the η(2) -coordination complexes. The product distribution can be controlled by the concentration of the reactants and/or the presence of excess phosphine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Self-Organized Superlattice and Phase Coexistence inside Thin Film Organometal Halide Perovskite. (United States)

    Kim, Tae Woong; Uchida, Satoshi; Matsushita, Tomonori; Cojocaru, Ludmila; Jono, Ryota; Kimura, Kohei; Matsubara, Daiki; Shirai, Manabu; Ito, Katsuji; Matsumoto, Hiroaki; Kondo, Takashi; Segawa, Hiroshi


    Organometal halide perovskites have attracted widespread attention as the most favorable prospective material for photovoltaic technology because of their high photoinduced charge separation and carrier transport performance. However, the microstructural aspects within the organometal halide perovskite are still unknown, even though it belongs to a crystal system. Here direct observation of the microstructure of the thin film organometal halide perovskite using transmission electron microscopy is reported. Unlike previous reports claiming each phase of the organometal halide perovskite solely exists at a given temperature range, it is identified that the tetragonal and cubic phases coexist at room temperature, and it is confirmed that superlattices composed of a mixture of tetragonal and cubic phases are self-organized without a compositional change. The organometal halide perovskite self-adjusts the configuration of phases and automatically organizes a buffer layer at boundaries by introducing a superlattice. This report shows the fundamental crystallographic information for the organometal halide perovskite and demonstrates new possibilities as promising materials for various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Determination of halide impurities in ionic liquids by total reflection X-ray fluorescence spectrometry. (United States)

    Vander Hoogerstraete, Tom; Jamar, Steven; Wellens, Sil; Binnemans, Koen


    The determination and quantification of halide impurities in ionic liquids is highly important because halide ions can significantly influence the chemical and physical properties of ionic liquids. The use of impure ionic liquids in fundamental studies on solvent extraction or catalytic reactions can lead to incorrect experimental data. The detection of halide ions in solution by total reflection X-ray fluorescence (TXRF) has been problematic because volatile hydrogen halide (HX) compounds are formed when the sample is mixed with the acidic metal standard solution. The loss of HX during the drying step of the sample preparation procedure gives imprecise and inaccurate results. A new method based on an alkaline copper standard Cu(NH3)4(NO3)2 is presented for the determination of chloride, bromide, and iodide impurities in ionic liquids. The 1-butyl-3-methylimidazolium ([C4mim]) ionic liquids with the anions acetate ([C4mim][OAc]), nitrate ([C4mim][NO3]), trifluoromethanesulfonate ([C4mim][OTf]), and bis(trifluoromethylsulfonyl)imide ([C4mim][Tf2N]) were synthesized via a halide-free route and contaminated on purpose with known amounts of [C4mim]Cl, [C4mim]Br, [C4mim]I, or potassium halide salts in order to validate the new method and standard.

  18. Order-disorder structural phase transition and magnetocaloric effect in organic-inorganic halide hybrid (C2H5NH3)2CoCl4 (United States)

    Sen, Abhijit; Roy, Soumyabrata; Peter, Sebastian C.; Paul, Arpita; Waghmare, Umesh V.; Sundaresan, A.


    We report a detailed experimental and theoretical investigation of structural, optical, magnetic and magnetothermal properties of single crystals of a new organic-inorganic hybrid (C2H5NH3)2CoCl4. Grown by slow evaporation method at room temperature, the compound crystallizes in centrosymmetric orthorhombic structure (Pnma) which undergoes a reversible phase transition at 235/241 K (cooling/heating) to noncentrosymmetric P212121 space group symmetry associated with order-disorder transformation of carbon atoms of the ammonium cations as well as molecular rearrangement. Electronic absorption spectra of the compound are typical of geometrically distorted [CoCl4]2- tetrahedra having spin-orbit coupling effect. The isolated nature of [CoCl4]2- tetrahedra in the crystal reflect in paramagnetic behaviour of the compound. Interestingly, field induced spin flipping behaviour is observed at low temperature. First principles density functional calculations reveal weak magnetic interaction among cobalt spins with ferromagnetic state being the ground state. The entropy change associated with the spin flipping has been experimentally estimated by magnetic and heat capacity measurements which has a maximum value of 16 J Kg-1 K-1 at 2.5 K under 7 T magnetic field. To the best of our knowledge, this is the first report on magnetocaloric effect observed in an organic-inorganic halide compound. The estimated value is sizable and is comparable to that of well-known transition metal molecular cluster magnets Mn12 or Fe14. The overall findings promise to enlighten new routes to design and constitute multifunctional organic-inorganic halide materials.

  19. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation]. (United States)

    Liu, Zheng-chuan; Yuan, Lin-jiang; Zhou, Guo-biao; Li, Jing


    The transformation of nitrite-reducing anaerobic ammonium oxidation to sulfate-reducing anaerobic ammonium oxidation in an UASB was performed and the changes in microbial community were studied. The result showed that the sulfate reducing anaerobic ammonium oxidation process was successfully accomplished after 177 days' operation. The removal rate of ammonium nitrogen and sulfate were up to 58. 9% and 15. 7%, the removing load of ammonium nitrogen and sulfate were 74. 3 mg.(L.d)-1 and 77. 5 mg.(L.d)-1 while concentration of ammonium nitrogen and sulfate of influent were 130 mg.(L.d)-1 and 500 mg.(L.d)-1, respectively. The lost nitrogen and sulphur was around 2 in molar ratio. The pH value of the effluent was lower than that of the influent. Instead of Candidatus brocadia in nitrite reducing anaerobic ammonium oxidation granular sludge, Bacillus benzoevorans became the dominant species in sulfate reducing anaerobic ammonium oxidation sludge. The dominant bacterium in the two kinds of anaerobic ammonium oxidation process is different. Our results imply that the two anaerobic ammonium oxidation processes are carried out by different kind of bacterium.

  20. Magnetic properties of nickel halide hydrates including deuteration effects

    Energy Technology Data Exchange (ETDEWEB)

    DeFotis, G.C., E-mail: [Chemistry Department, College of William & Mary, Williamsburg, VA, 23187 United States (United States); Van Dongen, M.J.; Hampton, A.S.; Komatsu, C.H.; Trowell, K.T.; Havas, K.C.; Davis, C.M.; DeSanto, C.L. [Chemistry Department, College of William & Mary, Williamsburg, VA, 23187 United States (United States); Hays, K.; Wagner, M.J. [Chemistry Department, George Washington University, Washington, DC, 20052 United States (United States)


    Magnetic measurements on variously hydrated nickel chlorides and bromides, including deuterated forms, are reported. Results include locations and sizes of susceptibility maxima, T{sub max} and χ{sub max}, ordering temperatures T{sub c}, Curie constants and Weiss theta in the paramagnetic regime, and primary and secondary exchange interactions from analysis of low temperature data. For the latter a 2D Heisenberg model augmented by interlayer exchange in a mean-field approximation is applied. Magnetization data to 16 kG as a function of temperature show curvature and hysteresis characteristics quite system dependent. For four materials high field magnetization data to 70 kG at 2.00 K are also obtained. Comparison is made with theoretical relations for spin-1 models. Trends are apparent, primarily that T{sub max} of each bromide hydrate is less than for the corresponding chloride, and that for a given halide nD{sub 2}O (n=1 or 2) deuterates exhibit lesser T{sub max} than do nH{sub 2}O hydrates. A monoclinic unit cell determined from powder X-ray diffraction data on NiBr{sub 2}·2D{sub 2}O is different from and slightly larger than that of NiBr{sub 2}·2H{sub 2}O. This provides some rationale for the difference in magnetic properties between these. - Highlights: • The magnetism of Ni(II) chloride and bromide dihydrates and monohydrates is studied. • Effects of replacing H{sub 2}O by D{sub 2}O are examined for both hydration states and both halides. • Exchange interactions in bromides are weaker than in corresponding chlorides. • Exchange interactions are weaker in D{sub 2}O than in corresponding H{sub 2}O containing systems. • The unit cell of NiBr{sub 2}·2D{sub 2}O is different from and slightly larger than that of NiBr{sub 2}·2H{sub 2}O.

  1. Ammonium dichromate poisoning: A rare cause of acute kidney injury

    Directory of Open Access Journals (Sweden)

    H Radhakrishnan


    Full Text Available Ammonium dichromate is an inorganic compound frequently used in screen and color printing. Being a strong oxidizing agent, it causes oxygen free radical injury resulting in organ failure. We report a 25-year-old female who presented with acute kidney injury after consumption of ammonium dichromate. She was managed successfully with hemodialysis and supportive measures. This case is reported to highlight the toxicity of ammonium dichromate.

  2. Isotope effects in aqueous solvation of simple halides (United States)

    Videla, Pablo E.; Rossky, Peter J.; Laria, D.


    We present a path-integral-molecular-dynamics study of the thermodynamic stabilities of DOH⋯ X- and HOD⋯ X- (X = F, Cl, Br, I) coordination in aqueous solutions at ambient conditions. In agreement with experimental evidence, our results for the F- case reveal a clear stabilization of the latter motif, whereas, in the rest of the halogen series, the former articulation prevails. The DOH⋯ X- preference becomes more marked the larger the size of the ionic solute. A physical interpretation of these tendencies is provided in terms of an analysis of the global quantum kinetic energies of the light atoms and their geometrical decomposition. The stabilization of the alternative ionic coordination geometries is the result of a delicate balance arising from quantum spatial dispersions along parallel and perpendicular directions with respect to the relevant O-H⋯X- axis, as the strength of the water-halide H-bond varies. This interpretation is corroborated by a complementary analysis performed on the different spectroscopic signals of the corresponding IR spectra.

  3. Cerium doped lanthanum halides: fast scintillators for medical imaging

    International Nuclear Information System (INIS)

    Selles, O.


    This work is dedicated to two recently discovered scintillating crystals: cerium doped lanthanum halides (LaCl 3 :Ce 3+ and LaBr 3 :Ce 3+ ).These scintillators exhibit interesting properties for gamma detection, more particularly in the field of medical imaging: a short decay time, a high light yield and an excellent energy resolution. The strong hygroscopicity of these materials requires adapting the usual experimental methods for determining physico-chemical properties. Once determined, these can be used for the development of the industrial manufacturing process of the crystals. A proper comprehension of the scintillation mechanism and of the effect of defects within the material lead to new possible ways for optimizing the scintillator performance. Therefore, different techniques are used (EPR, radioluminescence, laser excitation, thermally stimulated luminescence). Alongside Ce 3+ ions, self-trapped excitons are involved in the scintillation mechanism. Their nature and their role are detailed. The knowledge of the different processes involved in the scintillation mechanism leads to the prediction of the effect of temperature and doping level on the performance of the scintillator. A mechanism is proposed to explain the thermally stimulated luminescence processes that cause slow components in the light emission and a loss of light yield. Eventually the study of afterglow reveals a charge transfer to deep traps involved in the high temperature thermally stimulated luminescence. (author)

  4. Two dimensional condensation of argon adsorbed on lamellar halides

    International Nuclear Information System (INIS)

    Millot, Francis.


    Lamellar halides such as NiCl 2 , FeCl 2 , NiBr 2 , MnBr 2 , MgBr 2 , CdBr 2 , CoI 2 , FeI 2 , MnI 2 , CaI 2 and PbI 2 were sublimed in a rapid stream of dry nitrogen. The adsorption of argon on such materials shows stepped isotherms which reveal two dimensional condensations. From sets of isotherms the Helmholtz free energy, the internal energy and the entropy of the successive layers are determined. From the entropy of the first layer the role of the potential relief of the adsorbent surface on the structure of the adsorbed layer may be determined while the Helmholtz free energy reveals how the ionic character of the adsorbent governs the attractive force of adsorption. The study of the second third and fourth layers shows that their growth follows quite a different behaviour depending on whether the Van der Waals diameter of argon is greater or smaller than the distance between adjacent anions on the crystal surface. A proposition is made to account for the difference in the critical temperatures of the first and second dense layers in terms of the vibrationnal state of their respective substrate. The occurence for the maximum critical temperature observed of corresponding to a triangular layer 3% more expanded than the (111) plane of solid argon is discussed [fr

  5. Coordination Chemistry Dictates the Structural Defects in Lead Halide Perovskites. (United States)

    Rahimnejad, Sara; Kovalenko, Alexander; Forés, Sergio Martí; Aranda, Clara; Guerrero, Antonio


    We show the influence of species present in precursor solution during formation of lead halide perovskite materials on the structural defects of the films. The coordination of lead by competing solvent molecules and iodide ions dictate the type of complexes present in the films. Depending on the processing conditions all PbIS5 (+) , PbI2 S4, PbI3 S3 (-) , PbI4 S2 (2-) , PbI5 S2 (3-) , PbI6 (4-) and 1D (Pb2 I4 )n chains are observed by absorption measurements. Different parameters are studied such as polarity of the solvent, concentration of iodide ions, concentration of solvent molecules and temperature. It is concluded that strongly coordinating solvents will preferentially form species with a low number of iodide ions and less coordinative solvents generate high concentration of PbI6 (-) . We furthermore propose that all these plumbate ions may act as structural defects determining electronic properties of the photovoltaic films. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Silver nanoparticles from silver halide photography to plasmonics

    CERN Document Server

    Tani, Tadaaki


    This book provides systematic knowledge and ideas on nanoparticles of Ag and related materials. While Ag and metal nanoparticles are essential for plasmonics, silver halide (AgX) photography relies to a great extent on nanoparticles of Ag and AgX which have the same crystal structure and have been studied extensively for many years. This book has been written to combine the knowledge of nanoparticles of Ag and related materials in plasmonics and AgX photography in order to provide new ideas for metal nanoparticles in plasmonics. Chapters 1–3 of this book describe the structure and formation of nanoparticles of Ag and related materials. Systematic descriptions of the structure and preparation of Ag, Au, and noble-metal nanoparticles for plasmonics are followed by and related to those of nanoparticles of Ag and AgX in AgX photography. Knowledge of the structure and preparation of Ag and AgX nanoparticles in photography covers nanoparticles with widely varying sizes, shapes, and structures, and formation proce...

  7. Methyl Halide Emissions From Experimental Fires With Southern African Biofuels (United States)

    Lobert, J. M.; Lobert, J. M.; Keene, W. C.; Crutzen, P. J.; Scharffe, D. H.; Maben, J. R.; Williams, J.


    Under the auspices of SAFARI 2000, biofuels (savanna grasses, shrubs, woody plants, litter, agricultural waste, and charcoal) were sampled in the savannah of Kruger National Park, the Kalahari of Etosha National Park and the Miombo woodlands in Zambia and Malawi. More than 50 sub-samples were burned in 60 experiments under semi-controlled conditions at the biomass burning facility of the Max Planck Institute for Chemistry in Mainz, Germany. Emissions were sampled with flasks and analyzed by GC-MS for gaseous CH3Br, CH3Cl, CH3I and other halogenated compounds. The elemental compositions of the fuel and ash from each burn were also measured. Molar emission ratios of these compounds relative to CO, CO2 and the elemental composition of the fuel as well as partial mass balances for carbon, nitrogen and halogens will be presented with emphasis on methyl halide emissions. These results will be compared to similar data in the literature and preliminary estimates for the impacts of biomass burning on regional and global budgets will be presented. Additional resources can be found at: and

  8. Strong Carrier–Phonon Coupling in Lead Halide Perovskite Nanocrystals (United States)


    We highlight the importance of carrier–phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL band have been identified as due to the Fröhlich interaction. The energy of longitudinal optical (LO) phonons has been determined from the separation of the zero phonon band and phonon replicas. We reason that the observed LO phonon coupling can only be related to an orthorhombically distorted crystal structure of the perovskite nanocrystals. Additionally, the strength of carrier–phonon coupling has been characterized using the ratio between the intensities of the first phonon replica and the zero-phonon band. PL emission from localized versus delocalized carriers has been identified as the source of the observed discrepancies between the LO phonon energy and phonon coupling strength under quasi-resonant and nonresonant excitation conditions, respectively. PMID:29019652

  9. Thermodynamic origin of instability in hybrid halide perovskites (United States)

    Tenuta, E.; Zheng, C.; Rubel, O.


    Degradation of hybrid halide perovskites under the influence of environmental factors impairs future prospects of using these materials as absorbers in solar cells. First principle calculations can be used as a guideline in search of new materials, provided we can rely on their predictive capabilities. We show that the instability of perovskites can be captured using ab initio total energy calculations for reactants and products augmented with additional thermodynamic data to account for finite temperature effects. Calculations suggest that the instability of CH3NH3PbI3 in moist environment is linked to the aqueous solubility of the CH3NH3I salt, thus making other perovskite materials with soluble decomposition products prone to degradation. Properties of NH3OHPbI3, NH3NH2PbI3, PH4PbI3, SbH4PbI3, CsPbBr3, and a new hypothetical SF3PbI3 perovskite are studied in the search for alternative solar cell absorber materials with enhanced chemical stability.

  10. A new fundamental hydrogen defect in alkali halides

    International Nuclear Information System (INIS)

    Morato, S.P.; Luety, F.


    Atom hydrogen in neutral (H 0 ) and negative (H - ) form on substitutional and interstitial lattice sites gives rise to well characterized model defects in alkali-halides (U,U 1 ,U 2 ,U 3 centers), which have been extensively investigated in the past. When studying the photo-decomposition of OH - defects, a new configuration of atomic charged hidrogen was discovered, which can be produced in large quantities in the crystal and is apparently not connected to any other impurity. This new hidrogen defect does not show any pronounced electronic absorption, but displays a single sharp local mode band (at 1114cm -1 in KCl) with a perfect isotope shift. The defect can be produced by various UV or X-ray techniques in crystais doped with OH - , Sh - or H - defects. A detailed study of its formation kinetics at low temperature shows that it is primarily formed by the reaction of a mobile CI 2 - crowdion (H-center) with hidrogen defects [pt

  11. Exploring Anomalous Polarization Dynamics in Organometallic Halide Perovskites. (United States)

    Ahmadi, Mahshid; Collins, Liam; Puretzky, Alexander; Zhang, Jia; Keum, Jong Kahk; Lu, Wei; Ivanov, Ilia; Kalinin, Sergei V; Hu, Bin


    Organometallic halide perovskites (OMHPs) have attracted broad attention as prospective materials for optoelectronic applications. Among the many anomalous properties of these materials, of special interest are the ferroelectric properties including both classical and relaxor-like components, as a potential origin of slow dynamics, field enhancement, and anomalous mobilities. Here, ferroelectric properties of the three representative OMHPs are explored, including FAPb x Sn 1- x I 3 (x = 0, x = 0.85) and FA 0.85 MA 0.15 PbI 3 using band excitation piezoresponse force microscopy and contact mode Kelvin probe force microscopy, providing insight into long- and short-range dipole and charge dynamics in these materials and probing ferroelectric density of states. Furthermore, second-harmonic generation in thin films of OMHPs is observed, providing a direct information on the noncentrosymmetric polarization in such materials. Overall, the data provide strong evidence for the presence of ferroelectric domains in these systems; however, the domain dynamics is suppressed by fast ion dynamics. These materials hence present the limit of ferroelectric materials with spontaneous polarization dynamically screened by ionic and electronic carriers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ammonium Production in Sediments Inhibited with Molybdate: Implications for the Sources of Ammonium in Anoxic Marine Sediments †


    Jacobson, Myrna E.; Mackin, James E.; Capone, Douglas G.


    Ammonium production in the presence of specific inhibitors of sulfate reduction and methanogenesis was investigated in six marine sediments which differed in bulk properties and organic matter input. In all cases, little effect of the inhibitors on ammonium production was observed, although sulfate reduction was suppressed by molybdate. This gives evidence that the processes of fermentation and hydrolysis are of primary importance in ammonium generation at the sites studied. Although sulfate ...

  13. Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells. (United States)

    Gratia, Paul; Grancini, Giulia; Audinot, Jean-Nicolas; Jeanbourquin, Xavier; Mosconi, Edoardo; Zimmermann, Iwan; Dowsett, David; Lee, Yonghui; Grätzel, Michael; De Angelis, Filippo; Sivula, Kevin; Wirtz, Tom; Nazeeruddin, Mohammad Khaja


    Compositional engineering of a mixed cation/mixed halide perovskite in the form of (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 is one of the most effective strategies to obtain record-efficiency perovskite solar cells. However, the perovskite self-organization upon crystallization and the final elemental distribution, which are paramount for device optimization, are still poorly understood. Here we map the nanoscale charge carrier and elemental distribution of mixed perovskite films yielding 20% efficient devices. Combining a novel in-house-developed high-resolution helium ion microscope coupled with a secondary ion mass spectrometer (HIM-SIMS) with Kelvin probe force microscopy (KPFM), we demonstrate that part of the mixed perovskite film intrinsically segregates into iodide-rich perovskite nanodomains on a length scale of up to a few hundred nanometers. Thus, the homogeneity of the film is disrupted, leading to a variation in the optical properties at the micrometer scale. Our results provide unprecedented understanding of the nanoscale perovskite composition.

  14. The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Khuzwayo, Z., E-mail:; Chirwa, E.M.N


    Highlights: • Facilitation of photocatalysis using simple metal-halides as VB hole scavengers. • Recombination prevention by coupled valence and conduction band approaches. • Determination of anions critical levels beyond which process retardation occurs. • Determination of the photocatalytic process rate of reaction kinetics. - Abstract: The performance of photocatalytic oxidation of chemical pollutants is subjected to the presence of anion complexes in natural waters. This study investigated the influence of alkali metal (Na{sup +} (sodium), K{sup +} (potassium)) halides (Cl{sup −} (chloride), Br{sup −} (bromide), F{sup −} (fluoride)) as inorganic ion sources in the photocatalytic degradation of pentachlorophenol (PCP) in batch systems. It was found that the exclusive presence of halides in the absence of an electron acceptor adequately facilitated the photocatalyst process below critical levels of anion populations, where beyond the critical point the process was significantly hindered. Below the determined critical point, the performance in some cases near matches that of the facilitation of the photocatalytic process by exclusive oxygen, acting as an electron scavenger. The coupling of halide ions and oxygenation presented significantly improved photo-oxidation of PCP, this was confirmed by the inclusion of formic acid as a comparative electron donor. The Langmuir-Hinshelwood kinetic expression was used to calculate the performance rate kinetics. The probable impact of the halide anions was discussed with regards to the process of electron hole pair recombination prevention.

  15. Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism (United States)

    Paula, S.; Volkov, A. G.; Deamer, D. W.


    Two alternative mechanisms are frequently used to describe ionic permeation of lipid bilayers. In the first, ions partition into the hydrophobic phase and then diffuse across (the solubility-diffusion mechanism). The second mechanism assumes that ions traverse the bilayer through transient hydrophilic defects caused by thermal fluctuations (the pore mechanism). The theoretical predictions made by both models were tested for halide anions by measuring the permeability coefficients for chloride, bromide, and iodide as a function of bilayer thickness, ionic radius, and sign of charge. To vary the bilayer thickness systematically, liposomes were prepared from monounsaturated phosphatidylcholines (PC) with chain lengths between 16 and 24 carbon atoms. The fluorescent dye MQAE (N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide) served as an indicator for halide concentration inside the liposomes and was used to follow the kinetics of halide flux across the bilayer membranes. The observed permeability coefficients ranged from 10(-9) to 10(-7) cm/s and increased as the bilayer thickness was reduced. Bromide was found to permeate approximately six times faster than chloride through bilayers of identical thickness, and iodide permeated three to four times faster than bromide. The dependence of the halide permeability coefficients on bilayer thickness and on ionic size were consistent with permeation of hydrated ions by a solubility-diffusion mechanism rather than through transient pores. Halide permeation therefore differs from that of a monovalent cation such as potassium, which has been accounted for by a combination of the two mechanisms depending on bilayer thickness.

  16. Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy (United States)

    Kempe, André; Lackner, Maximilian


    The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young's modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data disperse after minutes. A trend of increase in elasticity and permeability was found for all halide solutions. These changes were largest in NaI, displaying a logical trend with ion size. However a correlation with concentration was not measured. Adhesion properties were found to be independent of mechanical properties. The paper also presents practical experience for AFM measurements of soft tissue under liquids, particularly related to data evaluation. The weakening in physical strength found after exposure to halide solutions may be interpreted as widening of the network structure or change in the chemical properties in part of the collagen fibres (swelling). In order to design customized surface coatings at optimized conditions also for medical applications, halide solutions might be used as agents with little impact on the safety of patients. PMID:27721994

  17. Efficient cellulose solvent: quaternary ammonium chlorides. (United States)

    Kostag, Marc; Liebert, Tim; El Seoud, Omar A; Heinze, Thomas


    Pure quaternary tetraalkylammonium chlorides with one long alkyl chain dissolved in various organic solvents constitute a new class of cellulose solvents. The electrolytes are prepared in high yields and purity by Menshutkin quaternization, an inexpensive and easy synthesis route. The pure molten tetraalkylammonium chlorides dissolve up to 15 wt% of cellulose. Cosolvents, including N,N-dimethylacetamide (DMA), may be added in large excess, leading to a system of decreased viscosity. Contrary to the well-established solvent DMA/LiCl, cellulose dissolves in DMA/quaternary ammonium chlorides without any pretreatment. Thus, the use of the new solvent avoids some disadvantages of DMA/LiCl and ionic liquids, the most extensively employed solvents for homogeneous cellulose chemistry. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo


    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  19. Double selenates of rare earths and ammonium

    International Nuclear Information System (INIS)

    Iskhakova, L.D.; Kozlova, N.P.; Makarevich, L.G.


    Double selenates of rare earths with ammonium were prepared in result of crystallization. It is shown that NH 4 Ln(SeO 4 ) · nH 2 O crystalline hydrates are presented by penta-and trihydrates. Existance of two modifications was revealed for NH 4 Ln(SeO 4 ) · 5H 2 O: monoclinic form of NH 4 La(SeO 4 ) 2 · 5H 2 O, isostructural RbCe(SeO 4 ) 2 · 5H 2 O, and earlier unknown rhombic form of salts with Ln = Pr, Nd. Trihydrates with Ln = Sm-Yb belong to structural type of RbNd(SeO 4 ) 2 · 3H 2 O. Anhydrous salts NH 4 Ln(SeO 4 ) 2 are isostructural with monoclinic KNd(SO 4 ) 2 modification. Lattice parameters of binary selenates are presented

  20. 21 CFR 184.1296 - Ferric ammonium citrate. (United States)


    ... occurs as thin transparent green scales, as granules, as a powder, or as transparent green crystals. (b) The ingredients meet the specifications of the Food Chemicals Codex, 3d Ed. (1981), pp. 116-117 (Ferric ammonium citrate, brown) and p. 117 (Ferric ammonium citrate, green), which is incorporated by...

  1. Ammonium removal from aqueous solution by ion-exchange using ...

    African Journals Online (AJOL)

    Ammonium removal from aqueous solution by a natural ion-exchange resin was investigated by considering the factors affecting the ammonium-exchange capacity including the zeolites' particle size, the loading flow rates and the impact of a number of regenerations upon the ion-exchange capacity. The resin column was ...

  2. 21 CFR 172.165 - Quaternary ammonium chloride combination. (United States)


    ... HUMAN CONSUMPTION Food Preservatives § 172.165 Quaternary ammonium chloride combination. The food... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Quaternary ammonium chloride combination. 172.165 Section 172.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  3. Modelling nitrogen assimilation of Escherichia coli at low ammonium concentration.

    NARCIS (Netherlands)

    Ma, H.; Boogerd, F.C.; Goryanin, I.


    Modelling is an important methodology in systems biology research. In this paper, we presented a kinetic model for the complex ammonium assimilation regulation system of Escherichia coli. Based on a previously published model, the new model included AmtB mediated ammonium transport and AmtB

  4. Ginger-supplemented diet ameliorates ammonium nitrate-induced ...

    African Journals Online (AJOL)

    The present study was designed to evaluate the capacity of ginger to repair the oxidative stress induced by ammonium nitrate. 50 male rats were divided into 5 groups; they underwent an oral treatment of ammonium nitrate and/or ginger (N mg/kg body weight + G% in diet) during 30 days. Group I served as control (C); ...

  5. Studies on the Effects of Ammonium Phosphates on the ...

    African Journals Online (AJOL)

    ……..(2). Ammonium dihydrogen tetraoxophosphate (V): (NH4)2HPO4 → NH4H2PO4 + NH3 ……(3a). NH4H2PO4 → H3PO4 + NH3 …...........(3b). Scheme 1: Equations for the combustion of the three ammonium phosphates used in filling the ...

  6. Thiourea-doped ammonium dihydrogen phosphate: A single crystal ...

    Indian Academy of Sciences (India)

    Thiourea-doped ammonium dihydrogen phosphate (TADP) exhibits nonlinear optical property and the second harmonic generation efficiency of these crystals is three times that of pure ammonium dihydrogen phosphate (ADP) crystal. In this context, the study of structural distortion in the thiourea-doped ADP crystal is ...

  7. 78 FR 32690 - Certain Ammonium Nitrate From Ukraine (United States)


    ... From Ukraine Determination On the basis of the record \\1\\ developed in the subject five-year review... certain ammonium nitrate from Ukraine would be likely to lead to continuation or recurrence of material... Ammonium Nitrate from Ukraine: Investigation No. 731-TA-894 (Second Review). By order of the Commission...

  8. The Rh complex exports ammonium from human red blood cells

    NARCIS (Netherlands)

    Hemker, Mirte B.; Cheroutre, Goedele; van Zwieten, Rob; Maaskant-van Wijk, Petra A.; Roos, Dirk; Loos, Johannes A.; van der Schoot, C. Ellen; von dem Borne, Albert E. G. Kr


    The Rh blood group system represents a major immunodominant protein complex on red blood cells (RBC). Recently, the Rh homologues RhAG and RhCG were shown to promote ammonium ion transport in yeast. In this study, we showed that also in RBC the human Rh complex functions as an exporter of ammonium

  9. Synthesis, antimicrobial activity of lamotrigine and its ammonium ...

    Indian Academy of Sciences (India)

    Antiepileptic drug lamotrigine and its thirteen ammonium salt complexes (4a-4m) were synthesized and characterized by IR, elemental analysis, 1H-NMR, and MS spectral methods. Many of the ammonium salts (4a-4m) were first reported. Furthermore, the crystal structure of compound 3 was determined by single crystal ...

