WorldWideScience

Sample records for ammonia-oxidizing nitrosomonas europaea

  1. Nitrite as a stimulus for ammonia-starved Nitrosomonas europaea

    NARCIS (Netherlands)

    Laanbroek, H.J.; Bär-Gilissen, M.J.; Hoogveld, H.L.

    2002-01-01

    Ammonia-starved cells of Nitrosomonas europaea are able to preserve a high level of ammonia-oxidizing activity in the absence of ammonium. However, when the nitrite-oxidizing cells that form part of the natural nitrifying community do not keep pace with the ammonia-oxidizing cells, nitrite accumulat

  2. Nitrosomonas communis strain YNSRA, an ammonia-oxidizing bacterium, isolated from the reed rhizoplane in an aquaponics plant.

    Science.gov (United States)

    Tokuyama, Tatsuaki; Mine, Atsusi; Kamiyama, Kaoru; Yabe, Ryuichi; Satoh, Kazuo; Matsumoto, Hirotoshi; Takahashi, Reiji; Itonaga, Koji

    2004-01-01

    An ammonia-oxidizing bacterium (strain YNSRA) was isolated from the rhizoplane of the reed (Phragmites communis) used in an aquaponics plant which is a wastewater treatment plant. Strain YNSRA was identified as Nitrosomonas communis by taxonomic studies. The hydroxylamine-cytochrome c reductase (HCR) of strain YNSRA was found to have a higher activity (25.60 u/mg) than that of Nitrosomonas europaea ATCC25978T (8.94 u/mg). Ribulose-1,5-bisphosphate carboxylase (RubisCO) activity was detected at very low levels in strain YNSRA, whereas strain ATCC25978T had definite activity. PMID:16233712

  3. Structure of the Nitrosomonas Europaea Rh Protein

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Jayachandran, S.; Nguyen, H.-H.T.; Chan, M.K.

    2009-06-01

    Amt/MEP/Rh proteins are a family of integral membrane proteins implicated in the transport of NH3, CH(2)NH2, and CO2. Whereas Amt/MEP proteins are agreed to transport ammonia (NH3/NH4+), the primary substrate for Rh proteins has been controversial. Initial studies suggested that Rh proteins also transport ammonia, but more recent evidence suggests that they transport CO2. Here we report the first structure of an Rh family member, the Rh protein from the chemolithoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea. This Rh protein exhibits a number of similarities to its Amt cousins, including a trimeric oligomeric state, a central pore with an unusual twin-His site in the middle, and a Phe residue that blocks the channel for small-molecule transport. However, there are some significant differences, the most notable being the presence of an additional cytoplasmic C-terminal alpha-helix, an increased number of internal proline residues along the transmembrane helices, and a specific set of residues that appear to link the C-terminal helix to Phe blockage. This latter linkage suggests a mechanism in which binding of a partner protein to the C terminus could regulate channel opening. Another difference is the absence of the extracellular pi-cation binding site conserved in Amt/Mep structures. Instead, CO2 pressurization experiments identify a CO2 binding site near the intracellular exit of the channel whose residues are highly conserved in all Rh proteins, except those belonging to the Rh30 subfamily. The implications of these findings on the functional role of the human Rh antigens are discussed.

  4. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea.

    Science.gov (United States)

    Papp, Benedek; Török, Tibor; Sándor, Erzsébet; Fekete, Erzsébet; Flipphi, Michel; Karaffa, Levente

    2016-05-01

    Nitrosomonas europaea is a chemolithoautotrophic nitrifier, a gram-negative bacterium that can obtain all energy required for growth from the oxidation of ammonia to nitrite, and this may be beneficial for various biotechnological and environmental applications. However, compared to other bacteria, growth of ammonia oxidizing bacteria is very slow. A prerequisite to produce high cell density N. europaea cultures is to minimize the concentrations of inhibitory metabolic by-products. During growth on ammonia nitrite accumulates, as a consequence, N. europaea cannot grow to high cell concentrations under conventional batch conditions. Here, we show that single-vessel dialysis membrane bioreactors can be used to obtain substantially increased N. europaea biomasses and substantially reduced nitrite levels in media initially containing high amounts of the substrate. Dialysis membrane bioreactor fermentations were run in batch as well as in continuous mode. Growth was monitored with cell concentration determinations, by assessing dry cell mass and by monitoring ammonium consumption as well as nitrite formation. In addition, metabolic activity was probed with in vivo acridine orange staining. Under continuous substrate feed, the maximal cell concentration (2.79 × 10(12)/L) and maximal dry cell mass (0.895 g/L) achieved more than doubled the highest values reported for N. europaea cultivations to date. PMID:26358065

  5. Investigating Nitrosomonas europaea stress biomarkers in batch, continuous culture, and biofilm reactors.

    Science.gov (United States)

    Radniecki, Tyler S; Lauchnor, Ellen G

    2011-01-01

    The understanding of nitrification inhibition in ammonia oxidizing bacteria (AOB) by priority pollutants and emerging contaminants is critical in managing the nitrogen cycle to preserve current water supplies, one of the National Academy of Engineers Grand Challenges in Engineering for the twenty-first century. Nitrosomonas europaea is an excellent model AOB for nitrification inhibition experimentation due to its well-defined NH(3) metabolism and the availability of a wide range of physiological and transcriptional tools that can characterize the mechanism of nitrification inhibition and probe N. europaea's response to the inhibitor. This chapter is a compilation of the physiological and transcriptional methods that have been used to characterize nitrification inhibition of N. europaea under a wide variety of growth conditions including batch, continuously cultured, and in biofilms. The protocols presented here can be applied to other AOB, and may be readily adapted for other autotrophic bacteria (e.g., nitrite oxidizing bacteria). PMID:21514466

  6. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Lisa Y [University of California, Riverside; Arp, D J [Oregon State University; Berube, PM [University of Washington, Seattle; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Hauser, Loren John [ORNL; Jetten, MSM [Radboud University Nijmegen; Klotz, Martin G [University of Louisville, Louisville; Larimer, Frank W [ORNL; Norton, Jeanette M. [Utah State University (USU); Op den Camp, HJM [Radboud University Nijmegen; Shin, M [U.S. Department of Energy, Joint Genome Institute; Wei, Xueming [Oregon State University

    2007-12-01

    Analysis of the structure and inventory of the genome of Nitrosomonas eutropha C91 revealed distinctive features that may explain the adaptation of N. eutropha-like bacteria to N-saturated ecosystems. Multiple gene-shuffling events are apparent, including mobilized and replicated transposition, as well as plasmid or phage integration events into the 2.66 Mbp chromosome and two plasmids (65 and 56 kbp) of N. eutropha C91. A 117 kbp genomic island encodes multiple genes for heavy metal resistance, including clusters for copper and mercury transport, which are absent from the genomes of other ammonia-oxidizing bacteria (AOB). Whereas the sequences of the two ammonia monooxygenase and three hydroxylamine oxidoreductase gene clusters in N. eutropha C91 are highly similar to those of Nitrosomonas europaea ATCC 19718, a break of synteny in the regions flanking these clusters in each genome is evident. Nitrosomonas eutropha C91 encodes four gene clusters for distinct classes of haem-copper oxidases, two of which are not found in other aerobic AOB. This diversity of terminal oxidases may explain the adaptation of N. eutropha to environments with variable O2 concentrations and/or high concentrations of nitrogen oxides. As with N. europaea, the N. eutropha genome lacks genes for urease metabolism, likely disadvantaging nitrosomonads in low-nitrogen or acidic ecosystems. Taken together, this analysis revealed significant genomic variation between N. eutropha C91 and other AOB, even the closely related N. europaea, and several distinctive properties of the N. eutropha genome that are supportive of niche specialization.

  7. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Bollmann, Annette [Miami University, Oxford, OH; Sedlacek, Christopher J [Miami University, Oxford, OH; Laanbroek, Hendrikus J [Netherlands Institute of Ecology (NIOO-KNAW); Suwa, Yuichi [Chuo University, Tokyo, Japan; Stein, Lisa Y [University of California, Riverside; Klotz, Martin G [University of Louisville, Louisville; Arp, D J [Oregon State University; Sayavedra-Soto, LA [Oregon State University; Lu, Megan [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pennacchio, Len [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL)

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

  8. Role of a Fur homolog in iron metabolism in Nitrosomonas europaea

    Directory of Open Access Journals (Sweden)

    Bottomley Peter J

    2011-02-01

    Full Text Available Abstract Background In response to environmental iron concentrations, many bacteria coordinately regulate transcription of genes involved in iron acquisition via the ferric uptake regulation (Fur system. The genome of Nitrosomonas europaea, an ammonia-oxidizing bacterium, carries three genes (NE0616, NE0730 and NE1722 encoding proteins belonging to Fur family. Results Of the three N. europaea fur homologs, only the Fur homolog encoded by gene NE0616 complemented the Escherichia coli H1780 fur mutant. A N. europaea fur:kanP mutant strain was created by insertion of kanamycin-resistance cassette in the promoter region of NE0616 fur homolog. The total cellular iron contents of the fur:kanP mutant strain increased by 1.5-fold compared to wild type when grown in Fe-replete media. Relative to the wild type, the fur:kanP mutant exhibited increased sensitivity to iron at or above 500 μM concentrations. Unlike the wild type, the fur:kanP mutant was capable of utilizing iron-bound ferrioxamine without any lag phase and showed over expression of several outer membrane TonB-dependent receptor proteins irrespective of Fe availability. Conclusions Our studies have clearly indicated a role in Fe regulation by the Fur protein encoded by N. europaea NE0616 gene. Additional studies are required to fully delineate role of this fur homolog.

  9. Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations

    Directory of Open Access Journals (Sweden)

    Chandran Kartik

    2010-03-01

    Full Text Available Abstract Background Nitrosomonas europaea is a widely studied chemolithoautotrophic ammonia oxidizing bacterium. While significant work exists on the ammonia oxidation pathway of N. europaea, its responses to factors such as dissolved oxygen limitation or sufficiency or exposure to high nitrite concentrations, particularly at the functional gene transcription level are relatively sparse. The principal goal of this study was to investigate responses at the whole-cell activity and gene transcript levels in N. europaea 19718 batch cultures, which were cultivated at different dissolved oxygen and nitrite concentrations. Transcription of genes coding for principal metabolic pathways including ammonia oxidation (amoA, hydroxylamine oxidation (hao, nitrite reduction (nirK and nitric oxide reduction (norB were quantitatively measured during batch growth, at a range of DO concentrations (0.5, 1.5 and 3.0 mg O2/L. Measurements were also conducted during growth at 1.5 mg O2/L in the presence of 280 mg-N/L of externally added nitrite. Results Several wide ranging responses to DO limitation and nitrite toxicity were observed in N. europaea batch cultures. In contrast to our initial hypothesis, exponential phase mRNA concentrations of both amoA and hao increased with decreasing DO concentrations, suggesting a mechanism to metabolize ammonia and hydroxylamine more effectively under DO limitation. Batch growth in the presence of 280 mg nitrite-N/L resulted in elevated exponential phase nirK and norB mRNA concentrations, potentially to promote utilization of nitrite as an electron acceptor and to detoxify nitrite. This response was in keeping with our initial hypothesis and congruent with similar responses in heterotrophic denitrifying bacteria. Stationary phase responses were distinct from exponential phase responses in most cases, suggesting a strong impact of ammonia availability and metabolism on responses to DO limitation and nitrite toxicity. In general

  10. Protection of Nitrosomonas europaea colonizing clay minerals from inhibition by nitrapyrin.

    Science.gov (United States)

    Powell, S J; Prosser, J I

    1991-08-01

    Nitrate production by Nitrosomonas europaea in inorganic liquid medium containing ammonium was limited by reduction in pH. In the presence of montmorillonite and vermiculite, expanding clays with high cation-exchange-capacity (CEC), nitrite yield was increased, ammonia oxidation continued at pH values below those which inhibited growth in the absence of clays and growth was biphasic. The first phase was similar to that in the absence of clays, while the second was characterized by a lower rate of nitrite production. Illite, a non-expanding clay with low CEC, had no significant effect on ammonia oxidation, while oxidation of ammonia-treated vermiculite (ATV) occurred with no significant change in the pH of the medium. ATV, montmorillonite and vermiculite, but not illite, protected cells from inhibition by nitrapyrin at concentrations inhibitory to cells growing in suspended culture. This protection was maintained in ATV homo-ionic to Al3+, but montmorillonite made homo-ionic to Al3+ did not provide protection from inhibition. Attachment of cells to clays with high CEC is therefore advantageous in providing exchange at the clay surface of NH+4 and H+ produced by ammonia oxidation, in reducing pH toxicity, and in protecting cells from inhibition. PMID:1955871

  11. Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns

    KAUST Repository

    Lu, Huijie

    2015-11-05

    © 2015 Springer-Verlag Berlin Heidelberg The model ammonia-oxidizing bacterium Nitrosomonas europaea represents one of the environmentally and biotechnologically significant microorganisms. Genome-based studies over the last decade have led to many intriguing discoveries about its cellular biochemistry and physiology. However, knowledge regarding the regulation of overall metabolic routes in response to various environmental stresses is limited due to a lack of comprehensive, time-resolved metabolomic analyses. In this study, gas chromatography–mass spectrometry (GC-MS)-based metabolic profiling was performed to characterize the temporal variations of N. europaea 19718 intercellular metabolites in response to varied temperature (23 and 10 °C) and ammonia feeding patterns (shock loading and continuous feeding of 20 mg N/L). Approximately 87 metabolites were successfully identified and mapped to the existing pathways of N. europaea 19718, allowing interpretation of the influence of temperature and feeding pattern on metabolite levels. In general, varied temperature had a more profound influence on the overall metabolism than varied feeding patterns. Total extracellular metabolite concentrations (relative to internal standards and normalized to biomass weight) were lower under cold stress and shock loading conditions compared with the control (continuous feeding at 23 °C). Cold stress caused the widespread downregulation of metabolites involved in central carbon metabolism, amino acid, and lipid synthesis (e.g., malonic acid, succinic acid, putrescine, and phosphonolpyruvate). Metabolites that showed differences under varied feeding patterns were mainly involved in nucleotide acid, amino acid, and lipid metabolism (e.g., adenine, uracil, and spermidine). This study highlighted the roles of central carbon and nitrogen metabolism in countering cold stress and altered ammonia availability. In addition, transcriptomic, proteomic, and metabolomic data from three

  12. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  13. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  14. Characterizing the metabolic trade-off in Nitrosomonas europaea in response to changes in inorganic carbon supply.

    Science.gov (United States)

    Jiang, D; Khunjar, W O; Wett, B; Murthy, S N; Chandran, K

    2015-02-17

    The link between the nitrogen and one-carbon cycles forms the metabolic basis for energy and biomass synthesis in autotrophic nitrifying organisms, which in turn are crucial players in engineered nitrogen removal processes. To understand how autotrophic nitrifying organisms respond to inorganic carbon (IC) conditions that could be encountered in engineered partially nitrifying systems, we investigated the response of one of the most extensively studied model ammonia oxidizing bacteria, Nitrosomonas europaea (ATCC19718), to three IC availability conditions: excess gaseous and excess ionic IC supply (40× stoichiometric requirement), excess gaseous IC supply (4× stoichiometric requirement in gaseous form only), and limiting IC supply (0.25× stoichiometric requirement). We found that, when switching from excess gaseous and excess ionic IC supply to excess gaseous IC supply, N. europaea chemostat cultures demonstrated an acclimation period that was characterized by transient decreases in the ammonia removal efficiency and transient peaks in the specific oxygen uptake rate. Limiting IC supply led to permanent reactor failures (characterized by biomass washout and failure of ammonia removal) that were preceded by similar decreases in the ammonia removal efficiency and peaks in the specific oxygen uptake rate. Notably, both excess gaseous IC supply and limiting IC supply elicited a previously undocumented increase in nitric and nitrous oxide emissions. Further, gene expression patterns suggested that excess gaseous IC supply and limiting IC supply led to consistent up-regulation of ammonia respiration genes and carbon assimilation genes. Under these conditions, interrogation of the N. europaea proteome revealed increased levels of carbon fixation and transport proteins and decreased levels of ammonia oxidation proteins (active in energy synthesis pathways). Together, the results indicated that N. europaea mobilized enhanced IC scavenging pathways for biosynthesis and

  15. Crystal structure of a novel red copper protein from Nitrosomonas europaea

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, R.L.; Arciero, D.M.; Hooper, A.B.; Rosenzweig, A.C. (NWU)

    2010-03-08

    Nitrosocyanin (NC) is a mononuclear red copper protein isolated from the ammonia oxidizing bacterium Nitrosomonas europaea. Although NC exhibits some sequence homology to classic blue copper proteins, its spectroscopic and electrochemical properties are drastically different. The 1.65 {angstrom} resolution crystal structure of oxidized NC reveals an unprecedented trimer of single domain cupredoxins. Each copper center is partially covered by an unusual extended {beta}-hairpin structure from an adjacent monomer. The copper ion is coordinated by His 98, His 103, Cys 95, a single side chain oxygen of Glu 60, and a solvent molecule. In the 2.3 {angstrom} resolution structure of reduced NC, His 98 shifts away from the copper ion, and the solvent molecule is not observed. The arrangement of these ligands renders the coordination geometry of the NC red copper center distinct from that of blue copper centers. In particular, the red copper center has a higher coordination number and lacks the long Cu-S(Met) and short Cu-S(Cys) bond distances characteristic of blue copper. Moreover, the red copper center is square pyramidal whereas blue copper is typically distorted tetrahedral. Analysis of the NC structure provides insight into possible functions of this new type of biological copper center.

  16. Activity-based protein profiling of ammonia monooxygenase in Nitrosomonas europaea.

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Kristen; Sadler, Natalie C.; Wright, Aaron T.; Yeager, Chris; Hyman, Michael R.

    2016-01-29

    Nitrosomonas europaea is an aerobic nitrifying bacterium that oxidizes ammonia (NH3) to nitrite (NO2-) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine oxidoreductase (HAO). Many alkynes are mechanism-based inactivators of AMO and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH4+-dependent O2 uptake by N. europaea by 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity and de novo protein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with AlexaFluor 647-azide using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, solubilized and analyzed by SDS-PAGE and IR scanning. A fluorescent 28 kDa polypeptide was observed for cells previously exposed to 17OD, but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD, or for cells not previously exposed to 17OD. The 28 kDa polypeptide was membrane-associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent 28 kDa polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested and amino acid sequences of the peptide fragments were determined by LC-MS analysis. Peptide fragments from amoA were the predominant peptides detected in 17OD-treated samples. In gel digestion and MALDI-TOF/TOF analysis also confirmed the fluorescent 28 kDa polypeptide was amoA.

  17. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea.

    Science.gov (United States)

    Bennett, Kristen; Sadler, Natalie C; Wright, Aaron T; Yeager, Chris; Hyman, Michael R

    2016-04-01

    Nitrosomonas europaea is an aerobic nitrifying bacterium that oxidizes ammonia (NH3) to nitrite (NO2 (-)) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH4 (+)-dependent O2 uptake by N. europaea by 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, andde novoprotein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA. PMID:26826234

  18. Effects of Soil and Water Content on Methyl Bromide Oxidation by the Ammonia-Oxidizing Bacterium Nitrosomonas europaea†

    OpenAIRE

    Duddleston, Khrystyne N.; Bottomley, Peter J; Porter, Angela; Arp, Daniel J.

    2000-01-01

    Little information exists on the potential of NH3-oxidizing bacteria to cooxidize halogenated hydrocarbons in soil. A study was conducted to examine the cooxidation of methyl bromide (MeBr) by an NH3-oxidizing bacterium, Nitrosomonas europaea, under soil conditions. Soil and its water content modified the availability of NH4+ and MeBr and influenced the relative rates of substrate (NH3) and cosubstrate (MeBr) oxidations. These observations highlight the complexity associated with characterizi...

  19. MeLiSSA third compartment: a kinetic and stoichiometric study for Nitrosomonas europaea and Nitrobacter winogradskyi axenic cultures

    Science.gov (United States)

    Creuly, Catherine; Poughon, Laurent; Dussap, Claude-Gilles; Farges, Berangere

    2012-07-01

    As a part of a natural biological N-cycle, nitrification is one of the steps included in the conception of artificial ecosystems designed for extraterrestrial life support systems (LSS). In MELiSSA loop, which is based on carbon and nitrogen recycling, the non-edible part of the higher plants and the waste produced by the crew are collected in the liquefying compartment that degrades the chemically complex wastes into simpler building blocks (organic acids and CO2). The organic acids are eliminated in the second photoheterotrophic compartment letting an organic free medium mostly containing minerals and N-NH+4 nitrogen. The third compartment is in charge to re-oxidize N-NH+4 in order to make nitrogen usable by the following compartments. In MELiSSA, the constraint is to perform axenic cultures in order to fully control the genetic status of the culture and a thorough modelling for developing a control strategy of the compartment and of the loop, knowing that the reliability of the production of oxidized forms of nitrogen NO3- directly impacts the behaviour of the following compartments. Nitrification in aerobic environments is carried out by two groups of bacteria in co-cultures in a two-step process. The ammonia-oxidizing bacteria (Nitrosomonas europaea) realize the oxidation of ammonia to nitrite and the nitrite-oxidizing bacteria (Nitrobacter winogradskyi) the oxidation of nitrite to nitrate. In both cases, the bacteria achieve the oxidations to obtain an energy and reductant source for their growth and maintenance. Both groups use CO2 predominantly as their carbon source. They are typically found together in ecosystems and, consequently, nitrite accumulation is rare. This study concerns kinetic and mass balances studies of axenic cultures of Ns. europaea and Nb. winogradskyi in autotrophic conditions. The daily follow-up of these cultures is done using a new protocol involving flow cytometry and ionic chromatography. Nitrogen substrates and products are

  20. Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea.

    Science.gov (United States)

    Yu, Ran; Wu, Junkang; Liu, Meiting; Zhu, Guangcan; Chen, Lianghui; Chang, Yan; Lu, Huijie

    2016-06-01

    Although the widely used metal oxide nanoparticles (NPs) titanium dioxide NPs (n-TiO2), cerium dioxide NPs (n-CeO2), and zinc oxide NPs (n-ZnO) have been well known for their potential cytotoxicities to environmental organisms, their combined effects have seldom been investigated. In this study, the short-term binary effect of n-CeO2 and n-TiO2 or n-ZnO on a model ammonia oxidizing bacterium, Nitrosomonas europaea were evaluated based on the examinations of cells' physiological, metabolic, and transcriptional responses. The addition of n-TiO2 mitigated the negative effect of more toxic n-CeO2 and the binary toxicity (antagonistic toxicity) of n-TiO2 and n-CeO2 was generally lower than the single NPs induced one. While the n-CeO2/n-ZnO mixture exerted higher cytotoxicity (synergistic cytotoxicity) than that from single NPs. The increased addition of the less toxic n-CeO2 exaggerated the binary toxicity of n-CeO2/n-ZnO mixture although the solubility of n-ZnO was not significantly affected, which excluded the contribution of the dissolved Zn ions to the enhancement of the combined cytotoxicity. The cell membrane disturbances and NP internalizations were detected for all the NP impacted cultures and the electrostatic interactions among the two distinct NPs and the cells were expected to play a key role in mediating their direct contacts and the eventual binary nanotoxicity to the cells. PMID:27016814

  1. Short-term effects of TiO2, CeO2, and ZnO nanoparticles on metabolic activities and gene expression of Nitrosomonas europaea.

    Science.gov (United States)

    Yu, Ran; Fang, Xiaohua; Somasundaran, Ponisseril; Chandran, Kartik

    2015-06-01

    Nanosized TiO2 (n-TiO2), CeO2 (n-CeO2), and ZnO (n-ZnO) and bulk ZnO were chosen for a 4-h exposure study on a model ammonia oxidizing bacterium, Nitrosomonas europaea. n-ZnO displayed the most serious cytotoxicity while n-TiO2 was the least toxic one. The change of cell morphologies, the retardance of specific oxygen uptake rates and ammonia oxidation rates, and the depression of amoA gene expressions under NP stresses were generally observed when the cell densities and membrane integrities were not significantly impaired yet. The TEM imaging and the synchrotron X-ray fluorescence microscopy of the NPs impacted cells revealed the increase of the corresponding intracellular Ti, Ce or Zn contents and suggested the intracellular NP accumulation. The elevation of intracellular S contents accompanied with higher K contents implied the possible activation of thiol-containing glutathione and thioredoxin production for NP stress alleviation. The NP cytotoxicity was not always a function of NP concentration. The 200 mg L(-1) n-TiO2 or n-CeO2 impacted cells displayed the similar ammonia oxidation activities but higher amoA gene expression levels than the 20 mg L(-1) NPs impacted ones. Such phenomenon further indicated the possible establishment of an anti-toxicity mechanism in N. europaea at the genetic level to redeem the weakened AMO activities along with the NP aggregation effects. PMID:25710320

  2. AAU-Specific RNA Cleavage Mediated by MazF Toxin Endoribonuclease Conserved in Nitrosomonas europaea

    Directory of Open Access Journals (Sweden)

    Tatsuki Miyamoto

    2016-06-01

    Full Text Available Nitrosomonas europaea carries numerous toxin-antitoxin systems. However, despite the abundant representation in its chromosome, studies have not surveyed the underlying molecular functions in detail, and their biological roles remain enigmatic. In the present study, we found that a chromosomally-encoded MazF family member, predicted at the locus NE1181, is a functional toxin endoribonuclease, and constitutes a toxin-antitoxin system, together with its cognate antitoxin, MazE. Massive parallel sequencing provided strong evidence that this toxin endoribonuclease exhibits RNA cleavage activity, primarily against the AAU triplet. This sequence-specificity was supported by the results of fluorometric assays. Our results indicate that N. europaea alters the translation profile and regulates its growth using the MazF family of endoribonuclease under certain stressful conditions.

  3. Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm.

    Science.gov (United States)

    Foesel, Bärbel U; Gieseke, Armin; Schwermer, Carsten; Stief, Peter; Koch, Liat; Cytryn, Eddie; de la Torré, José R; van Rijn, Jaap; Minz, Dror; Drake, Harold L; Schramm, Andreas

    2008-02-01

    Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated with a recirculating marine aquaculture system are presented. Repeated rounds of the full-cycle rRNA approach were necessary to optimize DNA extraction and the probe set for FISH to obtain a reliable and comprehensive picture of the ammonia-oxidizing community. Analysis of the ammonia monooxygenase gene (amoA) confirmed the results. The most abundant ammonia-oxidizing bacteria (AOB) were members of the Nitrosomonas sp. Nm143-lineage (6.7% of the bacterial biovolume), followed by Nitrosomonas marina-like AOB (2.2% of the bacterial biovolume). Both were outnumbered by nitrite-oxidizing bacteria of the Nitrospira marina-lineage (15.7% of the bacterial biovolume). Although more than eight other nitrifying populations were detected, including Crenarchaeota closely related to the ammonia-oxidizer 'Nitrosopumilus maritimus', their collective abundance was below 1% of the total biofilm volume; their contribution to nitrification in the biofilter is therefore likely to be negligible. PMID:18093145

  4. Protective effect of immobilized ammonia oxidizers and phenol-degrading bacteria on nitrification in ammonia- and phenol-containing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Morita, M.; Watanabe, A. [Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba (Japan); Kudo, N.; Shinozaki, H. [Materials Science Engineering, Tokyo Denki University, Tokyo (Japan); Uemoto, H.

    2007-12-15

    Phenol present in wastewaters from various industries has an inhibitory effect on nitrification even at low concentrations. Hence, the biological treatment of wastewater containing both phenol and ammonia involves a series of treatment steps. It is difficult to achieve nitrification capability in an activated sludge system that contains phenol at concentrations above the inhibitory level. Batch treatment of wastewater containing various concentrations of phenol showed that the ammonia oxidation capability of suspended Nitrosomonas europaea cells, an ammonia oxidizer, was completely inhibited in the presence of more than 5.0 mg/L phenol. To protect the ammonia oxidizer from the inhibitory effect of phenol and to achieve ammonia oxidation capability in the wastewater containing phenol at concentrations above the inhibitory level, a simple bacterial consortium composed of an ammonia oxidizer (N. europaea) and a phenol-degrading bacterial strain (Acinetobacter sp.) was used. Ammonia oxidation did not occur in the presence of phenol at concentrations above the inhibitory level when suspended or immobilized N. europaea and Acinetobacter sp. cells were used in batch treatment. Following the acclimatization of the immobilized cells, accumulation of nitrite was observed, even when the wastewater contained phenol at concentrations above the inhibitory level. These results showed that immobilization was effective in protecting N. europaea cells from the inhibitory effect of phenol present in the wastewater. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  5. Insights into Glycogen Metabolism in Chemolithoautotrophic Bacteria from Distinctive Kinetic and Regulatory Properties of ADP-Glucose Pyrophosphorylase from Nitrosomonas europaea

    OpenAIRE

    Machtey, Matías; Kuhn, Misty L.; Flasch, Diane A; Aleanzi, Mabel; Ballicora, Miguel A; Iglesias, Alberto A.

    2012-01-01

    Nitrosomonas europaea is a chemolithoautotroph that obtains energy by oxidizing ammonia in the presence of oxygen and fixes CO2 via the Benson-Calvin cycle. Despite its environmental and evolutionary importance, very little is known about the regulation and metabolism of glycogen, a source of carbon and energy storage. Here, we cloned and heterologously expressed the genes coding for two major putative enzymes of the glycogen synthetic pathway in N. europaea, ADP-glucose pyrophosphorylase and...

  6. Inhibition of bacterial ammonia oxidation by organohydrazines in soil microcosms

    Directory of Open Access Journals (Sweden)

    Yucheng eWu

    2012-01-01

    Full Text Available Hydroxylamine oxidation by hydroxylamine oxidoreductase (HAO is a key step for energy-yielding in support of the growth of ammonia-oxidizing bacteria (AOB. Organohydrazines have been shown to inactivate HAO from Nitrosomonas europaea, and may serve as selective inhibitors to differentiate bacterial from archaeal ammonia oxidation due to the absence of bacterial HAO gene homologue in known ammonia-oxidizing archaea (AOA. In this study, the effects of three organohydrazines on activity, abundance and composition of AOB and AOA were evaluated in soil microcosms. The results indicate that phenylhydrazine and methylhydrazine at the concentration of 100 mol per gram dry weight soil completely suppressed the activity of soil nitrification. DGGE fingerprinting and sequencing analysis of bacterial ammonia monooxygenase subunit A gene (amoA clearly demonstrated that nitrification activity change is well paralleled with the growth of Nitrosomonas europaea-like AOB in soil microcosms. No significant correlation between AOA community structure and nitrification activity was observed among all treatments during the incubation period, although incomplete inhibition of nitrification activity occurred in 2-hydroxyethylhydrazine-amended soil microcosms. These findings show that the HAO-targeted organohydrazines can effectively inhibit bacterial nitrification in soil, and the mechanism of organohydrazine affecting AOA remains unclear.

  7. 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification

    International Nuclear Information System (INIS)

    A series of 15N isotope tracer experiments showed that Nitrosomonas europaea produces nitrous oxide only under oxygen-limiting conditions and that the labeled N from nitrite, but not nitrate, is incorporated into nitrous oxide, indicating the presence of the denitrifying enzyme nitrite reductase. A kinetic analysis of the m/z 44, 45, and 46 nitrous oxide produced by washed cell suspensions of N. europaea when incubated with 4 mM ammonium (99% 14N) and 0.4 mM nitrite (99% 15N) was performed. No labeled nitirte was reduced to ammonium. All labeled material added was accounted for as either nitrite or nitrous oxide. The hypothesis that nitrous oxide is produced directly from nitrification was rejected since (i) it does not allow for the large amounts of double-labeled (m/z 46) nitrous oxide observed; (ii) the observed patterns of m/z 44, 45, 46 nitrous oxide were completely consistent with a kinetic analysis based on denitrification as the sole mechanism of nitrous oxide production but not with a kinetic analysis based on both mechanisms; (iii) the asymptotic ratio of m/z 45 to m/z 46 nitrous oxide was consistent with denitrification kinetics but inconsistent with nitrification kinetics, which predicted no limit to m/z 45 production. It is concluded that N. europaea is a denitrifier which, under conditions of oxygen stress, uses nitrite as a terminal electron acceptor and produces nitrous oxide

  8. Comparison of the community structures of ammonia-oxidizing bacteria and archaea in rhizoplanes of floating aquatic macrophytes.

    Science.gov (United States)

    Wei, Bo; Yu, Xin; Zhang, Shuting; Gu, Li

    2011-09-20

    Some common floating aquatic macrophytes could remove nutrients, such as nitrogen, from eutrophic water. However, the relationship between these macrophytes and the ammonia-oxidizing microorganisms on their rhizoplanes is still unknown. In this study, we examined communities of ammonia-oxidizing archaea (AOA) and bacteria (AOB) on the rhizoplanes of common floating aquatic macrophytes (Eichhornia crassipes, Pistia stratiotes and Ipomoea aquatic) in a eutrophic reservoir.The results show that AOB were the predominant ammonia-oxidizer on the three rhizoplanes. The principal AOB were Nitrosomonas europaea and Nitrosomonas ureae clades. The principal group of AOA was most similar to the clone from activated sludge. The ratio of AOB amoA gene copies to AOA varied from 1.36 (on E. crassipes) to 41.90 (on P. stratiotes). Diversity of AOA was much lower than that of AOB in most samples, with the exception of P. stratiotes. PMID:21239153

  9. Expression, purification, crystallization and preliminary X-ray diffraction of a novel Nitrosomonas europaea cytochrome, cytochrome P460

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, Bradley O.; Pearson, Arwen R.; Wilmot, Carrie M.; Hooper, Alan B., E-mail: hooper@cbs.umn.edu [Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota, Minneapolis, Minnesota (United States)

    2006-04-01

    Cytochrome P460 from N. europaea, a novel mono-heme protein containing an unusual lysine cross-link to the porphyrin ring, has been recombinantly expressed and purified from E. coli and crystallized. The crystals belong to the trigonal space group P3{sub 1/2}21, with unit-cell parameters a = b = 53.3, c = 127.1 Å, one monomer in the asymmetric unit and diffract to 1.7 Å on a Cu Kα rotating-anode X-ray source. Cytochrome P460 from Nitrosomonas europaea, a novel mono-heme protein containing an unusual cross-link between a conserved lysine and the porphyrin ring, has been recombinantly expressed and purified from Escherichia coli. The protein crystallizes readily and diffraction to 1.7 Å has been obtained in-house. The crystals belong to the trigonal space group P3{sub 1/2}21, with unit-cell parameters a = b = 53.3, c = 127.1 Å, and contain one monomer in the asymmetric unit.

  10. Application of an integrated statistical design for optimization of culture condition for ammonium removal by Nitrosomonas europaea.

    Directory of Open Access Journals (Sweden)

    Yingling Bao

    Full Text Available Statistical methodology was applied to the optimization of the ammonium oxidation by Nitrosomonas europaea for biomass concentration (C(B, nitrite yield (Y(N and ammonium removal (R(A. Initial screening by Plackett-Burman design was performed to select major variables out of nineteen factors, among which NH4Cl concentration (C(N, trace element solution (TES, agitation speed (AS, and fermentation time (T were found to have significant effects. Path of steepest ascent and response surface methodology was applied to optimize the levels of the selected factors. Finally, multi-objective optimization was used to obtain optimal condition by compromise of the three desirable objectives through a combination of weighted coefficient method coupled with entropy measurement methodology. These models enabled us to identify the optimum operation conditions (C(N= 84.1 mM; TES = 0.74 ml; AS= 100 rpm and T = 78 h, under which C(B= 3.386×10(8 cells/ml; Y(N= 1.98 mg/mg and R(A = 97.76% were simultaneously obtained. The optimized conditions were shown to be feasible through verification tests.

  11. Acclimatization of communities of ammonia oxidizing bacteria to seasonal changes in optimal conditions in a coke wastewater treatment plant.

    Science.gov (United States)

    Kim, Young Mo

    2013-11-01

    The goal of this study was to investigate the correlation between optimal conditions of ammonia oxidation rates (AORs) and communities of ammonia oxidizing bacteria (AOB) adapting to seasonal changes in a full-scale wastewater treatment plant (WWTP). The optimal temperature and pH of specific AORs reflected seasonal variation patterns, showing the lowest values during the cold season, while the highest values in the warm season. Throughout the study period, Nitrosomonas europaea/eutropha and Nitrosomonas nitrosa remained the dominant AOB, indicating resistance to the influences of a changing environment. These results show that the optimal conditions for AOR can be adjusted to accommodate changing environmental conditions, relying on the acclimatization of a stable AOB community to given conditions, without any visible shift in the AOB community. PMID:24001689

  12. Abundance and diversity of ammonia-oxidizing bacteria in relation to ammonium in a Chinese shallow eutrophic urban lake

    Directory of Open Access Journals (Sweden)

    Shanlian Qiu

    2010-03-01

    Full Text Available The measures of most-probable-number and restriction fragment length polymorphism analysis were used to analyze the abundance and diversity of ammonia-oxidizing bacteria in sediment of a Chinese shallow eutrophic urban lake (Lake Yuehu. Among the 5 sampling sites, ammonia concentration in interstitial water was positively proportional not only to the content of organic matter, but also to ammonia-oxidizing bacteria numbers (at a magnitude of 10(5 cells g-1 dry weight in sediment significantly. Furthermore, the diversity of ammonia-oxidizing bacteria were determined by means of PCR primers targeting the amoA gene with five gene libraries created and restriction pattern analysis. The 13 restriction patterns were recorded with 4 ones being common among all sampling sites. The 8 restriction patterns including 4 unique ones were found at the site with the highest NH4+ concentrations in interstitial water, while, there were only common patterns without unique ones at the site with the lowest NH4+ concentrations in interstitial water. Phylogenetic analysis showed that the amoA fragments retrieved belong to Nitrosomonas oligotropha & ureae lineage, N. europaea lineage, N. communis lineage and Nitrosospira lineage, most of which were affiliated with the genus Nitrosomonas. The N. oligotropha & ureae-like bacteria were the dominant species. Thus, the abundance and diversity of sediment AOB is closely linked to ammonium status in eutrophic lakes.

  13. Emergence of Competitive Dominant Ammonia-Oxidizing Bacterial Populations in a Full-Scale Industrial Wastewater Treatment Plant

    OpenAIRE

    Layton, Alice C.; Dionisi, Hebe; Kuo, H.-W.; Robinson, Kevin G.; Garrett, Victoria M.; Meyers, Arthur; Sayler, Gary S.

    2005-01-01

    Ammonia-oxidizing bacterial populations in an industrial wastewater treatment plant were investigated with amoA and 16S rRNA gene real-time PCR assays. Nitrosomonas nitrosa initially dominated, but over time RI-27-type ammonia oxidizers, also within the Nitrosomonas communis lineage, increased from below detection to codominance. This shift occurred even though nitrification remained constant.

  14. Dynamics of ammonia-oxidizing archaea and ammonia-oxidizing bacteria during composting of chicken manure and mushroom cultural waste%鸡粪菌渣好氧堆肥过程中氨氧化古菌及氨氧化细菌群落的动态变化

    Institute of Scientific and Technical Information of China (English)

    邱珊莲; 张少平; 翁伯琦; 罗涛; 林霜霜; 何炎森

    2016-01-01

    以amoA 基因为标记,通过Real-Time PCR和限制性片段长度多态性(Restriction fragment length polymorphism,RFLP)法对鸡粪菌渣好氧堆肥过程中的氨氧化古菌(Ammonia-oxidizing archaea, AOA)和氨氧化细菌(Ammonia-oxidizing bacteria, AOB)进行了丰度及群落结构的分析。结果表明,在堆制初期、好氧发酵高温期及后熟期,AOB的amoA 基因丰度均占主导优势,是AOA的38~992倍。进入好氧发酵高温期,AOA amoA 基因丰度下降至发酵前的0.9%,AOB下降至17.6%,后熟期AOA与AOB的amoA基因丰度与好氧发酵高温期相当。在上述3个阶段AOA与AOB各自存在一个绝对优势菌群,分别为Cluster 3和Nitrosomonas europaea,其中Cluster 3克隆子数目分别占整个克隆文库的70.73%、54.28%、72.45%,Nitrosomonas europaea克隆子数目分别占整个克隆文库的78.44%、93.20%、94.27%。堆肥3个阶段AOA的多样性指数变化不大,Shannon-Wiener值维持在1.53~1.60,但群落结构发生明显演替,随着堆肥温度升高,堆肥前期的一些菌群(Cluster 4、Cluster 5、Cluster 6)逐渐消失,新的菌群Cluster 1出现并成为堆肥中后期的第二大优势菌群。AOB无论是多样性指数还是群落组成,都发生剧烈的变化。AOB在堆肥前期Shannon-Wiener指数值最大(1.47),种群数最多(6个基因簇,分别为 Nitrosomonas europaea Cluster,Nitrosomonas halophila Cluster,Nitrosomonas communis Cluster,Nitrosomonas nitrosa Cluster,Nitrosospira briensis Cluster,Nitrosospira multiformis Cluster);进入高温发酵期,Shannon-Wiener下降至0.45,群落结构单一,只有Nitrosomonas europaea Cluster和Nitrosomonas halophila Cluster;进入后熟期,AOB多样性及种群数得到一定程度的回升。%The transformation and loss of nitrogen in composting materials were affected profoundly by ammonia oxidizers during the com-posting process. The abundance and composition of

  15. Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina -like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm

    DEFF Research Database (Denmark)

    Foesel, Bärbel U.; Gieseke, Armin; Schwermer, Carsten;

    2008-01-01

    recirculating marine aquaculture system are presented. Repeated rounds of the full-cycle rRNA approach were necessary to optimize DNA extraction and the probe set for FISH to obtain a reliable and comprehensive picture of the ammonia-oxidizing community. Analysis of the ammonia monooxygenase gene (amoA...

  16. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Jeanette M. [Utah State University (USU); Klotz, Martin G [University of Louisville, Louisville; Stein, Lisa Y [University of California, Riverside; Arp, D J [Oregon State University; Bottomley, Peter J [Oregon State University; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Larimer, Frank W [ORNL; Shin, M [U.S. Department of Energy, Joint Genome Institute; Starkenburg, Shawn R [Oregon State University

    2008-01-01

    The complete genome of the ammonia-oxidizing bacterium, Nitrosospira multiformis (ATCC 25196T), consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2827 putative proteins. Of these, 2026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and N. eutropha were the best match for 42% of the predicted genes in N. multiformis. The genome contains three nearly identical copies of amo and hao gene clusters as large repeats. Distinguishing features compared to N. europaea include: the presence of gene clusters encoding urease and hydrogenase, a RuBisCO-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced AOB genomes. Gene clusters encoding proteins associated with outer membrane and cell envelope functions including transporters, porins, exopolysaccharide synthesis, capsule formation and protein sorting/export were abundant. Numerous sensory transduction and response regulator gene systems directed towards sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate and cyanophycin storage and utilization were identified providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments.

  17. Nitrification resilience and community dynamics of ammonia-oxidizing bacteria with respect to ammonia loading shock in a nitrification reactor treating steel wastewater.

    Science.gov (United States)

    Cho, Kyungjin; Shin, Seung Gu; Lee, Joonyeob; Koo, Taewoan; Kim, Woong; Hwang, Seokhwan

    2016-08-01

    The aim of this study was to investigate the nitrification resilience pattern and examine the key ammonia-oxidizing bacteria (AOB) with respect to ammonia loading shocks (ALSs) in a nitrification bioreactor treating steel wastewater. The perturbation experiments were conducted in a 4-L bioreactor operated in continuous mode with a hydraulic retention time of 10 d. Three sequential ALSs were given to the bioreactor (120, 180 and 180 mg total ammonia nitrogen (TAN)/L. When the first shock was given, the nitrification process completely recovered after 14 d of further operation. However, the resilience duration was significantly reduced to ∼1 d after the second and third ALSs. In the bioreactor, Nitrosomonas aestuarii dominated the other AOB species, Nitrosomonas europaea and N. nitrosa, throughout the process. In addition, the population of N. aestuarii increased with ammonia utilization following each ALS; i.e., this species responded to acute ammonia overloadings by contributing to ammonia oxidation. This finding suggests that N. aestuarii could be exploited to achieve stable nitrification in industrial wastewaters that contain high concentrations of ammonia. PMID:26896313

  18. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  19. A Potentiometric Flow Biosensor Based on Ammonia-Oxidizing Bacteria for the Detection of Toxicity in Water

    Directory of Open Access Journals (Sweden)

    Qianyu Zhang

    2013-05-01

    Full Text Available A flow biosensor for the detection of toxicity in water using the ammonia-oxidizing bacterium (AOB Nitrosomonas europaea as a bioreceptor and a polymeric membrane ammonium-selective electrode as a transducer is described. The system is based on the inhibition effects of toxicants on the activity of AOB, which can be evaluated by measuring the ammonium consumption rates with the ammonium-selective membrane electrode. The AOB cells are immobilized on polyethersulfone membranes packed in a holder, while the membrane electrode is placed downstream in the flow cell. Two specific inhibitors of the ammonia oxidation‒allylthiourea and thioacetamide‒have been tested. The IC50 values defined as the concentration of an inhibitor causing a 50% reduction in the ammonia oxidation activity have been measured as 0.17 μM and 0.46 μM for allylthiourea and thioacetamide, respectively. The proposed sensor offers advantages of simplicity, speed and high sensitivity for measuring toxicity in water.

  20. Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile.

    Science.gov (United States)

    Dorador, Cristina; Busekow, Annika; Vila, Irma; Imhoff, Johannes F; Witzel, Karl-Paul

    2008-05-01

    We analyzed enrichment cultures of ammonia-oxidizing bacteria (AOB) collected from different areas of Salar de Huasco, a high altitude, saline, pH-neutral water body in the Chilean Altiplano. Samples were inoculated into mineral media with 10 mM NH4+ at five different salt concentrations (10, 200, 400, 800 and 1,400 mM NaCl). Low diversity (up to three phylotypes per enrichment) of beta-AOB was detected using 16S rDNA and amoA clone libraries. Growth of beta-AOB was only recorded in a few enrichment cultures and varied according to site or media salinity. In total, five 16S rDNA and amoA phylotypes were found which were related to Nitrosomonas europaea/Nitrosococcus mobilis, N. marina and N. communis clusters. Phylotype 1-16S was 97% similar with N. halophila, previously isolated from Mongolian soda lakes, and phylotypes from amoA sequences were similar with yet uncultured beta-AOB from different biofilms. Sequences related to N. halophila were frequently found at all salinities. Neither gamma-AOB nor ammonia-oxidizing Archaea were recorded in these enrichment cultures. PMID:18305895

  1. Shifts in the dominant populations of ammonia-oxidizing beta-subclass Proteobacteria along the eutrophic Schelde estuary

    NARCIS (Netherlands)

    de Bie, MJM; Speksnijder, AGCL; Kowalchuk, GA; Schuurman, T; Zwart, G; Stephen, [No Value; Diekmann, OE; Laanbroek, HJ

    2001-01-01

    The community structure of ammonia-oxidizing bacteria of the beta -subclass Proteobacteria was investigated with respect to environmental gradients along the Schelde, a eutrophic estuary system. A dominance of Nitrosomonas-Like sequences was detected using molecular techniques targeting the 16S rRNA

  2. Ammonia-oxidizing archaea respond positively to inorganic nitrogen addition in desert soils.

    Science.gov (United States)

    Marusenko, Yevgeniy; Garcia-Pichel, Ferran; Hall, Sharon J

    2015-02-01

    In soils, nitrogen (N) addition typically enhances ammonia oxidation (AO) rates and increases the population density of ammonia-oxidizing bacteria (AOB), but not that of ammonia-oxidizing archaea (AOA). We asked if long-term inorganic N addition also has similar consequences in arid land soils, an understudied yet spatially ubiquitous ecosystem type. Using Sonoran Desert top soils from between and under shrubs within a long-term N-enrichment experiment, we determined community concentration-response kinetics of AO and measured the total and relative abundance of AOA and AOB based on amoA gene abundance. As expected, N addition increased maximum AO rates and the abundance of bacterial amoA genes compared to the controls. Surprisingly, N addition also increased the abundance of archaeal amoA genes. We did not detect any major effects of N addition on ammonia-oxidizing community composition. The ammonia-oxidizing communities in these desert soils were dominated by AOA as expected (78% of amoA gene copies were related to Nitrososphaera), but contained unusually high contributions of Nitrosomonas (18%) and unusually low numbers of Nitrosospira (2%). This study highlights unique traits of ammonia oxidizers in arid lands, which should be considered globally in predictions of AO responses to changes in N availability. PMID:25764551

  3. Community analysis of ammonia oxidizer in the oxygen-limited nitritation stage of OLAND system by DGGE of PCR amplified 16S rDNA Fragments and FISH

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dan; ZHANG De-min; LIU Yao-ping; CAO Wen-wei; CHEN Guan-xiong

    2004-01-01

    OLAND(oxygen limited autotrophic nitrification and denitrification) nitrogen removal system was constructed by coupling with oxygen limited nitritation stage and anaerobic ammonium oxidation stage. Ammonia oxidizer, as a kind of key bacteria in N cycle, plays an important role at the oxygen limited nitritation stage of OLAND nitrogen removal system. In this study, specific amplification of 16S rDNA fragment of ammonia oxidizer by nested PCR, separation of mixed PCR samples by denaturing gradient gel electrophoresis(DGGE), and the quantification of ammonia oxidizer by Fluorescence in situ hybridization(FISH) were combined to investigate the shifts of community composition and quantity of ammonia oxidizer of the oxygen limited nitritation stage in OLAND system. It showed that the community composition of ammonia oxidizer changed drastically when dissolved oxygen was decreased gradually, and the dominant ammonia oxidizer of the steady nitrite accumulation stage were completely different from that of the early stage of oxygen limited nitritation identified by DGGE . It was concluded that the Nitrosomonas may be the dominant genus of ammonia oxidizer at the oxygen limited nitritation stage of OLAND system characterized by nested PCR-DGGE and FISH, and the percentage of Nitrosomonas was 72.5% ( 0.8% of ammonia oxidizer at the steady nitrite accumulation stage detected by FISH.

  4. Niche specialization of terrestrial archaeal ammonia oxidizers

    OpenAIRE

    Gubry-Rangin, Cécile; Hai, Brigitte; Quince, Christopher; Engel, Marion; Thomson, Bruce C.; James, Phillip; Schloter, Michael; Robert I. Griffiths; Prosser, James I.; Nicol, Graeme W.

    2011-01-01

    Soil pH is a major determinant of microbial ecosystem processes and potentially a major driver of evolution, adaptation, and diversity of ammonia oxidizers, which control soil nitrification. Archaea are major components of soil microbial communities and contribute significantly to ammonia oxidation in some soils. To determine whether pH drives evolutionary adaptation and community structure of soil archaeal ammonia oxidizers, sequences of amoA, a key functional gene of ammonia oxidation, were...

  5. Ammonia-Oxidizer Communities in an Agricultural Soil treated with Contrasting Nitrogen Sources.

    Directory of Open Access Journals (Sweden)

    Mussie Y. Habteselassie

    2013-11-01

    Full Text Available The community of ammonia-oxidizing prokaryotes was examined in an agricultural soil treated for 6 seasons with contrasting nitrogen (N sources. Molecular tools based on the gene encoding ammonia monooxygenase were used to characterize the ammonia oxidizer communities and their abundance. Soil DNA was extracted from soils sampled from silage corn plots that received no additional N (control, dairy waste compost (DC, liquid dairy waste (LW, and ammonium sulfate (AS treatments at approximately 100 and 200 kg available N ha-1 over 6 years. The N treatment affected the quantity of ammonia oxidizers based on estimates of amoA by real-time PCR. Ammonia oxidizing bacteria (AOB were higher in soils from the AS200, AS100, and LW200 treatments (2.5 x107, 2.5x107, and 2.1 x107 copies g-1 soil, respectively than in the control (8.1x106copies/g while the abundance of amoA encoding archaea (AOA was not significantly affected by treatment (3.8x107copies g-1 soil, average. The ratio of AOA/AOB was higher in the control and compost treated soils, both treatments have the majority of their ammonium supplied through mineralization of organic nitrogen. Clone libraries of partial amoA sequences indicated AOB related to Nitrosospira multiformis and AOA related to uncultured Nitrososphaera similar to those described by soil fosmid 54d9 were prevalent. Profiles of the amoC-amoA intergenic region indicated that both Nitrosospira- and Nitrosomonas-type AOB were present in all soils examined. In contrast to the intergenic amoC-amoA profile results, Nitrosomonas-like clones were recovered only in the LW200 treated soil-DNA. The impact of six years of contrasting nitrogen sources applications caused changes in ammonia oxidizer abundance while the community composition remained relatively stable for both AOB and AOA.

  6. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils

    OpenAIRE

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2011-01-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA...

  7. Autotrophic ammonia oxidation by soil thaumarchaea

    OpenAIRE

    Zhang, Li-Mei; Offre, Pierre R.; He, Ji-Zheng; Verhamme, Daniel T.; Nicol, Graeme W.; Prosser, James I.

    2010-01-01

    Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, bu...

  8. Community structure of β-Proteobacterial ammonia-oxidizing bacteria in prawn farm sediment

    Institute of Scientific and Technical Information of China (English)

    Ying Ma; Lin Wang; Lumin Qian

    2008-01-01

    To examine the community structure of β-Proteobacterial ammonia-oxidizing bacteria (AOB) in prawn farm sediment, the 16S rRNA gene library was constructed with β-Proteobacterial AOB-specific primers. The library was screened by PCR-restriction fragment length polymorphism (RFLP) analysis and clones with unique RFLP patterns were sequenced. Two groups of β-Proteobacterial AOB, the Nitrosomonas and the Nitrosospira, were detected. The Nitrosomonas occupied an absolute dominant position, accounting for more than 90% of total clones in the clone library, while the Nitrosospira accounting for 5.48%. Nitrosomonas-affiliated clones were grouped into the Nitrosomonas marina and the Nitrosomonas sp. Nm 143 clusters, and Nitrosospira-affiliated clones were grouped into the Nitrosospira cluster 1. No other clusters of β-Proteobacterial AOB were found. The results enriched our knowledge of AOB diversity in the prawn farm sediment and provided important foundational data for further functional studies of these microbes in mariculture environments.

  9. Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond

    Science.gov (United States)

    Lu, Shimin; Liu, Xingguo; Ma, Zhuojun; Liu, Qigen; Wu, Zongfan; Zeng, Xianlei; Shi, Xu; Gu, Zhaojun

    2016-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in sediment samples (0–50 cm depth) collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5- to 39.9-fold in surface sediments (0–10 cm depth), which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths) were grouped into the Nitrosopumilus cluster. PMID:26834709

  10. Vertical segregation and phylogenetic characterization of ammonia-oxidizing bacteria and archaea in the sediment of a freshwater aquaculture pond

    Directory of Open Access Journals (Sweden)

    Shimin eLu

    2016-01-01

    Full Text Available Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA in sediment samples (0–50 cm depth collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5–39.9-fold in surface sediments (0–10 cm depth, which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths were grouped into the Nitrosopumilus cluster.

  11. The effect of hydrology on the distribution of ammonia-oxidizing betaproteobacteria in impounded black mangroves (Avicennia germinans

    Directory of Open Access Journals (Sweden)

    Hendrikus J. eLaanbroek

    2012-04-01

    Full Text Available The distribution of species of aerobic chemolitho-autotrophic microorganisms such as the ammonia-oxidizing bacteria will be governed by pH, salinity and temperature as well as by the availability of oxygen, ammonia, carbon dioxide and other inorganic elements required for growth. Impounded mangrove forests in the Indian River Lagoon, a coastal estuary on the east coast of Florida, are dominated by mangroves, especially black mangrove (Avicennia germinans, that differ in size and density. In March 2009 the management in one of the impoundments was changed for purpose of insect control, by pumping water from the adjacent estuary. We collected soil samples in three different black mangrove habitats in this and an adjacent impoundment in 2008, 2009 and 2010, always in March, to determine the pre- and post-management effects of summer flooding on the distribution of 16s rRNA genes belonging to ammonia-oxidizing betaproteobacteria (β-AOB.At the level of 95% mutual similarity in the 16s rRNA gene, 11 different Operational Taxonomic Units were identified; the majority related to the lineages Nitrosomonas marina (57% of the total, Nitrosomonas sp. Nm143 (23% and Nitrosospira cluster 1 (18%. Higher salinities of interstitial water, probably due to severe winter drought, had a significant effect on the composition of the β-AOB in March 2009 compared to March 2008. Nitrosomonas sp. Nm143 was replaced as second important lineage by Nitrosospira cluster 1. Simultaneously with the community change, the level of potential ammonia-oxidizing activities decreased by an average of 67%. Long-term summer flooding in 2009 reduced the percentage of N. marina by half in favor of the two other major lineages, but decreased again the potential ammonia-oxidizing activities by 41% on average. No significant differences were observed between the flooded and non-flooded impoundment. There were differences in the community composition of the bacteria in the three black

  12. The abundance and diversity of ammonia-oxidizing bacteria in activated sludge under autotrophic domestication.

    Science.gov (United States)

    Li, Qiang; Ma, Chao; Sun, Shifang; Xie, Hui; Zhang, Wei; Feng, Jun; Song, Cunjiang

    2013-04-01

    Ammonia-oxidizing bacteria (AOB) play a key role in nitrogen-removal wastewater treatment plants (WWTPs) as they can transform ammonia into nitrite. AOB can be enriched in activated sludge through autotrophic domestication although they are difficult to be isolated. In this study, autotrophic domestication was carried out in a lab-scale sequencing-batch-reactor (SBR) system with two activated sludge samples. The ammonia removal capacity of the sludge samples increased during the domestication, and pH exhibited a negative correlation with the ammonia removal amount, which indicated that it was one important factor of microbial ammonia oxidation. The count of AOB, measured by the most probable number (MPN) method, increased significantly during autotrophic domestication as ammonia oxidation efficiency was enhanced. We investigated the changes in the community structure of AOB before and after domestication by amoA clone library and T-RFLP profile. It showed that AOB had been successfully enriched and the community structure significantly shifted during the domestication. Two groups of AOB were found in sludge samples: Nitrosomonas-like group remained predominant all the time and Nitrosospira-like group changed obviously. Simultaneously, the total heterotrophic bacteria were investigated by MPN and Biolog assay. The metabolic diversity of heterotrophs had changed minutely, although the count of them decreased significantly and lost superiority of microbial communities in the sludge. PMID:24620598

  13. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China.

    Science.gov (United States)

    Li, Hu; Weng, Bo-Sen; Huang, Fu-Yi; Su, Jian-Qiang; Yang, Xiao-Ru

    2015-07-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrogen cycling. However, the effects of environmental factors on the activity, abundance, and diversity of AOA and AOB and the relative contributions of these two groups to nitrification in paddy soils are not well explained. In this study, potential nitrification activity (PNA), abundance, and diversity of amoA genes from 12 paddy soils in Southern China were determined by potential nitrification assay, quantitative PCR, and cloning. The results showed that PNA was highly variable between paddy soils, ranging from 4.05 ± 0.21 to 9.81 ± 1.09 mg NOx-N kg(-1) dry soil day(-1), and no significant correlation with soil parameters was found. The abundance of AOA was predominant over AOB, indicating that AOA may be the major members in aerobic ammonia oxidation in these paddy soils. Community compositions of AOA and AOB were highly variable among samples, but the variations were best explained by pH. AOA sequences were affiliated to the Nitrosopumilus cluster and Nitrososphaera cluster, and AOB were classified into the lineages of Nitrosospira and Nitrosomonas, with Nitrosospira being predominant over Nitrosomonas, accounting for 83.6 % of the AOB community. Moreover, the majority of Nitrosomonas was determined in neutral soils. Canonical correspondence analysis (CCA) analysis further demonstrated that AOA and AOB community structures were significantly affected by pH, soil total organic carbon, total nitrogen, and C/N ratio, suggesting that these factors exert strong effects on the distribution of AOB and AOA in paddy soils in Southern China. In conclusion, our results imply that soil pH was a key explanatory variable for both AOA and AOB community structure and nitrification activity. PMID:25744648

  14. Abundance and composition of ammonia-oxidizing bacteria and archaea in different types of soil in the Yangtze River estuary

    Institute of Scientific and Technical Information of China (English)

    Xiao-ran LI; Yi-ping XIAO; Wen-wei REN; Zeng-fu LIU; Jin-huan SHI; Zhe-xue QUAN

    2012-01-01

    Tidal fiats are soil resources of great significance.Nitrification plays a central role in the nitrogen cycle and is often a critical first step in nitrogen removal from estuarine and coastal environments.We determined the abundance as well as composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in different soils during land reclamation process.The abundance of AOA was higher than that of AOB in farm land and wild land while AOA was not detected in tidal flats using real-time polymerase chain reaction (PCR).The different abundances of AOB and AOA were negatively correlated with the salinity.The diversities of AOB and AOA were also investigated using clone libraries by amplification of amoA gene.Among AOB,nearly all sequences belonged to the Nitrosomonas lineage in the initial land reclamation process,i.e.,tidal flats,while both Nitrosomonas and Nitrosospira lineages were detected in later and transition phases of land reclamation process,farm land and wild land.The ratio of the numbers of sequences of Nitrosomonas and Nitrosospira lineages was positively correlated with the salinity and the net nitrification rate.As for AOA,there was no obvious correlation with the changes in the physicochemical properties of the soil.This study suggests that AOB may be more import than AOA with respect to influencing the different land reclamation process stages.

  15. A survey of 16S rRNA and amoA genes related to autotrophic ammonia-oxidizing bacteria of the beta-subdivision of the class proteobacteria in contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, I. A.; Stephen, J. R.; Chang, Y-J.; Bruggemann, J.; Macnaughton, S. J.; White, D. C. [Tennessee Univ., Center for Environmental Biotechnology, Knoxville, TN (United States); Long, P. E.; McKinley, J. P. [Pacific Northwest National Laboratory, Richland, WA (United States); Kowalchuk, G. A. [Netherlands Inst. of Ecology, Centre for Terrestrial Ecology, Heteren (Netherlands)

    2000-11-01

    Various genetic study methods were combined to profile beta-proteobacterial ammonia-oxidizing populations in ground water extracted from the subsurface of a contamination plume resulting from the disposal of tailings from a uranium mill at Shiprock, New Mexico. The objectives of this study were to characterize the ammonia-oxidizing populations at this site in terms of the diversity of dominant ammonia-oxidizing bacteria 16S and amoA genes, and to determine whether the ground water ammonia-oxidizing populations were linked to the dissolved nitrate concentration. Several studies have suggested that the genus Nitrosospira dominates over Nitrosomonas in bulk soil environments. Ammonia-oxidizing bacterial population sizes were estimated by competitive polymerase chain reaction targeting the gene amoA; it correlated significantly with nitrate concentration. Both 16S rDNA and amoA analyses suggested that all samples were dominated by Nitrosomonas over Nitrosospira in ground water, suggesting that ground water ammonia oxidizers are more like those dominating freshwater sediments than those dominant in bulk soil. It was concluded that the failure of the Shiprock site to remediate anthropogenic nitrogen is not likely to be related to the toxic effects of uranium on autotrophic nitrification. Indeed, it is more likely to be the result of factors such as the availability of organic carbon or other electron donors. 45 refs., 1 tab., 3 figs.

  16. Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea

    OpenAIRE

    Cao, Huiluo; Hong, Yiguo; Li, Meng; Gu, Ji-Dong

    2012-01-01

    The phylogenetic diversity and abundance of ammonia-oxidizing beta-proteobacteria (beta-AOB) was analyzed along an anthropogenic pollution gradient from the coastal Pearl River Delta to the South China Sea using the ammonia monooxygenase subunit A (amoA) gene. Along the gradient from coastal to the open ocean, the phylogenetic diversity of the dominant genus changed from Nitrosomonas to Nitrosospira, indicating the niche specificity by these two genera as both salinity and anthropogenic influ...

  17. Fauna Europaea

    DEFF Research Database (Denmark)

    Michelsen, Verner

    ,000 taxon names, including 145,000 accepted (sub)species, assembled by a large network of (>400) leading specialists, using advanced electronic tools for data collations with data quality assured through sophisticated validation routines. Fauna Europaea started in 2000 as an EC funded FP5 project and...... Europaea provides a public web portal at faunaeur.org with links to other key biodiversity services, is installed as a taxonomic backbone in wide range of biodiversity services and actively contributes to biodiversity informatics innovations in various initiatives and EC programs....

  18. Effect of different ammonia concentrations on community succession of ammonia-oxidizing microorganisms in a simulated paddy soil column.

    Directory of Open Access Journals (Sweden)

    Hu Baolan

    Full Text Available Ammonia oxidation is performed by both ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA. To explore the effect of ammonia concentration on the population dynamic changes of ammonia-oxidizing microorganisms, we examined changes in the abundance and community composition of AOA and AOB in different layers. Most of the archaeal amoA sequences were Nitrosotalea-related and the proportion that Nitrosotalea cluster occupied decreased in the surface layer and increased in the deep layer during the cultivation process. Nitrosopumilus-related sequences were only detected in the deep layer in the first stage and disappeared later. Both phylogenetic and quantitative analysis showed that there were increased Nitrosomonas-related sequences appeared in the surface layer where the ammonia concentration was the highest. Both AOA and AOB OTU numbers in different layers decreased under selective pressure and then recovered. The potential nitrification rates were 25.06 µg · N · L(-1 · g(-1 dry soil · h(-1 in the mid layer which was higher than the other two layers. In general, obvious population dynamic changes were found for both AOA and AOB under the selective pressure of exogenous ammonia and the changes were different in three layers of the soil column.

  19. Fauna europaea

    DEFF Research Database (Denmark)

    Pape, Thomas; Beuk, Paul; Pont, Adrian Charles; Shatalkin, Anatole I; Ozerov, Andrey L; Woźnica, Andrzej J; Merz, Bernhard; Bystrowski, Cezary; Raper, Chris; Bergström, Christer; Kehlmaier, Christian; Clements, David K; Greathead, David; Kameneva, Elena Petrovna; Nartshuk, Emilia; Petersen, Johan Frederik Torp; Weber, Gisela; Bächli, Gerhard; Geller-Grimm, Fritz; Van de Weyer, Guy; Tschorsnig, Hans-Peter; de Jong, Herman; van Zuijlen, Jan-Willem; Vaňhara, Jaromír; Roháček, Jindřich; Ziegler, Joachim; Majer, József; Hůrka, Karel; Holston, Kevin; Rognes, Knut; Greve-Jensen, Lita; Munari, Lorenzo; de Meyer, Marc; Pollet, Marc; Speight, Martin C D; Ebejer, Martin John; Martinez, Michel; Carles-Tolrá, Miguel; Földvári, Mihály; Chvála, Milan; Barták, Miroslav; Evenhuis, Neal L; Chandler, Peter J; Cerretti, Pierfilippo; Meier, Rudolf; Rozkosny, Rudolf; Prescher, Sabine; Gaimari, Stephen D; Zatwarnicki, Tadeusz; Zeegers, Theo; Dikow, Torsten; Korneyev, Valery A; Richter, Vera Andreevna; Michelsen, Verner; Tanasijtshuk, Vitali N; Mathis, Wayne N; Hubenov, Zdravko; de Jong, Yde

    2015-01-01

    Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all extant multicellular European terrestrial and freshwater animals and their geographical distribution at the level of countries and major islands (east of the Urals and excluding th...

  20. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils.

    Science.gov (United States)

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-05-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3(-)-N g(-1) dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in (13)C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of (13)CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the (13)C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The (13)C-NOB was

  1. Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment.

    Science.gov (United States)

    Hiorns, W D; Hastings, R C; Head, I M; McCarthy, A J; Saunders, J R; Pickup, R W; Hall, G H

    1995-11-01

    Oligonucleotide sequences selected from the 16S rRNA genes of various species of ammonia-oxidizing bacteria were evaluated as specific PCR amplification primers and probes. The specificities of primer pairs for eubacterial, Nitrosospira and Nitrosomonas rRNA genes were established with sequence databases, and the primer pairs were used to amplify DNA from laboratory cultures and environmental samples. Eubacterial rRNA genes amplified from samples of soil and activated sludge hybridized with an oligonucleotide probe specific for Nitrosospira spp., but not with a Nitrosomonas-specific probe. Lakewater and sediment samples were analysed using a nested PCR technique in which eubacterial rRNA genes were subjected to a secondary amplification with Nitrosomonas or Nitrosospira specific primers. Again, the presence of Nitrosospira DNA, but not Nitrosomonas DNA, was detected and this was confirmed by hybridization of the amplified DNA with an internal oligonucleotide probe. Enrichments of lakewater and sediment samples, incubated for two weeks in the presence of ammonium, produced nitrite and were found to contain DNA from both Nitrosospira and Nitrosomonas as determined by nested PCR amplification and probing of 16S rRNA genes. This demonstrates that Nitrosospira spp. are widespread in the environment. The implications of the detection of Nitrosomonas DNA only after enrichment culture are discussed. PMID:8535507

  2. Fauna Europaea

    DEFF Research Database (Denmark)

    Pape, Thomas; Beuk, Paul; Pont, Adrian Charles;

    2015-01-01

    Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all extant multicellular European terrestrial and freshwater animals and their geographical distribution at the level of countries and major islands (east of the Urals and excluding the...... population density, and the more fertile habitats are extensively cultivated. This has undoubtedly increased the extinction risk for numerous species of brachyceran flies, yet with the recent re-discovery of Thyreophoracynophila (Panzer), there are no known cases of extinction at a European level. However...