  10. Ceric ammonium nitrate catalysed three component one-pot efficient ...

    Indian Academy of Sciences (India)


    Abstract. Ceric ammonium nitrate (CAN) is used as an efficient catalyst for the synthesis of 2,4,5- triaryl-1H-imidazoles via condensation of benzoin/benzil, ammonium acetate, and aromatic aldehydes. The easy work-up, higher yields and shorter reaction time are the advantages of the method presented here. Keywords.

  11. Effects of dietary ammonium sulphate (AS) on the performance and ...

    African Journals Online (AJOL)

    Two experiments were designed to investigate the response of broilers to dietary inclusion of ammonium sulphate. In experiment 1, day old chicks were fed diets with 0,1,2 or 3 % ammonium sulphate (AS) during the starter phase (0 –4 weeks). In experiment 2, broilers chicks were raised on a standard diet from 0 – 4 weeks ...

  12. Ceric ammonium nitrate catalysed three component one-pot efficient ...

    Indian Academy of Sciences (India)

    Ceric ammonium nitrate (CAN) is used as an efficient catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles via condensation of benzoin/benzil, ammonium acetate, and aromatic aldehydes. The easy work-up, higher yields and shorter reaction time are the advantages of the method presented here.

  13. Bright triplet excitons in caesium lead halide perovskites (United States)

    Becker, Michael A.; Vaxenburg, Roman; Nedelcu, Georgian; Sercel, Peter C.; Shabaev, Andrew; Mehl, Michael J.; Michopoulos, John G.; Lambrakos, Samuel G.; Bernstein, Noam; Lyons, John L.; Stöferle, Thilo; Mahrt, Rainer F.; Kovalenko, Maksym V.; Norris, David J.; Rainò, Gabriele; Efros, Alexander L.


    Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund’s rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the ‘dark exciton’. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin–orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

  14. Origins and mechanisms of hysteresis in organometal halide perovskites (United States)

    Li, Cheng; Guerrero, Antonio; Zhong, Yu; Huettner, Sven


    Inorganic-organic halide organometal perovskites, such as CH3NH3PbI3 and CsPbI3, etc, have been an unprecedented rising star in the field of photovoltaics since 2009, owing to their exceptionally high power conversion efficiency and simple fabrication processability. Despite its relatively short history of development, intensive investigations have been concentrating on this material; these have ranged from crystal structure analysis and photophysical characterization to performance optimization and device integration, etc. Yet, when applied in photovoltaic devices, this material suffers from hysteresis, that is, the difference of the current-voltage (I-V) curve during sweeping in two directions (from short-circuit towards open-circuit and vice versa). This behavior may significantly impede its large-scale commercial application. This Review will focus on the recent theoretical and experimental efforts to reveal the origin and mechanism of hysteresis. The proposed origins include (1) ferroelectric polarization, (2) charge trapping/detrapping, and (3) ion migration. Among them, recent evidence consistently supports the idea that ion migration plays a key role for the hysteretic behavior in perovskite solar cells (PSCs). Hence, this Review will summarize the recent results on ion migration such as the migrating ion species, activation energy measurement, capacitive characterization, and internal electrical field modulation, etc. In addition, this Review will also present the devices with alleviation/elimination of hysteresis by incorporating either large-size grains or phenyl-C61-butyric acid methyl ester molecules. In a different application, the hysteretic property has been utilized in photovoltaic and memristive switching devices. In sum, by examining these three possible mechanisms, it is concluded that the origin of hysteresis in PSCs is associated with a combination of effects, but mainly limited by ion/defect migration. This strong interaction between ion

  15. Homocoupling of aryl halides in flow: Space integration of lithiation and FeCl3 promoted homocoupling

    Directory of Open Access Journals (Sweden)

    Aiichiro Nagaki


    Full Text Available The use of FeCl3 resulted in a fast homocoupling of aryllithiums, and this enabled its integration with the halogen–lithium exchange reaction of aryl halides in a flow microreactor. This system allows the homocoupling of two aryl halides bearing electrophilic functional groups, such as CN and NO2, in under a minute.

  16. Double-Diffusive Convection During Growth of Halides and Selenides (United States)

    Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.


    Heavy metal halides and selenides have unique properties which make them excellent materials for chemical, biological and radiological sensors. Recently it has been shown that selenohalides are even better materials than halides or selenides for gamma-ray detection. These materials also meet the strong needs of a wide band imaging technology to cover ultra-violet (UV), midwave infrared wavelength (MWIR) to very long wavelength infrared (VLWIR) region for hyperspectral imager components such as etalon filters and acousto-optic tunable filters (AO). In fact AOTF based imagers based on these materials have some superiority than imagers based on liquid crystals, FTIR, Fabry-Perot, grating, etalon, electro-optic modulation, piezoelectric and several other concepts. For example, broadband spectral and imagers have problems of processing large amount of information during real-time observation. Acousto-Optic Tunable Filter (AOTF) imagers are being developed to fill the need of reducing processing time of data, low cost operation and key to achieving the goal of covering long-wave infrared (LWIR). At the present time spectral imaging systems are based on the use of diffraction gratings are typically used in a pushbroom or whiskbroom mode. They are mostly used in systems and acquire large amounts of hyperspectral data that is processed off-line later. In contrast, acousto-optic tunable filter spectral imagers require very little image processing, providing new strategies for object recognition and tracking. They are ideally suited for tactical situations requiring immediate real-time image processing. But the performance of these imagers depends on the quality and homogeneity of acousto-optic materials. In addition for many systems requirements are so demanding that crystals up to sizes of 10 cm length are desired. We have studied several selenides and halide crystals for laser and AO imagers for MWIR and LWIR wavelength regions. We have grown and fabricated crystals of

  17. Shock wave synthesis of amino acids from solutions of ammonium formate and ammonium bicarbonate (United States)

    Suzuki, Chizuka; Furukawa, Yoshihiro; Kobayashi, Takamichi; Sekine, Toshimori; Nakazawa, Hiromoto; Kakegawa, Takeshi


    The emergence of life's building blocks, such as amino acids and nucleobases, on the prebiotic Earth was a critical step for the beginning of life. Reduced species with low mass, such as ammonia, amines, or carboxylic acids, are potential precursors for these building blocks of life. These precursors may have been provided to the prebiotic ocean by carbonaceous chondrites and chemical reactions related to meteorite impacts on the early Earth. The impact of extraterrestrial objects on Earth occurred more frequently during this period than at present. Such impacts generated shock waves in the ocean, which have the potential to progress chemical reactions to form the building blocks of life from reduced species. To simulate shock-induced reactions in the prebiotic ocean, we conducted shock-recovery experiments on ammonium bicarbonate solution and ammonium formate solution at impact velocities ranging from 0.51 to 0.92 km/s. In the products from the ammonium formate solution, several amino acids (glycine, alanine, ß-alanine, and sarcosine) and aliphatic amines (methylamine, ethylamine, propylamine, and butylamine) were detected, although yields were less than 0.1 mol % of the formic acid reactant. From the ammonium bicarbonate solution, smaller amounts of glycine, methylamine, ethylamine, and propylamine were formed. The impact velocities used in this study represent minimum cases because natural meteorite impacts typically have higher velocities and longer durations. Our results therefore suggest that shock waves could have been involved in forming life's building blocks in the ocean of prebiotic Earth, and potentially in aquifers of other planets, satellites, and asteroids.

  18. Manganese-Catalyzed Cross-Coupling of Aryl Halides and Grignard Reagents by a Radical Mechanism

    DEFF Research Database (Denmark)

    Antonacci, Giuseppe; Ahlburg, Andreas; Fristrup, Peter


    The substrate scope and the mechanism have been investigated for the MnCl2-catalyzed cross-coupling reaction between aryl halides and Grignard reagents. The transformation proceeds rapidly and in good yield when the aryl halide component is an aryl chloride containing a cyano or an ester group...... in the para position or a cyano group in the ortho position. A range of other substituents gave no conversion of the aryl halide or led to the formation of side products. A broader scope was observed for the Grignard reagents, where a variety of alkyl- and arylmagnesium chlorides participated in the coupling....... Two radical-clock experiments were carried out, and in both cases an intermediate aryl radical was successfully trapped. The cross-coupling reaction is therefore believed to proceed by an SRN1 mechanism, with a triorganomanganate complex serving as the most likely nucleophile and single-electron donor...

  19. Effects of halides on plasmid-mediated silver resistance in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Maynes, M.; Silver, S. [Univ. of Illinois, Chicago, IL (United States). Dept. of Microbiology and Immunology


    Silver resistance of sensitive Escherichia coli J53 and resistance plasmid-containing J53(pMG101) was affected by halides in the growth medium. The effects of halides on Ag{sup +} resistance were measured with AgNO{sub 3} and silver sulfadiazine, both on agar and in liquid. Low concentrations of chloride made the differences in MICs between sensitive and resistant strains larger. High concentrations of halides increased the sensitivities of both strains to Ag{sup +}. The purpose of this report is to set out easy-to-use conditions for measuring silver sensitivity and resistance in familiar and widely used media, Luria-Bertani (LB) agar and broth, so as to facilitate wider identification of silver resistance in nature.

  20. The Mode of Action of Silver and Silver Halides Nanoparticles against Saccharomyces cerevisiae Cells

    Directory of Open Access Journals (Sweden)

    A. A. Kudrinskiy


    Full Text Available Silver and silver halides nanoparticles (NPs (Ag, AgCl, AgBr, and AgI capped with two different stabilizers (sodium citrate and nonionic surfactant Tween 80 were obtained via sodium borohydride reduction of silver nitrate in an aqueous solution. The effect of the biocidal action of as-prepared synthesized materials against yeast cells Saccharomyces cerevisiae was compared to the effect produced by silver nitrate and studied through the measurement of cell loss and kinetics of K+ efflux from the cells depending on concentration of silver. The results clearly indicate that the silver ions either remained in the dispersion of silver NPs and silver halides NPs after their synthesis or were generated afterwards by dissolving silver and silver halides particles playing a major part in the cytotoxic activity of NPs against yeast cells. It was also supposed that this activity most likely does not relate to the damage of cell membrane.

  1. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    International Nuclear Information System (INIS)

    Wang, Jun; Wang, Yafeng; Hu, Tao; Wu, Lin; Shen, Xuechu; Chen, Zhanghai; Cao, Runan; Xu, Fei; Da, Peimei; Zheng, Gengfeng; Lu, Jian


    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources

  2. A study on the localized corrosion of cobalt in bicarbonate solutions containing halide ions

    Energy Technology Data Exchange (ETDEWEB)

    Gallant, Danick [Departement de Biologie, Chimie et Sciences de la Sante, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Que., G5L 3A1 (Canada); Departement de Chimie, Universite Laval, Quebec, Que., G1K 7P4 (Canada); Simard, Stephan [Departement de Biologie, Chimie et Sciences de la Sante, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Que., G5L 3A1 (Canada)]. E-mail:


    The localized attack of cobalt in bicarbonate aqueous solutions containing halide ions was investigated using electrochemical techniques, scanning electron microscopy, UV-visible and Raman spectroscopies. Rotating disc and rotating ring-disc electrodes were used to determine the effect of bicarbonate concentration, solution pH, nature and concentration of the halide ions, convection and potential sweep rate on the corrosion processes. These parameters were found to play a key role on the localized attack induced by halide ions by influencing the production of a Co(HCO{sub 3}){sub 2} precipitate on the pit surface. Potentiostatically generated cobalt oxide films (CoO and Co{sub 3}O{sub 4}) were found to be efficient to reduce pitting corrosion of cobalt.

  3. Hybrid organic-inorganic crystals based on ammonium dihydrogen phosphate and ammonium salicylate (United States)

    Voronov, A. P.; Salo, V. I.; Puzikov, V. M.; Babenko, G. N.; Roshal, A. D.; Tkachenko, V. F.


    ADP-NH 4Sal hybrid crystals are grown from aqueous solutions. The influence of the acidity of the mixed solution on the conditions of co-crystallization of the components is studied. The spectral and scintillation characteristics are determined. Co-crystallization of ammonium salicylate (NH 4Sal) and ammonium dihydrogen phosphate (ADP, NH 4H 2PO 4) is shown to be feasible, the structure of the doping addition being defined by the solution рН. In basic and weak acidic media the hybrid crystals ADP:NH 4Sal are formed in which salicylate anions are located in the interplanar space between the {110}-type planes in the lattice of ADP. The luminescence spectra contain an emission band maximum with λ max=360 nm. In acidic solutions there are ADP:HSal crystals in which salicylic acid molecules captured by the growth macrosteps are located in the interplanar space of the prismatic {100} and pyramidal {101} growth sectors. The luminescence band undergoes bathochromic shift to λmax=400 nm. The sensitivity of ADP:NH 4Sal scintillation crystals to fast neutrons depends on the concentration of ammonium salicylate in ADP matrix. The highest neutron sensitivity is characteristic of the co-doped ADP:NH 4Sal/Tl scintillation crystals.

  4. Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light. (United States)

    Jia, Huijun; Yuan, Qiuyan


    In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.

  5. Reactive Uptake of Dimethylamine by Ammonium Sulfate and Ammonium Sulfate-Sucrose Mixed Particles. (United States)

    Chu, Yangxi; Chan, Chak K


    Short-chain alkyl amines can undergo gas-to-particle partitioning via reactive uptake by ammonium salts, whose phases have been thought to largely influence the extent of amine uptake. Previous studies mainly focused on particles of single ammonium salt at either dry or wet conditions without any addition of organic compounds. Here we report the uptake of dimethylamine (DMA) by ammonium sulfate (AS) and AS-sucrose mixed particles at different relative humidities (RHs) using an electrodynamic balance coupled with in situ Raman spectroscopy. DMA is selected as a representative of short-chain alkyl amines, and sucrose is used as a surrogate of viscous and hydrophilic organics. Effective DMA uptake was observed for most cases, except for the water-limiting scenario at <5% RH and the formation of an ultraviscous sucrose coating at 10% RH and below. DMA uptake coefficients (γ) were estimated using the particle mass measurements during DMA uptake. Addition of sucrose can increase γ by absorbing water or inhibiting AS crystallization and decrease γ by elevating the particle viscosity and forming a coating layer. DMA uptake can be facilitated for crystalline AS or retarded for aqueous AS with hydrophilic viscous organics (e.g., secondary organic material formed via the oxidation of biogenic volatile organic compounds) present in aerosol particles.

  6. Structures of butyl ions formed by electron impact ionization of isomeric butyl halides and alkanes

    International Nuclear Information System (INIS)

    Shold, D.M.; Ausloos, P.


    Using a pulsed ion cyclotron resonance (ICR) spectrometer, it is demonstrated that at pressures of about 10 -6 Torr and at observation times ranging from 10 -3 to 0.5 s, isobutane, neopentane, 2,2-dimethylbutane, isobutyl halides, and tert-butyl halides form C 4 H 9 + ions having the tertiary structure. In n-alkanes, 2-methylbutane, 3-methylpentane, n-butyl halides, and sec-butyl halides, both sec-C 4 H 9 + and t-C 4 H 9 + ions are observed, the sec-C 4 H 9 + ions surviving without rearrangement for at least 0.1 s. However, in the case of the halides, a collision-induced isomerization of the sec-C 4 H 9 + to the t-C 4 H 9 + ions occurs. The efficiency of this process increases with the basicity of the alkyl halide. Radiolysis experiments carried out at atmospheric pressures indicate, in agreement with ICR and solution experiments, that at times as short as 10 -10 s the majority of the i-C 4 H 9 + ions from isobutyl bromide rearrange to the t-C 4 H 9 + structure. On the other hand, in the radiolysis of both n-hexane and 3-methylpentane, the abundance of t-C 4 H 9 + relative to sec-C 4 H 9 + is substantially smaller than that observed in the ICR experiments, and decreases with decreasing collision interval. It is suggested that about 90% of the i-C 4 H 9 + can rearrange to t-C 4 H 9 + by simple 1,2-hydride shift without involving secondary or protonated methylcyclopropane structures as intermediates. 4 figures, 2 tables

  7. Ion-selective solid-phase electrode sensitive to ammonium ions

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Milonova, M.S.; Antonov, P.P.; Bychkov, E.A.; Ehfa, A.Ya.


    Ammonium phosphomolybdate is investigated for the purpose of using it as membrane material of ammonium-selective solid-phase electrodes. Estimation of proton mobility and ion conductivity of ammonium phosphomolybdate is performed

  8. A mild and efficient procedure for the synthesis of ethers from various alkyl halides

    Directory of Open Access Journals (Sweden)

    Mosstafa Kazemi


    Full Text Available A simple, mild and practical procedure has been developed for the synthesis of symmetrical and unsymmetrical ethers by using DMSO, TBAI in the presence of K2CO3. We extended the utility of Potassium carbonate as an efficient base for the preparation of ethers. A wide range of alkyl aryl and dialkyl ethers are synthezied from treatment of aliphatic alcohols and phenols with various alkyl halides in the prescence of efficient base Potassium carbonate. Secondary alkyl halides were easily converted to corresponding ethers in releatively good yields . This is a mild, simple and practical procedure for the preparation of ethers in high yields and suitable times under mild condition.

  9. The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice

    International Nuclear Information System (INIS)

    Queiroz, S.L.A. de.


    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author) [pt

  10. Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications

    Directory of Open Access Journals (Sweden)

    Simon A. Bretschneider


    Full Text Available The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We discuss the crystal and band structure of perovskite materials currently implemented in solar cells and the impact of the crystal properties on ferroelectricity, ambipolarity, and the properties of excitons.

  11. A Cluster-Bethe lattice treatment for the F-center in alkali-halides

    International Nuclear Information System (INIS)

    Queiroz, S.L.A. de; Koiller, B.; Maffeo, B.; Brandi, H.S.


    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Cluster-Bethe lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second- neighbors to it, respectively, cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides [pt

  12. The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance

    KAUST Repository

    Adinolfi, Valerio


    Organometal halide perovskites are under intense study for use in optoelectronics. Methylammonium and formamidinium lead iodide show impressive performance as photovoltaic materials; a premise that has spurred investigations into light-emitting devices and photodetectors. Herein, the optical and electrical material properties of organometal halide perovskites are reviewed. An overview is given on how the material composition and morphology are tied to these properties, and how these properties ultimately affect device performance. Material attributes and techniques used to estimate them are analyzed for different perovskite materials, with a particular focus on the bandgap, mobility, diffusion length, carrier lifetime, and trap-state density.

  13. Size-dependent reactions of ammonium bisulfate clusters with dimethylamine. (United States)

    Bzdek, Bryan R; Ridge, Douglas P; Johnston, Murray V


    The reaction kinetics of ammonium bisulfate clusters with dimethylamine (DMA) gas were investigated using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Clusters ranged in size from 1 to 10 bisulfate ions. Although displacement of the first several ammonium ions by DMA occurred with near unit efficiency, displacement of the final ammonium ion was cluster size dependent. For small clusters, all ammonium ions are exposed to incoming DMA molecules, allowing for facile exchange ("surface" exchange). However, with increasing cluster size, an ammonium ion can be trapped in an inaccessible region of the cluster ("core" exchange), thereby rendering exchange difficult. DMA was also observed to add onto existing dimethylaminium bisulfate clusters above a critical size, whereas ammonia did not add onto ammonium bisulfate clusters. The results suggest that as the cluster size increases, di-dimethylaminium sulfate formation becomes more favorable. The results of this study give further evidence to suggest that ambient sub-3 nm diameter particles are likely to contain aminium salts rather than ammonium salts.

  14. Resonance Raman spectra of metal halide vapor complexes

    International Nuclear Information System (INIS)

    Paptheodorou, G.N.


    Resonance Raman spectra of complex vapor phase compounds formed by reacting ''acidic'' gases (A 2 X 6 = Al 2 Cl 6 , Al 2 Br 6 , In 2 Cl 6 ) with metal halides have been measured. Spectra obtained from equilibrium vapor mixtures of A 2 X 6 over solid MX 2 (= PdCl 2 , PdBr 2 , CuCl 2 , CoBr 2 , TiCl 2 , FeCl 2 , NiCl 2 , PtCl 2 ) were a superposition of the A 2 X 6 -AX 3 bands and in few cases of new resonance-enhanced polarized bands due to MA 2 X 8 and/or MAX 5 complexes. At temperatures above 800 0 K, characteristic bands due to MX 2 (g) (M = Fe, Co, Ni, Cu, Zn) and M 2 X 4 (g) (M = Cu) were observed. The predominant features of the PdAl 2 Cl 8 , CuAl 2 Cl 8 , and PdAl 2 Br 6 spectra were three high-intensity, polarized bands which were attributed to the vibrational modes of the complex coupled to the electronic state of the central atom. The spectra of CuAlCl 5 (g), CuInCl 5 (g) and Cu 2 Cl 4 (g) species showed resonance enhancement of selective fundamentals which were attributed to vibrational modes of trigonally coordinated Cu(II). Resonance Raman spectra of U 2 Cl 10 (g) and UCl 5 .AlCl 3 (g) were characterized by the presence of a strong band attributed to the U-Cl/sub t/ stretching frequency. Raman band intensity measurements were carried out for the iron(III) chloride vapors and for the vapor complexes of CuAl 2 Cl 8 , CuInCl 5 and UCl 5 .AlCl 3 using different laser powers and frequencies. The measurements suggested increasing spectroscopic temperatures and decomposition of the vapor complexes. The data are discussed in terms of the distribution of vibrational modes and the structure of the vapor species. 22 figs

  15. Modelling an Ammonium Transporter with SCLS

    Directory of Open Access Journals (Sweden)

    Angelo Troina


    Full Text Available The Stochastic Calculus of Looping Sequences (SCLS is a recently proposed modelling language for the representation and simulation of biological systems behaviour. It has been designed with the aim of combining the simplicity of notation of rewrite systems with the advantage of compositionality. It also allows a rather simple and accurate description of biological membranes and their interactions with the environment.In this work we apply SCLS to model a newly discovered ammonium transporter. This transporter is believed to play a fundamental role for plant mineral acquisition, which takes place in the arbuscular mycorrhiza, the most wide-spread plant-fungus symbiosis on earth. Due to its potential application in agriculture this kind of symbiosis is one of the main focuses of the BioBITs project. In our experiments the passage of NH3 / NH4+ from the fungus to the plant has been dissected in known and hypothetical mechanisms; with the model so far we have been able to simulate the behaviour of the system under different conditions. Our simulations confirmed some of the latest experimental results about the LjAMT2;2 transporter. The initial simulation results of the modelling of the symbiosis process are promising and indicate new directions for biological investigations.

  16. Homocoupling of benzyl halides catalyzed by POCOP-nickel pincer complexes

    KAUST Repository

    Chen, Tao


    Two types of POCOP-nickel(II) pincer complexes were prepared by mixing POCOP pincer ligands and NiX 2 in toluene at reflux. The resulting nickel complexes efficiently catalyze the homocoupling reactions of benzyl halides in the presence of zinc. The coupled products were obtained in excellent to quantitative yields. © 2012 Elsevier Ltd. All rights reserved.

  17. Nickel(II) complexes of N2S2 donor set ligand and halide ...

    Indian Academy of Sciences (India)

    Nickel(II) complexes of N2S2 donor set ligand and halide/pseudohalides: Synthesis, crystal structure, DNA and bovine/human serum albumin interaction. ANIMESH PATRAa ..... sitive to the length changes of nucleic acids, and so a classical intercalation mode should be indicated by a lengthening of the DNA double chain, ...

  18. A Solvent-Free Base Liberation of a Tertiary Aminoalkyl Halide by Flow Chemistry

    DEFF Research Database (Denmark)

    Pedersen, Michael Jønch; Skovby, Tommy; Mealy, Michael J.


    A flow setup for base liberation of 3-(N,N-dimethylamino)propyl chloride hydrochloride and solvent-free separation of the resulting free base has been developed. Production in flow profits from an on-demand approach, useful for labile aminoalkyl halides. The requirement for obtaining a dry product...

  19. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J.


    electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) – almost 27000 combinations, and have identified novel mixtures, with significantly improved storage...

  20. Amination of Aryl Halides and Esters Using Intensified Continuous Flow Processing. (United States)

    Kohl, Thomas M; Hornung, Christian H; Tsanaktsidis, John


    Significant process intensification of the amination reactions of aryl halides and esters has been demonstrated using continuous flow processing. Using this technology traditionally difficult amination reactions have been performed safely at elevated temperatures. These reactions were successfully conducted on laboratory scale coil reactor modules with 1 mm internal diameter (ID) and on a preparatory scale tubular reactor with 6 mm ID containing static mixers.

  1. Electro-optic response of metal halide : A first-principles study

    Indian Academy of Sciences (India)

    Amreen Bano


    Jul 8, 2017 ... the optical properties of cubic CsPbI3. In this paper, we assess the properties of halide perovskite CsPbI3 using density functional theory (DFT) for ground-state proper- ties like electronic band structure, and density functional perturbation theory (DFPT) for dielectric and optical response functions. We have ...

  2. Charge-charge liquid structure factor and the freezing of alkali halides

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.


    The peak height of the charge-charge liquid structure factor Ssub(QQ) in molten alkali halides is proposed as a criterion for freezing. Available data on molten alkali chlorides, when extrapolated to the freezing point suggests Ssub(QQ)sup(max) approximately 5. (author)

  3. Synthesis and Spectroscopic studies on cadmium halide complexes of isonicotinic acid

    International Nuclear Information System (INIS)

    Bardak, F.


    In this study infrared spectra (4000-400cm - 1) are reported for the cadmium(II) halide isonicotinic acid complexes. Vibrational assignments are given for all observed bands. Some structure spectra correlations and frequency shifts were found. It's found the frequency shifts depends on the halogen for a given metal. Certain chemical formulas were determined using elemental analysis results

  4. Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals. (United States)

    Zhu, Feng; Men, Long; Guo, Yijun; Zhu, Qiaochu; Bhattacharjee, Ujjal; Goodwin, Peter M; Petrich, Jacob W; Smith, Emily A; Vela, Javier


    Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In this manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively higher photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. This work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.

  5. Surface Termination, Morphology and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystals

    NARCIS (Netherlands)

    ten Brinck, Stephanie; Infante, Ivan


    Colloidal cesium lead halide perovskite nanocrystals (CsPbX3 PNC, X=Cl, Br, I) exhibit important optoelectronic properties that make them amenable for a plethora of applications. The origin of these properties, even for as-synthesized and unpurified PNCs, is however largely unknown. Electronic

  6. α-Regioselective Barbier Reaction of Carbonyl Compounds and Allyl Halides Mediated by Praseodymium. (United States)

    Wu, San; Li, Ying; Zhang, Songlin


    The first utility of praseodymium as a mediating metal in the Barbier reaction of carbonyl compounds with allyl halides was reported in this paper. In contrast to the traditional metal-mediated or catalyzed Barbier reactions, exclusive α-adducts were obtained in this one-pot reaction with a broad scope of substrates and feasible reaction conditions.

  7. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry (United States)

    Cruz-Ramírez de Arellano, Daniel; Towns, Marcy H.


    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  8. Metal-halide systems: From molecular clusters to liquid-state structure

    Directory of Open Access Journals (Sweden)

    Mario P. Tosi


    Full Text Available I present a short review of the relationship between quantum-mechanical calculations on small molecular clusters of some metal-ion halides and studies of the microscopic structure in the condensed liquid phases of these compounds. The review is dedicated to the memory of Professor Vincenzo Grasso.

  9. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Klick, David Ira [Univ. of Illinois, Urbana-Champaign, IL (United States)


    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu+ and Ag+ and the heavy-metal ions In+ and Tl+ was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data.

  10. A method for de-halogenating a composition containing halides as impurities

    International Nuclear Information System (INIS)

    Grossman, L.N.; Brigham, D.A.


    A fast dehalogenation low-temperature method, consisting in heating the halide-containing composition up to a temperature of from 315 deg C to 870 deg C in a de-halogenating atmosphere containing a vaporized alcohol. That method can be applied to the generation of uranium dioxide [fr

  11. Can Ferroelectric Polarization Explain the High Performance of Hybrid Halide Perovskite Solar Cells?

    NARCIS (Netherlands)

    Sherkar, Tejas; Koster, L. Jan Anton

    The power conversion efficiency of photovoltaic cells based on the use of hybrid halide perovskites, CH3NH3PbX3 (X = Cl, Br, I), now exceeds 20%. Recently, it was suggested that this high performance originates from the presence of ferroelectricity in the perovskite, which is hypothesized to lower

  12. Organic Cation Rotation and Immobilization in Pure and Mixed Methylammonium Lead-Halide Perovskites

    NARCIS (Netherlands)

    Selig, Oleg; Sadhanala, Aditya; Muller, Christian; Lovrincic, Robert; Chen, Zhuoying; Rezus, Yves L. A.; Frost, Jarvist M.; Jansen, Thomas L. C.; Bakulin, Artem A.


    Three-dimensional lead-halide perovskites have attracted a lot of attention due to their ability to combine solution processing with outstanding optoelectronic properties. Despite their soft ionic nature these materials demonstrate a surprisingly low level of electronic disorder resulting in sharp

  13. Correlated linear response calculations of the C6 dispersion coefficients of hydrogen halides

    Czech Academy of Sciences Publication Activity Database

    Sauer, S. P. A.; Paidarová, Ivana


    Roč. 3, 2-4 (2007), s. 399-421 ISSN 1574-0404 R&D Projects: GA AV ČR IAA401870702 Institutional research plan: CEZ:AV0Z40400503 Keywords : hydrogen halides * C6 dospersion coefficients * van der Waals coefficients * polarizability at imaginary frequences * SOPPA Subject RIV: CF - Physical ; Theoretical Chemistry

  14. Determination of the structural phase and octahedral rotation angle in halide perovskites (United States)

    dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich


    A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.

  15. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    International Nuclear Information System (INIS)

    Klick, D.I.