  3. The effect of human settlement on the abundance and community structure of ammonia oxidizers in tropical stream sediments

    Science.gov (United States)

    Reis, Mariana P.; Ávila, Marcelo P.; Keijzer, Rosalinde M.; Barbosa, Francisco A. R.; Chartone-Souza, Edmar; Nascimento, Andréa M. A.; Laanbroek, Hendrikus J.

    2015-01-01

    Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) are a diverse and functionally important group in the nitrogen cycle. Nevertheless, AOA and AOB communities driving this process remain uncharacterized in tropical freshwater sediment. Here, the effect of human settlement on the AOA and AOB diversity and abundance have been assessed by phylogenetic and quantitative PCR analyses, using archaeal and bacterial amoA and 16S rRNA genes. Overall, each environment contained specific clades of amoA and 16S rRNA genes sequences, suggesting that selective pressures lead to AOA and AOB inhabiting distinct ecological niches. Human settlement activities, as derived from increased metal and mineral nitrogen contents, appear to cause a response among the AOB community, with Nitrosomonas taking advantage over Nitrosospira in impacted environments. We also observed a dominance of AOB over AOA in mining-impacted sediments, suggesting that AOB might be the primary drivers of ammonia oxidation in these sediments. In addition, ammonia concentrations demonstrated to be the driver for the abundance of AOA, with an inversely proportional correlation between them. Our findings also revealed the presence of novel ecotypes of Thaumarchaeota, such as those related to the obligate acidophilic Nitrosotalea devanaterra at ammonia-rich places of circumneutral pH. These data add significant new information regarding AOA and AOB from tropical freshwater sediments, albeit future studies would be required to provide additional insights into the niche differentiation among these microorganisms. PMID:26379659

  4. Ammonia-oxidizing archaea and nitrite-oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system.

    Science.gov (United States)

    Brown, Monisha N; Briones, Aurelio; Diana, James; Raskin, Lutgarde

    2013-01-01

    This study analysed the nitrifier community in the biofilter of a zero discharge, recirculating aquaculture system (RAS) for the production of marine shrimp in a low density (low ammonium production) system. The ammonia-oxidizing populations were examined by targeting 16S rRNA and amoA genes of ammonia-oxidizing bacteria (AOB) and archaea (AOA). The nitrite-oxidizing bacteria (NOB) were investigated by targeting the 16S rRNA gene. Archaeal amoA genes were more abundant in all compartments of the RAS than bacterial amoA genes. Analysis of bacterial and archaeal amoA gene sequences revealed that most ammonia oxidizers were related to Nitrosomonas marina and Nitrosopumilus maritimus. The NOB detected were related to Nitrospira marina and Nitrospira moscoviensis, and Nitrospira marina-type NOB were more abundant than N. moscoviensis-type NOB. Water quality and biofilm attachment media played a role in the competitiveness of AOA over AOB and Nitrospira marina-over N. moscoviensis-type NOB. PMID:22775980

  5. The effect of outside conditions on anaerobic ammonia oxidation reaction

    Institute of Scientific and Technical Information of China (English)

    YANG Min; WANG Shu-bo

    2016-01-01

    Organic carbon, inorganic carbon, temperature, pH and ORP are all to have a certain influence on the anaerobic ammonia oxidation reaction. We can draw some conclusions on the optimum conditions of anaerobic ammonia oxidation reaction. The optimum temperature of the anaerobic ammonia oxidation reaction is 30-35℃. And the optimum pH of the anaerobic ammonia reaction is 7.5-8.3. The presence of organic matters can affect the anaerobic ammonia reaction, and different organic matters have different influence on it. The concentration of the inorganic carbon also exist great influence on the reaction. High inorganic carbon concentration also can inhibit anaerobic ammonia oxidation reaction.

  6. Response of performance and ammonia oxidizing bacteria community to high salinity stress in membrane bioreactor with elevated ammonia loading.

    Science.gov (United States)

    Wang, Zhu; Luo, Gan; Li, Jun; Chen, Shi-Yu; Li, Yan; Li, Wen-Tao; Li, Ai-Min

    2016-09-01

    Effect of elevated ammonia loading rate (ALR) and increasing salinity on the operation of membrane bioreactor (MBR) and the response of microbial community were investigated. Results showed that MBR started up with 1% NaCl stress achieved amazing nitrification performance at high salinity up to 4% when treating wastewater containing 1000mg/L NH(+)4-N. Further increasing salinity to 7% led to failure of MBR unrecoverably. Steep decline of sludge activity contributed to the extremely worse performance. High-throughput sequencing analysis showed that both ALR and salinity had selective effects on the microbial community structure. In genus level, Methyloversatilis and Maribacter were enriched during the operation. Survival of salt-resistant microbes contributed to the rising of richness and diversity at 2% and 4% NaCl stress. Analysis of amoA-gene-based cloning revealed Nitrosomonas marina are chiefly responsible for catalyzing ammonia oxidation in high ALR at high salinity stress. PMID:27290667

  7. Population and diversity of ammonia-oxidizing archaea and bacteria in a pollutants' receiving area in Hangzhou Bay.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Zheng, Wei; Wen, Donghui

    2016-07-01

    The community structure of ammonia-oxidizing microorganisms is sensitive to various environmental factors, including pollutions. In this study, real-time PCR and 454 pyrosequencing were adopted to investigate the population and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) temporally and spatially in the sediments of an industrial effluent receiving area in the Qiantang River's estuary, Hangzhou Bay. The abundances of AOA and AOB amoA genes fluctuated in 10(5)-10(7) gene copies per gram of sediment; the ratio of AOA amoA/AOB amoA ranged in 0.39-5.52. The AOA amoA/archaeal 16S rRNA, AOB amoA/bacterial 16S rRNA, and AOA amoA/AOB amoA were found to positively correlate with NH4 (+)-N concentration of the seawater. Nitrosopumilus cluster and Nitrosomonas-like cluster were the dominant AOA and AOB, respectively. The community structures of both AOA and AOB in the sediments exhibited significant seasonal differences rather than spatial changes in the effluent receiving area. The phylogenetic distribution of AOB in this area was consistent with the wastewater treatment plants (WWTPs) discharging the effluent but differed from the Qiantang River and other estuaries, which might be an outcome of long-term effluent discharge. PMID:26960319

  8. Human settlement as driver of bacterial, but not of archaeal, ammonia oxidizers abundance and community structure in tropical stream sediments

    Directory of Open Access Journals (Sweden)

    Mariana De Paula Reis

    2015-08-01

    Full Text Available Ammonia-oxidizing archaea (AOA and bacteria (AOB are a diverse and functionally important group in the nitrogen cycle. Nevertheless, AOA and AOB communities driving this process remain uncharacterized in tropical freshwater sediment. Here, the effect of human settlement on the AOA and AOB diversity and abundance have been assessed by phylogenetic and quantitative PCR analyses, using archaeal and bacterial amoA and 16S rRNA genes. Overall, each environment contained specific clades of amoA and 16S rRNA genes sequences, suggesting that selective pressures lead to AOA and AOB inhabiting distinct ecological niches. Human settlement activities, as derived from increased metal and mineral nitrogen contents, appear to cause a response among the AOB community, with Nitrosomonas taking advantage over Nitrosospira in impacted environments. We also observed a dominance of AOB over AOA in mining-impacted sediments, suggesting that AOB might be the primary drivers of ammonia oxidation in these sediments. In addition, ammonia concentrations demonstrated to be the driver for the abundance of AOA, with an inversely proportional correlation between them. Our findings also revealed the presence of novel ecotypes of Thaumarchaeota, such as those related to the obligate acidophilic Nitrosotalea devanaterra at ammonia-rich places of circumneutral pH. These data add significant new information regarding AOA and AOB from tropical freshwater sediments, albeit future studies would be required to provide additional insights into the niche differentiation among these microorganisms.

  9. Ammonia oxidizers are pioneer microorganisms in the colonization of new acidic volcanic soils from South of Chile.

    Science.gov (United States)

    Hernández, Marcela; Dumont, Marc G; Calabi, Marcela; Basualto, Daniel; Conrad, Ralf

    2014-02-01

    Ammonia oxidation, performed by specialized microorganisms belonging to the Bacteria and Archaea, is the first and most limiting step of soil nitrification. Nitrification has not yet been examined in young volcanic soils. The aim of the present work was to evaluate the abundance and diversity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in acidic volcanic soils (andisols) of different defined ages to determine their relative contribution to nitrification and soil colonization. Soil was collected from three vegetated sites on Llaima Volcano (Chile) recolonized after lava eruptions in 1640, 1751 and 1957. Quantitative polymerase chain reaction, terminal restriction fragment length polymorphism and clone sequence analyses of the amoA gene were performed for the AOA and AOB communities. All soils showed high nitrification potentials, but they were highest in the younger soils. Archaeal amoA genes outnumbered bacterial amoA genes at all sites, and AOA abundances were found to be proportional to the nitrification potentials. Sequencing indicated the presence of AOA related to Nitrososphaera and Nitrosotalea, and AOB related primarily to Nitrosospira and sporadically to Nitrosomonas. The study showed that both AOA and AOB are early colonizers of andisols, but that AOA outnumber AOB and play an important role in nitrification. PMID:24596264

  10. Spatial distribution of ammonia-oxidizing archaea and bacteria across eight freshwater lakes in sediments from Jiangsu of China

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2014-03-01

    Full Text Available Ammonia-oxidizingarchaea (AOA and ammonia-oxidizing bacteria (AOB play an important role innitrogen transformation in freshwater sediments. However, it is still unclear towhat extent the distribution patterns of these microorganisms are affected bythe freshwater sediment across a large geographical scale. This study wasdesigned to gain insight into the heterogeneity distribution of AOA and AOB in32 freshwater sediments from a wide range of ecologic types. Real-time quantitative polymerasechain reaction PCR(qPCR combined with the terminal restrictionfragment length polymorphism(T-RFLP were employed to characterize the abundance, diversity, and communitystructure of the AOA and AOB in 32 freshwater sediments. AOA and AOB wereubiquitous in all sediments, and archaeal amoA far outnumbered bacterial amoA inmost sediments with lower organic matters. The abundance of AOA and AOB did notvary with the freshwater ecological type (macrophyte dominated region and algaedominated region. Based on  the T-RFLP of an amoA gene, this research found that organicmatters in pore water rather than other factors affect the AOA communitystructure in sediments, while the AOB were not significantly different in thefreshwater sediments. Phylogenetic analysis showed that all archaeal amoAsequences fell within either the Crenarchaeotal Group (CG I.1b or the CGI.1asubgroup, and all AOB clustered with genus Nitrosomonas or Nitrosospira. The data obtained inthis study elucidates the role of ammonia-oxidizing archaea andammonia-oxidizing bacteria in the nitrogen cycle of freshwater ecosystems.

  11. Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil

    Directory of Open Access Journals (Sweden)

    Yu Fang

    2015-12-01

    Full Text Available Ammonia oxidization is a critical step in the soil N cycle and can be affected by the fertilization regimes. Chinese milk-vetch (Astragalus sinicus L., MV is a major green manure of rice (Oryza sativa L. fields in southern China, which is recommended as an important agronomic practice to improve soil fertility. Soil chemical properties, abundance and community structures of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA in a MV-rice rotation field under different fertilization regimes were investigated. The field experiment included six treatments: control, without MV and chemical fertilizer (CK; 100% chemical fertilizer (NPK; 18 000 kg MV ha-1 plus 100% chemical fertilizer (NPKM1; 18 000 kg MV ha-1 plus 40% chemical fertilizer (NPKM2; 18 000 kg MV ha-1 alone (MV; and 18 000 kg MV ha-1 plus 40% chemical fertilizer plus straw (NPKMS. Results showed that NPKMS treatment could improve the soil fertility greatly although the application of 60% chemical fertilizer. The abundance of AOB only in the MV treatment had significant difference with the control; AOA were more abundant than AOB in all corresponding treatments. The NPKMS treatment had the highest AOA abundance (1.19 x 10(8 amoA gene copies g-1 and the lowest abundance was recorded in the CK treatment (3.21 x 10(7 amoA gene copies g-1. The abundance of AOA was significantly positively related to total N, available N, NH4+-N, and NO3--N. The community structure of AOA exhibited little variation among different fertilization regimes, whereas the community structure of AOB was highly responsive. Phylogenetic analysis showed that all AOB sequences were affiliated with Nitrosospira or Nitrosomonas and all AOA denaturing gradient gel electrophoresis (DGGE bands belonged to the soil and sediment lineage. These findings could be fundamental to improve our understanding of AOB and AOA in the N cycle in the paddy soil.

  12. Comparison of the abundance and community structure of ammonia oxidizing prokaryotes in rice rhizosphere under three different irrigation cultivation modes.

    Science.gov (United States)

    Zhang, Jinping; Zhou, Xiaohong; Chen, Lei; Chen, Zhigang; Chu, Jinyu; Li, Yimin

    2016-05-01

    The abundance, diversity and community structure of ammonia oxidizing archaea (AOA) and bacteria (AOB) in rice rhizosphere soils under three different irrigation cultivated modes, named continuous irrigation mode (C), intermittent irrigation mode (I) and semi-arid mode (M), respectively, were investigated using amoA gene as a molecular biomarker. Clone libraries and quantitative polymerase chain reaction results indicated the highest number of archaeal amoA gene copy was detected in M cultivation mode, then in I and C, whereas, their order of amoA gene copy numbers were I > M > C for AOB, and those were obvious higher than in the bulk soil. The ratios of AOA/AOB were greater than 1 for all samples, suggested the predominance of AOA throughout the period of rice growth in the three different irrigation cultivation modes. Diversity index (SChao1 and Shannon H) have an obvious variation in three different irrigation cultivation modes. For AOA, SChao1 was highest in M and lowest in I mode, whereas, Shannon H was highest in M cultivation mode and lowest in C mode. For AOB, mode M exhibited the highest diversity index (SChao1 and Shannon H), while C showed the lowest highest diversity, suggested long-term water input (continuous mode) may decrease diversity of ammonia oxidizers, whereas mode M may be more appropriate for them. In addition, AOA sequences fall within Nitrososphaera, Nitrosopumilus and Nitrosotalea cluster with proportion of 89.38, 8.85 and 1.77 %, respectively. AOB gene sequences belonged to the Nitrosomonas and Nitrosospira genera with proportion of 90.97 and 9.03 %, respectively. In addition, the abundances, diversity and community structure had an obvious temporal variation in three developmental stages of rice, further suggested rice growth obviously affected the ammonia oxidizing prokaryotes in their rhizosphere soil. PMID:27038955

  13. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    Directory of Open Access Journals (Sweden)

    Y. Zheng

    2014-03-01

    Full Text Available Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and pmoA genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity by 6-fold during a 19 day incubation period, while ammonia oxidation activity was significantly inhibited in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like type Ia MOB, and nitrifying communities appeared to be suppressed by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to equal increase in Methylosarcina and Methylobacter-related MOB, indicating the differential growth requirements of representatives of these genera. Strikingly, type Ib MOB did not respond to methane nor to urea. Increase in 13C-assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, in

  14. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    Science.gov (United States)

    Zheng, Y.; Huang, R.; Wang, B. Z.; Bodelier, P. L. E.; Jia, Z. J.

    2014-06-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and functional genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity 6-fold during a 19-day incubation period, while ammonia oxidation activity was significantly suppressed in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like MOB, and nitrifying communities appeared to be partially inhibited by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to an equal increase in Methylosarcina and Methylobacter-related type Ia MOB, indicating the differential growth requirements of representatives of these genera. An increase in 13C assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition partially inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, as well as growth of nitrite-oxidizing bacteria. These

  15. Habitat-associated phylogenetic community patterns of microbial ammonia oxidizers.

    Directory of Open Access Journals (Sweden)

    Antoni Fernàndez-Guerra

    Full Text Available Microorganisms mediating ammonia oxidation play a fundamental role in the connection between biological nitrogen fixation and anaerobic nitrogen losses. Bacteria and Archaea ammonia oxidizers (AOB and AOA, respectively have colonized similar habitats worldwide. Ammonia oxidation is the rate-limiting step in nitrification, and the ammonia monooxygenase (Amo is the key enzyme involved. The molecular ecology of this process has been extensively explored by surveying the gene of the subunit A of the Amo (amoA gene. In the present study, we explored the phylogenetic community ecology of AOB and AOA, analyzing 5776 amoA gene sequences from >300 isolation sources, and clustering habitats by environmental ontologies. As a whole, phylogenetic richness was larger in AOA than in AOB, and sediments contained the highest phylogenetic richness whereas marine plankton the lowest. We also observed that freshwater ammonia oxidizers were phylogenetically richer than their marine counterparts. AOA communities were more dissimilar to each other than those of AOB, and consistent monophyletic lineages were observed for sediments, soils, and marine plankton in AOA but not in AOB. The diversification patterns showed a more constant cladogenesis through time for AOB whereas AOA apparently experienced two fast diversification events separated by a long steady-state episode. The diversification rate (γ statistic for most of the habitats indicated γ(AOA > γ(AOB. Soil and sediment experienced earlier bursts of diversification whereas habitats usually eutrophic and rich in ammonium such as wastewater and sludge showed accelerated diversification rates towards the present. Overall, this work shows for the first time a global picture of the phylogenetic community structure of both AOB and AOA assemblages following the strictest analytical standards, and provides an ecological view on the differential evolutionary paths experienced by widespread ammonia-oxidizing

  16. Temperature responses of ammonia-oxidizing prokaryotes in freshwater sediment microcosms.

    Directory of Open Access Journals (Sweden)

    Jin Zeng

    Full Text Available In order to investigate the effects of temperature on the abundances and community compositions of ammonia-oxidizing archaea (AOA and bacteria (AOB, lake microcosms were constructed and incubated at 15°C, 25°C and 35°C for 40 days, respectively. Temperature exhibited different effects on the abundance and diversity of archaeal and bacterial amoA gene. The elevated temperature increased the abundance of archaeal amoA gene, whereas the abundance of bacterial amoA gene decreased. The highest diversity of bacterial amoA gene was found in the 25°C treatment sample. However, the 25°C treatment sample maintained the lowest diversity of archaeal amoA gene. Most of the archaeal amoA sequences obtained in this study affiliated with the Nitrosopumilus cluster. Two sequences obtained from the 15°C treatment samples were affiliated with the Nitrosotalea cluster. N. oligotropha lineage was the most dominant bacterial amoA gene group. Several sequences affiliated to Nitrosospira and undefined N. europaea/NC. mobilis like lineage were found in the pre-incubation and 25°C treatment groups.

  17. 牛粪堆肥高温期氨氧化古菌与氨氧化细菌的多样性分析%Diversity of Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea at High Temperature Phase during the Livestock Manure Composting Process

    Institute of Scientific and Technical Information of China (English)

    孙志远; 晏磊; 王彦杰; 林匡飞; 李辉; 王伟东

    2013-01-01

    The transmutation and loss of nitrogen materials were effected significantly by ammonia-oxidizing microorganisms during the composting process. In order to detect the diversity of Ammonia-Oxidizing Archaea (AOA)and Ammonia-Oxidizing Bacteria (AOB),the monooxygenase gene (amoA)was used to analyze as the tag at high-temperature phase during the livestock manure composting process. The results showed that Nitrosomonas genus and Nitrosospira genus were the dominant genus of AOB,and the amount of clones accounted for 59.3% and 40.7% among the clone library at the high-temperature period,respectively,and the amount of Nitrosomonas was more dominant than that of the Nitrosospira. For communities of AOA,the amount of AOA resulting from soil were greatly more than that of AOA resulting from sea. The ratio of clones of soil AOA was 94.2%,but the ratio of sea AOA accounted for only 5.8%among all of AOA clones.%堆肥化过程中,氨氧化微生物对堆肥原料的氮素转化和氮损失影响重大。为了分析牛粪堆肥高温期微生物的多样性,研究以氨单加氧酶基因(amoA)为标记,分析了牛粪堆肥高温阶段氨氧化古菌(Ammonia-Oxidizing Archaea,AOA)和氨氧化细菌(Ammonia-Oxidizing Bacteria,AOB)菌群多样性。结果表明,在AOB类群中,亚硝化单胞菌属(Nitrosomonas)和亚硝化螺菌属(Nitrosospira)克隆子数量分别占整个克隆文库的59.3%和40.7%,它们是堆肥高温期的优势氨氧化细菌,但是Nitrosomonas的数量比Nitrosospira更占优势。在AOA群落中,soil/sediment菌群占据绝对数量优势,其克隆子数量占AOA文库的94.2%,sea/sediment菌群仅占5.8%。

  18. Ammonia oxidation rates and nitrification in the Arabian Sea

    Science.gov (United States)

    Newell, Silvia E.; Babbin, Andrew R.; Jayakumar, Amal; Ward, Bess B.

    2011-12-01

    Nitrification rates, as well as the relationships between rates and ammonia oxidizer abundance (both archaeal and bacterial), were investigated in the Arabian Sea. Ammonia oxidation rates were measured directly using 15N-NH4+stable isotope additions in gas-impermeable, trace metal clean trilaminate bags (500 mL) at in situ temperature. Tracer incubations were performed at three stations at depths above, below, and within the oxycline of the open-ocean oxygen minimum zone (OMZ). Ammonia oxidation rates were similar to previous open-ocean measurements, ranging from undetectable to 21.6 ± 0.1 nmol L-1 d-1. The highest rates at each station occurred at the primary nitrite maximum (above the OMZ), and rates were very low at depths greater than 900 m. The abundances of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were estimated using theamoA gene by quantitative polymerase chain reaction (qPCR). Both AOA and AOB amoA were detected above, within, and below the OMZ, although the AOA were always more abundant than the AOB, by a factor of 35-216. Nitrification rates were not directly correlated to AOA or AOB amoA abundance. These rates offer new insight into the role of nitrification in the mesopelagic zone. The abundance of AOA amoA genes at 1000 m suggests that ˜50% of the microbial biomass could be autotrophic. Additionally, the integrated nitrification rate at depth implies that nitrification could consume most of the ammonium produced by the flux of organic carbon in the mesopelagic zone.

  19. Ammonia-oxidizing Bacteria and Archaea in the Rhizosphere of Freshwater Macrophytes

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2007-01-01

    rate measurements revealed clear differences in ammonia oxidation rates. The diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was assessed using the ammonia monooxygenase (amoA) gene as functional marker. Both AOA and AOB could be detected in the rhizosphere of all...

  20. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria.

    Science.gov (United States)

    Liu, Shuai; Hu, Baolan; He, Zhanfei; Zhang, Bin; Tian, Guangming; Zheng, Ping; Fang, Fang

    2015-10-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Few studies compared the adaptability of AOA and AOB for oxygenated/hypoxic alternant conditions in water-level-fluctuating zones. Here, using qPCR and 454 high-throughput sequencing of functional amoA genes of AOA and AOB, we examined the changes of abundances, diversities, and community structures of AOA and AOB in periodically flooded soils compared to the non-flooded soils in Three Gorges Reservoir. The increased AOA operational taxonomic unit (OTU) numbers and the higher ratios of abundance (AOA:AOB) in the periodically flooded soils suggested AOA have better adaptability for oxygenated/hypoxic alternant conditions in the water-level-fluctuating zones in the Three Gorges Reservoir and probably responsible for the ammonia oxidation there. Canonical correspondence analysis (CCA) showed that oxidation-reduction potential (ORP) had the most significant effect on the community distribution of AOA (p amoA gene abundances (AOA:AOB) (p < 0.05). ORP was also significantly positively correlated with AOB abundance (p < 0.05). PMID:26099334

  1. 南美白对虾养殖底泥中氨氧化细菌与氨氧化古菌多态性分析%Diversity of β-Proteobacterial ammonia-oxidizing bacteria and ammonia-oxidizing archaea in shrimp farm sediment

    Institute of Scientific and Technical Information of China (English)

    高利海; 林炜铁

    2011-01-01

    [目的]本研究皆在了解虾养殖底泥中氨氧化细菌与氨氧化古菌群落多态性.[方法]以功能基因为基础,构建氨氧化细菌(AOB)与氨氧化古菌(AOA)的氨单加氧酶α亚基基因(amoA)克隆文库.利用限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP)技术将克隆文库阳性克隆子进行归类分析分成若干个可操作分类单元(Operational Taxa Units,OTUs).[结果]通过序列多态性分析,表明AOB amoA基因克隆文库中所有序列都属于变形杆菌门β亚纲(β-Proteobacteria)中的亚硝化单细胞菌属(Nitrosomonas)及Nitrosomonas-like,未发现亚硝化螺旋菌属(Nitrosospira).AOA amoA基因克隆文库中只有一个OTU序列属于未分类的古菌(Unclassified-Archaea),其余序列都属于泉古菌门(Crenarchaeote).AOA群落结构单一且存在一个绝对优势类群OTU3,其克隆子数日占克隆文库的57.45%.AOB和AOA amoA基因克隆文库分别包括13个OTUs和9个OTUs,其文库覆盖率分别为73.47%和90.43%.AOB amoA基因克隆文库的Shannon-Wiener指数、Evenness指数、Simpson指数、Richness指数均高于AOA.[结论]虾养殖塘底泥中存在氨氧化古菌的amoA基因,且多态性低于氨氧化细菌,表明氨氧化古菌在虾养殖塘底泥的氮循环中可能具有重要的作用.%[Objective]In order to study the diversity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in shrimp farm sediment.[Methods]Total microbial DNA was directly extracted from the shrimp farm sediment.The clone library of amoA genes were constructed with β-Proteobacterial-AOB and AOA specific primers.The library was screened by PCR-restriction fragment length polymorphism (RFLP) analysis and clones with unique RFLP patterns were sequenced.[Results]Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from shrimp farm sediment were affiliated with Nitrosomonas (61.54% ) or Nitrosomonas-like ( 38.46% ) species and

  2. Differential responses of ammonia-oxidizing archaea and bacteria to long-term fertilization in a New England salt marsh

    Directory of Open Access Journals (Sweden)

    Xuefeng ePeng

    2013-01-01

    Full Text Available Since the discovery of ammonia-oxidizing archaea (AOA, new questions have arisen about population and community dynamics and potential interactions between AOA and ammonia-oxidizing Bacteria (AOB. We investigated the effects of long-term fertilization on AOA and AOB in the Great Sippewissett Marsh, Falmouth, MA, USA to address some of these questions. Sediment samples were collected from low and high marsh habitats in July 2009 from replicate plots that received low (LF, high (HF, and extra high (XF levels of a mixed NPK fertilizer biweekly during the growing season since 1974. Additional untreated plots were included as controls (C. Terminal restriction fragment length polymorphism analysis of the amoA genes revealed distinct shifts in AOB communities related to fertilization treatment, but the response patterns of AOA were less consistent. Four AOB operational taxonomic units (OTUs predictably and significantly responded to fertilization, but only one AOA OTU showed a significant pattern. Betaproteobacterial amoA gene sequences within the Nitrosospira-like cluster dominated at C and LF sites, while sequences related to Nitrosomonas spp. dominated at HF and XF sites. We identified some clusters of AOA sequences recovered primarily from high fertilization regimes, but other clusters consisted of sequences recovered from all fertilization treatments, suggesting greater physiological diversity. Surprisingly, fertilization appeared to have little impact on abundance of AOA or AOB. In summary, our data reveal striking patterns for AOA and AOB in response to long-term fertilization, and also suggest a missing link between community composition and abundance and nitrogen processing in the marsh.

  3. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

    Science.gov (United States)

    Frame, C. H.; Casciotti, K. L.

    2010-09-01

    Nitrous oxide (N2O) is a trace gas that contributes to the greenhouse effect and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced per mole ammonium-N consumed) has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2) concentration decreases and as nitrite (NO2-) concentration increases. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM) media. These yields, which were typically between 4 × 10-4 and 7 × 10-4 for cultures with cell densities between 2 × 102 and 2.1 × 104 cells ml-1, were lower than previous reports for ammonia-oxidizing bacteria. The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5 × 106 cells ml-1), where 160-fold higher yields were observed at 0.5% O2 (5.1 μM dissolved O2) compared with 20% O2 (203 μM dissolved O2). At lower cell densities (2 × 102 and 2.1 × 104 cells ml-1), cultures grown under 0.5% O2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O2. Thus, previously reported many-fold increases in N2O yield with dropping O2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO2- (up to 1 mM) in the growth medium also increased N2O yields by an average of 70% to 87% depending on O2 concentration. We made stable isotopic measurements on N2O from these cultures to identify the biochemical mechanisms behind variations in N2O yield. Based on measurements of δ15Nbulk, site preference (SP = δ15Nα-δ15Nβ), and δ18O of N2O (δ18O-N2O), we estimate that nitrifier

  4. Diversity of Ammonia Oxidizing Archaea in Tropical Compost Systems

    OpenAIRE

    Vidya eDe Gannes; Gaius eEudoxie; Dyer, David H.; William James Hickey

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the p...

  5. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Science.gov (United States)

    Löscher, C. R.; Kock, A.; Könneke, M.; LaRoche, J.; Bange, H. W.; Schmitz, R. A.

    2012-07-01

    The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA) over their bacterial counterparts (AOB) in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O) that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA) were detectable throughout the water column of the eastern tropical North Atlantic (ETNA) and eastern tropical South Pacific (ETSP) Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen in the ocean.

  6. Global Ecological Pattern of Ammonia-Oxidizing Archaea

    OpenAIRE

    Huiluo Cao; Jean-Christophe Auguet; Ji-Dong Gu

    2013-01-01

    BACKGROUND: The global distribution of ammonia-oxidizing archaea (AOA), which play a pivotal role in the nitrification process, has been confirmed through numerous ecological studies. Though newly available amoA (ammonia monooxygenase subunit A) gene sequences from new environments are accumulating rapidly in public repositories, a lack of information on the ecological and evolutionary factors shaping community assembly of AOA on the global scale is apparent. METHODOLOGY AND RESULTS: We condu...

  7. Changes in community composition of ammonia-oxidizing betaproteobacteria from stands of Black mangrove (Avicennia germinans in response to ammonia enrichment and more oxic conditions

    Directory of Open Access Journals (Sweden)

    Hendrikus J. Laanbroek

    2013-11-01

    Full Text Available In flooded and non-flooded impounded forests of Black mangrove (Avicennia germinans, the community structure of the ammonia-oxidizing betaproteobacteria (β-AOB differed among distinct mangrove vegetation cover types and hydrological regimes. This had been explained by a differential response of lineages of β-AOB to the prevailing soil conditions that included increased levels of moisture and ammonium. To test this hypothesis, slurries of soils collected from a flooded and a non-flooded impoundment were subjected to enhanced levels of ammonium in the absence and presence of additional shaking. After a period of 6 days, the community composition of the β-AOB based on the 16S rRNA gene was determined and compared with the original community structures. Regardless of the incubation conditions and the origin of the samples, sequences belonging to the Nitrosomonas aestuarii lineage became increasingly dominant, whereas the number of sequences of the lineages of Nitrosospira (i.e. Cluster 1 and Nitrosomonas sp. Nm143 declined. Changes in community structure were related to changes in community sizes determined by quantitative PCR based on the amoA gene. The amoA gene copy numbers of β-AOB were compared to those of the ammonia-oxidizing archaea (AOA. Gene copy numbers of the bacteria increased irrespective of incubation conditions, but the numbers of archaea declined in the continuously shaken cultures. This observation is discussed in relation to the distribution of the β-AOB lineages in the impounded Black mangrove forests.

  8. Underestimation of ammonia-oxidizing bacteria abundance by amplification bias in amoA-targeted qPCR.

    Science.gov (United States)

    Dechesne, Arnaud; Musovic, Sanin; Palomo, Alejandro; Diwan, Vaibhav; Smets, Barth F

    2016-07-01

    Molecular methods to investigate functional groups in microbial communities rely on the specificity and selectivity of the primer set towards the target. Here, using rapid sand filters for drinking water production as model environment, we investigated the consistency of two commonly used quantitative PCR methods to enumerate ammonia-oxidizing bacteria (AOB): one targeting the phylogenetic gene 16S rRNA and the other, the functional gene amoA. Cloning-sequencing with both primer sets on DNA from two waterworks revealed contrasting images of AOB diversity. The amoA-based approach preferentially recovered sequences belonging to Nitrosomonas Cluster 7 over Cluster 6A ones, while the 16S rRNA one yielded more diverse sequences belonging to three AOB clusters, but also a few non-AOB sequences, suggesting broader, but partly unspecific, primer coverage. This was confirmed by an in silico coverage analysis against sequences of AOB (both isolates and high-quality environmental sequences). The difference in primer coverage significantly impacted the estimation of AOB abundance at the waterworks with high Cluster 6A prevalence, with estimates up to 50-fold smaller for amoA than for 16S rRNA. In contrast, both approaches performed very similarly at waterworks with high Cluster 7 prevalence. Our results highlight that caution is warranted when comparing AOB abundances obtained using different qPCR primer sets. PMID:27166579

  9. Abundance and Composition of Epiphytic Bacterial and Archaeal Ammonia Oxidizers of Marine Red and Brown Macroalgae

    OpenAIRE

    Trias, R. (Rosalía); García-Lledó A. (Arantzazu); Sánchez, N.; López-Jurado, J. L.; Hallin, S. (Sara); Bañeras, Ll. (Lluís)

    2012-01-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are important for nitrogen cycling in marine ecosystems. Little is known about the diversity and abundance of these organisms on the surface of marine macroalgae, despite the algae’s potential importance to create surfaces and local oxygen-rich environments supporting ammonia oxidation at depths with low dissolved oxygen levels. We determined the abundance and composition of the epiphytic bacterial and archaeal ammonia-oxidizing communities o...

  10. Detection of Ammonia-Oxidizing Archaea in Fish Processing Effluent Treatment Plants

    OpenAIRE

    Devivaraprasad Reddy, A.; Subrahmanyam, Gangavarapu; Shivani Kallappa, Girisha; Karunasagar, Iddya; Karunasagar, Indrani

    2014-01-01

    Ammonia oxidation is the rate limiting step in nitrification and thus have an important role in removal of ammonia in natural and engineered systems with participation of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their relative distribution and activity in fish processing effluent treatment plants (FPETPs) though significant, is hitherto unreported. Presence of AOA in sludge samples obtained from FPETPs was studied by amplification and sequencing of t...

  11. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea

    OpenAIRE

    Horak, Rachel E. A.; Qin, Wei; Schauer, Andy J; Armbrust, E. Virginia; Ingalls, Anitra E; Moffett, James W.; Stahl, David A.; Devol, Allan H.

    2013-01-01

    Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcr...

  12. Thaumarchaeal Ammonia Oxidation in an Acidic Forest Peat Soil Is Not Influenced by Ammonium Amendment▿ †

    OpenAIRE

    Stopnišek, Nejc; Gubry-Rangin, Cécile; Höfferle, Špela; Nicol, Graeme W.; Mandič-Mulec, Ines; Prosser, James I.

    2010-01-01

    Both bacteria and thaumarchaea contribute to ammonia oxidation, the first step in nitrification. The abundance of putative ammonia oxidizers is estimated by quantification of the functional gene amoA, which encodes ammonia monooxygenase subunit A. In soil, thaumarchaeal amoA genes often outnumber the equivalent bacterial genes. Ecophysiological studies indicate that thaumarchaeal ammonia oxidizers may have a selective advantage at low ammonia concentrations, with potential adaptation to soils...

  13. Diversity of Ammonia Oxidizing Archaea in Tropical Compost Systems

    Directory of Open Access Journals (Sweden)

    Vidya eDe Gannes

    2012-07-01

    Full Text Available Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, coffee hulls, which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase and the finished product (mature phase. The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (groub I.1b, in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have signifcant effects on its performanc as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities with nitrification in these systems.

  14. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Löscher

    2012-07-01

    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O.

    Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the eastern tropical North Atlantic (ETNA and eastern tropical South Pacific (ETSP Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved

  15. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Loescher

    2012-02-01

    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O which occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been described to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the Eastern Tropical North Atlantic (ETNA and Eastern Tropical South Pacific Oceans (ETSP. Particularly in the ETNA, maxima in abundance and expression of archaeal amoA genes correlated with the N2O maximum and the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen

  16. Fauna Europaea: Gastrotricha

    Science.gov (United States)

    d`Hondt, Jean-Loup; Kisielewski, Jacek; Todaro, M. Antonio; Tongiorgi, Paolo; Guidi, Loretta; Grilli, Paolo

    2015-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. Gastrotricha are a meiobenthic phylum composed of 813 species known so far (2 orders, 17 families) of free-living microinvertebrates commonly present and actively moving on and into sediments of aquatic ecosystems, 339 of which live in fresh and brackish waters. The Fauna Europaea database includes 214 species of Chaetonotida (4 families) plus a single species of Macrodasyida incertae sedis. This paper deals with the 224 European freshwater species known so far, 9 of which, all of Chaetonotida, have been described subsequently and will be included in the next database version. Basic information on their biology and ecology are summarized, and a list of selected, main references is given. As a general conclusion the gastrotrich fauna from Europe is the best known compared with that of other continents, but shows some important gaps of knowledge in Eastern and Southern regions. PMID:26379467

  17. Community Structure of Ammonia-Oxidizing Archaea and Ammonia-Oxidizing Bacteria in Soil Treated with the Insecticide Imidacloprid

    Directory of Open Access Journals (Sweden)

    Mariusz Cycoń

    2015-01-01

    Full Text Available The purpose of this experiment was to assess the effect of imidacloprid on the community structure of ammonia-oxidizing archaea (AOA and ammonia-oxidizing bacteria (AOB in soil using the denaturing gradient gel electrophoresis (DGGE approach. Analysis showed that AOA and AOB community members were affected by the insecticide treatment. However, the calculation of the richness (S and the Shannon-Wiener index (H values for soil treated with the field rate (FR dosage of imidacloprid (1 mg/kg soil showed no changes in measured indices for the AOA and AOB community members. In turn, the 10*FR dosage of insecticide (10 mg/kg soil negatively affected the AOA community, which was confirmed by the decrease of the S and H values in comparison with the values obtained for the control soil. In the case of AOB community, an initial decline followed by the increase of the S and H values was obtained. Imidacloprid decreased the nitrification rate while the ammonification process was stimulated by the addition of imidacloprid. Changes in the community structure of AOA and AOB could be due to an increase in the concentration of N-NH4+, known as the most important factor which determines the contribution of these microorganisms to soil nitrification.

  18. Changing roles of ammonia-oxidizing bacteria and archaea in a continuously acidifying soil caused by over-fertilization with nitrogen.

    Science.gov (United States)

    Song, He; Che, Zhao; Cao, Wenchao; Huang, Ting; Wang, Jingguo; Dong, Zhaorong

    2016-06-01

    Nitrification coupled with nitrate leaching contributes to soil acidification. However, little is known about the effect of soil acidification on nitrification, especially on ammonia oxidation that is the rate-limiting step of nitrification and performed by ammonia-oxidizing bacteria (AOB) and archaea (AOA). Serious soil acidification occurs in Chinese greenhouses due to the overuse of N-fertilizer. In the present study, greenhouse soils with 1, 3, 5, 7, and 9 years of vegetable cultivation showed a consistent pH decline (i.e., 7.0, 6.3, 5.6, 4.9, and 4.3). Across the pH gradient, we analyzed the community structure and abundance of AOB and AOA by pyrosequencing and real-time PCR techniques, respectively. The recovered nitrification potential (RNP) method was used to determine relative contributions of AOA and AOB to nitrification potential. The results revealed that soil acidification shaped the community structures of AOA and AOB. In acidifying soil, soil pH, NH3 concentration, and DOC content were critical factors shaping ammonia oxidizer community structure. AOB abundance, but not AOA, was strongly influenced by soil acidification. When soil pH was below 5.0, AOA rather than AOB were responsible for almost all of the RNP. However, when soil pH ranged from 5.6 to 7.0, AOB were the major contributors to RNP. The group I.1a-associatied AOA had more relative abundance in low pH (pH<6.3), whereas group I.1b tended to prefer neutral pH. Clusters 2, 10, and 12 in AOB were more abundant in acidic soil (pH <5.6), while Nitrosomonas-like lineage and unclassified lineage 3 were prevailing in neutral soil and slightly acidic soil (pH, 6.0-6.5), respectively. These results suggested that soil acidification had a profound impact on ammonia oxidation and more specific lineages in AOB occupying different pH-associated niches required further investigation. PMID:26961528

  19. Drivers of archaeal ammonia-oxidizing communities in soil

    Directory of Open Access Journals (Sweden)

    KaterynaZhalnina

    2012-06-01

    Full Text Available Soil ammonia-oxidizing archaea (AOA are highly abundant and play an important role in the nitrogen cycle. In addition, AOA have a significant impact on soil quality. AOA may cause nitrogen loss from soils, and the nitrate produced by AOA can lead to ground and surface water contamination, water eutrophication, and soil subsidence. The ammonia-oxidizing archaea discovered to date are classified in the phylum Thaumarchaeota. Only a few archaeal genomes are available in databases. As a result, AOA genes are not well annotated, and it is difficult to mine and identify archaeal genes within metagenomic libraries. Nevertheless, 16S rRNA and comparative analysis of ammonia monooxygenase sequences show that soils can vary greatly in the relative abundance of AOA. In some soils, AOA can comprise more than 10% of the total prokaryotic community. In other soils, AOA comprise less than 0.5% of the community. Many approaches have been used to measure the abundance and diversity of this group including DGGE, T-RFLP, q-PCR, and DNA sequencing. AOA have been studied across different soil types and various ecosystems from the Antarctic dry valleys to the tropical forests of South America to the soils near Mount Everest. Different studies have identified multiple soil factors that trigger the abundance of AOA. These factors include pH, concentration of available ammonia, organic matter content, moisture content, nitrogen content, clay content, as well as other triggers. Land use management appears to have a major effect on the abundance of AOA in soil, which may be the result of nitrogen fertilizer used in agricultural soils. This review summarizes the published results on this topic and suggests future work that will increase our understanding of how soil management and edaphoclimatic factors influence AOA.

  20. Vertical segregation and phylogenetic characterization of ammonia-oxidizing bacteria and archaea in the sediment of a freshwater aquaculture pond

    OpenAIRE

    Shimin eLu; Xingguo eLiu; Qigen eLiu; Zhuojun eMa; Zongfan eWu; Xianlei eZeng; Xu eShi; Zhaojun eGu

    2016-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) a...

  1. Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond

    OpenAIRE

    Lu, Shimin; Liu, Xingguo; Ma, Zhuojun; Liu, Qigen; Wu, Zongfan; Zeng, Xianlei; Shi, Xu; Gu, Zhaojun

    2016-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) a...

  2. Fauna europaea: Diptera - brachycera.

    Science.gov (United States)

    Pape, Thomas; Beuk, Paul; Pont, Adrian Charles; Shatalkin, Anatole I; Ozerov, Andrey L; Woźnica, Andrzej J; Merz, Bernhard; Bystrowski, Cezary; Raper, Chris; Bergström, Christer; Kehlmaier, Christian; Clements, David K; Greathead, David; Kameneva, Elena Petrovna; Nartshuk, Emilia; Petersen, Frederik T; Weber, Gisela; Bächli, Gerhard; Geller-Grimm, Fritz; Van de Weyer, Guy; Tschorsnig, Hans-Peter; de Jong, Herman; van Zuijlen, Jan-Willem; Vaňhara, Jaromír; Roháček, Jindřich; Ziegler, Joachim; Majer, József; Hůrka, Karel; Holston, Kevin; Rognes, Knut; Greve-Jensen, Lita; Munari, Lorenzo; de Meyer, Marc; Pollet, Marc; Speight, Martin C D; Ebejer, Martin John; Martinez, Michel; Carles-Tolrá, Miguel; Földvári, Mihály; Chvála, Milan; Barták, Miroslav; Evenhuis, Neal L; Chandler, Peter J; Cerretti, Pierfilippo; Meier, Rudolf; Rozkosny, Rudolf; Prescher, Sabine; Gaimari, Stephen D; Zatwarnicki, Tadeusz; Zeegers, Theo; Dikow, Torsten; Korneyev, Valery A; Richter, Vera Andreevna; Michelsen, Verner; Tanasijtshuk, Vitali N; Mathis, Wayne N; Hubenov, Zdravko; de Jong, Yde

    2015-01-01

    Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all extant multicellular European terrestrial and freshwater animals and their geographical distribution at the level of countries and major islands (east of the Urals and excluding the Caucasus region). The Fauna Europaea project comprises about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. Fauna Europaea represents a huge effort by more than 400 contributing taxonomic specialists throughout Europe and is a unique (standard) reference suitable for many user communities in science, government, industry, nature conservation and education. The Diptera-Brachycera is one of the 58 Fauna Europaea major taxonomic groups, and data have been compiled by a network of 55 specialists. Within the two-winged insects (Diptera), the Brachycera constitute a monophyletic group, which is generally given rank of suborder. The Brachycera may be classified into the probably paraphyletic 'lower brachyceran grade' and the monophyletic Eremoneura. The latter contains the Empidoidea, the Apystomyioidea with a single Nearctic species, and the Cyclorrhapha, which in turn is divided into the paraphyletic 'aschizan grade' and the monophyletic Schizophora. The latter is traditionally divided into the paraphyletic 'acalyptrate grade' and the monophyletic Calyptratae. Our knowledge of the European fauna of Diptera-Brachycera varies tremendously among families, from the reasonably well known hoverflies (Syrphidae) to the extremely poorly known scuttle flies (Phoridae). There has been a steady growth in our knowledge of European Diptera for the last two centuries, with no apparent slow down, but there is a shift towards a larger fraction of the new species being found among the families of the nematoceran grade (lower Diptera), which due to a larger number of small

  3. Ammonia-oxidizing bacterial community composition in the nitrifying biofilter of Recirculating Aquaculture System%循环海水养殖系统硝化滤器中氨氧化微生物分析

    Institute of Scientific and Technical Information of China (English)

    刘长发; 姚敬元; 袁瑗; 刘卫东

    2012-01-01

    研究循环水养殖硝化滤器裁体上附着生物膜的微生物群落结构可以为提高其处理速率和数率,并为特异性工程菌构建提供依据.采用改良的AFLP方法分析了循环水养殖硝化滤器载体上附着的氨氧化细菌16S rRNA基因和氨单加氧酶amoA基因片段及其系统发育情况.结果表明:分析16S rRNA基因得到的序列片段比分析amoA基因片段得到了更多信息,准确度较高,可作为分析循环水养殖硝化滤器氨氧化茵群组成的有效方法.克隆测序所得序列与网上公布数据比对,可见存在于循环水养殖硝化滤器载体上的氨氧化细菌与Nitrosomonas cryotolerans、Nitrosomonas oligotropha、Nitrosospira tenuis、Nitrosomonasmarina相似度达100%,与Nitrosomornas aestuarii相似度为87%.大部分属于亚硝化单胞茵属(Nitrosomonns),仅少数序列属于亚硝化螺茵属(Nitrosospira).采用16S rRNA基因和amoA片段分析方法得到的附着于封闭循环海水养殖硝化滤器载体上的氨氧化细菌主要为变形茵(Proteobacteria)的β-亚类的亚硝化单胞茵属(Nitrosomonas)和少量的亚硝化螺茵属(Nitrosospira)氨氧化细菌,以及一定数量的y-亚类氨氧化细菌.%Ammonia-oxidizing bacteria (AOB) play an important role in transformation from ammonia nitrogen to nitrite nitrogen in the nitrifying biofilter.Studying community structure of nitrifying organisms adhered on the media of nitrification biofilter in the recirculating aquaculture system (RAS) could provide a basis of improving removal rate and performance of biofilter,and construction of nitrifying engineering bacteria for removal of ammonia from RAS.The PCR-based gene cloning and mapping of 16S rRNA gene and betaproteobacteria ammonia monooxygenase subunit A (amoA) gene of ammonia-oxidizing bacteria isolated from nitrification biofilter were surveyed by using the method of improved amplified fragment length polymorphism (AFLP) analysis.The results showed that

  4. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

    Directory of Open Access Journals (Sweden)

    C. H. Frame

    2010-09-01

    Full Text Available Nitrous oxide (N2O is a trace gas that contributes to the greenhouse effect and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced per mole ammonium-N consumed has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2 concentration decreases and as nitrite (NO2 concentration increases. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM media. These yields, which were typically between 4 × 10−4 and 7 × 10−4 for cultures with cell densities between 2 × 102 and 2.1 × 104 cells ml−1, were lower than previous reports for ammonia-oxidizing bacteria. The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5 × 106 cells ml−1, where 160-fold higher yields were observed at 0.5% O2 (5.1 μM dissolved O2 compared with 20% O2 (203 μM dissolved O2. At lower cell densities (2 × 102 and 2.1 × 104 cells ml−1, cultures grown under 0.5% O2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O2. Thus, previously reported many-fold increases in N2O yield with dropping O2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO2 (up to 1 mM in the growth

  5. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon “Candidatus Nitrosotalea devanaterra”

    Science.gov (United States)

    Sayavedra-Soto, Luis A.; Gallois, Nicolas; Schouten, Stefan; Stein, Lisa Y.; Prosser, James I.; Nicol, Graeme W.

    2016-01-01

    Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer “Candidatus Nitrosotalea devanaterra” provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of “Ca. Nitrosotalea devanaterra” reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that “Ca. Nitrosotalea devanaterra” contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography–mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of “Ca. Nitrosotalea devanaterra” were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization. PMID:26896134

  6. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon "Candidatus Nitrosotalea devanaterra".

    Science.gov (United States)

    Lehtovirta-Morley, Laura E; Sayavedra-Soto, Luis A; Gallois, Nicolas; Schouten, Stefan; Stein, Lisa Y; Prosser, James I; Nicol, Graeme W

    2016-05-01

    Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer "Candidatus Nitrosotalea devanaterra" provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of "Ca Nitrosotalea devanaterra" reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that "Ca Nitrosotalea devanaterra" contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography-mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of "Ca Nitrosotalea devanaterra" were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization. PMID:26896134

  7. Fauna Europaea: Helminths (Animal Parasitic)

    Czech Academy of Sciences Publication Activity Database

    Gibson, D. I.; Bray, R. A.; Hunt, D.; Georgiev, B. B.; Scholz, Tomáš; Harris, P.D.; Bakke, T.A.; Pomajska, T.; Niewiadomska, K.; Kostadinova, Aneta; Tkach, V.; Bain, O.; Durette-Desset, M.-C.; Gibbons, L.; Moravec, František; Petter, A.; Dimitrova, Z.M.; Buchmann, K.; Valtonen, E. T.; de Jong, Y.

    -, č. 2 (2014), e1060. ISSN 1314-2828 Institutional support: RVO:60077344 Keywords : Acanthocephala * Biodiversity * Biodiversity Informatics * Cestoda * Fauna Europaea * Helminth * Monogenea * Nematoda * Parasite * Taxonomic indexing * Taxonomy * Trematoda * Zoology Subject RIV: EB - Genetics ; Molecular Biology

  8. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea

    OpenAIRE

    Lu, Lu; Han, Wenyan; Zhang, Jinbo; Wu, Yucheng; Wang, Baozhan; Lin, Xiangui; Zhu, Jianguo; Cai, Zucong; Jia, Zhongjun

    2012-01-01

    The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, 15N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and ...

  9. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring

    OpenAIRE

    Hatzenpichler, Roland; Elena V Lebedeva; Spieck, Eva; Stoecker, Kilian; Richter, Andreas; Daims, Holger; WAGNER, Michael

    2008-01-01

    The recent discovery of ammonia-oxidizing archaea (AOA) dramatically changed our perception of the diversity and evolutionary history of microbes involved in nitrification. In this study, a moderately thermophilic (46°C) ammonia-oxidizing enrichment culture, which had been seeded with biomass from a hot spring, was screened for ammonia oxidizers. Although gene sequences for crenarchaeotal 16S rRNA and two subunits of the ammonia monooxygenase (amoA and amoB) were detected via PCR, no hints fo...

  10. Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil

    Directory of Open Access Journals (Sweden)

    Mauricio eBustamante

    2012-08-01

    Full Text Available Water availability is the main limiting factor in arid soils; however few studies have examined the effects of drying and rewetting on nitrifiers from these environments. The effect of water availability on the diversity of ammonia-oxidizing bacteria (AOB and archaea (AOA from a semiarid soil of the Chilean sclerophyllous matorral was determined by microcosm assays. The addition of water every 14 days to reach 60% of the WHC significantly increased nitrate content in rewetted soil microcosms (p<0.001. This stimulation of net nitrification by water addition was inhibited by acetylene addition at 100 Pa. The composition of AOA and AOB assemblages from the soils microcosms was determined by clone sequencing of amoA genes (A-amoA and B-amoA, respectively, and the 16S rRNA genes specific for β-proteobacteria (beta-amo. Sequencing of beta-amo genes has revealed representatives of Nitrosomonas and Nitrosospira while B-amoA clones consisted only of Nitrosospira sequences. Furthermore, all clones from the archaeal amoA gene library (A-amoA were related to ‘mesophilic Crenarchaeota’ sequences (actually, reclassified as the phylum Thaumarchaeota. The effect of water availability on both microbial assemblages structure was determined by T-RFLP profiles using the genetic markers amoA for archaea, and beta-amo for bacteria. While AOA showed fluctuations in some T-RFs, AOB structure remained unchanged by water pulses. The relative abundance of AOA and AOB was estimated by the Most Probable Number coupled to Polymerase Chain Reaction (MPN-PCR assay. AOB was the predominant guild in this soil and higher soil water content did not affect their abundance, in contrast to AOA, which slightly increased under these conditions. Therefore, these results suggest that water addition to these semiarid soil microcosms could favor archaeal contribution to ammonium oxidation.

  11. Ammonia oxidation at high pressure and intermediate temperatures

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt;

    2016-01-01

    Ammonia oxidation experiments were conducted at high pressure (30 bar and 100 bar) under oxidizing and stoichiometric conditions, respectively, and temperatures ranging from 450 to 925 K. The oxidation of ammonia was slow under stoichiometric conditions in the temperature range investigated. Under...... oxidizing conditions the onset temperature for reaction was 850–875 K at 30 bar, while at 100 bar it was about 800 K, with complete consumption of NH3 at 875 K. The products of reaction were N2 and N2O, while NO and NO2 concentrations were below the detection limit even under oxidizing conditions. The data...... satisfactory. The main oxidation path for NH3 at high pressure under oxidizing conditions is NH3⟶+OH NH2⟶+HO2,NO2 H2NO⟶+O2 HNO⟶+O2 NO ⟶+NH2 N2. The modeling predictions are most sensitive to the reactions NH2 + NO = NNH + OH and NH2 + HO2 = H2NO + OH, which promote the ammonia consumption by forming OH...

  12. Inhibition of Direct Electrolytic Ammonia Oxidation Due to a Change in Local pH

    International Nuclear Information System (INIS)

    Electrochemical ammonia oxidation has gained a lot of attention recently as an efficient method for ammonia removal from wastewater, for the use in ammonia-based fuel cells and the production of high purity hydrogen. Thermally decomposed iridium oxide films (TDIROF) have been shown to be catalytically active for direct ammonia oxidation in aqueous solutions if NH3 is present. However, the process was reported to be rapidly inhibited on TDIROF. Herein, we show that this fast inhibition of direct ammonia oxidation does not result from surface poisoning by adsorbed elemental nitrogen (Nads). Instead, we propose that direct ammonia oxidation and oxygen evolution can lead to a drop of the local pH at the electrode resulting in a low availability of the actual reactant, NH3. The hypothesis was tested with cyclic voltammetry (CV) experiments on stagnant and rotating disk electrodes (RDE). The CV experiments on the stagnant electrode revealed that the decrease of the ammonia oxidation peaks was considerably reduced by introducing an idle phase at open circuit potential between subsequent scans. Furthermore, the polarization of the TDIROF electrode into the hydrogen evolution region (HER) resulted in increased ammonia oxidation peaks in the following anodic scans which can be explained with an increased local pH after the consumption of protons in the HER. On the RDE, the ammonia oxidation peaks did not decrease in immediately consecutive scans. These findings would not be expected if surface poisoning was responsible for the fast inhibition but they are in good agreement with the proposed mechanism of pH induced limitation by the reactant, NH3. The plausibility of the mechanism was also supported by our numerical simulations of the processes in the Nernstian diffusion layer. The knowledge about this inhibition mechanism of direct ammonia oxidation is especially important for the design of electrochemical cells for wastewater treatment. The mechanism is not only valid for

  13. Ammonia Oxidizers in a Pilot-Scale Multilayer Rapid Infiltration System for Domestic Wastewater Treatment

    OpenAIRE

    Lian, Yingli; Xu, Meiying; Zhong, Yuming; Yang, Yongqiang; Chen, Fanrong; Guo, Jun

    2014-01-01

    A pilot-scale multilayer rapid infiltration system (MRIS) for domestic wastewater treatment was established and efficient removal of ammonia and chemical oxygen demand (COD) was achieved in this study. The microbial community composition and abundance of ammonia oxidizers were investigated. Efficient biofilms of ammonia oxidizers in the stationary phase (packing material) was formed successfully in the MRIS without special inoculation. DGGE and phylogenetic analyses revealed that proteobacter...

  14. Links between Ammonia Oxidizer Community Structure, Abundance, and Nitrification Potential in Acidic Soils ▿ †

    OpenAIRE

    Yao, Huaiying; Gao, Yangmei; Nicol, Graeme W.; Campbell, Colin D.; Prosser, James I.; Zhang, Limei; Han, Wenyan; Singh, Brajesh K.

    2011-01-01

    Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen f...

  15. Ammonia-Oxidizer Communities in an Agricultural Soil treated with Contrasting Nitrogen Sources.

    OpenAIRE

    Mussie Y. Habteselassie; Li eXu; Norton, Jeanette M.

    2013-01-01

    The community of ammonia-oxidizing prokaryotes was examined in an agricultural soil treated for 6 seasons with contrasting nitrogen (N) sources. Molecular tools based on the gene encoding ammonia monooxygenase were used to characterize the ammonia oxidizer communities and their abundance. Soil DNA was extracted from soils sampled from silage corn plots that received no additional N (control), dairy waste compost (DC), liquid dairy waste (LW), and ammonium sulfate (AS) treatments at approxima...

  16. Distribution of ammonia oxidizers in relation to vegetation characteristics in the Qilian Mountains, northwestern China

    Science.gov (United States)

    Tai, X. S.; Mao, W. L.; Liu, G. X.; Chen, T.; Zhang, W.; Wu, X. K.; Long, H. Z.; Zhang, B. G.; Gao, T. P.

    2014-04-01

    Nitrogen is the major limiting nutrient in cold environments, and its availability is strongly dependent on nitrification. However, microbial communities driving this process remain largely uncharacterized in alpine meadow soils in northwestern China, namely those catalyzing the rate-limiting step of ammonia oxidation. In this study, ammonia-oxidizing communities in alpine meadow soils were characterized by real-time PCR and clone sequencing by targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. The results demonstrated that ammonia-oxidizing archaea (AOA) outnumbered ammonia-oxidizing bacteria (AOB) in the alpine meadow soils. Most of the AOA phylotypes detected in the study region fell within typical Group I.1b of Thaumarchaeota. Interestingly, a new ammonia-oxidizing archaeal group named "Kobresia meadow soil group" was found. Phylogenetic analysis of AOB communities exhibited a dominance of Nitrosospira-like sequences affiliated to beta-Proteobacteria. Compared with other alpine environments, Qilian Mountains had a great phylogenetic diversity of ammonia oxidizers. Principal Component Analysis (PCA) analysis showed that distinct AOA/AOB phylotype groups were attributed to different meadow types, reflecting an overall distribution of ammonia-oxidizing communities associated with meadow types. Redundancy Analysis (RDA) analysis showed that Axis 1 (90.9%) together with Axis 2 (9.1%) explained all the variables while Axis 1 exhibited a significant explanatory power. So that vegetation coverage mostly correlated to Axis 1 was the most powerful environmental factor in the study region. Characteristics of ammonia-oxidizing communities showed a close association with vegetation coverage.

  17. Aquarium Nitrification Revisited: Thaumarchaeota Are the Dominant Ammonia Oxidizers in Freshwater Aquarium Biofilters

    OpenAIRE

    Sauder, Laura A; Katja Engel; Stearns, Jennifer C; Masella, Andre P; Richard Pawliszyn; Neufeld, Josh D.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the d...

  18. Linking Diversity and Stable Isotope Fractionation in Ammonia-Oxidizing Bacteria

    Science.gov (United States)

    Casciotti, K. L.; Sigman, D. M.; Ward, B. B.

    2002-12-01

    Ammonia-oxidizing bacteria play a key role in the regeneration of nitrate (NO3) and the production of nitrous oxide (N2O) in many marine, estuarine, and terrestrial ecosystems. While isotopic ratios (15N/14N) of dissolved inorganic nitrogen pools (NH4+ and NO3) can serve as in situ tracers for overall nitrification activity, genetic characterization of bacterial communities can provide information about the diversity and relative abundance of specific groups of ammonia-oxidizers. An important question facing microbial ecologists is how diversity in gene or protein sequences is reflected in diversity in biogeochemical activity. Here we investigate the link between similarity in amino acid sequence for ammonia monooxygenase (AmoA) and its isotopic discrimination (ɛAMO) for B-subdivision ammonia-oxidizing bacteria. Isotope effects for ammonia-oxidation were measured for 5 cultured nitrifier strains. A 20 permil range in isotope effects was observed among these nitrifiers, which could not be explained by differential rates of ammonia oxidation, transport of NH4+, accumulation of NH2OH, or N2O production among the strains. The major similarities and differences observed in ɛAMO are, however, paralleled by similarities and differences in AmoA amino sequences from these organisms. These results suggest that combining genetic and stable isotopic tools may provide complementary information regarding the activity of particular groups of ammonia-oxidizers in the environment.

  19. Global ecological pattern of ammonia-oxidizing archaea.

    Directory of Open Access Journals (Sweden)

    Huiluo Cao

    Full Text Available BACKGROUND: The global distribution of ammonia-oxidizing archaea (AOA, which play a pivotal role in the nitrification process, has been confirmed through numerous ecological studies. Though newly available amoA (ammonia monooxygenase subunit A gene sequences from new environments are accumulating rapidly in public repositories, a lack of information on the ecological and evolutionary factors shaping community assembly of AOA on the global scale is apparent. METHODOLOGY AND RESULTS: We conducted a meta-analysis on uncultured AOA using over ca. 6,200 archaeal amoA gene sequences, so as to reveal their community distribution patterns along a wide spectrum of physicochemical conditions and habitat types. The sequences were dereplicated at 95% identity level resulting in a dataset containing 1,476 archaeal amoA gene sequences from eight habitat types: namely soil, freshwater, freshwater sediment, estuarine sediment, marine water, marine sediment, geothermal system, and symbiosis. The updated comprehensive amoA phylogeny was composed of three major monophyletic clusters (i.e. Nitrosopumilus, Nitrosotalea, Nitrosocaldus and a non-monophyletic cluster constituted mostly by soil and sediment sequences that we named Nitrososphaera. Diversity measurements indicated that marine and estuarine sediments as well as symbionts might be the largest reservoirs of AOA diversity. Phylogenetic analyses were further carried out using macroevolutionary analyses to explore the diversification pattern and rates of nitrifying archaea. In contrast to other habitats that displayed constant diversification rates, marine planktonic AOA interestingly exhibit a very recent and accelerating diversification rate congruent with the lowest phylogenetic diversity observed in their habitats. This result suggested the existence of AOA communities with different evolutionary history in the different habitats. CONCLUSION AND SIGNIFICANCE: Based on an up-to-date amoA phylogeny, this

  20. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

    Directory of Open Access Journals (Sweden)

    C. H. Frame

    2010-04-01

    Full Text Available Nitrous oxide (N2O is a trace gas that contributes to greenhouse warming of the atmosphere and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced/mole ammonium-N consumed has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2 concentration decreases and as nitrite (NO2 concentration increases. These results were obtained in substrate-rich conditions and may not reflect N2O production in the ocean. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM media. These yields were lower than previous reports, between 4×10−4 and 7×10−4 (moles N/mole N. The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5×10 cells ml−1, where 160-fold higher yields were observed at 0.5% O2 compared with 20% O2. At environmentally relevant cell densities (2×102 to 2.1×104 cells ml−1, cultures grown under 0.5% O2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O2. Thus, previously reported many-fold increases in N2O yield with dropping O2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO2 (up to 1 mM in the growth medium also increased N2O yields by an average of 70% to 87% depending

  1. N2O emission in short-cut simultaneous nitrification and denitrification process: dynamic emission characteristics and succession of ammonia-oxidizing bacteria.

    Science.gov (United States)

    Yan, Yingyan; Li, Ping; Wu, Jinhua; Zhu, Nengwu; Wu, Pingxiao; Wang, Xiangde

    2014-01-01

    A sequencing batch airlift reactor was used to investigate the characteristics of nitrous oxide (N2O) emission and the succession of an ammonia-oxidizing bacteria (AOB) community. The bioreactor could successfully switch from the complete simultaneous nitrification and denitrification (SND) process to the short-cut SND process by increasing the influent pH from 7.0-7.3 to 8.0-8.3. The results obtained showed that, compared with the complete SND process, the TN removal rate and SND efficiency were improved in the short-cut SND process by approximately 13 and 11%, respectively, while the amount of N2O emission was nearly three times larger than that in the complete SND process. The N2O emission was closely associated to nitrite accumulation. Analysis of the AOB microbial community showed that nitrifier denitrification by Nitrosomonas-like AOB could be an important pathway for the enhancement of N2O emission in the short-cut SND process. PMID:24960019

  2. Distribution of Ammonia-Oxidizing Archaea and Bacteria in the Surface Sediments of Matsushima Bay in Relation to Environmental Variables

    OpenAIRE

    Sakami, Tomoko

    2011-01-01

    Ammonia oxidization is the first and a rate-limiting step of nitrification, which is often a critical process in nitrogen removal from estuarine and coastal environments. To clarify the correlation of environmental conditions with the distribution of ammonia oxidizers in organic matter-rich coastal sediments, ammonia-oxidizing archaea (AOA) and bacteria (AOB) ammonia monooxygenase alpha subunit gene (amoA) abundance was determined in sediments of Matsushima Bay located in northeast Japan. The...

  3. Grassland Management Regimens Reduce Small-Scale Heterogeneity and Species Diversity of β-Proteobacterial Ammonia Oxidizer Populations

    OpenAIRE

    Webster, Gordon; Embley, T Martin; Prosser, James I.

    2002-01-01

    The impact of soil management practices on ammonia oxidizer diversity and spatial heterogeneity was determined in improved (addition of N fertilizer), unimproved (no additions), and semi-improved (intermediate management) grassland pastures at the Sourhope Research Station in Scotland. Ammonia oxidizer diversity within each grassland soil was assessed by PCR amplification of microbial community DNA with both ammonia oxidizer-specific, 16S rRNA gene (rDNA) and functional, amoA, gene primers. P...

  4. Spatial Distribution and Factors Shaping the Niche Segregation of Ammonia-Oxidizing Microorganisms in the Qiantang River, China

    OpenAIRE

    Liu, Shuai; Shen, Lidong; Lou, Liping; Guangming TIAN; Zheng, Ping; Hu, Baolan

    2013-01-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, the current knowledge of the distribution, diversity, and relative abundance of these two microbial groups in freshwater sediments is insufficient. We examined the spatial distribution and analyzed the possible factors leading to the niche segregation of AOA and AOB in the sediments of the Qiantang River, using clone library construction and quantitative PCR for both archaeal ...

  5. Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota.

    Science.gov (United States)

    Weber, Eva B; Lehtovirta-Morley, Laura E; Prosser, James I; Gubry-Rangin, Cécile

    2015-03-01

    Thaumarchaeota are among the most abundant organisms on Earth and are ubiquitous. Within this phylum, all cultivated representatives of Group 1.1a and Group 1.1b Thaumarchaeota are ammonia oxidizers, and play a key role in the nitrogen cycle. While Group 1.1c is phylogenetically closely related to the ammonia-oxidizing Thaumarchaeota and is abundant in acidic forest soils, nothing is known about its physiology or ecosystem function. The goal of this study was to perform in situ physiological characterization of Group 1.1c Thaumarchaeota by determining conditions that favour their growth in soil. Several acidic grassland, birch and pine tree forest soils were sampled and those with the highest Group 1.1c 16S rRNA gene abundance were incubated in microcosms to determine optimal growth temperature, ammonia oxidation and growth on several organic compounds. Growth of Group 1.1c Thaumarchaeota, assessed by qPCR of Group 1.1c 16S rRNA genes, occurred in soil, optimally at 30°C, but was not associated with ammonia oxidation and the functional gene amoA could not be detected. Growth was also stimulated by addition of organic nitrogen compounds (glutamate and casamino acids) but not when supplemented with organic carbon alone. This is the first evidence for non-ammonia oxidation associated growth of Thaumarchaeota in soil. PMID:25764563

  6. Fauna Europaea: Helminths (Animal Parasitic)

    NARCIS (Netherlands)

    D.I. Gibson; R.A. Bray; D. Hunt; B.B. Georgiev; T. Scholz; P.D. Harris; T.A. Bakke; T. Pojmanska; K. Niewiadomska; A. Kostadinova; V. Tkach; O. Bain; M.C. Durette-Desset; L. Gibbons; F. Moravec; A. Petter; Z.M. Dimitrova; K. Buchmann; E.T. Valtonen; Y. de Jong

    2014-01-01

    Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fa

  7. The Communities of Ammonia-oxidizing Organisms in Pearl River Estuary Sediments%珠江口海岸带沉积物氨氧化细菌和古菌组成及定量研究

    Institute of Scientific and Technical Information of China (English)

    陈金全; 郑燕平; 姜丽晶; 王风平

    2012-01-01

    [Objective] This study aimed to investigate the abundance and composition of ammonia-oxidizing organism in Pearl River Estuary sediment. [ Method] Based on amoA genes, we detected the abundance and composition of ammonia-oxidizing organism in Pearl River Estuary sediment by using quantitative real-time polymerase chain reaction (Q-PCR) , cloning and sequencing approaches. [ Result] The results of Q-PCR presented that ammonia-oxidizing archaea were more abundant than ammonia-oxidizing bacteria in the top of sediment cores, with AOA to AOB ratios 8.96 (site Q5) and 3. 69 (site Q7). It suggested that ammonia-oxidizing archaea maybe play more important roles than ammonia-oxidizing bacteria in the process of ammonia oxidation in the Pearl River Estuary sediment. In the top sediment layer of Q7, bacterial amoA-like gene sequences were dominated by Nitrosomonas-like sequence types, which could be classified into five groups (clusters A, B, C, D, and E). Interestingly, archeal amoA-like gene was successfully amplified while bacterial amoA-like gene failed to be detected. These archeal amoA-like genes fell into two groups "water column/sediment" cluster and "soil/sediment" cluster. Most of the sequences (93. 3% ) in the bottom sediment layer of Q7 fell into " soil/sediment" cluster. [ Conclusion] This study helps to realize the cycle of nitrogen in Pearl River Estuary region, and thus to provide theoretical support fur the treatment of nitrogen eutrophication.%[目的]对珠江口海岸带沉积物中的氨氧化细菌和古菌的组成进行分析,并进行定量研究.[方法]用构建克隆文库和Q - PCR定量的方法对珠江口沉积物中氨氧化细菌和古菌amoA基因的含量和多样性特征进行研究.[结果]在2个沉积物表层,氨氧化古菌的含量是细菌的9和22倍,揭示氨氧化古菌在珠江口的氨氧化过程中起主导作用;系统发育分析表明大多数古菌和细菌的amoA基因序列与不可培养的源于河口区和污染

  8. Benthic ammonia oxidizers differ in community structure and biogeochemical potential across a riverine delta.

    Science.gov (United States)

    Damashek, Julian; Smith, Jason M; Mosier, Annika C; Francis, Christopher A

    2014-01-01

    Nitrogen pollution in coastal zones is a widespread issue, particularly in ecosystems with urban or agricultural watersheds. California's Sacramento-San Joaquin Delta, at the landward reaches of San Francisco Bay, is highly impacted by both agricultural runoff and sewage effluent, leading to chronically high nutrient loadings. In particular, the extensive discharge of ammonium into the Sacramento River has altered this ecosystem by vastly increasing ammonium concentrations and thus changing the stoichiometry of inorganic nitrogen stocks, with potential effects throughout the food web. This debate surrounding ammonium inputs highlights the importance of understanding the rates of, and controls on, nitrogen (N) cycling processes across the delta. To date, however, there has been little research examining N biogeochemistry or N-cycling microbial communities in this system. We report the first data on benthic ammonia-oxidizing microbial communities and potential nitrification rates for the Sacramento-San Joaquin Delta, focusing on the functional gene amoA (which codes for the α-subunit of ammonia monooxygenase). There were stark regional differences in ammonia-oxidizing communities, with ammonia-oxidizing bacteria (AOB) outnumbering ammonia-oxidizing archaea (AOA) only in the ammonium-rich Sacramento River. High potential nitrification rates in the Sacramento River suggested these communities may be capable of oxidizing significant amounts of ammonium, compared to the San Joaquin River and the upper reaches of San Francisco Bay. Gene diversity also showed regional patterns, as well as phylogenetically unique ammonia oxidizers in the Sacramento River. The benthic ammonia oxidizers in this nutrient-rich aquatic ecosystem may be important players in its overall nutrient cycling, and their community structure and biogeochemical function appear related to nutrient loadings. Unraveling the microbial ecology and biogeochemistry of N cycling pathways, including benthic

  9. Benthic Ammonia Oxidizers Differ in Community Structure and Biogeochemical Potential Across a Riverine Delta

    Directory of Open Access Journals (Sweden)

    Julian eDamashek

    2015-01-01

    Full Text Available Nitrogen pollution in coastal zones is a widespread issue, particularly in ecosystems with urban or agricultural watersheds. California’s Sacramento-San Joaquin Delta, at the landward reaches of San Francisco Bay, is highly impacted by both agricultural runoff and sewage effluent, leading to chronically high nutrient loadings. In particular, the massive discharge of ammonium into the Sacramento River has altered this ecosystem by increasing ammonium concentrations and thus changing the stoichiometry of inorganic nitrogen stocks, with potential effects throughout the food web. To date, however, there has been little research examining N biogeochemistry or N-cycling microbial communities in this system. We report the first data on benthic ammonia-oxidizing microbial communities and potential nitrification rates for the Sacramento-San Joaquin Delta, focusing on the functional gene amoA (encoding the α-subunit of ammonia monooxygenase. There were stark regional differences in ammonia-oxidizing communities, with ammonia-oxidizing bacteria (AOB outnumbering ammonia-oxidizing archaea (AOA only in the ammonium-rich Sacramento River. High potential nitrification rates in the Sacramento River suggested these communities may be capable of oxidizing significant amounts of ammonium, compared to the San Joaquin River and the upper reaches of San Francisco Bay. Gene diversity also showed regional patterns, as well as phylogenetically unique ammonia oxidizers in the Sacramento River. The community structure and biogeochemical function of benthic ammonia oxidizers appears related to nutrient loadings. Unraveling the microbial ecology and biogeochemistry of N cycling pathways is a critical step toward understanding how such ecosystems respond to the changing environmental conditions wrought by human development and climate change.

  10. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

    Science.gov (United States)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen

    2016-04-01

    The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.

  11. Community structure of ammonia-oxidizing prokaryotes at the dry-up lake in Huitengxile grassland%辉腾锡勒草原干涸湖泊中氨氧化微生物群落结构分析

    Institute of Scientific and Technical Information of China (English)

    惠丽华; 赵吉; 武琳慧; 邵玉琴; 李靖宇; 朱兵

    2012-01-01

    [目的]以内蒙古辉腾锡勒草原九十九泉湿地为对象,研究湖泊干涸过程中氨氧化微生物的群落结构及其变化.[方法]通过MPN-PCR定量测定氨氧化古菌(AOA)和氨氧化细菌(AOB)的数量;构建amoA基因克隆文库,进行系统发育分析;结合土壤环境因子,探讨湿地退化过程中影响氨氧化微生物的潜在因素.[结果]依湖泊湿地退水梯度的不同样点中,有75%的样点AOB的数量高于AOA,AOB与AOA的数量比率为0.3 -18.1.从湖心到湖岸草原带,AOA和AOB的数量有明显增加,但生物多样性呈降低趋势,二者没有呈现正相关.研究发现,AOB的数量与土壤中NH4+-N的变化存在良好响应.系统发育分析显示,退化湖泊湿地AOA克隆序列均来自于泉古菌门(Crenarchaeota);AOB的amoA基因的克隆序列大部分与亚硝化单胞菌属(Nitrosomonas)有一定同源性,较少部分与亚硝化螺菌属(Nitrosospira)有一定同源性.[结论]湖泊退水过程增加了湿地土壤氨氧化微生物的数量,而氨氧化微生物的种群丰度有所降低.AOA和AOB群落对湖泊湿地的退化过程做出了响应,其中AOB的响应较为明显,氧化条件和土壤铵浓度的改变可能是促成这种响应的重要原因.%[Objective] To investigate the structure of ammonia-oxidation microbial communities in the wetlands to dry-up process at 99 degraded lakes of the Huitengxile grassland in the Inner Mongolia Plateau. [ Methods] The microbial quantity of ammonia-oxidizing archaea ( AOA ) and ammonia oxidizing bacteria ( AOB ) were examined by most probable number-polymerase chain reaction (MPN-PCR). The clone libraries of amoA were constructed and phylogenetics were analyzed. With analysis of the soil properties, we evaluated the effects of wetlands degradation on ammonia-oxidation microbes communities. [Results] In 75% of the samples, the quantity of AOB communities was higher than that of AOA; moreover, quantity of bacterial were up to 18. 1

  12. Community Dynamics and Activity of Ammonia-Oxidizing Prokaryotes in Intertidal Sediments of the Yangtze Estuary

    OpenAIRE

    Zheng, Yanling; Hou, Lijun; Newell, Silvia; LIU Min; Zhou, Junliang; Zhao, Hui; You, Lili; Cheng, Xunliang

    2014-01-01

    Diversity, abundance, and activity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated using the ammonia monooxygenase α subunit (amoA) in the intertidal sediments of the Yangtze Estuary. Generally, AOB had a lower diversity of amoA genes than did AOA in this study. Clone library analysis revealed great spatial variations in both AOB and AOA communities along the estuary. The UniFrac distance matrix showed that all the AOB communities and 6 out of 7 AOA c...

  13. Monnte Carlo Simulation of Kinetics of Ammonia Oxidative Decomposition over the Commercial Propylene Ammoxidation Catalyst(Mo-Bi)

    Institute of Scientific and Technical Information of China (English)

    罗正鸿; 詹晓力; 等

    2003-01-01

    Monte Carlo method is applied to investigate the kinetics of ammonia oxidative decomposition over the commercial propylene ammoxidation catalyst(Mo-Bi).The simulation is quite in agreement with experimetal results.Monte Carlo simulation proves that the process of ammonia oxidation decomposition is a two-step reaction.

  14. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone

    NARCIS (Netherlands)

    Pitcher, A.; Villanueva, L.; Hopmans, E.C.; Schouten, S.; Reichart, G.J.; Sinninghe Damsté, J.S.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists;

  15. Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural Soil

    NARCIS (Netherlands)

    Jung, M.Y.; Park, S.J.; Min, D.; Kim, J.S.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Kim, G.J.; Madsen, E.L.; Rhee, S.K.

    2011-01-01

    Soil nitrification is an important process for agricultural productivity and environmental pollution. Though one cultivated representative of ammonia-oxidizing Archaea from soil has been described, additional representatives warrant characterization. We describe an ammonia-oxidizing archaeon (strain

  16. Co-Mn-Al Mixed Oxides as Catalysts for Ammonia Oxidation to N2O.

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, Jana; Jablońska, M.; Jirátová, Květa; Chmielarz, L.; Balabánová, Jana; Kovanda, F.; Obalová, L.

    2016-01-01

    Roč. 42, č. 3 (2016), s. 2669-2690. ISSN 0922-6168 R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : Co-Mn-Al mixed oxides * catalytic ammonia oxidation * N2O production * mechanochemical production Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.221, year: 2014

  17. Geographic distribution of archaeal ammonia oxidizing ecotypes in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Eva eSintes

    2016-02-01

    Full Text Available In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo, exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of archaeal ammonia oxidizers (AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization.

  18. Archaea Dominate the Ammonia-Oxidizing Community in the Rhizosphere of the Freshwater Macrophyte Littorella uniflora▿

    OpenAIRE

    Herrmann, Martina; Saunders, Aaron M.; Schramm, Andreas

    2008-01-01

    Archaeal and bacterial ammonia monooxygenase genes (amoA) had similar low relative abundances in freshwater sediment. In the rhizosphere of the submersed macrophyte Littorella uniflora, archaeal amoA was 500- to >8,000-fold enriched compared to bacterial amoA, suggesting that the enhanced nitrification activity observed in the rhizosphere was due to ammonia-oxidizing Archaea.

  19. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    Science.gov (United States)

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-11-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g-1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  20. Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis.

    Science.gov (United States)

    Men, Yujie; Han, Ping; Helbling, Damian E; Jehmlich, Nico; Herbold, Craig; Gulde, Rebekka; Onnis-Hayden, Annalisa; Gu, April Z; Johnson, David R; Wagner, Michael; Fenner, Kathrin

    2016-05-01

    The biotransformation of some micropollutants has previously been observed to be positively associated with ammonia oxidation activities and the transcript abundance of the archaeal ammonia monooxygenase gene (amoA) in nitrifying activated sludge. Given the increasing interest in and potential importance of ammonia-oxidizing archaea (AOA), we investigated the capabilities of an AOA pure culture, Nitrososphaera gargensis, to biotransform ten micropollutants belonging to three structurally similar groups (i.e., phenylureas, tertiary amides, and tertiary amines). N. gargensis was able to biotransform two of the tertiary amines, mianserin (MIA) and ranitidine (RAN), exhibiting similar compound specificity as two ammonia-oxidizing bacteria (AOB) strains that were tested for comparison. The same MIA and RAN biotransformation reactions were carried out by both the AOA and AOB strains. The major transformation product (TP) of MIA, α-oxo MIA was likely formed via a two-step oxidation reaction. The first hydroxylation step is typically catalyzed by monooxygenases. Three RAN TP candidates were identified from nontarget analysis. Their tentative structures and possible biotransformation pathways were proposed. The biotransformation of MIA and RAN only occurred when ammonia oxidation was active, suggesting cometabolic transformations. Consistently, a comparative proteomic analysis revealed no significant differential expression of any protein-encoding gene in N. gargensis grown on ammonium with MIA or RAN compared with standard cultivation on ammonium only. Taken together, this study provides first important insights regarding the roles played by AOA in micropollutant biotransformation. PMID:27046099

  1. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations.

    Science.gov (United States)

    Rotthauwe, J H; Witzel, K P; Liesack, W

    1997-12-01

    The naturally occurring genetic heterogeneity of autotrophic ammonia-oxidizing populations belonging to the beta subclass of the Proteobacteria was studied by using a newly developed PCR-based assay targeting a partial stretch of the gene which encodes the active-site polypeptide of ammonia monooxygenase (amoA). The PCR yielded a specific 491-bp fragment with all of the nitrifiers tested, but not with the homologous stretch of the particulate methane monooxygenase, a key enzyme of methane-oxidizing bacteria. The assay also specifically detected amoA in DNA extracted from various aquatic and terrestrial environments. The resulting PCR products retrieved from rice roots, activated sludge, a freshwater sample, and an enrichment culture were used for the generation of amoA gene libraries. No false positives were detected in a set of 47 randomly selected clone sequences that were analyzed further. The majority of the environmental sequences retrieved from rice roots and activated sludge grouped within the phylogenetic radiation defined by cultured strains of the genera Nitrosomonas and Nitrosospira. The comparative analysis identified members of both of these genera in activated sludge; however, only Nitrosospira-like sequences with very similar amino acid patterns were found on rice roots. Further differentiation of these molecular isolates was clearly possible on the nucleic acid level due to the accumulation of synonymous mutations, suggesting that several closely related but distinct Nitrosospira-like populations are the main colonizers of the rhizosphere of rice. Each of the amoA gene libraries obtained from the freshwater sample and the enrichment culture was dominated by a novel lineage that shared a branch with the Nitrosospira cluster but could not be assigned to any of the known pure cultures. Our data suggest that amoA represents a very powerful molecular tool for analyzing indigenous ammonia-oxidizing communities due to (i) its specificity, (ii) its fine

  2. Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters

    KAUST Repository

    Bagchi, Samik

    2014-12-05

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4–5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥81–86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  3. Temporal and spatial stability of ammonia-oxidizing archaea and bacteria in aquarium biofilters.

    Directory of Open Access Journals (Sweden)

    Samik Bagchi

    Full Text Available Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA, as opposed to ammonia-oxidizing bacteria (AOB, were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4-5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥ 81-86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR for bacterial and thaumarchaeal ammonia monooxygenase (amoA genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS based on denaturing gradient gel electrophoresis (DGGE fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater

  4. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil.

    Science.gov (United States)

    Xing, Yi; Si, Yan-Xiao; Hong, Chen; Li, Yang

    2015-07-01

    Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning. PMID:25860433

  5. Abundance and Community Composition of Ammonia-Oxidizers in Paddy Soil at Different Nitrogen Fertilizer Rates

    Institute of Scientific and Technical Information of China (English)

    SONG Ya-na; LIN Zhi-min

    2014-01-01

    Ammonia oxidation, the ifrst and rate-limiting step of nitriifcation, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to nitriifcation in terrestrial ecosystems is not well understood. The aim of this study was to investigate the effect of the nitrogen input amount on abundance and community composition of AOB and AOA in red paddy soil. Soil samples of 10-20 cm (root layer soil) and 0-5 cm (surface soil) depths were taken from a red paddy. Rice in the paddy was fertilized with different rates of N as urea of N1 (75 kg N ha-1 yr-1), N2 (150 kg N ha-1 yr-1), N3 (225 kg N ha-1 yr-1) and CK (without fertilizers) in 2009, 2010 and 2011. Abundance and community composition of ammonia oxidizers was analyzed by real-time PCR and denaturing gradient gel electrophoresis (DGGE) based on amoA (the unit A of ammonia monooxygenase) gene. Archaeal amoA copies in N3 and N2 were signiifcantly (P<0.05) higher than those in CK and N1 in root layer soil or in surface soil under tillering and heading stages of rice, while the enhancement in bacterial amoA gene copies with increasing of N fertilizer rates only took on in root layer soil. N availability and soil NO3--N content increased but soil NH4+-N content didn’t change with increasing of N fertilizer rates. Otherwise, the copy numbers of archaeal amoA gene were higher (P<0.05) than those of bacterial amoA gene in root lary soil or in surface soil. Redundancy discriminate analysis based on DGGE bands showed that there were no obvious differs in composition of AOA or AOB communities in the ifeld among different N fertilizer rates. Results of this study suggested that the abundance of ammonia-oxidizers had active response to N fertilizer rates and the response of AOA was more obvious than that of AOB. Similarity in the community composition of AOA or AOB among different N fertilizer rates indicate that the community composition of ammonia-oxidizers

  6. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    Science.gov (United States)

    Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.

    2016-03-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  7. Bacterial domination over Archaea in ammonia oxidation in a monsoon-driven tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Vipindas, P.V.; Anas, A.; Jasmin, C.; Lallu, K.R.; Fausia, K.H.; Balachandran, K.K.; Muraleedharan, K.R.; Nair, S.

    rivers, seawater influx from two bar mouths [Major opening at Fort Cochin (450 m wide) and minor opening at Munambam (250 m wide)] and the prolonged southwest monsoon. Ammonia in CE accounts for 50 – 65% of the dissolved inorganic nitrogen [11... concentrations [36], while that of bacterial gets triggered at higher concentration of ammonia. CE contains high concentrations of ammonia, i.e. 50 -65 % of the dissolved inorganic nitrogen [11], and therefore the AOB’s contribution in ammonia oxidation could...

  8. Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms.

    OpenAIRE

    Moran, B N; Hickey, W J

    1997-01-01

    This study investigated the efficiency of methane and ammonium for stimulating trichloroethylene (TCE) biodegradation in groundwater microcosms (flasks and batch exchange columns) at a psychrophilic temperature (12 degrees C) typical of shallow aquifers in the northern United States or a mesophilic temperature (24 degrees C) representative of most laboratory experiments. After 140 days, TCE biodegradation rates by ammonia oxidizers and methanotrophs in mesophilic flask microcosms were similar...

  9. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea

    Science.gov (United States)

    Kim, Jong-Geol; Park, Soo-Je; Sinninghe Damsté, Jaap S.; Schouten, Stefan; Rijpstra, W. Irene C.; Jung, Man-Young; Kim, So-Jeong; Gwak, Joo-Han; Hong, Heeji; Si, Ok-Ja; Lee, SangHoon; Madsen, Eugene L.; Rhee, Sung-Keun

    2016-01-01

    Ammonia-oxidizing archaea (AOA), that is, members of the Thaumarchaeota phylum, occur ubiquitously in the environment and are of major significance for global nitrogen cycling. However, controls on cell growth and organic carbon assimilation by AOA are poorly understood. We isolated an ammonia-oxidizing archaeon (designated strain DDS1) from seawater and used this organism to study the physiology of ammonia oxidation. These findings were confirmed using four additional Thaumarchaeota strains from both marine and terrestrial habitats. Ammonia oxidation by strain DDS1 was enhanced in coculture with other bacteria, as well as in artificial seawater media supplemented with α-keto acids (e.g., pyruvate, oxaloacetate). α-Keto acid-enhanced activity of AOA has previously been interpreted as evidence of mixotrophy. However, assays for heterotrophic growth indicated that incorporation of pyruvate into archaeal membrane lipids was negligible. Lipid carbon atoms were, instead, derived from dissolved inorganic carbon, indicating strict autotrophic growth. α-Keto acids spontaneously detoxify H2O2 via a nonenzymatic decarboxylation reaction, suggesting a role of α-keto acids as H2O2 scavengers. Indeed, agents that also scavenge H2O2, such as dimethylthiourea and catalase, replaced the α-keto acid requirement, enhancing growth of strain DDS1. In fact, in the absence of α-keto acids, strain DDS1 and other AOA isolates were shown to endogenously produce H2O2 (up to ∼4.5 μM), which was inhibitory to growth. Genomic analyses indicated catalase genes are largely absent in the AOA. Our results indicate that AOA broadly feature strict autotrophic nutrition and implicate H2O2 as an important factor determining the activity, evolution, and community ecology of AOA ecotypes. PMID:27339136

  10. Fabrication of platinum submonolayer electrodes and their high electrocatalytic activities for ammonia oxidation

    International Nuclear Information System (INIS)

    Highlights: • Pt submonolayer on the Au electrode for ammonia oxidation. • The surface coverage of the Pt submonolayer can be effectively controlled by the Cu UPD potential. • Pt submonolayer on the Au electrode has both high mass activity and specific activity. - Abstract: Pt submonolayer with different coverage on the Au electrode for ammonia oxidation was prepared by Cu underpotential deposition (UPD) followed by redox replacement of UPD Cu by Pt. The effects of the Cu UPD potential and time on the deposited Cu and the redox replaced Pt layer on the electrode were investigated. The amount of the deposited Cu and Pt was determined by the anodic stripping method. The electrocatalytic activity of the Pt decorated electrodes for ammonia oxidation was characterized by cyclic voltammetry. The results showed that the Cu UPD potential has a significant influence on the formed Cu layer and the subsequent Pt submonolayer. The Cu deposition behaviour changes from UPD process to overpotential deposition (OPD) process with the decrease of deposition potential. Besides, the amount of the deposited Cu increases as the Cu deposition potential decreases. Consequently, Pt layer with different coverage on the electrode can be effectively controlled by adjusting the Cu UPD potential. The Pt submonolayer electrodes prepared by the redox replacement of Cu UPD layer have a high mass activity for ammonia oxidation, and their mass activities are more than two times higher than that of the Pt decorated electrodes obtained by redox replacement of Cu OPD layer. Besides, the Pt submonolayer electrodes also have a higher specific activity possibly due to the modification in structural and electronic properties of the Pt submonolayer induced by the Au substrate

  11. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils.

    Science.gov (United States)

    Jung, Man-Young; Well, Reinhard; Min, Deullae; Giesemann, Anette; Park, Soo-Je; Kim, Jong-Geol; Kim, So-Jeong; Rhee, Sung-Keun

    2014-05-01

    N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ(15)N(bulk) and δ(18)O -N2O of soil AOA strains were 13-30%, -13 to -35% and 22-36%, respectively, and strains MY1-3 and other soil AOA strains had distinct isotopic signatures. A (15)N-NH4(+)-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA. PMID:24225887

  12. Diversity and abundance of ammonia oxidizing archaea in tropical compost systems

    OpenAIRE

    de Gannes, Vidya; Eudoxie, Gaius; Dyer, David H.; Hickey, William J.

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the p...

  13. Bacteria dominate ammonia oxidation in soils used for outdoor cattle overwintering

    Czech Academy of Sciences Publication Activity Database

    Radl, V.; Chroňáková, Alica; Čuhel, Jiří; Šimek, Miloslav; Elhottová, Dana; Welzl, G.; Schloter, M.

    2014-01-01

    Roč. 77, May (2014), s. 68-71. ISSN 0929-1393 R&D Projects: GA MŠk LC06066 Grant ostatní: Akademie věd ČR(CZ) D-CZ 45:05/06 Institutional support: RVO:60077344 Keywords : ammonia oxidation * bacteria * archaea * amoA diversity * urea * pasture Subject RIV: EH - Ecology, Behaviour Impact factor: 2.644, year: 2014

  14. Autotrophic Ammonia-Oxidizing Bacteria Contribute Minimally to Nitrification in a Nitrogen-Impacted Forested Ecosystem

    OpenAIRE

    Jordan, F L; Cantera, JJL; Fenn, M E; Stein, L.Y.

    2005-01-01

    Deposition rates of atmospheric nitrogenous pollutants to forests in the San Bernardino Mountains range east of Los Angeles, California, are the highest reported in North America. Acidic soils from the west end of the range are N-saturated and have elevated rates of N-mineralization, nitrification, and nitrate leaching. We assessed the impact of this heavy nitrogen load on autotrophic ammonia-oxidizing communities by investigating their composition, abundance, and activity. Analysis of 177 cl...

  15. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland

    Directory of Open Access Journals (Sweden)

    L. Fuchslueger

    2014-06-01

    Full Text Available Future climate scenarios suggest an increased frequency of summer drought periods in the European Alpine Region. Drought can affect soil nitrogen (N cycling, by altering N transformation rates, as well as the abundances of ammonia-oxidizing bacteria and archaea. However, the extent to which drought affects N cycling under in situ conditions is still controversial. The goal of this study was to analyse effects of drought on soil N turnover and ammonia-oxidizer abundances. To this end we conducted a rain-exclusion experiment at two differently managed mountain grassland sites, an annually mown and occasionally fertilized meadow and an abandoned grassland. Soils were sampled before, during and after drought and were analysed for gross rates of N mineralization, microbial uptake of inorganic N, nitrification, and the abundances of bacterial and archaeal ammonia oxidizers based on gene copy numbers of the amoA gene (AOB and AOA, respectively. Our results showed that the response to drought differed between the two sites. Effects were stronger at the managed meadow, where NH4+ immobilization rates increased and AOA abundances decreased. At the abandoned site gross nitrification and NO3− immobilization rates decreased during drought, while neither AOB, nor AOA abundances were affected. The different responses of the two sites to drought were likely related to site specific differences, such as soil organic matter content, nitrogen pools and absolute soil water content, resulting from differences in land-management. At both sites rewetting after drought had only minor short-term effects on the parameters that had been affected by drought, and seven weeks after the drought no effects of drought were detectable anymore. Thus, our findings indicate that drought can have distinct transient effects on soil nitrogen cycling and ammonia-oxidizer abundances in mountain grasslands and that the effect strength could be modulated by grassland management.

  16. Molecular Characterization of Soil Ammonia-Oxidizing Bacteria Based on the Genes Encoding Ammonia Monooxygenase

    OpenAIRE

    Alzerreca, Jose Javier

    1999-01-01

    Ammonia-oxidizing bacteria (AOB) are chemolithotrophs that oxidize ammonia/ammonium to nitrite in a two-step process to obtain energy for survival. AOB are difficult to isolate from the environment and iso lated strains may not represent the diversity in soil. A genetic database and molecular tools were developed based on the ammonia monooxygenase (AMO) encoding genes that can be used to assess the diversity of AOB that exist in soil and aquatic environments without the isolation of pure cult...

  17. Ecosystem-specific selection of microbial ammonia oxidizers in an acid soil

    OpenAIRE

    M. Saiful Alam; Ren, G.; Lu, L.; Y. Zheng; Peng, X.; Jia, Z

    2013-01-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the availability of ammonia substrate and the supply of oxygen. The interactions and evolutions of AOA and AOB communities along ecological gradients of substrate availability in complex environment have been much debated, but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB i...

  18. QPCR quantification of ammonia oxidizing bacteria: What should the target be?

    OpenAIRE

    Musovic, Sanin; Palomo, Alejandro; Diwan, Vaibhav; Dechesne, Arnaud; Smets, Barth F.

    2014-01-01

    Ammonia oxidizing bacteria (AOB) perform the first step of nitrification, a key step in the Nitrogen cycle in both natural and engineered systems. In addition to their well-known role in wastewater treatment, they are also essential in rapid sand filter at waterworks treating anaerobic groundwater for drinking water production. Being able to quantify precisely the abundance of this functional group is thus important to be able monitor these processes.AOB are moderately diverse Beta-Proteobact...

  19. Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake

    OpenAIRE

    Vissers, E.W.; Blaga, C. I.; Bodelier, P.L.E.; Muyzer, G; Schleper, C.; Sinninghe Damsté, J.S.; Tourna, M.; Laanbroek, H. J.

    2013-01-01

    The discovery of Archaea carrying an amoA gene coding for the A-subunit of ammonia monooxygenase gave a boost to studies aimed at detecting this gene under diverse conditions. Despite numerous studies describing the archaeal amoA gene abundance and richness in different habitats, the understanding of the freshwater ecology of potentially archaeal ammonia oxidizers, recently positioned in the phylum Thaumarchaeota, is still lacking. In a seasonal and vertical study of deep oligotrophic Lake Lu...

  20. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland

    Science.gov (United States)

    Fuchslueger, L.; Kastl, E.-M.; Bauer, F.; Kienzl, S.; Hasibeder, R.; Ladreiter-Knauss, T.; Schmitt, M.; Bahn, M.; Schloter, M.; Richter, A.; Szukics, U.

    2014-11-01

    Future climate scenarios suggest an increased frequency of summer drought periods in the European Alpine Region. Drought can affect soil nitrogen (N) cycling, by altering N transformation rates, as well as the abundances of ammonia-oxidizing bacteria and archaea. However, the extent to which drought affects N cycling under in situ conditions is still controversial. The goal of this study was to analyse effects of drought on soil N turnover and ammonia-oxidizer abundances in soil without drought history. To this end we conducted rain-exclusion experiments at two differently managed mountain grassland sites, an annually mown and occasionally fertilized meadow and an abandoned grassland. Soils were sampled before, during and after drought and were analysed for potential gross rates of N mineralization, microbial uptake of inorganic N, nitrification, and the abundances of bacterial and archaeal ammonia-oxidizers based on gene copy numbers of the amoA gene (AOB and AOA, respectively). Drought induced different responses at the two studied sites. At the managed meadow drought increased NH4+ immobilization rates and NH4+ concentrations in the soil water solution, but led to a reduction of AOA abundance compared to controls. At the abandoned site gross nitrification and NO3- immobilization rates decreased during drought, while AOB and AOA abundances remained stable. Rewetting had only minor, short-term effects on the parameters that had been affected by drought. Seven weeks after the end of drought no differences to control plots could be detected. Thus, our findings demonstrated that in mountain grasslands drought had distinct transient effects on soil nitrogen cycling and ammonia-oxidizers, which could have been related to a niche differentiation of AOB and AOA with increasing NH4+ levels. However, the effect strength of drought was modulated by grassland management.

  1. Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy.

    Science.gov (United States)

    Hurley, Sarah J; Elling, Felix J; Könneke, Martin; Buchwald, Carolyn; Wankel, Scott D; Santoro, Alyson E; Lipp, Julius Sebastian; Hinrichs, Kai-Uwe; Pearson, Ann

    2016-07-12

    Archaeal membrane lipids known as glycerol dibiphytanyl glycerol tetraethers (GDGTs) are the basis of the TEX86 paleotemperature proxy. Because GDGTs preserved in marine sediments are thought to originate mainly from planktonic, ammonia-oxidizing Thaumarchaeota, the basis of the correlation between TEX86 and sea surface temperature (SST) remains unresolved: How does TEX86 predict surface temperatures, when maximum thaumarchaeal activity occurs below the surface mixed layer and TEX86 does not covary with in situ growth temperatures? Here we used isothermal studies of the model thaumarchaeon Nitrosopumilus maritimus SCM1 to investigate how GDGT composition changes in response to ammonia oxidation rate. We used continuous culture methods to avoid potential confounding variables that can be associated with experiments in batch cultures. The results show that the ring index scales inversely (R(2) = 0.82) with ammonia oxidation rate (ϕ), indicating that GDGT cyclization depends on available reducing power. Correspondingly, the TEX86 ratio decreases by an equivalent of 5.4 °C of calculated temperature over a 5.5 fmol·cell(-1)·d(-1) increase in ϕ. This finding reconciles other recent experiments that have identified growth stage and oxygen availability as variables affecting TEX86 Depth profiles from the marine water column show minimum TEX86 values at the depth of maximum nitrification rates, consistent with our chemostat results. Our findings suggest that the TEX86 signal exported from the water column is influenced by the dynamics of ammonia oxidation. Thus, the global TEX86-SST calibration potentially represents a composite of regional correlations based on nutrient dynamics and global correlations based on archaeal community composition and temperature. PMID:27357675

  2. Geographic Distribution of Archaeal Ammonia Oxidizing Ecotypes in the Atlantic Ocean

    Science.gov (United States)

    Sintes, Eva; De Corte, Daniele; Haberleitner, Elisabeth; Herndl, Gerhard J.

    2016-01-01

    In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA) vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo), exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS) between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization. PMID:26903961

  3. Geographic Distribution of Archaeal Ammonia Oxidizing Ecotypes in the Atlantic Ocean.

    Science.gov (United States)

    Sintes, Eva; De Corte, Daniele; Haberleitner, Elisabeth; Herndl, Gerhard J

    2016-01-01

    In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA) vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo), exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS) between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization. PMID:26903961

  4. Ammonia manipulates the ammonia-oxidizing archaea and bacteria in the coastal sediment-water microcosms.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Dai, Tianjiao; Sun, Renhua; Wen, Donghui

    2015-08-01

    Ammonia was observed as a potential significant factor to manipulate the abundance and activity of ammonia-oxidizing microorganisms (AOMs) in water environments. For the first time, this study confirmed this phenomenon by laboratory cultivation. In a series of estuarine sediment-coastal water microcosms, we investigated the AOM's phylogenetic composition and activity change in response to ammonia concentration. Increase of ammonia concentration promoted bacterial amoA gene abundance in a linear pattern. The ratio of transcribed ammonia-oxidizing bacteria (AOB) amoA gene/ammonia-oxidizing archaea (AOA) amoA gene increased from 0.1 to 43 as NH4 (+)-N increased from less than 0.1 to 12 mg L(-1), and AOA amoA transcription was undetected under 20 mg NH4 (+)-N L(-1). The incubation of stable isotope probing (SIP) microcosms revealed a faster (13)C-NaHCO3 incorporation rate of AOA amoA gene under 0.1 mg NH4 (+)-N L(-1) and a sole (13)C-NaHCO3 utilization of the AOB amoA gene under 20 mg NH4 (+)-N L(-1). Our results indicate that ammonia concentration manipulates the structure of AOM. AOA prefers to live and perform higher amoA transcription activity than AOB in ammonia-limited water environments, and AOB tends to take the first contributor place in ammonia-rich ones. PMID:25797330

  5. CFD modelling of flow mal-distribution in an industrial ammonia oxidation reactor: A case study

    International Nuclear Information System (INIS)

    Ammonia oxidation reactor is widely used in nitric acid plant to cause the catalytic reaction between air and ammonia to produce nitrous gases. In this work, the flow distribution inside the ammonia oxidation reactor at Shiraz Petrochemical Complex (SPC) has been simulated using Computational Fluid Dynamics (CFD) code. The CFD results showed that the flow is non-uniformly distributed inside the reactor due to improper header design of the reactor. Measuring of the temperature distribution around the skin of the reactor has been carried out using thermograph. The thermograph experiment showed a considerable temperature difference between the left and right side of the reactor. It was found that the mal-distribution of the gas flow inside the reactor can directly affect the performance of the reactor. - Highlights: •A failure has been observed in an industrial ammonia oxidation reactor. •CFD code helps to simulate the flow inside the reactor. •The flow becomes non-uniformly distributed due to the reactor header mal-design. •The flow mal-distribution results in some drawbacks

  6. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products.

    Science.gov (United States)

    Kassotaki, Elissavet; Buttiglieri, Gianluigi; Ferrando-Climent, Laura; Rodriguez-Roda, Ignasi; Pijuan, Maite

    2016-05-01

    The occurrence of the widely-used antibiotic sulfamethoxazole (SFX) in wastewaters and surface waters has been reported in a large number of studies. However, the results obtained up-to-date have pointed out disparities in its removal. This manuscript explores the enhanced biodegradation potential of an enriched culture of Ammonia Oxidizing Bacteria (AOB) towards SFX. Several sets of batch tests were conducted to establish a link between SFX degradation and specific ammonia oxidation rate. The occurrence, degradation and generation of SFX and some of its transformation products (4-Nitro SFX, Desamino-SFX and N(4)-Acetyl-SFX) was also monitored. A clear link between the degradation of SFX and the nitrification rate was found, resulting in an increased SFX removal at higher specific ammonia oxidation rates. Moreover, experiments conducted under the presence of allylthiourea (ATU) did not present any removal of SFX, suggesting a connection between the AMO enzyme and SFX degradation. Long term experiments (up to 10 weeks) were also conducted adding two different concentrations (10 and 100 μg/L) of SFX in the influent of a partial nitrification sequencing batch reactor, resulting in up to 98% removal. Finally, the formation of transformation products during SFX degradation represented up to 32%, being 4-Nitro-SFX the most abundant. PMID:26938496

  7. Fauna Europaea: Helminths (Animal Parasitic

    Directory of Open Access Journals (Sweden)

    David Gibson

    2014-09-01

    Full Text Available Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region, and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard reference suitable for many users in science, government, industry, nature conservation and education. Helminths parasitic in animals represent a large assemblage of worms, representing three phyla, with more than 200 families and almost 4,000 species of parasites from all major vertebrate and many invertebrate groups. A general introduction is given for each of the major groups of parasitic worms, i.e. the Acanthocephala, Monogenea, Trematoda (Aspidogastrea and Digenea, Cestoda and Nematoda. Basic information for each group includes its size, host-range, distribution, morphological features, life-cycle, classification, identification and recent key-works. Tabulations include a complete list of families dealt with, the number of species in each and the name of the specialist responsible for data acquisition, a list of additional specialists who helped with particular groups, and a list of higher taxa dealt with down to the family level. A compilation of useful references is appended.

  8. The Significance of Myriophyllum elatinoides for Swine Wastewater Treatment: Abundance and Community Structure of Ammonia-Oxidizing Microorganisms in Sediments

    OpenAIRE

    Xi Li; Miaomiao Zhang; Feng Liu(Central China Normal University); Yong Li; Yang He; Shunan Zhang; Jinshui Wu

    2015-01-01

    Myriophyllum elatinoides was reported to effectively treat wastewater by removing nitrogen (N) and phosphorus (P). However, little is known about the abundance and community structure of ammonia-oxidizing microorganisms associated with M. elatinoides purification systems. The objective of this research was to characterize the abundance and community structure of ammonia-oxidizing microorganisms in swine wastewater and determine the main nitrogen removal pathways. In this study, five different...

  9. Nitrogen Cycling and Community Structure of Proteobacterial β-Subgroup Ammonia-Oxidizing Bacteria within Polluted Marine Fish Farm Sediments

    OpenAIRE

    McCaig, Allison E.; Phillips, Carol J.; Stephen, John R.; Kowalchuk, George A.; Harvey, S. Martyn; Herbert, Rodney A.; Embley, T. Martin; Prosser, James I

    1999-01-01

    A multidisciplinary approach was used to study the effects of pollution from a marine fish farm on nitrification rates and on the community structure of ammonia-oxidizing bacteria in the underlying sediment. Organic content, ammonium concentrations, nitrification rates, and ammonia oxidizer most-probable-number counts were determined in samples of sediment collected from beneath a fish cage and on a transect at 20 and 40 m from the cage. The data suggest that nitrogen cycling was significantl...

  10. Archaeal Ammonia Oxidizers Dominate in Numbers, but Bacteria Drive Gross Nitrification in N-amended Grassland Soil

    OpenAIRE

    Sterngren, Anna E.; Hallin, Sara; Bengtson, Per

    2015-01-01

    Both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) play an important role in nitrification in terrestrial environments. Most often AOA outnumber AOB, but the relative contribution of AOA and AOB to nitrification rates remains unclear. The aim of this experiment was to test the hypotheses that high nitrogen availability would favor AOB and result in high gross nitrification rates, while high carbon availability would result in low nitrogen concentrations that favor the a...

  11. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers

    OpenAIRE

    Mußmann, M; Brito, I.; A. Pitcher; Hatzenpichler, R.; Richter, A; Nielsen, J. L.; Nielsen, P. H.; Daims, H.; MÜller, A.; Wagner, M.; Head, I.M.

    2011-01-01

    Nitrification is a core process in the global nitrogen cycle that is essential for the functioning of many ecosystems. The discovery of autotrophic ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota has changed our perception of the microbiology of nitrification, in particular since their numerical dominance over ammonia-oxidizing bacteria (AOB) in many environments has been revealed. These and other data have led to a widely held assumption that all amoA-encoding members of the...

  12. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers

    OpenAIRE

    Mußmann, Marc; Brito, Ivana; Pitcher, Angela; Sinninghe Damsté, Jaap S.; Hatzenpichler, Roland; Richter, Andreas; Nielsen, Jeppe L.; Nielsen, Per Halkjær; Müller, Anneliese; Daims, Holger; WAGNER, MICHAEL; Head, Ian M.

    2011-01-01

    Nitrification is a core process in the global nitrogen cycle that is essential for the functioning of many ecosystems. The discovery of autotrophic ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota has changed our perception of the microbiology of nitrification, in particular since their numerical dominance over ammonia-oxidizing bacteria (AOB) in many environments has been revealed. These and other data have led to a widely held assumption that all amoA-encoding members of the...

  13. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant

    OpenAIRE

    Sauder, L.A.; Peterse, F.; Schouten, S; Neufeld, J. D.

    2012-01-01

    The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidizing populations in nitrifying rotating biological contactors (RBCs) from a municipal wastewater treatment plant. Individual RBC stages are arranged in series, with nitrification at each stage creat...

  14. Distinct Responses in Ammonia-Oxidizing Archaea and Bacteria after Addition of Biosolids to an Agricultural Soil▿

    OpenAIRE

    Kelly, John J.; Policht, Katherine; Grancharova, Tanya; Hundal, Lakhwinder S.

    2011-01-01

    The recently discovered ammonia-oxidizing archaea (AOA) have been suggested as contributors to the first step of nitrification in terrestrial ecosystems, a role that was previously assigned exclusively to ammonia-oxidizing bacteria (AOB). The current study assessed the effects of agricultural management, specifically amendment of soil with biosolids or synthetic fertilizer, on nitrification rates and copy numbers of archaeal and bacterial ammonia monooxygenase (amoA) genes. Anaerobically dige...

  15. Abundance, Diversity, and Activity of Ammonia-Oxidizing Prokaryotes in the Coastal Arctic Ocean in Summer and Winter ▿ †

    OpenAIRE

    Christman, Glenn D.; Cottrell, Matthew T.; Brian N Popp; Gier, Elizabeth; Kirchman, David L.

    2011-01-01

    Ammonia oxidation, the first step in nitrification, is performed by certain Beta- and Gammaproteobacteria and Crenarchaea to generate metabolic energy. Ammonia monooxygenase (amoA) genes from both Bacteria and Crenarchaea have been found in a variety of marine ecosystems, but the relative importance of Bacteria versus Crenarchaea in ammonia oxidation is unresolved, and seasonal comparisons are rare. In this study, we compared the abundance of betaproteobacterial and crenarchaeal amoA genes in...

  16. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone

    OpenAIRE

    Pitcher, A.; Villanueva, L; Hopmans, E.C.; Schouten, S.; G. J. Reichart; Sinninghe Damsté, J.S.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists; however, their distributions are rarely determined in tandem. Here we have examined the vertical distribution of AOA and anammox bacteria through the Arabian Sea oxygen minimum zone (OMZ), one of ...

  17. Communities and Quantitative Analysis of Ammonia-oxidizing Organisms in Pearl River Estuary Sediments%珠江口海岸带沉积物氨氧化细菌和古菌组成及定量研究

    Institute of Scientific and Technical Information of China (English)

    陈金全; 郑燕平; 姜丽晶; 王风平

    2012-01-01

    [Objective] This study aimed to investigate the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea in Pearl River Estuary sediment.[Method] Firstly,the amoA gene library was constructed;then based on that,the content and diversity of amoA genes of ammonia-oxidizing bacteria and ammonia-oxidizing archaea in Pearl River Estuary sediment were detected by using quantitative real-time polymerase chain reaction(Q-PCR).[Result] The results of Q-PCR presented that ammonia-oxidizing archaea(AOA) were more abundant than ammonia-oxidizing bacteria(AOB) in the top of sediment cores,with ratios of AOA to AOB of 22 and 9 at the two sites.It suggested that ammonia-oxidizing archaea may play more important roles than ammonia-oxidizing bacteria in the process of ammonia oxidation in the Pearl River Estuary sediment.The phylogenetic tree based on amoA gene sequences revealed that the amoA sequences of both AOA and AOB shared high similarity with the clones from uncultured environment.In the top sediment layer at site Q7,AOB amoA-like gene sequences were dominated by Nitrosomonas-like sequence types,which could be classified into five groups(clusters A,B,C,D and E).Cluster A accounted for 72.1% of the library.In the top sediment layer,the AOA amoA gene fell into two groups "water column/sediment" cluster(52.2%) and "soil/sediment" cluster(47.8%).But in the bottom sediment layer of Q7,most of the AOA amoA sequences(93.3%) fell into "soil/sediment" cluster,and a little part(6.7%) fell into the "water/sediment" cluster.In addition,the total amount of amoA genes in the bottom sediment was higher than that in top sediment.[Conclusion] This study helps to realize the cycle of nitrogen in Pearl River Estuary Region,and thus to provide theoretical support for the treatment of nitrogen eutrophication.%[目的]对珠江口海岸带沉积物中的氨氧化细菌和古菌的组成进行分析,并进行定量研究。[方法]用构建克隆文库和Q-PCR定量

  18. amoA Gene Abundances and Nitrification Potential Rates Suggest that Benthic Ammonia-Oxidizing Bacteria and Not Archaea Dominate N Cycling in the Colne Estuary, United Kingdom

    OpenAIRE

    Li, Jialin; Nedwell, David B.; Beddow, Jessica; Alex J Dumbrell; McKew, Boyd A; Thorpe, Emma L.; Whitby, Corinne

    2014-01-01

    Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA comm...

  19. Distribution and Diversity of Archaeal and Bacterial Ammonia Oxidizers in Salt Marsh Sediments▿

    OpenAIRE

    Moin, Nicole S.; Nelson, Katelyn A.; Bush, Alexander; Bernhard, Anne E.

    2009-01-01

    Diversity and abundance of ammonia-oxidizing Betaproteobacteria (β-AOB) and archaea (AOA) were investigated in a New England salt marsh at sites dominated by short or tall Spartina alterniflora (SAS and SAT sites, respectively) or Spartina patens (SP site). AOA amoA gene richness was higher than β-AOB amoA richness at SAT and SP, but AOA and β-AOB richness were similar at SAS. β-AOB amoA clone libraries were composed exclusively of Nitrosospira-like amoA genes. AOA amoA genes at SAT and SP we...

  20. Ammonia-Oxidizing β-Proteobacteria from the Oxygen Minimum Zone off Northern Chile▿

    OpenAIRE

    Molina, Verónica; Ulloa, Osvaldo; Farías, Laura; Urrutia, Homero; Ramírez, Salvador; Junier, Pilar; Witzel, Karl-Paul

    2007-01-01

    The composition of ammonia-oxidizing bacteria from the β-Proteobacteria subclass (βAOB) was studied in the surface and upper-oxycline oxic waters (2- to 50-m depth, ∼200 to 44 μM O2) and within the oxygen minimum zone (OMZ) suboxic waters (50- to 400-m depth, ≤10 μM O2) of the eastern South Pacific off northern Chile. This study was carried out through cloning and sequencing of genes coding for 16S rRNA and the ammonia monooxygenase enzyme active subunit (amoA). Sequences affiliated with Nitr...

  1. Temperature Responses of Ammonia-Oxidizing Prokaryotes in Freshwater Sediment Microcosms

    OpenAIRE

    Jin Zeng; Dayong Zhao; Zhongbo Yu; Rui Huang; Wu, Qinglong L.

    2014-01-01

    In order to investigate the effects of temperature on the abundances and community compositions of ammonia-oxidizing archaea (AOA) and bacteria (AOB), lake microcosms were constructed and incubated at 15°C, 25°C and 35°C for 40 days, respectively. Temperature exhibited different effects on the abundance and diversity of archaeal and bacterial amoA gene. The elevated temperature increased the abundance of archaeal amoA gene, whereas the abundance of bacterial amoA gene decreased. The highest d...

  2. Dynamics of ammonia-oxidizing Archaea and Bacteria in contrasted freshwater ecosystems.

    Science.gov (United States)

    Hugoni, Mylène; Etien, Sandrine; Bourges, Antoine; Lepère, Cécile; Domaizon, Isabelle; Mallet, Clarisse; Bronner, Gisèle; Debroas, Didier; Mary, Isabelle

    2013-05-01

    Thaumarchaeota have been recognized as the main drivers of aerobic ammonia oxidation in many ecosystems. However, little is known about the role of ammonia-oxidizing Archaea (AOA) and Bacteria (AOB) in lacustrine ecosystems. In this study, the photic zone of three contrasted freshwater ecosystems located in France was sampled during two periods: winter homothermy (H) and summer thermal stratification (TS), to investigate the distribution of planktonic AOA and AOB. We showed that AOB were predominant in nutrient-rich ecosystems, whereas AOA dominated when ammonia concentrations were the lowest and during winter, which could provide a favorable environment for their growth. Moreover, analyses of archaeal libraries revealed the ubiquity of the thaumarchaeal I.1a clade associated with higher diversity of AOA in the most nutrient-poor lake. More generally, this work assesses the presence of AOA in lakes, but also highlights the existence of clades typically associated with lacustrine and hot spring ecosystems and specific ecological niches occupied by these microorganisms. PMID:23395876

  3. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    Institute of Scientific and Technical Information of China (English)

    Brooke B.OSBORNE; Jill S.BARON; Matthew D.WALLENSTEIN

    2016-01-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many high-elevation ecosystems.The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses.In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity,we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash,talus,and meadow).We found that bacteria,not archaea,dominated all ammonia oxidizer communities.Nitrification increased with moisture in all soils and under all temperature treatments.However,temperature was not correlated with nitrification rates in all soils.Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes.Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  4. Ammonia-oxidizing activity and microbial community structure in acid tea (Camellia sinensis) orchard soil

    Science.gov (United States)

    Okamura, K.; Takanashi, A.; Yamada, T.; Hiraishi, A.

    2012-03-01

    The purpose of this study was to determine the ammonia-oxidizing activity and the phylogentic composition of microorganisms involved in acid tea (Camellia sinensis) orchard soil. All soil samples were collected from three sites located in Tahara and Toyohashi, Aichi Prefecture, Japan. The potential nitrification rate (PNR) was measured by the chlorate inhibition method. The soil pH of tea orchards studied ranged from 2.78 to 4.84, differing significantly from sample to sample, whereas that of meadow and unplanted fields ranged from 5.78 to 6.35. The PNR ranged from 0.050 to 0.193 μg NO2--Ng-1 h-1 and were positively correlated with the soil pH (r2 = 0.382, pamoA genes. The detected archaeal clones separated from the cluster of the 'Soil clones' and tightly clustered with the clones originating from other acidic soil environments including the Chinese tea orchard soil. These results suggest that the specific archaeal populations dominate as the ammonia oxidizers in acid tea-orchard soils and possibly other acid soils, independent of geographic locations, which results from the adaptation to specific ecological niches.

  5. pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils.

    Science.gov (United States)

    Stempfhuber, Barbara; Engel, Marion; Fischer, Doreen; Neskovic-Prit, Ganna; Wubet, Tesfaye; Schöning, Ingo; Gubry-Rangin, Cécile; Kublik, Susanne; Schloter-Hai, Brigitte; Rattei, Thomas; Welzl, Gerhard; Nicol, Graeme W; Schrumpf, Marion; Buscot, Francois; Prosser, James I; Schloter, Michael

    2015-05-01

    In this study, we investigated the impact of soil pH on the diversity and abundance of archaeal ammonia oxidizers in 27 different forest soils across Germany. DNA was extracted from topsoil samples, the amoA gene, encoding ammonia monooxygenase, was amplified; and the amplicons were sequenced using a 454-based pyrosequencing approach. As expected, the ratio of archaeal (AOA) to bacterial (AOB) ammonia oxidizers' amoA genes increased sharply with decreasing soil pH. The diversity of AOA differed significantly between sites with ultra-acidic soil pH (4.5, regardless of geographic position and vegetation. These OTUs could be related to the Nitrosotalea group 1.1 and the Nitrososphaera subcluster 7.2, respectively, and showed significant similarities to OTUs described from other acidic environments. Conversely, none of the major OTUs typical of sites with a soil pH >4.6 could be found in the ultra- and extreme acidic soils. Based on a comparison with the amoA gene sequence data from a previous study performed on agricultural soils, we could clearly show that the development of AOA communities in soils with ultra-acidic pH (<3.5) is mainly triggered by soil pH and is not influenced significantly by the type of land use, the soil type, or the geographic position of the site, which was observed for sites with acido-neutral soil pH. PMID:25501889

  6. Isolation and characterization of facultative mixotrophic ammonia-oxidizing bacteria from constructed wetlands

    Institute of Scientific and Technical Information of China (English)

    Soulwène Kouki; Neila Saidi; Fadhel M'hiri; Houda Nasr; Hanène Cherif; Hadda Ouzari; Abdermaceur Hassen

    2011-01-01

    Autotrophic ammonia-oxidizing bacteria (AOB) have been widely studied in constructed wetlands systems,while mixotrophic AOB have been less thoroughly examined.Heterotrophic bacteria were isolated from wastewater and rhizospheres of macrophytes of constructed wetlands,and then cultivated in a mixotrophic medium containing ammonium and acetic acid.A molecular characterization was accomplished using ITS-PCR amplification,and phylogenetic analysis based on 16S rRNA gene sequences.Results showed the presence of 35 bacteria,among 400 initially heterotrophic isolates,that were able to remove ammonia.These 35 isolates were classified into 10 genetically different groups based on ITS pattern.Then,a collection of 10 isolates were selected because of their relatively high ammonia removal efficiencies (ARE ≥ 80%) and their phylogenetic diversity.In conditions of mixotrophy,these strains were shown to be able to grow (increase of optical density OD660 during incubation with assimilation of nitrogen into cellular biomass) and to oxidize ammonia (important ammonia oxidation efficiencies,AOE between 79% and 87%).Among these facultative mixotrophic AOB,four isolates were genetically related to Firmicutes (Bacillus and Exiguobacterium),three isolates were affiliated to Actinobacteria (Arthrobacter) and three other isolates were associated with Proteobacteria (Pseudomonas,Ochrobactrum and Bordetella).

  7. Biodegradation and cometabolic modeling of selected beta blockers during ammonia oxidation.

    Science.gov (United States)

    Sathyamoorthy, Sandeep; Chandran, Kartik; Ramsburg, C Andrew

    2013-11-19

    Accurate prediction of pharmaceutical concentrations in wastewater effluents requires that the specific biochemical processes responsible for pharmaceutical biodegradation be elucidated and integrated within any modeling framework. The fate of three selected beta blockers-atenolol, metoprolol, and sotalol-was examined during nitrification using batch experiments to develop and evaluate a new cometabolic process-based (CPB) model. CPB model parameters describe biotransformation during and after ammonia oxidation for specific biomass populations and are designed to be integrated within the Activated Sludge Models framework. Metoprolol and sotalol were not biodegraded by the nitrification enrichment culture employed herein. Biodegradation of atenolol was observed and linked to the activity of ammonia-oxidizing bacteria (AOB) and heterotrophs but not nitrite-oxidizing bacteria. Results suggest that the role of AOB in atenolol degradation may be disproportionately more significant than is otherwise suggested by their lower relative abundance in typical biological treatment processes. Atenolol was observed to competitively inhibit AOB growth in our experiments, though model simulations suggest inhibition is most relevant at atenolol concentrations greater than approximately 200 ng·L(-1). CPB model parameters were found to be relatively insensitive to biokinetic parameter selection suggesting the model approach may hold utility for describing pharmaceutical biodegradation during biological wastewater treatment. PMID:24112027

  8. Ammonia-oxidizing Bacteria of the Nitrosospira cluster 1 dominate over ammonia-oxidizing Archaea in oligotrophic surface sediments near the South Atlantic Gyre.

    Science.gov (United States)

    Lagostina, Lorenzo; Goldhammer, Tobias; Røy, Hans; Evans, Thomas W; Lever, Mark A; Jørgensen, Bo B; Petersen, Dorthe G; Schramm, Andreas; Schreiber, Lars

    2015-06-01

    Sediments across the Namibian continental margin feature a strong microbial activity gradient at their surface. This is reflected in ammonium concentrations of  700 μM in upwelling areas near the coast. Here we address changes in apparent abundance and structure of ammonia-oxidizing archaeal and bacterial communities (AOA and AOB) along a transect of seven sediment stations across the Namibian shelf by analysing their respective ammonia monooxygenase genes (amoA). The relative abundance of archaeal and bacterial amoA (g(-1) DNA) decreased with increasing ammonium concentrations, and bacterial amoA frequently outnumbered archaeal amoA at the sediment-water interface [0-1 cm below seafloor (cmbsf)]. In contrast, AOA were apparently as abundant as AOB or dominated in several deeper (> 10 cmbsf), anoxic sediment layers. Phylogenetic analyses showed a change within the AOA community along the transect, from two clusters without cultured representatives at the gyre to Nitrososphaera and Nitrosopumilus clusters in the upwelling region. AOB almost exclusively belonged to the Nitrosospira cluster 1. Our results suggest that this predominantly marine AOB lineage without cultured representatives can thrive at low ammonium concentrations and is active in the marine nitrogen cycle. PMID:25581373

  9. Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary, China

    OpenAIRE

    Jin, Tao; ZHANG, Tong; Lin YE; Lee, On On; Wong, Yue Him; Qian, Pei Yuan

    2011-01-01

    The diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the sediment of the Pearl River Estuary were investigated by cloning and quantitative real-time polymerase chain reaction (qPCR). From one sediment sample S16, 36 AOA OTUs (3% cutoff) were obtained from three clone libraries constructed using three primer sets for amoA gene. Among the 36 OTUs, six were shared by all three clone libraries, two appeared in two clone libraries, and the other 28...

  10. Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota

    OpenAIRE

    Weber, Eva B.; Lehtovirta-Morley, Laura E.; Prosser, James I.; Gubry-Rangin, Cécile

    2015-01-01

    Thaumarchaeota are among the most abundant organisms on Earth and are ubiquitous. Within this phylum, all cultivated representatives of Group 1.1a and Group 1.1b Thaumarchaeota are ammonia oxidizers, and play a key role in the nitrogen cycle. While Group 1.1c is phylogenetically closely related to the ammonia-oxidizing Thaumarchaeota and is abundant in acidic forest soils, nothing is known about its physiology or ecosystem function. The goal of this study was to perform in situ physiological ...

  11. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    Science.gov (United States)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  12. Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes.

    Science.gov (United States)

    Xu, Yifeng; Yuan, Zhiguo; Ni, Bing-Jie

    2016-10-01

    Pharmaceutical residues could potentially pose detrimental effects on aquatic ecosystems and human health, with wastewater treatment being one of the major pathways for pharmaceuticals to enter into the environment. Enhanced removal of pharmaceuticals by ammonia oxidizing bacteria (AOB) has been widely observed in wastewater treatment processes. This article reviews the current knowledge on the biotransformation of pharmaceuticals by AOB. The relationship between the pharmaceuticals removal and nitrification process was revealed. The important role of AOB-induced cometabolism on the biotransformation of pharmaceuticals as well as their transformation products and pathways was elucidated. Kinetics and mathematical models describing the biotransformation of pharmaceuticals by AOB were also reviewed. The results highlighted the high degradation capabilities of AOB toward some refractory pharmaceuticals, with their degradations being clearly related to the nitrification rate and their transformation products being identified, which may exhibit similar or higher ecotoxicological impacts compared to the parent compound. PMID:27243932

  13. Nitrogen removal from sludge dewatering effluent through anaerobic ammonia oxidation process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-hui; ZHENG Ping; HUA Yu-mei

    2005-01-01

    Anaerobic ammonia oxidation(Anammox) process is a novel and promising wastewater nitrogen removal process. The feasibility of transition of Anammox from denitrification and the performance of lab-scale Anammox biofilm reactor were investigated with sludge dewatering effluent. The results showed that Anammox process could be successfully started up after cultivation of denitrification biofilm and using it as inoculum. The transition of Anammox from denitrification was accomplished within 85 d. Anammox process was found suitable to remove ammonia from sludge dewatering effluent. The effluent ammonia concentration was detected to be 23.11 mgN/L at HRT of 28 h when influent ammonia concentration was fed 245 mgN/L, which was less than that for the national discharge standard Ⅱ (25 mgN/L) of 243.25 mg NH4+ -N/L and 288.31 mg NO2- -N/L.

  14. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant

    NARCIS (Netherlands)

    Sauder, L.A.; Peterse, F.; Schouten, S.; Neufeld, J.D.

    2012-01-01

    The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidiz

  15. Do freshwater macrophytes influence the community structure of ammonia-oxidizing and denitrifying bacteria in the rhizospere?

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2006-01-01

    nitrification-denitrification using the 15N isotope pairing technique. Ammonia-oxidizing and nitrate-reducing populations are analyzed based on the ammonia monooxygenase gene (amoA) and the nitrate reductase gene (narG) as functional markers. Preliminary data indicate that there in fact exist differences in the...

  16. RNA-Based Investigation of Ammonia-Oxidizing Archaea in Hot Springs of Yunnan Province, China ▿ †

    OpenAIRE

    Jiang, Hongchen; Huang, Qiuyuan; DONG, HAILIANG; WANG, Peng; Wang, Fengping; Li, Wenjun; Zhang, Chuanlun

    2010-01-01

    Using RNA-based techniques and hot spring samples collected from Yunnan Province, China, we show that the amoA gene of aerobic ammonia-oxidizing archaea can be transcribed at temperatures higher than 74°C and up to 94°C, suggesting that archaeal nitrification can potentially occur at near boiling temperatures.

  17. Archaeal Ammonia Oxidizers Dominate in Numbers, but Bacteria Drive Gross Nitrification in N-amended Grassland Soil

    Science.gov (United States)

    Sterngren, Anna E.; Hallin, Sara; Bengtson, Per

    2015-01-01

    Both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) play an important role in nitrification in terrestrial environments. Most often AOA outnumber AOB, but the relative contribution of AOA and AOB to nitrification rates remains unclear. The aim of this experiment was to test the hypotheses that high nitrogen availability would favor AOB and result in high gross nitrification rates, while high carbon availability would result in low nitrogen concentrations that favor the activity of AOA. The hypotheses were tested in a microcosm experiment where sugars, ammonium, or amino acids were added regularly to a grassland soil for a period of 33 days. The abundance of amoA genes from AOB increased markedly in treatments that received nitrogen, suggesting that AOB were the main ammonia oxidizers here. However, AOB could not account for the entire ammonia oxidation activity observed in treatments where the soil was deficient in available nitrogen. The findings suggest that AOA are important drivers of nitrification under nitrogen-poor conditions, but that input of easily available nitrogen results in increased abundance, activity, and relative importance of AOB for gross nitrification in grassland soil. PMID:26648926

  18. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean

    NARCIS (Netherlands)

    Sintes, Eva; Bergauer, Kristin; De Corte, Daniele; Yokokawa, Taichi; Herndl, Gerhard J.

    2013-01-01

    Mesophilic ammonia-oxidizing Archaea (AOA) are abundant in a diverse range of marine environments, including the deep ocean, as revealed by the quantification of the archaeal amoA gene encoding the alpha-subunit of the ammonia monooxygenase. Using two different amoA primer sets, two distinct ecotype

  19. Draft Genome Sequence of Nitrosospira sp. Strain APG3, a Psychrotolerant Ammonia-Oxidizing Bacterium Isolated from Sandy Lake Sediment

    OpenAIRE

    Garcia, Juan C.; Urakawa, Hidetoshi; Le, Vang Q.; Stein, Lisa Y.; Klotz, Martin G; Nielsen, Jeppe L.

    2013-01-01

    Bacteria in the genus Nitrosospira play vital roles in the nitrogen cycle. Nitrosospira sp. strain APG3 is a psychrotolerant betaproteobacterial ammonia-oxidizing bacterium isolated from freshwater lake sediment. The draft genome revealed that it represents a new species of cluster 0 Nitrosospira, which is presently not represented by described species.

  20. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    NARCIS (Netherlands)

    Zheng, Yan; Huang, Rong; Wang, B.; Bodelier, P.L.E.; Jia, Z.

    2014-01-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable iso

  1. Aquarium nitrification revisited: Thaumarchaeota are the dominant ammonia oxidizers in freshwater aquarium biofilters.

    Science.gov (United States)

    Sauder, Laura A; Engel, Katja; Stearns, Jennifer C; Masella, Andre P; Pawliszyn, Richard; Neufeld, Josh D

    2011-01-01

    Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology. PMID:21858055

  2. Aquarium nitrification revisited: Thaumarchaeota are the dominant ammonia oxidizers in freshwater aquarium biofilters.

    Directory of Open Access Journals (Sweden)

    Laura A Sauder

    Full Text Available Ammonia-oxidizing archaea (AOA outnumber ammonia-oxidizing bacteria (AOB in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR to quantify the ammonia monooxygenase (amoA and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology.

  3. Ecosystem-specific selection of microbial ammonia oxidizers in an acid soil

    Science.gov (United States)

    Saiful Alam, M.; Ren, G.; Lu, L.; Zheng, Y.; Peng, X.; Jia, Z.

    2013-01-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the availability of ammonia substrate and the supply of oxygen. The interactions and evolutions of AOA and AOB communities along ecological gradients of substrate availability in complex environment have been much debated, but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB in response to long-term field fertilization and flooding management in an acid soil. Real-time quantitative PCR of amoA genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils, while slight decline of AOB populations was observed. DGGE fingerprints of amoA genes further revealed remarkable changes in community compositions of AOA in paddy soil when compared to upland soil. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, while the marine group 1.1a lineage predominated AOA communities in paddy soils. Irrespective of upland and paddy soils, long-term field fertilizations led to higher abundance of amoA genes of AOA and AOB than control treatment that received no fertilization, whereas archaeal amoA gene abundances outnumbered their bacterial counterpart in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster 3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatments. The results of this study suggest that the marine group 1.1a AOA could be better adapted to low-oxygen environment than AOA ecotypes of the soil group 1.1b lineage, and implicate that long-term flooding as the dominant selective force driving the community diversification of AOA populations in the acid soil tested.

  4. Ecosystem-specific selection of microbial ammonia oxidizers in an acid soil

    Directory of Open Access Journals (Sweden)

    M. Saiful Alam

    2013-01-01

    Full Text Available The function of ammonia-oxidizing archaea (AOA and bacteria (AOB depends on the availability of ammonia substrate and the supply of oxygen. The interactions and evolutions of AOA and AOB communities along ecological gradients of substrate availability in complex environment have been much debated, but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB in response to long-term field fertilization and flooding management in an acid soil. Real-time quantitative PCR of amoA genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils, while slight decline of AOB populations was observed. DGGE fingerprints of amoA genes further revealed remarkable changes in community compositions of AOA in paddy soil when compared to upland soil. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, while the marine group 1.1a lineage predominated AOA communities in paddy soils. Irrespective of upland and paddy soils, long-term field fertilizations led to higher abundance of amoA genes of AOA and AOB than control treatment that received no fertilization, whereas archaeal amoA gene abundances outnumbered their bacterial counterpart in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster 3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatments. The results of this study suggest that the marine group 1.1a AOA could be better adapted to low-oxygen environment than AOA ecotypes of the soil group 1.1b lineage, and implicate that long-term flooding as the dominant selective force driving the community diversification of AOA populations in the acid soil tested.

  5. Detecting and diversity analysis of amoA gene from ammonia-oxidizing bacteria in a nitrifying pool%硝化池中氨氧化细菌amoA基因的检测及其多样性研究

    Institute of Scientific and Technical Information of China (English)

    陈岭; 明镇寰

    2004-01-01

    为了分析污水处理系统中氨氧化细菌的种群组成,筛选合成了一对对氨氧化细菌氨单加氧酶基因(amoA)特异结合的引物序列,利用PCR技术对从活性污泥中抽提的细菌总DNA进行扩增,得到不同重组子的amoA序列片段.运用BLAST程序将测序结果与基因库中的公开序列进行比较,发现在该污水处理系统中分布有大量亚硝化单胞菌属(Nitrosomonas)细菌,其中最主要的是欧洲亚硝化单胞菌(Nitrosomonas europaea),由此推测Nitrosomonas属细菌在该系统的氨氧化过程中起主导作用.