    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu + and Ag + and the heavy-metal ions In + and Tl + was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data

  16. Electrochemical specific adsorption of halides on Cu 111, 100, and 211: A Density Functional Theory study

    International Nuclear Information System (INIS)

    McCrum, Ian T.; Akhade, Sneha A.; Janik, Michael J.


    The specific adsorption of ions onto electrode surfaces can affect electrocatalytic reactions. Density functional theory is used to investigate the specific adsorption of aqueous F − , Cl − , Br − , and I − onto Cu (111), (100), and (211) surfaces. The adsorption is increasingly favorable in the order of F − < Cl − < Br − < I − . The adsorption has a weak dependence on the surface facet, with adsorption most favorable on Cu (100) and least favorable on Cu (111). Potential ranges where specific adsorption would be expected on each facet are reported. The thermodynamics of bulk copper halide (CuX, CuX 2 ) formation are also investigated as a function of potential. CuX formation occurs at potentials slightly more positive of halide specific adsorption and of copper oxidation in aqueous electrolytes. Specifically adsorbed halides and bulk CuX may be present during a variety of electrochemical reactions carried out over a Cu electrode in halide containing electrolyte solutions

  17. Epitaxial Growth of a Methoxy-Functionalized Quaterphenylene on Alkali Halide Surfaces

    DEFF Research Database (Denmark)

    Balzer, Frank; Sun, Rong; Parisi, Jürgen


    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of lowenergy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X...

  18. Thorium valency in molten alkali halides in equilibrium with metallic thorium

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.


    Metallic thorium is shown to corrode in molten alkali halides even in the absence of external oxidizing agents, alkali cations acting as oxidizing agents. Its corrosion rate grows in the series of alkali chlorides from LiCl to CsCl at constant temperature. Substituting halide anions for one another exerts a smaller influence, the rate rising slightly in going from chlorides to bromides and iodides, having the same alkali cations. Thorium valency is determined coulometrically, the metal being dissolved anodically in molten alkali halides and their mixtures. In fluoride melts it is equal to 4 but in chloride, bromide and iodide ones, as a rule, it has non-integral values between 4 and 2 which diminish as the temperature is raised, as the thorium concentration is lowered, as the radii of alkali cations decrease and those of halide anions increase. The emf of cells Th/N ThHlsub(n) + (1-N) MHl/MHl/C, Hlsub(2(g)) where Hl is Cl, Br or I, M is Li, Na, K, Cs or Na + K, and N < 0.05, is measured as a function of concentration at several temperatures. Expressions are obtained for its concentration dependence. The emf grows in the series of alkali chlorides from LiCl to CsCl, other conditions being equal. (author)

  19. Trap-Free Hot Carrier Relaxation in Lead–Halide Perovskite Films

    KAUST Repository

    Bretschneider, Simon A.


    Photovoltaic devices that employ lead-halide perovskites as photoactive materials exhibit power conversion efficiencies of 22%. One of the potential routes to go beyond the current efficiencies is to extract charge carriers that carry excess energy, that is, nonrelaxed or

  20. Syntheses and characterization of two novel 1D Pb (II) Halide ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 7. Syntheses and characterization of two novel 1D Pb(II) Halide supramolecular polymers possessing incomplete Cubane subunit directed by -conjugated Dication templates. Chengjie Ma Mei Liu Wenli Zhang Haijuan Du Yao Li Chaohai Wang Yunyin ...

  1. Radiation chemistry of hydrocarbon and alkyl halide systems. Progress report, August 1, 1977--August 1, 1978

    International Nuclear Information System (INIS)

    Hanrahan, R.J.


    Progress of experimental work is reported on pulse radiolysis of simple alkyl halides in the gas phase, gas phase radiolysis of CHF 3 -CH 3 I mixtures, gamma radiolysis of the system CO/H 2 , and improvements in equipment and facilities

  2. Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning. (United States)

    Jang, Dong Myung; Park, Kidong; Kim, Duk Hwan; Park, Jeunghee; Shojaei, Fazel; Kang, Hong Seok; Ahn, Jae-Pyung; Lee, Jong Woon; Song, Jae Kyu


    In recent years, methylammonium lead halide (MAPbX3, where X = Cl, Br, and I) perovskites have attracted tremendous interest caused by their outstanding photovoltaic performance. Mixed halides have been frequently used as the active layer of solar cells, as a result of their superior physical properties as compared to those of traditionally used pure iodide. Herein, we report a remarkable finding of reversible halide-exchange reactions of MAPbX3, which facilitates the synthesis of a series of mixed halide perovskites. We synthesized MAPbBr3 plate-type nanocrystals (NCs) as a starting material by a novel solution reaction using octylamine as the capping ligand. The synthesis of MAPbBr(3-x)Clx and MAPbBr(3-x)Ix NCs was achieved by the halide exchange reaction of MAPbBr3 with MACl and MAI, respectively, in an isopropyl alcohol solution, demonstrating full-range band gap tuning over a wide range (1.6-3 eV). Moreover, photodetectors were fabricated using these composition-tuned NCs; a strong correlation was observed between the photocurrent and photoluminescence decay time. Among the two mixed halide perovskite series, those with I-rich composition (x = 2), where a sole tetragonal phase exists without the incorporation of a cubic phase, exhibited the highest photoconversion efficiency. To understand the composition-dependent photoconversion efficiency, first-principles density-functional theory calculations were carried out, which predicted many plausible configurations for cubic and tetragonal phase mixed halides.

  3. Halide ordering in reduced mixed halides, chlorides/iodides, of zirconium: syntheses and structures of Cs2[(Zr6B)(Cl,I)15] cluster compounds. (United States)

    Pigorsch, Arne; Köckerling, Martin


    A series of high-temperature solid state chemical reactions was carried out in the quasi-quarternary mixed-halide Cs-Zr-B-(Cl,I) system with stoichiometries aiming for zirconium cluster phases of the Cs(2)[(Zr(6)B)X(15)] type (X = mixture of Cl + I). In the phase range from ~ Cs(2)[(Zr(6)B)Cl(13)I(2)] to Cs(2)[(Zr(6)B)Cl(3)I(12)] the structures of the obtained cluster phases are derived from the orthorhombic CsK[(Zr(6)B)Cl(15)]. At a composition of Cs(2)[(Zr(6)B)Cl(~10) I(~4)] a lower symmetry, monoclinic derivative has been found. X-ray diffraction data of single crystals of three compounds of this phase system were collected, orthorhombic Cs(2)[(Zr(6)B)Cl(12.99(3))I(2.01)] (1), (Pmma, Z = 4, a = 19.304(4), b = 14.617(3), c = 9.921(2) Å, R1/wR2 = 0.0444/0.0886), monoclinic Cs(2)[(Zr(6)B)Cl(10.63(3))I(4.37)] (2), (P2/c, Z = 4, a = 14.9502(3), b = 10.0098(2), c = 19.8798(4) Å, β = 90.977(1) R1/wR2 = 0.0460/0.1182), and orthorhombic Cs(2)[(Zr(6)B)Cl(8.79(4))I(6.21)] (3) (Pmma, Z = 4, a = 20.0534(4), b = 15.1488(3), c = 10.1739(2) Å, R1/wR2 = 0.0494/0.1123). These compounds are obtained as single phase products. As in other known mixed-halide systems halide ordering is observed, such that the different halide sites have different amounts of Cl and I. With increasing amount of iodide, relative to Cl, the cluster-interconnecting halide sites are more and more occupied by I. For the first time it is observed for 3 that a halide site, which forms a linear bridge between two neighboring Zr(6)B cluster units (so far known examples are solely occupied by Cl), is statistically mixed occupied by Cl and I. Nevertheless, both halide types achieve acceptable bonding situations (bond lengths) because the I atoms are moved out of the linearly bridging position, thereby achieving longer Zr-X distances than the Cl atom, which remains linearly bridging. The generally interesting aspect of this paper is that in the very complex systems the atoms of the mixed occupied sites as well

  4. The effect of farmyard manure and calcium ammonium nitrate ...

    African Journals Online (AJOL)

    The effect of farmyard manure and calcium ammonium nitrate fertilisers on micronutrient density (iron, zinc, manganese, calcium and potassium) and seed yields of solanium villosum (black nightshade) and cleome gynandra (cat whiskers) on uetric nitisol.

  5. Stability and Concentration Verification of Ammonium Perchlorate Dosing Solutions

    National Research Council Canada - National Science Library

    Tsui, David


    Stability and concentration verification was performed for the ammonium perchlorate dosing solutions used in the on-going 90-Day Oral Toxicity Study conducted by Springborn Laboratories, Inc. (SLI Study No. 3433.1...

  6. Direct esterification of ammonium salts of carboxylic acids (United States)

    Halpern, Yuval [Skokie, IL


    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  7. The effect of farmyard manure and calcium ammonium nitrate on ...

    African Journals Online (AJOL)

    The effect of farmyard manure and calcium ammonium nitrate on vegetative growth, leaf yield and nutritive quality of Cleome gynadra (Cat Whiskers) in Keiyo District, Rift Valley Province. MJ Hutchinson, LK Kipkosgei, E Obudho, LSM Akundabweni ...

  8. Quaternary ammonium salt N-(dodecyloxycarboxymethyl)- N,N,N ...

    Indian Academy of Sciences (India)


    N-(dodecyloxycarboxymethyl)-. N,N,N-trimethyl ammonium chloride) on yeast cells of the parental strain and the IM-resistant mutant (EO25 IMR) growth. The phenotype of this mutant was pleiotropic. The IMR mutant exhibited ...

  9. 2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation (United States)

    Guo, Yaguang; Saidi, Wissam A.; Wang, Qian


    Halide perovskites and van der Waals (vdW) heterostructures are both of current interest owing to their novel properties and potential applications in nano-devices. Here, we show the great potential of 2D halide perovskite sheets (C4H9NH3)2PbX4 (X  =  Cl, Br and I) that were synthesized recently (Dou et al 2015 Science 349 1518-21) as the channel materials contacting with graphene and other 2D metallic sheets to form van der Waals heterostructures for field effect transistor (FET). Based on state-of-the-art theoretical simulations, we show that the intrinsic properties of the 2D halide perovskites are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The 2D halide perovskites form a p-type Schottky barrier (Φh) contact with graphene, where tunneling barrier exists, and a negative band bending occurs at the lateral interface. We demonstrate that the Schottky barrier can be turned from p-type to n-type by doping graphene with nitrogen atoms, and a low-Φh or an Ohmic contact can be realized by doping graphene with boron atoms or replacing graphene with other high-work-function 2D metallic sheets such as ZT-MoS2, ZT-MoSe2 and H-NbS2. This study not only predicts a 2D halide perovskite-based FETs, but also enhances the understanding of tuning Schottky barrier height in device applications.

  10. An immunoglobulin E assay using radiolabelled Fab' and ammonium sulfate

    International Nuclear Information System (INIS)

    Wilcsek, R.J.; Hamburger, R.N.


    An immunochemical assay is described in which a radiolabelled antibody fragment, Fab', is bound specifically to immunoglobulin E (IgE), and precipitated with ammonium sulfate. The radioactivity in the precipitate is a measure of the amount of IgE in the sample. Results for six serum samples are compared using the double antibody and ammonium sulfate methods as well as the papωr radioimmunosorbent test (PRIST)

  11. The thermal decomposition behavior of ammonium perchlorate and of an ammonium-perchlorate-based composite propellant

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, R.; Minier, L.


    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl, and is shown to occur in the solid phase within the AP particles. 200{micro} diameter AP particles undergo 25% decomposition in the solid phase, whereas 20{micro} diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH{sub 3} + HClO{sub 4} followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  12. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea (United States)

    Kuypers, Marcel M. M.; Sliekers, A. Olav; Lavik, Gaute; Schmid, Markus; Jørgensen, Bo Barker; Kuenen, J. Gijs; Sinninghe Damsté, Jaap S.; Strous, Marc; Jetten, Mike S. M.


    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean. Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N2 in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors. Nutrient profiles, fluorescently labelled RNA probes, 15N tracer experiments and the distribution of specific `ladderane' membrane lipids indicate that ammonium diffusing upwards from the anoxic deep water is consumed by anammox bacteria below the oxic zone. This is the first time that anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment. The widespread occurrence of ammonium consumption in suboxic marine settings indicates that anammox might be important in the oceanic nitrogen cycle.

  13. Mutagenicity of quaternary ammonium salts containing carbohydrate moieties

    Energy Technology Data Exchange (ETDEWEB)

    Dmochowska, Barbara [Department of Carbohydrate Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Piosik, Jacek; Woziwodzka, Anna [Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk (Poland); Sikora, Karol; Wisniewski, Andrzej [Department of Carbohydrate Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Wegrzyn, Grzegorz, E-mail: [Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk (Poland)


    Highlights: {yields} A series of quaternary ammonium salts containing carbohydrate moieties, with configuration D-galacto, D-gluco and D-manno, was synthesized and characterized. {yields} The quaternary ammonium salts containing carbohydrate moieties revealed potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. {yields} The N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. {yields} We suggest that quaternary ammonium salts may be more hazardous than previously supposed. - Abstract: Quaternary ammonium salts are widely used in industrial, agricultural, healthcare and domestic applications. They are believed to be safe compounds, with little or no health hazard to humans. However, in this report, we demonstrate that a series of newly synthesized quaternary ammonium salts containing carbohydrate moieties reveal potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. D-Gluco- and D-galacto-derivatives were found to have a higher mutagenic potential than D-manno-derivatives. Among the former groups of compounds, the N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. These results suggest that the safety of quaternary ammonium salts may be lower than previously supposed, indicating a need for testing such compounds for their mutagenicity.

  14. Synthesis and anticoagulant activity of the quaternary ammonium chitosan sulfates. (United States)

    Fan, Lihong; Wu, Penghui; Zhang, Jinrong; Gao, Song; Wang, Libo; Li, Mingjia; Sha, Mingming; Xie, Weiguo; Nie, Min


    Quaternary ammonium chitosan sulfates with diverse degrees of substitution (DS) ascribed to sulfate groups between 0.52 and 1.55 were synthesized by reacting quaternary ammonium chitosan with an uncommon sulfating agent (N(SO(3)Na)(3)) that was prepared from sodium bisulfite (NaHSO(3)) through reaction with sodium nitrite (NaNO(2)) in the aqueous system homogeneous. The structures of the derivatives were characterized by FTIR, (1)H NMR and (13)C NMR. The factors affecting DS of quaternary ammonium chitosan sulfates which included the molar ratio of NaNO(2) to quaternary ammonium chitosan, sulfated temperature, sulfated time and pH of sulfated reaction solution were investigated in detail. Its anticoagulation activity in vitro was determined by an activated partial thromboplastin time (APTT) assay, a thrombin time (TT) assay and a prothrombin time (PT) assay. Results of anticoagulation assays showed quaternary ammonium chitosan sulfates significantly prolonged APTT and TT, but not PT, and demonstrated that the introduction of sulfate groups into the quaternary ammonium chitosan structure improved its anticoagulant activity obviously. The study showed its anticoagulant properties strongly depended on its DS, concentration and molecular weight. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  15. Mutagenicity of quaternary ammonium salts containing carbohydrate moieties

    International Nuclear Information System (INIS)

    Dmochowska, Barbara; Piosik, Jacek; Woziwodzka, Anna; Sikora, Karol; Wisniewski, Andrzej; Wegrzyn, Grzegorz


    Highlights: → A series of quaternary ammonium salts containing carbohydrate moieties, with configuration D-galacto, D-gluco and D-manno, was synthesized and characterized. → The quaternary ammonium salts containing carbohydrate moieties revealed potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. → The N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. → We suggest that quaternary ammonium salts may be more hazardous than previously supposed. - Abstract: Quaternary ammonium salts are widely used in industrial, agricultural, healthcare and domestic applications. They are believed to be safe compounds, with little or no health hazard to humans. However, in this report, we demonstrate that a series of newly synthesized quaternary ammonium salts containing carbohydrate moieties reveal potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. D-Gluco- and D-galacto-derivatives were found to have a higher mutagenic potential than D-manno-derivatives. Among the former groups of compounds, the N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. These results suggest that the safety of quaternary ammonium salts may be lower than previously supposed, indicating a need for testing such compounds for their mutagenicity.

  16. Ammonium as sole N source improves grain quality in wheat. (United States)

    Fuertes-Mendizábal, Teresa; González-Torralba, Jon; Arregui, Luis M; González-Murua, Carmen; González-Moro, M Begoña; Estavillo, José M


    The skilful handling of N fertilizer, including N source type and its timing, is necessary to obtain maximum profitability in wheat crops in terms of production and quality. Studies on grain yield and quality with ammonium as sole N source have not yet been conducted. The aim of this study was to evaluate the effect of N source management (nitrate vs. ammonium), and splitting it into two or three amendments during the wheat life cycle, on grain yield and quality under irrigated conditions. This experiment demonstrates that Cezanne wheat plants growing with ammonium as exclusive N source are able to achieve the same yield as plants growing with nitrate and that individual wheat plants grown in irrigated pots can efficiently use late N applied in GS37. Ammonium nutrition increased both types of grain reserve proteins (gliadins and glutenins) and also increased the ratio gli/glu with respect to nitrate nutrition. The splitting of the N rate enhanced the ammonium effect on grain protein composition. The application of ammonium N source, especially when split into three amendments, has an analogous effect on grain protein content and composition to applications at a higher N rate, leading to higher N use efficiency. © 2012 Society of Chemical Industry.

  17. 40 CFR 418.60 - Applicability; description of the ammonium sulfate production subcategory. (United States)


    ... ammonium sulfate production subcategory. 418.60 Section 418.60 Protection of Environment ENVIRONMENTAL... CATEGORY Ammonium Sulfate Production Subcategory § 418.60 Applicability; description of the ammonium... production of ammonium sulfate by the synthetic process and by coke oven by-product recovery. The provisions...

  18. A composite light-harvesting layer from photoactive polymer and halide perovskite for planar heterojunction solar cells. (United States)

    Wang, Heming; Rahaq, Yaqub; Kumar, Vikas


    A new route for fabrication of photoactive materials in organic-inorganic hybrid solar cells is presented in this report. Photoactive materials by blending a semiconductive conjugated polymer with an organolead halide perovskite were fabricated for the first time. The composite active layer was then used to make planar heterojunction solar cells with the PCBM film as the electron-acceptor. Photovoltaic performance of solar cells was investigated by J-V curves and external quantum efficiency spectra. We demonstrated that the incorporation of the conjugated photoactive polymer into organolead halide perovskites did not only contribute to the generation of charges, but also enhance stability of solar cells by providing a barrier protection to halide perovskites. It is expected that versatile of conjugated semi-conductive polymers and halide perovskites in photoactive properties enables to create various combinations, forming composites with advantages offered by both types of photoactive materials.

  19. Ammonium inhibition of nitrogenase activity in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Fu, H.; Burris, R.H. (Univ. of Wisconsin, Madison (USA))


    The effect of oxygen, ammonium ion, and amino acids on nitrogenase activity in the root-associated N{sub 2}-fixing bacterium Herbaspirillum seropedicae was investigated in comparison with Azospirillum spp. and Rhodospirillum rubrum. H. seropedicae is microaerophilic, and its optimal dissolved oxygen level is from 0.04 to 0.2 kPa for dinitrogen fixation but higher when it is supplied with fixed nitrogen. No nitrogenase activity was detected when the dissolved O{sub 2} level corresponded to 4.0 kPa. Ammonium, a product of the nitrogenase reaction, reversible inhibited nitrogenase activity when added to derepressed cell cultures. However, the inhibition of nitrogenase activity was only partial even with concentrations of ammonium chloride as high as 20 mM. Amides such as glutamine and asparagine partially inhibited nitrogenase activity, but glutamate did not. Nitrogenase in crude extracts prepared from ammonium-inhibited cells showed activity as high as in extracts from N{sub 2}-fixing cells. The pattern of the dinitrogenase and the dinitrogenase reductase revealed by the immunoblotting technique did not change upon ammonium chloride treatment of cells in vivo. No homologous sequences were detected with the draT-draG probe from Azospirillum lipoferum. There is no clear evidence that ADP-ribosylation of the dinitrogenase reductase is involved in the ammonium inhibition of H. seropedicae. The uncoupler carbonyl cyanide m-chlorophenylhydrazone decreased the intracellular ATP concentration and inhibited the nitrogenase activity of whole cells. The ATP pool was significantly disturbed when cultures were treated with ammonium in vivo.

  20. Early metabolic effects and mechanism of ammonium transport in yeast

    International Nuclear Information System (INIS)

    Pena, A.; Pardo, J.P.; Ramirez, J.


    Studies were performed to define the effects and mechanism of NH+4 transport in yeast. The following results were obtained. Glucose was a better facilitator than ethanol-H 2 O 2 for ammonium transport; low concentrations of uncouplers or respiratory inhibitors could inhibit the transport with ethanol as the substrate. With glucose, respiratory inhibitors showed only small inhibitory effects, and only high concentrations of azide or trifluoromethoxy carbonylcyanide phenylhydrazone could inhibit ammonium transport. Ammonium in the free state could be concentrated approximately 200-fold by the cells. Also, the addition of ammonium produced stimulation of both respiration and fermentation; an increased rate of H+ extrusion and an alkalinization of the interior of the cell; a decrease of the membrane potential, as monitored by fluorescent cyanine; an immediate decrease of the levels of ATP and an increase of ADP, which may account for the stimulation of both fermentation and respiration; and an increase of the levels of inorganic phosphate. Ammonium was found to inhibit 86Rb+ transport much less than K+. Also, while K+ produced a competitive type of inhibition, that produced by NH4+ was of the noncompetitive type. From the distribution ratio of ammonium and the pH gradient, an electrochemical potential gradient of around -180 mV was calculated. The results indicate that ammonium is transported in yeast by a mechanism similar to that of monovalent alkaline cations, driven by a membrane potential. The immediate metabolic effects of this cation seem to be due to an increased [H+]ATPase, to which its transport is coupled. However, the carriers seem to be different. The transport system studied in this work was that of low affinity

  1. Ammonium Transformation in 14 Lakes along a Trophic Gradient

    Directory of Open Access Journals (Sweden)

    Barbara Leoni


    Full Text Available Ammonia is a widespread pollutant in aquatic ecosystems originating directly and indirectly from human activities, which can strongly affect the structure and functioning of the aquatic foodweb. The biological oxidation of NH4+ to nitrite, and then nitrate is a key part of the complex nitrogen cycle and a fundamental process in aquatic environments, having a profound influence on ecosystem stability and functionality. Environmental studies have shown that our current knowledge of physical and chemical factors that control this process and the abundance and function of involved microorganisms are not entirely understood. In this paper, the efficiency and the transformation velocity of ammonium into oxidised compounds in 14 south-alpine lakes in northern Italy, with a similar origin, but different trophic levels, are compared with lab-scale experimentations (20 °C, dark, oxygen saturation that are performed in artificial microcosms (4 L. The water samples were collected in different months to highlight the possible effect of seasonality on the development of the ammonium oxidation process. In four-liter microcosms, concentrations were increased by 1 mg/L NH4+ and the process of ammonium oxidation was constantly monitored. The time elapsed for the decrease of 25% and 95% of the initial ion ammonium concentration and the rate for that ammonium oxidation were evaluated. Principal Component Analysis and General Linear Model, performed on 56 observations and several chemical and physical parameters, highlighted the important roles of total phosphorus and nitrogen concentrations on the commencement of the oxidation process. Meanwhile, the natural concentration of ammonium influenced the rate of nitrification (µg NH4+/L day. Seasonality did not seem to significantly affect the ammonium transformation. The results highlight the different vulnerabilities of lakes with different trophic statuses.

  2. Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations. (United States)

    Sum, Tze Chien; Mathews, Nripan; Xing, Guichuan; Lim, Swee Sien; Chong, Wee Kiang; Giovanni, David; Dewi, Herlina Arianita


    Lead halide perovskite solar cells are presently the forerunner among the third generation solution-processed photovoltaic technologies. With efficiencies exceeding 20% and low production costs, they are prime candidates for commercialization. Critical insights into their light harvesting, charge transport, and loss mechanisms have been gained through time-resolved optical probes such as femtosecond transient absorption spectroscopy (fs-TAS), transient photoluminescence spectroscopy, and time-resolved terahertz spectroscopy. Specifically, the discoveries of long balanced electron-hole diffusion lengths and gain properties in halide perovskites underpin their significant roles in uncovering structure-function relations and providing essential feedback for materials development and device optimization. In particular, fs-TAS is becoming increasingly popular in perovskite characterization studies, with commercial one-box pump-probe systems readily available as part of a researcher's toolkit. Although TAS is a powerful probe in the study of charge dynamics and recombination mechanisms, its instrumentation and data interpretation can be daunting even for experienced researchers. This issue is exacerbated by the sensitive nature of halide perovskites where the kinetics are especially susceptible to pump fluence, sample preparation and handling and even degradation effects that could lead to disparate conclusions. Nonetheless, with end-users having a clear understanding of TAS's capabilities, subtleties, and limitations, cutting-edge work with deep insights can still be performed using commercial setups as has been the trend for ubiquitous spectroscopy instruments like absorption, fluorescence, and transient photoluminescence spectrometers. Herein, we will first briefly examine the photophysical processes in lead halide perovskites, highlighting their novel properties. Next, we proceed to give a succinct overview of the fundamentals of pump-probe spectroscopy in relation

  3. Conformational isomerism in mixed-ligand complexes of 2,2'-bipyridine and triphenylphosphine with copper(I) halides

    International Nuclear Information System (INIS)

    Barron, P.F.; Engelhardt, L.M.; Healy, P.C.; Kildea, J.D.; White, A.H.


    Mixed-ligand complexes of triphenylphosphine and 2,2'-bipyridine and copper(I) halides have been synthesized. The 31 P NMR spectra of the complexes were measured and are reported along with data for complete structural characterization of the complexes. The results indicate a novel dichotomy of conformational isomers to be present in the chloride lattice. The Cu-P bond length was found to not vary with different halides. 8 refs., 4 figs., 6 tabs

  4. Reuse of ammonium fluoride generated in the uranium hexafluoride conversion

    International Nuclear Information System (INIS)

    Silva Neto, J.B.; Carvalho, E.F. Urano de; Durazzo, M.; Riella, H.G


    The Nuclear Fuel Centre of IPEN / CNEN - SP develops and manufactures dispersion fuel with high uranium concentration to meet the demand of the IEA-R1 reactor and future research reactors planned to be constructed in Brazil. The fuel uses uranium silicide (U 3 Si 2 ) dispersed in aluminum. For producing the fuel, the processes for uranium hexafluoride (UF 6 ) conversion consist in obtaining U 3 Si 2 and / or U 3 O 8 through the preparation of intermediate compounds, among them ammonium uranyl carbonate - AUC, ammonium diuranate - DUA and uranium tetrafluoride - UF 4 . This work describes a procedure for preparing uranium tetrafluoride by a dry route using as raw material the filtrate generated when producing routinely ammonium uranyl carbonate. The filtrate consists primarily of a solution containing high concentrations of ammonium (NH 4 + ), fluoride (F - ), carbonate (CO 3 -- ) and low concentrations of uranium. The procedure is basically the recovery of NH 4 F and uranium, as UF 4 , through the crystallization of ammonium bifluoride (NH 4 HF 2 ) and, in a later step, the addition of UO 2 , occurring fluoridation and decomposition. The UF 4 obtained is further diluted in the UF 4 produced routinely at IPEN / CNEN-SP by a wet route process. (author)

  5. Radionuclide flow during the conversion of phosphogypsum to ammonium sulfate

    International Nuclear Information System (INIS)

    Burnett, W.C.; Schultz, M.K.; Hull, C.D.


    Approximately 30 million tons of the by-product phosphogypsum are currently produced annually by the phosphate fertilizer industry in Florida. Nearly all of this material is stockpiled because radioactive impurities prevent utilization of what could otherwise be a useful agricultural amendment or construction material. Long-term storage and maintenance of this material presents economic as well as potential environmental concerns. One partial solution to this problem may be conversion of phosphogypsum to ammonium sulfate by the so-called Merseberg ammonocarbonation process. Ammonium sulfate is an excellent fertilizer which supplies sulfur as well as nitrogen to soils. We have assessed the flow of the natural decay-series radionuclides 238 U, 226 Ra, 210 Pb and 210 Po through the Merseberg process by the analysis of starting materials and products from overseas industrial-scale plants. Results indicate that the radionuclides associated with phosphogypsum do not report to the ammonium sulfate product but are found instead almost exclusively in the by-product calcium carbonate. Thus, the radiochemical results are encouraging in terms of using this process as an option for partial removal of waste phosphogypsum. Although there is a clear and recognized need for increased sulfur addition to many crops, the price of sulfur has been so low and alternative supplies of ammonium so common that investment in this process has been discouraged. Recent price increases and demand for ammonium sulfate may make the Merseberg process more attractive. (author)

  6. Energetics and dynamics in organic-inorganic halide perovskite photovoltaics and light emitters. (United States)

    Sum, Tze Chien; Chen, Shi; Xing, Guichuan; Liu, Xinfeng; Wu, Bo


    The rapid transcendence of organic-inorganic metal halide perovskite solar cells to above the 20% efficiency mark has captivated the broad photovoltaic community. As the efficiency race continues unabated, it is essential that fundamental studies keep pace with these developments. Further gains in device efficiencies are expected to be increasingly arduous and harder to come by. The key to driving the perovskite solar cell efficiencies towards their Shockley-Queisser limit is through a clear understanding of the interfacial energetics and dynamics between perovskites and other functional materials in nanostructured- and heterojunction-type devices. In this review, we focus on the current progress in basic characterization studies to elucidate the interfacial energetics (energy-level alignment and band bending) and dynamical processes (from the ultrafast to the ultraslow) in organic-inorganic metal halide perovskite photovoltaics and light emitters. Major findings from these studies will be distilled. Open questions and scientific challenges will also be highlighted.

  7. [BMIM][PF(6)] promotes the synthesis of halohydrin esters from diols using potassium halides. (United States)

    Oromí-Farrús, Mireia; Eras, Jordi; Villorbina, Gemma; Torres, Mercè; Llopis-Mestre, Veronica; Welton, Tom; Canela, Ramon


    Haloesterification of diverse diols with various carboxylic acids was achieved using potassium halides (KX) as the only halide source in ionic liquids. The best yield was obtained in [BMIM][PF(6)] when 1,2-octanediol, palmitic acid and KBr were used. This yield was 85% and the regioisomer with the bromine in primary position was present in a 75:25 ratio. The regioisomeric ratio could be improved using either KCl or some phenylcarboxylic acids. [BMIM][PF(6)] acts as both reaction media and catalyst of the reaction. To the best of our knowledge, this type of combined reaction using an ionic liquid is unprecedented. The other solvents tested did not lead either to the same yield or to the same regioisomeric ratio.

  8. Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site

    KAUST Repository

    Chawla, Mohit


    Using static and dynamics DFT methods we show that the Mg2+/F-/phosphate/water cluster at the center of the fluoride riboswitch is stable by its own and, once assembled, does not rely on any additional factor from the overall RNA fold. Further, we predict that the pKa of the water molecule bridging two Mg cations is around 8.4. We also demonstrate that the halide selectivity of the fluoride riboswitch is determined by the stronger Mg-F bond, which is capable of keeping together the cluster. Replacing F- with Cl- results in a cluster that is unstable under dynamic conditions. Similar conclusions on the structure and energetics of the cluster in the binding pocket of fluoride-inhibited pyrophosphatase suggest that the peculiarity of fluoride is in its ability to establish much stronger metal-halide bonds.

  9. Energetics and dynamics in organic-inorganic halide perovskite photovoltaics and light emitters (United States)

    Chien Sum, Tze; Chen, Shi; Xing, Guichuan; Liu, Xinfeng; Wu, Bo


    The rapid transcendence of organic-inorganic metal halide perovskite solar cells to above the 20% efficiency mark has captivated the broad photovoltaic community. As the efficiency race continues unabated, it is essential that fundamental studies keep pace with these developments. Further gains in device efficiencies are expected to be increasingly arduous and harder to come by. The key to driving the perovskite solar cell efficiencies towards their Shockley-Queisser limit is through a clear understanding of the interfacial energetics and dynamics between perovskites and other functional materials in nanostructured- and heterojunction-type devices. In this review, we focus on the current progress in basic characterization studies to elucidate the interfacial energetics (energy-level alignment and band bending) and dynamical processes (from the ultrafast to the ultraslow) in organic-inorganic metal halide perovskite photovoltaics and light emitters. Major findings from these studies will be distilled. Open questions and scientific challenges will also be highlighted.

  10. Oxygen- and Water-induced Energetics Degradation in Organometal Halide Perovskites. (United States)

    Yang, Jianming; Yuan, Zhongcheng; Liu, Xianjie; Braun, Slawomir; Li, Yanqing; Tang, Jian-Xin; Gao, Feng; Duan, Chun-Gang; Fahlman, Mats; Bao, Qinye


    Organometal halide perovskites are under rapid development and significant focus has been placed on their stability that currently presents a major obstacle for practical application. The energetics play a vital role in charge injection/extraction and transport properties in devices. Here, we in-situ investigate oxygen and water-induced energetic degradation in organometal halide perovskite films. Oxygen gas induces an upwards shift of the vacuum level of the perovskite films due to the formation of an oxygen-induced surface dipole and water vapor causes vacuum level significant downshift as well as the valence band binding energy referenced to Fermi level simultaneously increase so as to keep the ionization potential of the perovskite films unchanged. Moreover, the chemical compositions, crystalline structures, surface morphologies and dynamical properties also are monitored and analyzed in detail. These results are indispensable to understand the degradation mechanisms and to in future perform the optimizations of the sable materials and devices.

  11. Thermoluminescence response of a mixed ternary alkali halide crystals exposed to gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez M, R.; Perez S, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Vazquez P, G.; Riveros, H. [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Mexico D. F. (Mexico); Gonzalez M, P., E-mail: [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)


    Ionic crystals, mainly alkali halide crystals have been the subject of intense research for a better understanding of the luminescence properties of defects induced by ionizing radiation. The defects in crystals can be produced in appreciable concentration due to elastic stresses, radiation, and addition of impurities. These defects exhibit remarkable thermoluminescence properties. This work is concerned with the Tl properties of a ternary alkali halide crystal after being irradiated with gamma and beta rays. It has been found that the Tl glow peak of the crystal follows a rule of average associated to the Tl Temperatures of the components of the mixture, similarly to the response of europium doped binary mixed crystals KCl{sub x}KBr{sub 1-x} and KBr{sub x}RbBr{sub 1-x}. (Author)

  12. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Seung Uk; Jung, Myoung Geun [Keimyung University, Daegu (Korea, Republic of)


    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions.

  13. Energetics and dynamics in organic–inorganic halide perovskite photovoltaics and light emitters

    International Nuclear Information System (INIS)

    Sum, Tze Chien; Chen, Shi; Xing, Guichuan; Liu, Xinfeng; Wu, Bo


    The rapid transcendence of organic–inorganic metal halide perovskite solar cells to above the 20% efficiency mark has captivated the broad photovoltaic community. As the efficiency race continues unabated, it is essential that fundamental studies keep pace with these developments. Further gains in device efficiencies are expected to be increasingly arduous and harder to come by. The key to driving the perovskite solar cell efficiencies towards their Shockley–Queisser limit is through a clear understanding of the interfacial energetics and dynamics between perovskites and other functional materials in nanostructured- and heterojunction-type devices. In this review, we focus on the current progress in basic characterization studies to elucidate the interfacial energetics (energy-level alignment and band bending) and dynamical processes (from the ultrafast to the ultraslow) in organic–inorganic metal halide perovskite photovoltaics and light emitters. Major findings from these studies will be distilled. Open questions and scientific challenges will also be highlighted. (topical review)

  14. Energy distributions of atoms sputtered from alkali halides by 540 eV electrons, Ch.1

    International Nuclear Information System (INIS)

    Overeijnder, H.; Szymonski, M.; Haring, A.; Vries, A.E. de


    The emission of halogen and alkali atoms, occurring under bombardment of alkali halides with electrons has been investigated. The electron energy was 540 eV and the temperature of the target was varied between room temperature and 400 0 C. The energy distribution of the emitted neutral particles was measured with a time of flight method. It was found that either diffusing interstitial halogen atoms or moving holes dominate the sputtering process above 200 0 C. Below 150 0 C alkali halides with lattice parameters s/d >= 0.33 show emission of non-thermal halogen atoms. s is the interionic space between two halogen ions in a direction and d is the diameter of a halogen atom. In general the energy distribution of the alkali and halogen atoms is thermal above 200 0 C, but not Maxwellian. (Auth.)

  15. Composition-Dependent Energy Splitting between Bright and Dark Excitons in Lead Halide Perovskite Nanocrystals. (United States)

    Chen, Lan; Li, Bin; Zhang, Chunfeng; Huang, Xinyu; Wang, Xiaoyong; Xiao, Min


    Perovskite semiconductor nanocrystals with different compositions have shown promise for applications in light-emitting devices. Dark excitonic states may suppress light emission from such nanocrystals by providing an additional nonradiative recombination channel. Here, we study the composition dependence of dark exciton dynamics in nanocrystals of lead halides by time-resolved photoluminescence spectroscopy at cryogenic temperatures. The presence of a spin-related dark state is revealed by magneto-optical spectroscopy. The energy splitting between bright and dark states is found to be highly sensitive to both halide elements and organic cations, which is explained by considering the effects of size confinement and charge screening, respectively, on the exchange interaction. These findings suggest the possibility of manipulating dark exciton dynamics in perovskite semiconductor nanocrystals by composition engineering, which will be instrumental in the design of highly efficient light-emitting devices.

  16. Development of alkali halide-optics for high power-IR laser

    International Nuclear Information System (INIS)

    Pohl, L.


    In this work 'Development of Alkali Halide-Optics for High Power-IR Laser' we investigated the purification of sodiumchloride-, potassiumchloride- and potassiumbromide-raw materials. We succeeded to reduce the content of impurities like Cu, Pb, V, Cr, Mn, Fe, Co and Ni in these raw materials to the lower of ppb's by a Complex-Adsorption-Method (CAM). Crystals were grown from purified substances by 'Kyropoulos' method'. Windows were cur thereof, polished and measured by FTIR-spectroscopy. Analytical data showed, that the resulting crystals were of lower quality than the raw materials. Because of this fact crystal-growing-conditions have to undergo a special improvement. Alkali halide windows from other sources on the market had been tested. (orig.) [de

  17. Determination of halide ions in solution by Total Reflection X-ray Fluorescence (TXRF) spectrometry. (United States)

    Vander Hoogerstraete, Tom; Jamar, Steven; Wellens, Sil; Binnemans, Koen


    An accurate quantitative determination of halide ions X (X = Cl, Br, I) in aqueous solution by total reflection X-ray fluorescence (TXRF) is not possible using the traditional acidic internal standards. In general, the standard solutions are highly acidic (e.g., Ga(NO3)3 in HNO3) to avoid precipitation of hydroxides of the standard element and to obtain a stable and reliable standard. In acidic solutions, dissolved halide salts can exchange their cation for a proton. The resulting volatile HX compounds can evaporate during the drying procedure of the TXRF sample preparation. In this technical note, we show that an alkaline Cu(NH3)4(NO3)2 standard can be used for the determination of chlorine, bromine and iodine without facing problems of HX evaporation.

  18. The nature of dynamic disorder in lead halide perovskite crystals (Conference Presentation) (United States)

    Yaffe, Omer; Guo, Yinsheng; Hull, Trevor; Stoumpos, Costas; Tan, Liang Z.; Egger, David A.; Zheng, Fan; Szpak, Guilherme; Semonin, Octavi E.; Beecher, Alexander N.; Heinz, Tony F.; Kronik, Leeor; Rappe, Andrew M.; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Pimenta, Marcos A.; Brus, Louis E.


    We combine low frequency Raman scattering measurements with first-principles molecular dynamics (MD) to study the nature of dynamic disorder in hybrid lead-halide perovskite crystals. We conduct a comparative study between a hybrid (CH3NH3PbBr3) and an all-inorganic lead-halide perovskite (CsPbBr3). Both are of the general ABX3 perovskite formula, and have a similar band gap and structural phase sequence, orthorhombic at low temperature, changing first to tetragonal and then to cubic symmetry as temperature increases. In the high temperature phases, we find that both compounds show a pronounced Raman quasi-elastic central peak, indicating that both are dynamically disordered.

  19. Alloying effects on superionic conductivity in lithium indium halides for all-solid-state batteries (United States)

    Zevgolis, Alysia; Wood, Brandon C.; Mehmedović, Zerina; Hall, Alex T.; Alves, Thomaz C.; Adelstein, Nicole


    Alloying of anions is a promising engineering strategy for tuning ionic conductivity in halide-based inorganic solid electrolytes. We explain the alloying effects in Li3InBr6-xClx, in terms of strain, chemistry, and microstructure, using first-principles molecular dynamics simulations and electronic structure analysis. We find that strain and bond chemistry can be tuned through alloying and affect the activation energy and maximum diffusivity coefficient. The similar conductivities of the x = 3 and x = 6 compositions can be understood by assuming that the alloy separates into Br-rich and Cl-rich regions. Phase-separation increases diffusivity at the interface and in the expanded Cl-region, suggesting microstructure effects are critical. Similarities with other halide superionic conductors are highlighted.

  20. An air-stable copper reagent for nucleophilic trifluoromethylthiolation of aryl halides

    KAUST Repository

    Weng, Zhiqiang


    A series of copper(I) trifluoromethyl thiolate complexes have been synthesized from the reaction of CuF2 with Me3SiCF 3 and S8 (see scheme; Cu red, F green, N blue, S yellow). These air-stable complexes serve as reagents for the efficient conversion of a wide range of aryl halides into the corresponding aryl trifluoromethyl thioethers in excellent yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Amination of Aryl Halides and Esters Using Intensified Continuous Flow Processing

    Directory of Open Access Journals (Sweden)

    Thomas M. Kohl


    Full Text Available Significant process intensification of the amination reactions of aryl halides and esters has been demonstrated using continuous flow processing. Using this technology traditionally difficult amination reactions have been performed safely at elevated temperatures. These reactions were successfully conducted on laboratory scale coil reactor modules with 1 mm internal diameter (ID and on a preparatory scale tubular reactor with 6 mm ID containing static mixers.

  2. Mössbauer Emission-Spectra of Impurity Cobalt-57 in a Halide Matrix

    DEFF Research Database (Denmark)

    Maddock, A. G.; Williams, A. F.; Siekierska, K. E.


    The Mössbauer emission spectra of 57Co in low concentrations in KF, NaCl, NaF, LiF, and MgF2, and the effects of doping NaF and LiF with La3+ ions are reported. The monovalent halides all give similar spectra showing a broad single line or a doublet at 2.19mm/s and two overlapping doublets at 0...

  3. Merging Photoredox and Nickel Catalysis: Decarboxylative Cross-Coupling of Carboxylic Acids with Vinyl Halides (United States)


    Decarboxylative cross-coupling of alkyl carboxylic acids with vinyl halides has been accomplished through the synergistic merger of photoredox and nickel catalysis. This new methodology has been successfully applied to a variety of α-oxy and α-amino acids, as well as simple hydrocarbon-substituted acids. Diverse vinyl iodides and bromides give rise to vinylation products in high efficiency under mild, operationally simple reaction conditions. PMID:25521443

  4. The Barbier-Grignard-type carbonyl alkylation using unactivated alkyl halides in water. (United States)

    Keh, Charlene C K; Wei, Chunmei; Li, Chao-Jun


    The aqueous Barbier-Grignard-type alkylation of aldehydes with unactivated alkyl iodides and bromides was developed. By using a combination of zinc and cuprous iodide, catalyzed by indium(I) chloride, we successfully added tertiary, secondary, and primary alkyl halides to various aromatic aldehydes in 0.07 M aqueous Na2C2O4. A mechanistic rationale for the success of the reaction has been proposed.

  5. Solution structure and behavior of dimeric uranium(III) metallocene halides

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, W.W. Jr.; Beshouri, S.M.; Stuart, A.L.; Andersen, R.A. [Lawrence Berkeley Lab., CA (United States)


    The variable-temperature {sup 1}H NMR behavior of the uranium(III) dimers [Cp{double_prime}{sub 2}UX]{sub 2} and [Cp{sup {double_dagger}}{sub 2}UX]{sub 2}, where X is F, Cl, Br, or I, Cp{double_prime} is 1,3-(Me{sub 3}Si){sub 2}C{sub 5}H{sub 3}, and Cp{sup {double_dagger}} is 1,3-(Me{sub 3}C){sub 2}C{sub 5}H{sub 3}, has been examined. At low temperature, the number of inequivalent CMe{sub 3} or SiMe{sub 3} groups implies that the solution structure is the same as the solid-state structure in all of these complexes. The barriers to ring rotation in the Cp{double_prime} series are strongly dependent upon the U-X distance, but all of the barriers to ring rotation in the Cp{sup {double_dagger}} series are the same. The trends in ring rotation barriers are explained by the different conformations of the Cp ligands in the dimers. In addition to the homo-halide dimers, the variable-temperature NMR behavior of the hetero-halide dimers Cp{prime}{sub 4}({mu}-X)({mu}-Y), where Cp{prime} is Cp{double_prime} or Cp{sup {double_dagger}} and X and Y are halides where X {ne} Y, was examined. Above room temperature, the halide atoms exchange sites rapidly on the NMR time scale.

  6. Propensity of heavier halides for the water/vapor interface revisited using the Amoeba force field

    Czech Academy of Sciences Publication Activity Database

    Tůma, L.; Jeníček, D.; Jungwirth, Pavel


    Roč. 411, - (2005), s. 70-74 ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LC512 Grant - others:NSF(US) CHE0431312; NSF(US) CHE0209719 Institutional research plan: CEZ:AV0Z4055905 Keywords : halide anions * water/vapor interface * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.438, year: 2005

  7. Allylmagnesium Halides Do Not React Chemoselectively Because Reaction Rates Approach the Diffusion Limit. (United States)

    Read, Jacquelyne A; Woerpel, K A


    Competition experiments demonstrate that additions of allylmagnesium halides to carbonyl compounds, unlike additions of other organomagnesium reagents, occur at rates approaching the diffusion rate limit. Whereas alkylmagnesium and alkyllithium reagents could differentiate between electronically or sterically different carbonyl compounds, allylmagnesium reagents reacted with most carbonyl compounds at similar rates. Even additions to esters occurred at rates competitive with additions to aldehydes. Only in the case of particularly sterically hindered substrates, such as those bearing tertiary alkyl groups, were additions slower.

  8. Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability. (United States)

    Fu, Yongping; Zhu, Haiming; Schrader, Alex W; Liang, Dong; Ding, Qi; Joshi, Prakriti; Hwang, Leekyoung; Zhu, X-Y; Jin, Song


    The excellent intrinsic optoelectronic properties of methylammonium lead halide perovskites (MAPbX3, X = Br, I), such as high photoluminescence quantum efficiency, long carrier lifetime, and high gain coupled with the facile solution growth of nanowires make them promising new materials for ultralow-threshold nanowire lasers. However, their photo and thermal stabilities need to be improved for practical applications. Herein, we report a low-temperature solution growth of single crystal nanowires of formamidinium lead halide perovskites (FAPbX3) that feature red-shifted emission and better thermal stability compared to MAPbX3. We demonstrate optically pumped room-temperature near-infrared (∼820 nm) and green lasing (∼560 nm) from FAPbI3 (and MABr-stabilized FAPbI3) and FAPbBr3 nanowires with low lasing thresholds of several microjoules per square centimeter and high quality factors of about 1500-2300. More remarkably, the FAPbI3 and MABr-stabilized FAPbI3 nanowires display durable room-temperature lasing under ∼10(8) shots of sustained illumination of 402 nm pulsed laser excitation (150 fs, 250 kHz), substantially exceeding the stability of MAPbI3 (∼10(7) laser shots). We further demonstrate tunable nanowire lasers in wider wavelength region from FA-based lead halide perovskite alloys (FA,MA)PbI3 and (FA,MA)Pb(I,Br)3 through cation and anion substitutions. The results suggest that formamidinium lead halide perovskite nanostructures could be more promising and stable materials for the development of light-emitting diodes and continuous-wave lasers.

  9. Mild copper-catalyzed N-arylation of azaheterocycles with aryl halides

    NARCIS (Netherlands)

    Kuil, M.; Bekedam, E.K.; Visser, G.M.; Hoogenband, van den A.; Terpstra, J.W.; Kamer, P.C.J.; Leeuwen, P.W.N.M.; Strijdonck, G.P.F.


    A highly efficient copper(I)-catalyzed N-arylation of azaheterocycles with various aryl halides is reported. The N-arylation reaction can be carried out using as low as 0.5 mol % of (Cu(I)OTf)2¿PhH and 1.0 mol % of 4,7-dichloro-1,10-phenanthroline as the ligand. Furthermore, cheap and stable copper

  10. Radiophotoluminescence of alkali-halide crystals stimulated by Bessel laser beam

    CERN Document Server

    Lyakh, V V; Kochubey, D I; Gyunsburg, K E; Zvezdova, N P; Kochubey, D I; Sedova, Y G; Koronkevich, V P; Poleschuk, A G; Sedukhin, A G


    A new approach to realization of optimal high-resolution reading of deep X-ray images in X-ray-sensitive materials on the base of alkali-halide crystals modified with admixtures has been suggested and investigated experimentally. A possibility to use diffraction axicons with ring aperture for forming micron bright light beams (spatially truncated Bessel beams) which can efficiently de-excite radiophotoluminescence centers lying at large depth in crystals is also presented.

  11. Growth of the high reflectivity Bi 2O 3 glass films by atmospheric pressure halide CVD (United States)

    Takeyama, T.; Takahashi, N.; Nakamura, T.; Ito, S.


    We reported the results of an investigation into the preparation of amorphous Bi 2O 3 onto borosilicate glass substrate by means of atmospheric pressure halide chemical vapor deposition using BiI 3 and oxygen as a source materials. Obtained thin films lower than 475 °C was amorphous and it was almost transparent in infrared region. But the amorphous films are iodine-containing Bi 2O 3, as results of analysis by XRD and XPS.

  12. Study on mechanism of isomerization between ammonium thiocyanate and thiourea (United States)

    Zhang, Chao-Zhi; Niu, Meng-Xiao


    Application of ammonium thiocyanate that can be separated from wastewater in coking plant is limited. It may isomerize to thiourea which has widely applied in industry. However, the isomerization yield is low. Moreover, the isomerization temperature is more than 145 °C. In this paper, the isomerization was investigated. The mechanism of the isomerization was supposed based on quantum chemistry calculations. Ammonia was employed as a catalyst to lower isomerization temperature and improved the yield of thiourea in the isomerization reaction. Results of quantum chemical calculation and experiments support the supposed mechanism. The mechanism can be applied in production of thiourea from isomerization of ammonium thiocyanate. The paper suggests a useful way of resourcizing ammonium thiocyanate in wastewater.

  13. Investigation into kinetics of obtaining sodium and ammonium sulfate zirconates

    International Nuclear Information System (INIS)

    Gavrilova, R.V.; Kolenkova, M.A.; Sazhina, V.A.


    The kinetics of the process of sodium and ammonium sulfate zirconates precipitation is studied. The following optimum conditions of their separation are determined: ZrO 2 concentration in sulfate solution (with αsub(s)=2.0) is 200 g/dm 3 , the quantity of precipitator-sodium (ammonium) chloride-is 3.5 mole per 1 mole ZrO 2 , the temperature is 90 deg C, the duration of mixing is 1 hr. It is established that the process of precipitation of sulfatozirconates is within the kinetic region. The average values of activation energy constitute 40 and 50 kJ/mol for sodium and ammonium sulfate zirconates respectively [ru

  14. Temperature rising characteristics of ammonium diurante in microwave fields

    International Nuclear Information System (INIS)

    Liu Bingguo; Peng JinHui; Huang Daifu; Zhang Libo; Hu Jinming; Zhuang Zebiao; Kong Dongcheng; Guo Shenghui; Li Chunxiang


    The temperature rising characteristics of ammonium diurante, triuranium octaoxide (U 3 O 8 ), and their mixture were investigated under microwave irradiation, aiming at exploring newly theoretical foundation for advanced metallurgical methods. The temperature rising curves showed that ammonium diurante had weak capability to absorb microwave energy, while triuranium octaoxide had the very strong absorption capability. The temperature of mixture containing 20% of U 3 O 8 could rise from room temperature to 1171 K within 280 s. The ability to absorb microwave energy for the mixture with different ratios increased with the increase in the amount of U 3 O 8 . These are in good agreement with the results of Maxwell-Garnett effective medium theory. It is feasible to calcine ammonium diurante by adding of small amounts of U 3 O 8 in microwave fields.

  15. Rocket Solid Propellant Alternative Based on Ammonium Dinitramide

    Directory of Open Access Journals (Sweden)

    Grigore CICAN


    Full Text Available Due to the continuous run for a green environment the current article proposes a new type of solid propellant based on the fairly new synthesized oxidizer, ammonium dinitramide (ADN. Apart of having a higher specific impulse than the worldwide renowned oxidizer, ammonium perchlorate, ADN has the advantage, of leaving behind only nitrogen, oxygen and water after decomposing at high temperatures and therefore totally avoiding the formation of hydrogen chloride fumes. Based on the oxidizer to fuel ratios of the current formulations of the major rocket solid booster (e.g. Space Shuttle’s SRB, Ariane 5’s SRB which comprises mass variations of ammonium perchlorate oxidizer (70-75%, atomized aluminum powder (10-18% and polybutadiene binder (12-20% a new solid propellant was formulated. As previously stated, the new propellant formula and its variations use ADN as oxidizer and erythritol tetranitrate as fuel, keeping the same polybutadiene as binder.

  16. Preparation of gold microparticles using halide ions in bulk block copolymer phases via photoreduction

    International Nuclear Information System (INIS)

    Cha, Sang-Ho; Kim, Ki-Hyun; Lee, Won-Ki; Lee, Jong-Chan


    Gold microparticles were prepared from the gold salt in the solid bulk phase of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer via a photoreduction process in the presence of halide ions. The shapes and sizes of the gold microparticles were found to be dependent on the types and amount of halide ions as well as the types of cations used due to the combined effects of the adsorption power and oxidative dissolution ability of the additives on gold surfaces. Gold nanorods were obtained when poly(ethylene oxide) was used instead of the block copolymer. This suggests that the poly(propylene oxide) (PPO) parts in the block copolymer are essential for the formation of gold microparticles, even though the degree of the direct interaction between the PPO blocks and gold salt is not significant. - Graphical abstract: Gold microparticles were successfully prepared using halide ions as additives in the polymeric bulk phase via photoreduction with the glow lamp irradiation.

  17. First-principles thermodynamics study of phase stability in inorganic halide perovskite solid solutions (United States)

    Bechtel, Jonathon S.; Van der Ven, Anton


    Halide substitution gives rise to a tunable band gap as a function of composition in halide perovskite materials. However, photoinduced phase segregation, observed at room temperature in mixed halide A Pb (IxBr1-x) 3 systems, limits open circuit voltages and decreases photovoltaic device efficiencies. We investigate equilibrium phase stability of orthorhombic P n m a γ -phase CsM (XxY1-x) 3 perovskites where M is Pb or Sn, and X and Y are Br, Cl, or I. Finite-temperature phase diagrams are constructed using a cluster expansion effective Hamiltonian parameterized from first-principles density-functional-theory calculations. Solid solution phases for CsM (IxBr1-x) 3 and CsM (BrxCl1-x) 3 are predicted to be stable well below room temperature while CsM (IxCl1-x) 3 systems have miscibility gaps that extend above 400 K. The height of the miscibility gap correlates with the difference in volume between end members. Also layered ground states are found on the convex hull at x =2 /3 for CsSnBr2Cl ,CsPbI2Br , and CsPbBrCl2. The impact of these ground states on the finite temperature phase diagram is discussed in the context of the experimentally observed photoinduced phase segregation.

  18. The Lewis Pair Polymerization of Lactones Using Metal Halides and N-Heterocyclic Olefins: Theoretical Insights

    Directory of Open Access Journals (Sweden)

    Jan Meisner


    Full Text Available Lewis pair polymerization employing N-Heterocyclic olefins (NHOs and simple metal halides as co-catalysts has emerged as a useful tool to polymerize diverse lactones. To elucidate some of the mechanistic aspects that remain unclear to date and to better understand the impact of the metal species, computational methods have been applied. Several key aspects have been considered: (1 the formation of NHO-metal halide adducts has been evaluated for eight different NHOs and three different Lewis acids, (2 the coordination of four lactones to MgCl2 was studied and (3 the deprotonation of an initiator (butanol was investigated in the presence and absence of metal halide for one specific Lewis pair. It was found that the propensity for adduct formation can be influenced, perhaps even designed, by varying both organic and metallic components. Apart from the NHO backbone, the substituents on the exocyclic, olefinic carbon have emerged as interesting tuning site. The tendency to form adducts is ZnCl2 > MgCl2 > LiCl. If lactones coordinate to MgCl2, the most likely binding mode is via the carbonyl oxygen. A chelating coordination cannot be ruled out and seems to gain importance upon increasing ring-size of the lactone. For a representative NHO, it is demonstrated that in a metal-free setting an initiating alcohol cannot be deprotonated, while in the presence of MgCl2 the same process is exothermic with a low barrier.

  19. ICES studies on 99mTc-halide complexes: formation, hydrolysis and ligand exchange

    International Nuclear Information System (INIS)

    Fiser, M.; Brabec, V.; Dragoun, O.; Kovalik, A.; Rysavy, M.; Dragounova, N.


    The Internal Conversion Electron Spectroscopy (ICES) method was employed to study the products of reduction of no-carrier-added [ 99m Tc]pertechnetate by concentrated hydrochloric, hydrobromic and hydroiodic acids. The reductions were carried out in vacuum with subbsequent evaporation of the solution to dryness. In the solid deposits, containing ∼ 10 -9 g Tc, chemical shifts of 99m Tc electron binding energies were measured and the results were compared with known data of x-ray photoelectron spectroscopy for defined technetium compounds. It was evidenced that all reduction/evaporation procedures yielded 99m Tc(IV)-halide complexes. Another technique of reduction by vapours of halogen acids was proposed to prepare thin radioactive sources for physics studies. The reduction power of alkali halides in absence of acids was examined and a partial reduction of pertechnetate by iodide was found. The product was a hydrolysed species. The hydrolysis of halide complexes yielded the same product. In the absence of acids, dissolved species were partly oxidised to Tc(VII) by air. Oxidation was most apparent for the chloride and negligible for the iodide system. Ligand exchange of chloro and bromo complexes to chelate with DTPA at pH 3 was found to be uncomplete. Tc(IV) hydrolysed species, Tc(IV)DTPA and Tc(VII) were evidenced. Tc(V)DTPA was also observed which arises from partially oxidised products. (author)

  20. On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites (United States)

    Brunetti, Bruno; Cavallo, Carmen; Ciccioli, Andrea; Gigli, Guido; Latini, Alessandro


    The interest of the scientific community on methylammonium lead halide perovskites (MAPbX3, X = Cl, Br, I) for hybrid organic-inorganic solar cells has grown exponentially since the first report in 2009. This fact is clearly justified by the very high efficiencies attainable (reaching 20% in lab scale devices) at a fraction of the cost of conventional photovoltaics. However, many problems must be solved before a market introduction of these devices can be envisaged. Perhaps the most important to be addressed is the lack of information regarding the thermal and thermodynamic stability of the materials towards decomposition, which are intrinsic properties of them and which can seriously limit or even exclude their use in real devices. In this work we present and discuss the results we obtained using non-ambient X-ray diffraction, Knudsen effusion-mass spectrometry (KEMS) and Knudsen effusion mass loss (KEML) techniques on MAPbCl3, MAPbBr3 and MAPbI3. The measurements demonstrate that all the materials decompose to the corresponding solid lead (II) halide and gaseous methylamine and hydrogen halide, and the decomposition is well detectable even at moderate temperatures (~60 °C). Our results suggest that these materials may be problematic for long term operation of solar devices.