  6. Cloning and Sequencing of Ammonia-Oxidizing Bacteria amoA Gene from Environmental Samples%环境样品中亚硝酸细菌amoA基因的克隆与测序

    Institute of Scientific and Technical Information of China (English)

    周娟; 李君文; 郑金来; 王新为; 宋农; 古长庆

    2004-01-01

    对从环境样品中分离的亚硝酸细菌(Ammonia-oxidizing bacteria)amoA基因进行克隆与测序,为构建基因工程菌打下基础.采用亚硝酸细菌选择性培养基,从4个不同的畜牧养殖污水处理厂采集的样品(分别编号为1,2,3,4)在室温下富集培养2个月后,采取酚氯仿抽提的方法提取DNA.根据已报道的亚硝化单胞菌(Nitrosomonas sp.)amoA基因序列,设计引物AMOB/AMOE,并在AMOB,AMOE的5′-端分别加上了BamHⅠ和HindⅢ的限制性酶切位点,以利于进一步酶切和克隆.用AMOB/AMOE对4种样品的DNA进行PCR扩增,PCR产物进行琼脂糖凝胶电泳分析.结果表明,4种样品中1号和3号样品扩增得到预期长度的DNA片段,2号和4号样品扩增没有得到预期片段.回收纯化PCR产物与pGEM-T载体连接,构建amoA基因测序载体,并转化E.coli M15.测序结果提交GenBank进行Blast分析.结果显示,扩增得到的DNA片段均与Nitrosomonas sp.GH22的amoA基因有99.7%的同源性,可从环境中分离的亚硝酸细菌中克隆出amoA基因.

  7. Direct Detection by In Situ PCR of the amoA Gene in Biofilm Resulting from a Nitrogen Removal Process

    OpenAIRE

    Hoshino, Tatsuhiko; Noda, Naohiro; Tsuneda, Satoshi; Hirata, Akira; Inamori, Yuhei

    2001-01-01

    Ammonia oxidation is a rate-limiting step in the biological removal of nitrogen from wastewater. Analysis of microbial communities possessing the amoA gene, which is a small subunit of the gene encoding ammonia monooxygenase, is important for controlling nitrogen removal. In this study, the amoA gene present in Nitrosomonas europaea cells in a pure culture and biofilms in a nitrifying reactor was amplified by in situ PCR. In this procedure, fixed cells were permeabilized with lysozyme and sub...

  8. Influence of tropical leaf litter on nitrogen mineralization and community structure of ammonia-oxidizing bacteria

    Directory of Open Access Journals (Sweden)

    Diallo, MD.

    2015-01-01

    Full Text Available Description of the subject. The present study concerns the relationships among leaf litter decomposition, substrate quality, ammonia-oxidizing bacteria (AOB community composition and nitrogen (N availability. Decomposition of organic matter affects the biogeochemical cycling of carbon (C and N. Since the composition of the soil microbial community can alter the physiological capacity of the community, it is timely to study the litter quality effect on N dynamic in ecosystems. Objectives. The aim of this study was to determine the influence of leaf litter decomposition on N mineralization. The specific objectives of this study were to evaluate the influence of the litter biochemistry of five plants species (Faidherbia albida A.Chev., Azadirachta indica A.Juss., Casuarina equisetifolia L., Andropogon gayanus Kunth and Eragrostis tremula Hochst. ex Steud. on N mineralization in a tropical ferrous soil (Lixisol, nitrification, and genetic diversity of ammonia-oxidizing bacteria. Denaturing gradient gel electrophoresis (DGGE of amplified fragments of genes coding for 16S rRNA was used to study the development of bacterial communities during decomposition of leaf litter in soils. Method. Community structure of AOB was determined at two time periods: day 0 and day 140. Ten strains were tested and each of these strains produced a single band. Thus, DGGE DNA band patterns were used to estimate bacterial diversity. Plant secondary compounds such as polyphenols are purported to influence nutrient cycling by affecting organic matter degradation, mineralization rates, N availability and humus formation. In a laboratory study, we investigated the influence of six phenolic acids (ferulic, gallic, vanillic, syringic, p-coumaric and p-HBA acids commonly found in the plant residues on N mineralization and NH4+ and NO3- production in soils. Results. The results showed that litter type did affect soil nitrification. Faidherbia albida litter was associated with

  9. Enhanced abundance and diversity of ammonia-oxidizing Archaea in the Pearl River estuary

    Science.gov (United States)

    Xie, W.; Zhang, C. L.; Wang, P.; Zhou, X.; Guo, W.

    2014-12-01

    Thaumarchaeota are recently recognized as an important group of Archaea that can perform aerobic oxidation of ammonia in a wide range of environments. The goal of this study was to evaluate changes in abundance and diversity of planktonic ammonia-oxidizing Archaea (e.g., Thaumarchaeota) along a salinity gradient from the lower Pearl River to the northern South China Sea. Quantitative PCR and sequencing of total archaeal 16S rRNA gene and the archaeal amoA gene were performed on suspended particulate organic matter collected in different seasons from the freshwater to the ocean water. Total amoA gene copies and relative abundance of Thaumarchaeota all peaked in the estuary where salinity ranged between 4.5‰ and 26.7‰. The diversity of archaeal amoA gene was also highest in the estuary. Seasonality and SiO32- appear to be two major factors affecting the distribution of subclusters of archaeal amoA genes. For example, Nitrosopumilus subcluster 7.1 was most abundant in winter in fresh water, whereas Nitrososphaera were more abundant in summer. Samples collected from the area around Wanshan Island, which is located at the outermost part of the Pearl River estuary, had high abundance of unclassified archaeal amoA genes, suggesting some new groups of Thaumarchaeota might inhabit this water body. Overall, the high abundance and diversity of Thaumarchaeota in the Pearl River estuary may indicate enhanced role of AOA in nitrogen cycle in this dynamic ecosystem.

  10. Differential response of ammonia-oxidizing archaea and bacteria to the wetting of salty arid soil.

    Science.gov (United States)

    Sher, Yonatan; Ronen, Zeev; Nejidat, Ali

    2016-08-01

    Ammonia-oxidizing archaea and bacteria (AOA, AOB) catalyze the first and rate-limiting step of nitrification. To examine their differential responses to the wetting of dry and salty arid soil, AOA and AOB amoA genes (encoding subunit A of the ammonia monooxygenase) and transcripts were enumerated in dry (summer) and wet (after the first rainfall) soil under the canopy of halophytic shrubs and between the shrubs. AOA and AOB were more abundant under shrub canopies than between shrubs in both the dry and wetted soil. Soil wetting caused a significant decrease in AOB abundance under the canopy and an increase of AOA between the shrubs. The abundance of the archaeal amoA gene transcript was similar for both the wet and dry soil, and the transcript-to-gene ratios were amoA transcript-to-gene ratios were between 78 and 514. The lowest ratio was in dry soil under the canopy and the highest in the soil between the shrubs. The results suggest that the AOA are more resilient to stress conditions and maintain a basic activity in arid ecosystems, while the AOB are more responsive to changes in the biotic and abiotic conditions. PMID:27037935

  11. Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat

    Directory of Open Access Journals (Sweden)

    Steven J Biller

    2012-07-01

    Full Text Available Archaea play an important role in nitrification and are, thus, inextricably linked to the global carbon and nitrogen cycles. Since the initial discovery of an ammonia monooxygenase α-subunit (amoA gene associated with an archaeal metagenomic fragment, archaeal amoA sequences have been detected in a wide variety of nitrifying environments. Recent sequencing efforts have revealed extensive diversity of archaeal amoA sequences within different habitats. In this study, we have examined over 8000 amoA sequences from the literature and public databases in an effort to understand the ecological factors influencing the distribution and diversity of ammonia-oxidizing archaea (AOA, with a particular focus on sequences from aquatic habitats. This broad survey provides strong statistical support for the hypothesis that different environments contain distinct clusters of AOA amoA sequences, as surprisingly few sequences are found in more than one habitat type. Within aquatic environments, salinity, depth in the water column, and temperature were significantly correlated with the distribution of sequence types. These findings support the existence of multiple distinct aquatic AOA populations in the environment and suggest some possible selective pressures driving the partitioning of AOA amoA diversity.

  12. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics

    Science.gov (United States)

    Li, Yuyang; Ding, Kun; Wen, Xianghua; Zhang, Bing; Shen, Bo; Yang, Yunfeng

    2016-03-01

    Ammonia-oxidizing archaea (AOA) are recently found to participate in the ammonia removal processes in wastewater treatment plants (WWTPs), similar to their bacterial counterparts. However, due to lack of cultivated AOA strains from WWTPs, their functions and contributions in these systems remain unclear. Here we report a novel AOA strain SAT1 enriched from activated sludge, with its physiological and genomic characteristics investigated. The maximal 16S rRNA gene similarity between SAT1 and other reported AOA strain is 96% (with “Ca. Nitrosotenuis chungbukensis”), and it is affiliated with Wastewater Cluster B (WWC-B) based on amoA gene phylogeny, a cluster within group I.1a and specific for activated sludge. Our strain is autotrophic, mesophilic (25 °C–33 °C) and neutrophilic (pH 5.0–7.0). Its genome size is 1.62 Mb, with a large fragment inversion (accounted for 68% genomic size) inside. The strain could not utilize urea due to truncation of the urea transporter gene. The lack of the pathways to synthesize usual compatible solutes makes it intolerant to high salinity (>0.03%), but could adapt to low salinity (0.005%) environments. This adaptation, together with possibly enhanced cell-biofilm attachment ability, makes it suitable for WWTPs environment. We propose the name “Candidatus Nitrosotenuis cloacae” for the strain SAT1.

  13. The inoculum effect on the ammonia-oxidizing bacterial communities in parallel sequential batch reactors.

    Science.gov (United States)

    Wittebolle, Lieven; Verstraete, Willy; Boon, Nico

    2009-09-01

    Three identical sequential batch reactors (SBRs) were each inoculated with sludge from a full-scale wastewater treatment plant (WWTP) treating a waste stream of different origin, i.e. a hospital, a meat processing company, and a municipal WWTP. The SBRs were run in parallel for 84 consecutive days to investigate whether the reactors would become more phylogenetically similar or stay separated concerning their functionality and microbial communities. Overall, the nitrification functionality was high throughout the experiment, and the size and structure of the sludge flocs were very similar. The total bacterial and ammonia-oxidizing bacterial (AOB) communities were analyzed by PCR-DGGE. Cluster analysis demonstrated very distinct bacterial communities in the three SBRs, not showing any trend becoming more similar. The carrying capacity, dynamics and functional organization of the communities were assessed by DGGE analysis and based on these patterns the range-weighted richness, moving window analysis, and constructing Pareto-Lorenz evenness distribution curves were calculated. Between the SBRs, highly comparable internal structure and dynamics of the AOB communities were observed, although they had only one AOB DGGE band in common. These observations indicate that community characteristics such as the extent of biodiversity and dynamics are more important indicators of good microbial functionality than the presence of certain specific species. PMID:19596129

  14. Environmental controls on the abundance, diversity, growth, and activity of  ammonia-oxidizing microorganisms in temperate forest soils

    OpenAIRE

    Norman, Jeffrey Stancill

    2014-01-01

    The goal of my dissertation research was to investigate the structure and function of ammonia-oxidizing microbial communities in temperate forest soils. Accomplishing this goal required a hybrid approach: I used modern molecular biology techniques alongside soil biogeochemical measurements and framed my research using ecological theory largely developed in plant systems. All of my field work was done at Coweeta Hydrologic Laboratory, a Forest Service Station and Long Term Ecological Researc...

  15. Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil

    OpenAIRE

    JulietaOrlando

    2012-01-01

    Water availability is the main limiting factor in arid soils; however few studies have examined the effects of drying and rewetting on nitrifiers from these environments. The effect of water availability on the diversity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) from a semiarid soil of the Chilean sclerophyllous matorral was determined by microcosm assays. The addition of water every 14 days to reach 60% of the WHC significantly increased nitrate content in rewetted soil microcosm...

  16. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    OpenAIRE

    Alam, M. S.; Ren, G. D.; Lu, L.; Y. Zheng; Peng, X.H.; Jia, Z. J.

    2013-01-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the major energy-generating compounds (i.e., ammonia and oxygen). The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion...

  17. Composition of ammonia-oxidizing archaea and their contribution to nitrification in a high-temperature hot spring

    Science.gov (United States)

    Chen, S.; Peng, X.-T.; Xu, H.-C.; Ta, K.-W.

    2015-10-01

    The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g-1 h-1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH). Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU) in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g-1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell-1 h-1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.

  18. Influence of Different Cultivars on Populations of Ammonia-Oxidizing Bacteria in the Root Environment of Rice

    OpenAIRE

    Briones, Aurelio M.; Okabe, Satoshi; Umemiya, Yoshiaki; Ramsing, Niels-Birger; Reichardt, Wolfgang; Okuyama, Hidetoshi

    2002-01-01

    Comparisons of the activities and diversities of ammonia-oxidizing bacteria (AOB) in the root environment of different cultivars of rice (Oryza sativa L.) indicated marked differences despite identical environmental conditions during growth. Gross nitrification rates obtained by the 15N dilution technique were significantly higher in a modern variety, IR63087-1-17, than in two traditional varieties. Phylogenetic analysis based on the ammonium monooxygenase gene (amoA) identified strains relat...

  19. Spatial distribution of ammonia-oxidizing archaea and bacteria across eight freshwater lakes in sediments from Jiangsu of China

    OpenAIRE

    Xu Sun; Aili Wang; Liuyan Yang; Liyun Guo; Qiankun Chen; Zhinxin Hu; Lijuan Jiang; Lin Xiao

    2014-01-01

    Ammonia-oxidizingarchaea (AOA) and ammonia-oxidizing bacteria (AOB) play an important role innitrogen transformation in freshwater sediments. However, it is still unclear towhat extent the distribution patterns of these microorganisms are affected bythe freshwater sediment across a large geographical scale. This study wasdesigned to gain insight into the heterogeneity distribution of AOA and AOB in32 freshwater sediments from a wide range of ecologic types. Real-time quantitative polymerasech...

  20. Composition of ammonia-oxidizing archaea and their contribution to nitrification in a high-temperature hot spring

    Directory of Open Access Journals (Sweden)

    S. Chen

    2015-10-01

    Full Text Available The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N–NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g−1 h−1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g−1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell−1 h−1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.

  1. Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil

    OpenAIRE

    Bustamante, Mauricio; Verdejo, Valentina; Zúñiga, Catalina; Espinosa, Fernanda; Orlando, Julieta; Carú, Margarita

    2012-01-01

    Water availability is the main limiting factor in arid soils; however, few studies have examined the effects of drying and rewetting on nitrifiers from these environments. The effect of water availability on the diversity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) from a semiarid soil of the Chilean sclerophyllous matorral was determined by microcosm assays. The addition of water every 14 days to reach 60% of the WHC significantly increased nitrate content in rewetted soil microcos...

  2. Seasonal Changes of Freshwater Ammonia-Oxidizing Archaeal Assemblages and Nitrogen Species in Oligotrophic Alpine Lakes▿ †

    OpenAIRE

    Auguet, Jean-Christophe; Nomokonova, Natalya; Camarero, Lluis; Casamayor, Emilio O.

    2011-01-01

    The annual changes in the composition and abundance of ammonia-oxidizing archaea (AOA) were analyzed monthly in surface waters of three high mountain lakes within the Limnological Observatory of the Pyrenees (LOOP; northeast Spain) using both 16S rRNA and functional (ammonia monooxygenase gene, amoA) gene sequencing as well as quantitative PCR amplification. The set of biological data was related to changes in nitrogen species and to other relevant environmental variables. The whole archaeal ...

  3. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    OpenAIRE

    Zheng, Y.; Huang, R.; Wang, B.Z.; Bodelier, P.L.E.; Z. J. Jia

    2014-01-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and pmoA genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communitie...

  4. High Concentrations of the Antibiotic Spiramycin in Wastewater Lead to High Abundance of Ammonia-Oxidizing Archaea in Nitrifying Populations.

    Science.gov (United States)

    Zhang, Yu; Tian, Zhe; Liu, Miaomiao; Shi, Zhou Jason; Hale, Lauren; Zhou, Jizhong; Yang, Min

    2015-08-01

    To evaluate the potential effects of antibiotics on ammonia-oxidizing microbes, multiple tools including quantitative PCR (qPCR), 454-pyrosequencing, and a high-throughput functional gene array (GeoChip) were used to reveal the distribution of ammonia-oxidizing archaea (AOA) and archaeal amoA (Arch-amoA) genes in three wastewater treatment systems receiving spiramycin or oxytetracycline production wastewaters. The qPCR results revealed that the copy number ratios of Arch-amoA to ammonia-oxidizing bacteria (AOB) amoA genes were the highest in the spiramycin full-scale (5.30) and pilot-scale systems (1.49 × 10(-1)), followed by the oxytetracycline system (4.90 × 10(-4)), with no Arch-amoA genes detected in the control systems treating sewage or inosine production wastewater. The pyrosequencing result showed that the relative abundance of AOA affiliated with Thaumarchaeota accounted for 78.5-99.6% of total archaea in the two spiramycin systems, which was in accordance with the qPCR results. Mantel test based on GeoChip data showed that Arch-amoA gene signal intensity correlated with the presence of spiramycin (P amoA functional gene structures by variance partitioning analysis. This study revealed the selection of AOA in the presence of high concentrations of spiramycin in activated sludge systems. PMID:26125322

  5. Spatial distribution and factors shaping the niche segregation of ammonia-oxidizing microorganisms in the Qiantang River, China.

    Science.gov (United States)

    Liu, Shuai; Shen, Lidong; Lou, Liping; Tian, Guangming; Zheng, Ping; Hu, Baolan

    2013-07-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, the current knowledge of the distribution, diversity, and relative abundance of these two microbial groups in freshwater sediments is insufficient. We examined the spatial distribution and analyzed the possible factors leading to the niche segregation of AOA and AOB in the sediments of the Qiantang River, using clone library construction and quantitative PCR for both archaeal and bacterial amoA genes. pH and NH4(+)-N content had a significant effect on AOA abundance and AOA operational taxonomy unit (OTU) numbers. pH and organic carbon content influenced the ratio of AOA/AOB OTU numbers significantly. The influence of these factors showed an obvious spatial trend along the Qiantang River. This result suggested that AOA may contribute more than AOB to the upstream reaches of the Qiantang River, where the pH is lower and the organic carbon and NH4(+)-N contents are higher, but AOB were the principal driver of nitrification downstream, where the opposite environmental conditions were present. PMID:23624482

  6. Diversity of Ammonia-Oxidizing Archaea and Bacteria in the Sediments of a Hypernutrified Subtropical Estuary: Bahía del Tóbari, Mexico▿

    OpenAIRE

    Beman, J. Michael; Francis, Christopher A.

    2006-01-01

    Nitrification within estuarine sediments plays an important role in the nitrogen cycle, both at the global scale and in individual estuaries. Although bacteria were once thought to be solely responsible for catalyzing the first and rate-limiting step of this process, several recent studies have suggested that mesophilic Crenarchaeota are capable of performing ammonia oxidation. Here we examine the diversity (richness and community composition) of ammonia-oxidizing archaea (AOA) and bacteria (...

  7. Abundance and Diversity of Ammonia-Oxidizing Archaea and Bacteria in Sediments of Trophic End Members of the Laurentian Great Lakes, Erie and Superior

    OpenAIRE

    Annette Bollmann; Bullerjahn, George S.; Robert Michael McKay

    2014-01-01

    Ammonia oxidation is the first step of nitrification carried out by ammonia-oxidizing Archaea (AOA) and Bacteria (AOB). Lake Superior and Erie are part of the Great Lakes system differing in trophic status with Lake Superior being oligotrophic and Lake Erie meso- to eutrophic. Sediment samples were collected from both lakes and used to characterize abundance and diversity of AOA and AOB based on the ammonia monooxygenase (amoA) gene. Diversity was accessed by a pyro-sequencing approach and th...

  8. [Abundance and Community Composition of Ammonia-Oxidizing Archaea in Two Completely Autotrophic Nitrogen Removal over Nitrite Systems].

    Science.gov (United States)

    Gao, Jing-feng; Li, Ting; Zhang, Shu-jun; Fan, Xiao-yan; Pan, Kai-ling; Ma, Qian; Yuan, Ya-lin

    2015-08-01

    Ammonia oxidation is the first and rate-limiting step of nitrification, which was thought to be only performed by ammonia-oxidizing bacteria (AOB). In recent years, ammonia-oxidizing archaea (AOA) was also confirmed to take part in ammonia oxidation. The diversity and abundance of AOA have been investigated in various environments, however, little is known regarding the AOA in the completely autotrophic nitrogen removal over nitrite (CANON) wastewater treatment process. In this study, the abundance and diversity of AOA were investigated in the biofilm and flocculent activated sludge collected in a lab-scale (L) CANON system and a pilot-scale (P) CANON systems, respectively. The quantitative real time PCR (qPCR) was applied to investigate the abundance of AOA and the diversity of AOA was determined by polymerase chain reaction (PCR), cloning and sequencing. The qPCR results showed that the average abundance of AOA amoA gene of L and P was 2.42 x 10(6) copies x g(-1) dry sludge and 6.51 x 10(6) copies x g(-1) dry sludge, respectively. The abundance of AOA in biofilm was 10.1-14.1 times higher than that in flocculent activated sludge. For P system, the abundance of AOA in flocculent activated sludge was 1.8 times higher than that in biofilm. The results indicated that the abundance of AOA might be affected by different sludge morphology. The diversity of AOA in P system was extremely limited, only one OTU was observed, which was classified into Nitrosopumilus subcluster 5.2. The diversity of AOA in L system was higher, eight OTUs were observed, which were classified into five genera: Nitrososphaera subcluster 9, subcluster 8.1, subcluster 4.1, subcluster 1.1 and Nitrosopumilus subcluster 5.2. The diversity and abundance of AOA were different in CANON systems with different sludge morphology. AOA may play an important role in ammonia oxidation in CANON system. PMID:26592025

  9. Diversity of Ammonia-Oxidizing Archaea and Bacteria Across Physical-Chemical Gradients in San Francisco Bay Estuary Sediments

    Science.gov (United States)

    Mosier, A. C.; Francis, C. A.

    2006-12-01

    A combination of recent metagenomic analyses and the cultivation of a novel, ammonia-oxidizing, marine crenarchaeota revealed the first evidence for nitrification within the Archaeal domain. Further genetic and metagenomic studies demonstrated the presence of ammonia-oxidizing crenarchaea in diverse marine and terrestrial environments. These discoveries challenge the currently accepted view of the global nitrogen cycle and validate the need for further research on microbial diversity and function. In particular, it is imperative to reexamine the microbial communities involved in ammonia oxidation in marine and estuarine sediments, where this process plays a pivotal role in the cycling and removal of nitrogen. Using phylogenetic analyses of ammonia monooxygenase subunit A (amoA) gene sequences, we examined the distribution and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in San Francisco Bay, the largest estuary on the West coast of the United States. The highly impacted bay, encompassing nearly 178,000 km2, effectively connects two estuaries with varying physical-chemical characteristics to the Pacific Ocean. We recovered archaeal and bacterial amoA genes from 11 sites distributed throughout the bay, spanning the northern and southern estuaries and the central region where they connect to the ocean. Richness estimates varied considerably across all sites examined, with archaeal amoA estimates being generally higher than bacterial amoA. Several of the bacterial amoA libraries were represented by fewer than 3 genotypes. Archaeal amoA sequences were phylogenetically diverse and grouped within previously described sediment and soil/sediment clusters. Several sequences were closely related to the only cultivated AOA, Nitrosopumilus maritimus. Both the archaeal and bacterial amoA sequences showed significant regional specificity. Distinct populations exist in the northern and southern estuaries and sequences from the northernmost and southernmost sites

  10. Microsite Differentiation Drives the Abundance of Soil Ammonia Oxidizing Bacteria along Aridity Gradients.

    Science.gov (United States)

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Eldridge, David J; Singh, Brajesh K

    2016-01-01

    Soil ammonia oxidizing bacteria (AOB) and archaea (AOA) are responsible for nitrification in terrestrial ecosystems, and play important roles in ecosystem functioning by modulating the rates of N losses to ground water and the atmosphere. Vascular plants have been shown to modulate the abundance of AOA and AOB in drylands, the largest biome on Earth. Like plants, biotic and abiotic features such as insect nests and biological soil crusts (biocrusts) have unique biogeochemical attributes (e.g., nutrient availability) that may modify the local abundance of AOA and AOB. However, little is known about how these biotic and abiotic features and their interactions modulate the abundance of AOA and AOB in drylands. Here, we evaluate the abundance of amoA genes from AOB and AOA within six microsites commonly found in drylands (open areas, biocrusts, ant nests, grasses, nitrogen-fixing shrubs, and trees) at 21 sites from eastern Australia, including arid and mesic ecosystems that are threatened by predicted increases in aridity. Our results from structural equation modeling suggest that soil microsite differentiation alters the abundance of AOB (but not AOA) in both arid and mesic ecosystems. While the abundance of AOA sharply increased with increasing aridity in all microsites, the response of AOB abundance was microsite-dependent, with increases (nitrogen-fixing shrubs, ant nests), decreases (open areas) or no changes (grasses, biocrusts, trees) in abundance with increasing aridity. Microsites supporting the highest abundance of AOB were trees, nitrogen-fixing shrubs, and ant nests. These results are linked to particular soil characteristics (e.g., total carbon and ammonium) under these microsites. Our findings advance our understanding of key drivers of functionally important microbial communities and N availability in highly heterogeneous ecosystems such as drylands, which may be obscured when different soil microsites are not explicitly considered. PMID:27148194

  11. Impact of acetochlor on ammonia-oxidizing bacteria in microcosm soils

    Institute of Scientific and Technical Information of China (English)

    LI Xinyu; ZHANG Huiwen; WU Minna; SU Zhencheng; ZHANG Chenggang

    2008-01-01

    Acetochlor is an increasingly used herbicide on corn in North China. Currently, the effect of acetochlor on soil ammonia-oxidizing bacteria (AOB) communities is not well documented. Here, we studied the diversity and community composition of AOB in soil amended with three concentrations of acetochlor (50, 150, 250 mg/kg) and the control (0 mg acetochlor/kg soil) in a microcosm experiment by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and the phylogenetic analysis of excised DGGE bands. DGGE profiles showed that acetochlor had a stimulating effect on AOB at the early stage after acetochlor amended, and the order of intensity and duration is medium-acetochlor amended samples (AM) > low-acetochlor amended samples (AL) > high-acetochlor amended samples (AH). At the end of 60 d microcosm, acetochlor had a negative effect on the diversity of AOB. Cluster analysis of DGGE profiles showed that acetochlor had a greater effect on the community structure of AOB on day 60 than on day 1. The phylogenetic analysis revealed that all the sequences of excised DGGE bands were closely related to members of the genus Nitrosospira and formed two separate subclusters designated as subcluster 1 and subcluster 2 affiliated respectively with clusters 3 and 4 in Nitrosospira as defined by Stephen. Some dominant AOB had a change from subcluster 2 to subcluster 1 with the incubation. The results showed that acetochlor had an effect on the AOB on a long-term basis and the chronic effect of acetochlor should be paid more attention in future.

  12. Microsite Differentiation Drives the Abundance of Soil Ammonia Oxidizing Bacteria along Aridity Gradients

    Science.gov (United States)

    Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Eldridge, David J.; Singh, Brajesh K.

    2016-01-01

    Soil ammonia oxidizing bacteria (AOB) and archaea (AOA) are responsible for nitrification in terrestrial ecosystems, and play important roles in ecosystem functioning by modulating the rates of N losses to ground water and the atmosphere. Vascular plants have been shown to modulate the abundance of AOA and AOB in drylands, the largest biome on Earth. Like plants, biotic and abiotic features such as insect nests and biological soil crusts (biocrusts) have unique biogeochemical attributes (e.g., nutrient availability) that may modify the local abundance of AOA and AOB. However, little is known about how these biotic and abiotic features and their interactions modulate the abundance of AOA and AOB in drylands. Here, we evaluate the abundance of amoA genes from AOB and AOA within six microsites commonly found in drylands (open areas, biocrusts, ant nests, grasses, nitrogen-fixing shrubs, and trees) at 21 sites from eastern Australia, including arid and mesic ecosystems that are threatened by predicted increases in aridity. Our results from structural equation modeling suggest that soil microsite differentiation alters the abundance of AOB (but not AOA) in both arid and mesic ecosystems. While the abundance of AOA sharply increased with increasing aridity in all microsites, the response of AOB abundance was microsite-dependent, with increases (nitrogen-fixing shrubs, ant nests), decreases (open areas) or no changes (grasses, biocrusts, trees) in abundance with increasing aridity. Microsites supporting the highest abundance of AOB were trees, nitrogen-fixing shrubs, and ant nests. These results are linked to particular soil characteristics (e.g., total carbon and ammonium) under these microsites. Our findings advance our understanding of key drivers of functionally important microbial communities and N availability in highly heterogeneous ecosystems such as drylands, which may be obscured when different soil microsites are not explicitly considered. PMID:27148194

  13. Effects of different fertilizers on the abundance and community structure of ammonia oxidizers in a yellow clay soil.

    Science.gov (United States)

    Yao, Huaiying; Huang, Sha; Qiu, Qiongfen; Li, Yaying; Wu, Lianghuan; Mi, Wenhai; Dai, Feng

    2016-08-01

    Yellow clay paddy soil (Oxisols) is a typical soil with low productivity in southern China. Nitrification inhibitors and slow release fertilizers have been used to improve nitrogen fertilizer utilization and reduce environmental impaction of the paddy soil. However, their effects on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in paddy soil have rarely been investigated. In the present work, we compared the influences of several slow release fertilizers and nitrification inhibitors on the community structure and activities of the ammonia oxidizers in yellow clay soil. The abundances and community compositions of AOA and AOB were determined with qPCR, terminal restriction fragment length polymorphism (T-RFLP), and clone library approaches. Our results indicated that the potential nitrification rate (PNR) of the soil was significantly related to the abundances of both AOA and AOB. Nitrogen fertilizer application stimulated the growth of AOA and AOB, and the combinations of nitrapyrin with urea (NPU) and urea-formaldehyde (UF) inhibited the growth of AOA and AOB, respectively. Compared with other treatments, the applications of NPU and UF also led to significant shifts in the community compositions of AOA and AOB, respectively. NPU showed an inhibitory effect on AOA T-RF 166 bp that belonged to Nitrosotalea. UF had a negative effect on AOB T-RF 62 bp that was assigned to Nitrosospira. These results suggested that NPU inhibited PNR and increased nitrogen use efficiency (NUE) by inhibiting the growth of AOA and altering AOA community. UF showed no effect on NUE but decreased AOB abundance and shifted AOB community. PMID:27063014

  14. Communities of ammonia oxidizers at different stages of Spartina alterniflora invasion in salt marshes of Yangtze River estuary.

    Science.gov (United States)

    Xia, Fei; Zeleke, Jemaneh; Sheng, Qiang; Wu, Ji-Hua; Quan, Zhe-Xue

    2015-05-01

    Spartina alterniflora, an aggressive invasive plant species at the estuarine wetlands of China's coasts, has become a major threat to the natural ecosystems. To understand its potential influence on nitrification processes, the community structures and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated using 454-pyrosequencing and quantitative real-time PCR (qPCR) in S. alterniflora invading salt marsh sediments at the Yangtze River estuary in Chongming island, Shanghai, China. Copy numbers of archaeal and bacterial ammonia monooxygenase subunit A (amoA) genes did not show accordant shifts with S. alterniflora invasion in the two sampling sites. However, the copy numbers of archaeal amoA gene were higher in summer than in spring. Phylogenetic analysis indicated that more than 90% of the archaeal and 92% of the bacterial amoA gene sequences were closely related to marine group I.1a and the clusters 13 and 15 in Nitrosospira lineage, respectively. The effect of different seasons (spring and summer) was important for the abundance variation of AOA, while different stages of S. alterniflora invasion did not show significant effect for both AOA and AOB. Variation of AOA community was significantly related to total carbon (TC) and sulfate concentration (P < 0.05), whereas the AOB community was significantly related to sulfate concentration, total nitrogen (TN), TC and pH (P < 0.05). In conclusion, the abundance and diversity of ammonia oxidizing microbial communities were not strongly affected by S. alterniflora invasion. PMID:25935302

  15. Archaeal Ammonia Oxidizers and Total Production of N2O and CH4 in Arctic Polar Desert Soils

    Science.gov (United States)

    Brummell, Martin; Robert, Stan; Bodrossy, Levente; Abell, Guy; Siciliano, Steven

    2014-05-01

    Ammonia-oxidizing Archaea are abundant in Arctic desert soils and appear to be responsible for the majority of ammonia oxidation activity in these cold and dry ecosystems. We used DNA microarrays to characterize the microbial community consisting of ammonia-oxidizing Archaea and methane-oxidizing Bacteria in three polar deserts from Ellesmere Island, Canada. Patterns of net greenhouse gas production, including production and consumption of CO2, CH4, and N2O were compared with community relative richness and abundance in a structural equation model that tested causal hypotheses relating edaphic factors to the biological community and net gas production. We extracted and amplified DNA sequences from soils collected at three polar deserts on Ellesmere Island in the Canadian high Arctic, and characterized the community structure using DNA microarrays. The functional genes Archaeal AmoA and pMMO were used to compare patterns of biological community structure to the observed patterns of net greenhouse gas production from those soils, as measured in situ. Edaphic factors including water content, bulk density, pH, and nutrient levels such as nitrate, ammonia, and extractable organic carbon were also measured for each soil sample, resulting in a highly multivariate dataset. Both concentration and net production of the three greenhouse gases were correlated, suggesting underlying causal factors. Edaphic factors such as soil moisture and pH had important, direct effects on the community composition of both functional groups of microorganisms, and pH further had a direct effect on N2O production. The structural relationship between the examined microbial communities and net production of both N2O and CH4 was strong and consistent between varying model structures and matrices, providing high confidence that this model relationship accurately reflects processes occurring in Arctic desert soils.

  16. Temperature and moisture effects on ammonia oxidizer communities in cryoturbated Arctic soils

    Science.gov (United States)

    Aiglsdorfer, Stefanie; Alves, Ricardo J. E.; Bárta, Jiří; Kohoutová, Iva; Bošková, Hana; Diáková, Katerina; Čapek, Petr; Schnecker, Jörg; Wild, Birgit; Mooshammer, Maria; Urich, Tim; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Mikutta, Robert; Lashchinskiy, Nikolay; Richter, Andreas; Šantrůčková, Hana; Shibistova, Olga; Schleper, Christa

    2014-05-01

    Arctic permafrost-affected soils contain large amounts of soil organic carbon (SOC) and are expected to experience drastic changes in environmental conditions, such as moisture and temperature, due to the high surface temperature increase predicted for these regions. Although the SOC decomposition processes driven by the microbiota are considered to be nitrogen (N) limited, little information about the microbial groups involved in N cycle is currently available, including their reactions to environmental changes. Here, we investigate the presence of ammonia oxidizing archaea (AOA) and bacteria (AOB) in distinct soil horizons from the Taymyr peninsula (Siberia, Russia), and investigate their activities under changing temperature and moisture regimes. These two groups of organisms perform the first step in nitrification, an important and rate limiting process in the global N cycle, which involves the oxidation of ammonia to nitrate via nitrite. The soil samples were separated into different horizons: organic topsoil (O) and subducted organic topsoil (Ajj). The samples were incubated for 18 weeks at 4, 12 and 20° C and 50, 80 and 100 % water holding capacity (WHC). AOA and AOB abundances were quantified by quantitative PCR targeting genes of the key metabolic enzyme, ammonia monooxygenase. AOA diversity was analyzed in-depth by high-throughput amplicon sequencing of the same gene. Additionally, gross and net nitrification and mineralization rates were determined in order to investigate potential relationships between AOA and AOB populations and these processes, in response to the incubation treatments. We found higher abundances of AOA than AOB in the organic topsoil, whereas AOB dominated in the subducted organic topsoil. Increased temperature resulted in higher numbers of both groups at low WHC %, with AOB showing a more pronounced response. However, these effects were not observed under anaerobic conditions (100 % WHC). Deep sequencing of AOA amoA genes revealed

  17. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea

    Science.gov (United States)

    Alves, Ricardo J. E.; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M.; Schleper, Christa; Urich, Tim

    2014-05-01

    The functioning of Arctic soil ecosystems is crucially important for global climate, although basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and therefore it is particularly important to gain a better understanding of the microbial populations catalyzing transformations that influence N bioavailability. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils from Svalbard were analyzed through a polyphasic approach, including determination of gross nitrification rates through a 15N pool dilution method, qualitative and quantitative analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) populations based on the functional marker gene amoA (encoding the ammonia monooxygenase subunit A), and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils, and outnumbered AOB by 1 to 3 orders of magnitude in most others. AOA showed a great overall phylogenetic diversity that was differentially distributed across soil ecosystems, and exhibited an uneven population composition that reflected the dominance of a single AOA phylotype in each population. Moreover, AOA populations showed a multifactorial association with the soil properties, which reflected an overall distribution associated with tundra type and with several physico-chemical parameters combined, namely pH and soil moisture and N contents (i.e., NO3- and dissolved organic N). Remarkably, the different gross in situ and potential nitrification rates between soils were associated with distinct AOA phylogenetic clades, suggesting differences in their nitrifying potential, both under the native NH3 conditions and as a response to higher NH3 availability. This was further supported by the selective enrichment of two AOA clades that exhibited

  18. Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments.

    Directory of Open Access Journals (Sweden)

    Puntipar Sonthiphand

    Full Text Available Anaerobic ammonia oxidizing (anammox bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library

  19. Changes in Nitrogen-Fixing and Ammonia-Oxidizing Bacterial Communities in Soil of a Mixed Conifer Forest after Wildfire

    OpenAIRE

    Yeager, Chris M.; Northup, Diana E.; Grow, Christy C.; Barns, Susan M.; Kuske, Cheryl R.

    2005-01-01

    This study was undertaken to examine the effects of forest fire on two important groups of N-cycling bacteria in soil, the nitrogen-fixing and ammonia-oxidizing bacteria. Sequence and terminal restriction fragment length polymorphism (T-RFLP) analysis of nifH and amoA PCR amplicons was performed on DNA samples from unburned, moderately burned, and severely burned soils of a mixed conifer forest. PCR results indicated that the soil biomass and proportion of nitrogen-fixing and ammonia-oxidizin...

  20. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean

    OpenAIRE

    Sintes, Eva; Bergauer, Kristin; de Corte, Daniele; Yokokawa, Taichi; Herndl, Gerhard J.

    2013-01-01

    Mesophilic ammonia-oxidizing Archaea (AOA) are abundant in a diverse range of marine environments, including the deep ocean, as revealed by the quantification of the archaeal amoA gene encoding the alpha-subunit of the ammonia monooxygenase. Using two different amoA primer sets, two distinct ecotypes of marine Crenarchaeota Group I (MCGI) were detected in the waters of the tropical Atlantic and the coastal Arctic. The HAC-AOA ecotype (high ammonia concentration AOA) was ≍ 8000 times and 15 ti...

  1. Cultivation of Autotrophic Ammonia-Oxidizing Archaea from Marine Sediments in Coculture with Sulfur-Oxidizing Bacteria▿ †

    OpenAIRE

    Park, Byoung-Joon; Park, Soo-Je; Yoon, Dae-No; Schouten, Stefan; Sinninghe Damsté, Jaap S.; Rhee, Sung-Keun

    2010-01-01

    The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and “Candidatus Nitrosopumilus maritimus” (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enrichmen...

  2. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management

    Energy Technology Data Exchange (ETDEWEB)

    Wessen, E.; Nyberg, K.; Jansson, J.K.; Hallin, S.

    2010-05-01

    Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) co-exist in soil, but their relative distribution may vary depending on the environmental conditions. Effects of changes in soil organic matter and nutrient content on the AOB and AOA are poorly understood. Our aim was to compare effects of long-term soil organic matter depletion and amendments with labile (straw) and more recalcitrant (peat) organic matter, with and without easily plant-available nitrogen, on the activities, abundances and community structures of AOB and AOA. Soil was sampled from a long-term field site in Sweden that was established in 1956. The potential ammonia oxidation rates, the AOB and AOA amoA gene abundances and the community structures of both groups based on T-RFLP of amoA genes were determined. Straw amendment during 50 years had not altered any of the measured soil parameters, while the addition of peat resulted in a significant increase of soil organic carbon as well as a decrease in pH. Nitrogen fertilization alone resulted in a small decrease in soil pH, organic carbon and total nitrogen, but an increase in primary production. Type and amount of organic matter had an impact on the AOB and AOA community structures and the AOA abundance. Our findings confirmed that AOA are abundant in soil, but showed that under certain conditions the AOB dominate, suggesting niche differentiation between the two groups at the field site. The large differences in potential rates between treatments correlated to the AOA community size, indicating that they were functionally more important in the nitrification process than the AOB. The AOA abundance was positively related to addition of labile organic carbon, which supports the idea that AOA could have alternative growth strategies using organic carbon. The AOB community size varied little in contrast to that of the AOA. This indicates that the bacterial ammonia oxidizers as a group have a greater ecophysiological diversity and

  3. Comparison among amoA Primers Suited for Quantification and Diversity Analyses of Ammonia-Oxidizing Bacteria in Soil

    OpenAIRE

    Shimomura, Yumi; Morimoto, Sho; Hoshino, Yuko Takada; Uchida, Yoshitaka; akiyama, Hiroko; Hayatsu, Masahito

    2011-01-01

    Ammonia monooxygenase subunit A gene (amoA) is frequently used as a functional gene marker for diversity analysis of ammonia-oxidizing bacteria (AOB). To select a suitable amoA primer for real-time PCR and PCR-denaturing gradient gel electrophoresis (DGGE), three reverse primers (degenerate primer amoA-2R; non-degenerate primers amoA-2R-GG and amoA-2IR) were examined. No significant differences were observed among the three primers in terms of quantitative values of amoA from environmental sa...

  4. Effect of Soil Ammonium Concentration on N2O Release and on the Community Structure of Ammonia Oxidizers and Denitrifiers

    OpenAIRE

    Avrahami, Sharon; Conrad, Ralf; Braker, Gesche

    2002-01-01

    The effect of ammonium addition (6.5, 58, and 395 μg of NH4+-N g [dry weight] of soil−1) on soil microbial communities was explored. For medium and high ammonium concentrations, increased N2O release rates and a shift toward a higher contribution of nitrification to N2O release occurred after incubation for 5 days at 4°C. Communities of ammonia oxidizers were assayed after 4 weeks of incubation by denaturant gradient gel electrophoresis (DGGE) of the amoA gene coding for the small subunit of ...

  5. Underestimation of ammonia-oxidizing bacteria abundance by amplification bias in amoA-targeted qPCR

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Musovic, Sanin; Palomo, Alejandro;

    2016-01-01

    quantitative PCR methods to enumerate ammonia-oxidizing bacteria (AOB): one targeting the phylogenetic gene 16S rRNA and the other, the functional gene amoA. Cloning-sequencing with both primer sets on DNA from two waterworks revealed contrasting images of AOB diversity. The amoA-based approach preferentially...... analysis against sequences of AOB (both isolates and high-quality environmental sequences). The difference in primer coverage significantly impacted the estimation of AOB abundance at the waterworks with high Cluster 6A prevalence, with estimates up to 50-fold smaller for amoA than for 16S r...

  6. Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea

    Directory of Open Access Journals (Sweden)

    Yvonne Antonia Lipsewers

    2014-09-01

    Full Text Available Microbial processes such as nitrification and anaerobic ammonium oxidation (anammox are important for nitrogen cycling in marine sediments. Seasonal variations of archaeal and bacterial ammonia oxidizers (AOA and AOB and anammox bacteria, as well as the environmental factors affecting these groups, are not well studied. We have examined the seasonal and depth distribution of the abundance and potential activity of these microbial groups in coastal marine sediments of the southern North Sea. This was achieved by quantifying specific intact polar lipids (IPLs as well as the abundance and gene expression of their 16S rRNA gene, the ammonia monooxygenase subunit A (amoA gene of AOA and AOB, and the hydrazine synthase (hzsA gene of anammox bacteria. AOA, AOB and anammox bacteria were detected and transcriptionally active down to 12 cm sediment depth. In all seasons, the abundance of AOA was higher compared to the AOB abundance suggesting that AOA play a more dominant role in aerobic ammonia oxidation in these sediments. Anammox bacteria were abundant and active even in oxygenated and bioturbated parts of the sediment. The abundance of AOA and AOB was relatively stable with depth and over the seasonal cycle, while anammox bacteria abundance and transcriptional activity were highest in August. North Sea sediments thus seem to provide a common, stable, ecological niche for AOA, AOB and anammox bacteria.

  7. Seasonal and spatial distribution of ammonia-oxidizing microorganism communities in surface sediments from the East China Sea

    Institute of Scientific and Technical Information of China (English)

    HE Hui; ZHEN Yu; MI Tiezhu; LU Xinglan; YU Zhigang

    2015-01-01

    Ammonia oxidation plays a significant role in the nitrogen cycle in marine sediments. Seasonal and spatial distribution of ammonia-oxidizing archaea (AOA) and betaproteobacteria (β-AOB) in surface sediments from the East China Sea (ECS) were investigated using ammonia monooxygenaseα subunit (amoA) gene. In order to characterize the community of AOA andβ-AOB, real-time quantitative polymerase chain reaction (qPCR) was carried out in this study, along with environmental parameters. The abundance ofβ-AOBamoA gene (2.17×106–4.54×107 copy numbers per gram wet weight sediment) was always greater than that of AOAamoA gene (2.18×105–9.89×106 copy numbers per gram wet weight sediment) in all sampling stations. The qPCR results were correlated with environmental parameters. AOAamoA gene copy numbers in April were positively related to temperature and nitrite concentration (p<0.05).β-AOBamoA gene copy numbers in August correlated negatively with salinity (p<0.01), and correlated positively with ammonium concentration (p<0.05). With the increase of salinity, theamoA gene copy ratio of AOB to AOA had a tendency to decrease, which suggestedβ-AOB dominated in the area of high level ammonium and AOA preferred high salinity area.

  8. Spatial and temporal dynamics of ammonia oxidizers in the sediments of the Gulf of Finland, Baltic Sea.

    Science.gov (United States)

    Vetterli, Adrien; Hietanen, Susanna; Leskinen, Elina

    2016-02-01

    The diversity and dynamics of ammonia-oxidizing bacteria (AOB) and archaea (AOA) nitrifying communities in the sediments of the eutrophic Gulf of Finland (GoF) were investigated. Using clone libraries of ammonia monooxygenase (amoA) gene fragments and terminal restriction fragment length polymorphism (TRFLP), we found a low richness of both AOB and AOA. The AOB amoA phylogeny matched that of AOB 16S ribosomal genes from the same samples. AOA communities were characterized by strong spatial variation while AOB communities showed notable temporal patterns. At open sea sites, where transient anoxic conditions prevail, richness of both AOA and AOB was lowest and communities were dominated by organisms with gene signatures unique to the GoF. Given the importance of nitrification as a link between the fixation of nitrogen and its removal from aquatic environments, the low diversity of ammonia-oxidizing microbes across the GoF could be of relevance for ecosystem resilience in the face of rapid global environmental changes. PMID:26722795

  9. Quantitative and compositional responses of ammonia-oxidizing archaea and bacteria to long-term field fertilization

    Science.gov (United States)

    Xue, Chao; Zhang, Xu; Zhu, Chen; Zhao, Jun; Zhu, Ping; Peng, Chang; Ling, Ning; Shen, Qirong

    2016-06-01

    Archaeal (AOA) and bacterial (AOB) ammonia-oxidizer responses to long-term field fertilization in a Mollisol soil were assessed through pyrosequencing of amoA genes. Long-term fertilization treatments including chemical fertilizer (NPK), NPK plus manure (NPKM), and no fertilization over 23 years altered soil properties resulting in significant shifts in AOA and AOB community composition and abundance. NPK exhibited a strong influence on AOA and AOB composition while the addition of manure neutralized the community change induced by NPK. NPK also led to significant soil acidification and enrichment of Nitrosotalea. Nitrosospira cluster 9 and 3c were the most abundant AOB populations with opposing responses to fertilization treatments. NPKM had the largest abundance of ammonia-oxidizers and highest potential nitrification activity (PNA), suggesting high N loss potential due to a doubling of nutrient input compared to NPK. PNA was strongly correlated to AOA and AOB community composition indicating that both were important in ammonium oxidization in this Mollisol soil. Total N and organic C were the most important factors driving shifts in AOA and AOB community composition. The AOA community was strongly correlated to the activities of all sugar hydrolysis associated soil enzymes and was more responsive to C and N input than AOB.

  10. Distribution and Abundance of Archaea in South China Sea Sponge Holoxea sp. and the Presence of Ammonia-Oxidizing Archaea in Sponge Cells

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2011-01-01

    Full Text Available Compared with bacterial symbionts, little is known about archaea in sponges especially about their spatial distribution and abundance. Understanding the distribution and abundance of ammonia-oxidizing archaea will help greatly in elucidating the potential function of symbionts in nitrogen cycling in sponges. In this study, gene libraries of 16S rRNA gene and ammonia monooxygenase subunit A (amoA genes and quantitative real-time PCR were used to study the spatial distribution and abundance of archaea in the South China Sea sponge Holoxea sp. As a result, Holoxea sp. specific AOA, mainly group C1a (marine group I: Crenarchaeota were identified. The presence of ammonia-oxidizing crenarchaea was observed for the first time within sponge cells. This study suggested a close relationship between sponge host and its archaeal symbionts as well as the archaeal potential contribution to sponge host in the ammonia-oxidizing process of nitrification.

  11. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating

    Directory of Open Access Journals (Sweden)

    Anne eDaebeler

    2012-10-01

    Full Text Available The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of ammonia oxidation as a function of environmental conditions including the ecophysiology of the associated organisms. We examined the discrete and combined effects of mineral nitrogen deposition and geothermal heating on ammonia-oxidizing communities by sampling soils from a long-term fertilisation site along a temperature gradient in Icelandic grasslands. Microarray, clone library and quantitative PCR analyses of the ammonia monooxygenase subunit A (amoA gene accompanied by physico-chemical measurements of the soil properties were conducted. In contrast to most other terrestrial environments, the ammonia-oxidizing communities consisted almost exclusively of archaea. Their bacterial counterparts proved to be undetectable by quantitative PCR suggesting AOB are only of minor relevance for ammonia oxidation in these soils. Our results show that fertilization and local, geothermal warming affected detectable ammonia-oxidizing communities, but not soil chemistry: only a subset of the detected AOA phylotypes was present in higher temperature soils and AOA abundance was increased in the fertilized soils, while the measured soil physico-chemical properties remained unchanged. Differences in distribution and structure of AOA communities were best explained by soil pH and clay content irrespective of temperature or fertilizer treatment in these grassland soils, suggesting that these factors have a greater potential for ecological niche-differentiation of AOA in soil than temperature and N fertilization.

  12. The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance and climatic factors

    Directory of Open Access Journals (Sweden)

    Hangwei eHu

    2015-09-01

    Full Text Available Paddy soils distribute widely from temperate to tropical regions, and are characterized by intensive nitrogen fertilization practices in China. Mounting evidence has confirmed the functional importance of ammonia-oxidizing archaea (AOA and bacteria (AOB in soil nitrification, but little is known about their biogeographic distribution patterns in paddy ecosystems. Here, we used barcoded pyrosequencing to characterize the effects of climatic, geochemical and spatial factors on the distribution of ammonia oxidizers from 11 representative rice-growing regions (75-1945 km apart of China. Potential nitrification rates varied greatly by more than three orders of magnitude, and were significantly correlated with the abundances of AOA and AOB. The community composition of ammonia oxidizer was affected by multiple factors, but changes in relative abundances of the major lineages could be best predicted by soil pH. The alpha diversity of AOA and AOB displayed contrasting trends over the gradients of latitude and atmospheric temperature, indicating a possible niche separation between AOA and AOB along the latitude. The Bray-Curtis dissimilarities in ammonia-oxidizing community structure significantly increased with increasing geographical distance, indicating that more geographically distant paddy fields tend to harbor more dissimilar ammonia oxidizers. Variation partitioning analysis revealed that spatial, geochemical and climatic factors could jointly explain majority of the data variation, and were important drivers defining the ecological niches of AOA and AOB. Our findings suggest that both AOA and AOB are of functional importance in paddy soil nitrification, and ammonia oxidizers in paddy ecosystems exhibit large-scale biogeographic patterns shaped by soil pH, geographic distance, and climatic factors.

  13. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    Science.gov (United States)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  14. Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Hashmi

    2015-01-01

    Full Text Available Aim of the Review. To grasp the fragmented information available on the botany, traditional uses, phytochemistry, pharmacology, and toxicology of Olea europaea to explore its therapeutic potential and future research opportunities. Material and Methods. All the available information on O. europaea was collected via electronic search (using Pubmed, Scirus, Google Scholar, and Web of Science and a library search. Results. Ethnomedical uses of O. europaea are recorded throughout the world where it has been used to treat various ailments. Phytochemical research had led to the isolation of flavonoids, secoiridoids, iridoids, flavanones, biophenols, triterpenes, benzoic acid derivatives, isochromans, and other classes of secondary metabolites from O. europaea. The plant materials and isolated components have shown a wide spectrum of in vitro and in vivo pharmacological activities like antidiabetic, anticonvulsant, antioxidant, anti-inflammatory, immunomodulatory, analgesic, antimicrobial, antiviral, antihypertensive, anticancer, antihyperglycemic, antinociceptive, gastroprotective, and wound healing activities. Conclusions. O. europaea emerged as a good source of traditional medicine for the treatment of various ailments. The outcomes of phytochemical and pharmacological studies reported in this review will further expand its existing therapeutic potential and provide a convincing support to its future clinical use in modern medicine.

  15. Comparison of ammonia-oxidizing bacterial community structure in membrane-assisted bioreactors using PCR-DGGE and FISH.

    Science.gov (United States)

    Ziembińska, A; Ciesielski, S; Gnida, A; Zabczyńki, S; Surmacz-Górska, J; Miksch, K

    2012-08-01

    The ammonia-oxidizing bacterial (AOB) communities in three membrane bioreactors (MBRs) were monitored for 2 months after an acclimation period in order to investigate the influence of sludge age and medium type on AOB changeability and its connection with nitrification effectiveness. One MBR with a sludge age of 4 days was fed with a synthetic medium, whereas the other two with sludge ages of 8 and 32 days were fed with landfill leachate. The research revealed that landfill leachate can be effectively treated in an MBR with a higher sludge age for longer periods of time and that this improvement in performance was correlated with an increase in AOB biodiversity. Interestingly, the medium type has a stronger influence on AOB biocenosis formation than the sludge age. PMID:22713978

  16. Evidence of novel plant-species specific ammonia oxidizing bacterial clades in acidic South African fynbos soils.

    Science.gov (United States)

    Ramond, Jean-Baptiste; Lako, Joseph D W; Stafford, William H L; Tuffin, Marla I; Cowan, Don A

    2015-08-01

    Ammonia-oxidizing bacteria (AOB) are essential in the biogeochemical cycling of nitrogen as they catalyze the rate-limiting oxidation of ammonia into nitrite. Since their first isolation in the late 19th century, chemolithoautotrophic AOBs have been identified in a wide range of natural (e.g., soils, sediments, estuarine, and freshwaters) and man created or impacted habitats (e.g., wastewater treatment plants and agricultural soils). However, little is known on the plant-species association of AOBs, particularly in the nutrient-starved fynbos terrestrial biome. In this study, we evaluated the diversity of AOBs in the plant canopy of three South African fynbos-specific plant species, namely Leucadendron xanthoconus, Leucospermum truncatulum and Leucadendron microcephalum, through the construction of amoA-gene clone libraries. Our results clearly demonstrate that plant-species specific and monophyletic AOB clades are present in fynbos canopy soils. PMID:25721729

  17. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support

    Science.gov (United States)

    Sakano, Yuko; Pickering, Karen D.; Strom, Peter F.; Kerkhof, Lee J.; Janes, H. W. (Principal Investigator)

    2002-01-01

    Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.

  18. Spatial Interaction of Archaeal Ammonia-Oxidizers and Nitrite-Oxidizing Bacteria in an Unfertilized Grassland Soil

    Science.gov (United States)

    Stempfhuber, Barbara; Richter-Heitmann, Tim; Regan, Kathleen M.; Kölbl, Angelika; Wüst, Pia K.; Marhan, Sven; Sikorski, Johannes; Overmann, Jörg; Friedrich, Michael W.; Kandeler, Ellen; Schloter, Michael

    2016-01-01

    Interrelated successive transformation steps of nitrification are performed by distinct microbial groups – the ammonia-oxidizers, comprising ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizers such as Nitrobacter and Nitrospira, which are the dominant genera in the investigated soils. Hence, not only their presence and activity in the investigated habitat is required for nitrification, but also their temporal and spatial interactions. To demonstrate the interdependence of both groups and to address factors promoting putative niche differentiation within each group, temporal and spatial changes in nitrifying organisms were monitored in an unfertilized grassland site over an entire vegetation period at the plot scale of 10 m2. Nitrifying organisms were assessed by measuring the abundance of marker genes (amoA for AOA and AOB, nxrA for Nitrobacter, 16S rRNA gene for Nitrospira) selected for the respective sub-processes. A positive correlation between numerically dominant AOA and Nitrospira, and their co-occurrence at the same spatial scale in August and October, suggests that the nitrification process is predominantly performed by these groups and is restricted to a limited timeframe. Amongst nitrite-oxidizers, niche differentiation was evident in observed seasonally varying patterns of co-occurrence and spatial separation. While their distributions were most likely driven by substrate concentrations, oxygen availability may also have played a role under substrate-limited conditions. Phylogenetic analysis revealed temporal shifts in Nitrospira community composition with an increasing relative abundance of OTU03 assigned to sublineage V from August onward, indicating its important role in nitrite oxidation. PMID:26834718

  19. Spatial interaction of archaeal ammonia-oxidizers and nitrite-oxidizing bacteria in an unfertilized grassland soil

    Directory of Open Access Journals (Sweden)

    Barbara eStempfhuber

    2016-01-01

    Full Text Available Interrelated successive transformation steps of nitrification are performed by distinct microbial groups – the ammonia-oxidizers, comprising ammonia-oxidizing archaea (AOA and bacteria (AOB, and nitrite-oxidizers such as Nitrobacter and Nitrospira, which are the dominant genera in the investigated soils. Hence, not only their presence and activity in the investigated habitat is required for nitrification, but also their temporal and spatial interactions. To demonstrate the interdependence of both groups and to address factors promoting putative niche differentiation within each group, temporal and spatial changes in nitrifying organisms were monitored in an unfertilized grassland site over an entire vegetation period at the plot scale of 10 m². Nitrifying organisms were assessed by measuring the abundance of marker genes (amoA for AOA and AOB, nxrA for Nitrobacter, 16S rRNA gene for Nitrospira selected for the respective sub-processes. A positive correlation between numerically dominant AOA and Nitrospira, and their co-occurrence at the same spatial scale in August and October, suggests that the nitrification process is predominantly performed by these groups and is restricted to a limited timeframe. Amongst nitrite-oxidizers, niche differentiation was evident in observed seasonally varying patterns of co-occurrence and spatial separation. While their distributions were most likely driven by substrate concentrations, oxygen availability may also have played a role under substrate-limited conditions. Phylogenetic analysis revealed temporal shifts in Nitrospira community composition with an increasing relative abundance of OTU03 assigned to sublineage V from August onwards, indicating its important role in nitrite oxidation.

  20. Ammonia-oxidizing archaea and bacteria in water columns and sediments of a highly eutrophic plateau freshwater lake.

    Science.gov (United States)

    Yang, Yuyin; Li, Ningning; Zhao, Qun; Yang, Mengxi; Wu, Zhen; Xie, Shuguang; Liu, Yong

    2016-08-01

    Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can play important roles in the microbial oxidation of ammonia nitrogen in freshwater lake, but information on spatiotemporal variation in water column and sediment community structure is still limited. Additionally, the drivers of the differences between sediment and water assemblages are still unclear. The present study investigated the variation of AOA and AOB communities in both water columns and sediments of eutrophic freshwater Dianchi Lake. The abundance, diversity, and structure of both planktonic and sediment ammonia-oxidizing microorganisms in Dianchi Lake showed the evident changes with sampling site and time. In both water columns and sediments, AOB amoA gene generally outnumbered AOA, and the AOB/AOA ratio was much higher in summer than in autumn. The total AOA amoA abundance was relatively great in autumn, while sediment AOB was relatively abundant in summer. Sediment AOA amoA abundance was likely correlated with ammonia nitrogen (rs = 0.963). The AOB/AOA ratio in lake sediment was positively correlated with total phosphorus (rs = 0.835), while pH, dissolved organic carbon, and ammonia nitrogen might be the key driving forces for the AOB/AOA ratio in lake water. Sediment AOA and AOB diversity was correlated with nitrate nitrogen (rs = -0.786) and total organic carbon (rs = 0.769), respectively, while planktonic AOB diversity was correlated with ammonia nitrogen (rs = 0.854). Surface water and sediment in the same location had a distinctively different microbial community structure. In addition, sediment AOB community structure was influenced by total phosphorus, while total phosphorus might be a key determinant of planktonic AOB community structure. PMID:27109114

  1. Spatial distribution of archaeal and bacterial ammonia oxidizers in the littoral buffer zone of a nitrogen-rich lake

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Guibing Zhu; Lei Ye; Xiaojuan Feng; Huub J. M. Op den Camp; Chengqing Yin

    2012-01-01

    The spatial distribution and diversity of archaeal and bacterial ammonia oxidizers (AOA and AOB) were evaluated targeting amoA genes in the gradient of a littoral buffer zone which has been identified as a hot spot for N cycling.Here we found high spatial heterogeneity in the nitrification rate and abundance of ammonia oxidizers in the five sampling sites.The bacterial amoA gene was numerically dominant in most of the surface soil but decreased dramatically in deep layers.Higher nitrification potentials were detected in two sites near the land/water interface at 4.4-6.1 μg NO2--N/(g dry weight soil.hr),while only 1.0-1.7 μg NO2- -N/(gdry weight soil·hr) was measured at other sites.The potential nitrification rates were proportional to the amoA gene abundance for AOB,hut with no significant correlation with AOA.The NH4+ concentration was the most determinative parameter for the abundance of AOB and potential nitrification rates in this study.Higher richness in the surface layer was found in the analysis of biodiversity.Phylogenetic analysis revealed that most of the bacterial amoA sequences in surface soil were affiliated with the genus of Nitrosopira while the archaeal sequences were almost equally affiliated with Candidatus ‘Nitrososphaera gargensis' and Candidatus ‘Nitrosoealdus yellowstonii'.The spatial distribution of AOA and AOB indicated that bacteria may play a more important role in nitrification in the littoral buffer zone of a N-rich lake.

  2. N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge linearly depends on inorganic carbon concentration.

    Science.gov (United States)

    Peng, Lai; Ni, Bing-Jie; Ye, Liu; Yuan, Zhiguo

    2015-05-01

    The effect of inorganic carbon (IC) on nitrous oxide (N2O) production by ammonia oxidizing bacteria (AOB) was investigated over a concentration range of 0-12 mmol C/L, encompassing typical IC levels in a wastewater treatment reactors. The AOB culture was enriched along with nitrite-oxidizing bacteria (NOB) in a sequencing batch reactor (SBR) to perform complete nitrification. Batch experiments were conducted with continuous carbon dioxide (CO2) stripping or at controlled IC concentrations. The results revealed a linear relationship between N2O production rate (N2OR) and IC concentration (R(2) = 0.97) within the IC range studied, suggesting a substantial effect of IC on N2O production by AOB. Similar results were also obtained with an AOB culture treating anaerobic sludge digestion liquor. The fundamental mechanism responsible for this dependency is unclear; however, in agreement with previous studies, it was observed that the ammonia oxidation rate (AOR) was also influenced by the IC concentration, which could be well described by the Monod kinetics. These resulted in an exponential relationship between N2OR and AOR, as previously observed in experiments where AOR was altered by varying dissolved oxygen and ammonia concentrations. It is therefore possible that IC indirectly affected N2OR by causing a change in AOR. The observation in this study indicates that alkalinity (mostly contributed by IC) could be a significant factor influencing N2O production and should be taken into consideration in estimating and mitigating N2O emissions in wastewater treatment systems. PMID:25706224

  3. Coupling Between and Among Ammonia Oxidizers and Nitrite Oxidizers in Grassland Mesocosms Submitted to Elevated CO2 and Nitrogen Supply.

    Science.gov (United States)

    Simonin, Marie; Le Roux, Xavier; Poly, Franck; Lerondelle, Catherine; Hungate, Bruce A; Nunan, Naoise; Niboyet, Audrey

    2015-10-01

    Many studies have assessed the responses of soil microbial functional groups to increases in atmospheric CO2 or N deposition alone and more rarely in combination. However, the effects of elevated CO2 and N on the (de)coupling between different microbial functional groups (e.g., different groups of nitrifiers) have been barely studied, despite potential consequences for ecosystem functioning. Here, we investigated the short-term combined effects of elevated CO2 and N supply on the abundances of the four main microbial groups involved in soil nitrification: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (belonging to the genera Nitrobacter and Nitrospira) in grassland mesocosms. AOB and AOA abundances responded differently to the treatments: N addition increased AOB abundance, but did not alter AOA abundance. Nitrobacter and Nitrospira abundances also showed contrasted responses to the treatments: N addition increased Nitrobacter abundance, but decreased Nitrospira abundance. Our results support the idea of a niche differentiation between AOB and AOA, and between Nitrobacter and Nitrospira. AOB and Nitrobacter were both promoted at high N and C conditions (and low soil water content for Nitrobacter), while AOA and Nitrospira were favored at low N and C conditions (and high soil water content for Nitrospira). In addition, Nitrobacter abundance was positively correlated to AOB abundance and Nitrospira abundance to AOA abundance. Our results suggest that the couplings between ammonia and nitrite oxidizers are influenced by soil N availability. Multiple environmental changes may thus elicit rapid and contrasted responses between and among the soil ammonia and nitrite oxidizers due to their different ecological requirements. PMID:25877793

  4. Effect of toxic metals on indigenous soil {beta}-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, J.R.; Chang, Y.J.; MacNaughton, S.J.; Leung, K.T.; Flemming, C.A. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology; Kowalchuk, G.A. [Netherlands Inst. of Ecology, Heteren (Netherlands); White, D.C. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology]|[Oak Ridge National Lab., TN (United States). Biological Sciences Div.

    1999-01-01

    Contamination of soils with toxic metals is a major problem on military, industrial, and mining sites worldwide. Of particular interest to the field of bioremediation is the selection of biological markers for the end point of remediation. In this microcosm study, the authors focus on the effect of addition of a mixture of toxic metals (cadmium, cobalt, cesium, and strontium as chlorides) to soil on the population structure and size of the ammonia, oxidizers that are members of the beta subgroup of the Proteobacteria. In a parallel experiment, the soils were also treated by the addition of five strains of metal-resistant heterotrophic bacteria. Effects on nitrogen cycling were measured by monitoring the NH{sub 3} and NH{sub 4}{sup +} levels in soil samples. The gene encoding the {alpha}-subunit of ammonia monooxygenase (amoA) was selected as a functional molecular marker for the {beta}-subgroup ammonia oxidizing bacteria. Community structure comparisons were performed with clone libraries of PCR-amplified fragments of amoA recovered from contaminated and control microcosms for 8 weeks. Analysis was performed by restriction digestion and sequence comparison. The abundance of ammonia oxidizers in these microcosms was also monitored by competitive PCR. All amoA gene fragments recovered grouped with sequences derived from cultured Nitrosospira. These comprised four novel sequence clusters and a single unique clone. Specific changes in the community structure of {beta}-subgroup ammonia oxidizers were associated with the addition of metals. These changes were not seen in the presence of the inoculated metal-resistant bacteria. Neither treatment significantly altered the total number of {beta}-subgroup ammonia-oxidizing cells per gram of soil compared to untreated controls. Following an initial decrease in concentration, ammonia began to accumulate in metal-treated soils toward the end of the experiment.

  5. Diversity and Abundance of Ammonia-Oxidizing Archaeal Nitrite Reductase (nirK) Genes in Estuarine Sediments of San Francisco Bay

    Science.gov (United States)

    Reji, L.; Lee, J. A.; Damashek, J.; Francis, C. A.

    2013-12-01

    Nitrification, the microbially-mediated aerobic oxidation of ammonia to nitrate via nitrite, is an integral component of the global biogeochemical nitrogen cycle. The first and rate-limiting step of nitrification, ammonia oxidation, is carried out by two distinct microbial groups: ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Molecular ecological studies targeting the amoA gene have revealed the abundance and ubiquity of AOA in terrestrial as well as aquatic environments. In addition to the ammonia oxidation machinery that includes the amoA gene, AOA also encode a gene for copper-containing nitrite reductase (nirK). The distribution patterns and functional role of nirK in AOA remain mostly unknown; proposed functions include the indirect involvement in ammonia oxidation through the production of nitric oxide during nitrite reduction, and (2) nitrite detoxification. In the present study, the diversity and abundance of archaeal nirK genes in estuarine sediments were investigated using quantitative polymerase chain reaction, cloning and sequencing approaches. In sediment samples collected from the San Francisco Bay estuary, two archaeal nirK variants (AnirKa and AnirKb) were amplified using specific primer sets. Overall, AnirKa was observed to be significantly more abundant than AnirKb in the sediment samples, with variation in relative abundance spanning two to three orders of magnitude between sampling sites. Phylogenetic analysis revealed a number of unique archaeal nirK sequence types, as well as many that clustered with sequences from previous estuarine studies and cultured AOA isolates, such as Nitrosopumilus maritimus. This study yielded new insights into the diversity and abundance of archaeal nirK genes in estuarine sediments, and highlights the importance of further investigating the physiological role of this gene in AOA, as well as its suitability as a marker gene for studying AOA in the environment.

  6. Solid-Phase Contact Assay That Uses a lux-Marked Nitrosomonas europaea Reporter Strain To Estimate Toxicity of Bioavailable Linear Alkylbenzene Sulfonate in Soil

    OpenAIRE

    Brandt, Kristian K.; Pedersen, Anders; Sørensen, Jan

    2002-01-01

    Information about in situ toxicity of the bioavailable pools of adsorptive soil pollutants is a prerequisite for proper ecological risk assessment in contaminated soils. Such toxicity data may be obtained by assays allowing for direct exposure of introduced test microorganisms to the toxicants, as they appear in solid solution equilibria in the natural soil. We describe a novel sensitive solid-phase contact assay for in situ toxicity testing of soil pollutants based on a recombinant biolumine...

  7. Analysis of the Diversity of Ammonia Oxidizing Bacteria with amoA Gene in Deep Returning Maize Straw Soils%玉米秸秆深翻还田土壤氨氧化细菌amoA基因多样性分析

    Institute of Scientific and Technical Information of China (English)

    萨如拉; 高聚林; 于晓芳; 闹干朝鲁; 青格尔; 赵吉睿

    2015-01-01

    以常规旋耕无秸秆还田(对照)、1年秸秆深翻还田、2年秸秆深翻还田土壤总DNA为模板,采用氨氧化细菌(Ammonia-oxidizing bacteria,AOB)的氨单加氧酶α亚基(amoA)基因特异性引物扩增AOB amoA基因,构建amoA基因文库.运用BLAST程序进行序列比较发现,玉米秸秆深翻还田土壤中分布有亚硝化弧菌属(Nitrosovibrio)、亚硝化螺菌属(Nitrosospira)和亚硝化单胞菌属(Nitrosomonas)微生物菌群,秸秆深翻还田土壤AOB amoA基因序列主要与保护性耕作、长期施肥、间作、温室和植被恢复土壤中的amoA基因序列相似;常规旋耕无秸秆还田土壤AOB amoA基因序列主要与秸秆焚烧大田土壤和内蒙古草原土的amoA基因序列相似.玉米秸秆深翻还田2年处理(SF-Ⅱ)AOB amoA基因多样性指数最高,其次是玉米秸秆深翻还田1年处理(SF-Ⅰ),常规旋耕无秸秆还田(CK)最低.

  8. Prevalence of Toxoplasma gondii in common moles (Talpa europaea)

    NARCIS (Netherlands)

    Krijger, I.M.; Cornelissen, J.B.W.J.; Wisselink, H.J.; Meerburg, B.G.

    2014-01-01

    Background The prevalence of Toxoplasma gondii in common moles, Talpa europaea, was investigated in order to determine whether moles can serve as an indicator species for T. gondii infections in livestock. Findings In total, 86 moles were caught from 25 different sites in the Netherlands. Five diffe

  9. Fauna Europaea - all European animal species on the web

    DEFF Research Database (Denmark)

    de Jong, Yde; Verbeek, Melina; Michelsen, Verner;

    2014-01-01

    Europaea provides a public web portal at faunaeur.org with links to other key biodiversity services, is installed as a taxonomic backbone in wide range of biodiversity services and actively contributes to biodiversity informatics innovations in various initiatives and EC programs....

  10. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    Directory of Open Access Journals (Sweden)

    M. S. Alam

    2013-08-01

    Full Text Available The function of ammonia-oxidizing archaea (AOA and bacteria (AOB depends on the major energy-generating compounds (i.e., ammonia and oxygen. The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization, whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force

  11. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    Science.gov (United States)

    Alam, M. S.; Ren, G. D.; Lu, L.; Zheng, Y.; Peng, X. H.; Jia, Z. J.

    2013-08-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the major energy-generating compounds (i.e., ammonia and oxygen). The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA) genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization), whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force driving the

  12. Relating the Diversity, Abundance, and Activity of Ammonia-Oxidizing Archaeal Communities to Nitrification Rates in the Coastal Ocean

    Science.gov (United States)

    Tolar, B. B.; Smith, J. M.; Chavez, F.; Francis, C.

    2015-12-01

    Ammonia oxidation, the rate-limiting first step of nitrification, is an important link between reduced (ammonia) and oxidized (nitrate) nitrogen, and controls the relative distribution of these forms of inorganic nitrogen. This process is catalyzed via the ammonia monooxygenase enzyme of both ammonia-oxidizing Bacteria (AOB) and Archaea (AOA); the α subunit of this enzyme is encoded by the amoA gene and has been used as the molecular marker to detect this process. In the ocean, AOA are typically 10-1000 times more and are likely more active than AOB, and thus are key players in the marine nitrogen cycle. Monterey Bay is a dynamic site to study nitrification, as seasonal upwelling brings deep water and nutrients into surface waters, which can promote phytoplankton blooms and impact biogeochemical processes such as the nitrogen cycle. We have sampled two sites within Monterey Bay bimonthly for two years as part of the ongoing Monterey Bay Time Series (MBTS) to quantify AOA genes, transcripts, and nitrification rates. Two ecotypes of AOA are routinely found in Monterey Bay - the 'shallow' water column A (WCA) and 'deep' water column B (WCB) clades, which are thought to have distinct physiological properties and can be distinguished based on the amoA gene sequence. Previous work has shown a strong relationship between nitrification rates in Monterey Bay with the abundance of WCA amoA genes and transcripts. Additionally, we found a correlation between the relative abundance of Marine Group I (MGI) Thaumarchaeota 16S rRNA reads (as % of total) and the absolute abundance of AOA amoA genes (determined via qPCR) in Monterey Bay and the California Current System. AOA 16S rRNA gene abundances in turn correlated significantly with changes in nitrification rate with depth, while the relative abundance of genes and transcripts binned to a single AOA (Nitrosopumilus maritimus) was not significantly correlated to nitrification rate. Further analysis of the sequenced AOA

  13. Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill

    Science.gov (United States)

    Bernhard, Anne E.; Sheffer, Roberta; Giblin, Anne E.; Marton, John M.; Roberts, Brian J.

    2016-01-01

    The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted by the Deepwater Horizon oil spill. Soils were collected at oiled and unoiled sites from Louisiana coastal marshes in July 2012, 2 years after the spill, and analyzed for community differences based on ammonia monooxygenase genes (amoA). Terminal Restriction Fragment Polymorphism and DNA sequence analyses revealed significantly different AOA and AOB communities between the three regions, but few differences were found between oiled and unoiled sites. Community composition of nitrifiers was best explained by differences in soil moisture and nitrogen content. Despite the lack of significant oil effects on overall community composition, we identified differences in correlations of individual populations with potential nitrification rates between oiled and unoiled sites that help explain previously published correlation patterns. Our results suggest that exposure to oil, even 2 years post-spill, led to subtle changes in population dynamics. How, or if, these changes may impact ecosystem function in the marshes, however, remains uncertain. PMID:27375576

  14. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    Science.gov (United States)

    Soares, Johnny R.; Cassman, Noriko A.; Kielak, Anna M.; Pijl, Agata; Carmo, Janaína B.; Lourenço, Kesia S.; Laanbroek, Hendrikus J.; Cantarella, Heitor; Kuramae, Eiko E.

    2016-07-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4+-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane.

  15. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidizing archaea

    Science.gov (United States)

    Zarsky, Jakub D.; Stibal, Marek; Hodson, Andy; Sattler, Birgit; Schostag, Morten; Hansen, Lars H.; Jacobsen, Carsten S.; Psenner, Roland

    2013-09-01

    The aggregation of surface debris particles on melting glaciers into larger units (cryoconite) provides microenvironments for various microorganisms and metabolic processes. Here we investigate the microbial community on the surface of Aldegondabreen, a valley glacier in Svalbard which is supplied with carbon and nutrients from different sources across its surface, including colonies of seabirds. We used a combination of geochemical analysis (of surface debris, ice and meltwater), quantitative polymerase chain reactions (targeting the 16S ribosomal ribonucleic acid and amoA genes), pyrosequencing and multivariate statistical analysis to suggest possible factors driving the ecology of prokaryotic microbes on the surface of Aldegondabreen and their potential role in nitrogen cycling. The combination of high nutrient input with subsidy from the bird colonies, supraglacial meltwater flow and the presence of fine, clay-like particles supports the formation of centimetre-scale cryoconite aggregates in some areas of the glacier surface. We show that a diverse microbial community is present, dominated by the cyanobacteria, Proteobacteria, Bacteroidetes, and Actinobacteria, that are well-known in supraglacial environments. Importantly, ammonia-oxidizing archaea were detected in the aggregates for the first time on an Arctic glacier.

  16. Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill.

    Science.gov (United States)

    Bernhard, Anne E; Sheffer, Roberta; Giblin, Anne E; Marton, John M; Roberts, Brian J

    2016-01-01

    The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted by the Deepwater Horizon oil spill. Soils were collected at oiled and unoiled sites from Louisiana coastal marshes in July 2012, 2 years after the spill, and analyzed for community differences based on ammonia monooxygenase genes (amoA). Terminal Restriction Fragment Polymorphism and DNA sequence analyses revealed significantly different AOA and AOB communities between the three regions, but few differences were found between oiled and unoiled sites. Community composition of nitrifiers was best explained by differences in soil moisture and nitrogen content. Despite the lack of significant oil effects on overall community composition, we identified differences in correlations of individual populations with potential nitrification rates between oiled and unoiled sites that help explain previously published correlation patterns. Our results suggest that exposure to oil, even 2 years post-spill, led to subtle changes in population dynamics. How, or if, these changes may impact ecosystem function in the marshes, however, remains uncertain. PMID:27375576

  17. Spatial distribution and abundance of ammonia-oxidizing microorganisms in deep-sea sediments of the Pacific Ocean.

    Science.gov (United States)

    Luo, Zhu-Hua; Xu, Wei; Li, Meng; Gu, Ji-Dong; Zhong, Tian-Hua

    2015-08-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, is performed by nitrifying microbes including ammonia-oxidizing bacteria (AOB) and archaea (AOA). In the current study, the phylogenetic diversity and abundance of AOB and AOA in deep-sea sediments of the Pacific Ocean were investigated using ammonia monooxygenase subunit A (amoA) coding genes as molecular markers. The study uncovered 3 AOB unique operational taxonomic units (OTUs, defined at sequence groups that differ by ≤5 %), which indicates lower diversity than AOA (13 OTUs obtained). All AOB amoA gene sequences were phylogenetically related to amoA sequences similar to those found in marine Nitrosospira species, and all AOA amoA gene sequences were affiliated with the marine sediment clade. Quantitative PCR revealed similar archaeal amoA gene abundances [1.68 × 10(5)-1.89 × 10(6) copies/g sediment (wet weight)] among different sites. Bacterial amoA gene abundances ranged from 5.28 × 10(3) to 2.29 × 10(6) copies/g sediment (wet weight). The AOA/AOB amoA gene abundance ratios ranged from 0.012 to 162 and were negatively correlated with total C and C/N ratio. These results suggest that organic loading may be a key factor regulating the relative abundance of AOA and AOB in deep-sea environments of the Pacific Ocean. PMID:26014493

  18. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil.

    Science.gov (United States)

    Soares, Johnny R; Cassman, Noriko A; Kielak, Anna M; Pijl, Agata; Carmo, Janaína B; Lourenço, Kesia S; Laanbroek, Hendrikus J; Cantarella, Heitor; Kuramae, Eiko E

    2016-01-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4(+)-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane. PMID:27460335

  19. Spatial Variability in Nitrification Rates and Ammonia-Oxidizing Microbial Communities in the Agriculturally Impacted Elkhorn Slough Estuary, California ▿ †

    OpenAIRE

    Scott D Wankel; Mosier, Annika C.; Hansel, Colleen M.; Paytan, Adina; Francis, Christopher A.

    2010-01-01

    Ammonia oxidation—the microbial oxidation of ammonia to nitrite and the first step in nitrification—plays a central role in nitrogen cycling in coastal and estuarine systems. Nevertheless, questions remain regarding the connection between this biogeochemical process and the diversity and abundance of the mediating microbial community. In this study, we measured nutrient fluxes and rates of sediment nitrification in conjunction with the diversity and abundance of ammonia-oxidizing archaea (AOA...

  20. 古菌氨氧化与amoA基因的扩增%Archaeal Ammonia Oxidation and Amplification of amoA Gene

    Institute of Scientific and Technical Information of China (English)

    蒋敏芝; 黄秋雨

    2012-01-01

    Ammonia oxidation is a obligate aerobic: chemoautotrophic process taken by a small part bacterial community of Hymenomycetes. Ammonia-oxidizing bacteria (AOB) is a inorganic: autntrophic micro-organism, responsible for converting NH4+ to NO2- in the nitrification reaction, ammonia oxidizing archaea (AOA) is independent of the AOB clade. The paper introduced discovery and ammonia oxidation of AOA, extracted, purified and amplified amoA genes according to its features. The results confirmed exist of AOA, and provided basis for follow-up study.%氨氧化过程是由变形菌纲中的一小部分细菌类群所进行的专性好氧的化能自养过程,氨氧化细菌(AOB)是硝化反应中负责将NH4+转化为NO2-的一类无机自养微生物,氨氧化古菌(AOA)是独立于AOB进化枝之外的能进行氨氧化作用的古菌。介绍了AOA古菌的发现过程及其氨氧化作用,提取、纯化了amoA基因并利用amoA基因的特征,对它进行扩增,证实了AOA古菌的存在,并为后续研究提供了依据。

  1. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys

    OpenAIRE

    Magalhães, Catarina M.; Machado, Ana; Frank-Fahle, Béatrice; Lee, Charles K; Cary, S. Craig

    2014-01-01

    The McMurdo Dry Valleys of Antarctica are considered to be one of the most physically and chemically extreme terrestrial environments on the Earth. However, little is known about the organisms involved in nitrogen transformations in these environments. In this study, we investigated the diversity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in four McMurdo Dry Valleys with highly variable soil geochemical properties and climatic conditions: Miers Valley, Upper Wright Va...

  2. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations.

    OpenAIRE

    Rotthauwe, J H; K. P. WITZEL; Liesack, W.

    1997-01-01

    The naturally occurring genetic heterogeneity of autotrophic ammonia-oxidizing populations belonging to the beta subclass of the Proteobacteria was studied by using a newly developed PCR-based assay targeting a partial stretch of the gene which encodes the active-site polypeptide of ammonia monooxygenase (amoA). The PCR yielded a specific 491-bp fragment with all of the nitrifiers tested, but not with the homologous stretch of the particulate methane monooxygenase, a key enzyme of methane-oxi...

  3. 3,4-Dimethylpyrazole phosphate (DMPP) reduces activity of ammonia oxidizers without adverse effects on non-target soil microorganisms and functions

    DEFF Research Database (Denmark)

    Kong, Xianwang; Duan, Yun-Feng (Kevin); Schramm, Andreas;

    2016-01-01

    The nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) is widely used within agriculture to reduce nitrate leaching and improve nitrogen use efficiency of fertilizers, but few studies examined effects on non-target soil functions and microorganisms, i.e. other than the intended delay of......, this study indicated that DMPP effectively inhibited nitrification activity without effects on ammonia oxidizer populations, as well as non-target soil microorganisms or functions....

  4. Responses of soil hydrolytic enzymes, ammonia-oxidizing bacteria and archaea to nitrogen applications in a temperate grassland in Inner Mongolia.

    Science.gov (United States)

    Zhang, Xinyu; Tang, Yuqian; Shi, Yao; He, Nianpeng; Wen, Xuefa; Yu, Qiang; Zheng, Chunyu; Sun, Xiaomin; Qiu, Weiwen

    2016-01-01

    We used a seven-year urea gradient applied field experiment to investigate the effects of nitrogen (N) applications on soil N hydrolytic enzyme activity and ammonia-oxidizing microbial abundance in a typical steppe ecosystem in Inner Mongolia. The results showed that N additions inhibited the soil N-related hydrolytic enzyme activities, especially in 392 kg N ha(-1 )yr(-1) treatment. As N additions increased, the amoA gene copy ratios of ammonia-oxidizing archaea (AOA) to ammonia-oxidizing bacteria (AOB) decreased from 1.13 to 0.65. Pearson correlation analysis showed that the AOA gene copies were negatively related with NH4(+)-N content. However, the AOB gene copies were positively correlated with NO3(-)-N content. Moderate N application rates (56-224 kg N ha(-1 )yr(-1)) accompanied by P additions are beneficial to maintaining the abundance of AOB, as opposed to the inhibition of highest N application rate (392 kg N ha(-1 )yr(-1)) on the abundance of AOB. This study suggests that the abundance of AOB and AOA would not decrease unless N applications exceed 224 kg N ha(-1 )yr(-1) in temperate grasslands in Inner Mongolia. PMID:27596731

  5. Abundance and diversity of ammonia-oxidizing archaea in response to various habitats in Pearl River Delta of China, a subtropical maritime zone

    Institute of Scientific and Technical Information of China (English)

    Zhixin Li; Wenbiao Jin; Zhaoyun Liang; Yangyang Yue; Junhong Lv

    2013-01-01

    Ammonia-oxidizing archaea (AOA) are widely considered key to ammonia oxidation in various environments.However,little work has been conducted to simultaneously investigate the abundance and diversity of AOA as well as correlations between archaeal amoA genotypes and environmental parameters of different ecosystems at one district.To understand the abundance,diversity,and distribution of AOA in Pearl River Delta of China in response to various habitats,the archaeal amoA genes in soil,marine,river,lake,hot spring and wastewater treatment plant (WWTP) samples were investigated using real-time fluorescent quantitative PCR and clone libraries.Our analyses indicated that the diversity of AOA in various habitats was different and could be clustered into five major clades,i.e.,estuary sediment,marine water/sediment,soil,hot spring and Cluster 1.Phylogenetic analyses revealed that the structure of AOA communities in similar ecological habitats exhibited strong relation.The canonical correspondence method indicated that the AOA community structure was strongly correlated to temperature,pH,total organic carbon,total nitrogen and dissolved oxygen variables.Assessing AOA amoA gene copy numbers,ranging from 6.84 × 106 to 9.45 × 107 copies/g in dry soil/sediment,and 6.06 × 106 to 2.41 × 107 copies/L in water samples,were higher than ammonia-oxidizing bacteria (AOB) by 1-2 orders of magnitude.However,AOA amoA copy numbers were much lower than AOB in WWTP activated sludge samples.Overall,these studies suggested that AOA may be a major contributor to ammonia oxidation in natural habitats but play a minor role in highly aerated activated sludge.The result also showed the ratio of AOA to AOB amoA gene abundance was positively correlated with temperature and less correlated with other environmental parameters.New data from our study provide increasing evidence for the relative abundance and diversity of ammonia-oxidizing archaea in the global nitrogen cycle.

  6. Comparison of PCR-DGGE and Nested-PCR-DGGE Approach for Ammonia Oxidizers Monitoring in Membrane Bioreactors’ Activated Sludge

    Directory of Open Access Journals (Sweden)

    Ziembińska-Buczyńska Aleksandra

    2014-12-01

    Full Text Available Nitritation, the first stage of ammonia removal process is known to be limiting for total process performance. Ammonia oxidizing bacteria (AOB which perform this process are obligatory activated sludge habitants, a mixture consisting of Bacteria, Protozoa and Metazoa used for biological wastewater treatment. Due to this fact they are an interesting bacterial group, from both the technological and ecological point of view. AOB changeability and biodiversity analyses both in wastewater treatment plants and lab-scale reactors are performed on the basis of 16S rRNA gene sequences using PCR-DGGE (Polymerase Chain Reaction – Denaturing Gradient Gel Electrophoresis as a molecular biology tool. AOB researches are usually led with nested PCR. Because the application of nested PCR is laborious and time consuming, we have attempted to check the possibility of using only first PCR round to obtain DGGE fingerprinting of microbial communities. In this work we are comparing the nested and non-nested PCR-DGGE monitoring of an AOB community and presenting advantages and disadvantages of both methods used. The experiment revealed that PCR technique is a very sensitive tool for the amplification of even a minute amount of DNA sample. But in the case of nested-PCR, the sensitivity is higher and the template amount could be even smaller. The nested PCR-DGGE seems to be a better tool for AOB community monitoring and complexity research in activated sludge, despite shorter fragments of DNA amplification which seems to be a disadvantage in the case of bacteria identification. It is recommended that the sort of analysis approach should be chosen according to the aim of the study: nested-PCR-DGGE for community complexity analysis, while PCR-DGGE for identification of the dominant bacteria.

  7. Empowering a mesophilic inoculum for thermophilic nitrification: Growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers.

    Science.gov (United States)

    Courtens, Emilie N P; Vandekerckhove, Tom; Prat, Delphine; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Meerbergen, Ken; Lievens, Bart; Boon, Nico; Vlaeminck, Siegfried E

    2016-04-01

    Cost-efficient biological treatment of warm nitrogenous wastewaters requires the development of thermophilic nitrogen removal processes. Only one thermophilic nitrifying bioreactor was described so far, achieving 200 mg N L(-1) d(-1) after more than 300 days of enrichment from compost samples. From the practical point of view in which existing plants would be upgraded, however, a more time-efficient development strategy based on mesophilic nitrifying sludge is preferred. This study evaluated the adaptive capacities of mesophilic nitrifying sludge for two linear temperature increase patterns (non-oscillating vs. oscillating), two different slopes (0.25 vs. 0.08 °C d(-1)) and two different reactor types (floc vs. biofilm growth). The oscillating temperature pattern (0.25 °C d(-1)) and the moving bed biofilm reactor (0.08 °C d(-1)) could not reach nitrification at temperatures higher than 46 °C. However, nitrification rates up to 800 mg N L(-1) d(-1) and 150 mg N g(-1) volatile suspended solids d(-1) were achieved at a temperature as high as 49 °C by imposing the slowest linear temperature increase to floccular sludge. Microbial community analysis revealed that this successful transition was related with a shift in ammonium oxidizing archaea dominating ammonia oxidizing bacteria, while for nitrite oxidation Nitrospira spp. was constantly more abundant than Nitrobacter spp.. This observation was accompanied with an increase in observed sludge yield and a shift in maximal optimum temperature, determined with ex-situ temperature sensitivity measurements, predicting an upcoming reactor failure at higher temperature. Overall, this study achieved nitrification at 49 °C within 150 days by gradual adaptation of mesophilic sludge, and showed that ex-situ temperature sensitivity screening can be used to monitor and steer the transition process. PMID:26841233

  8. Activity and Composition of Ammonia-Oxidizing Bacteria in an Aquic Brown Soil as Influenced by Land Use and Fertilization

    Institute of Scientific and Technical Information of China (English)

    YU Wan-Tai; XU Yong-Gang; BI Ming-Li; MA Qiang; ZHOU Hua

    2010-01-01

    The effects of long-term(19 years)different land use and fertilization on activity and composition of ammonia-oxidizing bacteria(AOB)in an aquic brown soil were investigated in a field experiment in Liaoning Province,China.The 19-year experiment conducted from 1990 to 2008 involved seven treatments designed: cropping rotation of soybean-corn-corn with no fertilizer(control,CK),recycled manure(RM),fertilizer nitrogen(N),phosphorous(P)and potassium(K)(NPK),NPK+RM,and no-crop bare land,mowed fallow,and non-mowed fallow.The results showed that the potential nitrification rates of the RM,NPK+RM,mowed fallow,and non-mowed fallow treatments were significantly higher(P < 0.05)than those of the CK and NPK treatments,indicating that the long-term applications of recycled manure and return of plant residues both significantly increased the activity of AOB.Although the application of NPK did not enhance soil potential nitrification because of decreased pH,available K had an important effect on potential nitrification.Denaturing gradient gel electrophoresis(DGGE)fingerprint profiles showed that no-crop treatments had an increase in the diversity of the AOB community compared to the CK,RM,and NPK treatments,implying that agricultural practices,especially tillage,had an adverse effect on the soil AOB community.The NPK+RM treatment had the most diverse DGGE patterns possibly because of the increased available P in this treatment.A phylogenetic analysis showed that most of the DGGE bands derived belonged to Nitrosoxpira cluster 3,not Nitrosospira cluster 2.These demonstrated that different land use and fertilization significantly influenced the activity and composition of the AOB community by altering the soil properties,mainly including pH,total C,available K,and available P.

  9. The effect of dissolved oxygen on N2O production by ammonia-oxidizing bacteria in an enriched nitrifying sludge.

    Science.gov (United States)

    Peng, Lai; Ni, Bing-Jie; Erler, Dirk; Ye, Liu; Yuan, Zhiguo

    2014-12-01

    Dissolved oxygen (DO) is commonly recognized as an important factor influencing nitrous oxide (N2O) production by ammonia-oxidizing bacteria (AOB). However, it has been difficult to separate the true effect of DO from that of nitrite, as DO variation often affects nitrite accumulation. The effect of DO on N2O production by an enriched nitrifying sludge, consisting of both AOB and nitrite-oxidizing bacteria (NOB), was investigated in this study. Nitrite accumulation was minimised by augmenting nitrite oxidation through the addition of an enriched NOB sludge. It was demonstrated that the specific N2O production rate increased from 0 to 1.9 ± 0.09 (n = 3) mg N2O-N/hr/g VSS with an increase of DO concentration from 0 to 3.0 mg O2/L, whereas N2O emission factor (the ratio between N2O nitrogen emitted and the ammonium nitrogen converted) decreased from 10.6 ± 1.7% (n = 3) at DO = 0.2 mg O2/L to 2.4 ± 0.1% (n = 3) at DO = 3.0 mg O2/L. The site preference measurements indicated that both the AOB denitrification and hydroxylamine (NH2OH) oxidation pathways contributed to N2O production, and DO had an important effect on the relative contributions of the two pathways. This finding is supported by analysis of the process data using an N2O model describing both pathways. As DO increased from 0.2 to 3.0 mg O2/L, the contribution of AOB denitrification decreased from 92% - 95%-66% - 73%, accompanied by a corresponding increase in the contribution by the NH2OH oxidation pathway. PMID:25179869

  10. Community composition of ammonia-oxidizing archaea from surface and anoxic depths of oceanic oxygen minimum zones

    Directory of Open Access Journals (Sweden)

    Xuefeng ePeng

    2013-07-01

    Full Text Available Ammonia-oxidizing archaea (AOA have been reported at high abundance in much of the global ocean, even in environments, such as pelagic oxygen minimum zones (OMZs, where conditions seem unlikely to support aerobic ammonium oxidation. Due to the lack of information on any potential alternative metabolism of AOA, the AOA community composition might be expected to differ between oxic and anoxic environments, indicating some difference in ecology and/or physiology of the AOA assemblage. This hypothesis was tested by evaluating AOA community composition using a functional gene microarray that targets the ammonia monooxygenase gene subunit A (amoA. The relationship between environmental parameters and the biogeography of the Arabian Sea and the Eastern Tropical South Pacific (ETSP AOA assemblages was investigated using principal component analysis (PCA and redundancy analysis (RDA. In both the Arabian Sea and the ETSP, AOA communities within the core of the OMZ were not significantly different from those inhabiting the oxygenated surface waters above the OMZ. The AOA communities in the Arabian Sea were significantly different from those in the ETSP. In both oceans, the abundance of archaeal amoA gene in the core of the OMZ was higher than that in the surface waters. Our results indicate that AOA communities are distinguished by their geographic origin. RDA suggested that temperature was the main factor that correlated with the differences between the AOA communities from the Arabian Sea and those from the ETSP. Physicochemical properties that characterized the different environments of the OMZ and surface waters played a less important role, than did geography, in shaping the AOA community composition.

  11. Chemoautotrophic growth of ammonia-oxidizing Thaumarchaeota enriched from a pelagic redox gradient in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Carlo eBerg

    2015-01-01

    Full Text Available Ammonia-oxidizing archaea (AOA are an important component of the planktonic community in aquatic habitats, linking nitrogen and carbon cycles through nitrification and carbon fixation. Therefore, measurements of these processes in culture-based experiments can provide insights into their contributions to energy conservation and biomass production by specific AOA. In this study, by enriching AOA from a brackish, oxygen-depleted water-column in the Landsort Deep, central Baltic Sea, we were able to investigate ammonium oxidation, chemoautotrophy, and growth in seawater batch experiments. The highly enriched culture consisted of up to 97% archaea, with maximal archaeal numbers of 2.9 × 107 cells mL-1. Phylogenetic analysis of the 16S rRNA and ammonia monooxygenase subunit A (amoA gene sequences revealed an affiliation with assemblages from low-salinity and freshwater habitats, with Candidatus Nitrosoarchaeum limnia as the closest relative. Growth correlated significantly with nitrite production, ammonium consumption, and CO2 fixation, which occurred at a ratio of 10 atoms N oxidized per 1 atom C fixed. According to the carbon balance, AOA biomass production can be entirely explained by chemoautotrophy. The cellular carbon content was estimated to be 9 fg C per cell. Single-cell-based 13C and 15N labeling experiments and analysis by nano-scale secondary ion mass spectrometry provided further evidence that cellular carbon was derived from bicarbonate and that ammonium was taken up by the cells. Our study therefore revealed that growth by an AOA belonging to the genus Nitrosoarchaeum can be sustained largely by chemoautotrophy.

  12. Abundance, composition and activity of ammonia oxidizer and denitrifier communities in metal polluted rice paddies from South China.

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    Full Text Available While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg-1. Copy numbers of amoA (AOA and AOB genes were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils.

  13. Estructura y diversidad genética de poblaciones bacterianas en la rizosfera de olivo (Olea europaea L. subsp. europaea) en Andalucía

    OpenAIRE

    Aranda Ocampo, Sergio

    2011-01-01

    El olivo (Olea europaea L. subsp. europaea) ha sido culturalmente y económicamente el principal cultivo oleaginoso de la Cuenca Mediterránea. España es el mayor productor de aceite de oliva en el mundo, y Andalucía, la región sur del país, es el principal área de cultivo con 62% de la superficie de olivar en España, ocupando >1.5 millones ha, y un 17% de su superficie total en un monocultivo impresionante. En España, el olivo se puede encontrar en dos formas, silvestre (Olea europaea L. subsp...

  14. Molecular characterization of genetic diversity, structure, and differentiation in the olive (Olea europaea L.) germplasm collection of the united states department of agriculture

    Science.gov (United States)

    Fifteen microsatellite loci were used to genotype 108 accessions of cultivated olive, Olea europaea L. ssp. europaea var. europaea, and eight of O. europaea L. ssp. cuspidata (Wall. ex G. Don) Ciferri from the germplasm collection of the United States Department of Agriculture in Davis, California. ...

  15. Shifts in Abundance and Diversity of Soil Ammonia-Oxidizing Bacteria and Archaea Associated with Land Restoration in a Semi-Arid Ecosystem.

    Science.gov (United States)

    Chen, Zhu; Wu, Wenliang; Shao, Xiaoming; Li, Li; Guo, Yanbin; Ding, Guochun

    2015-01-01

    The Grain to Green Project (GGP) is an unprecedented land restoration action in China. The project converted large areas (ca 10 million ha) of steep-sloped/degraded farmland and barren land into forest and grassland resulting in ecological benefits such as a reduction in severe soil erosion. It may also affect soil microorganisms involved in ammonia oxidization, which is a key step in the global nitrogen cycle. The methods for restoration that are typically adopted in semi-arid regions include abandoning farmland and growing drought tolerant grass (Lolium perenne L.) or shrubs (Caragana korshinskii Kom.). In the present study, the effects of these methods on the abundance and diversity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were evaluated via quantitative real-time PCR, terminal restriction fragment length polymorphism and clone library analysis of amoA genes. Comparisons were made between soil samples from three restored lands and the adjacent farmland in Inner Mongolia. Both the abundance and community composition of AOB were significantly different between the restored lands and the adjacent control. Significantly lower nitrification activity was observed for the restored land. Clone library analysis revealed that all AOB amoA gene sequences were affiliated with Nitrosospira. Abundance of the populations that were associated with Nitrosospira sp. Nv6 which had possibly adapted to high concentrations of inorganic nitrogen, decreased on the restored land. Only a slight difference in the AOB communities was observed between the restored land with and without the shrub (Caragana korshinskii Kom.). A minor effect of land restoration on AOA was observed. In summary, land restoration negatively affected the abundance of AOB and soil nitrification activities, suggesting the potential role of GGP in the leaching of nitrates, and in the emission of N2O in related terrestrial ecosystems. PMID:26172994

  16. Shifts in Abundance and Diversity of Soil Ammonia-Oxidizing Bacteria and Archaea Associated with Land Restoration in a Semi-Arid Ecosystem.

    Directory of Open Access Journals (Sweden)

    Zhu Chen

    Full Text Available The Grain to Green Project (GGP is an unprecedented land restoration action in China. The project converted large areas (ca 10 million ha of steep-sloped/degraded farmland and barren land into forest and grassland resulting in ecological benefits such as a reduction in severe soil erosion. It may also affect soil microorganisms involved in ammonia oxidization, which is a key step in the global nitrogen cycle. The methods for restoration that are typically adopted in semi-arid regions include abandoning farmland and growing drought tolerant grass (Lolium perenne L. or shrubs (Caragana korshinskii Kom.. In the present study, the effects of these methods on the abundance and diversity of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA were evaluated via quantitative real-time PCR, terminal restriction fragment length polymorphism and clone library analysis of amoA genes. Comparisons were made between soil samples from three restored lands and the adjacent farmland in Inner Mongolia. Both the abundance and community composition of AOB were significantly different between the restored lands and the adjacent control. Significantly lower nitrification activity was observed for the restored land. Clone library analysis revealed that all AOB amoA gene sequences were affiliated with Nitrosospira. Abundance of the populations that were associated with Nitrosospira sp. Nv6 which had possibly adapted to high concentrations of inorganic nitrogen, decreased on the restored land. Only a slight difference in the AOB communities was observed between the restored land with and without the shrub (Caragana korshinskii Kom.. A minor effect of land restoration on AOA was observed. In summary, land restoration negatively affected the abundance of AOB and soil nitrification activities, suggesting the potential role of GGP in the leaching of nitrates, and in the emission of N2O in related terrestrial ecosystems.

  17. Fluctuations in ammonia oxidizing communities across agricultural soils are driven by soil structure and pH

    Directory of Open Access Journals (Sweden)

    Michele C ePereira e Silva

    2012-03-01

    Full Text Available The milieu in soil in which microorganisms dwell is never constant. Conditions such as temperature, water availability, pH and nutrients frequently change, impacting the overall functioning of the soil system. To understand the effects of such factors on soil functioning, proxies (indicators of soil function are needed that, in a sensitive manner, reveal normal amplitude of variation. Thus, the so-called normal operating range (NOR of soil can be defined. In this study we determined different components of nitrification by analyzing, in eight agricultural soils, how the community structures and sizes of ammonia oxidizing bacteria and archaea (AOB and AOA, respectively, and their activity, fluctuate over spatial and temporal scales. The results indicated that soil pH and soil type are the main factors that influence the size and structure of the AOA and AOB, as well as their function. The nitrification rates varied between 0.11 ± 0.03 µgN.h-1.gdw-1 and 1.68 ± 0.11 µgN.h-1.gdw-1, being higher in soils with higher clay content (1.09 ± 0.12 µgN.h-1.gdw-1 and lower in soils with lower clay percentages (0.27 ± 0.04 µgN.h-1.gdw-1. Nitrifying activity was driven by soil pH, mostly related to its effect on AOA but not on AOB abundance. Regarding the influence of soil parameters, clay content was the main soil factor shaping the structure of both the AOA and AOB communities. Overall, the potential nitrifying activities were higher and more variable over time in the clayey than in the sandy soils. Whereas the structure of AOB fluctuated more (62.7 ± 2.10% the structure of AOA communities showed lower amplitude of variation (53.65 ± 3.37%. Similar trends were observed for the sizes of these communities. The present work represents a first step towards defining a NOR for soil nitrification. Moreover, the clear effect of soil texture established here suggests that the NOR should be defined in a soil-type-specific manner.

  18. Ammonia Oxidizing, Nitrite Reducing Bacteria and the Cycling of Nitrous Oxide in the Oxygen Minimum Zone (OMZ) of the Eastern South Pacific

    Science.gov (United States)

    Molina, V.; Castro-González, M.; Farías, L.; Farías, L.; Ulloa, O.; Braker, G.; Witzel, K.

    2004-12-01

    The distribution of nitrous oxide, oxygen, nitrite and nitrate, and 16S rDNA and functional genes (amoA,nirS) richness of ammonia oxidizing (AOB) and nitrite reducing bacteria (NRB) were studied in the water column of one of the shallowest (8 μ M) is also present at the OMZ core. The relationship among apparent oxygen utilization (AOU), apparent nitrous oxide production, and nitrate distribution allowed the differentiation among nitrification, denitrification, and the coupling between both, at AOU values of 230 and 200-230 μ mol kg-1, respectively. The richness of the AOB ribotypes (DGGE) and the NRB {it\

  19. Polygenic analysis of ammonia-oxidizing bacteria using 16S rDNA, amoA, and amoB genes

    OpenAIRE

    Calvó Perxas, Laia; Cortey Marqués, Martí; García Marín, José Luis; Garcia-Gil, L. J.

    2005-01-01

    Finding a unique molecular marker capable of quickly providing rigorous and useful phylogenetic information would facilitate assessing the diversity of ammonia-oxidizing bacteria in environmental samples. Since only one of several available markers can be used at a time in these kinds of studies, the 16S rDNA, amoA and amoB genes were evaluated individually and then compared in order to identify the one that best fits the information provided by the composite dataset. Distance-based neighbor-...

  20. Characteristics of ammonia-oxidizing bacteria and ammonia-oxidizing archaea abundance in soil organic layer under the subalpine/alpine forest%亚高山/高山森林土壤有机层氨氧化细菌和氨氧化古菌丰度特征

    Institute of Scientific and Technical Information of China (English)

    王奥; 吴福忠; 何振华; 徐振锋; 刘洋; 谭波; 杨万勤

    2012-01-01

    Soil ammonia oxidizers play essential roles in nitrogen cycling in many forest ecosystems. Since the compositions and functions of soil ammonia oxidizer could be suffered from obviously seasonal snow cover and freeze-thaw cycles in high latitude/altitude region, there might be significant differences of soil ammonia oxidizer in different periods caused by seasonal freeze-thaw cycles. However, little attention has been paid to the variations of soil ammonia oxidizer in different key periods in subalpine/alpine regions. To determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in subalpine and alpine forest, three representative forests ( primitive Abies faxoniana forest, PF; mixed A. faxoniana and Betula albosinensis forest, MF, and secondary A. faxoniana forest, SF) were selected in the alipine/ subalpine region of Western China. Soils were sampled in soil organic layer (OL) due to the sensitive responses to seasonal climate changes. Richness of ammonia oxidizers (ammonia-oxidizing bacteria, AOB; and ammonia-oxidizing archaea, AOA) in soil organic layer were characterized by a real-time quantitative PCR method from targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. Based on previous investigations, we focused on nine key stages go through three periods as soil temperature varied ( 1 ) Growing period: including early growing stage, growing stage, and later growing stage. (2 ) Freeze period; including early freezing stage, freezing stage, and later frozen stage. ( 3 ) Thawing period: including early thawing stage, thawing stage and later thawing stage. Amounts of bacterial and archaeal amok gene were detected in soil organic layer under three subalpine and alpine forests. The abundance of both bacterial and archaeal amoA showed similar tendency in different key stages, which significantly decreased from growing period to freeze period and then significantly increased, suggesting the strongly effects of

  1. Anaerobic ammonium oxidation by Nitrosomonas spp. and anammox bacteria in a sequencing batch reactor.

    Science.gov (United States)

    Lek Noophan, Pongsak; Sripiboon, Siriporn; Damrongsri, Mongkol; Munakata-Marr, Junko

    2009-02-01

    A sequencing batch reactor (SBR) was inoculated with mixed nitrifying bacteria from an anoxic tank at the conventional activated sludge wastewater treatment plant in Nongkhaem, Bangkok, Thailand. This enriched nitrifying culture was maintained under anaerobic conditions using ammonium (NH(4)(+)) as an electron donor and nitrite (NO(2)(-)) as an electron acceptor. Autotrophic ammonium oxidizing bacteria survived under these conditions. The enrichment period for anammox culture was over 100 days. Both ammonium and nitrite conversion rates were proportional to the biomass of ammonium oxidizing bacteria; rates were 0.08 g N/gV SS/d and 0.05 g N/g VSS/d for ammonium and nitrite, respectively, in a culture maintained for 3 months at 42 mg N/L ammonium. The nitrogen transformation rate at a ratio of NH(4)(+)-N to NO(2)(-)-N of 1:1.38 was faster, and effluent nitrogen levels were lower, than at ratios of 1:0.671, 1:2.18, and 1:3.05. Fluorescent in situ hybridization (FISH) was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis). The ammonium oxidizing culture maintained at 42 mg N/L ammonium was enriched for Nitrosomonas spp. (30%) over Candidati B. anammoxidans and K. stuttgartiensis (2.1%) while the culture maintained at 210 mg N/L ammonium was dominated by Candidati B. anammoxidans and K. stuttgartiensis (85.6%). The specific nitrogen removal rate of anammox bacteria (0.6 g N/g anammox VSS/d) was significantly higher than that of ammonium oxidizing bacteria (0.4 g N/g Nitrosomonas VSS/d). Anammox bacteria removed up to 979 mg N/L/d of total nitrogen (ammonium:nitrite concentrations, 397:582 mg N/L). These results suggest significant promise of this approach for application to wastewater with high nitrogen but low carbon content, such as that found in Bangkok. PMID:18423965

  2. The effects of salinity on nitrification using halophilic nitrifiers in a Sequencing Batch Reactor treating hypersaline wastewater.

    Science.gov (United States)

    Cui, You-Wei; Zhang, Hong-Yu; Ding, Jie-Ran; Peng, Yong-Zhen

    2016-01-01

    With annual increases in the generation and use of saline wastewater, the need to avoid environmental problems such as eutrophication is critical. A previous study identified ways to start up a halophilic sludge domesticated from estuarine sediments to remove nitrogen from wastewater with a salinity of 30 g/L. This investigation expands that work to explore the impact of salinity on nitrogen removal. This study demonstrated that the mixed halophilic consortia removed nitrogen from wastewater with a salinity of 30-85 g/L. A kinetic analysis showed that halophilic nitrifiers selected based on hypersalinity were characterized by low Ks, μmax and specific ammonium oxidization rates. This explains the decrease in ammonium removal efficiency in the high salinity operational phases. Salinity inhibited ammonia oxidizing bacteria (AOB) activity, as well as the number of dominant AOB, but did not significantly affect the AOB dominant species. Three most dominant AOB lineages in the halophilic sludge were Nitrosomonas marina, Nitrosomonas europaea, and Nitrosococcus mobilis. Nitrosomonas europaea and Nitrosococcus mobilis were mainly affected by salinity, while nitrite accumulation and ammonia loading played the key role in determining the abundance of Nitrosococcus mobilis and Nitrosococcus europaea. The study contributes insights about shifts in halophilic nitrifying bacterial populations. PMID:27109617

  3. The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms.

    Science.gov (United States)

    LaPara, Timothy M; Hope Wilkinson, Katheryn; Strait, Jacqueline M; Hozalski, Raymond M; Sadowksy, Michael J; Hamilton, Matthew J

    2015-10-01

    The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in the quantities of individual bacterial populations were observed; of the 15 most prominent OTUs, the most highly variable population (a Variovorax sp.) modulated less than 13-fold over time and less than 8-fold from filter to filter. The most prominent population in the profiles was a Nitrospira sp., representing 13 to 21% of the community. Interestingly, very few of the known ammonia-oxidizing bacteria (AOB; amoA genes, however, suggested that AOB were prominent in the bacterial communities (amoA/16S rRNA gene ratio, 1 to 10%). We conclude, therefore, that the BAC filters at the SPRWS potentially contained significant numbers of unidentified and novel ammonia-oxidizing microorganisms that possess amoA genes similar to those of previously described AOB. PMID:26209671

  4. A novel control method for nitritation: The domination of ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidized bed reactor.

    Science.gov (United States)

    Tokutomi, Takaaki; Shibayama, Chizu; Soda, Satoshi; Ike, Michihiko

    2010-07-01

    A novel nitritation method based on the addition of inorganic carbon (IC) was verified using an airlift-fluidized bed reactor packed with sponge cubes. A continuous-treatment experiment demonstrated that the type of nitrification-nitrite or nitrate accumulation-could be controlled by the addition of different alkalinity sources (NaHCO(3) or NaOH, respectively). The maximum rate of ammonia oxidation at 30 degrees C was 2.47kg-N/(m(3) d), with nitrate formation of less than 0.5% of the converted ammonia. Nitrite accumulation of over 90% was maintained stably over 250 days at 30 degrees C and was achieved even at 19 degrees C. Qualitative and quantitative shifts of nitrifying bacteria in the biofilm were monitored by real-time PCR and T-RFLP analysis. Ammonia-oxidizing bacteria (AOB) were dominant but nitrite-oxidizing bacteria (NOB) were eliminated in the reactor when NaHCO(3) was used as the alkalinity source. From the kinetic data, we inferred that high IC concentrations drive stable nitritation by promoting a higher growth rate for AOB than for NOB. PMID:20554306

  5. High abundances of potentially active ammonia-oxidizing bacteria and archaea in oligotrophic, high-altitude lakes of the Sierra Nevada, California, USA.

    Directory of Open Access Journals (Sweden)

    Curtis J Hayden

    Full Text Available Nitrification plays a central role in the nitrogen cycle by determining the oxidation state of nitrogen and its subsequent bioavailability and cycling. However, relatively little is known about the underlying ecology of the microbial communities that carry out nitrification in freshwater ecosystems--and particularly within high-altitude oligotrophic lakes, where nitrogen is frequently a limiting nutrient. We quantified ammonia-oxidizing archaea (AOA and bacteria (AOB in 9 high-altitude lakes (2289-3160 m in the Sierra Nevada, California, USA, in relation to spatial and biogeochemical data. Based on their ammonia monooxygenase (amoA genes, AOB and AOA were frequently detected. AOB were present in 88% of samples and were more abundant than AOA in all samples. Both groups showed >100 fold variation in abundance between different lakes, and were also variable through time within individual lakes. Nutrient concentrations (ammonium, nitrite, nitrate, and phosphate were generally low but also varied across and within lakes, suggestive of active internal nutrient cycling; AOB abundance was significantly correlated with phosphate (r(2 = 0.32, p<0.1, whereas AOA abundance was inversely correlated with lake elevation (r(2 = 0.43, p<0.05. We also measured low rates of ammonia oxidation--indicating that AOB, AOA, or both, may be biogeochemically active in these oligotrophic ecosystems. Our data indicate that dynamic populations of AOB and AOA are found in oligotrophic, high-altitude, freshwater lakes.

  6. Screening of electrocatalysts for direct ammonia fuel cell: Ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(1 0 0) nanoparticles

    Science.gov (United States)

    Vidal-Iglesias, F. J.; Solla-Gullón, J.; Montiel, V.; Feliu, J. M.; Aldaz, A.

    Ammonia has attracted attention as a possible fuel for direct fuel cells since it is easy to handle and to transport as liquid or as concentrated aqueous solution. However, on noble metal electrodes ammonia oxidation is a sluggish reaction and the electrocatalyst needs to be improved for developing efficient ammonia fuel cells. In this work, ammonia electrooxidation reaction on 3-4-nm bimetallic PtMe (Ir, Rh, Pd, Ru) and on preferentially oriented Pt(1 0 0) nanoparticles is reported. PtMe nanoparticles have been prepared by using water-in-oil microemulsions to obtain a narrow size distribution whereas preferentially oriented Pt nanoparticles have been prepared through colloidal routes. Among all the bimetallic samples tested, only Pt 75Ir 25 and Pt 75Rh 25 nanoparticles show, at the low potential range, an enhancement of the oxidation density current with respect to the behaviour found for pure platinum nanoparticles prepared by the same method. In addition, two Pt(1 0 0) preferentially oriented nanoparticles of different particle size (4 and 9 nm) have been also studied. These oriented nanoparticles show higher current densities than polycrystalline Pt nanoparticles due to the sensitivity of ammonia oxidation toward the presence of surface sites with square symmetry. The reactivity of the different 4-nm nanoparticles parallels well with that expected from bulk PtMe alloys and Pt single crystal electrodes.

  7. Multidisciplinarni pristup karakterizaciji autohtonih istarskih sorti maslina (Olea europaea L.)

    OpenAIRE

    Poljuha, Danijela; Sladonja, Barbara; Brkić Bubola, Karolina; Radulović, Marina; Brščić, Kristina; Šetić, Elvino; Krapac, Marin; Milotić, Aldo

    2008-01-01

    Istarska se županija odlikuje dugom tradicijom maslinarstva i uljarstva te znatnom biološkom raznolikošću lokalnih genetskih resursa masline (Olea europaea L.). Maslinovo je ulje jedan od najvažnijih tipičnih prehrambenih proizvoda u Istri. S obzirom na trenutačnu tendenciju potrošača da odabiru tipične proizvode, prijeko je potrebno definirati autohtone istarske sorte maslina te istaknuti specifičnosti pojedinih vrsta ulja. U tu svrhu primijenjen je multidisciplinarni pristup. U radu su opis...

  8. Mo-Bi系丙烯氨氧化催化剂上氨分解反应动力学的Monte Carlo模拟%Monte Carlo Simulation of Kinetics of Ammonia Oxidative Decomposition over the Commercial Propylene Ammoxidation Catalyst (Mo-Bi)

    Institute of Scientific and Technical Information of China (English)

    罗正鸿; 詹晓力; 陈丰秋; 阳永荣

    2003-01-01

    Monte Carlo method is applied to investigate the kinetics of ammonia oxidative decomposition overthe commercial propylene ammoxidation catalyst(Mo-Bi). The simulation is quite in agreement with experimentalresults. Monte Carlo simulation proves that the process of ammonia oxidation decomposition is a two-step reaction.

  9. Archaeal ammonia oxidizers respond to soil factors at smaller spatial scales than the overall archaeal community does in a high Arctic polar oasis.

    Science.gov (United States)

    Banerjee, Samiran; Kennedy, Nabla; Richardson, Alan E; Egger, Keith N; Siciliano, Steven D

    2016-06-01

    Archaea are ubiquitous and highly abundant in Arctic soils. Because of their oligotrophic nature, archaea play an important role in biogeochemical processes in nutrient-limited Arctic soils. With the existing knowledge of high archaeal abundance and functional potential in Arctic soils, this study employed terminal restriction fragment length polymorphism (t-RFLP) profiling and geostatistical analysis to explore spatial dependency and edaphic determinants of the overall archaeal (ARC) and ammonia-oxidizing archaeal (AOA) communities in a high Arctic polar oasis soil. ARC communities were spatially dependent at the 2-5 m scale (P diversity indices of both ARC and AOA communities showed high spatial dependency along the landscape and resembled scaling of edaphic factors. The spatial link between archaeal community structure and soil resources found in this study has implications for predictive understanding of archaea-driven processes in polar oases. PMID:27045904

  10. Inhibitory effect of Salicornia europaea on the marine alga Skeletonema costatum.

    Science.gov (United States)

    Jiang, Dan; Huang, Lingfeng; Lin, Yongqing; Nie, Lingling; Lv, Sulian; Kuang, Tingyun; Li, Yinxin

    2012-06-01

    Exploiting the negative biochemical interference between plants and algal species has been suggested as a method to control harmful algal blooms. In this work, we investigated the inhibitory effect of the salt marsh halophyte Salicornia europaea against the marine alga Skeletonema costatum. S. europaea suppressed the growth of S. costatum in a nutrient-sufficient co-culture system, indicating that the inhibition of algal growth was because of the phytotoxic effect of S. europaea, rather than nutrient competition. We tested aqueous and organic extracts from S. europaea roots against S. costatum. The organic extracts inhibited growth and affected the cell size and chlorophyll a content of S. costatum in a dose-dependent manner. Among the three tested organic extracts, the methanol extract had the greatest effects on S. costatum, followed by butanol extract, and then the chloroform extract. Two flavonoids, rutin and quercetin-3-β-D-glucoside, were identified in the methanol extract by high performance liquid chromatography. The concentration of rutin was much higher than that of quercetin-3-β-D-glucoside. In an algal bioassay, rutin inhibited the growth of S. costatum and the inhibitory effect increased with increasing rutin concentration and with decreasing initial algal density. Therefore, we concluded that S. europaea negatively affects the growth of S. costatum, and that rutin, a metabolite of S. europaea, may play a role in this inhibitory effect. PMID:22744186

  11. A survey of 16S rRNA and amoA genes related to autotrophic ammonia-oxidizing bacteria of the ß-subdivision of the class proteobacteria in contaminated groundwater

    NARCIS (Netherlands)

    Ivanova, I.A.; Stephen, J.R.; Chang, Y.J.; Bruggemann, J.; Long, P.E.; McKinley, J.P.; Kowalchuk, G.A.; White, D.C.; MacNaughton, S.J.

    2000-01-01

    In this study, we investigated the size and structure of autotrophic ammonia oxidizer (AAO) communities in the groundwater of a contamination plume originating from a mill- tailings disposal site. The site has high levels of dissolved N from anthropogenic sources, and exhibited wide variations in th

  12. Irrigation water salinity and N fertilization:Effects on ammonia oxidizer abundance, enzyme activity and cotton growth in a drip irrigated cotton ifeld

    Institute of Scientific and Technical Information of China (English)

    MIN Wei; GUO Hui-juan; ZHANG Wen; ZHOU Guang-wei; MA Li-juan; YE Jun; HOU Zhen-an

    2016-01-01

    Use of saline water in irrigated agriculture has become an important means for aleviating water scarcity in arid and semi-arid regions. The objective of this ifeld experiment was to evaluate the effects of irrigation water salinity and N fertilization on soil physicochemical and biological properties related to nitriifcation and denitriifcation. A 3×2 factorial design was used with three levels of irrigation water salinity (0.35, 4.61 and 8.04 dS m–1) and two N rates (0 and 360 kg N ha–1). The results indicated that irrigation water salinity and N fertilization had signiifcant effects on many soil physicochemical properties including water content, salinity, pH, NH4-N concentration, and NO3-N concentration. The abundance (i.e., gene copy number) of ammo-nia-oxidizing archaea (AOA) was greater than that of ammonia-oxidizing bacteria (AOB) in al treatments. Irrigation water salinity had no signiifcant effect on the abundance of AOA or AOB in unfertilized plots. However, saline irrigation water (i.e., the 4.61 and 8.04 dS m–1 treatments) reduced AOA abundance, AOB abundance and potential nitriifcation rate in N fertilized plots. Regardless of N application rate, saline irrigation water increased urease activity but reduced the activities of both nitrate reductase and nitrite reductase. Irrigation with saline irrigation water signiifcantly reduced cotton biomass, N uptake and yield. Nitrogen application exacerbated the negative effect of saline water. These results suggest that brackish water and saline water irrigation could signiifcantly reduce both the abundance of ammonia oxidizers and potential nitriifcation rates. The AOA may play a more important role than AOB in nitriifcation in desert soil.

  13. Microbial ecology of á-Proteobacteria ammonia-oxidizers along a concentration gradient of dry atmospheric nitrogen deposition in the San Bernadino Mountain Range.

    Science.gov (United States)

    Jordan, F. L.; Fenn, M. E.; Stein, L. Y.

    2002-12-01

    The fate of atmospherically-deposited nitrogen from industrial pollution is of major concern in the montane ecosystems bordering the South Coast California Air Basin. Nitrogen deposition rates in the more exposed regions of the San Bernardino Mountains (SBM) are among the highest in North America often exceeding 40 kg ha-1 year-1 in throughfall deposition of nitrate and ammonium (Fenn and Poth, 1999). Forest ecosystems with elevated N deposition generally exhibit elevated accumulation of soil nitrate, leaching and runoff, elevated emissions of nitrogenous gases, increased nitrification, and decreased litter decomposition rates. The role of nitrifying microbial populations, especially those taxonomically associated with the beta-Proteobacteria ammonia-oxidizers (AOB), will provide insight into nitrogen-cycling in these extremely N-saturated environments. Using 16S ribosomal DNA-based molecular techniques (16S rDNA clone library construction and Restriction Fragment Length Polymorphism), we are comparing AOB community diversity at 3 different locations along a natural atmospheric N-deposition concentration gradient in the SBM: from high at Camp Paviaka (CP), medium at Strawberry Peak (SP) to low at Dogwood (DW). As observed for wet N-deposition systems on the east coast, we hypothesized a negative correlation between AOB community diversity, abundance and function with nitrogen loading in the dry N deposition system of SBM. Nitrification potentials determined for the 3 sites along the N-deposition gradient were in the order of CP less than SP less than DW. Preliminary results indicate no correlation between diversity of AOB and increased nitrogen loading. Shannon-Weiner diversity indices calculated for ammonia-oxidizer RFLP group units were 2.22, 2.66 and 1.80 for CP, SP and DW, respectively.

  14. Differential distribution patterns of ammonia-oxidizing archaea and bacteria in acidic soils of Nanling National Nature Reserve forests in subtropical China.

    Science.gov (United States)

    Gan, Xian-Hua; Zhang, Fang-Qiu; Gu, Ji-Dong; Guo, Yue-Dong; Li, Zhao-Qing; Zhang, Wei-Qiang; Xu, Xiu-Yu; Zhou, Yi; Wen, Xiao-Ying; Xie, Guo-Guang; Wang, Yong-Feng

    2016-02-01

    In addition to ammonia-oxidizing bacteria (AOB) the more recently discovered ammonia-oxidizing archaea (AOA) can also oxidize ammonia, but little is known about AOA community structure and abundance in subtropical forest soils. In this study, both AOA and AOB were investigated with molecular techniques in eight types of forests at surface soils (0-2 cm) and deep layers (18-20 cm) in Nanling National Nature Reserve in subtropical China. The results showed that the forest soils, all acidic (pH 4.24-5.10), harbored a wide range of AOA phylotypes, including the genera Nitrosotalea, Nitrososphaera, and another 6 clusters, one of which was reported for the first time. For AOB, only members of Nitrosospira were retrieved. Moreover, the abundance of the ammonia monooxygenase gene (amoA) from AOA dominated over AOB in most soil samples (13/16). Soil depth, rather than forest type, was an important factor shaping the community structure of AOA and AOB. The distribution patterns of AOA and AOB in soil layers were reversed: AOA diversity and abundances in the deep layers were higher than those in the surface layers; on the contrary, AOB diversity and abundances in the deep layers were lower than those in the surface layers. Interestingly, the diversity of AOA was positively correlated with pH, but negatively correlated with organic carbon, total nitrogen and total phosphorus, and the abundance of AOA was negatively correlated with available phosphorus. Our results demonstrated that AOA and AOB were differentially distributed in acidic soils in subtropical forests and affected differently by soil characteristics. PMID:26626057

  15. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys

    Directory of Open Access Journals (Sweden)

    Catarina Maria Magalhães

    2014-09-01

    Full Text Available The McMurdo Dry Valleys of Antarctica are considered to be one of the most physically and chemically extreme terrestrial environments on the Earth. However, little is known about the organisms involved in nitrogen transformations in these environments. In this study, we investigated the diversity and abundance of ammonia-oxidizing archaea (AOA and bacteria (AOB in four McMurdo Dry Valleys with highly variable soil geochemical properties and climatic conditions: Miers Valley, Upper Wright Valley, Beacon Valley and Battleship Promontory. The bacterial communities of these four Dry Valleys have been examined previously, and the results suggested that the extremely localized bacterial diversities are likely driven by the disparate physicochemical conditions associated with these locations. Here we showed that AOB and AOA amoA gene diversity was generally low; only four AOA and three AOB operational taxonomic units (OTUs were identified from a total of 420 AOA and AOB amoA clones. Quantitative PCR analysis of amoA genes revealed clear differences in the relative abundances of AOA and AOB amoA genes among samples from the four Dry Valleys. Although AOB amoA gene dominated the ammonia-oxidizing community in soils from Miers Valley and Battleship Promontory, AOA amoA gene were more abundant in samples from Upper Wright and Beacon Valleys, where the environmental conditions are considerably harsher (e.g., extremely low soil C/N ratios and much higher soil electrical conductivity. Correlations between environmental variables and amoA genes copy numbers, as examined by redundancy analysis (RDA, revealed that higher AOA/AOB ratios were closely related to soils with high salts and Cu contents and low pH. Our findings hint at a dichotomized distribution of AOA and AOB within the Dry Valleys, potentially driven by environmental constraints.

  16. Abundance and diversity of ammonia-oxidizing archaea and bacteria in sediments of trophic end members of the Laurentian Great Lakes, Erie and Superior.

    Directory of Open Access Journals (Sweden)

    Annette Bollmann

    Full Text Available Ammonia oxidation is the first step of nitrification carried out by ammonia-oxidizing Archaea (AOA and Bacteria (AOB. Lake Superior and Erie are part of the Great Lakes system differing in trophic status with Lake Superior being oligotrophic and Lake Erie meso- to eutrophic. Sediment samples were collected from both lakes and used to characterize abundance and diversity of AOA and AOB based on the ammonia monooxygenase (amoA gene. Diversity was accessed by a pyro-sequencing approach and the obtained sequences were used to determine the phylogeny and alpha and beta diversity of the AOA and AOB populations. In Lake Erie copy numbers of bacterial amoA genes were in the same order of magnitude or even higher than the copy numbers of the archaeal amoA genes, while in Lake Superior up to 4 orders of magnitude more archaeal than bacterial amoA copies were detected. The AOB detected in the samples from Lake Erie belonged to AOB that are frequently detected in freshwater. Differences were detected between the phylogenetic affiliations of the AOA from the two lakes. Most sequences detected in Lake Erie clustered in the Nitrososphaera cluster (Thaumarchaeal soil group I.1b where as most of the sequences in Lake Superior were found in the Nitrosopumilus cluster (Thaumarchaeal marine group I.1a and the Nitrosotalea cluster. Pearson correlations and canonical correspondence analysis (CCA showed that the differences in abundance and diversity of AOA are very likely related to the sampling location and thereby to the different trophic states of the lakes.

  17. Land Spreading of Wastewaters from the Fruit-Packaging Industry and Potential Effects on Soil Microbes: Effects of the Antioxidant Ethoxyquin and Its Metabolites on Ammonia Oxidizers.

    Science.gov (United States)

    Papadopoulou, Evangelia S; Tsachidou, Bella; Sułowicz, Sławomir; Menkissoglu-Spiroudi, Urania; Karpouzas, Dimitrios G

    2016-01-01

    Thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA), and ethoxyquin (EQ) are used in fruit-packaging plants (FPP) with the stipulation that wastewaters produced by their application would be depurated on site. However, no such treatment systems are currently in place, leading FPP to dispose of their effluents in agricultural land. We investigated the dissipation of those pesticides and their impact on soil microbes known to have a key role on ecosystem functioning. OPP and DPA showed limited persistence (50% dissipation time [DT50], 0.6 and 1.3 days) compared to TBZ and IMZ (DT50, 47.0 and 150.8 days). EQ was rapidly transformed to the short-lived quinone imine (QI) (major metabolite) and the more persistent 2,4-dimethyl-6-ethoxyquinoline (EQNL) (minor metabolite). EQ and OPP exerted significant inhibition of potential nitrification, with the effect of the former being more persistent. This was not reflected in the abundance (determined by quantitative PCR [qPCR]) of the amoA gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Considering the above discrepancy and the metabolic pattern of EQ, we further investigated the hypothesis that its metabolites and not only EQ were toxic to ammonia oxidizers. Potential nitrification, amoA gene abundance, and amoA gene transcripts of AOB and AOA showed that QI was probably responsible for the inhibition of nitrification. Our findings have serious ecological and practical implications for soil productivity and N conservation in agriculturally impacted ecosystems and stress the need to include metabolites and RNA-based methods when the soil microbial toxicity of pesticides is assessed. PMID:26590271

  18. Fauna Europaea: Annelida – Hirudinea, incl. Acanthobdellea and Branchiobdellea

    Directory of Open Access Journals (Sweden)

    Alessandro Minelli

    2014-11-01

    Hirudinea is a fairly small group of Annelida, with about 680 described species, most of which live in freshwater habitats, but several species are (subterrestrial or marine. In the Fauna Europaea database the taxon is represented by 87 species in 6 families. Two closely related groups, currently treated as distinct lineages within the Annelida, are the Acanthobdellea (2 species worldwide, of which 1 in Europe and the Branchiobdellea (about 140 species worldwide, of which 10 in Europe. This paper includes a complete list of European taxa belonging to the Hirudinea, Acanthobdellea and Branchiobdellea. Recent research on a limited number of taxa suggests that our current appreciation of species diversity of Hirudinea in Europe is still provisional: on the one hand, cryptic, unrecognised taxa are expected to emerge; on the other, the status of some taxa currently treated as distinct species deserves revisiting.

  19. Possibility of Salicornia europaea use for the human liquid wastes inclusion into BLSS intrasystem mass exchange

    Science.gov (United States)

    Tikhomirova, Natalia A.; Ushakova, Sofya A.; Tikhomirov, Alexander A.; Kalacheva, Galina S.; Gros, Jean-Bernard

    One of the ways of solving the problem of the human liquid wastes utilization in bioregenerative life support systems (BLSS) can be the use of halophytic vegetable plant Salicornia europaea capable of accumulating sodium chloride in rather high concentrations. Since the most specific higher plant function in BLSS, which at present cannot be substituted by physicochemical processes, appears to be the biosynthesis of a wide spectrum of nutritive substances necessary for a human, the object of the given work was the investigation of the S. europaea productivity, biochemical and mineral composition when grown under close to optimal BLSS vegetative component conditions. As the use of human urine after its preliminary physicochemical processing is supposed to be the mineral solution basis for the S. europaea cultivation, it is necessary to clear up the effect of reduced nitrogen on plants growth. Ground research was carried out. Biochemical composition of the S. europaea edible part showed that crude protein was contained in the highest degree. At that the content of crude protein (24% per dry weight) and cellulose (4.7% per dry weight) was higher in the plants grown on solutions containing amide nitrogen in comparison with the plants grown on solutions with nitrate nitrogen (15.4%—3.1% correspondingly). The water-soluble sugar contents were not high in the S. europaea edible part and depending on the nitrogen nutrition form they amounted to 1.1% (amide nitrogen) and 1.5% (nitrate nitrogen). The polysaccharide number (except cellulose) was rather higher and varied from 7.7% to 8.2%. Although the lipid content in the S. europaea plants was relatively low (7% per dry weight), it was shown that the plant lipids are characterized by a high nonsaturation degree mainly due to alpha linolenic and linoleic acids. Nitrogen nutrition form did not significantly affect the S. europaea productivity, and dry edible biomass of one plant was 8.6 g. Sodium and its concentrations

  20. 石墨烯载Ir催化剂对氨氧化的电催化性能%Electrocatalytic Performance of Graphene Supported Ir Catalyst for Ammonia Oxidation

    Institute of Scientific and Technical Information of China (English)

    李林儒; 付宏刚; 陆天虹

    2012-01-01

    用石墨烯(G)代替Vulcan XC-72炭(XC)作Ir的载体制备石墨烯载Ir(Ir/G)催化剂.电化学的测量结果表明,Ir/G催化剂对氨氧化的电催化性能优于XC炭载Ir( Ir/XC)催化剂.X射线衍射(XRD)谱测量结果表明,Ir/G和Ir/XC催化剂的Ir粒子平均粒径相似.拉曼光谱的测量结果表明,G的石墨化程度和电导率高于XC.因此,Ir/G催化剂对氨氧化的电催化性能优于Ir/XC催化剂.氨在Ir/G催化剂电极上氧化的电流密度与氨浓度呈很好的线性关系曲线,相关系数R为0.99557.因此,Ir/G催化剂电极可作为电流型电化学氨传感器的工作电极.%Instead Vulcan XC-72 carbon(XC) , grapheme(G) was used as the support to prepare the Ir/G catalyst. The electrochemical measurement indicted that the electrocatalytic performance of the Ir/G catalyst for the ammonia oxidation was better than that of the Ir/XC catalyst. XRD and TEM measurements indicated that the average sizes of Ir particles in Ir/G and Ir/XC catalysts were similar. The measurement of the Raman spectroscopy illustrates the graphitization extent of G is higher than that of XC. Thus, the conductivity of G is higher than that of XC. Therefore, the electrocatalytic performance of the Ir/G catalyst is better than that of the Ir/XC catalyst can be attributed to the high conductivity due to the high graphitization extent of G. The results show that there is the good linear relationship between the current density of the ammonia oxidation at the Ir/G catalyst electrode and the concentration of ammonia. The related coefficient (R) is 0. 99557. Thus, Ir/G catalyst electrode can be used as the working electrode in the current type of electrochemical ammonia sensor.

  1. Salinity, temperature, and growth regulator effects on seed germination of Salicornia europaea L

    Energy Technology Data Exchange (ETDEWEB)

    Ungar, I.A.

    1977-12-01

    Temperature optima for Salicornia europaea L. seed germination at different salinities were investigated. Maximum germination occurred in distilled water at 25/sup 0/C. Lowest germination percentages for all salinities were at 10/sup 0/C. Even though S. europaea is the most salt tolerant of the species growing on the salt pan in which it occurs, an increase in salinity stress proved to be inhibitory to seed germination for all temperature regimes investigated. Treatments with 1 x 10/sup -3/ M gibberellic acid (GA/sub 3/) stimulated germination in salinities with up to 5.0% NaCl concentrations; germination increased from 5.0% in the control to 42.0% in the growth regulator treatment. Kinetin did not stimulate germination of S. europaea seeds.