  1. Quantum confinement effect of two-dimensional all-inorganic halide perovskites

    KAUST Repository

    Cai, Bo


    Quantum confinement effect (QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimensional materials from their bulk counterparts and can be exploited to enhance the device performance in various optoelectronic applications. Here, taking CsPbBr3 as an example, we reported QCE in all-inorganic halide perovskite in two-dimensional (2D) nanoplates. Blue shifts in optical absorption and photoluminescence spectra were found to be stronger in thinner nanoplates than that in thicker nanoplates, whose thickness lowered below ∼7 nm. The exciton binding energy results showed similar trend as that obtained for the optical absorption and photoluminescence. Meanwile, the function of integrated intensity and full width at half maximum and temperature also showed similar results, further supporting our conclusions. The results displayed the QCE in all-inorganic halide perovskite nanoplates and helped to design the all-inorganic halide perovskites with desired optical properties.

  2. Strain-induced improper ferroelectricity in Ruddlesden-Popper perovskite halides (United States)

    Zhang, Yajun; Sahoo, M. P. K.; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie


    Activating multiple symmetry modes and promoting a strong coupling between different modes by strain are indispensable to stabilize a polar ferroelectric (FE) phase from a nonpolar perovskite. Herein, through first-principles calculations, we propose an undiscovered and general avenue to engineering ferroelectricity in photovoltaic perovskites with a Ruddlesden-Popper (RP) structure. It is demonstrated that an experimentally accessible compressive strain can induce an in-plane polarization in RP perovskite halides thin films, resulting in an unusual paraelectric to FE phase transition. The detailed analysis on structure and energy reveals that the unusual FE phase transition in the perovskite halides stems from the strong coupling between strain and antiferrodistortive (AFD) mode. Further calculations show that the strain-AFD coupling-induced ferroelectricity is not only exhibited by perovskite halides but also observed in perovskite sulfides such as Ba3Zr2S7 . Moreover, it is found that the strained FE thin film possesses a suitable band gap of 1.6 eV for photovoltaic application. These findings not only unfold a general way to engineering nonpolar-to-polar transition, but also open an avenue to design optimal FE semiconductors for solar cell applications.

  3. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Shmyreva, Anna A. [Center for Magnetic Resonance, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Safdari, Majid; Furó, István [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Dvinskikh, Sergey V., E-mail: [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)


    Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  4. First-principles study of γ-ray detector materials in perovskite halides (United States)

    Im, Jino; Jin, Hosub; Stoumpos, Constantinos; Chung, Duck; Liu, Zhifu; Peters, John; Wessels, Bruce; Kanatzidis, Mercouri; Freeman, Arthur


    In an effort to search for good γ-ray detector materials, perovskite halide compounds containing heavy elements were investigated. Despite the three-dimensional network of the corner shared octahedra and the extended nature of the outermost shell, its strong ionic character leads to a large band gap, which is one of the essential criteria for γ-ray detector materials. Thus, considering high density and high atomic number, these pervoskite halides are possible candidate for γ-ray detector materials. We performed first-principles calculations to investigate electronic structures and thermodynamic properties of intrinsic defects in the selected perovskite halide, CsPbBr3. The screened-exchange local density approximation scheme was employed to correct the underestimation of the band gap in the LDA method. As a result, the calculated band gap of CsPbBr3 is found to be suitable for γ-ray detection. Furthermore, defect formation energy calculations allow us to predict thermodynamic and electronic properties of possible intrinsic defects, which affect detector efficiency and energy resolution. Supported by the office of Nonproliferation and Verification R &D under Contract No. DE-AC02-06CH11357

  5. Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance (United States)


    This Perspective outlines basic structural and optical properties of lead halide perovskite colloidal nanocrystals, highlighting differences and similarities between them and conventional II–VI and III–V semiconductor quantum dots. A detailed insight into two important issues inherent to lead halide perovskite nanocrystals then follows, namely, the advantages of defect tolerance and the necessity to improve their stability in environmental conditions. The defect tolerance of lead halide perovskites offers an impetus to search for similar attributes in other related heavy metal-free compounds. We discuss the origins of the significantly blue-shifted emission from CsPbBr3 nanocrystals and the synthetic strategies toward fabrication of stable perovskite nanocrystal materials with emission in the red and infrared parts of the optical spectrum, which are related to fabrication of mixed cation compounds guided by Goldschmidt tolerance factor considerations. We conclude with the view on perspectives of use of the colloidal perovskite nanocrystals for applications in backlighting of liquid-crystal TV displays. PMID:28920080

  6. Chemical treatment of ammonium fluoride solution in uranium reconversion plant

    International Nuclear Information System (INIS)

    Carvalho Frajndlich, E.U. de.


    A chemical procedure is described for the treatment of the filtrate, produced from the transformation of uranium hexafluoride (U F 6 ) into ammonium uranyl carbonate (AUC). This filtrate is an intermediate product in the U F 6 to uranium dioxide (U O 2 ) reconversion process. The described procedure recovers uranium as ammonium peroxide fluoro uranate (APOFU) by precipitation with hydrogen peroxide (H 2 O 2 ), and as later step, its calcium fluoride (CaF 2 ) co-precipitation. The recovered uranium is recycled to the AUC production plant. (author)

  7. Vibrational spectra of discrete UO22+ halide complexes in the gas phase

    International Nuclear Information System (INIS)

    Groenewold, Gary S.; van Stipdonk, Michael J.; de Jong, Wibe A.; Oomens, Jos; Gresham, Garold L.


    The intrinsic binding of halide ions to the metal center in the uranyl molecule is a topic of ongoing research interest in both the actinide separations and theoretical communities. Investigations of structure in the condensed phases is frequently obfuscated by solvent interactions, that can alter ligand binding and spectroscopic properties. The approach taken in this study is to move the uranyl halide complexes into the gas phase where they are free from solvent interactions, and then interrogate their vibrational spectroscopy using infrared multiple photon dissociation (IRMPD). The spectra of cationic coordination complexes having the composition (UO2(X)(ACO)3)+ (X = F, Cl, Br and I; ACO = acetone) were acquired using electrospray for ion formation, and monitoring the ion signal from the photoelimination of ACO ligands. The studies showed that the asymmetric v3 UO2 frequency was insensitive to halide identity as X was varied from Cl to I, suggesting that in these pseudo octahedral complexes, changing the nucleophilicity of the halide did not appreciably alter the binding in the complex. The v3 peak in the spectrum of the F-containing complex was ∼ 10 cm-1 lower indicating stronger coordination in this complex. Similarly the ACO carbonyl stretches showed that the C=O frequency was relatively insensitive to the identity of the halide, although a modest shift to the blue was seen for the complexes with the more nucleophilic anions, consistent with the idea that they loosen solvent binding. Surprisingly, the v1 stretch was activated when the softer anions Cl, Br and I were present in the complexes. IR studies of the anionic complexes were conducted by measuring the v3 UO2 frequencies of (UO2X3)-, where X = Cl-, Br- and I-. The trifluoro complex could not be photodissociated. In these negatively charged complexes, the UO2 v3 values decreased with increasing anion nucleophilicity. This observation was consistent with DFT calculations that indicated that dissociation

  8. Ammonium transformation in a nitrogen-rich tidal freshwater marsh

    DEFF Research Database (Denmark)

    Gribsholt, B.; Andersson, M.; Boschker, H.T.S.


    The fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrient rich Scheldt River, Belgium, was quantified in a whole ecosystem 15N labeling experiment. In late summer (September) we added 15N-NH4+ to the flood water entering a 3477 m2 tidal freshwater marsh...

  9. Anaerobic ammonium oxidation by Anammox bacteria in the Black Sea

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kuypers, M.M.M.; Sliekers, O.; Lavik, G.; Schmid, M.; Jørgensen, B.B.; Kuenen, J.G.; Strous, M.; Jetten, M.S.M.


    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions1. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean2. Here we

  10. Structural characterization of ammonium uranate by infrared spectroscopy

    International Nuclear Information System (INIS)

    Rodriguez S, A.


    Infrared spectroscopy have been used to investigate the chemical composition of some ammonium uranates. In this study, I have attempted to establish the interrelationship between the structure of the products, the character of their infrared spectra and x-ray diffraction data capable of consistent interpretation in terms of defining the compounds. (Author)

  11. Increase of water resistance of ammonium nitrate explosives

    Directory of Open Access Journals (Sweden)

    Zulkhair Mansurov


    Full Text Available Developed a method of kapsulating of ammonium nitrate with liquid paraffin increase finding explosives in water for 60 minutes. Placing explosives in the plastic shell, the explosive was, as in standing or running water during the day. When conducting field tests failures were absent.

  12. Cell biology of anaerobic ammonium-oxidizing bacteria

    NARCIS (Netherlands)

    Niftrik, L.A.M.P. van


    Anammox bacteria perform anaerobic ammonium oxidation to dinitrogen gas and belong to the phylum Planctomycetes. Whereas most Prokaryotes consist of one compartment, the cytoplasm bounded by the cytoplasmic membrane and cell wall, the species within this phylum are compartmentalized by intracellular

  13. Ammonia loss, ammonium and nitrate accumulation from mixing ...

    African Journals Online (AJOL)



    Apr 25, 2011 ... Ammonia loss from urea significantly hinders efficient use of urea in agriculture. In order to reduce ammonia loss and, at the same time, improve beneficial accumulation of soil exchangeable ammonium and nitrate for efficient utilization by plants, this laboratory study was conducted to determine the effect.

  14. Ammonia loss, ammonium and nitrate accumulation from mixing ...

    African Journals Online (AJOL)

    Ammonia loss from urea significantly hinders efficient use of urea in agriculture. In order to reduce ammonia loss and, at the same time, improve beneficial accumulation of soil exchangeable ammonium and nitrate for efficient utilization by plants, this laboratory study was conducted to determine the effect of mixing urea with ...

  15. 21 CFR 172.430 - Iron ammonium citrate. (United States)


    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION... citrate. (b) The additive is used, or intended for use as an anticaking agent in salt for human consumption so that the level of iron ammonium citrate does not exceed 25 parts per million (0.0025 percent...

  16. Producing ammonium sulfate from flue gas desulfurization by-products (United States)

    Chou, I.-Ming; Bruinius, J.A.; Benig, V.; Chou, S.-F.J.; Carty, R.H.


    Emission control technologies using flue gas desulfurization (FGD) have been widely adopted by utilities burning high-sulfur fuels. However, these technologies require additional equipment, greater operating expenses, and increased costs for landfill disposal of the solid by-products produced. The financial burdens would be reduced if successful high-volume commercial applications of the FGD solid by-products were developed. In this study, the technical feasibility of producing ammonium sulfate from FGD residues by allowing it to react with ammonium carbonate in an aqueous solution was preliminarily assessed. Reaction temperatures of 60, 70, and 80??C and residence times of 4 and 6 hours were tested to determine the optimal conversion condition and final product evaluations. High yields (up to 83%) of ammonium sulfate with up to 99% purity were achieved under relatively mild conditions. The optimal conversion condition was observed at 60??C and a 4-hour residence time. The results of this study indicate the technical feasibility of producing ammonium sulfate fertilizer from an FGD by-product. Copyright ?? Taylor & Francis Inc.

  17. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems. (United States)

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte


    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.

  18. Growth features of ammonium hydrogen d-tartrate single crystals

    Indian Academy of Sciences (India)


    Ammonium hydrogen d-tartrate (d-AHT) single crystals were grown in silica gel. The growth fea- tures of these crystals with variation of parameters like specific gravity of the gel, gel pH, acid concentrations, concentration of the feed solution and gel age were studied in detail. Keywords. d-AHT single crystals; growth features ...

  19. Response of higveld grass species to ammonium and nitrate nitrogen

    African Journals Online (AJOL)

    Forty-one populations in twenty-two species of highveld grasses were grown in pots of soil fertilized with solutions for comparing ammonium and nitrate nutrition. Cotton, tomato, cereal crops and pasture grasses were included for comparison. Roots and shoots were harvested separately, weighed and analysed for major ...

  20. Nitrate and ammonium levels of some water bodies and their ...

    African Journals Online (AJOL)

    The present study examined the nitrate (NO3-) and ammonium (NH4+) levels of Rivers Wouri and Dibamba and some streams that feed them. The interaction of NO3- and NH4+ with some soil properties was also investigated. It was necessitated by the usage of these rivers for livelihood, despite the deposition of discharges ...

  1. Quaternary ammonium salt N-(dodecyloxycarboxymethyl)- N,N,N ...

    Indian Academy of Sciences (India)


    Oct 22, 2016 ... viruses like HIV (human immunodeficiency virus) and HBV. (hepatitis B virus), but not nonenveloped viruses ( ..... To investigate whether quaternary ammonium salt IM impacts yeast growth in the presence of ... To investigate the influence of IM on plasma membrane lipid composition, the ergosterol and fatty ...

  2. Acid mine water neutralisation with ammonium hydroxide and ...

    African Journals Online (AJOL)

    This study showed that NH4OH can be used for treatment of acid mine drainage rich in sulphates and NH4OH can be recycled in the process. Hydrated lime treatment resulted in removal of the remaining ammonia using a rotary evaporator. Keywords: acid mine water, ammonium hydroxide, barium hydroxide, sulphate ...

  3. Ceric ammonium nitrate catalysed three component one-pot efficient ...

    Indian Academy of Sciences (India)


    For this reason, the development of mild, efficient and versatile method is still important. Ceric (IV) ammonium nitrate (CAN) is a conven- ient and widely used reagent for affecting a wide ar- ray of synthetic transformations due to its many advantages such as solubility in organic solvents, low toxicity, high reactivity, and ease ...

  4. Ammonium derivatives of chromenones and quinolinones as lead ...

    Indian Academy of Sciences (India)

    A series of novel ammonium derivatives were synthesized and examined for their antimicrobial efficacy. Comparison of antimicrobial spectrum revealed that compounds 9, 11, 16 and 23 had strong potential against pathogens in vitro. Cytotoxicity results showed compound 9 to be least toxic, it is non-toxic to A549 and U87 ...

  5. Effect of Ammonium Nitrate Solutions on Fertilization and ...

    African Journals Online (AJOL)

    ... 10 and 100 p.p.m. ammonium nitrate and the percentage fertilization as weD as the subsequent development of the embryos compared with controls. At 10 and 100 p.p.m. there is a marked reduction in fertilization. Abnormal forms are common at 100 p.p.m. and some 95 % of the population fail to reach the gastrula stage.

  6. Electrochemical oxidation of quaternary ammonium electrolytes : Unexpected side reactions in organic electrochemistry

    NARCIS (Netherlands)

    Nouri Nigjeh, Eslam; de Vries, Marcel; Bruins, Andries P.; Bischoff, Rainer; Permentier, Hjalmar P.

    Quaternary ammonium salts are among the most widely used electrolytes in organic electrochemistry, but there is little known about their unwanted side oxidation reactions. We have, therefore, studied the constant potential oxidation products of quaternary ammonium electrolytes using mass

  7. Investigation of electric discharge treatment of water for ammonium nitrogen removal

    International Nuclear Information System (INIS)

    Nazarenko, O.B.; Shubin, B.G.


    The possibility of water purification from ammonium nitrogen using pulsed electric discharge in water-air mixtures was investigated. The model solution of chlorous ammonium was used in experiments. The concentration of ions ammonium was about 300 mg/l. Achieved reduction of ammonium concentration was about 35%. In this paper the mechanism of this process is discussed. The ways to increasing efficiency of this method are proposed

  8. 40 CFR 418.40 - Applicability; description of the ammonium nitrate subcategory. (United States)


    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the ammonium nitrate subcategory. 418.40 Section 418.40 Protection of Environment ENVIRONMENTAL PROTECTION... Ammonium Nitrate Subcategory § 418.40 Applicability; description of the ammonium nitrate subcategory. The...

  9. 40 CFR 721.10170 - Polyoxyethylene polyalkylarylphenylether sulfate ammonium salt (generic). (United States)


    ... polyalkylarylphenylether sulfate ammonium salt (generic). 721.10170 Section 721.10170 Protection of Environment... polyalkylarylphenylether sulfate ammonium salt (generic). (a) Chemical substance and significant new uses subject to... sulfate ammonium salt (PMN P-03-197) is subject to reporting under this section for the significant new...

  10. Influence of Ammonium Salt and Fermentation pH on Acarbose ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of ammonium salts and fermentation pH on the biosynthesis of acarbose by Streptomyces M37. Methods: Different ammonium salts were added to the fermentation broth of Streptomyces M37 to explore their effects on acarbose production. The concentration and addition time of ammonium ...

  11. Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution (United States)

    Koolyk, Miriam; Amgar, Daniel; Aharon, Sigalit; Etgar, Lioz


    In this work we study the kinetics of cesium lead halide perovskite nanoparticle (NP) growth; the focusing and de-focusing of the NP size distribution. Cesium lead halide perovskite NPs are considered to be attractive materials for optoelectronic applications. Understanding the kinetics of the formation of these all-inorganic perovskite NPs is critical for reproducibly and reliably generating large amounts of uniformly sized NPs. Here we investigate different growth durations for CsPbI3 and CsPbBr3 NPs, tracking their growth by high-resolution transmission electron microscopy and size distribution analysis. As a result, we are able to provide a detailed model for the kinetics of their growth. It was observed that the CsPbI3 NPs exhibit focusing of the size distribution in the first 20 seconds of growth, followed by de-focusing over longer growth durations, while the CsPbBr3 NPs show de-focusing of the size distribution starting from the beginning of the growth. The monomer concentration is depleted faster in the case of CsPbBr3 than in the case of CsPbI3, due to faster diffusion of the monomers, which increases the critical radius and results in de-focusing of the population. Accordingly, focusing is not observed within 40 seconds of growth in the case of CsPbBr3. This study provides important knowledge on how to achieve a narrow size distribution of cesium lead halide perovskite NPs when generating large amounts of these promising, highly luminescent NPs.In this work we study the kinetics of cesium lead halide perovskite nanoparticle (NP) growth; the focusing and de-focusing of the NP size distribution. Cesium lead halide perovskite NPs are considered to be attractive materials for optoelectronic applications. Understanding the kinetics of the formation of these all-inorganic perovskite NPs is critical for reproducibly and reliably generating large amounts of uniformly sized NPs. Here we investigate different growth durations for CsPbI3 and CsPbBr3 NPs, tracking

  12. A review on bis-hydrazonoyl halides: Recent advances in their synthesis and their diverse synthetic applications leading to bis-heterocycles of biological interest

    Directory of Open Access Journals (Sweden)

    Ahmad Sami Shawali


    Full Text Available This review covers a summary of the literature data published on the chemistry of bis-hydrazonoyl halides over the last four decades. The biological activities of some of the bis-heterocyclic compounds obtained from these bis-hydrazonoyl halides are also reviewed and discussed.

  13. Monitoring of heavy/toxic metals and halides in surface/ground water (abstract)

    International Nuclear Information System (INIS)

    Viqar-un-Nisa; Ahmed, R.; Husain, M.


    Water is essential for maintaining physical and social life. Human and animal consumption is perhaps the most evident essential use of water. Water quality and quantity have become critical issues, affecting all life. The importance of water in our lives, combined with the threats, make water resources use a global problem. Among the different pollutants toxic metals, metalloids and halides have special significance. Industrial effluents and municipal wastewater are normally drained into water streams, rivers and other reservoirs thus polluting these significantly. Quality of our water resources especially is an issue, which continues to arouse the attention of concerned scientists, legislators and the general public. Among various pollutant chemicals, the heavy metals and metalloids are present at trace levels in various compartments of the environment. Some metals become toxic even at trace levels because of the important features that distinguishes metals from other pollutants is that they are not biodegradable. The halides like Cl, Br, and I from different sources can enter easily into water systems and then they make their way directly into the human body. The intake of toxic as wells as essential elements through water and other food items like vegetables, milk wheat flour etc. is significant. The abundance or deficiency of these meals as well as halides results in abnormal metabolic functions. Due to excessive demand for trace analysis in water and other materials a variety of techniques and instrumentation has been developed. Determination of heavy metals ions is of the highest interest in environmental analysis. Among the food materials water is most important because of their large consumption by man. Also toxic metals in water may be in dissolved ionic form, which directly go into human metabolism and start their toxic action. Presence of even small amounts of toxic metals in drinking water can produce serious health hazards. (author)

  14. Concentration Effects and Ion Properties Controlling the Fractionation of Halides in Sea Spray (United States)

    Guzman, M. I.; Pillar, E. A.


    During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO2, NaNO3, NaClO4, and NaIO4. The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (fX-) and their correlation with ion properties. Although no correlation exists between fX- and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions, dehydration free-energy, and polarizability α, is larger for the reciprocal square of anion size. The same pure physical process is observed in H2O and D2O. The factor fX- does not change with pH (6.8-8.6), counterion (Li+, Na+, K+, and Cs+) substitution effects, or solvent polarity changes in methanol- and ethanol-water mixtures (0 ≤ xwater ≤ 1). Polysorbate 20 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I- on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I- layer due to concentration effects in sea spray aerosol formation. Experiments reporting the products for the ozonolysis of halides in microdroplets at typical ozone concentrations of ~ 50 ppbv display the formation or reactive halogen species that contribute to the destruction of ozone over the open ocean.

  15. Thermal neutron detection using alkali halide scintillators with Li-6 and pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Erik [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dibble, Dean C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mengesha, Wondwosen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Pin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    An ideal 3He detector replacement for the near- to medium-term future will use materials that are easy to produce and well understood, while maintaining thermal neutron detection efficiency and gamma rejection close to the 3He standard. Toward this end, we investigated the use of standard alkali halide scintillators interfaced with 6Li and read out with photomultiplier tubes (PMTs). Thermal neutrons are captured on 6Li with high efficiency, emitting high-energy and triton (3H) reaction products. These particles deposit energy in the scintillator, providing a thermal neutron signal; discrimination against gamma interactions is possible via pulse shape discrimination (PSD), since heavy particles produce faster pulses in alkali halide crystals. We constructed and tested two classes of detectors based on this concept. In one case 6Li is used as a dopant in polycrystalline NaI; in the other case a thin Li foil is used as a conversion layer. In the configurations studied here, these systems are sensitive to both gamma and neutron radiation, with discrimination between the two and good energy resolution for gamma spectroscopy. We present results from our investigations, including measurements of the neutron efficiency and gamma rejection for the two detector types. We also show a comparison with Cs2LiYCl6:Ce (CLYC), which is emerging as the standard scintillator for simultaneous gamma and thermal neutron detection, and also allows PSD. We conclude that 6Li foil with CsI scintillating crystals has near-term promise as a thermal neutron detector in applications previously dominated by 3He detectors. The other approach, 6Li-doped alkali halides, has some potential, but require more work to understand material properties and improve fabrication processes.

  16. Metallaphotoredox-catalysed sp3-sp3 cross-coupling of carboxylic acids with alkyl halides (United States)

    Johnston, Craig P.; Smith, Russell T.; Allmendinger, Simon; MacMillan, David W. C.


    In the past 50 years, cross-coupling reactions mediated by transition metals have changed the way in which complex organic molecules are synthesized. The predictable and chemoselective nature of these transformations has led to their widespread adoption across many areas of chemical research. However, the construction of a bond between two sp3-hybridized carbon atoms, a fundamental unit of organic chemistry, remains an important yet elusive objective for engineering cross-coupling reactions. In comparison to related procedures with sp2-hybridized species, the development of methods for sp3-sp3 bond formation via transition metal catalysis has been hampered historically by deleterious side-reactions, such as β-hydride elimination with palladium catalysis or the reluctance of alkyl halides to undergo oxidative addition. To address this issue, nickel-catalysed cross-coupling processes can be used to form sp3-sp3 bonds that utilize organometallic nucleophiles and alkyl electrophiles. In particular, the coupling of alkyl halides with pre-generated organozinc, Grignard and organoborane species has been used to furnish diverse molecular structures. However, the manipulations required to produce these activated structures is inefficient, leading to poor step- and atom-economies. Moreover, the operational difficulties associated with making and using these reactive coupling partners, and preserving them through a synthetic sequence, has hindered their widespread adoption. A generically useful sp3-sp3 coupling technology that uses bench-stable, native organic functional groups, without the need for pre-functionalization or substrate derivatization, would therefore be valuable. Here we demonstrate that the synergistic merger of photoredox and nickel catalysis enables the direct formation of sp3-sp3 bonds using only simple carboxylic acids and alkyl halides as the nucleophilic and electrophilic coupling partners, respectively. This metallaphotoredox protocol is suitable for

  17. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Energy Technology Data Exchange (ETDEWEB)

    Selling, J.


    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  18. Band Gap Tuning and Defect Tolerance of Atomically Thin Two- Dimensional Organic-Inorganic Halide Perovskites

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer


    report first-principles calculations for isolated monolayers of the organometallic halide perovskites (C4H9NH3)2MX2Y2, where M = Pb, Ge, Sn and X,Y = Cl, Br, I. The band gaps computed using the GLLB-SC functional are found to be in excellent agreement with experimental photoluminescence data...... for the already synthesized perovskites. Finally, we study the effect of different defects on the band structure. We find that the most common defects only introduce shallow or no states in the band gap, indicating that these atomically thin 2D perovskites are likely to be defect tolerant....

  19. Measurements of prompt fission gamma-rays and neutrons with lanthanide halide scintillation detectors

    CERN Document Server

    Oberstedt, A; Billnert, R; Borcea, R; Brys, T; Chaves, C; Gamboni, T; Geerts, W; Göök, A; Guerrero, C; Hambsch, F-J; Kis, Z; Martinez, T; Oberstedt, S; Szentmiklosi, L; Takács, K; Vivaldi, M


    Photons have been measured with lanthanide halide scintillation detectors in coincidence with fission fragments. Using the time-of-flight information, reactions from γ-rays and neutrons could easily be distinguished. In several experiments on $^{252}$Cf(sf), $^{235}$U(n$_{th}$,f) and $^{241}$Pu(n$_{th}$,f) prompt fission γ-ray spectra characteristics were determined with high precision and the results are presented here. Moreover, a measured prompt fission neutron spectrum for $^{235}$U(n$_{th}$,f) is shown in order to demonstrate a new detection technique.

  20. Structural, optical, and electronic studies of wide-bandgap lead halide perovskites

    KAUST Repository

    Comin, Riccardo


    © The Royal Society of Chemistry 2015. We investigate the family of mixed Br/Cl organolead halide perovskites which enable light emission in the blue-violet region of the visible spectrum. We report the structural, optical and electronic properties of this air-stable family of perovskites, demonstrating full bandgap tunability in the 400-550 nm range and enhanced exciton strength upon Cl substitution. We complement this study by tracking the evolution of the band levels across the gap, thereby providing a foundational framework for future optoelectronic applications of these materials.

  1. All-Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution-Phase Halide Passivation

    KAUST Repository

    Ning, Zhijun


    A new solution-phase halide passivation strategy to improve the electronic properties of colloidal quantum dot films is reported. We prove experimentally that the approach leads to an order-of-magnitude increase in mobility and a notable reduction in trap state density. We build solar cells having the highest efficiency (6.6%) reported using all-inorganic colloidal quantum dots. The improved photocurrent results from increased efficiency of collection of infrared-generated photocarriers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis, radiochemical labeling, and properties of some aryl- and alkylstibines and their halide derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Benmalek, M.; Chermette, H.; Martelet, C.; Sandino, D.; Tousset, J.


    The condensation of aryl or alkyl magnesium halides on radiochemically labeled (/sup 124/Sb) antimony trichloride enables labeled triaryl or trialkyl stibines to be obtained. Triaryl and trialkyl antimony difluorides can be obtained with excellent yields using solvent extraction from the corresponding dichloride, dibromide, or di-iodide, these substances being obtained by condensation of the halogen on stibine. Radiochemical labeling enabled the values of the partition coefficients to be obtained for some of the derivatives, and also the hydrolysis of these compounds to be examined. (FR)

  3. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Zhijun; Ren, Yuan; Hoogland, Sjoerd; Voznyy, Oleksandr; Levina, Larissa; Stadler, Philipp; Lan, Xinzheng; Zhitomirsky, David; Sargent, Edward H. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario, M5S 3G4 (Canada)


    A new solution-phase halide passivation strategy to improve the electronic properties of colloidal quantum dot films is reported. We prove experimentally that the approach leads to an order-of-magnitude increase in mobility and a notable reduction in trap state density. We build solar cells having the highest efficiency (6.6%) reported using all-inorganic colloidal quantum dots. The improved photocurrent results from increased efficiency of collection of infrared-generated photocarriers. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Solvated Positron Chemistry - Positron Reactions with Pseudo-Halide Ions in Water

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Pedersen, Niels Jørgen; Andersen, Jan Rud


    The hydrated positron e+aq reactions with SCN−, OCN−, CN−, S2− were studied by means of the angular correlation technique. The positron forms bound states with SCN−, CN−, and S2− but not with OCN−. Apparently, the e+aq reaction with SH− results in a positron bound state with S2−. It was difficult...... to determine the shapes of the bound-state angular correlation curves. Only in the SCN− case could a very rough estimate of the rate constant be obtained. Estimates of the binding energies relative to those of the corresponding halide ion states could be determined for SCN− and S2−....

  5. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites


    Carolin M. Sutter-Fella Yanbo Li Matin Amani Joel W. Ager III Francesca M. Toma; Eli Yablonovitch Ian D. Sharp and Ali Javey


    Hybrid organic–inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low cost solution processability. Here we present a two step low pressure vapor assisted solution process to grow high quality homogeneous CH3NH3PbI3–xBrx perovskite films over the full band gap range of 1.6–2.3 eV. Photoluminescence light in versus light out charac...

  6. Palladium-catalyzed cross-coupling reactions of aryl boronic acids with aryl halides in water. (United States)

    Wang, Shaoyan; Zhang, Zhiqiang; Hu, Zhizhi; Wang, Yue; Lei, Peng; Chi, Haijun


    An efficient Suzuki cross-coupling reaction using a variety of aryl halides in neat water was developed. The Pd-catalyzed reaction between aryl bromides or chlorides and phenyl boronic acids was compatible with various functional groups and affords biphenyls in good to excellent yields without requirement of organic cosolvents. The air stability and solubility in water of the palladium-phosphinous acid complexes were considered to facilitate operation of the coupling reaction and product isolation. The reaction conditions including Pd catalyst selection, temperature, base and catalyst recoverability were also investigated.