  2. Biological Significance of Seed Oil and Polyphenolic of Olea europaea

    Directory of Open Access Journals (Sweden)

    Mohammad Asif

    2013-04-01

    Full Text Available The olive tree Olea europaea have beneficial properties. Mainly used parts of the olive tree are fruits and seeds. Seeds oil of olive is used as a major component of the “diet.” Chief active components of olive oil include oleic acid, a monounsaturated fatty acid, polyphenolics and squalene. These main phenolic components are hydroxytyrosol, tyrosol, and oleuropein, which occur in highest amounts in virgin olive oil and have antioxidant properties. Olive oil has shown activity in against cancer, mainly in colon and breast cancer prevention, while individual component of olive oil, oleic acid and squalene has also been identified as anticancer agent. The olive oil has effects on coronary heart disease, due to its ability to reduce blood pressure and low-density lipoprotein level. Some components (such as hydroxytyrosol, tyrosol, and oleuropein of olive oil exhibited antimicrobial activity against pathogenic microorganism in intestinal and respiratory infections. The oleic acid, polyphenolics, squqlenes are dependable for a number of biological activities as well as whole olive plant also gives health benefits.

  3. Olive plants (Olea europaea L.) as a bioindicator for pollution.

    Science.gov (United States)

    Eliwa, Amal Mohamed; Kamel, Ehab Abdel-Razik

    2013-06-15

    In the present work, olive plant (Olea europaea L.) was used as a biological indicator for pollution in which, molecular and physiological parameters were studied. Olive plants were collected from polluted and non-polluted areas in Jeddah - Saudi Arabia, traffic area as an air polluted area, sewage treatment station as water polluted area, industrial area as solid waste polluted, costal area as marine polluted area and an area without a direct source of pollution far away from the city center, which was used as control. These changes conducted with nucleic acid content, minerals content, pigments and some growth parameters. Results showed significant reductions in DNA and RNA contents under all polluted sites. Mineral contents were varied widely depending on the different pollutants and locations of olive plant. Generally, micro-elements varied (increase/decrease) significantly within collected samples and the source of pollution. All growth parameters were decreased significantly within the studied samples of all pollutant areas except the relative water content was increased. The content of chlorophyll a has decreased highly significantly in all polluted leaves. While the content of chlorophyll b has increased significantly in all polluted leaves especially in air polluted leaves. The total content of carotenoid pigments has decreased highly significantly in all polluted leaves. It was concluded that olive plant can be used as a biological indicator to the environmental pollutants. PMID:24494523

  4. Bacterial and archaea community present in the Pine Barrens Forest of Long Island, NY: unusually high percentage of ammonia oxidizing bacteria.

    Directory of Open Access Journals (Sweden)

    Vishal Shah

    Full Text Available Of the few preserved areas in the northeast of United States, the soil in the Pine Barrens Forests presents a harsh environment for the microorganisms to grow and survive. In the current study we report the use of clustering methods to scientifically select the sampling locations that would represent the entire forest and also report the microbial diversity present in various horizons of the soil. Sixty six sampling locations were selected across the forest and soils were collected from three horizons (sampling depths. The three horizons were 0-10 cm (Horizon O; 11-25 cm (Horizon A and 26-40 cm (Horizon B. Based on the total microbial substrate utilization pattern and K-means clustering analysis, the soil in the Pine Barrens Forest can be classified into four distinct clusters at each of the three horizons. One soil sample from each of the four clusters were selected and archaeal and bacterial populations within the soil studied using pyrosequencing method. The results show the microbial communities present in each of these clusters are different. Within the microbial communities present, microorganisms involved in nitrogen cycle occupy a major fraction of microbial community in the soil. High level of diversity was observed for nitrogen fixing bacteria. In contrast, Nitrosovibrio and Nitrosocaldus spp are the single bacterial and archaeal population respectively carrying out ammonia oxidation in the soil.

  5. Impacts of organic and inorganic fertilizers on nitrification in a cold climate soil are linked to the bacterial ammonia oxidizer community.

    Science.gov (United States)

    Fan, Fenliang; Yang, Qianbao; Li, Zhaojun; Wei, Dan; Cui, Xi'an; Liang, Yongchao

    2011-11-01

    The microbiology underpinning soil nitrogen cycling in northeast China remains poorly understood. These agricultural systems are typified by widely contrasting temperature, ranging from -40 to 38°C. In a long-term site in this region, the impacts of mineral and organic fertilizer amendments on potential nitrification rate (PNR) were determined. PNR was found to be suppressed by long-term mineral fertilizer treatment but enhanced by manure treatment. The abundance and structure of ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities were assessed using quantitative polymerase chain reaction and denaturing gradient gel electrophoresis techniques. The abundance of AOA was reduced by all fertilizer treatments, while the opposite response was measured for AOB, leading to a six- to 60-fold reduction in AOA/AOB ratio. The community structure of AOA exhibited little variation across fertilization treatments, whereas the structure of the AOB community was highly responsive. PNR was correlated with community structure of AOB rather than that of AOA. Variation in the community structure of AOB was linked to soil pH, total carbon, and nitrogen contents induced by different long-term fertilization regimes. The results suggest that manure amendment establishes conditions which select for an AOB community type which recovers mineral fertilizer-suppressed soil nitrification. PMID:21713434

  6. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei.

    Science.gov (United States)

    Feng, Guofang; Sun, Wei; Zhang, Fengli; Karthik, Loganathan; Li, Zhiyong

    2016-01-01

    Nitrification directly contributes to the ammonia removal in sponges, and it plays an indispensable role in sponge-mediated nitrogen cycle. Previous studies have demonstrated genomic evidences of nitrifying lineages in the sponge Theonella swinhoei. However, little is known about the transcriptional activity of nitrifying community in this sponge. In this study, combined DNA- and transcript-based analyses were performed to reveal the composition and transcriptional activity of the nitrifiers in T. swinhoei from the South China Sea. Transcriptional activity of ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in this sponge were confirmed by targeting their nitrifying genes,16S rRNA genes and their transcripts. Phylogenetic analysis coupled with RDP rRNA classification indicated that archaeal 16S rRNA genes, amoA (the subunit of ammonia monooxygenase) genes and their transcripts were closely related to Nitrosopumilus-like AOA; whereas nitrifying bacterial 16S rRNA genes, nxrB (the subunit of nitrite oxidoreductase) genes and their transcripts were closely related to Nitrospira NOB. Quantitative assessment demonstrated relative higher abundances of nitrifying genes and transcripts of Nitrosopumilus-like AOA than those of Nitrospira NOB in this sponge. This study illustrated the transcriptional potentials of Nitrosopumilus-like archaea and Nitrospira bacteria that would predominantly contribute to the nitrification functionality in the South China Sea T. swinhoei. PMID:27113140

  7. Dominance of ammonia-oxidizing archaea community induced by land use change from Masson pine to eucalypt plantation in subtropical China.

    Science.gov (United States)

    Zhang, Fang-Qiu; Pan, Wen; Gu, Ji-Dong; Xu, Bin; Zhang, Wei-Hua; Zhu, Bao-Zhu; Wang, Yu-Xia; Wang, Yong-Feng

    2016-08-01

    A considerable proportion of Masson pine forests have been converted into eucalypt plantations in the last 30 years in Guangdong Province, subtropical China, for economic reasons, which may affect the ammonia-oxidizing archaea (AOA) community and the process of ammonia transformation. In order to determine the effects of forest conversion on AOA community, AOA communities in a Masson pine (Pinus massoniana) plantation and a eucalypt (Eucalyptus urophylla) plantation, which was converted from the Masson pine, were compared. Results showed that the land use change from the Masson pine to the eucalypt plantation decreased soil nutrient levels. A significant decrease of the potential nitrification rates (PNR) was also observed after the forest conversion (p amoA gene diversity was negatively correlated with organic C and total N, respectively (p amoA gene abundance was negatively correlated with NH4 (+) and available P, respectively (p < 0.05, n = 12). However, AOA abundance was positively correlated with PNR, but not significantly (p < 0.05, n = 6), indicating AOA community change was only a partial reason for the decrease of PNR. PMID:27094186

  8. Isotope signatures of N2O emitted from vegetable soil: Ammonia oxidation drives N2O production in NH4(+)-fertilized soil of North China.

    Science.gov (United States)

    Zhang, Wei; Li, Yuzhong; Xu, Chunying; Li, Qiaozhen; Lin, Wei

    2016-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas. In North China, vegetable fields are amended with high levels of N fertilizer and irrigation water, which causes massive N2O flux. The aim of this study was to determine the contribution of microbial processes to N2O production and characterize isotopic signature effects on N2O source partitioning. We conducted a microcosm study that combined naturally abundant isotopologues and gas inhibitor techniques to analyze N2O flux and its isotopomer signatures [δ(15)N(bulk), δ(18)O, and SP (intramolecular (15)N site preference)] that emitted from vegetable soil after the addition of NH4(+) fertilizers. The results show that ammonia oxidation is the predominant process under high water content (70% water-filled pore space), and nitrifier denitrification contribution increases with increasing N content. δ(15)N(bulk) and δ(18)O of N2O may not provide information about microbial processes due to great shifts in precursor signatures and atom exchange, especially for soil treated with NH4(+) fertilizer. SP and associated two end-member mixing model are useful to distinguish N2O source and contribution. Further work is needed to explore isotopomer signature stability to improve N2O microbial process identification. PMID:27387280

  9. Isotope signatures of N2O emitted from vegetable soil: Ammonia oxidation drives N2O production in NH4+-fertilized soil of North China

    Science.gov (United States)

    Zhang, Wei; Li, Yuzhong; Xu, Chunying; Li, Qiaozhen; Lin, Wei

    2016-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas. In North China, vegetable fields are amended with high levels of N fertilizer and irrigation water, which causes massive N2O flux. The aim of this study was to determine the contribution of microbial processes to N2O production and characterize isotopic signature effects on N2O source partitioning. We conducted a microcosm study that combined naturally abundant isotopologues and gas inhibitor techniques to analyze N2O flux and its isotopomer signatures [δ15Nbulk, δ18O, and SP (intramolecular 15N site preference)] that emitted from vegetable soil after the addition of NH4+ fertilizers. The results show that ammonia oxidation is the predominant process under high water content (70% water-filled pore space), and nitrifier denitrification contribution increases with increasing N content. δ15Nbulk and δ18O of N2O may not provide information about microbial processes due to great shifts in precursor signatures and atom exchange, especially for soil treated with NH4+ fertilizer. SP and associated two end-member mixing model are useful to distinguish N2O source and contribution. Further work is needed to explore isotopomer signature stability to improve N2O microbial process identification. PMID:27387280

  10. Dictyophara europaea (Hemiptera: Fulgoromorpha: Dictyopharidae): description of immatures, biology and host plant associations.

    Science.gov (United States)

    Krstić, O; Cvrković, T; Mitrović, M; Toševski, I; Jović, J

    2016-06-01

    The European lantern fly Dictyophara europaea (Linnaeus, 1767), is a polyphagous dictyopharid planthopper of Auchenorrhyncha commonly found throughout the Palaearctic. Despite abundant data on its distribution range and reports on its role in the epidemiology of plant-pathogenic phytoplasmas (Flavescence dorée, FD-C), literature regarding the biology and host plants of this species is scarce. Therefore, the aims of our study were to investigate the seasonal occurrence, host plant associations, oviposition behaviour and immature stages of this widespread planthopper of economic importance. We performed a 3-year field study to observe the spatio-temporal distribution and feeding sources of D. europaea. The insects's reproductive strategy, nymphal molting and behaviour were observed under semi-field cage conditions. Measurement of the nymphal vertex length was used to determine the number of instars, and the combination of these data with body length, number of pronotal rows of sensory pits and body colour pattern enabled the discrimination of each instar. We provide data showing that D. europaea has five instars with one generation per year and that it overwinters in the egg stage. Furthermore, our study confirmed highly polyphagous feeding nature of D. europaea, for all instars and adults, as well as adult horizontal movement during the vegetation growing season to the temporarily preferred feeding plants where they aggregate during dry season. We found D. europaea adult aggregation in late summer on Clematis vitalba L. (Ranunculaceae), a reservoir plant of FD-C phytoplasma strain; however, this appears to be a consequence of forced migration due to drying of herbaceous vegetation rather than to a high preference of C. vitalba as a feeding plant. Detailed oviposition behaviour and a summary of the key discriminatory characteristics of the five instars are provided. Emphasis is placed on the economic importance of D. europaea because of its involvement in

  11. 氨氧化细菌和氨氧化古菌在百花湖沉积物中的垂直分布%Vertical Distribution of Ammonia Oxidizing Bacteria (AOB)and Ammonia Oxidizing Archaea (AOA)in the Sediments of Lake Baihua

    Institute of Scientific and Technical Information of China (English)

    梁龙; 梁小兵

    2014-01-01

    采用定量氨单加氧酶基因(amoA)的荧光定量 PCR(qPCR)方法,分析了氨氧化细菌(AOB)和氨氧化古菌(AOA)在百花湖沉积物中的垂直分布。以氨单加氧酶基因(amoA)数量来衡量氨氧化细菌(AOB)和氨氧化古菌(AOA),结果表明:百花湖沉积物中 AOA 的 amoA 基因数量在1.74×105~2.00×106拷贝/克沉积物(湿重)之间,且22~30 cm 的各层沉积物中, AOA 的数量是1~21 cm 各层沉积物的2倍左右;AOB 的 amoA 基因在百花湖沉积物中的数量随深度的增加变化不大,其拷贝数在6.10×106~3.88×107拷贝/g 沉积物(湿重)之间;AOB 与 AOA 的 amoA 基因的比例在浅层沉积物和深层沉积物中存在一定的差异。这些结果表明 AOB 和 AOA 都参与百花湖沉积物中的氨氧化作用,从两类微生物的数量来看,AOB 是参与百花湖沉积物中氨氧化作用的主要微生物,而 AOA 对氨氧化作用的贡献则随着沉积物深度的增加而提高。%The vertical distributions of ammonia-oxidizing bacteria (AOB)and ammonia-oxidizing archaea (AOA)in the sediments of Lake Baihua were analyzed using the qPCR method.Abundances of AOA and AOB were analyzed in terms of the amoA gene copy number.The results showed that the numbers of AOA amoA gene were between 1 .74×10 5 ~2.00×10 6 copies/gram sediment (wet),with significant differences between in shallow and deep sedi-ments.In contrast,the quantities of AOB amoA gene were 6.10 × 10 6 ~3.88 × 10 7 copies/gram sediment (wet) with no obvious variation in sediment layers of different depths.The ratios of AOB and AOA such changed within different sediment layers.These results indicated that both AOB and AOA participated in the ammonia oxidizing processes in sediments of the Lake Baihua.We concluded that AOB is the primary ammonia oxidizing microorgan-ism because of its high abundance,while AOA plays a more important role in deep than in shallow sediments of the Lake Baihua.

  12. Ammonia oxidizing bacteria and archaea in horizontal flow biofilm reactors treating ammonia-contaminated air at 10 °C.

    Science.gov (United States)

    Gerrity, Seán; Clifford, Eoghan; Kennelly, Colm; Collins, Gavin

    2016-05-01

    The objective of this study was to demonstrate the feasibility of novel, Horizontal Flow Biofilm Reactor (HFBR) technology for the treatment of ammonia (NH3)-contaminated airstreams. Three laboratory-scale HFBRs were used for remediation of an NH3-containing airstream at 10 °C during a 90-d trial to test the efficacy of low-temperature treatment. Average ammonia removal efficiencies of 99.7 % were achieved at maximum loading rates of 4.8 g NH3 m(3) h(-1). Biological nitrification of ammonia to nitrite (NO2 (-)) and nitrate (NO3 (-)) was mediated by nitrifying bacterial and archaeal biofilm populations. Ammonia-oxidising bacteria (AOB) were significantly more abundant than ammonia-oxidising archaea (AOA) vertically at each of seven sampling zones along the vertical HFBRs. Nitrosomonas and Nitrosospira, were the two most dominant bacterial genera detected in the HFBRs, while an uncultured archaeal clone dominated the AOA community. The bacterial community composition across the three HFBRs was highly conserved, although variations occurred between HFBR zones and were driven by physicochemical variables. The study demonstrates the feasibility of HFBRs for the treatment of ammonia-contaminated airstreams at low temperatures; identifies key nitrifying microorganisms driving the removal process; and provides insights for process optimisation and control. The findings are significant for industrial applications of gas oxidation technology in temperate climates. PMID:26879980

  13. Isolation and identification of radical scavengers in olive tree (Olea europaea) wood

    NARCIS (Netherlands)

    Pérez-Bonilla, M.; Salido, S.; Beek, van T.A.; Linares-Palomino, P.J.; Altarejos, J.; Nogueras, M.; Sánchez, A.

    2006-01-01

    Several extracts of Olea europaea wood (Picual olive cultivar) were obtained with solvents of different polarity and their antioxidant activities determined. The active compounds were detected in fractions of an ethyl acetate extract using HPLC with on-line radical scavenging detection. After applyi

  14. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    Directory of Open Access Journals (Sweden)

    Yoshiki eNakahara

    2015-10-01

    Full Text Available Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1 a novel protein highly homologous to thaumatin-like proteins, (2 a novel coiled-coil protein of unknown function, and (3 a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  15. Abiotic factors influencing the occurrence of Salicornia europaea in West Estonia

    OpenAIRE

    Hulisz, Piotr; Elvisto, Tina; Karasiewicz, Mirosław T.; Piernik, Agnieszka

    2011-01-01

    The occurrence of Salicornia europaea in Western Estonia (Kassari and Topu bays) is the result of complex processes occurring in the Baltic coastal zone and conditioned by such abiotic factors as topography, lithology, hydrogeology and climate. This is reflected by very high salinity level of groundwater and soils.

  16. The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge.

    Science.gov (United States)

    Peng, Lai; Ni, Bing-Jie; Ye, Liu; Yuan, Zhiguo

    2015-04-15

    Both nitrite [Formula: see text] and dissolved oxygen (DO) play important roles in nitrous oxide (N2O) production by ammonia oxidizing bacteria (AOB). However, few studies focused on the combined effect of them on N2O production by AOB as well as the corresponding mechanisms. In this study, N2O production by an enriched nitrifying sludge, consisting of both AOB and nitrite-oxidizing bacteria (NOB), was investigated under various [Formula: see text] and DO concentrations. At each investigated DO level, both the biomass specific N2O production rate and the N2O emission factor (the ratio between N2O nitrogen emitted and the ammonium nitrogen converted) increased as [Formula: see text] concentration increased from 3 mg N/L to 50 mg N/L. However, at each investigated [Formula: see text] level, the maximum biomass specific N2O production rate occurred at DO of 0.85 mg O2/L, while the N2O emission factor decreased as DO increased from 0.35 to 3.5 mg O2/L. The analysis of the process data using a mathematical N2O model incorporating both the AOB denitrification and hydroxylamine (NH2OH) oxidation pathways indicated that the contribution of AOB denitrification pathway increased as [Formula: see text] concentration increased, but decreased as DO concentration increased, accompanied by a corresponding change in the contribution of NH2OH oxidation pathway to N2O production. The AOB denitrification pathway was predominant in most cases, with the NH2OH oxidation pathway making a comparable contribution only at high DO level (e.g. 3.5 mg O2/L). PMID:25644626

  17. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance. PMID:26463999

  18. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea.

    Directory of Open Access Journals (Sweden)

    Kateryna V Zhalnina

    Full Text Available The activity of ammonia-oxidizing archaea (AOA leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.

  19. Evaluation of antibacterial and antifungal activities of olive (Olea europaea essential oil

    Directory of Open Access Journals (Sweden)

    R K Upadhyay

    2014-01-01

    Full Text Available Context: Essential oil Olea europaea was investigated for its antibacterial and antifungal activities. Aim: To evaluate antimicrobial activity of O. europaea essential oil against infectious microbial pathogens. Settings and Design: Seeds of O. europaea were grounded by using domestic mixer and powdered material was hydro-distilled in Clevenger apparatus continuously for 5 hrs to yield essential oil. Essential oil was analysed on Gas-Chromatography-Mass spectrometry (GC-MS from which 24 components were identified, representing total 99.98% of the oil. Extracted oil was evaluated for their antibacterial and antifungal activities. Materials and Methods: Paper disc diffusion and serial micro-dilution assays were performed for the determination of inhibition zone diameters and minimal inhibitory concentration, respectively. Results: The O. europaea essential oil showed the diameter of inhibition zone (DIZ ranging from 19.4 ± 0.07-26.4 ± 0.09 mm at a concentration level of 28 μg/disc (W/V separately in all the ten strains tested. The minimum inhibitory concentration of essential oil against bacterial strains was obtained in a range of 7.0-56.0 μg/ml while in and fungal strains it was in a range of 7.0-28 μg/ml. Statistical analysis: All statistical calculations are expressed as mean ± SE of three replicates. Data were analyzed by one-way Analysis of Variance (ANOVA to locate significant variations in oil activity in various bacterial and fungal strains followed by the Duncan′s multiple range tests. Conclusions: Antibacterial and antifungal activities of O. europaea essential oil are due to the presence of certain secondary plant metabolites such as terpenoids, steroids and flavonoids, esters, and acids, which were identified in the essential oil. The oil components can be further investigated for their biological activities and study to overcome the problem of drug resistance in microbes.

  20. Influence of sulfide on the distribution of higher plants in salt marshes. [Salicornia europaea; Puccinellia maritima; Atriplex patula; Festuca rubra

    Energy Technology Data Exchange (ETDEWEB)

    Ingold, A.; Havill, D.C.

    1984-11-01

    Soluble sulfide in surface (0-5 cm) salt marsh sediments was detectable only on the lower marsh, salt pans and creek beds. On the lower-marsh only Salicornia europaea amongst the vascular plant species present was rooted in sulfide-containing sediments. No significant correlation was observed between soluble sulfide concentration and redox potential in soil samples from the lower-marsh. When eight salt marshes from around the coast of Britain were compared, six had a detectable sulfide concentration in the lower-marsh sediments. Divisive information analysis of the vegetation data from these sites indicated that in all cases the most significant association was between Salicornia europaea and otherwise bare ground. In two marshes where no soluble sulfide could be measured, S. europaea was associated with other plant species rather than bare ground. Monthly observations of plant cover and sulfide concentration in sixteen permanent quadrats on the lower marsh revealed a significant positive correlation between the cover of Salicornia europaea and soil sulfide. In contrast, Puccinellia maritima showed a significant negative correlation with sulfide concentration. In liquid media, the growth of Atriplex patula, Festuca rubra and Puccinellia maritima, was significantly inhibited by sulfide whereas there was no marked effect on that of Salicornia europaea. The results suggest that S. europaea is relatively tolerant of sulfide and is able to establish on areas of the lower marsh from which other species are excluded by the presence of sulfide.

  1. Molecular evidence for ammonia oxidation bacteria in the sediments of shallow lake: A case study in Yangcheng Lake%浅水湖泊(阳澄湖)沉积物氨氧化菌的分子证据

    Institute of Scientific and Technical Information of China (English)

    张亚平; 阮晓红

    2012-01-01

    选择长江三角洲中型浅水湖泊--阳澄湖,应用分子生物学方法鉴定淡水系统底质中的厌氧氨氧化细菌和好氧氨氧化细菌.试验设计三组厌氧氨氧化特异性巢式引物,对沉积物细菌的16S rRNA进行特异性扩增.其中,引物对AMX368f-AMX820r从底质中扩增出了anammox特异性序列,系统发育分析表明样品序列分别与Candidatus brocadia fulgida、Candidatus brocadia anammoxidans和Candidatus scalindua属近似.应用amoA基因特异性探针在底质中扩增出的好氧氨氧化菌序列,均属于Betaproteobacteria.本研究提供了阳澄湖中好氧氨氧化菌与厌氧氨氧化菌共存的分子证据.%Sediment samples were collected from Yangcheng Lake, a middle size shallow lake in Yangtze River Delta. Molecular biology methods were adopted to detect the anaerobic ammonia oxidation (anammox) and aerobic ammonia oxidation bacteria in the samples. Three pairs of nest PCR primers were designed to amplify the 16S rRNA from the sediment samples. The specified sequences of anammox were amplified by the primer pairs AMX368f- AMX820r, and analyses of phylogenetics showed that these sequences were similar to Candidatus brocadia fulgida, Candidatus brocadia anammoxidans and Candidatus scalindua. The sequences amplified by the amoA gene specified primer from the sediment samples belonged to the Betaproteobacteria class. This study provided the molecular evidence for coexistence of anammox and aerobic-ammonia-oxidation in Yangcheng Lake.

  2. Global Transcriptome Profiling of Salicornia europaea L. Shoots under NaCl Treatment

    OpenAIRE

    Ma, Jinbiao; Zhang, Meiru; Xiao, Xinlong; You, Jinjin; Wang, Junru; Wang, Tao; Yao, Yinan; Tian, Changyan

    2013-01-01

    Background Soil salinity is a major abiotic stress that limits agriculture productivity worldwide. Salicornia europaea is well adapted to extreme saline environments with more than 1,000 mM NaCl in the soil, so it could serve as an important model species for studying halophilic mechanisms in euhalophytes. To obtain insights into the molecular basis of salt tolerance, we present here the first extensive transcriptome analysis of this species using the Illumina HiSeq™ 2000. Principal Findings ...

  3. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    OpenAIRE

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; SUZUKI, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt toler...

  4. Biochemical and molecular mechanisms of salt stress tolerance in and Olea europaea

    OpenAIRE

    Silva, Paulo Filipe Pereira de Jesus

    2013-01-01

    Tese de doutoramento em Ciências (área de especialização em Biologia) The current work focused in the research subject of membrane transport and plant - environment interactions and two plant models were the target of the studies: Olea europaea and Populus euphratica. Olive tree is an emblematic species and one of the most important fruit crops in the Mediterranean basin. The halophytic and salt and drought stress tolearant plant P. euphratica, which occurs naturally in semi...

  5. Illumina-based analysis of bacterial diversity related to halophytes Salicornia europaea and Sueada aralocaspica.

    Science.gov (United States)

    Shi, Ying-wu; Lou, Kai; Li, Chun; Wang, Lei; Zhao, Zhen-yong; Zhao, Shuai; Tian, Chang-yan

    2015-10-01

    We used Illumina-based 16S rRNA V3 amplicon pyrosequencing to investigate the community structure of soil bacteria from the rhizosphere surrounding Salicornia europaea, and endophytic bacteria living in Salicornia europaea plants and Sueada aralocaspica seeds growing at the Fukang Desert Ecosystem Observation and Experimental Station (FDEOES) in Xinjiang Province, China, using an Illumina genome analyzer. A total of 89.23 M effective sequences of the 16S rRNA gene V3 region were obtained from the two halophyte species. These sequences revealed a number of operational taxonomic units (OTUs) in the halophytes. There were between 22-2,206 OTUs in the halophyte plant sample, at the 3% cutoff level, and a sequencing depth of 30,000 sequences. We identified 25 different phyla, 39 classes and 141 genera from the resulting 134,435 sequences. The most dominant phylum in all the samples was Proteobacteria (41.61%-99.26%; average, 43.30%). The other large phyla were Firmicutes (0%- 7.19%; average, 1.15%), Bacteroidetes (0%-1.64%; average, 0.44%) and Actinobacteria (0%-0.46%; average, 0.24%). This result suggested that the diversity of bacteria is abundant in the rhizosphere soil, while the diversity of bacteria was poor within Salicornia europaea plant samples. To the extent of our knowledge, this study is the first to characterize and compare the endophytic bacteria found within different halophytic plant species roots using PCR-based Illumina pyrosequencing method. PMID:26428918

  6. ABILITY OF BACTERIAL CONSORTIUM: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp. and Pseudomonas putida IN BIOREMEDIATION OF WASTE WATER IN CISIRUNG WASTE WATER TREATMENT PLANT

    OpenAIRE

    Ratu SAFITRI; Bambang PRIADIE; Mia MIRANTI; Arum Widi ASTUTI

    2015-01-01

    This study was conducted in order to determine the ability of bacterial consortium: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp., and Pseudomonas putida in bioremediation of wastewater origin Cisirung WWTP. This study uses an experimental method completely randomized design (CRD), which consists of two treatment factors (8x8 factorial design). The first factor is a consortium of bacteria (K), consisting of 8 level factors (k1, k2, k3, k4, k5...

  7. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Zhu Wang

    Full Text Available Biological nitrification/denitrification is frequently used to remove nitrogen from tannery wastewater containing high concentrations of ammonia. However, information is limited about the bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants (WWTPs due to the low-throughput of the previously used methods. In this study, 454 pyrosequencing and Illumina high-throughput sequencing, combined with molecular methods, were used to comprehensively characterize structures and functions of nitrification and denitrification bacterial communities in aerobic and anaerobic sludge of two full-scale tannery WWTPs. Pyrosequencing of 16S rRNA genes showed that Proteobacteria and Synergistetes dominated in the aerobic and anaerobic sludge, respectively. Ammonia-oxidizing bacteria (AOB amoA gene cloning revealed that Nitrosomonas europaea dominated the ammonia-oxidizing community in the WWTPs. Metagenomic analysis showed that the denitrifiers mainly included the genera of Thauera, Paracoccus, Hyphomicrobium, Comamonas and Azoarcus, which may greatly contribute to the nitrogen removal in the two WWTPs. It is interesting that AOB and ammonia-oxidizing archaea had low abundance although both WWTPs demonstrated high ammonium removal efficiency. Good correlation between the qPCR and metagenomic analysis is observed for the quantification of functional genes amoA, nirK, nirS and nosZ, indicating that the metagenomic approach may be a promising method used to comprehensively investigate the abundance of functional genes of nitrifiers and denitrifiers in the environment.

  8. 基于氨单加氧酶基因的自养脱氮菌群结构分析%Phylogenetic Analysis based on the amoA Gene of Ammonia Oxidizers in an Autotrophic Nitrogen-Removal Reactor

    Institute of Scientific and Technical Information of China (English)

    郑雪松; 龚钢明

    2009-01-01

    全程自养脱氮是一种在高氨氮低溶氧条件下完全由自养菌群作用脱除氮素的现象.以全程自养脱氮污泥为研究对象,特异性扩增氨单加氧酶活性基因amoA片段,建立克隆文库并对克隆序列进行系统发育学分析,考察全程自养脱氮系统从建立到退化过程中氨氧化菌的结构变迁.结果表明:Nitrosomonas oligotropha和Nitrosomonas europaea细菌是系统中的主要氨氧化菌,而随着系统的退化前者逐渐被后者完全取代,而氨氧化菌的种群变迁可能并不是全混流系统全程自养脱氮效率下降的原因.

  9. Cloning and characterization of a Ca(2+)/H(+) exchanger from the halophyte Salicornia europaea L.

    Science.gov (United States)

    Zhang, Liquan; Hao, Jinfeng; Bao, Mulan; Hasi, Agula; Niu, Yiding

    2015-11-01

    The calcium ion (Ca(2+)), which functions as a second messenger, plays an important role in plants' responses to various abiotic stresses, and Ca(2+)/H(+) exchangers (CAXs) are an important part of this process. In this study, we isolated and characterized a putative Ca(2+)/H(+) exchanger gene (SeCAX3) from Salicornia europaea L., a succulent, leafless euhalophyte. The SeCAX3 open reading frame was 1368 bp long and encoded a 455-amino-acid polypeptide that showed 67.9% similarity to AtCAX3. SeCAX3 was expressed in the shoots and roots of S. europaea. Expression of SeCAX3 was up-regulated by Ca(2+), Na(+), sorbitol, Li(+), abscisic acid, and cold treatments in shoots, but down-regulated by Ca(2+), sorbitol, abscisic acid, and cold treatments in roots. When SeCAX3 was transformed into a Ca-sensitive yeast strain, the transformed cells were able to grow in the presence of 200 mM Ca(2+). Furthermore, SeCAX3 conferred drought, salt, and cold tolerance in yeast. Compared with the control strains, the yeast transformants expressing SeCAX3 were able to grow well in the presence of 30 mM Li(+), 150 mM Mg(2+), or 6 mM Ba(2+). These results showed that the expression of SeCAX3 in yeast suppressed its Ca(2+) hypersensitivity and conferred tolerance to Mg(2+) and Ba(2+). Together, these findings suggest that SeCAX3 might be a Ca(2+) transporter that plays a role in regulating cation tolerance and the responses of S. europaea to various abiotic stresses. PMID:26332662

  10. Global transcriptome profiling of Salicornia europaea L. shoots under NaCl treatment.

    Directory of Open Access Journals (Sweden)

    Jinbiao Ma

    Full Text Available BACKGROUND: Soil salinity is a major abiotic stress that limits agriculture productivity worldwide. Salicornia europaea is well adapted to extreme saline environments with more than 1,000 mM NaCl in the soil, so it could serve as an important model species for studying halophilic mechanisms in euhalophytes. To obtain insights into the molecular basis of salt tolerance, we present here the first extensive transcriptome analysis of this species using the Illumina HiSeq™ 2000. PRINCIPAL FINDINGS: A total of 41 and 39 million clean reads from the salt-treated (Se200S and salt-free (SeCKS tissues of S. europaea shoots were obtained, and de novo assembly produced 97,865 and 101,751 unigenes, respectively. Upon further assembly with EST data from both Se200S and SeCKS, 109,712 high-quality non-redundant unigenes were generated with a mean unigene size of 639 bp. Additionally, a total of 3,979 differentially expressed genes (DEGs were detected between the Se200S and SeCKS libraries, with 348 unigenes solely expressed in Se200S and 460 unigenes solely expressed in SeCKS. Furthermore, we identified a large number of genes that are involved in ion homeostasis and osmotic adjustment, including cation transporters and proteins for the synthesis of low-molecular compounds. All unigenes were functionally annotated within the COG, GO and KEGG pathways, and 10 genes were validated by qRT-PCR. CONCLUSION: Our data contains the extensive sequencing and gene-annotation analysis of S. europaea. This genetic knowledge will be very useful for future studies on the molecular adaptation to abiotic stress in euhalophytes and will facilitate the genetic manipulation of other economically important crops.

  11. Effect of Transgenic Soybean on Amount and Diversity of Ammonia-oxidizing Bacteria in Rhizospheric Soil%转基因大豆对土壤氨氧化细菌的影响

    Institute of Scientific and Technical Information of China (English)

    赖欣; 张永生; 赵帅; 杨殿林

    2011-01-01

    The genetically modified (GM)crops are more and more concerned by public;meanwhile more and more GM crops are planted in fields globally. Besides the food safety, the ecological risks are also gained focus. In order to deeply understand the effect of transgenic soybean on diversity of rhizoperic ammonia-oxidizing bacteria in soil,DGGE-cloning and quantitative PCR were used. Both the DGGE-cloning and qPCR results showed that seasonal changes were observed throughout the soybean growth stages, indicating the impact of crop growth stage overweigh that of exogenous gene insertion and transgenic soybean has not diversely affect on rhizosphere ammonia-oxidizing bacteria abundance and community composition in soil.%采用DGGE-cloning测序技术与定量PCR技术相结合的方法,研究了转基因大豆对土壤中氨氧化细菌群落多样性的影响.定量PCR试验结果表明,相同的生长时期转基因大豆对氨氧化细菌数量没有显著的影响,而与此同时,土壤中的氨氧化细菌的数量呈现出随生长期先增加后减少的趋势;DGGE图谱分析表明,同一生长时期不同大豆土壤中的氨氧化细菌主要条带一致,这表明生长时期的影响明显大于转基因大豆对土壤氨氧化细菌的影响.

  12. Extraction and Characterization of Lipids from Salicornia virginica and Salicornia europaea

    Science.gov (United States)

    Kulis,Michael J.; Hepp, Aloysius F.; Pham, Phong X.; Ribita, Daniela; Bomani, Bilal M. M.; Duraj, Stan A.

    2010-01-01

    The lipid content from Salicornia virginica and Salicornia europaea is investigated. The plants are leafless halophytes with seeds contained in terminal nodes. The lipids, in the form of cell membranes and oil bodies that come directly from the node cells, are observed using fluorescence microscopy. Two extraction methods as well as the results of extracting from the seeds and from the entire nodes are described. Characterization of the fatty acid components of the lipids using Gas Chromatography in tandem with Mass Spectroscopy is also described. Comparisons are made between the two methods and between the two plant materials as lipid sources.

  13. 不同施肥方式对红壤蔬菜田氨氧化细菌和氨氧化古菌群落的影响%Effect of Different Fertilization on Ammonia-oxidizing bacteria and Ammonia-oxidizing archaea in Red Soil Vegetable Field

    Institute of Scientific and Technical Information of China (English)

    周志成; 罗葵; 唐前君; 荣湘民; 刘强; 何飞飞

    2015-01-01

    通过构建氨单加氧酶基因(amoA)克隆文库,研究在红壤蔬菜田上只施用磷钾化肥(PK)、只施氮磷钾化肥(NPK)、施用腐熟有机肥(DNPK)和施用新鲜有机肥(FNPK)等4种不同施肥处理的土壤氨氧化细菌(AOB)和氨氧化古菌(AOA)群落多样性及与土壤脲酶活性的相关性。结果表明:施加有机肥处理(DNPK和FNPK)的蔬菜田土壤的AOB文库和AOA文库OTU数量和Shannon指数高于只施用无机肥(NPK和PK)处理的蔬菜田土壤;DNPK和FNPK处理的土壤优势AOB菌群为多形亚硝化叶菌(Nitrosolobus multiformis),比例分别为88.5%和68.5%,NPK和PK处理的土壤优势AOB菌群为亚硝化单胞菌属(Nitrosospira sp.),比例分别为54.8%和65.5%;DNPK、FNPK、NPK和PK处理土壤优势AOA菌群均为阿伯丁土壤亚硝化细杆菌侯选种(CandidatusNitrosotalea devanaterra),比例分别为90.9%、84.4%、77.8%和45.2%;施加有机肥处理(DNPK和FNPK)的土壤脲酶活性和氨氧化微生物的多样性指数都高于只施用无机肥处理(NPK和PK);AOA群落多样性指数与土壤脲酶活性呈显著正相关,而AOB群落多样性与土壤脲酶活性相关性不显著。总体来看,有机肥比无机肥处理提高了AOA和AOB群落多样性,且AOA在红壤蔬菜田土壤氨氧化过程中起着更为重要的作用。%AdoptingamoA gene clone library construction method,this paper studied the diversity of ammonia-oxidizing bacteria(AOB) and ammonia-oxidizing archaea (AOA)and correlations between diversity index and urease activity in red soil vegetable field by different fertilization including decomposed organic fertilizer (DNPK),fresh organic fertilizer(FNPK),Nitrogen,Phosphorus and Potassium chemical fertilizer(NPK), Phosphorus and Potassium chemical fertilizer(PK).The results showed that OTU quantity,Shannon index of AOB library and AOA library represented organic fertilizer (DNPK and FNPK

  14. Metabolomic Functional Analysis of Bacterial Genomes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Arp, Daniel J; Sayavedra-Soto, Luis A

    2008-01-01

    The availability of the complete DNA sequence of the bacterial genome of Nitrosomonas europaea offered the opportunity for unprecedented and detailed investigations of function. We studied the function of genes involved in carbohydrate and Fe metabolism. N. europaea has genes for the synthesis and degradation of glycogen and sucrose but cannot grow on substrates other than ammonia and CO2. Granules of glycogen were detected in whole cells by electron microscopy and quantified in cell-free extracts by enzymatic methods. The cellular glycogen and sucrose content varied depending on the composition of the growth medium and cellular growth stage. N. europaea also depends heavily on iron for metabolism of ammonia, is particularly interesting since it lacks genes for siderophore production, and has genes with only low similarity to known iron reductases, yet grows relatively well in medium containing low Fe. By comparing the transcriptomes of cells grown in iron-replete medium versus iron-limited medium, 247 genes were identified as differentially expressed. Mutant strains deficient in genes for sucrose, glycogen and iron metabolism were created and are being used to further our understanding of ammonia oxidizing bacteria.

  15. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro

    Directory of Open Access Journals (Sweden)

    Nadia Dekdouk

    2015-01-01

    Full Text Available Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects.

  16. ABILITY OF BACTERIAL CONSORTIUM: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp. and Pseudomonas putida IN BIOREMEDIATION OF WASTE WATER IN CISIRUNG WASTE WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Ratu SAFITRI

    2015-10-01

    Full Text Available This study was conducted in order to determine the ability of bacterial consortium: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp., and Pseudomonas putida in bioremediation of wastewater origin Cisirung WWTP. This study uses an experimental method completely randomized design (CRD, which consists of two treatment factors (8x8 factorial design. The first factor is a consortium of bacteria (K, consisting of 8 level factors (k1, k2, k3, k4, k5, k6, k7, and k8. The second factor is the time (T, consisting of a 7 level factors (t0, t1, t2, t3, t4, t5, t6, and t7. Test parameters consist of BOD (Biochemical Oxygen Demand, COD (Chemical Oxygen Demand, TSS (Total Suspended Solid, Ammonia and Population of Microbes during bioremediation. Data were analyzed by ANOVA, followed by Duncan test. The results of this study showed that the consortium of Bacillus pumilus, Bacillus subtilis, Bacillus coagulans, Nitrosomonas sp., and Pseudomonas putida with inoculum concentration of 5% (k6 is a consortium of the most effective in reducing BOD 71.93%, 64.30% COD, TSS 94.85%, and 88.58% of ammonia.

  17. NCBI nr-aa BLAST: CBRC-CREM-01-1308 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1308 ref|NP_840687.1| possible transmembrane protein [Nitrosomonas eur...opaea ATCC 19718] emb|CAD84514.1| possible transmembrane protein [Nitrosomonas europaea ATCC 19718] NP_840687.1 7e-43 38% ...

  18. 子牙河水系水和沉积物好氧氨氧化微生物分布特征%The distribution of aerobic ammonia oxidizing microorganisms in Ziya River,Haihe Basin

    Institute of Scientific and Technical Information of China (English)

    王超; 单保庆

    2012-01-01

    Surface sediment and water column samples of Ziya River in Haihe Basin was collected to analyze the effect of environmental parameters such as ammonium,dissolved oxygen,and pH to the distribution of aerobic ammonia oxidizing microorganisms.The results showed that the average abundance of ammonia oxidizing bacteria (AOB) (ranging from 1.04 × 10 5 to 2.46 × 10 9 gene copies·g-1) in sediment was 8.51 times that of ammonia oxidizing archaea (AOA) (ranging from 1.05 × 10 5 to 1.18 × 10 9 gene copies·g-1).While in river water column,the average abundance of AOB (ranging from 1.75 × 10 2 to 1.56 × 10 10 gene copies·mL-1) was nearly a twentieth part of AOA (ranging from 5.21 ×10 2 to 2.44 × 10 9 gene copies·mL-1).Partial correlation analysis indicated that ammonia concentration was positively correlated with the AOB-to-AOA ratio (r=0.477,p 0.05) and pH was positively correlated with AOB abundance (r=0.466,p 0.05) in river water column.Moreover,dissolved oxygen showed positive relationship with both the AOB-to-AOA ratio and AOB abundance,with the correlation coefficients of 0.722 and 0.745,respectively (p 0.01).%采集海河流域子牙河水系河流沉积物和河流水样,分析了其好氧氨氧化微生物的分布特征,并探讨了氨氮、溶解氧和pH对其分布的影响.结果表明,沉积物中氨氧化古菌(AOA)和氨氧化细菌(AOB)丰度范围分别为1.05×105~1.18×109genecopies·g-1和1.04×105~2.46×109genecopies·g-1,水体AOA和AOB丰度范围分别为5.21×102~2.44×109genecopies·mL-1和1.75×102~1.56×1010genecopies·mL-1;沉积物中AOB占优势,平均丰度为AOA的8.51倍,水中AOA占优势,平均丰度为AOB的18.99倍.偏相关分析表明,氨氮浓度同水中AOB与AOA丰度比值显著正相关(r=0.477,p〈0.05),pH同水体AOB丰度显著正相关(r=0.466,p〈0.05),而溶解氧同水体AOB丰度及AOB、AOA丰度比值都显著正相关(r分别为0.722和0.745,p〈0.01).

  19. Succession of Abundance and Community Structure of Ammonia-Oxidizing Archaea in Paddy Soil During Flooding%淹水水稻土中氨氧化古菌丰度和群落结构演替特征

    Institute of Scientific and Technical Information of China (English)

    宋亚珩; 王媛媛; 李占明; 王保莉; 曲东

    2014-01-01

    Ammonia-oxidizing archaea(AOA)play an important role in ammonium oxidation in soil ecosystem, and predominate among am-monia-oxidizing prokaryotes in paddy soils. In this study, dynamic changes of abundance and community structures of ammonia-oxidizing archaea were investigated in paddy soils that were flooded for 1 h, 1 d, 5 d, 10 d, 20 d, 30 d, 40 d and 60 d, using sequential analysis and real-time PCR. The abundance of bacteria was 29 times that of crenarchaeota, while AOA was 4 times ammonia-oxidizing bacteria(AOB). Based-on arch-amoA gene, OTU analysis showed that the AOA community structures shifted at different flooding times:T12, a type of AOA and r-strategist organism, was present only at the early flooding time. T4, T5 and T9, k-strategist organisms, existed at the late flooding time. T1, T8 and T16, r-k-strategist symbiotic organisms, appeared during whole flooding period. AOA predominated at the late flooding time. The diversity index of dominant groups was larger at the early flooding than at the middle and late flooding times. Sequencing results showed that all 16 dominant OTU types belonged to crenarchaeota, and had a close relationship with AOA from paddy soil, dry highland soil, red soil and sediments in different regions.%采用淹水非种植水稻土微环境模式系统,对水稻土进行1 h和1、5、10、20、30、40、60 d淹水培养,利用序列分析和Real-time PCR技术分析淹水培养过程中氨氧化古菌(AOA)的丰度和群落结构变化规律。结果表明,淹水水稻土中细菌(Bac)的丰度是泉古菌(Cre)的29倍以上,而氨氧化古菌(AOA)是氨氧化细菌(AOB)的4倍之多,淹水过程改变了细菌、泉古菌、氨氧化细菌和氨氧化古菌的丰度。基于Arch-amoA基因的OTU分析显示淹水过程中AOA的群落结构发生了演替性变化:T12是r策略生存的AOA,仅存在于淹水初期;T4、T5和T9是k策略生存的AOA,存在于淹水后期;T1、T8和T16

  20. 多年蔬菜连作对土壤氨氧化微生物群落组成的影响%Effects of Continuous Cropping of Vegetables on Ammonia Oxidizers Community Structure

    Institute of Scientific and Technical Information of China (English)

    孟德龙; 杨扬; 伍延正; 吴敏娜; 秦红灵; 朱亦君; 魏文学

    2012-01-01

    Investigations were conducted on the effects of intensive application of chemical fertilizers in crop production on soil nitrifier communities and the relationship between nitrifier communities and soil nitrification ability.Two series of vegetable soils were selected from Huangxing,Changsha,reflecting continuous vegetable cropping with about 20 years and new vegetable field with only about 2 years vegetable growing history.In each series five independent topsoils(0-20 cm) were sampled and each soil was a mixture of 10 cores randomly taken in the same field.Terminal restriction fragment length polymorphism(T-RFLP) and quantity PCR(Q-PCR) were used to determine the composition and abundance of ammonia-oxidizing bacteria(AOB) and ammonia-oxidizing archaea(AOA) communities.Results indicated that long-term and continuous vegetable cropping obviously changed the compositions of both AOB and AOA amoA gene,soil pH and Olsen-P content were the dominant factors affecting the composition of AOB amoA.In the vegetable soils,although the copy number of AOA amoA gene was about 5 times higher than AOB amoA gene,no significant correlation was detected between AOA amoA gene abundance and soil nitrification rate.It was not sure whether long-term and continuous vegetable cropping could shift the abundance of AOB and AOA,but it resulted in the enrichment of some dominant AOB species and increase of soil nitrification potential(PNF).%为揭示农业生产中长期大量施用化学肥料对土壤硝化过程微生物种群的影响及其与土壤硝化能力的偶联关系,本研究通过在长沙黄兴蔬菜基地采集长期连作蔬菜(20 a以上,VL)和短期蔬菜种植地(2 a左右,VS)表层土壤(0~20 cm),利用末端限制性片段多态性(T-RFLP)和实时定量PCR(Q-PCR)等手段系统研究了蔬菜连作对氨氧化细菌(ammonia-oxidizingbacteria,AOB)和氨氧化古菌(ammonia-oxidizing archaea,AOA)的组成和丰度的

  1. Early performance of Olea europaea cv. Arbequina, Picual and Frantoio in the southern Atacama Desert

    Directory of Open Access Journals (Sweden)

    Freddy Mora

    2008-01-01

    Full Text Available The cultivars Arbequina, Picual and Frantoio of Olea europaea are cultivated in severalMediterranean countries. In 1999, these cultivars were planted at three locations in the region of Coquimbo,an arid, Mediterranean-like area in Chile. A generalized linear modeling approach was used in view of thenon-normal distribution of the agronomic data sets. Fruit yield (harvests of 2002-2003, precocity (2002 andtree survival (after four growing seasons differed significantly between the cultivars. Arbequina and Picualhad a positive effect on the yield. Picual was the earliest cultivar at two sites. The survival rate of Frantoio washigh at the three sites (90-100%, as opposed to Picual (56-83%. The approach of Generalized Linear Modelswas particularly useful where the assumption of normality was not satisfied. The selection of cultivars ispromising in this arid region of Chile, while the success will depend on the selection of well-adapted genotypesto a particular location.

  2. H(+)-pyrophosphatase from Salicornia europaea enhances tolerance to low phosphate under salinity in Arabidopsis.

    Science.gov (United States)

    Lv, Sulian; Jiang, Ping; Wang, Duoliya; Li, Yinxin

    2016-01-01

    Increasing soil salinity threatens crop productivity worldwide. High soil salinity is usually accompanied by the low availability of many mineral nutrients. Here, we investigated the potential role that the H(+)- PPase could play in optimizing P use efficiency under salinity in plants. Transgenic Arabidopsis plants overexpressing either SeVP1 or SeVP2 from Salicornia europaea outperformed the wild-types under low phosphate (Pi) as well as low Pi plus salt conditions. Our results suggested that H(+)-PPase could increase external Pi acquisition through promoting root development and upregulating phosphate transporters, thus to protect plants from Pi limiting stress. This study provides a potential strategy for improving crop yields challenged by the co-occurrence of abiotic stresses. PMID:26669625

  3. Hot water dipping of olives (Olea europaea) for virgin oil debittering.

    Science.gov (United States)

    García, José M; Yousfi, Khaled; Oliva, Jesús; García-Diaz, M Teresa; Pérez-Camino, M Carmen

    2005-10-19

    Olives (Olea europaea L.) of the Manzanilla, Picual, and Verdial varieties harvested at the green mature stage of ripening were dipped in hot water at a range of temperatures between 60 and 72 degrees C for 3 min. Immediately after treatment, oils were physically extracted from the olives. Olive heating promotes a reduction of oil bitterness in direct relationship to the temperature used. Fruit heating at > or =60 degrees C for 3 min did not cause significant changes in acidity, UV absorption, peroxide index, and panel test score of the oils obtained but decreased its oxidative stability. Oils extracted from heated fruit showed higher concentrations of chlorophylls and carotenes and lower total phenol content. PMID:16218671

  4. Hydrophilic C terminus of Salicornia europaea vacuolar Na+/H+ antiporter is necessary for its function

    Indian Academy of Sciences (India)

    Guangxia Wu; Gang Wang; Jing Ji; Xiaowei Tian; Hailing Gao; Qing Zhao; Jing Li; Yurong Wang

    2014-08-01

    Plant vacuolar Na+/H+ antiporters play important roles in cellular ion homeostasis,vacuolar pH regulation and sequestration of Na+ ions into the vacuole. Previous research showed that hydrophilic C-terminal region of Arabidopsis AtNHX1 negatively regulates the Na+/H+ transporting activity. In this study, we truncated the hydrophilic C terminus of a vacuolar Na+/H+ antiporter gene from Salicornia europaea (SeNHX1) to generate its derivative, SeNHX1-C. Expression of SeNHX1 and SeNHX1-C in yeast mutant showed that SeNHX1 significantly improved the tolerance to NaCl; however, the expression of SeNHX1-C enormously decreased the tolerance to NaCl. Overall, these results suggest that the hydrophilic C-terminal region of SeNHX1 is required for Na+/H+ exchanging activity of SeNHX1.

  5. Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR

    OpenAIRE

    Xiao, Xinlong; Ma, Jinbiao; Wang, Junru; Wu, Xiaomeng; Li, Pengbo; Yao, Yinan

    2015-01-01

    Real-time quantitative polymerase chain reaction (RT-qPCR), a reliable technique for quantifying gene expression, requires stable reference genes to normalize its data. Salicornia europaea, a stem succulent halophyte with remarkable salt resistance and high capacity for ion accumulation, has not been investigated with regards to the selection of appropriate reference genes for RT-qPCR. In this study, the expression of 11 candidate reference genes, GAPDH (Glyceraldehyde 3-phosphate dehydrogena...

  6. Variation in common lime (Tilia x europaea L.) in Swedish gardens of the 17th and 18th centuries

    OpenAIRE

    Bengtsson, Rune

    2005-01-01

    Trees of common lime (Tilia x europaea L.) have been planted in Swedish gardens and urban landscapes since at least the beginning of the 17th century. This is in accordance with the situation in most other European countries. The trees were initially imported from the Netherlands but later domestic production was started. The domestic material was collectively known as ‘Dutch lime’ even when propagated in Sweden. To understand the variation in common lime in Swedish gardens, the methods of pr...

  7. Polyploidy in the olive complex (Olea europaea): Evidence from flow cytometry and nuclear microsatellite analyses

    DEFF Research Database (Denmark)

    Besnard, G.; Garcia-Verdugo, C.; Rubio de Casas, R.;

    2008-01-01

    , strong evidence for polyploidy was obtained in subspp. cerasiformis (tetraploid) and maroccana (hexaploid), whereas the other subspecies appeared to be diploids. Agreement between flow cytometry and genetic analyses gives an alternative approach to chromosome counting to determine ploidy level of trees...... favoured to overcome inbreeding depression. Lastly, based on previous phylogenetic analyses, we hypothesize that subsp. cerasiformis resulted from hybridization between ancestors of subspp. guanchica and europaea....

  8. Comparative proteomics of root plasma membrane proteins reveals the involvement of calcium signalling in NaCl-facilitated nitrate uptake in Salicornia europaea.

    Science.gov (United States)

    Nie, Lingling; Feng, Juanjuan; Fan, Pengxiang; Chen, Xianyang; Guo, Jie; Lv, Sulian; Bao, Hexigeduleng; Jia, Weitao; Tai, Fang; Jiang, Ping; Wang, Jinhui; Li, Yinxin

    2015-08-01

    Improving crop nitrogen (N) use efficiency under salinity is essential for the development of sustainable agriculture in marginal lands. Salicornia europaea is a succulent euhalophyte that can survive under high salinity and N-deficient habitat conditions, implying that a special N assimilation mechanism may exist in this plant. In this study, phenotypic and physiological changes of S. europaea were investigated under different nitrate and NaCl levels. The results showed that NaCl had a synergetic effect with nitrate on the growth of S. europaea. In addition, the shoot nitrate concentration and nitrate uptake rate of S. europaea were increased by NaCl treatment under both low N and high N conditions, suggesting that nitrate uptake in S. europaea was NaCl facilitated. Comparative proteomic analysis of root plasma membrane (PM) proteins revealed 81 proteins, whose abundance changed significantly in response to NaCl and nitrate. These proteins are involved in metabolism, cell signalling, transport, protein folding, membrane trafficking, and cell structure. Among them, eight proteins were calcium signalling components, and the accumulation of seven of the above-mentioned proteins was significantly elevated by NaCl treatment. Furthermore, cytosolic Ca(2+) concentration ([Ca(2+)]cyt) was significantly elevated in S. europaea under NaCl treatment. The application of the Ca(2+) channel blocker LaCl3 not only caused a decrease in nitrate uptake rate, but also attenuated the promoting effects of NaCl on nitrate uptake rates. Based on these results, a possible regulatory network of NaCl-facilitated nitrate uptake in S. europaea focusing on the involvement of Ca(2+) signalling was proposed. PMID:25956883

  9. 氨氧化工艺(AMOXP)处理高氨氮有机废水%Ammonia oxidation process for the treatment of organic wastewater containing high-cncentration ammonia nitrogen

    Institute of Scientific and Technical Information of China (English)

    刘卫霞; 张科; 刘天宇; 李丽; 高照吉

    2015-01-01

    介绍了某生物工程厂采用厌氧工艺(循环式颗粒污泥反应器,即MQIC反应器)、氨氧化工艺和絮凝沉淀池处理厂区生产废水,处理量为10000 m3/d,该工艺系统对原水中COD、NH4+-N、TN的去除率分别可达97%、98%、90%,运行稳定,整个工艺处理出水水质可达到园区接管要求。同时,对厂区MQIC反应器和氨氧化工艺的启动调试进行了阐述,实践证明该工艺系统对处理高氨氮有机废水效果显著。%The plant-produced wastewater of a bioengineering plant has been treated by anaerobic process (circula-ting granula sludge reactor,i.e. MQIC reactor),ammonia oxidation process and flocculation-sedimentation tank, whose treatment capacity is 10 000 m3/d. The removing rates of COD,NH4+-N and TN are 97%,98% and 90%, respectively. The operation is stable and the effluent water quality could meet the acceptable requirements specified by the industrial park. In addition,the statement on the start-up and debugging for MQIC reactor and AMOXP are made. The practice proves that this process has remarkable effect on the treatment of organic wastewater containing highly concentrated ammonia nitrogen.

  10. Impact of Long-Term Fertilization on Community Structure of Ammonia Oxidizing and Denitrifying Bacteria Based on amoA and nirK Genes in a Rice Paddy from Tai Lake Region, China

    Institute of Scientific and Technical Information of China (English)

    JIN Zhen-jiang; LI Lian-qing; LIU Xiao-yu; PAN Gen-xing; Qaiser Hussein; LIU Yong-zhuo

    2014-01-01

    Ammonia oxidizing (AOB) and denitrifying bacteria (DNB) play an important role in soil nitrogen transformation in natural and agricultural ecosystems. Effects of long-term fertilization on abundance and community composition of AOB and DNB were studied with targeting ammonia monooxygenase (amoA) and nitrite reductase (nirK) genes using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR, respectively. A ifeld trial with different fertilization treatments in a rice paddy from Tai Lake region, centre East China was used in this study, including no fertilizer application (NF), balanced chemical fertilizers (CF), combined organic/inorganic fertilizer of balanced chemical fertilizers plus pig manure (CFM), and plus rice straw return (CFS). The abundances and richnesses of amoA and nirK were increased in CF, CFM and CFS compared to NF. Principle component analysis of DGGE proifles showed signiifcant difference in nirK and amoA genes composition between organic amended (CFS and CFM) and the non-organic amended (CF and NF) plots. Number of amoA copies was signiifcantly positively correlated with normalized soil nutrient richness (NSNR) of soil organic carbon (SOC) and total nitrogen (T-N), and that of nirK copies was with NSNR of SOC, T-N plus total phosphorus. Moreover, nitriifcation potential showed a positive correlation with SOC content, while a signiifcantly lower denitriifcation potential was found under CFM compared to under CFS. Therefore, SOC accumulation accompanied with soil nutrient richness under long-term balanced and organic/inorganic combined fertilization promoted abundance and diversity of AOB and DNB in the rice paddy.

  11. 给水厂废弃铁铝泥对湖泊沉积物好氧氨氧化作用的影响%Influence of ferric and aluminum residuals on ammonia oxidation in lake sediment

    Institute of Scientific and Technical Information of China (English)

    刘娟凤; 王昌辉; 王志新; 裴元生

    2015-01-01

    给水厂废弃铁铝泥(Ferric and aluminum residuals,FARs)可用于控制湖泊沉积物磷释放.因此,在实际应用之前对FARs的风险进行评估非常重要.本研究通过室内富集实验,考察FARs对沉积物中氨氧化菌(ammonia-oxidizing bacteria,AOB)活性、丰度和多样性的影响.结果表明:投加FARs后,沉积物对氨氮的去除能力微弱提高.富集后沉积物中AOB丰度增加,投加FARs的沉积物中AOB丰度达到1.32×108 copies· g-1,而未投加FARs的沉积物中AOB丰度为1.14× 108 copies·g-1.此外,amoA基因的系统发育分析表明富集前后沉积物中的AOB均附属于Nitrosospira和Nitrosomonas两个种属,并且投加FARs沉积物中AOB的多样性略高于未投加的.综上结果表明,FARs回用于湖泊富营养化控制的同时,将有益于沉积物中好氧氨氧化作用的进行.

  12. Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits.

    Science.gov (United States)

    Alagna, Fiammetta; Geu-Flores, Fernando; Kries, Hajo; Panara, Francesco; Baldoni, Luciana; O'Connor, Sarah E; Osbourn, Anne

    2016-03-11

    The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait. In addition, oleuropein possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer activities. In accordance, obtaining high oleuropein varieties is a main goal of molecular breeding programs. Here we use a transcriptomic approach to identify candidate genes belonging to the secoiridoid pathway in olive. From these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive fruits. OeISY, the first pathway gene characterized for this type of secoiridoid, is a potential target for breeding programs in a high value secoiridoid-accumulating species. PMID:26709230

  13. Identification of ancient Olea europaea L. and Cornus mas L. seeds by DNA barcoding.

    Science.gov (United States)

    Gismondi, Angelo; Rolfo, Mario Federico; Leonardi, Donatella; Rickards, Olga; Canini, Antonella

    2012-07-01

    The analysis of ancient DNA (aDNA) provides archaeologists and anthropologists with innovative, scientific and accurate data to study and understand the past. In this work, ancient seeds, found in the "Mora Cavorso" archaeological site (Latium, Central Italy), were analyzed to increase information about Italian Neolithic populations (plant use, agriculture, diet, trades, customs and ecology). We performed morphological and genetic techniques to identify fossil botanical species. In particular, this study also suggests and emphasizes the use of DNA barcode method for ancient plant sample analysis. Scanning electron microscope (SEM) observations showed seed compact structure and irregular surface but they did not permit a precise nor empirical classification: so, a molecular approach was necessary. DNA was extracted from ancient seeds and then it was used, as template, for PCR amplifications of standardized barcode genes. Although aDNA could be highly degraded by the time, successful PCR products were obtained, sequenced and compared to nucleotide sequence databases. Positive outcomes (supported by morphological comparison with modern seeds, geographical distribution and historical data) indicated that seeds could be identified as belonging to two plant species: Olea europaea L. and Cornus mas L. PMID:22847014

  14. Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods.

    Science.gov (United States)

    Rugini, E; Cristofori, V; Silvestri, C

    2016-01-01

    In olive (Olea europaea L.) traditional methods of genetic improvement have up to now produced limited results. Intensification of olive growing requires appropriate new cultivars for fully mechanized groves, but among the large number of the traditional varieties very few are suitable. High-density and super high-density hedge row orchards require genotypes with reduced size, reduced apical dominance, a semi-erect growth habit, easy to propagate, resistant to abiotic and biotic stresses, with reliably high productivity and quality of both fruits and oil. Innovative strategies supported by molecular and biotechnological techniques are required to speed up novel hybridisation methods. Among traditional approaches the Gene Pool Method seems a reasonable option, but it requires availability of widely diverse germplasm from both cultivated and wild genotypes, supported by a detailed knowledge of their genetic relationships. The practice of "gene therapy" for the most important existing cultivars, combined with conventional methods, could accelerate achievement of the main goals, but efforts to overcome some technical and ideological obstacles are needed. The present review describes the benefits that olive and its products may obtain from genetic improvement using state of the art of conventional and unconventional methods, and includes progress made in the field of in vitro techniques. The uses of both traditional and modern technologies are discussed with recommendations. PMID:26972849

  15. Characterisation of chlorophyll oxidation mediated by peroxidative activity in olives (Olea europaea L.) cv. Hojiblanca.

    Science.gov (United States)

    Vergara-Domínguez, Honorio; Roca, María; Gandul-Rojas, Beatriz

    2013-08-15

    The oxidation of chlorophyll a (chl a) catalysed by peroxidase (POD) from mesocarp of the olive fruit (Olea europaea L., cv Hojiblanca) in the presence of H2O2 and 2,4-dichlorophenol (2,4-DCP), is characterised via the individualised quantification of the products of the enzymatic reaction using a new methodology of HPLC-UV spectrometry. This innovation has allowed the discovery that, in addition to 13(2) OH chl a and 15(1) OH lactone chl a, which are the first products of POD on chl a, the reaction process sequentially creates another series of oxidised chlorophyll derivatives which have not been previously described. Their origins have been linked to POD activity in the presence of 2,4-DCP. Likewise, a study of the effect of the concentration of the various cosubstrates on the POD reaction rate demonstrated that the correct establishment of the relative concentrations of the same ([H2O2]/[2,4-DCP]/[Chl]=1:3:0.02) is crucial to explaining inhibition effects by substrates and carrying out optimum measurements. Therefore, new essential parameters for the determination of POD activity on a chlorophyll substrate are established. PMID:23561174

  16. Transcriptome analysis of Salicornia europaea under saline conditions revealed the adaptive primary metabolic pathways as early events to facilitate salt adaptation.

    Directory of Open Access Journals (Sweden)

    Pengxiang Fan

    Full Text Available BACKGROUND: Halophytes such as Salicornia europaea have evolved to exhibit unique mechanisms controlled by complex networks and regulated by numerous genes and interactions to adapt to habitats with high salinity. However, these mechanisms remain unknown. METHODS: To investigate the mechanism by which halophytes tolerate salt based on changes in the whole transcriptome, we performed transcriptome sequencing and functional annotation by database search. Using the unigene database, we conducted digital gene expression analysis of S. europaea at various time points after these materials were treated with NaCl. We also quantified ion uptakes. Gene functional enrichment analysis was performed to determine the important pathways involved in this process. RESULTS: A total of 57,151 unigenes with lengths of >300 bp were assembled, in which 57.5% of these unigenes were functionally annotated. Differentially expressed genes indicated that cell wall metabolism and lignin biosynthetic pathways were significantly enriched in S. europaea to promote the development of the xylem under saline conditions. This result is consistent with the increase in sodium uptake as ions pass through the xylem. Given that PSII efficiency remained unaltered, salt treatment activated the expression of electron transfer-related genes encoded by the chloroplast chromosome. Chlorophyll biosynthesis was also inhibited, indicating the energy-efficient state of the electron transfer system of S. europaea. CONCLUSIONS: The key function of adjusting important primary metabolic pathways in salt adaption was identified by analyzing the changes in the transcriptome of S. europaea. These pathways could involve unique salt tolerance mechanisms in halophytes. This study also provided information as the basis of future investigations on salt response genes in S. europaea. Ample gene resources were also provided to improve the genes responsible for the salt tolerance ability of crops.

  17. Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea.

    Science.gov (United States)

    Perez-Martin, A; Flexas, J; Ribas-Carbó, M; Bota, J; Tomás, M; Infante, J M; Diaz-Espejo, A

    2009-01-01

    The present work aims to study the interactive effect of drought stress and high vapour pressure deficit (VPD) on leaf gas exchange, and especially on mesophyll conductance to CO(2) (g(m)), in two woody species of great agronomical importance in the Mediterranean basin: Vitis vinifera L. cv. Tempranillo and Olea europaea L. cv. Manzanilla. Plants were grown in specially designed outdoor chambers with ambient and below ambient VPD, under both well-irrigated and drought conditions. g(m) was estimated by the variable J method from simultaneous measurements of gas exchange and fluorescence. In both species, the response to soil water deficit was larger in g(s) than in g(m), and more important than the response to VPD. Olea europaea was apparently more sensitive to VPD, so that plants growing in more humid chambers showed higher g(s) and g(m). In V. vinifera, in contrast, soil water deficit dominated the response of g(s) and g(m). Consequently, changes in g(m)/g(s) were more related to VPD in O. europaea and to soil water deficit in V. vinifera. Most of the limitations of photosynthesis were diffusional and especially due to stomatal closure. No biochemical limitation was detected. The results showed that structural parameters played an important role in determining g(m) during the acclimation process. Although the relationship between leaf mass per unit area (M(A)) with g(m) was scattered, it imposed a limitation to the maximum g(m) achievable, with higher values of M(A) in O. europaea at lower g(m) values. M(A) decreased under water stress in O. europaea but it increased in V. vinifera. This resulted in a negative relationship between M(A) and the CO(2) draw-down between substomatal cavities and chloroplasts in O. europaea, while being positive in V. vinifera. PMID:19457982

  18. Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR

    Directory of Open Access Journals (Sweden)

    Xinlong eXiao

    2015-01-01

    Full Text Available Real-time quantitative polymerase chain reaction (RT-qPCR, a reliable technique for quantifying gene expression, requires stable reference genes to normalize its data. Salicornia europaea, a stem succulent halophyte with remarkable salt resistance and high capacity for ion accumulation, has not been investigated with regards to the selection of appropriate reference genes for RT-qPCR. In this study, the expression of 11 candidate reference genes, GAPDH (Glyceraldehyde 3-phosphate dehydrogenase, Actin, α-Tub (α-tubulin, β-Tub (β-tubulin, EF1-α (Elongation factor 1-α, UBC (Ubiquitin-conjugating enzyme, UBQ (Polyubiquitin, CYP (Cyclophilin, TIP41 (TIP41-like protein, CAC (Clathrin adaptor complexes, and DNAJ (DnaJ-like protein, was analyzed in S. europaea samples, which were classified into groups according to various abiotic stresses (NaCl, nitrogen, drought, cold and heat, tissues and ages. Three commonly used software programs (geNorm, NormFinder and BestKeeper were applied to evaluate the stability of gene expression, and comprehensive ranks of stability were generated by aggregate analysis. The results show that the relatively stable genes for each group are the following: (1 CAC and UBC for whole samples; (2 CAC and UBC for NaCl stress; (3 Actin and α-Tub for for nitrogen treatment; (4 Actin and GAPDH for drought stress; (5 α-Tub and UBC for cold stress; (6 TIP41 and DNAJ for heat stress; (7 UBC and UBQ for different tissues; and (8 UBC and Actin for various developmental stages. These genes were validated by comparing transcriptome profiles. Using two stable reference genes was recommended in the normalization of RT-qPCR data. This study identifies optimal reference genes for RT-qPCR in S. europaea, which will benefit gene expression analysis under these conditions.