  7. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.


    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  8. Sources et marché du sulfate d'ammonium Sources of and Market for Ammonium Sulfate

    Directory of Open Access Journals (Sweden)

    Loussouarn C.


    Full Text Available Engrais azoté le plus utilisé dans le monde jusqu'en 1970, le sulfate d'ammonium ne représente plus aujourd'hui que 4 % de la fertilisation azotée. Avec une teneur en azote de 21 % seulement, il a été peu à peu remplacé comme engrais universel par des produits plus concentrés, notamment l'urée et le nitrate d'ammonium. Obtenu pour plus de 40 % comme sous-produit dans la synthèse de monomères comme le caprolactame, l'acrylonitrile ou le méthacrylate de méthyle, et pour près de 10 % dans le traitement des gaz de cokerie, sa production dépend largement des développements du marché des fibres synthétiques, et, dans une moindre mesure, de la sidérurgie et de la métallurgie. Dans les pays développés, où la production est essentiellement fatale, le volume du marché est et sera plus fonction de la disponibilité du sulfate d'ammonium que de la demande ou de facteurs de marché; sa consommation ne résidera plus que dans des applications spécifiques pour lesquelles il sera bien adapté. Par contre, l'intérêt croissant pour compenser le déficit en soufre de certains sols, et les qualités agronomiques propres du sulfate d'ammonium laissent entrevoir la possibilité d'un essor de son utilisation dans certaines régions en voie de développernent. Ammonium sulfate was the most worldwide nitrogenous fertilizer used up to 1970. Today, it makes up only 4% of nitrogenous fertilization. With a nitrogen content of only 21%, it has gradually been replaced as a universal fertilizer by more concentrated products, particularly urea and ammonium nitrate. More than 40% of the ammonium sulfate is obtained as a by-product from the synthesis of monomers such as caprolactam, acrylonitrile or methyl methacrylate, and nearly 10% from coking gas processing. Its production depends extensively on the development of the market for synthetic fibers and, to a lesser extent, on the steel and metallurgical industries. In the industrialized countries

  9. Research Update: Challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing

    Directory of Open Access Journals (Sweden)

    Guangru Li


    Full Text Available Hybrid lead-halide perovskites have emerged as promising solution-processed semiconductor materials for thin-film optoelectronics. In this review, we discuss current challenges in perovskite LED performance, using thin-film and nano-crystalline perovskite as emitter layers, and look at device performance and stability. Fabrication of electrically pumped, optical-feedback devices with hybrid lead halide perovskites as gain medium is a future challenge, initiated by the demonstration of optically pumped lasing structures with low gain thresholds. We explain the material parameters affecting optical gain in perovskites and discuss the challenges towards electrically pumped perovskite lasers.

  10. Possible configuration of two-knot auto-localized exciton in strainless and deformed alkali halide crystals

    International Nuclear Information System (INIS)

    Dzhumanov, S.; Tulepbergenov, S.K.; Shunkeev, K.Sh.


    In the paper molecular component of two-knot auto-localized exciton (TALE) occupying centrosymmetric state in alkali halide crystal cubic lattice with local D 2h symmetry is considered. In is suggested that the symmetry lowering of forming small radius auto-localized exciton (ALE) is realizing in order configuration transformation by the scenario: multi-knot continual ALE (with O h symmetry)→six-halide ALE (with O h symmetry)→TALE (with O h symmetry) or by the scenario O h →D 2h . Then for TALE with local D 2h symmetry normal molecular ion shifts are considered as well

  11. Sequential One-Pot Ruthenium-Catalyzed Azide−Alkyne Cycloaddition from Primary Alkyl Halides and Sodium Azide

    KAUST Repository

    Johansson, Johan R.


    An experimentally simple sequential one-pot RuAAC reaction, affording 1,5-disubstituted 1H-1,2,3-triazoles in good to excellent yields starting from an alkyl halide, sodium azide, and an alkyne, is reported. The organic azide is formed in situ by treating the primary alkyl halide with sodium azide in DMA under microwave heating. Subsequent addition of [RuClCp*(PPh 3) 2] and the alkyne yielded the desired cycloaddition product after further microwave irradiation. © 2011 American Chemical Society.

  12. Combinatorial screening of halide perovskite thin films and solar cells by mask-defined IR laser molecular beam epitaxy


    Kawashima, Kazuhiro; Okamoto, Yuji; Annayev, Orazmuhammet; Toyokura, Nobuo; Takahashi, Ryota; Lippmaa, Mikk; Itaka, Kenji; Suzuki, Yoshikazu; Matsuki, Nobuyuki; Koinuma, Hideomi


    Abstract As an extension of combinatorial molecular layer epitaxy via ablation of perovskite oxides by a pulsed excimer laser, we have developed a laser molecular beam epitaxy (MBE) system for parallel integration of nano-scaled thin films of organic?inorganic hybrid materials. A pulsed infrared (IR) semiconductor laser was adopted for thermal evaporation of organic halide (A-site: CH3NH3I) and inorganic halide (B-site: PbI2) powder targets to deposit repeated A/B bilayer films where the thic...

  13. Recent Advances in the Synthesis of Ammonium-Based Rotaxanes

    Directory of Open Access Journals (Sweden)

    Dominic Thibeault


    Full Text Available The number of synthetic methods enabling the preparation of ammonium-based rotaxanes has increased very rapidly in the past ten years. The challenge in the synthesis of rotaxanes results from the rather weak interactions between the ammonium-containing rod and the crown ether macrocycle in the pseudorotaxane structure that rely mostly on O•H hydrogen bonds. Indeed, no strong base or polar solvent that could break up H-bonding can be used during the formation of rotaxanes because the two components will separate as two distinct entities. Moreover, most of the reactions have to be performed at room temperature to favor the formation of pseudorotaxane in solution. These non-trivial prerequisites have been taken into account to develop efficient reaction conditions for the preparation of rotaxanes and those are described in detail along this review.

  14. Influence quaternary ammonium salt in the organophilization of an bentonite

    International Nuclear Information System (INIS)

    Oliveira, S.V.; Alves, G.P.; Wanderley, A.S.D.; Araujo, E.M.


    Clays are natural materials, earthy, fine-grained particles with diameters generally less than 2μm, and formed by chemically hydrated silicates of aluminum, iron and magnesium. The clays have a range of applications, both in pottery and in other technology areas. This work aimed to study the influence of a quaternary ammonium salt to increase the basal distance of a bentonite clay powder obtained thereby promoting to a new structural profile characteristic with organoclay. The bentonite clay was treated with salt Praepragem WB. The following methods were used: X-ray diffraction (XRD) and X-ray fluorescence (XRF). The results indicated the intercalation of ammonium ions of the salt studied within the layers of silicate and expansion of basal spacing d 001 , ie the clay in the study showed 2θ angle shifts to smaller angles, indicating that the clay was organophilization. (author)

  15. A software nitrate sensor based on ammonium and redox signals. (United States)

    Cecil, D


    We have computed the nitrate concentration in the activated sludge in real-time using a model, which is a subset of ASM1. The model is in operation at two WWTPs where oxygen, ammonium and redox are measured online in the aeration tanks. The model uses these measurements to continuously adjust its values for the influent ammonium concentration, the nitrification rate, the denitrification rate and the net hydrolysis. Then it computes the nitrate concentration. This value is updated every 10 s. The model results have been compared with the output from a Dr Lange in-situ nitrate sensor at one of these WWTPs. The systematic difference between these two measurements is less than 0.2 mgN L(-1) and 90% of the differences are between -1.1 and 1.1 mgN L(-1).

  16. Pilot scale for preparation of ammonium uranyl carbonate

    International Nuclear Information System (INIS)

    Santos, L.R. dos.


    The procedure adopted for obtaining Ammonium Uranyl Carbonate (AUC) from uranium hexafluoride (UF sub(6)) or aqueous solutions of uranylnitrate (UO sub(2)(NO sub(3)) sub(2)) is described in the present work. This procedure involves the precipitation of AUC in a chemical reactor by the addition of gaseous UF sub(6) or solutions of uranylnitrate to NH sub(3) and CO sub(2) gases in a solution containing ammonium bicarbonate, where pH and temperature are controlled. Details regarding the characterization and quality control methods in the preparation of AUC are presented along with their physical and chemical properties. Some informations about effluents generated during the process are presented too. An attempt is made to correlate the parameters involved in the precipitation process of AUC and their characteristics. (author)

  17. Preparation of nanodispersed titania using stabilized ammonium nitrate melts

    KAUST Repository

    Raciulete, Monica


    An expedite one-step approach using simple precursors has been proposed to obtain metallic oxide compounds and exemplified by preparation of highly dispersed TiO2. The technique consists in heating to 400500 °C of molten ammonium nitrate stabilized with an organic nitrogen-containing compound (urea, melamine, ammonium oxalate) and containing dissolved metal salt precursor (TiOCl2). The crystallites of the resulting TiO2 demonstrated variable size and shape as a function of stabilizer used. Their activity in photocatalytic oxidation of formic acid also depends on the nature of the stabilizer. The catalysts as-prepared showed high photocatalytic performance, superior to that of the Degussa P25 reference. Nitrogen containing stabilizers play a double role of increasing the process safety and modifying the properties of the solid products. © 2010 Elsevier Inc. All rights reserved.

  18. Mammalian phospholipase D: activation by ammonium sulfate and nucleotides.


    Nakamura, S; Shimooku, K; Akisue, T; Jinnai, H; Hitomi, T; Kiyohara, Y; Ogino, C; Yoshida, K; Nishizuka, Y


    Phospholipase D (PLD) associated with the rat kidney membrane was activated by guanine 5'-[gamma-thio]triphosphate and a cytosol fraction that contained ADP-ribosylation factor. When assayed by measuring the phosphatidyl transfer reaction to ethanol with exogenously added radioactive phosphatidylcholine as substrate, the PLD required a high concentration (1.6 M) of ammonium sulfate to exhibit high enzymatic activity. Other salts examined were far less effective or practically inactive, and th...

  19. Pseudoideal detonation of mechanoactivated mixtures of ammonium perchlorate with nanoaluminum (United States)

    Shevchenko, A. A.; Dolgoborodov, A. Yu; Brazhnikov, M. A.; Kirilenko, V. G.


    Detonation properties of mechanochemical activated ammonium perchlorate with aluminum (AP–Al) mixtures with increased detonation velocity was studied. For compositions with nanoscale aluminum was obtained nonmonotonic dependence of the detonation velocity vs reciprocal diameter. The results generally showed that the combined usage of mechanical activation and nanoscale components of explosive mixtures can significantly increase the detonation ability and reduce the critical diameter to d cr = 7 mm.

  20. Nanomodified vermiculite NMV - a new material for recycling ammonium nitrogen (United States)

    Rama, Miradije; Laiho, Taina; Eklund, Olav; Lehto, Kirsi; Shebanov, Alex; Smått, Jan-Henrik


    Vermiculites ((Mg,Fe,Al)3(Al,Si)4O10(OH)24H2O) are naturally occurring minerals from hydromica group with a high cation exchange capacity and large surface area. Since vermiculite is a hydrated mineral, its structure can be changed with heat. In this study vermiculite samples were heated in an oven until the interlayer distance of them diminished from 14 Å to 11.7 Å. This method for improving vermiculites intake of ammonium ions by heating, is an invention made at the University of Turku. Nanomodified vermiculite (NMV) is able to absorb up to 4.7 wt% of ammonium. NMV can be used as an efficient filter and immobilizer of ammonium in different environments. NMV has been efficiently tested on waste water from a biogas plant, human urine, combustion experiments, industrial chimneys, excrements from farms etc. Ammonium doped vermiculite (ADV) is further developed for fertilizer use. Performed experiments have testified the usability of ADV as a fertilizer. At first step the NMV was processed with the reject water from a biogas plant, were it absorbed NH4+ into the lattice. At second, the ADV was used as nutrient source for garden plants. Geraniums and begonias were used as test plants of the work. Plant growth rate was evaluated based on plant weight. Results showed that significant increase of the growth of geraniums and of begonias were observed when comparing to those cultivations where plants have got normal fertilization. Moreover, ADV has been tested as a fertilizer in greenhouse experiments with spruces and pines. After five months, the weight of the plants that had grown in a substrate containing ADV was 10 times the weight of plants growing in the reference substrate.

  1. Development of antibacterial quaternary ammonium silane coatings on polyurethane catheters

    Czech Academy of Sciences Publication Activity Database

    Zanini, S.; Polissi, A.; Maccagni, E.A.; Dell'Orto, E.C.; Liberatore, Chiara; Riccardi, C.


    Roč. 451, Aug (2015), 78-84 ISSN 0021-9797 R&D Projects: GA MŠk EE2.3.20.0143 Grant - others:OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : plasma-induced graft-polymerization * acrylic acid * ATR/FTIR * AFM * quaternary ammonium silane * Escherichia coli Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.782, year: 2015

  2. Ammonium photo-production by heterocytous cyanobacteria: potentials and constraints. (United States)

    Grizeau, Dominique; Bui, Lan Anh; Dupré, Catherine; Legrand, Jack


    Over the last decades, production of microalgae and cyanobacteria has been developed for several applications, including novel foods, cosmetic ingredients and more recently biofuel. The sustainability of these promising developments can be hindered by some constraints, such as water and nutrient footprints. This review surveys data on N2-fixing cyanobacteria for biomass production and ways to induce and improve the excretion of ammonium within cultures under aerobic conditions. The nitrogenase complex is oxygen sensitive. Nevertheless, nitrogen fixation occurs under oxic conditions due to cyanobacteria-specific characteristics. For instance, in some cyanobacteria, the vegetative cell differentiation in heterocyts provides a well-adapted anaerobic microenvironment for nitrogenase protection. Therefore, cell cultures of oxygenic cyanobacteria have been grown in laboratory and pilot photobioreactors (Dasgupta et al., 2010; Fontes et al., 1987; Moreno et al., 2003; Nayak & Das, 2013). Biomass production under diazotrophic conditions has been shown to be controlled by environmental factors such as light intensity, temperature, aeration rate, and inorganic carbon concentration, also, more specifically, by the concentration of dissolved oxygen in the culture medium. Currently, there is little information regarding the production of extracellular ammonium by heterocytous cyanobacteria. This review compares the available data on maximum ammonium concentrations and analyses the specific rate production in cultures grown as free or immobilized filamentous cyanobacteria. Extracellular production of ammonium could be coupled, as suggested by recent research on non-diazotrophic cyanobacteria, to that of other high value metabolites. There is little information available regarding the possibility for using diazotrophic cyanobacteria as cellular factories may be in regard of the constraints due to nitrogen fixation.

  3. Proton- and ammonium- sensing by histaminergic neurons controlling wakefulness.

    Directory of Open Access Journals (Sweden)

    Yvgenij eYanovsky


    Full Text Available Orexinergic and histaminergic neurons in the posterior hypothalamus are involved in the control of arousal. Extracellular levels of acid /CO2 are fundamental physicochemical signals controlling wakefulness and breathing. Acidification excites orexinergic neurons like the chemosensory neurons in the brain stem. Hypercapnia induces c-Fos expression, a marker for increased neuronal activity, in the rat histaminergic tuberomamillary nucleus (TMN, but the mechanisms of this excitation are unknown. Acid-sensing ion channels (ASICs are gated by protons and also by ammonium. Recordings in rat brain slices revealed now that acidification within the physiological range (pH from 7.3 to 7.0 as well as ammonium chloride (5mM excite histaminergic neurons. We detected variable combinations of 4 known types of ASICs in single TMN neurons, along with the pharmacological properties of pH-induced current. At pH 7.0 however, activation of ASICs in TMN neurons was negligible. Block of type I metabotropic glutamate receptors abolished proton- but not ammonium- induced excitation. Mouse TMN neurons were identified within a novel HDC-Cre transgenic reporter mouse line. In contrast to the rat these lacked pH 7.0-induced excitation and showed only a minimal response to the mGluR I agonist DHPG (0.5µM. Ammonium-induced excitation was similar in mouse and rat. Thus glutamate, which is released by glial cells and orexinergic axons amplifies CO2/acid-induced arousal through the recruitment of the histaminergic system in rat but not in mouse. These results are relevant for the understanding of neuronal mechanisms controlling H+/CO2-induced arousal in hepatic encephalopathy and obstructive sleep apnoea. The new HDC-Cre mouse model will be a useful tool for studying the physiological and pathophysiological roles of the histaminergic system.

  4. nitrate-nitrogen and ammonium- nitrogen levels of some water ...

    African Journals Online (AJOL)


    Key words: Nitrate, ammonium, water bodies/quality, soils, Douala metropolis. ... This has initiated progressive degradation of land and other vital resources .... 2.74 35.0 30.8. Downstream. Wouri Bridge. WOU6. 04 03 59.9N. 009 41 36.3E. 7.3. 6960. 0.11 39.2 22.4. Wouri Wharf. WOU7. 04 02 27.8N. 009 40 23.9E. 7.4. 9600.

  5. Ammonium ionic liquids as green solvents for drugs 


    Melo, Catarina I.; Bogel-Lukasik, R.; Ponte, Manuel Nunes; Bogel-Lukasik, Ewa


    A high solubility of antituberculosis antibiotic drugs: isoniazid and pyrazinecarboxamide in ammonium ionic liquids shown in this work, demonstrates the promising perspectives in the drug processing. Solid–liquid equilibrium (SLE) measurements have been made using a dynamic (synthetic) method. Thermophyscial properties such as melting point, enthalpy of fusion, temperatures of phase transitions and corresponding enthalpies for both isoniazid and pyrazinecarboxamide as well as for thre...

  6. Extraction Factor Of Pure Ammonium Paratungstate From Tungsten Scraps

    Directory of Open Access Journals (Sweden)

    Pee J.-H.


    Full Text Available Typical oxidation process of tungsten scraps was modified by the rotary kiln with oxygen burner to increase the oxidation rate of tungsten scraps. Also to accelerate the solubility of solid oxidized products, the hydrothermal reflux method was adapted. By heating tungsten scraps in rotary kiln with oxygen burner at around 900° for 2hrs, the scraps was oxidized completely. Then oxidized products (WO3 and CoWO4 was fully dissolved in the solution of NaOH by hydrothermal reflux method at 150° for 2hrs. The dissolution rate of oxidized products was increased with increasing the reaction temperature and concentration of NaOH. And then CaWO4 and H2WO4 could be generated from the aqueous sodium tungstate solution. Ammonium paratungstate (APT also could be produced from tungstic acid using by aqueous ammonium solution. The morphologies (cubic and plate types of APT was controlled by the stirring process of purified solution of ammonium paratungstate.

  7. Airborne ammonia and ammonium within the Northern Adriatic area, Croatia. (United States)

    Alebic-Juretic, Ana


    Determination of airborne ammonia started in the early 1980s, as a part of air pollution monitoring of industrial plants. Due to high emissions, the city of Rijeka was one of the most polluted in Croatia in the mid-1980s. Considerable reductions in SO2 and NO(x) emissions led to lower airborne levels of these pollutants in the mid 1990s. In spite of the coke plant closure in 1994, there was only a weak decline in airborne ammonia over the period 1980--2005, with annual means in the range of 12-20 microg m(-3) at urban Site 1 and 6-28 microg m(-3) at suburban Site 2. Similar behaviour has been observed with ammonium in bulk rainwater samples since 1996. Higher and approximately equal deposition of nitrogen as ammonium (N-NH4+) were obtained for the urban Site 1 and the mountainous Site 4, but with different causative facts. Ammonium's contribution to total nitrogen (NO3(-)+NH4+) deposition is approximately two thirds, even for a remote Site 3.

  8. Removing ammonium from water and wastewater using cost-effective adsorbents: A review. (United States)

    Huang, Jianyin; Kankanamge, Nadeeka Rathnayake; Chow, Christopher; Welsh, David T; Li, Tianling; Teasdale, Peter R


    Ammonium is an important nutrient in primary production; however, high ammonium loads can cause eutrophication of natural waterways, contributing to undesirable changes in water quality and ecosystem structure. While ammonium pollution comes from diffuse agricultural sources, making control difficult, industrial or municipal point sources such as wastewater treatment plants also contribute significantly to overall ammonium pollution. These latter sources can be targeted more readily to control ammonium release into water systems. To assist policy makers and researchers in understanding the diversity of treatment options and the best option for their circumstance, this paper produces a comprehensive review of existing treatment options for ammonium removal with a particular focus on those technologies which offer the highest rates of removal and cost-effectiveness. Ion exchange and adsorption material methods are simple to apply, cost-effective, environmentally friendly technologies which are quite efficient at removing ammonium from treated water. The review presents a list of adsorbents from the literature, their adsorption capacities and other parameters needed for ammonium removal. Further, the preparation of adsorbents with high ammonium removal capacities and new adsorbents is discussed in the context of their relative cost, removal efficiencies, and limitations. Efficient, cost-effective, and environmental friendly adsorbents for the removal of ammonium on a large scale for commercial or water treatment plants are provided. In addition, future perspectives on removing ammonium using adsorbents are presented. Copyright © 2017. Published by Elsevier B.V.

  9. Fabrication of ultra-fine-grain silver halide recording material for color holography (United States)

    Bjelkhagen, H. I.; Crosby, P. G.; Green, D. P. M.; Mirlis, E.; Phillips, N. J.


    Color holography is the most accurate imaging technology known to science. It is possible to produce holographic images that are almost identical to the original scene. Color holograms and holographic optical elements (HOEs) are becoming increasingly attractive. Since the 1990s the developments in other technology areas have created many potential new applications for color holograms and HOEs but again these new market areas are unexploited due to the lack of a suitable color holographic recording material. This restricts the commercial and technical development and exploitation of holographic-based industries, applications, techniques and processes. There is not a sufficient, commercial recording material for color holograms and HOEs. Most of the materials that are in use at present have relative poor performance and many manufacture methods of the materials are limited to laboratory scale. This paper presents fabrication details of ultra-fine grain (5 -10 nm), high sensitivity (less than 2.0 mJcm -2), low light-scattering, panchromatic silver halide emulsions. Such materials can be used for high-quality 3-D imaging recording techniques, including color holograms and HOEs. A comprehensive approach regarding all aspects of the emulsion preparation, from the precipitation of the silver halide crystals to sensitization and coating is provided. There are also recommendations regarding the processing of the material in order to achieve optimum performance.

  10. Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science Aspects and Boundary Conditions

    KAUST Repository

    Samu, Gergely F.


    The unique optoelectronic properties of lead halide perovskites have triggered a new wave of excitement in materials chemistry during the past five years. Electrochemistry, spectroelectrochemistry, and photoelectrochemistry could be viable tools both for analyzing the optoelectronic features of these materials and to assemble their hybrid architectures (e.g., solar cells). At the same time, the instability of these materials limits the pool of solvents and electrolytes that can be employed in such experiments. The focus of our study is to establish a stability window for electrochemical tests for all-inorganic CsPbBr3 and hybrid organic-inorganic MaPbI3 perovskites. In addition, we aimed to understand the reduction and oxidation events that occur and to assess the damage done during these processes at extreme electrochemical conditions. In this vein, we demonstrated the chemical, structural, and morphological changes of the films in both reductive and oxidative environments. Taking all these results together as a whole, we propose a set of boundary conditions and protocols for how electrochemical experiments with lead halide perovskites should be carried out and interpreted. We believe that the presented results will contribute to the understanding of the electrochemical response of these materials and lead to a standardization of results in the literature so that easier comparisons can be made.

  11. Halide-Enhanced Catalytic Activity of Palladium Nanoparticles Comes at the Expense of Catalyst Recovery

    Directory of Open Access Journals (Sweden)

    Azzedine Bouleghlimat


    Full Text Available In this communication, we present studies of the oxidative homocoupling of arylboronic acids catalyzed by immobilised palladium nanoparticles in aqueous solution. This reaction is of significant interest because it shares a key transmetallation step with the well-known Suzuki-Miyaura cross-coupling reaction. Additives can have significant effects on catalysis, both in terms of reaction mechanism and recovery of catalytic species, and our aim was to study the effect of added halides on catalytic efficiency and catalyst recovery. Using kinetic studies, we have shown that added halides (added as NaCl and NaBr can increase the catalytic activity of the palladium nanoparticles more than 10-fold, allowing reactions to be completed in less than half a day at 30 °C. However, this increased activity comes at the expense of catalyst recovery. The results are in agreement with a reaction mechanism in which, under conditions involving high concentrations of chloride or bromide, palladium leaching plays an important role. Considering the evidence for analogous reactions occurring on the surface of palladium nanoparticles under different reaction conditions, we conclude that additives can exert a significant effect on the mechanism of reactions catalyzed by nanoparticles, including switching from a surface reaction to a solution reaction. The possibility of this switch in mechanism may also be the cause for the disagreement on this topic in the literature.

  12. Superior Self-Powered Room-Temperature Chemical Sensing with Light-Activated Inorganic Halides Perovskites. (United States)

    Chen, Hongjun; Zhang, Meng; Bo, Renheng; Barugkin, Chog; Zheng, Jianghui; Ma, Qingshan; Huang, Shujuan; Ho-Baillie, Anita W Y; Catchpole, Kylie R; Tricoli, Antonio


    Hybrid halide perovskite is one of the promising light absorber and is intensively investigated for many optoelectronic applications. Here, the first prototype of a self-powered inorganic halides perovskite for chemical gas sensing at room temperature under visible-light irradiation is presented. These devices consist of porous network of CsPbBr 3 (CPB) and can generate an open-circuit voltage of 0.87 V under visible-light irradiation, which can be used to detect various concentrations of O 2 and parts per million concentrations of medically relevant volatile organic compounds such as acetone and ethanol with very quick response and recovery time. It is observed that O 2 gas can passivate the surface trap sites in CPB and the ambipolar charge transport in the perovskite layer results in a distinct sensing mechanism compared with established semiconductors with symmetric electrical response to both oxidizing and reducing gases. The platform of CPB-based gas sensor provides new insights for the emerging area of wearable sensors for personalized and preventive medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dielectric relaxation of alkyl chains in graphite oxide and n-alkylammonium halides

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Xiaoqian; Tian, Yuchen; Gu, Min, E-mail:; Yu, Ji [National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Tang, Tong B. [Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong (China)


    The dynamic of n-alkylammonium halides and n-alkylammonium cations (n = 12, 14, 16, 18) intercalated in graphite oxide (GO) have been investigated with complex impedance spectroscopy. X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, elemental analysis and thermogravimetry served to characterize the materials. The intercalated alkylammonium cations distributes as monolayers (when n = 12, 14 or 16) or bilayers (when n = 18), with their long axis parallel to GO layers, and with cations of headgroups bonded ionically to C-O{sup -} groups of GO; backbones of the confined molecules remain free. All halides and intercalation compounds suffer dielectric loss at low temperature. Arrhenius plots of the thermal dependence of the loss peaks, which are asymmetric, produce apparent activation energies that rise with increasing n. Ngai’s correlated-state model helps to correct for effects of dipole-dipole interaction, leading to virtually identical values for actual activation energy of 110 meV ± 5%; the values are also almost the same as the barrier energy for internal rotation in the alkyl macromolecule. We conclude that the relaxation of the alkylammonium cations arises not from C{sub 3} reorientation of the CH{sub 3} at its headgroup, but from small-angle wobbling around its major axis, an intrinsic motion.

  14. Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis (United States)

    Koh, Ming Joo; Nguyen, Thach T.; Zhang, Hanmo; Schrock, Richard R.; Hoveyda, Amir H.


    Olefin metathesis has had a large impact on modern organic chemistry, but important shortcomings remain: for example, the lack of efficient processes that can be used to generate acyclic alkenyl halides. Halo-substituted ruthenium carbene complexes decompose rapidly or deliver low activity and/or minimal stereoselectivity, and our understanding of the corresponding high-oxidation-state systems is limited. Here we show that previously unknown halo-substituted molybdenum alkylidene species are exceptionally reactive and are able to participate in high-yielding olefin metathesis reactions that afford acyclic 1,2-disubstituted Z-alkenyl halides. Transformations are promoted by small amounts of a catalyst that is generated in situ and used with unpurified, commercially available and easy-to-handle liquid 1,2-dihaloethene reagents, and proceed to high conversion at ambient temperature within four hours. We obtain many alkenyl chlorides, bromides and fluorides in up to 91 per cent yield and complete Z selectivity. This method can be used to synthesize biologically active compounds readily and to perform site- and stereoselective fluorination of complex organic molecules.

  15. Intrinsic Defect Physics in Indium-based Lead-free Halide Double Perovskites. (United States)

    Xu, Jian; Liu, Jian-Bo; Liu, Bai-Xin; Huang, Bing


    Lead-free halide double perovskites (HDPs) are expected to be promising photovoltaic (PV) materials beyond organic-inorganic halide perovskite, which is hindered by its structural instability and toxicity. The defect- and stability-related properties of HDPs are critical for the use of HDPs as important PV absorbers, yet their reliability is still unclear. Taking Cs 2 AgInBr 6 as a representative, we have systemically investigated the defect properties of HDPs by theoretical calculations. First, we have determined the stable chemical potential regions to grow stoichiometric Cs 2 AgInBr 6 without structural decomposition. Second, we reveal that Ag-rich and Br-poor are the ideal chemical potential conditions to grow n-type Cs 2 AgInBr 6 with shallow defect levels. Third, we find the conductivity of Cs 2 AgInBr 6 can change from good n-type, to poorer n-type, to intrinsic semiconducting depending on the growth conditions. Our studies provided important guidance for experiments to fabricate Pb-free perovskite-based solar cell devices with superior PV performances.