  19. Catalytic ammonia oxidation to nitrogen (I) oxide

    OpenAIRE

    MASALITINA NATALIYA YUREVNA; SAVENKOV ANATOLIY SERGEEVICH

    2015-01-01

    The process of synthesis of nitrous oxide by low-temperature catalytical oxidation of NH has been investigated for organic synthesis. The investigation has been carried out by the stage separation approach with NH oxidation occurring in several reaction zones, which characterized by different catalytic conditions. The selectivity for N₂O was 92–92,5 % at the ammonia conversion of 98–99.5 % in the optimal temperature range.

  20. 利用RFLP分析DO对附积床系统中AOB群落结构的影响%Analysis of ammonia-oxidizing bacteria in catching bed reactor at different DO concentrations by RFLP

    Institute of Scientific and Technical Information of China (English)

    张岩; 朱敏; 刘焕光; 孙凤侠; 甘志明; 陈敬; 史杨; 谢杭冀

    2014-01-01

    To investigate the influence of DO concentration on the characteristics of catching bed reactor, the removal efficiency of COD, NH4+-N and TN were analyzed under the DO concentrations at 1.0~2.0mg/L, 2.0~3.0mg/L and 3.0~4.0mg/L, respectively. Meanwhile, ammonia-oxidizing bacteria (AOB) community and diversity in each reactor were examined using restricted fragment length polymorphism (RFLP), and sequencing of amoA genes. The results showed that higher COD and NH4+-N removal efficiency were received under different DO concentrations, NH4+-N removal efficiency increased with the DO concentration increase. The diversity of AOB was abundant in different DO concentrations, but the communities and species of AOB were effect greatly by DO concentration.%为了解析DO浓度对附积床反应器脱氮系统中COD、NH4+-N、TN去除效率的影响,以及对氨氧化菌群(AOB)结构及多样性的影响,分析了DO分别为1.0~2.0,2.0~3.0,3.0~4.0mg/L时COD、NH4+-N、TN去除效率,并采用针对AOB功能基因氨单加氧酶(amoA)的限制性内切酶片段长度多态性技术(RFLP)分析了三组DO浓度下反应器中AOB的群落结构及多样性.结果表明,不同DO条件下,系统均取得较高的COD和NH4+-N的去除效果, NH4+-N的去除效率随着DO的增加而提高.不同DO浓度下反应器生物膜上AOB菌群多样性丰富,且与DO对AOB菌群的多样性影响较小相比,DO对AOB的菌群结构及种类的影响较大.

  1. Comparison and Analysis of Diversity of Ammonia-Oxidizing Bacteria amoA Gene in Jujube-Cotton Intercropping and Monoculture under Different Planting Patterns%枣树棉花间作与单作土壤氨氧化细菌amoA 基因多样性的比较与分析

    Institute of Scientific and Technical Information of China (English)

    何贵伦; 罗明; 韩剑; 徐金虹; 王纯利; 朱建雯

    2015-01-01

    以编码氨单加氧酶基因 amoA 作为氨氧化细菌的功能基因标志物,采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)和扩增产物序列分析方法,研究南疆枣树与棉花间作和单作不同栽培模式下土壤氨氧化细菌群落结构和多样性差异以及与土壤理化因子的相关性.结果表明,枣树与棉花间作改变了土壤氨氧化细菌群落结构组成,与纯枣林、单作棉田差异显著,相似性低于60%.间作复合系统内冠下区、近冠区及不同层次的土壤中氨氧化细菌群落结构具有水平和垂直方向的空间变异性.系统发育分析表明,枣树与棉花间作、纯枣林和单作棉田土壤中氨氧化细菌均隶属于β-变形菌纲(β-Proteobacteria)的亚硝化螺菌属(Nitrosospira )和不可培养的氨氧化细菌,以 Nitrosospira cluster 3a 为优势菌.间作土壤中还有 cluster 3b、cluster 1和 cluster 4,群落组成较单作丰富.典范对应分析结果显示,有机碳(TOC)、全磷(TP)、速效磷(RP)和硝态氮(NO 3-N)含量对不同种植模式下氨氧化细菌的种群结构影响显著(P <0.05).枣树与棉花间作显著提高了土壤氨氧化细菌的多样性,Shannon 指数、均匀度指数和丰富度均高于纯枣林和单作棉田.土壤全磷、铵态氮、硝态氮、pH 值和土壤含水量是显著影响多样性指数的关键理化因子(P <0.05).%Using amoA gene encoding ammonia monooxygenase as functional gene marker of ammonia-oxidizing bacteria,polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)tech-nique and sequence analysis method of amplified products were used to analyze the difference from commu-nity structure and diversity of soil ammonia-oxidizing bacteria in the Southern Xinjiang under different cul-tivation modes of jujube and cotton intercropping and monoculture,which correlated with soil physical and chemical factors.The results revealed that jujube and cotton intercropping

  2. Optimized inhibition assays reveal different inhibitory responses of hydroxylamine oxidoreductases from beta- and gamma-proteobacterial ammonium-oxidizing bacteria.

    Science.gov (United States)

    Nishigaya, Yuki; Fujimoto, Zui; Yamazaki, Toshimasa

    2016-07-29

    Ammonia-oxidizing bacteria (AOB), ubiquitous chemoautotrophic bacteria, convert ammonia (NH3) to nitrite (NO2(-)) via hydroxylamine as energy source. Excessive growth of AOB, enhanced by applying large amounts of ammonium-fertilizer to the farmland, leads to nitrogen leaching and nitrous oxide gas emission. To suppress these unfavorable phenomena, nitrification inhibitors, AOB specific bactericides, are widely used in fertilized farmland. However, new nitrification inhibitors are desired because of toxicity and weak-effects of currently used inhibitors. Toward development of novel nitrification inhibitors that target hydroxylamine oxidoreductase (HAO), a key enzyme of nitrification in AOB, we established inhibitor evaluation systems that include simplified HAO purification procedure and high-throughput HAO activity assays for the purified enzymes and for the live AOB cells. The new assay systems allowed us to observe distinct inhibitory responses of HAOs from beta-proteobacterial AOB (βAOB) Nitrosomonas europaea (NeHAO) and gamma-proteobacterial AOB (γAOB) Nitrosococcus oceani (NoHAO) against phenylhydrazine, a well-known suicide inhibitor for NeHAO. Consistently, the live cells of N. europaea, Nitrosomonas sp. JPCCT2 and Nitrosospira multiformis of βAOB displayed higher responses to phenylhydrazine than those of γAOB N. oceani. Our homology modeling studies suggest that different inhibitory responses of βAOB and γAOB are originated from different local environments around the substrate-binding sites of HAOs in these two classes of bacteria due to substitutions of two residues. The results reported herein strongly recommend inhibitor screenings against both NeHAO of βAOB and NoHAO of γAOB to develop HAO-targeting nitrification inhibitors with wide anti-AOB spectra. PMID:27173879

  3. The skeletal organic matrix from Mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation.

    Directory of Open Access Journals (Sweden)

    Stefano Goffredo

    Full Text Available Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions.

  4. Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea.

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelfattah

    Full Text Available The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea was investigated in different phenological stages (May, June, October and December using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6% and Basidiomycota (2.8%. A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions.

  5. Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea).

    Science.gov (United States)

    Abdelfattah, Ahmed; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Droby, Samir; Schena, Leonardo

    2015-01-01

    The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea) was investigated in different phenological stages (May, June, October and December) using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6%) and Basidiomycota (2.8%). A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii) was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions. PMID:26132745

  6. The complete mitochondrial genome of the nudibranch Roboastra europaea (Mollusca: Gastropoda) supports the monophyly of opisthobranchs.

    Science.gov (United States)

    Grande, Cristina; Templado, José; Cervera, J Lucas; Zardoya, Rafael

    2002-10-01

    The complete nucleotide sequence (14,472 bp) of the mitochondrial genome of the nudibranch Roboastra europaea (Gastropoda: Opisthobranchia) was determined. This highly compact mitochondrial genome is nearly identical in gene organization to that found in opisthobranchs and pulmonates (Euthyneura) but not to that in prosobranchs (a paraphyletic group including the most basal lineages of gastropods). The newly determined mitochondrial genome differs only in the relative position of the trnC gene when compared with the mitochondrial genome of Pupa strigosa, the only opisthobranch mitochondrial genome sequenced so far. Pupa and Roboastra represent the most basal and derived lineages of opisthobranchs, respectively, and their mitochondrial genomes are more similar in sequence when compared with those of pulmonates. All phylogenetic analyses (maximum parsimony, minimum evolution, maximum likelihood, and Bayesian) based on the deduced amino acid sequences of all mitochondrial protein-coding genes supported the monophyly of opisthobranchs. These results are in agreement with the classical view that recognizes Opisthobranchia as a natural group and contradict recent phylogenetic studies of the group based on shorter sequence data sets. The monophyly of opisthobranchs was further confirmed when a fragment of 2,500 nucleotides including the mitochondrial cox1, rrnL, nad6, and nad5 genes was analyzed in several species representing five different orders of opisthobranchs with all common methods of phylogenetic inference. Within opisthobranchs, the polyphyly of cephalaspideans and the monophyly of nudibranchs were recovered. The evolution of mitochondrial tRNA rearrangements was analyzed using the cox1+rrnL+nad6+nad5 gene phylogeny. The relative position of the trnP gene between the trnA and nad6 genes was found to be a synapomorphy of opisthobranchs that supports their monophyly. PMID:12270894

  7. 牛场肥水灌溉对土壤氨氧化微生物的影响%Effects of Cattle Farm Effluent Irrigation on Community Structure and Abundance of Ammonia-Oxidizing Bacteria in Soil

    Institute of Scientific and Technical Information of China (English)

    王婷; 刘丽丽; 张克强; 沈仕洲; 冯洁; 王风; 杜会英; 高文萱

    2015-01-01

    Ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA)play important roles in the biogeochemical cycle of N element, which is closely related to soil quality, greenhouse gas emissions and NO-3 leaching. Therefore, diversity and composition of soil AOB and AOA are valuable indicators for soil quality monitoring. In this study, the effects of five fertilization treatments, including control without fertilizers(CK), conventional fertilization(CF 300 kg N·hm-2)and three irrigation treatments with cattle farm effluent(T4 105 kg N· hm-2, T5 210 kg N·hm-2 and T11 317 kg N·hm-2), on the diversity and composition of AOA and AOB were determined through terminal re-striction fragment length polymorphism(T-RFLP)of aomA gene(encoding ammonia monooxygenase). Results showed that the diversity in-dices, Shannon-Wiener(H′)and Pielou(E), of AOB were the highest in the T5 treatment, while they were the lowest in the T11 treatment. Phylogenetic tree analysis indicated that the AOB in the soil mainly belonged to Nitrosospira and Nitrosomanas. However, the indices of Shannon-Wiener(H′),Simpson(Ds)and Pielou(E)of AOA were the highest in the T11 treatment, but the lowest in the CF treatment. AOA aomA gene sequences showed that most sequences of AOA were clustered with Cluster S. The dominant AOB was similar to one species from the rumen of China Holstein cow, which was a clue of community evolution in cattle effluent irrigated farmland. The present re-sults indicate that cattle effluent irrigation could affect the diversity and abundance of soil AOA.%以不同牛场肥水灌溉制度下河北省徐水县梁家营长期定位施肥试验田为研究对象,通过构建氨氧化细菌和氨氧化古菌的amoA 基因克隆文库,利用T-RFLP方法研究了5种施肥处理(CK:不施肥;CF:300 kg N·hm-2,120 kg P2O·hm-2,75 kg K2O·hm-2;T4:105 kg N·hm-2,39 kg P2O5·hm-2;T5:210 kg N·hm-2,78 kg P2O5·hm-2;T11:317 kg N·hm-2,117 kg P2O5·hm-2

  8. Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC-DAD-radical scavenging detection

    NARCIS (Netherlands)

    Pérez-Bonilla, M.; Salido, S.; Beek, van T.A.; Waard, de P.; Linares-Palomino, P.J.; Sánchez, A.; Altarejos, J.

    2011-01-01

    The woody portion of olive tree pruning is a source of natural antioxidants of potential interest for the food industry. This work deals with the isolation and identification of further antioxidants present in an ethyl acetate extract of olive (Olea europaea L.) wood. Thus, a new secoiridoid, oleuro

  9. H(+) -pyrophosphatase from Salicornia europaea confers tolerance to simultaneously occurring salt stress and nitrogen deficiency in Arabidopsis and wheat.

    Science.gov (United States)

    Lv, Sulian; Jiang, Ping; Nie, Lingling; Chen, Xianyang; Tai, Fang; Wang, Duoliya; Fan, Pengxiang; Feng, Juanjuan; Bao, Hexigeduleng; Wang, Jinhui; Li, Yinxin

    2015-11-01

    High salinity and nitrogen (N) deficiency in soil are two key factors limiting crop productivity, and they usually occur simultaneously. Here we firstly found that H(+) -PPase is involved in salt-stimulated NO3 (-) uptake in the euhalophyte Salicornia europaea. Then, two genes (named SeVP1 and SeVP2) encoding H(+) -PPase from S. europaea were characterized. The expression of SeVP1 and SeVP2 was induced by salt stress and N starvation. Both SeVP1 or SeVP2 transgenic Arabidopsis and wheat plants outperformed the wild types (WTs) when high salt and low N occur simultaneously. The transgenic Arabidopsis plants maintained higher K(+) /Na(+) ratio in leaves and exhibited increased NO3 (-) uptake, inorganic pyrophosphate-dependent vacuolar nitrate efflux and assimilation capacity under this double stresses. Furthermore, they had more soluble sugars in shoots and roots and less starch accumulation in shoots than WT. These performances can be explained by the up-regulated expression of ion, nitrate and sugar transporter genes in transgenic plants. Taken together, our results suggest that up-regulation of H(+) -PPase favours the transport of photosynthates to root, which could promote root growth and integrate N and carbon metabolism in plant. This work provides potential strategies for improving crop yields challenged by increasing soil salinization and shrinking farmland. PMID:25920512

  10. Morpho-anatomical changes of plant vegetative organs of olive (Oleea europaea tree culture treated with pesticides

    Directory of Open Access Journals (Sweden)

    Anastasia MILIOU

    2009-11-01

    Full Text Available The objectives of this study were to assess and identify structural changes caused by pesticide treatment in Olea europaea olive tree cultures and Avena fatua plants from olive groves. For this purpose morpho-anatomical characteristics were assessed on shoots, roots and leaves to correlate the effect of pesticide treatment with anatomical and morphological aspects of leaves. This study concluded that the leaves treated with pesticides have less stomata and more numerous tector hairs as an adaptation to toxic treatment, compared with organic leaves from untreated cultures. These leaf abnormalities can seriously affect the efficiency of respiration, photosynthesis and the hydric control of the plants. Large intercellular spaces were observed in the foliar mesophyll of Olea europaea treated with pesticides. Differences in vegetative aerial organs were observed between treated and un-treated Avena fatua samples, namely the central parenchyma of stem was not reabsorbed and there were more layers of hypodermic sclerenchyma in treated leaves. The results of the study should be heeded as a warning for all olive producers who use pesticides excessively and in an uncontrolled manner, in addition to encouraging the wider implementation of organic farming methods.

  11. Phytochemical Properties and Anti-Proliferative Activity of Olea europaea L. Leaf Extracts against Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chloe D. Goldsmith

    2015-07-01

    Full Text Available Olea europaea L. leaves are an agricultural waste product with a high concentration of phenolic compounds; especially oleuropein. Oleuropein has been shown to exhibit anti-proliferative activity against a number of cancer types. However, they have not been tested against pancreatic cancer, the fifth leading cause of cancer related death in Western countries. Therefore, water, 50% ethanol and 50% methanol extracts of Corregiola and Frantoio variety Olea europaea L. leaves were investigated for their total phenolic compounds, total flavonoids and oleuropein content, antioxidant capacity and anti-proliferative activity against MiaPaCa-2 pancreatic cancer cells. The extracts only had slight differences in their phytochemical properties, and at 100 and 200 μg/mL, all decreased the viability of the pancreatic cancer cells relative to controls. At 50 μg/mL, the water extract from the Corregiola leaves exhibited the highest anti-proliferative activity with the effect possibly due to early eluting HPLC peaks. For this reason, olive leaf extracts warrant further investigation into their potential anti-pancreatic cancer benefits.

  12. A first insight into the occurrence and expression of functional amoA and accA genes of autotrophic and ammonia-oxidizing bathypelagic Crenarchaeota of Tyrrhenian Sea

    Science.gov (United States)

    Yakimov, Michail M.; Cono, Violetta La; Denaro, Renata

    2009-05-01

    The autotrophic and ammonia-oxidizing crenarchaeal assemblage at offshore site located in the deep Mediterranean (Tyrrhenian Sea, depth 3000 m) water was studied by PCR amplification of the key functional genes involved in energy (ammonia mono-oxygenase alpha subunit, amoA) and central metabolism (acetyl-CoA carboxylase alpha subunit, accA). Using two recently annotated genomes of marine crenarchaeons, an initial set of primers targeting archaeal accA-like genes was designed. Approximately 300 clones were analyzed, of which 100% of amoA library and almost 70% of accA library were unambiguously related to the corresponding genes from marine Crenarchaeota. Even though the acetyl-CoA carboxylase is phylogenetically not well conserved and the remaining clones were affiliated to various bacterial acetyl-CoA/propionyl-CoA carboxylase genes, the pool of archaeal sequences was applied for development of quantitative PCR analysis of accA-like distribution using TaqMan ® methodolgy. The archaeal accA gene fragments, together with alignable gene fragments from the Sargasso Sea and North Pacific Subtropical Gyre (ALOHA Station) metagenome databases, were analyzed by multiple sequence alignment. Two accA-like sequences, found in ALOHA Station at the depth of 4000 m, formed a deeply branched clade with 64% of all archaeal Tyrrhenian clones. No close relatives for residual 36% of clones, except of those recovered from Eastern Mediterranean, was found, suggesting the existence of a specific lineage of the crenarchaeal accA genes in deep Mediterranean water. Alignment of Mediterranean amoA sequences defined four cosmopolitan phylotypes of Crenarchaeota putative ammonia mono-oxygenase subunit A gene occurring in the water sample from the 3000 m depth. Without exception all phylotypes fell into Deep Marine Group I cluster that contain the vast majority of known sequences recovered from global deep-sea environment. Remarkably, three phylotypes accounted for 91% of all Mediterranean

  13. 施肥对设施菜地氨氧化细菌群落和丰度的影响%Effects of Fertilization Treatments on Community Structure and Abundance of Ammonia-oxidizing Bacteria in Greenhouse Soil

    Institute of Scientific and Technical Information of China (English)

    王亚男; 曾希柏; 俄胜哲; 白玲玉; 李莲芳; 苏世鸣; 沈灵凤

    2012-01-01

    The effects of five fertilization treatments on the community structure and abundance of ammonia-oxidizing bacteria(AOB ) were determined by the combination of terminal restriction fragment length polymorphism(T-RFLP) and real-time quantitative PCR in the greenhouse soils in Wuwei City of Gansu Province. The results by cloning and sequencing of amoA gene fragments showed that the AOB community in soils for all treatments consisted of two major groups, i.e. Nitrosospira cluster 3 and Nitrosomanas cluster 7. The sequences related to Ni-trosospira cluster 3 were predominant. The highest abundance of the AOB both in 0~20 cm and 20~40 cm soil layers were detected in the fertilization treatment which is the half of the farmer's conventional amount( 1/2MNPK), while the amoA gene copy number was with 9.95×107 and 6.65×107 copies·g-1 soil respectively, which was 105.0% and 315.3% higher respectively in 0-20 cm and 20-40 cm soil layers for 1/2MNPK treatment than that in the unfertilized treatment. Both fertilizer types and soil layers were the important factors that deduced the changes of AOB community and abundance. The results had significant references to the further exploring characteristic and adaptation mechanism of AOB in the soil nitrogen cycle under facility cultivation conditions.%以甘肃武威设施菜地为对象,采用amoA基因末端限制性片段多态性分析(PCR-TRFLP)技术与实时荧光定量PCR(Realtime PCR)相结合的方法,研究了不同施肥处理下土壤中氨氧化细菌群落组成和丰度的变化.结果表明:设施菜地中氨氧化细菌的优势种群均为Nitrosospira cluster 3属,亦含有少量Nitrosomanas cluster 7属.定量PCR分析发现在当地农民习惯施肥用量一半的处理下(1/2 MNPK),0~20 cm和20~40 cm土层中氨氧化细菌的丰度最大值分别为每克干土9.95×107、6.65×107拷贝数,比不施肥处理增加了105.0%和315.3%.施肥类型、土壤层次均是导致氨氧化细菌群落结

  14. Dynamic changes of ammonia-oxidizing archaea community structure during aerobic composting of chicken manure%鸡粪好氧堆肥过程中氨氧化古菌群落结构的动态变化

    Institute of Scientific and Technical Information of China (English)

    解开治; 徐培智; 张发宝; 唐拴虎; 顾文杰; 黄旭; 蒋瑞萍; 卢钰升

    2012-01-01

    The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to investigate the community structure and species diversity of ammonia-oxidizing archaea (AOA) during poultry species composting. The results show that the AOA community structure and species diversity at different stages of chicken manure composting are markedly changed, and the band b, which shows 96% similarity to the AOA HH - 2 (GU225872. 1 ) and band m, which shows 99% similarity to the uncultured Crenarchaeote NM-152 ( HQ875225.1 ) , represent the major AOA bacterial species during the composting. The bands c, b, f and i, and the bands m, k, ] and n represent the species of the two populations of bacteria, respectively. Shannon-Weiner index (H) and evenness index (EH) of the AOA colonies are different at different stages of the eomposting, and the following order is : day 30 〉 day 5 〉 day 25 ≈ day 45 〉 day 3 ≈ day 12 〉 day 1 ≈ day 15. The redundancy analysis of the AOA colonies at different stages of the composting shows that the AOA colony evolution is all significantly affected by the composting temperature, whole nitrogen, ammonia nitrogen and nitrate nitrogen (P 〈0. 05 ), while pH is not affected. The AOA community structure is changed markedly on days 1,5, 15, 30 and 45 of the composting. These results indicate that several parameters could control AOA community structure during composting of chicken manure.%应用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术,研究了好氧堆肥过程氨氧化古菌(ammonia-oxidizingarchaea,AOA)的群落结构和多样性变化。结果表明,不同堆肥时期鸡粪好氧堆肥AOA菌群的群落结构发生了明显的变化。与AOAHH-2(GU225872.1)亲缘关系较近的b条带(相似性96%)和未培养泉古菌属[uncuhured crenarchaeoteNM-152(HQ875225.1)]的m条带(相似性99%)是堆肥过程一直存在的AOA菌属。条带C、b、f、i和条带m、k、1

  15. Effects of the methanolic extracts of Zizyphus spina christi, Olea europaea and Morus alba leaves in Streptozotocin- induced diabetic rats

    Directory of Open Access Journals (Sweden)

    A. I. Othman*, M. A. Amer*, M. Abdel-Mogib **, R. F. Samaha

    2009-12-01

    Full Text Available Background:The present study aims to investigate the hypoglycemic, hypolipidimic and antioxidant effect of the methanolic crude extracts of Zizyphus spina christi, Morus alba and Olea europaea leaves, individually or in combination against diabetes induced rats by Streptozotocin (STZ. Results:Hyperglycemia and hyperlipidaemia except in high density lipoproteins (HDL were observed in serum after 5 weeks of STZ administration. This was associated with a depression in hepatic glutathione (GSH concentration as well as hepatic catalase (CAT, glutathione-s-transferase (GST and superoxide dismutase (SOD activates. In addition hepatic thiobarbituric acid-reactive substance (TBARS and protein carbonyl (PC were significantly elevated, indicating increased lipid and protein oxidation and oxidative stress. Depression in blood hemoglobin (Hb content, serum insulin levels, total antioxidant capacity (TAOC and nitric oxide (NO levels as well as body weight gain were also observed in diabetic rats. Administration of 100mg/kg alcoholic extracts of Zizyphus spina christi, Morus alba and Olea europaea leaves 3 days before and after STZ injection daily for 5 weeks significantly ameliorated the oxidative stress evidenced by lowering TBARS & PC as well as increasing hepatic GSH concentration and CAT, GST and SOD activates as compared with STZ treated rats. These effects were paralleled with marked protection against STZ induced hyperglycemia and disturbance of lipid profile. They also caused a great improvement in insulin levels, TAOC, NO, Hb content and body weight gain. Conclussion:Thus, these results showed that the administration of the crude extracts of either Zizyphus spina christi, Morus alba or Olea europaea leaves individually or in combination might improve the clinical manifestation of diabetes and decrease the oxidative stress, this study supports the beneficial effects of these extracts especially Zizyphus spina christi, which showed marked amelioration

  16. 两个 CANON 污水处理系统中氨氧化古菌的丰度和多样性研究%Abundance and Community Composition of Ammonia-Oxidizing Archaea in Two Completely Autotrophic Nitrogen Removal over Nitrite Systems

    Institute of Scientific and Technical Information of China (English)

    高景峰; 李婷; 张树军; 樊晓燕; 潘凯玲; 马谦; 袁亚林

    2015-01-01

    Ammonia oxidation is the first and rate-limiting step of nitrification, which was thought to be only performed by ammonia-oxidizing bacteria (AOB). In recent years, ammonia-oxidizing archaea (AOA) was also confirmed to take part in ammonia oxidation. The diversity and abundance of AOA have been investigated in various environments, however, little is known regarding the AOA in the completely autotrophic nitrogen removal over nitrite ( CANON) wastewater treatment process. In this study, the abundance and diversity of AOA were investigated in the biofilm and flocculent activated sludge collected in a lab-scale (L) CANON system and a pilot-scale (P) CANON systems, respectively. The quantitative real time PCR (qPCR) was applied to investigate the abundance of AOA and the diversity of AOA was determined by polymerase chain reaction ( PCR), cloning and sequencing. The qPCR results showed that the average abundance of AOA amoA gene of L and P was 2. 42 × 106 copies·g - 1 dry sludge and 6. 51 × 106 copies·g - 1 dry sludge, respectively. The abundance of AOA in biofilm was 10. 1-14. 1 times higher than that in flocculent activated sludge. For P system, the abundance of AOA in flocculent activated sludge was 1. 8 times higher than that in biofilm. The results indicated that the abundance of AOA might be affected by different sludge morphology. The diversity of AOA in P system was extremely limited, only one OTU was observed, which was classified into Nitrosopumilus subcluster 5. 2. The diversity of AOA in L system was higher, eight OTUs were observed, which were classified into five genera: Nitrososphaera subcluster 9, subcluster 8. 1, subcluster 4. 1, subcluster 1. 1 and Nitrosopumilus subcluster 5. 2. The diversity and abundance of AOA were different in CANON systems with different sludge morphology. AOA may play an important role in ammonia oxidation in CANON system.%近期,氨氧化古菌(ammonia-oxidizing archaea,AOA)在各类环境中的发现,打破了人们原

  17. Dynamique de la conductance hydraulique chez l'olivier de table (Olea europaea L., cv Meski

    Directory of Open Access Journals (Sweden)

    Hechmi, C.

    2007-01-01

    Full Text Available Hydraulic Conductance Dynamic in Olive Table Tree (Olea europaea L. cv Meski. Cette étude expose les effets de l'aménagement des pâturages par la digue filtrante sur la dynamique de la végétation. Dans les régions sahéliennes, de nombreuses techniques sont appliquées sur les sols pour la restauration des parcours dégradés. La digue filtrante s'intéresse particulièrement aux axes de drainage ou bas-fonds en dégradation. La méthode d'étude a consisté à évaluer l'impact des digues filtrantes par l'inventaire de la végétation, la mesure de la biomasse produite, et l'analyse chimique d'échantillons de fourrage et de sol. Ces observations ont été faites à la fois sur l'espace aménagé et sur un espace témoin représentatif en deux fois durant cinq ans. Les observations sur l'espace aménagé (stations d'observation d'un ha ont été faites en fonction du gradient par rapport à la digue filtrante tandis que sur le témoin (station d'observation d'un ha, les mesures ont été homogénéisées sur l'ensemble de la parcelle. Les résultats obtenus des inventaires de végétation montrent un effet positif de l'aménagement sur la dynamique de la végétation qui se maintient après cinq années. Les effets concernent la composition floristique pour laquelle certaines espèces connaissent une amélioration. Il s'agit de Panicum laetum (+ 5,9% en 1999 et + 1,9% en 2003, Setaria pallide fusca (+ 2,4 à + 8,6%, Cassia obtusifolia (+ 13,6% à + 9,3% et Zornia glochidiata (- 2,9% à + 1,7 %. Les espèces en régression sont surtout composées de Schoenefeldia gracilis (+ 1,7% à - 12% et Microchloa indica (- 28,9% à - 12,1% entre 1999 et 2003. L'écart de recouvrement du sol entre la parcelle aménagée et le témoin a été de -0,4% en 1999 contre + 14,6% en 2003. La biomasse produite et la capacité de charge ont connu une expansion allant de 3,14 à 4,5 fois par rapport à l'espace non aménagé. Cependant, des suivis doivent

  18. Adventitious root formation in olive (Olea europaea L.) microshoots: anatomical evaluation and associated biochemical changes in peroxidase and polyphenol oxidase activities

    OpenAIRE

    Mecedo, E.; Vieira, C.; Carrizo, D.; Porfirio, S.; Hegewald, H.; Arnholdt-Schmitt, B.; Calado, M.L.; A. Peixe

    2013-01-01

    Trials were performed using in vitro-cultured microshoots of the olive (Olea europaea L.) cultivar ‘Galega vulgar’, as initial explants, to identify histological events and modifications in peroxidase and polyphenol oxidase activities during adventitious root formation. Explant bases were submitted to a 10 s quick-dip treatment to promote rooting, using a sterile solution of 14.7 mM indole-3-butyric acid (IBA). Samples for histology and quantification of enzyme activities were collected at pr...

  19. Long-term Fertilization Determining Ammonia-oxidizing Organism Abundance and Distribution in Dry Highland Soil of Loess Plateau%长期施肥对旱地土壤中氨氧化微生物丰度和分布的影响

    Institute of Scientific and Technical Information of China (English)

    辛亮; 武传东; 曲东

    2012-01-01

    采用基于氨单加氧酶基因(amoA)的荧光定量PCR技术,以黄土高原旱地土为材料,研究长期施肥对土壤氨氧化细菌和氨氧化古菌丰度的影响,并分析环境因素与氨氧化菌丰度的关系.以不施肥土壤为对照(CK),设置3个施肥处理,分别为单施磷肥(P),氮、磷共施(NP)和氮、磷、有机肥共施(NPM)3个处理.结果表明,不同处理氨氧化菌amoA基因拷贝数为1.326×106~1.886×106 g1,各处理间氨氧化细菌丰度差异不显著;氨氧化古菌的arch-amoA基因拷贝数为1.329×106~4.510×106 g-1,表现为处理NPM> NP>CK>P,NPM处理为对照的3.314倍,二者呈现显著性差异.采用DCCA法对4个处理进行环境相似度分类,结果显示,P和NPM处理、CK和NP处理分别构成了2个相似类群;4个处理和12个环境因子的关联(CCA)分析表明,不同处理中的氨氧化微生物活跃度以及氨氧化过程强度表现为处理NMP>NP>CK>P;不同环境因子和不同施肥处理生境相似度分布存在不同的关系,其中反映氨氧化过程的硝态氮含量、氨氧化细菌和氨氧化古菌丰度,以及代表微生物生长主要环境因素的pH值、含水量、全氮和有机碳含量与不同施肥处理导致的生境相似度的分布关系最为紧密.%Real-time PCR with primers targeting Ammonia monooxygenase subunit A gene iamoA) was performed to quantify abundance of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing ar-chaea (AOA) in dry highland soilt long-term fertilized, from Loess Plateau. We also investigated the relationship between environmental factors and abundance of ammonia-oxidizing organism. The treatments were no fertilizer (CK), phosphate (P), nitrogen/phosphate fertilizers (NP), and NP combined with organic fertilizer (NPM). We found that fertilization caused no significant difference on the amoA gene copy numbers of AOB arranging from 1, 326× 106 to 1. 886 × 106 copies · g-1 dry soil. In contrast, abundance of

  20. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    Science.gov (United States)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of

  1. De Novo Transcriptome Sequencing of Olea europaea L. to Identify Genes Involved in the Development of the Pollen Tube

    Science.gov (United States)

    Iaria, Domenico

    2016-01-01

    In olive (Olea europaea L.), the processes controlling self-incompatibility are still unclear and the molecular basis underlying this process are still not fully characterized. In order to determine compatibility relationships, using next-generation sequencing techniques and a de novo transcriptome assembly strategy, we show that pollen tubes from different olive plants, grown in vitro in a medium containing its own pistil and in combination pollen/pistil from self-sterile and self-fertile cultivars, have a distinct gene expression profile and many of the differentially expressed sequences between the samples fall within gene families involved in the development of the pollen tube, such as lipase, carboxylesterase, pectinesterase, pectin methylesterase, and callose synthase. Moreover, different genes involved in signal transduction, transcription, and growth are overrepresented. The analysis also allowed us to identify members in actin and actin depolymerization factor and fibrin gene family and member of the Ca2+ binding gene family related to the development and polarization of pollen apical tip. The whole transcriptomic analysis, through the identification of the differentially expressed transcripts set and an extended functional annotation analysis, will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth in the olive. PMID:26998509

  2. Effet du sucre sur l'embryogenèse somatique de l'olivier (Olea europaea L. cv. 'Picholine marocaine'

    Directory of Open Access Journals (Sweden)

    Abousalim A.

    2008-01-01

    Full Text Available Effect of sugar on somatic embryogenesis of olive tree (Olea europaea L. cv ' Moroccan Picholine '. The somatic embryogenesis of the olive tree cv ' Moroccan Picholine ' has been until now very little studied, in spite of its importance for Morocco.Thus, our work aimed to study the effects of type and concentrations of sugar on the induction and the development of somatic embryos of this variety. Regeneration of olive plants via somatic embryogenesis has been achieved from cotyledon fragments. Embryogenic, nodular and compact calli have been induced on media supplemented with 0.5 mg.l-1 zeatin and 2 mg.l-1 NAA and different types of sugar as mannitol, saccharose and sorbitol and different saccharose concentrations (20, 30, 60 and 90 g.l-1. The highest percentage of callus induction (P < 0.001 was observed with mannitol (90.6%. Up to 37% somatic embryogenesis was obtained in the case of saccharose (P < 0.001. The best callus induction was obtained in presence of 30 g.l-1 saccharose. This concentration was the best for olive plantlets regeneration. No morphogenesis was obtained with sorbitol. Somatic embryogenesis seems to be able to constitute an interesting source of micropropagation of olive tree in Morocco.

  3. High-Throughput Sequencing Analysis of the Endophytic Bacterial Diversity and Dynamics in Roots of the Halophyte Salicornia europaea.

    Science.gov (United States)

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Tian, Chang-Yan

    2016-05-01

    Endophytic bacterial communities of halophyte Salicornia europaea roots were analyzed by 16S rRNA gene pyrosequencing. A total of 20,151 partial 16S rRNA gene sequences were obtained. These sequences revealed huge amounts of operational taxonomic units (OTUs), that is, 747-1405 OTUs in a root sample, at 3 % cut-off level. Root endophytes mainly comprised four phyla, among which Proteobacteria was the most represented, followed by Bacteroidetes, Actinobacteria, and Firmicutes. Gammaproteobacteria was the most abundant class of Proteobacteria, followed by Betaproteobacteria and Alphaproteobacteria. Genera Pantoea, Halomonas, Azomonas, Serpens, and Pseudomonas were shared by all growth periods. A marked difference in endophytic bacterial communities was evident in roots from different host life-history stages. Gammaproteobacteria increased during the five periods, while Betaproteobacteria decreased. The richest endophytic bacteria diversity was detected in the seedling stage. Endophytic bacteria diversity was reduced during the flowering stage and fruiting stage. The five libraries contained 2321 different OTUs with 41 OTUs in common. As a whole, this study first surveys communities of endophytic bacteria by tracing crucial stages in the process of halophyte growth using high-throughput sequencing methods. PMID:26787546

  4. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    Science.gov (United States)

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures. PMID:25737264

  5. Characterization of polyphenol oxidase from the Manzanilla cultivar (Olea europaea pomiformis) and prevention of browning reactions in bruised olive fruits.

    Science.gov (United States)

    Segovia-Bravo, Kharla A; Jarén-Galan, Manuel; García-García, Pedro; Garrido-Fernandez, Antonio

    2007-08-01

    The crude extract of the polyphenol oxidase (PPO) enzyme from the Manzanilla cultivar (Olea europaea pomiformis) was obtained, and its properties were characterized. The browning reaction followed a zero-order kinetic model. Its maximum activity was at pH 6.0. This activity was completely inhibited at a pH below 3.0 regardless of temperature; however, in alkaline conditions, pH inhibition depended on temperature and was observed at values above 9.0 and 11.0 at 8 and 25 degrees C, respectively. The thermodynamic parameters of substrate oxidation depended on pH within the range in which activity was observed. The reaction occurred according to an isokinetic system because pH affected the enzymatic reaction rate but not the energy required to carry out the reaction. In the alkaline pH region, browning was due to a combination of enzymatic and nonenzymatic reactions that occurred in parallel. These results correlated well with the browning behavior observed in intentionally bruised fruits at different temperatures and in different storage solutions. The use of a low temperature ( approximately 8 degrees C) was very effective for preventing browning regardless of the cover solution used. PMID:17628073

  6. Isolation and partial characterization of a highly divergent lineage of hantavirus from the European mole (Talpa europaea).

    Science.gov (United States)

    Gu, Se Hun; Kumar, Mukesh; Sikorska, Beata; Hejduk, Janusz; Markowski, Janusz; Markowski, Marcin; Liberski, Paweł P; Yanagihara, Richard

    2016-01-01

    Genetically distinct hantaviruses have been identified in five species of fossorial moles (order Eulipotyphla, family Talpidae) from Eurasia and North America. Here, we report the isolation and partial characterization of a highly divergent hantavirus, named Nova virus (NVAV), from lung tissue of a European mole (Talpa europaea), captured in central Poland in August 2013. Typical hantavirus-like particles, measuring 80-120 nm in diameter, were found in NVAV-infected Vero E6 cells by transmission electron microscopy. Whole-genome sequences of the isolate, designated NVAV strain Te34, were identical to that amplified from the original lung tissue, and phylogenetic analysis of the full-length L, M and S segments, using maximum-likelihood and Bayesian methods, showed that NVAV was most closely related to hantaviruses harbored by insectivorous bats, consistent with an ancient evolutionary origin. Infant Swiss Webster mice, inoculated with NVAV by the intraperitoneal route, developed weight loss and hyperactivity, beginning at 16 days, followed by hind-limb paralysis and death. High NVAV RNA copies were detected in lung, liver, kidney, spleen and brain by quantitative real-time RT-PCR. Neuropathological examination showed astrocytic and microglial activation and neuronal loss. The first mole-borne hantavirus isolate will facilitate long-overdue studies on its infectivity and pathogenic potential in humans. PMID:26892544

  7. Differentiation in the microbial ecology and activity of suspended and attached bacteria in a nitritation-anammox process.

    Science.gov (United States)

    Park, Hongkeun; Sundar, Suneethi; Ma, Yiwei; Chandran, Kartik

    2015-02-01

    A directed differentiation between the biofilm and suspension was observed in the molecular microbial ecology and gene expression of different bacteria in a biofilm nitritation-anammox process operated at varying hydraulic residence times (HRT) and nitrogen loading rates (NLR). The highest degree of enrichment observed in the biofilm was of anaerobic ammonia-oxidizing bacteria (AMX) followed by that of Nitrospira spp. related nitrite-oxidizing bacteria (NOB). For AMX, a major shift from Candidatus "Brocadia fulgida" to Candidatus "Kuenenia stuttgartiensis" in both suspension and biofilm was observed with progressively shorter HRT, using discriminatory biomarkers targeting the hydrazine synthase (hzsA) gene. In parallel, expression of the hydrazine oxidoreductase gene (hzo), a functional biomarker for AMX energy metabolism, became progressively prominent in the biofilm. A marginal but statistically significant enrichment in the biofilm was observed for Nitrosomonas europaea related ammonia-oxidizing bacteria (AOB). In direct contrast to AMX, the gene expression of ammonia monooxygenase subunit A (amoA), a functional biomarker for AOB energy metabolism, progressively increased in suspension. Using gene expression and biomass concentration measures in conjunction, it was determined that signatures of AOB metabolism were primarily present in the biofilm throughout the study. On the other hand, AMX metabolism gradually shifted from being uniformly distributed in both the biofilm and suspension to primarily the biofilm at shorter HRTs and higher NLRs. These results therefore highlight the complexity and key differences in the microbial ecology, gene expression and activity between the biofilm and suspension of a nitritation-anammox process and the biokinetic and metabolic drivers for such niche segregation. PMID:25115980

  8. 长期施用氮肥和磷肥对渭北旱塬土壤中氨氧化古菌多样性的影响%Effects of Long-term Nitrogen and Phosphate Fertilization on Diversity of Ammonia-Oxidizing Archaea in Dry Highland Soil of Loess Plateau, China

    Institute of Scientific and Technical Information of China (English)

    武传东; 闫倩; 辛亮; 王保莉; 曲东

    2012-01-01

    Ammonia-oxidizing archaea are likely the most abundant ammonia-oxidizing microbes in natural environment and they also play an important role in nitrification. In order to improve nitrogen use efficiency and explicate the indicating function of ammonia-oxidizing ar-chaea( AOA) on changes of soil quality in the Loess Plateau, AOA community structure diversity was studied. The soil samples used in this research derived from Changwu Agro-ecological Experimental Station on the Loess Plateau, Chinese Academy of Sciences, which had received 23 years continuous fertilization treatments, include CK (control, without fertilizers), LD (unplanted, without fertilizers), N(nitrogen input), P(phosphorus input) and NP(combination of nitrogen and phosphorus fertilizers). The soil AOA community structure diversity was analyzed by restriction fragment length polymorphism(PCR-RFLP) and DNA sequence. Positive clones collected randomly from clone libraries were digested by Rsa I and Msp I, respectively. According to the statistics of diversity index, there were 25, 18, 29, 20 and 30 restriction endonuclease types(OTUs), respectively. The a diversity indices indicated that there was a pronounced difference among five fertilizer treatments. The OTUs were the highest in both P treatment and CK treatment, while the lowest in NP treatment. The rescaled distance matrix tree indicated that the different fertilization had weak convergence of AOA community types with the CK treatment soil. Phylogenetic tree of amoA gene amino acid sequences analysis showed all AOA sequences fell within cluster S and cluster M, but the proportions were different. These results indicated that long-term fertilization resulted in change of AOA community diversity; however, different fertilizer alkaline soil had no significant impact on the species composition of dominant AOA.%采用基于氨单加氧酶基因的PCR-RFLP和DNA测序技术,以黄土高原旱地黑垆土为材料,研究长期施用氮肥和磷肥对

  9. Influence of high concentrations of mineral salts on production process and NaCl accumulation by Salicornia europaea plants as a constituent of the LSS phototroph link

    Science.gov (United States)

    Tikhomirova, N. A.; Ushakova, S. A.; Kovaleva, N. P.; Gribovskaya, I. V.; Tikhomirov, A. A.

    Use of halophytes (salt-tolerant vegetation), in a particular vegetable Salicornia europaea plants which are capable of utilizing NaCl in rather high concentrations, is one of possible means of NaCl incorporation into mass exchange of bioregenerative life support systems. In preliminary experiments it was shown that S. europaea plants, basically, could grow on urine pretreated with physicochemical processing and urease-enzyme decomposing of urea with the subsequent ammonia distillation. But at the same time inhibition of the growth process of the plants was observed. The purpose of the given work was to find out the influence of excessive quantities of some mineral elements contained in products of physicochemical processing of urine on the production process and NaCl accumulation by S. europaea plants. As the content of mineral salts in the human liquid wastes (urine) changed within certain limits, two variants of experimental solutions were examined. In the first variant, the concentration of mineral salts was equivalent to the minimum salt content in the urine and was: K - 1.5 g/l, P - 0.5 g/l, S - 0.5 g/l, Mg - 0.07 g/l, Ca - 0.2 g/l. In the second experimental variant, the content of mineral salts corresponded to the maximum salt content in urine and was the following: K - 3.0 g/l, P - 0.7 g/l, S - 1.2 g/l, Mg - 0.2 g/l, Ca - 0.97 g/l. As the control, the Tokarev nutrient solution containing nitrogen in the form of a urea, and the Knop nutrient solution with nitrogen in the nitrate form were used. N quantity in all four variants made up 177 mg/l. Air temperature was 24 °C, illumination was continuous. Light intensity was 690 μmol/m 2s of photosynthetically active radiation. NaCl concentration in solutions was 1%. Our researches showed that the dry aboveground biomass of an average plant of the first variant practically did not differ from the control and totaled 11 g. In the second variant, S. europaea productivity decreased and the dry aboveground biomass

  10. Monochloramine Cometabolism by Mixed-Culture Nitrifiers under Drinking Water Conditions.

    Science.gov (United States)

    Maestre, Juan P; Wahman, David G; Speitel, Gerald E

    2016-06-21

    Chloramines are the second most used secondary disinfectant by United States water utilities. However, chloramination may promote nitrifying bacteria. Recently, monochloramine cometabolism by the pure culture ammonia-oxidizing bacteria, Nitrosomonas europaea, was shown to increase monochloramine demand. The current research investigated monochloramine cometabolism by nitrifying mixed cultures grown under more relevant drinking water conditions and harvested from sand-packed reactors before conducting suspended growth batch kinetic experiments. Four types of batch kinetic experiments were conducted: (1) positive controls to estimate ammonia kinetic parameters, (2) negative controls to account for biomass reactivity, (3) utilization associated product (UAP) controls to account for UAP reactivity, and (4) cometabolism experiments to estimate cometabolism kinetic parameters. Kinetic parameters were estimated in AQUASIM with a simultaneous fit to the experimental data. Cometabolism kinetics were best described by a first-order model. Monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism accounted for 30% of the observed monochloramine loss. These results demonstrated that monochloramine cometabolism occurred in mixed cultures similar to those found in drinking water distribution systems; therefore, monochloramine cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in drinking water distribution systems. PMID:27196729

  11. Three-Dimensional Stratification of Bacterial Biofilm Populations in a Moving Bed Biofilm Reactor for Nitritation-Anammox

    Directory of Open Access Journals (Sweden)

    Robert Almstrand

    2014-01-01

    Full Text Available Moving bed biofilm reactors (MBBRs are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers.

  12. Assessment of bacterial community structure in nitrifying biofilm under inorganic carbon-sufficient and -limited conditions.

    Science.gov (United States)

    Bae, Hyokwan; Chung, Yun-Chul; Yang, Heejeong; Lee, Changsoo; Aryapratama, Rio; Yoo, Young J; Lee, Seockheon

    2015-01-01

    In this work, nitrification and changes in the composition of the total bacterial community under inorganic carbon (IC)-limited conditions, in a nitrifying moving bed biofilm reactor, was investigated. A culture-independent analysis of cloning and sequencing based on the 16S rRNA gene was applied to quantify the bacterial diversity and to determine bacterial taxonomic assignment. IC concentrations had significant effects on the stability of ammonia-oxidation as indicated by the reduction of the nitrogen conversion rate with high NH4(+)-N loadings. The predominance of Nitrosomonas europaea was maintained in spite of changes in the IC concentration. In contrast, heterotrophic bacterial species contributed to a high bacterial diversity, and to a dynamic shift in the bacterial community structure, under IC-limited conditions. In this study, individual functions of heterotrophic bacteria were estimated based on taxonomic information. Possible key roles of coexisting heterotrophic bacteria are the assimilation of organic compounds of extracellular polymeric substances produced by nitrifiers, and biofilm formation by providing a filamentous structure and aggregation properties. PMID:25560266

  13. Mass mortality events of the coral Balanophyllia europaea (Scleractinia, Dendrophylliidae) in the Mljet National Park (eastern Adriatic Sea) caused by sea temperature anomalies

    Science.gov (United States)

    Kružić, P.; Popijač, A.

    2015-03-01

    Recurrent climate-induced mass mortalities of marine animals have been recorded in the Mediterranean Sea over the past 15 years. These mortality outbreaks have been associated with positive thermal anomalies. In this study, we assessed long-term (from 2003 to 2013) responses of the temperate coral Balanophyllia europaea to increasing seawater temperatures in the Mljet National Park in the Adriatic Sea (Northern Mediterranean Sea) and described the relationship between recurrent mortality events and sea temperature regimes in the southern Adriatic Sea. Our results indicate that polyp bleaching and tissue necrosis caused the observed mortality. The first observations of B. europaea mortality within the study area in the Mljet NP were in early September 2003. The Mediterranean area experienced high temperatures and hydrographic stability over a period of several weeks throughout that summer, which resulted in a mass mortality event. In the Mljet National Park, the highest impact of mass mortality started during the exceptionally hot summer of 2012, representing one of the most severe mass mortality events ever observed in the Adriatic Sea. In 2012, sea temperatures at a 5 m depth during the summer period (from June to September) ranged from 24.44 to 30.16 °C in the Mljet NP. The northern sites in the Mljet NP were highly impacted, with up to 80 % of B. europaea specimens affected by necrosis, while the southern sites displayed the highest impact, with 90-100 % of affected individuals. Without any coral adaptation to warming and under the present climate-warming trend, new mass mortality events may occur in the near future, possibly causing a major coral biodiversity crisis in the Mediterranean Sea.

  14. Effect of NaCl Concentration on Productivity and Mineral Composition of Salicrnia europaea as a Plausible Representative of LSS Photosynthesizing Component

    Science.gov (United States)

    Ushakova, S.; Kovaleva, N.; Gribovskaya, I.; Dolgushev, V.; Tikhomirova, N.

    In man-made ecosystems the problem of deadlock wastes generated among other reasons by accumulation of NaCl-containing human liquid wastes has no efficient solution, yet. This retards development of man-made highly closed biological ecosystems where the deadlock wastes must be minimized. A possible solution of the problem is to select plant species capable of utilizing NaCl with sufficiently high concentrations, being edible by humans and featuring high productivity. So far the higher plants used in life support systems were either sensitive to salination (wheat, many bean species, carrots, potatoes, corn) or relatively salt-resistant (barley, beet roots, spinach). Salicornia europaea whose overground part is fully edible for humans is one of most acceptable for this purpose. By the literature evidence this plant is capable of accumulating up to 50% NaCl in terms of dry matter. In addition, excessive accumulation of sodium ions should bring forth increase of carry-out of potassium ions and other biogenous elements. The aim of this work is to study the feasibility of using S. europaea species in growth chambers to involve NaCl into matter turnover. Plants were grown in vegetation chambers under the irradiance of 100 W/m 2 PAR and the temperature of air 24?? by two methods. The first method was to cultivate on a substrate which was peat: without salination (1 version) and with addition of 3.5% (2 version) or 7% NaCl (3 version) in terms of dry peat mass. The second method was to cultivate on an aqueous solution with addition of a complete set of nutrients and, depending on the version, containing ? NaCl at the concentration of 0%, 1% or 2%. The study showed that addition of NaCl to the substrate or to the solution resulted in formation of more succulent plants which considerably increased their biomass. The amount of NaCl uptake was the highest in the plants grown in aqueous cultu e, its part in the dry matter was not less than 30%.r As the sodium uptake increased

  15. Relación entre variación fenotípica y éxito reproductor en "Olea europaea"

    OpenAIRE

    Granado Yela, Carlos

    2012-01-01

    El objetivo general de la presente memoria doctoral es estudiar la relación entre la variación fenotípica en el acebuche (Olea europaea L.) y el éxito reproductor de sus individuos. Mediante una aproximación a tres escalas (intra-individual, inter-individual e interpoblacional) se busca valorar la importancia en la variación fenotípica de: a) la modularidad; b) la plasticidad fenotípica; c) la ontogenia; d) la diferenciación (genética) entre individuos y poblaciones; y e) el ambiente local y ...

  16. Necessidades Hídricas e Resposta da Oliveira (olea europaea l.) Ao Deficit Hídrico na Região da Terra Quente

    OpenAIRE

    Silva, Anabela Afonso Fernandes

    2008-01-01

    A oliveira (Olea europaea L.) tem sido tradicionalmente cultivada em condições de sequeiro. Contudo, nos últimos anos tem-se assistido a uma expansão do olival em condições de regadio, o que tem suscitado uma série de questões, nomeadamente sobre as necessidades hídricas e a resposta produtiva resultante. Foi neste sentido que se traçaram os objectivos gerais desta desta Tese: quantificar as necessidades de rega e caracterizar a resposta produtiva da oliveira na cv. “Cobrançosa” em função de ...

  17. Marcadores moleculares de ADN : análisis de variabilidad, relaciones genéticas y mapeo en olivo (Olea Europaea L.)

    OpenAIRE

    Domínguez García, Mª del Carmen

    2012-01-01

    El olivo (Olea europaea L.) es uno de los cultivos más antiguos de la cuenca mediterránea y cuenta con un gran patrimonio genético. Sin embargo, la tendencia actual en la mayoría de los países olivareros es hacia la utilización de pocas variedades muy populares. Por tanto la conservación de esta diversidad genética resulta de vital importancia para evitar su pérdida. Durante las últimas décadas, se han realizado importantes trabajos de prospección, recolección, caracterizaci...

  18. The first cytogenetic description of Euleptes europaea (Gené, 1839 from Northern Sardinia reveals the highest diploid chromosome number among sphaerodactylid geckos (Sphaerodactylidae, Squamata

    Directory of Open Access Journals (Sweden)

    Ekaterina Gornung

    2013-06-01

    Full Text Available The karyotype of a sphaerodactylid gecko Euleptes europaea (Gené, 1839 was assembled for the first time in this species. It is made of 2n = 42 gradually decreasing in size chromosomes, the highest chromosome number so far acknowledged in the family Sphaerodactylidae. The second chromosome pair of the karyotype appears slightly heteromorphic in the male individual. Accordingly, FISH with a telomeric probe revealed an uneven distribution of telomeric repeats on the two homologues of this pair, which may be indicative of an XY sex-determination system in the species, to be further investigated.

  19. 氮素和水分添加对贝加尔针茅草原土壤氨氧化微生物群落结构的影响%Differential Responses of Ammonia-oxidizers Communities to Nitrogen and Water Addition inStipa baicalensis Steppe, Inner Mongolia, Northern China

    Institute of Scientific and Technical Information of China (English)

    王杰; 李刚; 赖欣; 宋晓龙; 赵建宁; 杨殿林

    2015-01-01

    Atmospheric nitrogen deposition and precipitation as an important phenomenon of global climate change have a great impact on grassland ecosystems. However, little is known about how the soil ammonia-oxidizing microorganisms respond to the both changes. Ammonia oxidization is a crucial step in the soil nitrification and greatly inlfuenced by soil nitrogen availability. We used PCR and DGGE (denaturing gradient gel electrophoresis) approaches to investigate the responses of AOB (ammonia-oxidizing bacteria) 16S rRNA and AOA (ammonia-oxidizing archaea)amoA genes to nitrogen and water input inStipa baicalensis steppe, Inner Mongolia, northern China. After two years of nitrogen and water addition treatment, it was found that PNA (potential nitriifcation activity) was greatly enhanced by lower N fertilization treatment under water addition and higher N fertilization under no-water addition, while it decreased markedly in higher N fertilization under water addition. The community structure of AOB responded more sensitively to N fertilization and water input than AOA, resulting in the significantly decreased diversity in the AOB community along with a higher N fertilizer rate, but an obvious increase in the AOA community, demonstrating the active growth of AOA in higher N fertilization soils. Phylogenetic analysis showed that AOB communities were dominated byNitrosospira clusters3, 4 andNitrososmonas clusters 6 under water addition andNitrosospira culsters 1, 3 and 4 and under no-water addition, while AOA communities were grouped intoCrenarchaeote clusters 1, 2 and 5 under no-water addition and Crenarchaeote clusters 1, 2 and water lineage under water addition. The differences between the two water addition regimes strongly suggest that water input acts as an important role in shifting AOA and AOB communities. Moreover, in contrast to the AOA, the diversity of AOB was negatively correlated with total N, NH4+, NO3-andpH under water addition, implying a signiifcant N

  20. Effects of long-term N fertilizer application and liming on nitrification and ammonia oxidizers in acidic soils%长期施加氮肥及氧化钙调节对酸性土壤硝化作用及氨氧化微生物的影响

    Institute of Scientific and Technical Information of China (English)

    张苗苗; 王伯仁; 李冬初; 贺纪正; 张丽梅

    2015-01-01

    High levels of N fertilization and acid deposition could cause soil acidification directly and indirectly. The nitrogen cycle, especially nitrification, makes a great contribution to the acidification of agricultural soils across China, which further leads to the mobilization of potentially toxic metals such as aluminum ( Al ) and manganese ( Mn ) and decerases crop yields. Chemicals ( e. g., CaO) are amended as soil conditioners to relieve soil acidification. Ammonia oxidation, the rate-limiting step in the nitrification process, is driven by ammonia-oxidizing bacteria ( AOB) and ammonia-oxidizing archaea ( AOA) . Increasing evidence demonstrates that pH is one of the most important factors determining the niche separation of AOA and AOB, and AOA play the more important role in nitrification of acidic soils. However, abundant AOB have been detected in acidic soils but little is known about their ecological function. In this study, the effects of long-term N fertilization practices and liming on nitrification and ammonia oxidizers in acidic soils were investigated using quantitative PCR and DGGE methods combined with soil physiochemical analysis. Compared with a previous study conducted 6 years ago at the same site, N fertilizer application without liming further decreased soil pH (3.35—3.47) and potential nitrification rate (PNR) (0.02—0.14 μg NO-2-N g-1 soil h-1), while 2 years liming alleviated soil acidification (pH 4.10—4.46) and increased PNR (0.22—0.34μg NO-2-N g-1 soil h-1) significantly. There was a significantly positive correlation between soil pH and PNR, indicating the increase in soil pH via liming had positive effects on nitrification in acidic soils. AOA amoA gene copy numbers ( 7. 40 × 107—4. 08 × 108 copies/g ) were significantly higher than their counterpart AOB (1.67 × 106—2.57 × 107 copies/g) in soils that received different chemical N fertilizers. Ratios of AOA and AOB amoA gene abundance ranged between 10. 9 and 44. 3

  1. Identification of new polymorphic regions and differentiation of cultivated olives (Olea europaea L. through plastome sequence comparison

    Directory of Open Access Journals (Sweden)

    Baldoni Luciana

    2010-09-01

    Full Text Available Abstract Background The cultivated olive (Olea europaea L. is the most agriculturally important species of the Oleaceae family. Although many studies have been performed on plastid polymorphisms to evaluate taxonomy, phylogeny and phylogeography of Olea subspecies, only few polymorphic regions discriminating among the agronomically and economically important olive cultivars have been identified. The objective of this study was to sequence the entire plastome of olive and analyze many potential polymorphic regions to develop new inter-cultivar genetic markers. Results The complete plastid genome of the olive cultivar Frantoio was determined by direct sequence analysis using universal and novel PCR primers designed to amplify all overlapping regions. The chloroplast genome of the olive has an organisation and gene order that is conserved among numerous Angiosperm species and do not contain any of the inversions, gene duplications, insertions, inverted repeat expansions and gene/intron losses that have been found in the chloroplast genomes of the genera Jasminum and Menodora, from the same family as Olea. The annotated sequence was used to evaluate the content of coding genes, the extent, and distribution of repeated and long dispersed sequences and the nucleotide composition pattern. These analyses provided essential information for structural, functional and comparative genomic studies in olive plastids. Furthermore, the alignment of the olive plastome sequence to those of other varieties and species identified 30 new organellar polymorphisms within the cultivated olive. Conclusions In addition to identifying mutations that may play a functional role in modifying the metabolism and adaptation of olive cultivars, the new chloroplast markers represent a valuable tool to assess the level of olive intercultivar plastome variation for use in population genetic analysis, phylogenesis, cultivar characterisation and DNA food tracking.

  2. 污水处理系统中硝化菌的菌群结构和动态变化%Community structures and population dynamics of nitrifying bacteria in activated sludges of wastewater treatment plants

    Institute of Scientific and Technical Information of China (English)

    曾薇; 张丽敏; 王安其; 张洁; 彭永臻; 段俊岭

    2015-01-01

    Community structures and population dynamics of nitrifying bacteria determine biological nitrogen removal from municipal wastewater. The population structures and dynamics of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in four full-scale wastewater treatment plants (WWTPs) were investigated in this study. Quantitative real-time PCR results showed that the abundance of AOB was in a range of 8.56×106~4.46×107cells/gMLSS, while NOB was varying in 3.37×108~1.53×109cells/gMLSS. In each processNitrospira was the dominant species of NOB. Nitrospiraabundance was obviously higher thanNitrobacter, accounting for 88% of total NOB. In the A2O process the abundances of AOB andNitrospira in winter were less than those in summer, leading to decline of biological nitrogen removal. The phylogenetic analysis of AOBamoA genes indicated that all the sequences were affiliated withgenera Nitrosomonas, among whichNitrosomonas oligotropha cluster was the dominant species, accounting for 60% of the clone libraries. The pre-dominant AOB wereNitrosomonas-likecluster andNitrosomonas europaea cluster, accounting for 29.6% and 9.1% of the clone libraries, respectively. N. europaea cluster was only found in A2O process, and reached 44.7% of total AOB in summer sample, which was a main reason causing high nitrite accumulation during summer operation of A2O process. The outcomes verified that the dominant AOB and NOB in WWTPs wasNitrosomonas and Nitrospira, respectively. Nitrifying bacteria accounted for 1%~7% of total bacteria. The abundances, relative distributions and community structures of nitrifying bacteria significantly influence the performance of biological nitrogen removal.%研究分析了4种不同工艺类型的城市污水处理厂中氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的丰度及菌群结构.实时定量PCR结果表明4种工艺中AOB菌群的丰度范围为8.56×106~4.46×107cells/gMLSS;NOB菌群的丰度为3.37×108~1.53×109cells/g

  3. Effect of Ganoderma lucidum (Reishi mushroom) or Olea europaea (olive) leaves on oxidative stability of rabbit meat fortified with n-3 fatty acids.

    Science.gov (United States)

    Trebušak, Tina; Levart, Alenka; Salobir, Janez; Pirman, Tatjana

    2014-03-01

    The objective of the present study was to evaluate the effect of Ganoderma lucidum (Reishi mushroom) or Olea europaea (olive tree) leaves on oxidative stability of rabbit meat fortified with n-3 fatty acids. Forty-eight slovenska kunka (SIKA) rabbits were divided into four homogeneous groups. The control group (CONT-) received diet with 6% palm fat; other groups received diet with 6% linseed oil and were either unsupplemented (CONT+) or supplemented with 1% of G. lucidum (REISHI) or O. europaea leaves (OLIVE). Rabbits were slaughtered and fatty acid composition, concentration of vitamin E and malondialdehyde (MDA) in back muscle were analyzed. The results showed that linseed oil addition improved fatty acid composition by increasing polyunsaturated fatty acid (PUFA) proportion, decreasing proportion of saturated fatty acid (SFA) and reducing n-6/n-3 ratio in rabbit meat. Groups that were supplemented with linseed oil had lower content of α-tocopherol and higher content of γ-tocopherol, compared to the CONT- group. The addition of potential antioxidants did not effectively prevent oxidation of rabbit meat. PMID:24334050

  4. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui' Induces Reduced Yield under Field Conditions.

    Directory of Open Access Journals (Sweden)

    Soumaya Dbara

    Full Text Available The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs and improving water use efficiency (WUE. Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea 'var. Chetoui' in a Tunisian grove were exposed to four treatments from May to October for three-years: 'control' plants received 100% of the potential evapotranspirative demand (ETc applied to the whole root-zone; 'PRD100' were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; 'PRD50' were given 50% of ETc to half of the root-system, and; 'rain-fed' plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during 'off-years' may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA were not altered by PRD100 irrigation, which may

  5. Partial root zone drying: regulation of photosynthetic limitations and antioxidant enzymatic activities in young olive (Olea europaea) saplings.

    Science.gov (United States)

    Aganchich, Badia; Wahbi, Said; Loreto, Francesco; Centritto, Mauro

    2009-05-01

    The effect of partial root drying (PRD) irrigation on split-root olive (Olea europaea L. cv Picholine marocaine) saplings was investigated. An irrigated control and two PRD regimes were applied (control: irrigation applied on both sides of the root system to keep the soil water content close to field capacity; PRD(50): irrigation applied at 50% of the control amount on one side of the root system and irrigation withheld from the other side, with irrigation regimes switched between the sides of the root system every 2 weeks; and PRD(100): irrigation applied at 100% of the control amount on one side and irrigation withheld on the other side, with irrigation regimes switched between the sides of the root system every 2 weeks. Only saplings in the PRD(50) regime were subjected to water-deficit irrigation. The PRD treatments significantly affected water relations and vegetative growth throughout the growing season. Predawn leaf water potential and relative water content differed significantly between the PRD(50) and PRD(100) saplings, leading to reduced stomatal conductance, carbon assimilation, shoot length and leaf number in PRD(50) saplings. However, the PRD(50) water-deficit treatment did not affect the capacity of the saplings to assimilate CO(2). Activities of superoxide dismutase, soluble and insoluble peroxidase (POX) and polyphenol oxidase were up-regulated by the PRD(50) and PRD(100) treatments compared with control values. The higher activities of both soluble and insoluble POX observed in PRD(50) saplings may reflect the greater inhibitory effect of this treatment on vegetative growth. Up-regulation of the detoxifying systems in the PRD(100) and PRD(50) saplings may have provided protection mechanisms against irreversible damage to the photosynthetic machinery, thereby allowing the photosynthetic apparatus to function and preventing the development of severe water stress. We also measured CO(2) assimilation rate/internal leaf CO(2) concentration (A

  6. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui') Induces Reduced Yield under Field Conditions.

    Science.gov (United States)

    Dbara, Soumaya; Haworth, Matthew; Emiliani, Giovani; Ben Mimoun, Mehdi; Gómez-Cadenas, Aurelio; Centritto, Mauro

    2016-01-01

    The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD) is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs) and improving water use efficiency (WUE). Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea 'var. Chetoui') in a Tunisian grove were exposed to four treatments from May to October for three-years: 'control' plants received 100% of the potential evapotranspirative demand (ETc) applied to the whole root-zone; 'PRD100' were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; 'PRD50' were given 50% of ETc to half of the root-system, and; 'rain-fed' plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during 'off-years' may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA) were not altered by PRD100 irrigation, which may indicate the

  7. Abundances of Ammonia-oxidizing Prokaryotes and Gross Nitrification Activities in Forest Soils Under Different Vegetations in a Natural Reserve%土地利用方式对万木林土壤氨氧化微生物丰度的影响

    Institute of Scientific and Technical Information of China (English)

    黄蓉; 张金波; 钟文辉; 贾仲君; 蔡祖聪

    2012-01-01

    In this study, the relative contribution of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to nitrification were investigated in acidic forested soils derived from granite in Wanmulin nature reserve, Jianou, Fujian Province of southern China. The abundances of AOA and AOB communities were determined by real-time quantitative polymerase chain reaction (qPCR), while gross nitrification activity was measured using "N-pool enrichment technique in soils under five different vegetations over 600 years plantation one orange cultivation system. The results showed that soil pH, the abundance of AOB and gross nitrification rate were significantly lower in natural vegetation soil than those soil cultivated with orange plant. Furthermore, a significant correlation between the population size of soil AOB and soil gross nitrification activity suggested that AOB might dominate autotrophic nitrification in forested soil typical of the low-pH ecosystems, particularly in orange soil. The copy number ratio of archaeal amoA to crcnarchaeota-specific 16S rRNA genes varied from 0.01% - 0.64% in all five natural vegetation soils while up to 5.32% in orange soil. The results indicated that not all archaea possessed ammonia-oxidizing functional gene of amoA and fertilization may facilitate AOA growth in soils cultivated with orange as well.%以我国亚热带地区典型花岗岩发育酸性红壤为研究对象,选取福建建瓯万木林自然保护区封禁保护下5种自然植被和1种人工种植植被土壤,采用荧光实时定量PCR (Real-time PCR)技术测定了土壤氨氧化细菌(AOB)和氨氧化古菌(AOA)的群落丰度,采用m5N稳定同位素成对标记和数值模型相结合的方法测定了土壤初级硝化速率.结果显示,长期封禁保护下的自然植被土壤 pH低,土壤AOB数量偏低.人为种植和管理显著提高了土壤pH,促进了AOB的生长,其丰度比自然条件下提高了2个数量级,土壤初级硝化速率也显著提高,并与AOB

  8. Pérdidas de fruto y movilización de semillas en Olea europaea var. sylvestris Brot. (Oleaceae

    Directory of Open Access Journals (Sweden)

    Alcántara, Julio M.