  16. Structural and Chemical Analysis of Gadolinium Halides Encapsulated within WS 2 Nanotubes

    KAUST Repository

    Anumol, E A


    The hollow cavities of nanotubes could serve as templates for the growth of size- and shape-confined functional nanostructures, giving rise to novel materials and properties. In this work, considering their potential application as MRI contrast agents, gadolinium halides are encapsulated within the hollow cavities of inorganic nanotubes of WS2 by capillary filling to obtain GdX3@WS2 nanotubes (where X = Cl, Br or I and @ means encapsulated in). Aberration corrected scanning/transmission electron microscopy (S/TEM) and spectroscopy is employed to understand the morphology and composition of the GdI3@WS2 nanotubes. The three dimensional morphology is studied with STEM tomography but understanding the compositional information is a non-trivial matter due to the presence of multiple high atomic number elements. Therefore, energy dispersive X-ray spectroscopy (EDS) tomography was employed revealing the three dimensional chemical composition. Molecular dynamics simulations of the filling procedure shed light into the mechanics behind the formation of the confined gadolinium halide crystals. The quasi-1D system employed here serves as an example of a TEM-based chemical nanotomography method that could be extended to other materials, including beam-sensitive soft materials.

  17. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency

    KAUST Repository

    Qin, Peng


    Organo-lead halide perovskites have attracted much attention for solar cell applications due to their unique optical and electrical properties. With either low-temperature solution processing or vacuum evaporation, the overall conversion efficiencies of perovskite solar cells with organic hole-transporting material were quickly improved to over 15% during the last 2 years. However, the organic hole-transporting materials used are normally quite expensive due to complicated synthetic procedure or high-purity requirement. Here, we demonstrate the application of an effective and cheap inorganic p-type hole-transporting material, copper thiocyanate, on lead halide perovskite-based devices. With low-temperature solution-process deposition method, a power conversion efficiency of 12.4% was achieved under full sun illumination. This work represents a well-defined cell configuration with optimized perovskite morphology by two times of lead iodide deposition, and opens the door for integration of a class of abundant and inexpensive material for photovoltaic application. © 2014 Macmillan Publishers Limited.

  18. Extended Photo-Conversion Spectrum in Low-Toxic Bismuth Halide Perovskite Solar Cells. (United States)

    Johansson, Malin B; Zhu, Huimin; Johansson, Erik M J


    Lead-based perovskites show very promising properties for use in solar cells; however, the toxicity of lead is a potential inhibitor for large-scale application of these solar cells. Here, a low-toxic bismuth halide, CsBi3I10, is synthesized from solution and the optical properties and crystal structure are compared with previously reported Cs3Bi2I9 perovskite, and the photovoltaic properties are also investigated. The XRD pattern suggests that the CsBi3I10 film has a layered structure with a different dominating crystal growth direction than the Cs3Bi2I9 perovskite. A band gap of 1.77 eV is obtained for the CsBi3I10 film, which is smaller than the band gap of Cs3Bi2I9 at 2.03 eV, and an extended visible light absorption spectrum is therefore obtained. The solar cell device with CsBi3I10 shows a photocurrent up to 700 nm, and this work shows therefore the possibility for increased light absorption and higher photocurrents in solar cells based on bismuth halide perovskites.

  19. TG-FTIR, DSC and quantum chemical studies of the thermal decomposition of quaternary methylammonium halides

    International Nuclear Information System (INIS)

    Sawicka, Marlena; Storoniak, Piotr; Skurski, Piotr; Blazejowski, Jerzy; Rak, Janusz


    The thermal decomposition of quaternary methylammonium halides was studied using thermogravimetry coupled to FTIR (TG-FTIR) and differential scanning calorimetry (DSC) as well as the DFT, MP2 and G2 quantum chemical methods. There is almost perfect agreement between the experimental IR spectra and those predicted at the B3LYP/6-311G(d,p) level: this has demonstrated for the first time that an equimolar mixture of trimethylamine and a methyl halide is produced as a result of decomposition. The experimental enthalpies of dissociation are 153.4, 171.2, and 186.7 kJ/mol for chloride, bromide and iodide, respectively, values that correlate well with the calculated enthalpies of dissociation based on crystal lattice energies and quantum chemical thermodynamic barriers. The experimental activation barriers estimated from the least-squares fit of the F1 kinetic model (first-order process) to thermogravimetric traces - 283, 244 and 204 kJ/mol for chloride, bromide and iodide, respectively - agree very well with theoretically calculated values. The theoretical approach assumed in this work has been shown capable of predicting the relevant characteristics of the thermal decomposition of solids with experimental accuracy

  20. Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science Aspects and Boundary Conditions (United States)


    The unique optoelectronic properties of lead halide perovskites have triggered a new wave of excitement in materials chemistry during the past five years. Electrochemistry, spectroelectrochemistry, and photoelectrochemistry could be viable tools both for analyzing the optoelectronic features of these materials and for assembling them into hybrid architectures (e.g., solar cells). At the same time, the instability of these materials limits the pool of solvents and electrolytes that can be employed in such experiments. The focus of our study is to establish a stability window for electrochemical tests for all-inorganic CsPbBr3 and hybrid organic–inorganic MAPbI3 perovskites. In addition, we aimed to understand the reduction and oxidation events that occur and to assess the damage done during these processes at extreme electrochemical conditions. In this vein, we demonstrated the chemical, structural, and morphological changes of the films in both reductive and oxidative environments. Taking all these results together as a whole, we propose a set of boundary conditions and protocols for how electrochemical experiments with lead halide perovskites should be carried out and interpreted. The presented results will contribute to the understanding of the electrochemical response of these materials and lead to a standardization of results in the literature so that comparisons can more easily be made. PMID:29503507

  1. Time Domain View of Liquid-like Screening and Large Polaron Formation in Lead Halide Perovskites (United States)

    Joshi, Prakriti Pradhan; Miyata, Kiyoshi; Trinh, M. Tuan; Zhu, Xiaoyang

    The structural softness and dynamic disorder of lead halide perovskites contributes to their remarkable optoelectronic properties through efficient charge screening and large polaron formation. Here we provide a direct time-domain view of the liquid-like structural dynamics and polaron formation in single crystal CH3NH3PbBr3 and CsPbBr3 using femtosecond optical Kerr effect spectroscopy in conjunction with transient reflectance spectroscopy. We investigate structural dynamics as function of pump energy, which enables us to examine the dynamics in the absence and presence of charge carriers. In the absence of charge carriers, structural dynamics are dominated by over-damped picosecond motions of the inorganic PbBr3- sub-lattice and these motions are strongly coupled to band-gap electronic transitions. Carrier injection from across-gap optical excitation triggers additional 0.26 ps dynamics in CH3NH3PbBr3 that can be attributed to the formation of large polarons. In comparison, large polaron formation is slower in CsPbBr3 with a time constant of 0.6 ps. We discuss how such dynamic screening protects charge carriers in lead halide perovskites. US Department of Energy, Office of Science - Basic Energy Sciences.

  2. An objective protocol for comparing the noise performance of silver halide film and digital sensor (United States)

    Cao, Frédéric; Guichard, Frédéric; Hornung, Hervé; Tessière, Régis


    Digital sensors have obviously invaded the photography mass market. However, some photographers with very high expectancy still use silver halide film. Are they only nostalgic reluctant to technology or is there more than meets the eye? The answer is not so easy if we remark that, at the end of the golden age, films were actually scanned before development. Nowadays film users have adopted digital technology and scan their film to take advantage from digital processing afterwards. Therefore, it is legitimate to evaluate silver halide film "with a digital eye", with the assumption that processing can be applied as for a digital camera. The article will describe in details the operations we need to consider the film as a RAW digital sensor. In particular, we have to account for the film characteristic curve, the autocorrelation of the noise (related to film grain) and the sampling of the digital sensor (related to Bayer filter array). We also describe the protocol that was set, from shooting to scanning. We then present and interpret the results of sensor response, signal to noise ratio and dynamic range.

  3. Linear chrono-amperometry using re-dissolution: application to halides

    International Nuclear Information System (INIS)

    Perchard, J.-P.; Buvet, M.; Molina, R.


    The possibility of applying linear chrono-amperometry to analysis was studied using a falling-drop mercury electrode. Measurements of the cations were carried out by direct reduction or by prior formation of an amalgam, which is then oxidized. Using the first technique, the minimum concentration that can be attained is about 10 -6 M and the reproducibility of the results is of the order of 2%. With the second method the sensitivity is much improved: in the concentration range of 10 -7 to 10 -8 M, the scatter of the results is less than 10% if the agitation and temperature conditions are kept constant. The halides are determined by re-dissolving the mercurous halide deposit formed by electrolysis. From the analytical point of view, the sensitivity is limited in the domain where the phenomena can be interpreted and used. In the case of the chloride ion the lower limit of this zone is close to 10 -5 M; it is 10 -6 M for the bromide and less than 10 -7 M for the iodide. For lower concentrations, simple laws that might be applied in analysis are no longer valid. However, the splitting of the peak observed during the reduction of the mercurous iodide deposit was interpreted as showing that the mono-molecular Hg 2 I 2 layer formed on the drop has particular electrochemical properties. (authors) [fr

  4. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications (United States)

    Manser, Joseph S.

    The burgeoning class of metal halide perovskites constitutes a paradigm shift in the study and application of solution-processed semiconductors. Advancements in thin film processing and our understanding of the underlying structural, photophysical, and electronic properties of these materials over the past five years have led to development of perovskite solar cells with power conversion efficiencies that rival much more mature first and second-generation commercial technologies. It seems only a matter of time before the real-world impact of these compounds is put to the test. Like oxide perovskites, metal halide perovskites have ABX3 stoichiometry, where typically A is a monovalent cation, B a bivalent post-transition metal, and X a halide anion. Characterizing the behavior of photogenerated charges in metal halide perovskites is integral for understanding the operating principles and fundamental limitations of perovskite optoelectronics. The majority of studies outlined in this dissertation involve fundamental study of the prototypical organic-inorganic compound methylammonium lead iodide (CH3NH3PbI 3). Time-resolved pump-probe spectroscopy serves as a principle tool in these investigations. Excitation of a semiconductor can lead to formation of a number different excited state species and electronic complexes. Through analysis of excited state decay kinetics and optical nonlinearities in perovskite thin films, we identify spontaneous formation of a large fraction of free electrons and holes, whose presence is requisite for efficient photovoltaic operation. Following photogeneration of charge carriers in a semiconductor absorber, these species must travel large distances across the thickness of the material to realize large external quantum efficiencies and efficient carrier extraction. Using a powerful technique known as transient absorption microscopy, we directly image long-range carrier diffusion in a CH3NH3PbI 3 thin film. Charges are unambiguously shown to

  5. γ-Aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings. (United States)

    Ma, Xiaoling; Zhu, Changhua; Yang, Na; Gan, Lijun; Xia, Kai


    Excessive use of nitrogen (N) fertilizer has increased ammonium (NH 4 + ) accumulation in many paddy soils to levels that reduce rice vegetative biomass and yield. Based on studies of NH 4 + toxicity in rice (Oryza sativa, Nanjing 44) seedlings cultured in agar medium, we found that NH 4 + concentrations above 0.75 mM inhibited the growth of rice and caused NH 4 + accumulation in both shoots and roots. Use of excessive NH 4 + also induced rhizosphere acidification and inhibited the absorption of K, Ca, Mg, Fe and Zn in rice seedlings. Under excessive NH 4 + conditions, exogenous γ-aminobutyric acid (GABA) treatment limited NH 4 + accumulation in rice seedlings, reduced NH 4 + toxicity symptoms and promoted plant growth. GABA addition also reduced rhizosphere acidification and alleviated the inhibition of Ca, Mg, Fe and Zn absorption caused by excessive NH 4 + . Furthermore, we found that the activity of glutamine synthetase/NADH-glutamate synthase (GS; EC; EC1.4.1.14) in root increased gradually as the NH 4 + concentration increased. However, when the concentration of NH 4 + is more than 3 mM, GABA treatment inhibited NH 4 + -induced increases in GS/NADH-GOGAT activity. The inhibition of ammonium assimilation may restore the elongation of seminal rice roots repressed by high NH 4 + . These results suggest that mitigation of ammonium accumulation and assimilation is essential for GABA-dependent alleviation of ammonium toxicity in rice seedlings. © 2016 Scandinavian Plant Physiology Society.

  6. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor

    International Nuclear Information System (INIS)

    Yang Zhiquan; Zhou Shaoqi; Sun Yanbo


    A laboratory testing of simultaneous removal of ammonium and sulfate (SRAS) was studied from an anammox process in an anaerobic bioreactor filled with granular activated carbon. Two different phases of experiment were investigated to start up the SRAS process, and final batch tests were performed to analyze the SRAS process. The experiment included an anammox process and an SRAS process. During the anammox process, the highest removal efficiency of ammonium and nitrite was up to 97 and 98%, respectively. After 160 days in the stationary phase of anammox process, the ratio of ammonium to nitrite consumption was approximately 1:1.15, which is much higher than 1:1.32 in the traditional anammox process. The extra electron acceptor, such as sulfate, was thought to react with ammonium by bacteria. Synthetic wastewater containing ammonium chlorine and sodium sulfate was used as the feed for the bioreactor in the second phase of experiment. During the SRAS process, the influent concentrations of ammonium and sulfate were controlled to be 50-60 and 210-240 mg L -1 respectively. After start-up and acclimatization of this process for 60 days, the average effluent concentrations of ammonium and sulfate were 30 and 160 mg L -1 , respectively. The simultaneous ammonium and sulfate removal was detected in the reactor. In order to further validate the biochemical interaction between ammonium and sulfate, batch tests was carried out. Abiotic tests were carried out to demonstrate that the pure chemical action between ammonium and sulfate without microorganism was not possible. Biotic assays with different ammonium and sulfate concentrations were further investigated that high concentrations of ammonium and sulfate could promote simultaneous removal of ammonium and sulfate. And elemental sulfur and nitrogen gas as the products measured in the SRAS process helped to demonstrate the occurrence of new interaction between nitrogen and sulfur. The new process of SRAS in the inorganic

  7. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor. (United States)

    Yang, Zhiquan; Zhou, Shaoqi; Sun, Yanbo


    A laboratory testing of simultaneous removal of ammonium and sulfate (SRAS) was studied from an anammox process in an anaerobic bioreactor filled with granular activated carbon. Two different phases of experiment were investigated to start up the SRAS process, and final batch tests were performed to analyze the SRAS process. The experiment included an anammox process and an SRAS process. During the anammox process, the highest removal efficiency of ammonium and nitrite was up to 97 and 98%, respectively. After 160 days in the stationary phase of anammox process, the ratio of ammonium to nitrite consumption was approximately 1:1.15, which is much higher than 1:1.32 in the traditional anammox process. The extra electron acceptor, such as sulfate, was thought to react with ammonium by bacteria. Synthetic wastewater containing ammonium chlorine and sodium sulfate was used as the feed for the bioreactor in the second phase of experiment. During the SRAS process, the influent concentrations of ammonium and sulfate were controlled to be 50-60 and 210-240 mg L(-1) respectively. After start-up and acclimatization of this process for 60 days, the average effluent concentrations of ammonium and sulfate were 30 and 160 mg L(-1), respectively. The simultaneous ammonium and sulfate removal was detected in the reactor. In order to further validate the biochemical interaction between ammonium and sulfate, batch tests was carried out. Abiotic tests were carried out to demonstrate that the pure chemical action between ammonium and sulfate without microorganism was not possible. Biotic assays with different ammonium and sulfate concentrations were further investigated that high concentrations of ammonium and sulfate could promote simultaneous removal of ammonium and sulfate. And elemental sulfur and nitrogen gas as the products measured in the SRAS process helped to demonstrate the occurrence of new interaction between nitrogen and sulfur. The new process of SRAS in the inorganic

  8. Variable Charge and Electrical Double Layer of Mineral-Water Interfaces: Silver Halides versus Metal (Hydr)Oxides

    NARCIS (Netherlands)

    Hiemstra, T.


    Classically, silver (Ag) halides have been used to understand thermodynamic principles of the charging process and the corresponding development of the electrical double layer (EDL). A mechanistic approach to the processes on the molecular level has not yet been carried out using advanced surface

  9. Photoluminescence properties of Er-doped Ge–In(Ga)–S glasses modified by caesium halides

    Czech Academy of Sciences Publication Activity Database

    Ivanova, Z.G.; Zavadil, Jiří; Kostka, P.; Djouama, T.; Reinfelde, M.


    Roč. 254, č. 6 (2017), č. článku 1600662. ISSN 0370-1972 Institutional support: RVO:67985882 Keywords : caesium halides * chalcohalide glass es * erbium doping * transmission spectroscopy * photoluminiscence Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 1.674, year: 2016

  10. Photoluminescence properties of Er-doped Ge–In(Ga)–S glasses modified by caesium halides

    Czech Academy of Sciences Publication Activity Database

    Ivanova, Z.G.; Zavadil, Jiří; Kostka, P.; Djouama, T.; Reinfelde, M.


    Roč. 254, č. 6 (2017), č. článku 1600662. ISSN 0370-1972 Institutional support: RVO:67985882 Keywords : caesium halides * chalcohalide glasses * erbium doping * transmission spectroscopy * photoluminiscence Subject RIV: JH - Ceramics , Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 1.674, year: 2016

  11. Photoluminescence properties of Er-doped Ge–In(Ga)–S glasses modified by caesium halides

    Czech Academy of Sciences Publication Activity Database

    Ivanova, Z.G.; Zavadil, Jiří; Kostka, Petr; Djouama, T.; Reinfelde, M.


    Roč. 254, č. 6 (2017), č. článku 1600662. ISSN 0370-1972 Institutional support: RVO:67985891 Keywords : caesium halides * chalcohalide glasses * erbium doping * transmission spectroscopy * photoluminiscence Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 1.674, year: 2016

  12. Analisa Teknis Pemakaian Kombinasi Lampu Metal Halide Dan Led Sebagai Pemikat Ikan Pada Kapal Pukat Cincin (Purse Seine Dan Pengaruhnya Terhadap Konsumsi Bahan Bakar Genset

    Directory of Open Access Journals (Sweden)

    Septian Ragil Wibisono


    Full Text Available Saat ini lampu Metal Halide dipakai sebagai pemikat ikan  oleh nelayan Purse Seine. Peggunaan lampu tersebut memerlukan daya Genset yang besar karena satu lampu Metal Halide berdaya 1500 Watt. Semakin banyak lampu Metal Halide yang digunakan semakin besar pula konsumsi bahan bakar Genset. Dalam upaya penghematan energi bahan bakar maka digunakan lampu LED sebagai alternatif pemikat ikan. Lampu LED dikenal sebagai lampu yang hemat energi. Penelitian ini ditujukan untuk mengetahui dan membandingkan konsumsi bahan bakar Genset saat menggunakan kombinasi lampu Metal Halide dan LED. Penelitian ini dilakukan dengan mengambil data konsumsi bahan bakar Genset untuk menyalakan sejumlah lampu Metal Halide dan lampu LED, kemudian dilakukan analisa regresi untuk mendapatkan model persaamaan konsumsi bahan bakar Genset. Selanjutnya dilakukan ekstrapolasi untuk memprediksi konsumsi bahan bakar saat Genset dengan jumlah lampu tertentu. Hasilnya dengan besar fluks cahaya yang hampir sama, saat penggunaan 6 lampu Metal Halide konsumsi bahan bakar sebesar 13.606,03 liter, dan saat menggunakan kombinasi lampu 1 Metal Halide dan 25 lampu LED konsumsi bahan bakar sebesar 13.255,63 liter, yang artinya terjadi penghematan bahan bakar sebesar 2,58%.

  13. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mouser, P.J.; N' Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.


    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

  14. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures. (United States)

    Lee, Myung Churl; Choi, Wonyong


    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas.


    Directory of Open Access Journals (Sweden)

    Nahidh Kaseer


    Full Text Available 31Overall crystal growth kinetics for ammonium perchlorate in laboratory scale batch  agitated vessel crystallizer have been determined from batch experiments performed in an integral mode. The effects of temperature between 30-60ºC, seed size 0.07, 0.120 and 0.275 mm and stirrer speed 160, 340, and 480 rpm, on the kinetics of crystal growth were investigated. Two different methods, viz. polynomial fitting and initial derivative were used to predict the kinetics expression. In general both methods gave comparable results for growth kinetics estimation. The order of growth process is not more than two. The activation energy for crystal growth of ammonium perchlorate was determined and found  to be equal to 5.8 kJ/ mole.            Finally, the influence of the affecting parameters on the crystal growth rate gives general expression that had an obvious dependence of the growth rate on each variables of concern (temperature, seed size, and stirrer speed .The general overall growth rate expression had shown that super saturation is the most significant variable. While the positive dependence of the stirrer speed demonstrates the importance of the diffusional step in the growth rate model. Moreover, the positive dependence of the seed size demonstrate the importance of the surface integration  step in the growth rate model. All the studied variables tend to suggest that the growth rate characteristics  of ammonium perchlorate from aqueous solution commenced in a batch crystallizer are diffusion kinetic controlled process.

  16. Regeneration of clinoptilolite zeolite used for the ammonium removal

    International Nuclear Information System (INIS)

    Garcia G, M.C.


    The use of zeolites has been increased in the last years with different applications and with a great boom in the environmental area, but a little had been make about the regeneration of such zeolites. The presence of nitrogen-ammonia in water may cause serious pollution problems since it results to be toxic for fishes and other aquatic life forms, also it provokes the algae growing. The natural clinoptilolite contains interchangeable ions such as the sodium (Na + ), potassium (K + ), magnesium (Mg 2+ ) and calcium (Ca 2+ ) in different proportions depending on the mineral origin When the zeolite is upgraded to its sodium form, the cation exchange capacity and the preference by the nitrogen-ammonia are increased, allowing the reversible process of sorption. In this work it was proposed the regeneration to its sodium form about the ammonia clinoptilolite zeolite. The natural mineral was characterized using the methods such as: X-ray diffraction, Infrared spectroscopy, Thermal gravimetric analysis and surface area. The results show that the ammonium sorption was between 95% and 98.7% such an ambient temperature as a flow back. the zeolite was regenerated approximately from 60% in the first cycle up to 97% in the last cycle at flow back temperature and of 59.2% up to 96.9% at ambient temperature, it was not presented any significant effect which could be attributed to the temperature. During the exchange process, the cations present in the natural zeolite were exchanged with the ammonium ions, this process was not completed due to that retained ammonium quantity was major that of the desorpted ions, what shows that in addition of ion exchange, another type of sorption process exists. (Author)

  17. Antimicrobial Polyethylene through Melt Compounding with Quaternary Ammonium Salts

    Directory of Open Access Journals (Sweden)

    Fernanda F. Rossetti


    Full Text Available Selected mono- and bicationic quats were compounded with polyethylene. The physicochemical surface properties, leaching behavior, and antibacterial activity of such modified samples were investigated. Contact angle measurements and fluorescein binding assays showed the presence of quaternary ammonium groups at the surface. After storing the samples in 50°C warm water for 30 days, several were still antimicrobially active. No correlation between the number of exposed N+ head groups after leaching and the antibacterial activity was observed. There is however a qualitative correlation of the antibacterial activity with the contact angles and surface concentrations of N+ before leaching/storing in warm water.

  18. Chemistry of rare earth solvent extraction by methyltrialkyl ammonium nitrate

    International Nuclear Information System (INIS)

    Stepanov, S.I.; Tulina, L.V.; Stratonov, A.V.


    Solvent extaction of nitrates of lanthanum, gadolinium, dysprosium and erbium by methyltrialkyl ammonium nitrate is studied. Usng the methods of saturation and physicochemical analysis of extraction systems it is shown that along with di-and trisolvates, solvates containing 6,4,21/2 and 11/2 molecules of extractant per a molecule of lanthanide nitrate, are formed, depending on the lanthanide atomic number. The thermodynamic constants of extraction for every determined solvate are calculated and tabulated. 10 refs.; 2 figs.; 1 tab

  19. Ammonium Bifluoride Poisoning: Our Eight-year Experiences


    Serkan Özsoylu; Başak Akyıldız; Adem Dursun


    Introduction: The aim of the study was to discuss clinical effects, treatment options and outcomes of pediatric ammonium bifluoride (ABF) poisoning. Methods: This study was designed as retrospective case series. We analyzed the medical records of children who were hospitalized for ABF poisoning between January 2009 and October 2017. Results: The median calcium level on arrival to the hospital was 9.26 mg/dL (minimum-maximum: 4.6-10.9). The median calcium level 2 hours after arrival was ...

  20. Bifunctional ammonium compounds as promising extragents of metals

    International Nuclear Information System (INIS)

    Rakhman'ko, E.M.; Polishchuk, S.V.; Tsvirko, G.A.; Starobinets, G.L.; Leshchev, S.M.


    Salts of dinonyl-aminoethyl-β-trinonylammonium (DNAE-β-TNA) and methylpentadecylethylenediammonium (MPDEDA) have been synthesized and studied as extractions. Extraction of CdBr 2 and CdI 2 by MPDEDA picrate in toluene and their binary mixture with chloroform, amyl-acetate and octane is investigated. It is shown that Cd is extracted by quaternary ammonium salt in the form of complex anion CdX 4 2- , where X-Br, I. The mechanism and extraction process kinetics are described. Molecular structure of the complexes formed is presented. 2 refs.; 2 figs.; 2 tabs

  1. Subsurface ammonium maxima in northern Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Satyanarayana, D.; Sahu, S.D.; Panigrahy, P.K.; Sarma, V.V.; Suguna, C.

    in the Arabian sea. Deep-sea Res., 29A, 459-69. Okuda, T., Ruiz, J. B. & Garcia, A. J. (1974). Algunas characteristics bioquimicas en el agua de la Fosa de Cariaco. Boletin del Institute Oceanografico de la Universidad de oriente, 13, 163-74. Olson, R. J... in the euphotic zone may be due to the combined effects of particle sinking, uptake by phytoplankton and regeneration by zooplankton. Even though ammonium is the preferred nitrogen source for uptake by phytoplankton (McCarthy et aL, 1977; Eppley el al., 1979...

  2. The Properties of Ammonium Dinitramine (ADN): Part 2: Melt Casting (United States)

    Hahma, A.; Edvinsson, H.; Östmark, H.


    A melt casting technique for ammonium dinitramine (ADN) and ADN/aluminum was developed. ADN proved relatively easy to cast, when 1% of magnesium oxide was used as a stabilizer and crystallization kernels. Densities of ADN/MgO 99/1 were 92 to 97% of theoretical mean density (TMD) and those of ADN/Al/MgO 64/35/1 were between 95 and 99% of TMD. Sedimentation of Al in the melt was prevented and the particle wetting was ensured by selecting a suitable particle size for Al. No gelling agents or other additives were used. The casting process and factors influencing it are discussed.

  3. A study on chlorination of uranium metal using ammonium chloride

    International Nuclear Information System (INIS)

    Eun, H.C.; Kim, T.J.; Jang, J.H.; Kim, G.Y.; Lee, S.J.; Hur, J.M.


    In this study, the chlorination of uranium metal using ammonium chloride (NH 4 Cl) was conducted to derive an easy and simple uranium chloride production method without impurities. In thermodynamic equilibrium calculations, it was predicted that only uranium chlorides can be produced by the reactions between uranium metal and NH 4 Cl. Experimental conditions for the chlorination of uranium metal were determined using a chlorination test of cerium metal using NH 4 Cl. It was confirmed that UCl 3 and UCl 4 in the form of particles as uranium chlorination products can be obtained from the chlorination method using NH 4 Cl. (author)

  4. Rosin (colophony) holograms sensitized with ammonium dichromate ® (United States)

    Olivares-Pérez, A.; Ibarra-Torres, J. C.; Ortiz-Gutiérrez, M.; Pérez-Cortés, M.; Fuentes-Tapia, I.


    We report a photosensitive emulsion by mixing ammonium dichromate with rosin resin diluted in isopropyl alcohol. This material can be easily elaborated. A phase grating in this material was recorded using an argon-ion laser at λ = 457 nm, shows a moderate diffraction efficiency. This material is capable of a high resolution when we record some diffraction gratings, observing the order of 2000 l/mm (grooves). A characteristic of the developed process is its simplicity that it takes approximately 25 s. It describes a hypothesis with respect to some mechanisms of photosensitivity in emulsions.

  5. Molecular recognition of organic ammonium ions in solution using synthetic receptors

    Directory of Open Access Journals (Sweden)

    Andreas Späth


    Full Text Available Ammonium ions are ubiquitous in chemistry and molecular biology. Considerable efforts have been undertaken to develop synthetic receptors for their selective molecular recognition. The type of host compounds for organic ammonium ion binding span a wide range from crown ethers to calixarenes to metal complexes. Typical intermolecular interactions are hydrogen bonds, electrostatic and cation–π interactions, hydrophobic interactions or reversible covalent bond formation. In this review we discuss the different classes of synthetic receptors for organic ammonium ion recognition and illustrate the scope and limitations of each class with selected examples from the recent literature. The molecular recognition of ammonium ions in amino acids is included and the enantioselective binding of chiral ammonium ions by synthetic receptors is also covered. In our conclusion we compare the strengths and weaknesses of the different types of ammonium ion receptors which may help to select the best approach for specific applications.

  6. Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells. (United States)

    Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N; Tinkham, Jonathan S; Noel, Nakita K; Kamino, Brett A; Sadoughi, Golnaz; Sellinger, Alan; Snaith, Henry J


    Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance.

  7. Ground-state properties and optical excitations of a solvated electron in molten alkali halides

    International Nuclear Information System (INIS)

    Roman, E.; Senatore, G.; Tosi, M.P.; Trieste Univ.


    Properties of solvated electrons at high dilution in four molten alkali halides are investigated theoretically. A self-consistent evaluation of the bound ground state of the electron and of the surrounding liquid structure, already developed in a previous paper, is compared with the results of NMR hyperfine shifts and magnetic susceptibility measurements. The absorption bands associated with Franck-Condon 1s→2p and 1s→3p transitions are calculated and compared with the available data of optical absorption, with special emphasis on the detailed analysis by Yuh and Nachtrieb for molten CsCl. An instability of the excited states against ionic relaxation and the origin of a finite lifetime for the ground state are also discussed. Finally, the perturbation induced by the solvated electron in the fundamental absorption of the molten salt is estimated. (author)

  8. Tailoring the oxidation state of cobalt through halide functionality in sol-gel silica (United States)

    Olguin, Gianni; Yacou, Christelle; Smart, Simon; Diniz da Costa, João C.


    The functionality or oxidation state of cobalt within a silica matrix can be tailored through the use of cationic surfactants and their halide counter ions during the sol-gel synthesis. Simply by adding surfactant we could significantly increase the amount of cobalt existing as Co3O4 within the silica from 44% to 77%, without varying the cobalt precursor concentration. However, once the surfactant to cobalt ratio exceeded 1, further addition resulted in an inhibitory mechanism whereby the altered pyrolysis of the surfactant decreased Co3O4 production. These findings have significant implications for the production of cobalt/silica composites where maximizing the functional Co3O4 phase remains the goal for a broad range of catalytic, sensing and materials applications. PMID:24022785

  9. Far IR spectra of Th(IV) halide complexes of some heterocyclic bases

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Agarwal, R.K.; Srivastava, M.; Kapoor, V.; Srivastava, T.N.


    The synthesis and IR spectra of Th(IV) perchlorato, nitrato and thiocyanato complexes of some heterocyclic bases have been reported. Halogens are common ligands in coordination chemistry forming coordinate bonds with metals readily. Metal halogen (M-X) stretching bands show a strong absorption in the far-IR region. Very little information is available on Th-X stretching frequencies. In the present communication, adducts of Th(IV) halide with certain nitrogen heterocyclic bases such as pyridine, α-picoline, 2-amino pyridine, 2:4-lutidine, 2:6-lutidine, quinoline, 2,2'-bipyridine and 1,10-phenanthroline were synthesised and characterised. Experimental details are given. Results are presented and discussed. (author)

  10. Radiative properties of ceramic metal-halide high intensity discharge lamps containing additives in argon plasma (United States)

    Cressault, Yann; Teulet, Philippe; Zissis, Georges


    The lighting represents a consumption of about 19% of the world electricity production. We are thus searching new effective and environment-friendlier light sources. The ceramic metal-halide high intensity lamps (C-MHL) are one of the options for illuminating very high area. The new C-MHL lamps contain additives species that reduce mercury inside and lead to a richer spectrum in specific spectral intervals, a better colour temperature or colour rendering index. This work is particularly focused on the power radiated by these lamps, estimated using the net emission coefficient, and depending on several additives (calcium, sodium, tungsten, dysprosium, and thallium or strontium iodides). The results show the strong influence of the additives on the power radiated despite of their small quantity in the mixtures and the increase of visible radiation portion in presence of dysprosium.

  11. Rashba and Dresselhaus Couplings in Halide Perovskites: Accomplishments and Opportunities for Spintronics and Spin-Orbitronics. (United States)

    Kepenekian, Mikaël; Even, Jacky


    In halide hybrid organic-inorganic perovskites (HOPs), spin-orbit coupling (SOC) presents a well-documented large influence on band structure. However, SOC may also present more exotic effects, such as Rashba and Dresselhaus couplings. In this Perspective, we start by recalling the main features of this effect and what makes HOP materials ideal candidates for the generation and tuning of spin-states. Then, we detail the main spectroscopy techniques able to characterize these effects and their application to HOPs. Finally, we discuss potential applications in spintronics and in spin-orbitronics in those nonmagnetic systems, which would complete the skill set of HOPs and perpetuate their ride on the crest of the wave of popularity started with optoelectronics and photovoltaics.

  12. Research progress on organic-inorganic halide perovskite materials and solar cells (United States)

    Ono, Luis K.; Qi, Yabing


    Owing to the intensive research efforts across the world since 2009, perovskite solar cell power conversion efficiencies (PCEs) are now comparable or even better than several other photovoltaic (PV) technologies. In this topical review article, we review recent progress in the field of organic-inorganic halide perovskite materials and solar cells. We associate these achievements with the fundamental knowledge gained in the perovskite research. The major recent advances in the fundamental perovskite material and solar cell research are highlighted, including the current efforts in visualizing the dynamical processes (in operando) taking place within a perovskite solar cell under operating conditions. We also discuss the existing technological challenges. Based on a survey of recently published works, we point out that to move the perovskite PV technology forward towards the next step of commercialization, what perovskite PV technology need the most in the coming next few years is not only further PCE enhancements, but also up-scaling, stability, and lead-toxicity.

  13. Measurements of spin-lattice relaxation time in mixed alkali halide crystals

    International Nuclear Information System (INIS)

    Tannus, A.


    Using magneto-optic techniques the ground state spin-lattice relaxation times (T1) of 'F' centers in mixed Alkali Halide cristals (KCl-KBr), was studied. A computer assisted system to optically measure short relaxation times (approx. = 1mS), was described. The technique is based on the measurement of the Magnetic Circular Dicroism (MCD) presented by F centers. The T1 magnetic field dependency at 2 K (up to 65 KGauss), was obtained as well as the MCD spectra for different relative concentration at the mixed matrices. The theory developed by Panepucci and Mollenauer for F centers spin-lattice relaxation in pure matrices was modified to explain the behaviour of T1 in mixed cristals. The Direct Process results (T approx. = 2.0 K) compared against that theory shows that the main relaxation mecanism, up to 25 KGauss, continues to be phonon modulation of the hiperfine iteraction between F electrons and surrounding nuclei. (Author) [pt

  14. Lattice dynamics and the nature of structural transitions in organolead halide perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Comin, Riccardo; Crawford, Michael K.; Said, Ayman H.; Herron, Norman; Guise, William E.; Wang, Xiaoping; Whitfield, Pamela S.; Jain, Ankit; Gong, Xiwen; McGaughey, Alan J. H.; Sargent, Edward H.


    Organolead halide perovskites are a family of hybrid organic-inorganic compounds whose remarkable optoelectronic properties have been under intensive scrutiny in recent years. Here we use inelastic x-ray scattering to study low-energy lattice excitations in single crystals of methylammonium lead iodide and bromide perovskites. Our findings confirm the displacive nature of the cubic-to-tetragonal phase transition, which is further shown, using neutron and x-ray diffraction, to be close to a tricritical point. Lastly, we detect quasistatic symmetry-breaking nanodomains persisting well into the high-temperature cubic phase, possibly stabilized by local defects. These findings reveal key structural properties of these materials, and also bear important implications for carrier dynamics across an extended temperature range relevant for photovoltaic applications.

  15. Three- and Two-Dimensional Tin and Lead Halide Perovskite Semiconductors: Synthesis and Application in Photovoltaics (United States)

    Cao, Duyen Hanh

    Halide perovskites, AMX3 (A = monocation, B = Ge, Sn, or Pb, and X = halogen), present a versatile class of solution-processable semiconductors made from earth abundant materials with outstanding electrical and optical properties. Their solar cell efficiencies have dramatically increased from 9% to 22% in less than five years since 2012, a rate that has never been seen before in photovoltaic research. Critical to the final goal of commercializing perovskite solar cell technology is achieving device long-term stability and eliminating toxic elements in device components. This thesis uses 3D AMX 3 perovskites as a stand-in to develop a new class of lead-free, moisture stable, functional and highly tunable 2D Ruddlesden-Popper (BA) 2(MA)n-1SnnI3n+1 (n is an integer) perovskite semiconductors. Synthesis, thin film fabrication, extensive characterization, and solar cell device structure-performance relationships are presented throughout the entire thesis.

  16. Tunable Crystal-to-Crystal Phase Transition in a Cadmium Halide Chain Polymer

    Directory of Open Access Journals (Sweden)

    Ulli Englert


    Full Text Available The chain polymer [{Cd(μ-X2py2}1∞] (X = Cl, Br; py = pyridine undergoes a fully reversible phase transition between a monoclinic low-temperature and an orthorhombic high-temperature phase. The transformation can be directly monitored in single crystals and can be confirmed for the bulk by powder diffraction. The transition temperature can be adjusted by tuning the composition of the mixed-halide phase: Transition temperatures between 175 K up to the decomposition of the material at ca. 350 K are accessible. Elemental analysis, ion chromatography and site occupancy refinements from single-crystal X-ray diffraction agree with respect to the stoichiometric composition of the samples.

  17. Polarization Switching and Light-Enhanced Piezoelectricity in Lead Halide Perovskites. (United States)

    Coll, Mariona; Gomez, Andrés; Mas-Marza, Elena; Almora, Osbel; Garcia-Belmonte, Germà; Campoy-Quiles, Mariano; Bisquert, Juan


    We investigate the ferroelectric properties of photovoltaic methylammonium lead halide CH3NH3PbI3 perovskite using piezoelectric force microscopy (PFM) and macroscopic polarization methods. The electric polarization is clearly observed by amplitude and phase hysteresis loops. However, the polarization loop decreases as the frequency is lowered, persisting for a short time only, in the one second regime, indicating that CH3NH3PbI3 does not exhibit permanent polarization at room temperature. This result is confirmed by macroscopic polarization measurement based on a standard capacitive method. We have observed a strong increase of piezoelectric response under illumination, consistent with the previously reported giant photoinduced dielectric constant at low frequencies. We speculate that an intrinsic charge transfer photoinduced dipole in the perovskite cage may lie at the origin of this effect.

  18. Comparison of boron halide, decaborane and B implants in Si from Molecular Dynamics simulations

    International Nuclear Information System (INIS)

    Webb, R.P.; Winston, S.H.; Gwilliam, R.M.; Sealy, B.J.; Boudreault, G.; Jeynes, C.; Kirkby, K.J.


    Ultra shallow junctions (depths 2 + , have been used to transport low velocity boron at higher energies, enabling the use of conventional implanters in the production of shallow junctions. However, with ever shrinking scales the energies required even for BF 2 are becoming too low. The investigation here is to look at the alternative heavier halides and decaborane as possible alternatives to allow continued use of conventional ion implanters. We use a molecular dynamics simulation to see if we can find any evidence of non-linear behaviour from the use of such molecular species for implantation, thereby making the modelling and simulation of such implants more complex than more conventional implantation. The simulation results presented suggest that there is no evidence of non-linear behaviour and all the standard parameters of implantation - ion ranges and displacements of silicon atoms - change in a well predicted manner

  19. Shape-controlled synthesis of organolead halide perovskite nanocrystals and their tunable optical absorption

    International Nuclear Information System (INIS)

    Chen, Zhenhua; Tang, Yongbing; Huang, Xing; Lee, Chun-Sing; Li, Hui; Ho, Derek


    Hybrid organolead halide perovskites (CH 3 NH 3 PbI 3 ) with polymorphic structures have been successfully synthesized by controlling their solubility in solvents with different polarities. Crystal formation stages of the perovskites have been demonstrated for the first time. Shape changes of such perovskites are accompanied by transition in their crystal structures and variation of optical properties. Herein, a new trigonal phase for CH 3 NH 3 PbI 3 has been observed with a rod-like morphology. Photoemission study indicates a significant red shift in the perovskite nanoparticles, compared to that of the rod-like nanocrystals. This solvent-controlled formation of polymorphic phases provide an additional approach for controlling the optical properties of CH 3 NH 3 PbI 3 for various optoelectronic applications. (papers)

  20. The Role of Surface Tension in the Crystallization of Metal Halide Perovskites

    KAUST Repository

    Zhumekenov, Ayan A.


    The exciting intrinsic properties discovered in single crystals of metal halide perovskites still await their translation into optoelectronic devices. The poor understanding and control of the crystallization process of these materials are current bottlenecks retarding the shift towards single crystal-based optoelectronics. Here we theoretically and experimentally elucidate the role of surface tension in the rapid synthesis of perovskite single crystals by inverse temperature crystallization (ITC). Understanding the nucleation and growth mechanisms enabled us to exploit surface tension to direct the growth of monocrystalline films of perovskites (AMX3, where A = CH3NH3+ or MA; M = Pb2+, Sn2+; X = Br-, I-) on the solution surface. We achieve up to 1 cm2-sized monocrystalline films with thickness on the order of the charge carrier diffusion length (~5-10 µm). Our work paves the way to control the crystallization process of perovskites, including thin film deposition, which is essential to advance the performance benchmarks of perovskite optoelectronics.

  1. Concentration Effects of Silver Ions on Ionic Conductivities of Molten Silver Halides

    Directory of Open Access Journals (Sweden)

    Okada T.


    Full Text Available Ionic conductivities of molten (RbXc(AgX1-c (X = Cl and I mixtures were measured to clarify the concentration effects of silver ions on ionic conductivities of molten silver halides. It is found that the addition of RbX to molten AgX rapidly reduces the ionic conductivity with 0 ≤ c ≤ 0.4. It suggests that strong Ag-Ag correlation is necessary to fast conduction of Ag ions in molten state. The absolute values of ionic conductivity for (RbClc(AgCl1-c are larger than those for (RbIc(AgI1-c mixtures at all compositions. These differences might relate to difference of diffusion constant between Cl- and I- and difference of effective charge carried by an ion between molten AgCl and AgI

  2. Energy and geometry of boron compounds. Halides BHHal2, BHal3 and their disproportionation

    International Nuclear Information System (INIS)

    Ionov, S.P.; Kuznetsov, N.T.


    Analysis of structural and thermodynamic parameters of boron halogen derivatives was conducted on the basis of structural-thermochemical (ST) model. Equilibrium interatomic B-H distances were specified for gaseous BHF 2 , BHCl 2 and BHBr 2 molecules. They were equal to 1.199±0.002, 1.175±0.003 and 1.79±0.01 A respectively. Formation heat was determined for BHI 2 : Δ f H 298 (BHI 2 (hg) = 72±5 kJ/mol. Qualitative analysis of thermodynamics of reactions of boron halide disproportionation was performed in the framework of ST-model: BHal 3 + 4BHal 3 . It was shown that halogen atoms weakened B-H-H bridges, halogens formed weak bridges in intermediate nonstable dimers

  3. Degradation of Highly Alloyed Metal Halide Perovskite Precursor Inks: Mechanism and Storage Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Benjia [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wheeler, Lance M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christians, Jeffrey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moore, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Harvey, Steven P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Joseph J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Barnes, Frank S. [University of Colorado; Shaheen, Sean E. [University of Colorado


    Whereas the promise of metal halide perovskite (MHP) photovoltaics (PV) is that they can combine high efficiency with solution-processability, the chemistry occurring in precursor inks is largely unexplored. Herein, we investigate the degradation of MHP solutions based on the most widely used solvents, dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). For the MHP inks studied, which contain formamidinium (FA+), methylammonium (MA+), cesium (Cs+), lead (Pb2+), bromide (Br-), and iodide (I-), dramatic compositional changes are observed following storage of the inks in nitrogen in the dark. We show that hydrolysis of DMF in the precursor solution forms dimethylammonium formate, which subsequently incorporates into the MHP film to compromise the ability of Cs+ and MA+ to stabilize FA+-based MHP. The changes in solution chemistry lead to a modification of the perovskite film stoichiometry, band gap, and structure. The solid precursor salts are stable when ball-milled into a powder, allowing for the storage of large quantities of stoichiometric precursor materials.

  4. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films

    KAUST Repository

    Wu, Kewei


    Organometal halide perovskites have recently attracted tremendous attention due to their potential for photovoltaic applications, and they are also considered as promising materials in light emitting and lasing devices. In this work, we investigated in detail the cryogenic steady state photoluminescence properties of a prototypical hybrid perovskite CH3NH3PbI3-xClx. The evolution of the characteristics of two excitonic peaks coincides with the structural phase transition around 160 K. Our results further revealed an exciton binding energy of 62.3 ± 8.9 meV and an optical phonon energy of 25.3 ± 5.2 meV, along with an abnormal blue-shift of the band gap in the high-temperature tetragonal phase. This journal is

  5. Tailoring Mixed-Halide, Wide-Gap Perovskites via Multistep Conversion Process

    DEFF Research Database (Denmark)

    Bae, Dowon; Palmstrom, Axel; Roelofs, Katherine


    Wide-band-gap mixed-halide CH3NH3PbI3–XBrX-based solar cells have been prepared by means of a sequential spin-coating process. The spin-rate for PbI2 as well as its repetitive deposition are important in determining the cross-sectional shape and surface morphology of perovskite, and, consequently......, J–V performance. A perovskite solar cell converted from PbI2 with a dense bottom layer and porous top layer achieved higher device performance than those of analogue cells with a dense PbI2 top layer. This work demonstrates a facile way to control PbI2 film configuration and morphology simply...

  6. Fabrication and characterization of rubidium/formamidinium-incorporated methylammonium-lead-halide perovskite solar cells (United States)

    Kato, Masataka; Suzuki, Atsushi; Ohishi, Yuya; Tanaka, Hiroki; Oku, Takeo


    Fabrication and characterization of perovskite solar cells using mesoporous TiO2 as an electron transporting layer and 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene as a hole-transporting layer were performed for improving the photovoltaic performance. Additive effects of formamidinium (FA), rubidium (Rb), chlorine (Cl) and bromine (Br) into the methylammonium-lead-halide perovskite crystal on the photovoltaic properties and microstructures were investigated. The photovoltaic parameters of short-circuit current density, conversion efficiency, the surface morphology and domain in the perovskite crystal were characterized. The slight addition of FACl and RbBr to the CH3NH3PbI3 crystal provided homogeneous microstructures with the dispersed crystal domains, which improved the photovoltaic performance. The excess addition of Cl to the perovskite crystal caused nanorod-like crystals, which degraded the photovoltaic performance.

  7. Structure and bonding in metal-rich compounds: pnictides, chalcides and halides

    International Nuclear Information System (INIS)

    Franzen, H.F.


    The subject is reviewed under the following headings: introduction (compounds included in the review; purpose of the review); MX compounds with M = transition metal and X = O,N,S or P; sulfides and selenides of the transition metals; transition-metal phosphides; alkali oxides; transition-metal oxides and nitrides with X/M < 1; metal-rich halides; conclusion. The references number 238. Compounds of the following principal elements of nuclear interest are included in the tables and text: Am, Ce, Cs, Eu, Gd, Hf, La, Mo, Np, Nb, Pu, Pr, Pa, Re, Ru, Sc, Ta, Tb, Th, W, U, V, Y, Zr. The information in the tables is presented under: structure type, space group, lattice parameters and remarks. (U.K.)

  8. High-Purity Hybrid Organolead Halide Perovskite Nanoparticles Obtained by Pulsed-Laser Irradiation in Liquid

    KAUST Repository

    Amendola, Vincenzo


    Nanoparticles of hybrid organic-inorganic perovskites have attracted a great deal of attention due to their variety of optoelectronic properties, their low cost, and their easier integration into devices with complex geometry, compared with microcrystalline, thin-film, or bulk metal halides. Here we present a novel one-step synthesis of organolead bromide perovskite nanocrystals based on pulsed-laser irradiation in a liquid environment (PLIL). Starting from a bulk CHNHPbBr crystal, our PLIL procedure does not involve the use of high-boiling-point polar solvents or templating agents, and runs at room temperature. The resulting nanoparticles are characterized by high crystallinity and are completely free of any microscopic product or organic coating layer. We also demonstrate the straightforward inclusion of laser-generated perovskite nanocrystals in a polymeric matrix to form a nanocomposite with single- and two-photon luminescence properties.

  9. Bedford-type palladacycle catalyzed Miyaura-borylation of aryl halides with tetrahydroxydiboron in water

    KAUST Repository

    Zernickel, Anna


    A mild aqueous protocol for palladium catalyzed Miyaura borylation of aryl iodides, aryl bromides and aryl chlorides with tetrahydroxydiboron (BBA) as a borylating agent is developed. The developed methodology requires low catalyst loading of Bedford-type palladacycle catalyst (0.05 mol %) and works best under mild reaction conditions at 40 °C in short time of 6 hours in water. In addition, our studies show that for Miyaura borylation using BBA in aqueous condition, maintaining a neutral reaction pH is very important for reproducibility and higher yields of corresponding borylated products. Moreover, our protocol is applicable for a broad range of aryl halides, corresponding borylated products are obtained in excellent yields up to 93% with 29 examples demonstrating its broad utility and functional group tolerance.

  10. Experimental and theoretical studies of thermodynamics of lithium halide solutions - ethanol mixtures

    International Nuclear Information System (INIS)

    Nasehzadeh, Asadollah; Noroozian, Ebrahim; Omrani, Hengameh


    The vapor pressures of lithium halide solutions in ethanol have been determined in the range of concentration from (0.01 to 2.0) mol · kg -1 at 298.15 K. The activity of solvent was obtained directly and the osmotic coefficients of solutions were then calculated. An accurate reference osmotic coefficient (phi 0 ) was obtained in a more diluted solution at a reference molality, m 0 (=10 -3 kg · mol -1 ). The ionic activity coefficient, the excess, and the change in partial molal free energy of solutions were calculated by using Gibbs-Duhem equation. The values of osmotic coefficient that obtained in this work were fitted to MSA-NRTL and Pitzer's models and the values of characteristic adjustable parameters were calculated. It is shown that the goodness and the overall quality of the fit for both models are excellent

  11. High Defect Tolerance in Lead Halide Perovskite CsPbBr3. (United States)

    Kang, Jun; Wang, Lin-Wang


    The formation energies and charge-transition levels of intrinsic point defects in lead halide perovskite CsPbBr 3 are studied from first-principles calculations. It is shown that the formation energy of dominant defect under Br-rich growth condition is much lower than that under moderate or Br-poor conditions. Thus avoiding the Br-rich condition can help to reduce the defect concentration. Interestingly, CsPbBr 3 is found to be highly defect-tolerant in terms of its electronic structure. Most of the intrinsic defects induce shallow transition levels. Only a few defects with high formation energies can create deep transition levels. Therefore, CsPbBr 3 can maintain its good electronic quality despite the presence of defects. Such defect tolerance feature can be attributed to the lacking of bonding-antibonding interaction between the conduction bands and valence bands.

  12. Heavy metal ternary halides for room-temperature x-ray and gamma-ray detection (United States)

    Liu, Zhifu; Peters, John A.; Stoumpos, Constantinos C.; Sebastian, Maria; Wessels, Bruce W.; Im, Jino; Freeman, Arthur J.; Kanatzidis, Mercouri G.


    We report our recent progress on wide bandgap ternary halide compounds CsPbBr3 and CsPbCl3 for room temperature x-ray and gamma-ray detectors. Their bandgaps are measured to be 2.24 eV and 2.86 eV, respectively. The measured mobility-lifetime products of CsPbBr3 are 1.7×10-3, 1.3×10-3 cm2/V, for electron and hole carriers, respectively, comparable to those of CdTe. We measured the room temperature spectral response of CsPbBr3 sample to Ag x-ray radiation. It has a well-resolved spectral response to the 22.4 keV Kα radiation peak and detector efficiency comparable to that of CdZnTe detector at 295 K.

  13. Ion Segregation and Deliquescence of Alkali Halide Nanocrystals on SiO2

    Energy Technology Data Exchange (ETDEWEB)

    Arima, Kenta; Jiang, Peng; Lin, Deng-Sung; Verdaguer, Albert; Salmeron, Miquel


    The adsorption of water on alkali halide (KBr, KCl, KF, NaCl) nanocrystals on SiO{sub 2} and their deliquescence was investigated as a function of relative humidity (RH) from 8% to near saturation by scanning polarization force microscopy. At low humidity, water adsorption solvates ions at the surface of the crystals and increases their mobility. This results in a large increase in the dielectric constant, which is manifested in an increase in the electrostatic force and in an increase in the apparent height of the nanocrystals. Above 58% RH, the diffusion of ions leads to Ostwald ripening, where larger nanocrystals grow at the expense of the smaller ones. At the deliquescence point, droplets were formed. For KBr, KCl, and NaCl, the droplets exhibit a negative surface potential relative to the surrounding region, which is indicative of the preferential segregation of anions to the air/solution interface.

  14. An Integrated Chemical Reactor-Heat Exchanger Based on Ammonium Carbamate (POSTPRINT) (United States)


    AFRL-RQ-WP-TP-2013-0237 AN INTEGRATED CHEMICAL REACTOR-HEAT EXCHANGER BASED ON AMMONIUM CARBAMATE (POSTPRINT) Douglas Johnson and Jamie...4. TITLE AND SUBTITLE AN INTEGRATED CHEMICAL REACTOR-HEAT EXCHANGER BASED ON AMMONIUM CARBAMATE (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b...Ammonium carbamate (AC) which has a decomposition enthalpy of 1.8 MJ/kg is suspended in propylene glycol and used as the heat exchanger working fluid

  15. Relations of ammonium minerals at several hydrothermal systems in the western U.S. (United States)

    Krohn, M.D.; Kendall, C.; Evans, J.R.; Fries, T.L.


    Ammonium bound to silicate and sulfate minerals has recently been located at several major hydrothermal systems in the western U.S. utilizing newly-discovered near-infrared spectral properties. Knowledge of the origin and mineralogic relations of ammonium minerals at known hydrothermal systems is critical for the proper interpretation of remote sensing data and for testing of possible links to mineralization. Submicroscopic analysis of ammonium minerals from two mercury- and gold-bearing hot-springs deposits at Ivanhoe, Nevada and McLaughlin, California shows that the ammonium feldspar, buddingtonite, occurs as fine-grained euhedral crystals coating larger sulfide and quartz crystals. Ammonium feldspar seems to precipitate relatively late in the crystallization sequence and shows evidence for replacement of NH4+ by K+ or other monovalent cations. Some buddingtonite is observed in close association with mercury, but not with gold. Ammonioalunite is found in a variety of isolated crystal forms at both deposits. Nitrogen isotopic values for ammonium-bearing minerals show a 14??? range in composition, precluding assignment of a specific provenance to the nitrogen. The correlations of nitrogen isotopic values with depth and ammonium content suggest some loss of nitrogen in the oxidizing supergene environment, possibly as a metastable mineral. The high ammonium content in these hydrothermal systems, the close association to mercury, and the small crystal size of the ammonium-bearing minerals all suggest that ammonium may be transported in a late-stage vapor phase or as an organic volatile. Such a process could lead to the formation of a non-carbonaceous organic aureole above a buried geothermal source. The discovery of a 10-km outcrop of ammonium minerals confirms that significant substitution of ammonium in minerals is possible over an extensive area and that remote sensing is a feasible means to detect such aureoles. ?? 1993.

  16. Ammonium removal from municipal wastewater with application of ion exchange and partial nitritation/Anammox process


    Malovanyy, Andriy


    Nitrogen removal from municipal wastewater with application of Anammox process offers cost reduction, especially if it is combined with maximal use of organic content of wastewater for biogas production. In this study a new technology is proposed, which is based on ammonium concentration from municipal wastewater by ion exchange followed by biological removal of ammonium from the concentrated stream by partial nitritation/Anammox process. In experiments on ammonium concentration four the most...

  17. Ammonium sulfate and MALDI in-source decay: a winning combination for sequencing peptides


    Delvolve, Alice; Woods, Amina S.


    In previous papers we highlighted the role of ammonium sulfate in increasing peptide fragmentation by in source decay (ISD). The current work systematically investigated effects of MALDI extraction delay, peptide amino acid composition, matrix and ammonium sulfate concentration on peptides ISD fragmentation. The data confirmed that ammonium sulfate increased peptides signal to noise ratio as well as their in source fragmentation resulting in complete sequence coverage regardless of the amino ...

  18. Copolymerization of poly (ethylene oxide) and poly (methyl methacrylate) initiated by ceric ammonium nitrate

    International Nuclear Information System (INIS)

    Gomes, A.S.; Ferreira, A.A.; Coutinho, F.M.B.; Marinho, J.R.D.


    Cerium (IV) salts such as the ceric ammonium nitrate and ceric ammonium sulfate in aqueous acid solution with reducing agents such as alcohols, thiols, glycols, aldehydes and amines are well known initiators of vinyl polymerization. In this work, the polymerization of methyl methacrylate initiated by ceric ammonium nitrate/HNO 3 -poly(ethylene oxide) with hydroxyl end group system was studied in aqueous solution at 25 0 C to obtain block copolymers. (Author) [pt

  19. EPR Study of Hole-Trapping at Cation Vacancies in Silver-Halides (United States)

    Kao, Chien-Teh

    The hole-trapping at cation vacancies in silver halides is studied by means of electron paramagnetic resonance (EPR). The studied silver halide crystals were doped with trivalent Fe, and also with one of the divalent ions Ca, Cd, or Zn. The former dopant is to serve as a hole source upon sub-band-gap irradiation, while the latter increases the concentration of silver vacancies in the crystal. In AgCl, the photo-hole is observed to become self-trapped at a silver ion at a regular lattice site near a cation vacancy. The thermal stability of the resulting vacancy-perturbed self-trapped hole (STH) is found to be substantially enhanced by the presence of the nearby vacancy. Due to the close similarity of the EPR spectrum of the new centers to that of the normal STH, the existence of the vacancy-perturbed STH centers is further confirmed by isochronal annealing experiments. By comparing the intensities of the 20K STH spectra after annealing at successively higher temperatures, it is demonstrated that, in fact, there exist two types of vacancy-perturbed STH centers, one of which decays at 70K and the other survives up to a higher temperature (110K). In addition, by computer simulation, the position of the perturbing vacancy is determined to be located at the next-nearest-neighbor position for the less stable perturbed STH. On the other hand, in AgBr, no corresponding effects have been seen here. This result is in contrast to what is expected from Kanzaki's optical absorption experiments, in which an absorption line was assigned to a hole trapped near a cation vacancy in AgBr. The metastable nature of the self-trapped hole state in AgBr might probably provide explanation for the absence of such a resonance, even with the stabilizing effect of a nearby silver vacancy.

  20. Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation (United States)

    Guzman, Marcelo I.; Athalye, Richa R.; Rodriguez, Jose M.


    During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO2, NaNO3, NaClO4, and NaIO4. The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f (Isub x-)) and their correlation with ion properties. Although no correlation exists between f (sub x-) and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R(sub x-), dehydration free-energy ?Gdehyd, and polarizability alpha, follows the order: (R(sub x-)(exp -2)) > (R(sub x-)(exp -1)) >(R(sub x-) > delta G(sub dehyd) > alpha. The same pure physical process is observed in H2O and D2O. The factor f (sub x-) does not change with pH (6.8-8.6), counterion (Li+, Na+, K+, and Cs+) substitution effects, or solvent polarity changes in methanol - and ethanol-water mixtures (0 concentration effects in sea spray aerosol formation.