    1997-06-01

    Full Text Available We analyzed several aspects of the reproductive biology of wild olive (Olea europaea var. sylvestris. Brot. related to seed dispersal. The importance of several fruit fates (the way and condition in which fruits leave the tree is considered in two different habitats, one of which was surveyed in two consecutive years. We distinguished the following fruit fates: (a consumption by avian seed dispersers (fruit removal, (b loss due to different biotic (e.g. birds and insects, abiotic (e.g. weather and plant-controlled factors (e.g. abscission, and (c fruits remaining on the tree by the end of the season. The ranking of importance of each fruit fate did not differ between habitats, and was similar among individual trees, although the net valúes of each fate were highly variable among trees. On the average, in the two habitats and seasons the plant investment in fruit crop yielded a low reward in terms of fruit removal success (between 16 and 33 % of the total fruit crop. This was attributable to different factors in the two habitats; in one of them, wild olive fruit crop satiated the scarce avian seed dispersers, whereas in the other, interspecific competition for avian seed dispersers with Phyllirea latifolia probably diminished wild olive removal success. Total fruit losses increased during the second season (from 8 to 40 % of the total fruit crop. However, it did not set a limit to the total amount of seeds being dispersed. Fruit losses were mainly caused by abiotic factors rather than by biotic ones. The percentage of fruits (both unripe and ripe falling apparently healthy from the branches was higher than the percentage damaged by climatic factors (desiccated and frozen fruits. Among damaging biotic agents (pests and birds, the most frequent one was the larvae of the fly Dacus oleae, followed by birds (both dispersers that drop the fruit while handling and fruit predators and, accounting for a negligible percentage, the larvae of the moth Prays

  9. Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS

    Science.gov (United States)

    Ushakova, S. A.; Kovaleva, N. P.; Gribovskaya, I. V.; Dolgushev, V. A.; Tikhomirova, N. A.

    The accumulation of solid and liquid wastes in manmade ecosystems presents a problem that has not been efficiently solved yet. Urine, containing NaCl, are part of these products. This is an obstacle to the creation of biological systems with a largely closed material cycling, because the amount of solid and liquid wastes in them must be reduced to a minimum. A possible solution to the problem is to select plant species capable of utilizing sufficiently high concentrations of NaCl, edible for humans, and featuring high productivity. Until recently, the life support systems have included the higher plants that were either sensitive to salinization (wheat, many of the legumes, carrot, potato, maize) or relatively salt-resistant (barley, sugar beet, spinach). Salicomia europaea, whose above-ground part is fully edible for humans, is one of the most promising candidates to be included in life support systems. It is reported in the literature that this plant is capable of accumulating up to 50% NaCl (dry basis). Besides, excessive accumulation of sodium ions should bring forth a decrease in the uptake of potassium ions and other biogenic elements. The aim of this work is to study the feasibility of using S. europaea plants in growth chambers to involve NaCl into material cycling. Plants were grown in vegetation chambers at the irradiance of 100 or 150 W/m 2 PAR (photosynthetically active radiation) and the air temperature 24 °C, by two methods. The first method was to grow the plants on substrate - peat. The peat was supplemented with either 3% NaCl (Variant 1) or 6% NaCl (Variant 2) of the oven-dry mass of the peat. The second method was to grow the plants in water culture, using the solution with a full complement of nutrients, which contained 0.0005% of NaCl, 1% or 2%. The study showed that the addition of NaCl to the substrate or to the solution resulted in the formation of more succulent plants, which considerably increased their biomass. The amount of NaCl uptake

  10. De l’olivier à l’oléastre : origine et domestication de l’Olea europaea L. dans le Bassin méditerranéen

    OpenAIRE

    Breton, Catherine; Médail, Frédéric; Pinatel, Christian; Berville, Andre

    2006-01-01

    De l’olivier à l’oléastre : origine et domestication de l’Olea europaea L. dans le Bassin méditerranéen Keywords : VEGETAL PRODUCTIONS, NATURAL RESOURCES AND ENVIRONMENTRésumé : L’olivier occupe la 24 e place des 35 espèces les plus cultivées dans le monde. La diversité phénologique des cultivars est remarquable et l’intérêt économique de l’espèce est majeur. Pourtant peu d’études ont porté sur la domestication de l’olivier et sur les relations entre l’olivier et sa forme sauvage, l’oléastre....

  11. A De novo Transcriptomic Approach to Identify Flavonoids and Anthocyanins "Switch-Off" in Olive (Olea europaea L.) Drupes at Different Stages of Maturation.

    Science.gov (United States)

    Iaria, Domenico L; Chiappetta, Adriana; Muzzalupo, Innocenzo

    2015-01-01

    Highlights A de novo transcriptome reconstruction of olive drupes was performed in two genotypesGene expression was monitored during drupe development in two olive cultivarsTranscripts involved in flavonoid and anthocyanin pathways were analyzed in Cassanese and Leucocarpa cultivarsBoth cultivar and developmental stage impact gene expression in Olea europaea fruits. During ripening, the fruits of the olive tree (Olea europaea L.) undergo a progressive chromatic change characterized by the formation of a red-brown "spot" which gradually extends on the epidermis and in the innermost part of the mesocarp. This event finds an exception in the Leucocarpa cultivar, in which we observe a destabilized equilibrium between the metabolisms of chlorophyll and other pigments, particularly the anthocyanins whose switch-off during maturation promotes the white coloration of fruits. Despite its importance, genomic information on the olive tree is still lacking. Different RNA-seq libraries were generated from drupes of "Leucocarpa" and "Cassanese" olive genotypes, sampled at 100 and 130 days after flowering (DAF), and were used in order to identify transcripts involved in the main phenotypic changes of fruits during maturation and their corresponding expression patterns. A total of 103,359 transcripts were obtained and 3792 and 3064 were differentially expressed in "Leucocarpa" and "Cassanese" genotypes, respectively, during 100-130 DAF transition. Among them flavonoid and anthocyanin related transcripts such as phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol 3'-hydrogenase (F3'H), flavonol 3'5 '-hydrogenase (F3'5'H), flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), UDP-glucose:anthocianidin: flavonoid glucosyltransferase (UFGT) were identified. These results contribute to reducing the current gap in

  12. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui') Induces Reduced Yield under Field Conditions

    Science.gov (United States)

    Dbara, Soumaya; Haworth, Matthew; Emiliani, Giovani; Ben Mimoun, Mehdi; Gómez-Cadenas, Aurelio; Centritto, Mauro

    2016-01-01

    The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD) is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs) and improving water use efficiency (WUE). Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea ‘var. Chetoui’) in a Tunisian grove were exposed to four treatments from May to October for three-years: ‘control’ plants received 100% of the potential evapotranspirative demand (ETc) applied to the whole root-zone; ‘PRD100’ were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; ‘PRD50’ were given 50% of ETc to half of the root-system, and; ‘rain-fed’ plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during ‘off-years’ may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA) were not altered by PRD100 irrigation

  13. Shifts in the dominant populations of ammoniaoxidizing ß-subclass Proteobacteria along the eutrophic Schelde estuary

    NARCIS (Netherlands)

    Bie, de M.J.M.; Speksnijder, A.G.C.L.; Kowalchuk, G.A.; Schuurman, T.; Zwart, G.; Stephen, J.R.; Diekmann, O.E.; Laanbroek, H.J.

    2001-01-01

    The community structure of ammonia-oxidizing bacteria of the beta -subclass Proteobacteria was investigated with respect to environmental gradients along the Schelde, a eutrophic estuary system. A dominance of Nitrosomonas-Like sequences was detected using molecular techniques targeting the 16S rRNA

  14. Uses Semi–quantitative and Relative Quantity Methods to Analysis Gene Expression of DGAT1 Gene Responsible for the Olive Diacylglcerol Acyltransferases in 10 Cultivars of Olive (Olea europaea. L)

    OpenAIRE

    Ali Saeed Atiyah AL-Janabi

    2015-01-01

    In this study gene expression for DGAT1 gene was analyzed. Diacylglycerol acyltransferases (DGATs) catalyze the final step of the triacylglycerol (TAG) biosynthesis of the Kennedy pathway. Two major gene families have been shown to encode DGATs, DGAT1 (type-1) and DGAT2 (type-2). Gene expression were analyzed for 10 Olive cultivars (Olea europaea L.) (Khaderi, Qaysi, Manzenillo, Baashiqi, Arabqween, Nabali, Labeeb, Dahkan, Shami and Sorani). Different plant organs as plant materials (mature l...

  15. Formation of hydroxylamine on dust grains via ammonia oxidation

    CERN Document Server

    He, Jiao; Lemaire, Jean-Louis; Garrod, Robin T

    2015-01-01

    The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH$_2$OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH$_2$OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH$_2$OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH$_2$OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH$_3$. Suggestions of conditions for future observations are provided.

  16. Hotspots of anaerobic ammonia oxidation in land - freshwater interfaces

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Weidong;

    2013-01-01

    sampled fromlake riparian zones in North China. Laboratory incubations in the presence of ammonium or nitrate—at concentrations equivalent to no more than 10% of those detected in situ—yielded some of the highest potential anammox activities reported for natural environments to date. Potential rates of......For decades, the conversion of organic nitrogen to dinitrogen gas by heterotrophic bacteria, termed heterotrophic denitrification, was assumed to be the main pathway of nitrogen loss in natural ecosystems. Recently, however, autotrophic bacteria have been shown to oxidize ammonium in the absence of...... anammox peaked in sediments sampled from the interface between the land and the water, as did the abundance of annamox bacteria. Scaling our findings up to the entire lake system, we estimate that interfacial anammox hotspots account for the loss of 103 gNm-2 yr-1 from this lake region, and around one...

  17. Anaerobic ammonia oxidation in a fertilized paddy soil

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Yu;

    2011-01-01

    anammox 16S rRNA genes retrieved from the deeper soil were affiliated to ‘Brocadia’. The retrieval of mainly bacterial amoA sequences in the upper part of the paddy soil indicated that nitrifying bacteria may be the major source of nitrite for anammox bacteria in the cultivated horizon. In the deeper...... oxygen-limited parts, only archaeal amoA sequences were found, indicating that archaea may produce nitrite in this part of the soil. It is estimated that a total loss of 76 g N m−2 per year is linked to anammox in the paddy field.......Evidence for anaerobic ammonium oxidation in a paddy field was obtained in Southern China using an isotope-pairing technique, quantitative PCR assays and 16S rRNA gene clone libraries, along with nutrient profiles of soil cores. A paddy field with a high load of slurry manure as fertilizer was...

  18. FORMATION OF HYDROXYLAMINE ON DUST GRAINS VIA AMMONIA OXIDATION

    International Nuclear Information System (INIS)

    The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH2OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH2OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH2OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH2OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH3. Suggestions of conditions for future observations are provided

  19. FORMATION OF HYDROXYLAMINE ON DUST GRAINS VIA AMMONIA OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiao; Vidali, Gianfranco [Physics Department, Syracuse University, Syracuse, NY 13244 (United States); Lemaire, Jean-Louis [Paris Observatory, F-75014 Paris (France); Garrod, Robin T., E-mail: gvidali@syr.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)

    2015-01-20

    The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH{sub 2}OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH{sub 2}OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH{sub 2}OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH{sub 2}OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH{sub 3}. Suggestions of conditions for future observations are provided.

  20. 封闭循环养殖系统中β变形菌亚纲氨氧化细菌的引物特异性%Comparing the primer specificity for betaproteobacterial ammonia-oxidizing bacteria in recirculation aquaculture systems

    Institute of Scientific and Technical Information of China (English)

    裴芳芳; 朱鹏; 闵航; 陆开宏; 叶央芳

    2011-01-01

    [目的]为探讨4对不同的引物对封闭循环养殖系统生物膜中β变形菌亚纲氨氧化细菌(β-AOB)的特异性差异.[方法]采用16S rDNA文库克隆技术对β-AOB的多样性进行了分析.[结果]以引物CTO 189f/CTO654r扩增构建的文库中所含β-AOB比例最高,可达67.3%.不同封闭循环养殖系统的生物膜对引物的扩增效率有明显的影响,其中以养殖尼罗罗非鱼的封闭循环养殖系统生物膜为DNA来源的,引物均有较高的扩增效率.[结论]针对封闭循环养殖系统生物膜中的β-AOB,特异性最高的是CTO189f/CTO654r引物.%[ Objective ] To analyze the difference of specificity of four primers for betaproteobacterial ammonia-oxidizing bacteria ( (β-AOB) 16S rDNA gene from the biofilm of closed recirculation aquaculture systems. [ Methods] We used 16S rDNA clone libraries to describe the β-AOB diversity. [Results] CTO189f/CTO654r produced the highest frequency of β-AOB-like sequences (67.3%). The amplification performance of primer was noticeably influenced by the biofilm samples. Hereinto, the biofilm of closed recirculation aquaculture systems of Tilapia nilotica resulted in the higher amplification performance of primers. [Conclusion] CTO189f/CTO654r exhibited the highest specific for β-AOB 16S rDNA gene from the biofilm of closed recirculation aquaculture systems.

  1. A De novo Transcriptomic Approach to Identify Flavonoids and Anthocyanins “Switch-Off” in Olive (Olea europaea L.) Drupes at Different Stages of Maturation

    Science.gov (United States)

    Iaria, Domenico L.; Chiappetta, Adriana; Muzzalupo, Innocenzo

    2016-01-01

    Highlights A de novo transcriptome reconstruction of olive drupes was performed in two genotypesGene expression was monitored during drupe development in two olive cultivarsTranscripts involved in flavonoid and anthocyanin pathways were analyzed in Cassanese and Leucocarpa cultivarsBoth cultivar and developmental stage impact gene expression in Olea europaea fruits. During ripening, the fruits of the olive tree (Olea europaea L.) undergo a progressive chromatic change characterized by the formation of a red-brown “spot” which gradually extends on the epidermis and in the innermost part of the mesocarp. This event finds an exception in the Leucocarpa cultivar, in which we observe a destabilized equilibrium between the metabolisms of chlorophyll and other pigments, particularly the anthocyanins whose switch-off during maturation promotes the white coloration of fruits. Despite its importance, genomic information on the olive tree is still lacking. Different RNA-seq libraries were generated from drupes of “Leucocarpa” and “Cassanese” olive genotypes, sampled at 100 and 130 days after flowering (DAF), and were used in order to identify transcripts involved in the main phenotypic changes of fruits during maturation and their corresponding expression patterns. A total of 103,359 transcripts were obtained and 3792 and 3064 were differentially expressed in “Leucocarpa” and “Cassanese” genotypes, respectively, during 100–130 DAF transition. Among them flavonoid and anthocyanin related transcripts such as phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol 3′-hydrogenase (F3′H), flavonol 3′5 ′-hydrogenase (F3′5′H), flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), UDP-glucose:anthocianidin: flavonoid glucosyltransferase (UFGT) were identified. These results contribute

  2. Polen atmosférico de Olea europaea L. en Madrid (Ciudad Universitaria y Aranjuez durante los años 1994-1997

    Directory of Open Access Journals (Sweden)

    Sáenz Laín, Concepción

    1999-12-01

    Full Text Available The results of four years of study (1994-1997 of the atmospheric levéis of pollen from Olea europaea L. in Madrid and Aranjuez are presented. The principal pollination period (PPP for each year and each season were calculated, using the mean daily concentrations, and fell between weeks 16 and 26, with maximum daily valúes registered between 3rd May and 7th June. The presence of olive pollen was greater in Aranjuez than in Madrid (mean 3,307 grains of pollen/year and 2,123 grains/year, respectively. The pollen season was similar in each locality. A preliminary comparison of pollen data with temperature and precipitation seems to indicates that accumulated pre-season temperatures, but not rainfall, can have decisive influence on the initiation of pollination. His nuclear what influence rainfall has on the account of pollen collected.Presentamos los resultados obtenidos durante cuatro años de estudio (1994-1997 del contenido atmosférico de polen de Olea europaea L. en Madrid (Ciudad Universitaria y en Aranjuez. A partir de las concentraciones medias diarias, hemos calculado el Período de Polinización Principal (PPP para cada año y cada estación, que se ha producido siempre entre las semanas 16 y 26, con valores máximos diarios registrados entre el 3 de mayo y el 7 de junio. La presencia del polen de olivo ha sido mayor en Aranjuez que en Madrid (media del período, 3.307 granos de polen/año y 2.123, respectivamente. Las estación polínica transcurre de forma similar en ambas localidades. De una primera comparación de los datos polínicos con los datos de temperatura y precipitación, parece deducirse que las temperaturas acumuladas durante el período preestacional pueden tener una influencia decisiva en el inicio de la polinización, no así las precipitaciones. Tampoco parece clara su influencia sobre el total anual de polen recogido.

  3. Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress.

    Science.gov (United States)

    Zouari, Mohamed; Ben Ahmed, Chedlia; Elloumi, Nada; Bellassoued, Khaled; Delmail, David; Labrousse, Pascal; Ben Abdallah, Ferjani; Ben Rouina, Bechir

    2016-06-01

    Proline plays an important role in plant response to various environmental stresses. However, its involvement in mitigation of heavy metal stress in plants remains elusive. In this study, we examined the effectiveness of exogenous proline (10 and 20mM) in alleviating cadmium induced inhibitory effects in young olive plants (Olea europaea L. cv. Chemlali) exposed to two Cd levels (10 and 30mg CdCl2kg(-1) soil). The Cd treatment induced substantial accumulation of Cd in both root and leaf tissues and a decrease in gas exchange, photosynthetic pigments contents, uptake of essential elements (Ca, Mg and K) and plant biomass. Furthermore, an elevation of antioxidant enzymes activities (superoxide dismutase, catalase, glutathione peroxydase) and proline content in association with relatively high amounts of hydrogen peroxide, thiobarbituric acid reactive substances and electrolyte leakage were observed. Interestingly, the application of exogenous proline alleviated the oxidative damage induced by Cd accumulation. In fact, Cd-stressed olive plants treated with proline showed an increase of antioxidant enzymes activities, photosynthetic activity, nutritional status, plant growth and oil content of olive fruit. Generally, it seems that proline supplementation alleviated the deleterious effects of young olive plants exposed to Cd stress. PMID:26946284

  4. Identification of leaf volatiles from olive (Olea europaea) and their possible role in the ovipositional preferences of olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae).

    Science.gov (United States)

    Malheiro, Ricardo; Casal, Susana; Cunha, Sara C; Baptista, Paula; Pereira, José Alberto

    2016-01-01

    The olive fly, Bactrocera oleae (Rossi), is a monophagous pest that displays an oviposition preference among cultivars of olive (Olea europaea L.). To clarify the oviposition preference, the olive leaf volatiles of three olive cultivars (Cobrançosa, Madural and Verdeal Transmontana) were assessed by headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) at six different periods of olive fruit maturation and degrees of infestation. A total of 39 volatiles were identified, mainly esters and alcohols, with a minor percentage of aldehydes, ketones and terpenic compounds, including sesquiterpenes. At sampling dates with higher degrees of infestation, cv. Cobrançosa had, simultaneously, significantly lower infestation degrees and higher volatile amounts than the other two cultivars, with a probable deterrent effect for oviposition. The green leaf volatiles (GLVs) (Z)-3-hexen-1-ol and (Z)-3-hexen-1-ol acetate) were the main compounds identified in all cultivars, together with toluene. The abundance of GLVs decreased significantly throughout maturation, without significant differences among cultivars, while toluene showed a general increase and positive correlation with olive fly infestation levels. The results obtained could broaden our understanding of the roles of various types and amounts of olive volatiles in the environment, especially in olive fly host selection and cultivar preference. PMID:26603276

  5. Variability of Virgin Olive Oil Phenolic Compounds in a Segregating Progeny from a Single Cross in Olea europaea L. and Sensory and Nutritional Quality Implications

    Science.gov (United States)

    Pérez, Ana G.; León, Lorenzo; Pascual, Mar; Romero-Segura, Carmen; Sánchez-Ortiz, Araceli; de la Rosa, Raúl; Sanz, Carlos

    2014-01-01

    Virgin olive oil phenolic compounds are responsible for its nutritional and sensory quality. The synthesis of phenolic compounds occurs when enzymes and substrates meet as olive fruit is crushed during the industrial process to obtain the oil. The genetic variability of the major phenolic compounds of virgin olive oil was studied in a progeny of the cross of Picual x Arbequina olive cultivars (Olea europaea L.). They belong to four different groups: compounds that included tyrosol or hydroxytyrosol in their molecules, lignans, flavonoids, and phenolic acids. Data of phenolics in the oils showed that the progeny displayed a large degree of variability, widely transgressing the genitor levels. This high variability can be of interest on breeding programs. Thus, multivariate analysis allowed to identify genotypes within the progeny particularly interesting in terms of phenolic composition and deduced organoleptic and nutritional quality. The present study has demonstrated that it is possible to obtain enough degree of variability with a single cross of olive cultivars for compounds related to the nutritional and organoleptic properties of virgin olive oil. PMID:24651694

  6. Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012-2014

    Science.gov (United States)

    Plaza, M. P.; Alcázar, P.; Galán, C.

    2016-04-01

    Olea europaea L. pollen is the second-largest cause of pollinosis in the southern Iberian Peninsula. Airborne-pollen monitoring networks provide essential data on pollen dynamics over a given study area. Recent research, however, has shown that airborne pollen levels alone do not always provide a clear indicator of actual exposure to aeroallergens. This study sought to evaluate correlations between airborne concentrations of olive pollen and Ole e 1 allergen levels in Córdoba (southern Spain), in order to determine whether atmospheric pollen concentrations alone are sufficient to chart changes in hay fever symptoms. The influence of major weather-related variables on local airborne pollen and allergen levels was also examined. Monitoring was carried out from 2012 to 2014. Pollen sampling was performed using a Hirst-type sampler, following the protocol recommended by the Spanish Aerobiology Network. A multi-vial cyclone sampler was used to collect aeroallergens, and allergenic particles were quantified by ELISA assay. Significant positive correlations were found between daily airborne allergen levels and atmospheric pollen concentrations, although there were occasions when allergen was detected before and after the pollen season and in the absence of airborne pollen. The correlation between the two was irregular, and pollen potency displayed year-on-year variations and did not necessarily match pollen-season-intensity.

  7. 南海北部陆坡表层沉积物氨氧化古菌多样性初探%Diversity of Ammonia-Oxidizing Archaea in the Surface Sediments of the Northern Continental Slope of the South China Sea

    Institute of Scientific and Technical Information of China (English)

    刘国辉; 吴后波

    2016-01-01

    基于南海北部陆坡不同深度梯度3个站位表层沉积物古菌氨单加氧酶基因(amoA)文库,对3个站位氨氧化古菌进行多样性和系统发育学分析。多种方法构建的系统发育树表明:3个站位所有的amoA基因序列都隶属于奇古菌门中Group I分枝内的Group I.1a系群,且各站位之间氨氧化古菌多样性没有明显的差异。501站位黑色砂质沉积物中古菌amoA基因与该站位的16S rRNA基因的系统发育比对显示:这2种基因标记的系统发育树整体上具有潜在的对应关系,说明对样品的氨氧化古菌多样性分析比较全面且可靠;并进一步暗示该样品中氨的硝化作用主要由奇古菌门下的Group I.1a系群来执行。由此可以推测:Group I.1a系群可能在南海北部表层沉积物中氮素的生物地球化学循环过程中扮演重要的角色。%Surface sediment samples were taken from three sites of different water depths at the northern continental slope of the South China Sea to investigate the community structure of ammonia-oxidizing archaea (AOA). Polymerase chain reaction (PCR) was employedto amplify the archaealammonia monooxygenase αsubunit(amoA) gene of AOA. Amplicons of theamoAgene sequences were used to understand the diversity and phylogenetic relationship of AOA. The main results were as follows: 1) All of thearchaealamoAgenesequences from the three locations were affiliated toGroup I.1aThaumarchaeota; 2)all ofthe archaealamoAgene sequences from the three locations were phylogenetically closely related; and 3) the16S rRNA gene andamoAgene phylogenetic trees were ofcongruent topology.Thaumarchaeota accounted for 40% of the total archaea, indicating that AOA might play an important role in the nitrogen biogeochemical cycling in the surface sediments of the northern continental slope of the South China Sea.

  8. Effects of Long Term Application of Urea on Ammonia Oxidizing Archaea Community in Black Soil in Northeast China%长期施用尿素对东北黑土中氨氧化古菌群落的影响

    Institute of Scientific and Technical Information of China (English)

    周晶; 姜昕; 周宝库; 马鸣超; 关大伟; 赵百锁; 陈三凤; 李俊

    2016-01-01

    Objective] This paper aimed to investigate the characteristics of ammonia oxidizing archaeal (AOA) communities in black soil under long-term fertilization in Northeast China to identify the effects of different doses of urea on the abundance and structure of the AOA community. Combined with the soil physiochemical characteristics, the main driving factors would be revealed. This study provides evidence for further understanding of the nitrification process and mechanism in black soil and enhanced fertilization method.[Method]Based on a 34 year fertilization experiment in Heilongjiang Academy of Agricultural Sciences, three groups of samples were selected with different fertilization including samples without urea (without fertilizer CK and phosphorus-potassium PK), samples with one-time urea (one time nitrogen N1, nitrogen-phosphorus NP, nitrogen-phosphorus- potassium NPK and nitrogen-potassium NK) and samples with two-time urea (two time nitrogen N2). We applied 454 pyrosequencing and quantitative PCR of theArch-amoA gene to analyze the effects of urea on the AOA communities in black soil. A correlation analysis was carried out to reveal the main important factors for determining the AOA community composition.[Result]It was found that AOAArch-amoA copy numbers in black soil were obviously reduced from 2.64×107 to 8.34×105 /g soil along with the increase of the urea amount, and pH in black soil was the direct reason for the decrease of the Arch-amoA gene. Both clustering and Nonmetric Multidimensional Scaling (NMDS) analyzed result proved that the AOA community structure in each fertilizer treatment with the same urea inputs was similar with each other, while the AOA community structure in fertilizer treatments with different urea addition was significantly different with each other. And a redundancy analysis indicated that soil pH, concentration of water soluble organic carbon and nitrate were the main environmental factors (P< 0.05) affecting the AOA community

  9. Biochemistry of Ammonia Monoxygenase from Nitrosomonas

    Energy Technology Data Exchange (ETDEWEB)

    Alan Hooper

    2009-07-15

    Major results. 1. CytochromecM552, a protein in the electron transfer chain to ammonia monooxygenase. Purification, modeling of protein structure based on primary structure, characterization of 4 hemes by magnetic spectroscopy, potentiometry, ligand binding and turnover. Kim, H. J., ,Zatsman, et al. 2008). 2. Characterization of proteins which thought to be involved in the AMO reaction or to protect AMO from toxic nitrogenous intermediates such as NO. Nitrosocyanin is a protein present only in bacteria which catalyze the ammonia monoxygenase reaction (1). Cytochrome c P460 beta and cytochrome c’ beta.

  10. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    Science.gov (United States)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2014-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification by various microorganisms. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathways. To determine representative SP values for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for the NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  11. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    Directory of Open Access Journals (Sweden)

    T. Yamazaki

    2013-10-01

    Full Text Available Nitrous oxide (N2O is a potent greenhouse gas and produced in denitrification and nitrification in environmental nitrogen cycle by various microorganism. Site preference (SP of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathway. To determine representative SP value for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO purified from two species of ammonia oxidizing bacteria (AOB, Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR from Paracoccus denitrificans, respectively. The SP value for NOR reaction (−5.9 ± 2.1‰ showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰ was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2– reduction (which is followed by NO reduction to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for NH2OH oxidation pathway possibly due to a small contribution of NO2– reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  12. Assessing Animal Welfare Impacts in the Management of European Rabbits (Oryctolagus cuniculus, European Moles (Talpa europaea and Carrion Crows (Corvus corone.

    Directory of Open Access Journals (Sweden)

    Sandra E Baker

    Full Text Available Human-wildlife conflict is a global issue. Attempts to manage this conflict impact upon wild animal welfare, an issue receiving little attention until relatively recently. Where human activities harm animal welfare these effects should be minimised where possible. However, little is known about the welfare impacts of different wildlife management interventions, and opinions on impacts vary widely. Welfare impacts therefore need to be assessed objectively. Our objectives were to: 1 establish whether an existing welfare assessment model could differentiate and rank the impacts of different wildlife management interventions (for decision-making purposes; 2 identify and evaluate any additional benefits of making formal welfare assessments; and 3 illustrate issues raised by application of the model. We applied the welfare assessment model to interventions commonly used with rabbits (Oryctolagus cuniculus, moles (Talpa europaea and crows (Corvus corone in the UK. The model ranked interventions for rabbits (least impact first: fencing, head shot, chest shot and crows (shooting, scaring, live trapping with cervical dislocation. For moles, managing molehills and tunnels scored least impact. Both spring trapping, and live trapping followed by translocation, scored greater impacts, but these could not be compared directly as they scored on different axes of the model. Some rankings appeared counter-intuitive, highlighting the need for objective formal welfare assessments. As well as ranking the humaneness of interventions, the model highlighted future research needs and how Standard Operating Procedures might be improved. The model is a milestone in assessing wildlife management welfare impacts, but our research revealed some limitations of the model and we discuss likely challenges in resolving these. In future, the model might be developed to improve its utility, e.g. by refining the time-scales. It might also be used to reach consensus among

  13. Assessing Animal Welfare Impacts in the Management of European Rabbits (Oryctolagus cuniculus), European Moles (Talpa europaea) and Carrion Crows (Corvus corone).

    Science.gov (United States)

    Baker, Sandra E; Sharp, Trudy M; Macdonald, David W

    2016-01-01

    Human-wildlife conflict is a global issue. Attempts to manage this conflict impact upon wild animal welfare, an issue receiving little attention until relatively recently. Where human activities harm animal welfare these effects should be minimised where possible. However, little is known about the welfare impacts of different wildlife management interventions, and opinions on impacts vary widely. Welfare impacts therefore need to be assessed objectively. Our objectives were to: 1) establish whether an existing welfare assessment model could differentiate and rank the impacts of different wildlife management interventions (for decision-making purposes); 2) identify and evaluate any additional benefits of making formal welfare assessments; and 3) illustrate issues raised by application of the model. We applied the welfare assessment model to interventions commonly used with rabbits (Oryctolagus cuniculus), moles (Talpa europaea) and crows (Corvus corone) in the UK. The model ranked interventions for rabbits (least impact first: fencing, head shot, chest shot) and crows (shooting, scaring, live trapping with cervical dislocation). For moles, managing molehills and tunnels scored least impact. Both spring trapping, and live trapping followed by translocation, scored greater impacts, but these could not be compared directly as they scored on different axes of the model. Some rankings appeared counter-intuitive, highlighting the need for objective formal welfare assessments. As well as ranking the humaneness of interventions, the model highlighted future research needs and how Standard Operating Procedures might be improved. The model is a milestone in assessing wildlife management welfare impacts, but our research revealed some limitations of the model and we discuss likely challenges in resolving these. In future, the model might be developed to improve its utility, e.g. by refining the time-scales. It might also be used to reach consensus among stakeholders about

  14. Differential Contribution of Endoplasmic Reticulum and Chloroplast ω-3 Fatty Acid Desaturase Genes to the Linolenic Acid Content of Olive (Olea europaea) Fruit.

    Science.gov (United States)

    Hernández, M Luisa; Sicardo, M Dolores; Martínez-Rivas, José M

    2016-01-01

    Linolenic acid is a polyunsaturated fatty acid present in plant lipids, which plays key roles in plant metabolism as a structural component of storage and membrane lipids, and as a precursor of signaling molecules. The synthesis of linolenic acid is catalyzed by two different ω-3 fatty acid desaturases, which correspond to microsomal- (FAD3) and chloroplast- (FAD7 and FAD8) localized enzymes. We have investigated the specific contribution of each enzyme to the linolenic acid content in olive fruit. With that aim, we isolated two different cDNA clones encoding two ω-3 fatty acid desaturases from olive (Olea europaea cv. Picual). Sequence analysis indicates that they code for microsomal (OepFAD3B) and chloroplast (OepFAD7-2) ω-3 fatty acid desaturase enzymes, different from the previously characterized OekFAD3A and OekFAD7-1 genes. Functional expression in yeast of the corresponding OepFAD3A and OepFAD3B cDNAs confirmed that they encode microsomal ω-3 fatty acid desaturases. The linolenic acid content and transcript levels of olive FAD3 and FAD7 genes were measured in different tissues of Picual and Arbequina cultivars, including mesocarp and seed during development and ripening of olive fruit. Gene expression and lipid analysis indicate that FAD3A is the gene mainly responsible for the linolenic acid present in the seed, while FAD7-1 and FAD7-2 contribute mostly to the linolenic acid present in the mesocarp and, therefore, in the olive oil. These results also indicate the relevance of lipid trafficking between the endoplasmic reticulum and chloroplast in determining the linolenic acid content of membrane and storage lipids in oil-accumulating photosynthetic tissues. PMID:26514651

  15. The influence of light, temperature and feeding on the growth of the Coras cladocora caespitosa and Balanophyllia europaea; L'influenza di luce, temperatura e alimentazione sulla crescita dei coralli mediterranei Cladocora caespitosa e Balanophyllia europaea. Risultati preliminari di una sperimentazione in ambiente controllato

    Energy Technology Data Exchange (ETDEWEB)

    Rodolfo-Metalpa, R.; Abbate, M.; Peirano, A. [ENEA, Divisione Ambiente Globale e Mediterraneo, Centro Ricerche S. Teresa, La Spezia (Italy)

    2001-07-01

    In the course of the environmental studies, carried out by ENEA-CRAM Center of S. Teresa near La Spezia, research has been performed about bioconstructional organisms in the Mediterranean Sea. To understand how these organisms respond to environmental parameters an experiment has been carried out in aquaria. Specimens of the Mediterranean coral Cladocora caespitosa and Balanophyllia europaea has been maintained in 80 independent aquaria for four months. Growth rates, pigments concentration and asexual reproduction of the corals were compared in experimental procedures with controlled conditions of light, temperature and food. Environmental parameters have been set out to simulate natural (winter and summer) ambient in the Ligurian Sea. Heterotrophic and autotrophic abilities of the corals have been compared. Results show different growth rates between the two species but similar heterotrophic growth patterns. Summer temperature largely influences growth rates and asexual reproduction of the species while light influence is small. [Italian] Nell'ambito delle ricerche svolte dall'ENEA sullo studio degli organismi biocostruttori nell'ambiente marino, e' stata svolta una sperimentazione al fine di valutare l'influenza di alcuni parametri ambientali (luce, temperatura e alimentazione), impostati in modo da simulare la naturale stagionalita' (inverno ed estate), sulla crescita e sulla riproduzione asessuale dei coralli mediterranei Cladocora caespitosa e Balanophyllia europaea. Queste sperimentazioni sono state condotte, per un periodo di circa quattro mesi, in ottanta acquari indipendenti caratterizzati da differenti livelli di luce, temperatura e alimentazione. Le valutazioni degli incrementi di peso e della crescita lineare sono state eseguite utilizzando differenti metodiche note in letteratura. Soprattutto la tecnica del Peso Galleggiante (Buoyant Weight) si e' dimostrata molto sensibile ed efficace. La capacita' (eterotrofia

  16. Effects of Long-term Fertilization on Diversity of AmmoniaOxidizing Archaea Communities and Abundance in Dry Highland Soil of Loess Plateau%长期施肥对黄土旱塬黑垆土氨氧化古菌群落多样性和丰度的影响

    Institute of Scientific and Technical Information of China (English)

    武传东; 辛亮; 李秀颖; 王保莉; 曲东

    2011-01-01

    [Objective] In order to improve the efficiency of nitrogen utilization and explicate the function of ammonia-oxidizing archaea (AOA) under the changes of soil quality in the Loess Plateau, the community structure diversity and abundance of AOA were studied. [Method] The influence of long-term fertilization treatments including CK, M, NM, PM and NPM on soil AOA community structure diversity and amoA gene copy numbers were analyzed by restriction fragment length polymorphism (PCR-RFLP) and real-time PCR. [Result] From the clone libraries of the different fertilization treatments, there were 25,18,29,20 and 30 restriction endonuclease types, respectively. The a diversity indices indicated that there was a pronounced difference among five fertilizer treatments. The OTUs was the highest in NPM treatment and the lowest diversity in M treatment. The rescaled distance matrix tree indicated that the different fertilization had the largest convergence coefficient of AOA community types with the CK treatment soil, so the different fertilization led to significant changes of AOA communities. The amoA gene copy numbers of AOA changes were different among the treatments, whereas the highest copy numbers were detected in the NPM treatment, and had a pronounced difference with other fertilizer treatments. All preponderant sequences of AOA fell within soils/fresh water sediments based on phylogenetic tree of amoA gene amino acid sequences analysis. [Conclusion] Long-term fertilization resulted in changes of AOA community diversity and abundance.%[目的]研究长期不同施肥制度下黄土旱塬黑垆土氨氧化古菌群落多样性和丰度的变化,为提高黄土高原地区氮素利用效率、检测土壤质量变化提供重要依据.[方法]利用PCR-RFLP技术和Real-time PCR技术分析无肥(cK)、有机肥(M)、氮肥+有机肥(NM)、磷肥+有机肥(PM)、氮磷肥+有机肥(NPM)等5种长期施肥处理对土壤氨氧化古菌群落结

  17. 抗草甘膦转基因大豆对根际土壤氨氧化古菌群落多样性的影响%Effects of roundup ready transgenic soybean on ammonia-oxidizing archaeal diversity in rhizospheric soil

    Institute of Scientific and Technical Information of China (English)

    刘志华; 徐广惠; 王宏燕; 刘佳

    2012-01-01

    Roundup ready transgenic soybean [ Glycine max (L. ) Merr. ] (RRS) is one of the genetically modified crops and firstly commercialized by the Monsanto Company. In recent years, more attention has been paid on the risk assessment of RRS, including the potential effects on soil biota diversity. Ammonia-oxidizing archaea (AOA) are a group of the key microbes in nitrification, playing an important role in N cycle. By using PCR-DGGE cloning, this paper studied the diversity of AOA communities in the rhizosphere soils of RRS, its non-transgenic parental iso-line (RRS-S) , wild soybean (W-S) , and cultivated soybean (D-46) , aimed to provide theoretical basis for the ecological safety assessment on the transgenic soybean. The RRS had no remarkable effects on the AOA diversity, based on the Shannon diversity index and evenness index. The principal components analysis and DGGE analysis showed that the AOA community structure in the rhizosphere of RRS was significantly different with that in the rhizosphere of WS and D-46, but had no significant difference with that in the rhizosphere of RRS-S. Moreover, the AOA amok gene sequencing of DGGE bands and the phylogenetic analysis revealed that parts of the AOA in the rhizosphere of test soybean cultivars belonged to the clusters already reported in soil/ sediment, others belonged to the unknown clusters or groups in soil, but none of them belonged to the clusters in water or sediment. There was little change in the DGGE bands, among which,bands 1, 20, and 25 were missing, and band 3 was specific for RRS. In conclusion, RRS had no apparent effect on the diversity of AOA in rhizosphere soils, but could alter the composition of AOA community.%抗草甘膦转基因大豆是孟山都公司首次进行商业化生产的转基因作物.近年来其风险评价,包括土壤生物多样性风险评价受到越来越多的重视.氨氧化古菌是硝化过程的关键微生物,在氮素循环中起重要作用.本文

  18. Identification of olive (Olea europaea) pulp proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano-liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Esteve, Clara; Cañas, Benito; Moreno-Gordaliza, Estefanía; Del Río, Carmen; García, María Concepción; Marina, María Luisa

    2011-11-23

    Proteins in the pulp of olive ( Olea europaea ) constitute a minor fraction. They have been sparsely studied despite their suggested role in oil stability and olive allergenicity. The analysis of a pulp protein extract by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a major band at 24 kDa that was subjected to tryptic in-gel digestion. Peptide extracts were analyzed by MALDI-TOF MS and nanoLC-MS/MS. The use of different search engines enabled the assignment of a number of fragmentation spectra to peptide sequences, identifying a major band as a thaumatin-like protein and other low-abundant proteins such a drought-induced protein SDi-6-like, an acyl carrier protein, Cu/Zn and Mn superoxide dismutases, a small heat shock protein, and an ATP-dependent protease subunit. Many of the produced spectra did not give good matches in the database searches, due to the scarce presence of O. europaea entries in protein databases. Nevertheless, a huge number of spectra corresponded to peptides, which showed a high degree of homology with others from sequenced organisms. These results proved that database searching with MS/MS spectra constitutes a promising approach for the characterization of olive pulp proteins. PMID:21995844

  19. Preliminary Evaluation of 29 Olive (Olea europaea L. Cultivars for Production and Alternate Bearing, in the Huasco Valley, Northern Chile Evaluación Preliminar de la Produción y Añerismo en 29 Variedades de Olivo (Olea europaea L. en el Valle del Huasco, Norte de Chile

    Directory of Open Access Journals (Sweden)

    Francisco Tapia C

    2009-09-01

    Full Text Available There is increasing interest in the development of intensively managed olive orchards (Olea europaea L. in northern Chile. The selection of specific varieties that perform well on a particular site is considered crucial to maximizing productivity. The present study was undertaken to evaluate the productive performance of 29 varieties of olive in the Huasco Valley (28°34' S, 70°47' W, Northern Chile.The traits evaluated were: mean olive production per tree considering a longitudinal (PML analysis over a period of five years, 2003 to 2007, total olive production in the same period (PA03-07 and alternate bearing index (ABI. The effect of variety was highly significant (p En el norte de Chile existe un creciente interés en el desarrollo de huertos de olivo (Olea europaea L. manejados intensivamente. La selección de variedades específicas que han respondido bien en un sitio en particular es considerada clave para la maximización de la productividad. El presente estudio fue realizado para evaluar el desempeño de algunas características agronómicas en 29 variedades de olivo, en el Valle del Huasco (28°34' S, 70°47' O, norte de Chile. Las características analizadas correspondieron a producción de frutos promedio por árbol (PML en un análisis longitudinal durante un período de 5 años, 2003 a 2007, producción acumulada del mismo período (PA03-07 y el índice de alternancia de producción (ABI. El efecto debido a la variedad fue altamente significativo (p < 0,01 para las tres características. El ABI fue moderado (0,52, con una PML de 37,37 kg árbol-1 y PA03-07 de 186 kg árbol-1. Correlaciones de Spearman entre los ranking de cada característica fueron positivas y significativamente diferentes de cero (p < 0,05. ‘Leccino’ tuvo la mejor respuesta considerando únicamente la producción de frutos. ‘Arbequina’, ‘Picholine’, ‘Manzanilla Racimo’, ‘Picual’, ‘Manzanilla de Sevilla’, ‘Frantoio’ y

  20. Quantificação dos níveis endógenos de auxinas e da actividade enzimática das polifenoloxidases em oliveira (Olea europaea L. Quantification of endogenous auxin levels and polyphenoloxidase enzymatic activity in olive (Olea europaea L.

    Directory of Open Access Journals (Sweden)

    C. Serra

    2007-01-01

    Full Text Available A actividade enzimática de polifenoloxidases foi avaliada em folhas e na zona apical, média e basal de ramos de duas cultivares de oliveira (Olea europaea L., comuns no Alentejo (‘Galega vulgar’ e ‘Cobrançosa’, mostrando que a actividade enzimática nas folhas foi muito superior à encontrada em tecidos de ramos do ano. Maior actividade enzimática foi também detectada na variedade ‘Cobrançosa’ versus ‘Galega vulgar’. As condições óptimas para a determinação da actividade enzimática foram: pH= 5.5 e T= 40 ºC, com 20 mM de 4-metilcatecol em tampão acetato. Nestas condições o KM determinado foi: 2,60 e 3,48 mM com o método de Michaelis-Menten e Lineweaver-Burk, respectivamente. A melhor recuperação das auxinas AIA (ácido indol-3-acético e AIB (ácido indolbutírico em material vegetal foi conseguida através da extracção das amostras com acetona. A separação, identificação e quantificação do AIA e AIB em padrões, material vegetal dopado (tecidos de oliveira dopados com uma concentração conhecida de padrão e não dopado, foi efectuada por técnicas cromatográficas (HPLC-DAD e LCMS, mostrando os resultados taxas de recuperação superiores a 40% para o AIA e 60% para o AIB.The poliphenoloxidase enzymatic activity was evaluated in two olive cultivars (Olea europaea L. widespread in Alentejo (‘Galega vulgar and ‘Cobrançosa. Leaves and apical, medium and basal regions of the year stems were used as sample material. When compared with the different regions of the year stem, the results have shown that enzymatic activity was significantly higher in the leaves of both cultivars. Between cultivars, it was observed that ‘Cobrançosa’ presented higher enzymatic activity than ‘Galega vulgar’. The pH at 5.5 and 40 ºC temperature, using 20 mM of 4methylcatecol in acetate buffer were the optimized conditions for the enzymatic analysis. Under these conditions, the measured KM was 2,60 and 3,48 m

  1. 氮肥对盐角草生长及矿质灰分累积的影响%Effects of N fertilization on growth, mineral ash absorption and accumulation of Salicornia europaea L.

    Institute of Scientific and Technical Information of China (English)

    王界平; 田长彦

    2011-01-01

    Research was carried out in the hope of restoring the saline land rapidly and effectively through improving halophytes'biomass and performance by applying nitrogen fertilizer in saline areas. Effects of various levels of nitrogen fertilization (0, 75, 150 and 225 kg/hm2) on growth, mineral ash absorption and accumulation of Salicornia europaea L. were studied through complete randomized block design under the saline field condition in Xinjiang. The results indicated that the aerial biomass, the root dry weight, the seed yield and the mineral ash cumulant increased significantly with increasing N levels. Among different nitrogen treatments, the highest ash cumulant absorbed by Salicornia europaea L. was N3(225 kg/hm2), with 8 435.06 kg/hm2 being the figure recorded, which was 4.28 times of CK. Meanwhile,N3(225 kg/hm2) also claimed the highest aerial biomass, root dry weight and seed yield which were 4.02, 4.72 and 2.84 times of CK, respectively. Furthermore, compared with CK, applying nitrogen can improve nitrogen concentration in shoot and seed of Salicornia europaea significantly when nitrogen level was up to 225 kg/hm2, however, no significant difference in nitrogen concentration in stem and phosphorus concentration in all the three plant organs listed above were noted among different nitrogen levels. The effect of nitrogen on phosphorus concentration in Salicornia europaea is varying which mainly depends on the specific part. Although mineral ash concentration in assimilation shoot and stem were increased to some extent by nitrogen application, yet the difference was not significant. The results suggest that under the saline land condition, nitrogen can significantly promote Salicornia europaea' s growth and mineral ash absorption and, as a result, strengthening nitrogen management is very important in the process of saline land restoration by planting Salicornia europaea.%在新疆南疆重盐化土壤上采用田间试验方法及完全随机区组设计,研

  2. Fauna Europaea: Helminths (Animal Parasitic)

    OpenAIRE

    David Gibson; Rodney Bray; David Hunt; Boyko Georgiev; Tomaš Scholz; Philip Harris; Tor Bakke; Teresa Pojmanska; Katarzyna Niewiadomska; Aneta Kostadinova; Vasyl Tkach; Odile Bain; Marie-Claude Durette-Desset; Lynda Gibbons; František Moravec

    2014-01-01

    The Laotian Rock Rat Laonastes aenigmamus Jenkins, Kilpatrick, Robinson & Timmins, 2005 was originally discovered in Lao People's Democratic Republic in 2005. This species has been recognized as the sole surviving member of the otherwise extinct rodent family Diatomyidae. Laonastes aenigmamus was initially reported only in limestone forests of Khammouane Province, Central Lao. A second population was recently discovered in Phong Nha Ke Bang National Park (PNKB NP), Quang Binh P...

  3. AcEST: DK946250 [AcEST

    Lifescience Database Archive (English)

    Full Text Available e mutase OS=Nitrosomonas e... 32 0.99 sp|Q82WX6|GLMM_NITEU Phosphoglucosamin...K Sbjct: 413 DK 414 >sp|Q0AHC3|GLMM_NITEC Phosphoglucosamine mutase OS=Nitrosomonas eutropha (strain C91) GN...Sbjct: 329 GAENSGHIICRDK 341 >sp|Q82WX6|GLMM_NITEU Phosphoglucosamine mutase OS=Nitrosomonas europaea GN=glm...1-B... 33 0.34 sp|Q5BL44|S20A1_XENTR Sodium-dependent phosphate transporter 1 O... 32 0.76 sp|Q0AHC3|GLMM_NITEC Phosphoglucosamin...e mutase OS=Nitrosomonas e... 31 1.7 sp|Q5I030|SELS_XENTR Selenoprotein S OS=Xenopus tropica

  4. Abundances of ammonia-oxidizing archaeal accA and amoA genes in response to NO2-and NO3-of hot springs in Yunnan province%云南热泉中氨氧化古菌的accA基因与amoA基因丰度与环境因子NO2-和NO3-的相关性

    Institute of Scientific and Technical Information of China (English)

    宋兆齐; 王莉; 周恩民; 王风平; 肖湘; 张传伦; 李文均

    2014-01-01

    [目的]氨氧化古菌(ammonia-oxidizing archaea,AOA)可能通过近期刚发现的3-羟基丙酸盐/4-羟基丁酸盐途径(3-hydroxypropionate/4-hydroxybutyrate cycle,HP/HB)来固定CO2,在海洋和土壤环境下进行化能自养型生长.云南热泉系统已被证明具有丰富的AOA多样性.本论文旨在调查云南不同热泉中,这种CO2固定途径的关健酶——乙酰辅酶A羧化酶基因accA和古菌氨单加氧酶基因amoA,及原核微生物16S rRNA基因的丰度变化,以及它们与环境因子的相关性.[方法]选择20处代表性热泉沉积物样品,通过荧光定量PCR技术,获得各目的基因丰度;利用R软件包对各样点地化参数进行主成分分析(Principal ComponentAnalysis,PCA),并通过Mantel test检验各目的基因和地化参数间的相关性.[结果]细菌和古菌16S rRNA基因的丰度范围分别在6.6×107至4.19×1011和1.27×106至1.51 ×1011拷贝/g沉积物;古菌accA和amoA基因的丰度范围为8.89×103至6.49×105和7.64×103至4.36×105拷贝/g沉积物,Mantel test结果显示accA和amoA基因丰度间具有极显著的相关性(R =0.98,P<0.001),两者又分别都与热泉内的NO2-和NO3-浓度存在显著相关,与pH值等其它环境因子没有明显统计学意义上的相关性.[结论]云南地区热泉间的细菌和古菌丰度,以及两者比例关系都存在较大差异;相关性的统计结果进一步证明了热泉环境下的氨氧化古菌是通过HP/HB途径进行CO2固定;本次研究并未发现氨氧化古菌的丰度与环境pH存在明显统计学意义上的相关性,这与常温土壤环境的相关研究结果存在不同.

  5. Cloning and Salt-tolerance Analysis of the Salicornia europaea Gene Cu/Zn-SOD%盐角草Cu/Zn-SOD基因的克隆及耐盐性分析

    Institute of Scientific and Technical Information of China (English)

    臧洁; 余梅; 王先磊; 王荣富; 李娟; 吉虎; 徐凯; 鲁茂龙

    2013-01-01

    盐角草(Salicornia europaea)是一种典型的耐盐植物,为了研究盐角草Cu/Zn-SOD基因在的盐胁迫耐受中的机制,本研究利用己知植物Cu/Zn-SOD基因的保守序列设计简并引物,采用RACE技术的方法从盐角草中扩增获得Cu/Zn-SOD基因.使用生物学软件分析其氨基酸序列,并进行同源性比对.构建原核表达载体,转化大肠杆菌(Escherichia coli),使目的蛋白在重组菌中表达,并分析了不同盐浓度并含有抗生素的液体LB培养基中菌的生长情况,IPTG诱导表达,通过测定OD600值来分析Cu/Zn-SOD基因的耐盐功能.结果通过简并引物PCR扩增和RACE技术,克隆出盐角草Cu/Zn-SOD基因.盐角草Cu/Zn-SOD基因(GenBank登录号:JQ074238.2)全长为660bp,开放阅读框长为459 bp,推测编码152个氨基酸,蛋白分子量约为15.1 kD,其氨基酸序列与碱蓬(Suaeda salsa)的序列相似性为96%,与黄灯笼辣椒(Capsicum chinense)的序列相似性为88%.生物学软件分析表明Cu/Zn-SOD蛋白可能存在于细胞质.构建原核表达载体pET-Cu/Zn-SOD和对照pETDuet-1,转化大肠杆菌BL21中.蛋白经IPTG诱导表达.经SDS-PAGE蛋白电泳检测发现表达蛋白条带大小与预期一致,说明目的蛋白成功表达.耐盐性分析表明重组菌BL21 (pET-Cu/Zn-SOD)在高盐度培养基中的生长明显优于对照菌BL21 (pETDuet-1),说明盐角草Cu/Zn-SOD基因可能在盐胁迫逆境中起到耐受性作用.%In order to study the salt-tolerant mechanism of the Salicornia europaea gene Cu/Zn-SOD,conserved sequences of Cu/Zn-SOD from the known plants were designed for degenerate primers in this research.The coding region of Cu/Zn-SOD was amplified by RACE technology.Amino acid sequences and multiple sequences alignment were analyzed by biological software.The gene carried by prokaryotic expression vector pet-duetl was transferred to Escherichia coli BL21 and expressed after IPTG induction.The status of recombinants cultivated in LB medium

  6. Essais de prolifération et d'enracinement de matériel issu de rajeunissement par bouturage d'oliviers adultes (Olea europaea L. et de germination in vitro : effets de cytokinine et d'auxines

    Directory of Open Access Journals (Sweden)

    Walali Loudiyi D

    2005-01-01

    Full Text Available Proliferation and rooting of juvenile and adult olive explants (Olea europaea L.: effects of cytokinin and auxins. The micropropagation trials conducted concerned juvenile and adult material from the ‘Moroccan Picholine’ olive cultivar. Zeatin, added to the proliferation medium, was tested at 0, 1, 5, 10 et 20 mg/l. Root induction was performed on media contaning IAA, IBA or NAA tested at 0, 0.5, 1, 2 et 4 mg/l. A significant (P<0.001 interaction exists between the explant type and the cytokinine concentration on one hand and the type and concentration of auxin on the other hand. The highest bud sprouting and shoot development were obtained on medium supplemented with 5 mg/l zeatin. For economical reasons, satisfying results can be obtained with only 1 mg/l. Rooting of microcuttings reached 100% when NAA, which proved to be the best auxin for root induction, was used at 1 mg/l. No rooting was observed in the case of adult plant material. Further investigations are being undertaken to improve the reactivity of this recalcitrant type of material.

  7. Influence of Biological Macromolecules and Aquatic Chemistries on the Inhibition of Nitrifying Bacteria by Silver Nanoparticles

    Science.gov (United States)

    Radniecki, T. S.; Anderson, J. W.; Schneider, M. C.; Stankus, D. P.; Nason, J. A.; Semprini, L.

    2010-12-01

    The use of silver nanoparticles (Ag-NP) as a broad spectrum biocide in a wide range of consumer goods has grown exponentially since 2006 (1), which may result in an increased release of Ag-NP into wastewater streams and ultimately the receiving bodies of water. Ammonia oxidizing bacteria (AOB) play a critical role in the global nitrogen cycle through the oxidation of ammonia (NH3) to nitrite (NO2-) and are widely considered to be the most sensitive microbial fauna in the environment being readily inhibited by contaminants, including Ag-NP (2). This research used physiological techniques in combination with physical/chemical assays to characterize the inhibition of Nitrosomonas europaea, the model AOB, by silver ions (Ag+), 3-5 nm Ag-NP, 20 nm Ag-NP and 80 nm Ag-NP under a variety of aqueous chemistries. In addition, the stability of Ag-NP suspensions was examined under a variety of aqueous chemistries including in the presences of divalent cations, chloride anions, natural organic matter (NOM), proteins (BSA) and lipopolysaccharides (alginate). Using the stable Ag-NP/test media suspensions, N. europaea was found to be extremely sensitive to Ag+, 3-5 nm Ag-NP, 20 nm Ag-NP and 80 nm Ag-NP with concentrations of 0.1, 0.12, 0.5 and 1.5 ppm, respectively, resulting in a 50% decrease in nitrification rates. The inhibition was correlated with the amount of Ag+ released into solution. It is suspected that the inhibition observed from Ag-NP exposure is caused by the liberated Ag+. The aquatic chemistry of the test media was found to have a profound influence on the stability of Ag-NP suspensions. The presence of Ag ligands (e.g. EDTA and Cl-) reduced toxicity of Ag-NP through the formation of Ag-ligand complexes with the liberated Ag+. The presence of divalent cations (e.g. Ca2+ or Mg2+) resulted in the rapid aggregation of Ag-NP leading to a decrease in Ag+ liberation and thus a decrease in N. europaea inhibition. The presence of 5 ppm NOM resulted in a highly stable Ag

  8. AcEST: BP919350 [AcEST

    Lifescience Database Archive (English)

    Full Text Available Q46XL1|MURB_RALEJ UDP-N-acetylenolpyruvoylglucosamine reductase OS=Ralstonia eutropha (strain JMP134) GN=mur...sp|Q12361|GPR1_YEAST G protein-coupled receptor GPR1 OS=Saccharo... 31 2.2 sp|Q46XL1|MURB_RALEJ UDP-N-acetylenolpyruvoylglucosamin...tein OS=Nitrosomonas europaea Align length 49 Score (bit) 33.9 E-value 4.2 Report BL... (GPCR) OS=Sacc... 33 9.3 >tr|Q82XW9|Q82XW9_NITEU Putative uncharacterized protein OS=Nitrosomonas europaea ...TrEMBL (release 39.9) Link to BlastX Result : TrEMBL tr_hit_id Q82XW9 Definition tr|Q82XW9|Q82XW9_NITEU Putative uncharacterized pro

  9. Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers

    Directory of Open Access Journals (Sweden)

    Petra eBukovská

    2016-05-01

    Full Text Available Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass, while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further research is warranted to ascertain the causality of these correlations and particularly which direct roles (if any do these prokaryotes play in the observed AM hyphal responses to organic N amendment, organic N utilization by the AM fungus and its (N-unlimited host plant. Further, possible trophic dependencies between the different players in the AM hyphosphere needs to be elucidated upon decomposing the organic N sources.

  10. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers.

    Science.gov (United States)

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further research is warranted to ascertain the causality of these correlations and particularly which direct roles (if any) do these prokaryotes play in the observed AM hyphal responses to organic N amendment, organic N utilization by the AM fungus and its (N-unlimited) host plant. Further, possible trophic dependencies between the different players in the AM hyphosphere needs to be elucidated upon decomposing the organic N sources. PMID:27242732

  11. The Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC19707

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, M G; Arp, D J; Chain, P S; El-Sheikh, A F; Hauser, L J; Hommes, N G; Larimer, F W; Malfatti, S A; Norton, J M; Poret-Peterson, A T; Vergez, L M; Ward, B B

    2006-08-03

    The Gammaproteobacterium, Nitrosococcus oceani (ATCC 19707), is a Gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; 50.4% G+C) and a plasmid (40,420 bp) that contain 3052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. In contrast to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance and the ability to assimilate carbon via gluconeogenesis. One set of genes for type I RuBisCO was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H{sup +}-dependent F{sub 0}F{sub 1}-type, one Na{sup +}-dependent V-type).

  12. Traveling interface modulations and anisotropic front propagation in ammonia oxidation over Rh(110)

    International Nuclear Information System (INIS)

    The bistable NH3 + O2 reaction over a Rh(110) surface was explored in the pressure range 10−6–10−3 mbar and in the temperature range 300–900 K using photoemission electron microscopy and low energy electron microscopy as spatially resolving methods. We observed a history dependent anisotropy in front propagation, traveling interface modulations, transitions with secondary reaction fronts, and stationary island structures

  13. Traveling interface modulations and anisotropic front propagation in ammonia oxidation over Rh(110)

    Energy Technology Data Exchange (ETDEWEB)

    Rafti, Matías [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Fac. Cs. Exactas, Universidad Nacional de La Plata, 64 y Diag. 113 (1900), La Plata (Argentina); Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstr. 3-3a, D-30167 Hannover (Germany); Borkenhagen, Benjamin; Lilienkamp, Gerhard [Institut für Energieforschung und Physikalische Technologien, Technische Universität Clausthal, Leibnizstr. 4, 38678 Clausthal-Zellerfeld (Germany); Lovis, Florian; Smolinsky, Tim; Imbihl, Ronald, E-mail: imbihl@pci.uni-hannvover.de [Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstr. 3-3a, D-30167 Hannover (Germany)

    2015-11-14

    The bistable NH{sub 3} + O{sub 2} reaction over a Rh(110) surface was explored in the pressure range 10{sup −6}–10{sup −3} mbar and in the temperature range 300–900 K using photoemission electron microscopy and low energy electron microscopy as spatially resolving methods. We observed a history dependent anisotropy in front propagation, traveling interface modulations, transitions with secondary reaction fronts, and stationary island structures.

  14. Quantification of Ammonia-Oxidizing Bacteria and Factors Controlling Nitrification in Salt Marsh Sediments

    OpenAIRE

    Dollhopf, Sherry L.; Hyun, Jung-Ho; Smith, April C.; Adams, Harold J.; O'Brien, Sean; Kostka, Joel E.

    2005-01-01

    To elucidate the geomicrobiological factors controlling nitrification in salt marsh sediments, a comprehensive approach involving sediment geochemistry, process rate measurements, and quantification of the genetic potential for nitrification was applied to three contrasting salt marsh habitats: areas colonized by the tall (TS) or short (SS) form of Spartina alterniflora and unvegetated creek banks (CBs). Nitrification and denitrification potential rates were strongly correlated with one anoth...

  15. Metagenomic analysis of ammonia oxidizing archaea affiliated with the soil group

    Directory of Open Access Journals (Sweden)

    Christa eSchleper

    2012-06-01

    Full Text Available Ammonia-oxidising archaea (AOA have recently been recognized as a significant component of many microbial communities and represent one of the most abundant prokaryotic groups in the biosphere. However, only few AOA have been successfully cultivated so far and information on the physiology and genomic content remains scarce. We have performed a metagenomic analysis to extend the knowledge of the AOA affiliated with groupI.1b that is widespread in terrestrial habitats and of which no genome sequences has been described yet. A fosmid library was generated from samples of a radioactive thermal cave (46°C in the Austrian Central Alps in which AOA had been found as a major part of the microbial community. Out of sixteen fosmids that possessed either an amoA or 16S rRNA gene affiliating with AOA, five were fully sequenced, four of which grouped with the soil/I.1b (Nitrososphaera- lineage and one with marine/I.1a (Nitrosopumilus- lineage. Phylogenetic analyses of amoBC and an associated conserved gene were congruent with earlier analyses based on amoA and 16S rRNA genes and supported the separation of the soil and marine group. Several putative genes that did not have homologues in currently available marine thaumarchaeota genomes indicated that AOA of the soil group contain specific genes that are distinct from their marine relatives. Potential cis-regulatory elements around conserved promoter motifs found upstream of the amo genes in sequenced (meta- genomes differed in marine and soil group AOA. On one fosmid, a group of genes including amoA and amoB were flanked by identical transposable insertion sequences, indicating that amoAB could potentially be co-mobilized in the form of a composite transposon. This might be one of the mechanisms that caused the greater variation in gene order compared to genomes in the marine counterparts. Our findings highlight the genetic diversity within the two major and widespread lineages of thaumarchaeota.

  16. Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake

    NARCIS (Netherlands)

    Vissers, E.W.; Blaga, C.I.; Bodelier, P.L.E.; Muyzer, G.; Schleper, C.; Sinninghe Damsté, J.S.; Tourna, M.; Laanbroek, H.J.

    2013-01-01

    The discovery of Archaea carrying an amoA gene coding for the A-subunit of ammonia monooxygenase gave a boost to studies aimed at detecting this gene under diverse conditions. Despite numerous studies describing the archaeal amoA gene abundance and richness in different habitats, the understanding o

  17. Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat

    OpenAIRE

    Biller, Steven J.; Mosier, Annika C.; Wells, George F.; Francis, Christopher A.

    2012-01-01

    Archaea play an important role in nitrification and are, thus, inextricably linked to the global carbon and nitrogen cycles. Since the initial discovery of an ammonia monooxygenase α-subunit (amoA) gene associated with an archaeal metagenomic fragment, archaeal amoA sequences have been detected in a wide variety of nitrifying environments. Recent sequencing efforts have revealed extensive diversity of archaeal amoA sequences within different habitats. In this study, we have examined over 800...

  18. Ammonia-Oxidizing Bacteria along Meadow-to-Forest Transects in the Oregon Cascade Mountains†

    OpenAIRE

    Mintie, A. T.; Heichen, R. S.; Cromack, Jr., K.; Myrold, D. D.; Bottomley, P. J.

    2003-01-01

    Although nitrification has been well studied in coniferous forests of Western North America, communities of NH3-oxidizing bacteria in these forests have not been characterized. Studies were conducted along meadow-to-forest transects at two sites (Lookout and Carpenter) in the H. J. Andrews Experimental Forest, located in the Cascade Mountains of Oregon. Soil samples taken at 10- or 20-m intervals along the transects showed that several soil properties, including net nitrogen mineralization an...

  19. QPCR quantification of ammonia oxidizing bacteria: What should the target be?

    DEFF Research Database (Denmark)

    Musovic, Sanin; Palomo, Alejandro; Diwan, Vaibhav;

    for drinking water production. Being able to quantify precisely the abundance of this functional group is thus important to be able monitor these processes. AOB are moderately diverse Beta-Proteobacteria that all carry the amoA gene coding for the ammonia monooxigenase. Therefore, molecular...... quantification can be carried out by targeting either the 16S rRNA gene or amoA, for which standard primer sets are widely used. Using these two approaches to quantify AOB abundance across three Danish rapid sand filters (RSFs) revealed a significant discrepancy: in two RSFs, the amoA-based qPCR consistently...... amoA primer set has a narrower coverage than the 16S rRNA one and thus led to an underestimation of AOB in RSFs hosting broad AOB diversity. This highlights the importance of the choice of primer set to quantify functional groups in environmental samples....

  20. Traveling interface modulations and anisotropic front propagation in ammonia oxidation over Rh(110)

    Science.gov (United States)

    Rafti, Matías; Borkenhagen, Benjamin; Lilienkamp, Gerhard; Lovis, Florian; Smolinsky, Tim; Imbihl, Ronald

    2015-11-01

    The bistable NH3 + O2 reaction over a Rh(110) surface was explored in the pressure range 10-6-10-3 mbar and in the temperature range 300-900 K using photoemission electron microscopy and low energy electron microscopy as spatially resolving methods. We observed a history dependent anisotropy in front propagation, traveling interface modulations, transitions with secondary reaction fronts, and stationary island structures.

  1. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells

    Science.gov (United States)

    Molouk, Ahmed Fathi Salem; Yang, Jun; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-02-01

    In the current work, we investigate the performance of solid oxide fuel cells (SOFCs) with Ni‒yttria-stabilized zirconia (Ni-YSZ) and Ni‒gadolinia-dope ceria (Ni-GDC) cermet anodes fueled with H2 or NH3 in terms of the catalytic activity of ammonia decomposition. The cermet of Ni-GDC shows higher catalytic activity for ammonia decomposition than Ni-YSZ. In response to this, the performance of direct NH3-fueled SOFC improved by using Ni-GDC anode. Moreover, we observe further enhancement in the cell performance and the catalytic activity for ammonia decomposition with applying Ni-GDC anode synthesised by the glycine-nitrate combustion process. These results reveal that the high performance of Ni-GDC anode for the direct NH3-fueled SOFC results from its mixed ionic-electronic conductivity as well as high catalytic activity for ammonia decomposition.

  2. Nitrification in the Schelde estuary: methodological aspects and factors influencing its activity

    OpenAIRE

    Bie, M.J.M. de; Starink, M.; Boschker, H.T.S.; Peene, J.J.; Laanbroek, H. J.

    2002-01-01

    We present a 15-month dataset on nitrification measurements in the Schelde estuary (Belgium and The Netherlands). Nitrification was estimated using the N-serve sensitive dark 14C-bicarbonate incorporation technique. A peak of nitrification activity was observed in the freshwater part of the estuary. Downstream from this peak, nitrification declined, probably because of ammonium limitation. A range of nitrification inhibitors was tested on both a Nitrosomonas europaea culture and estuarine sam...

  3. Regulation of the genes involved in nitrification.

    Energy Technology Data Exchange (ETDEWEB)

    Arp, D.J.; Sayavedra-Soto, L.A.

    2003-08-14

    OAK-B135 This project focuses on the characterization of the regulation of the genes involved in nitrification in the bacterium Nitrosomonas europaea. The key genes in the nitrification pathway, amo and hao, are present in multiple copies in the genome. The promoters for these genes were identified and characterized. It was shown that there were some differences in the transcriptional regulation of the copies of these genes.

  4. Surviving space flight: case study on MELiSSA's CIII nitrifying compartment

    Science.gov (United States)

    Ilgrande, Chiara; Lasseur, Christophe; Mastroleo, Felice; Paille, Christel; Leys, Natalie; Morozova, Julia; Ilyin, Vyacheslav; Clauwaert, Peter; Christiaens, Marlies E. R.; Lindeboom, Ralph E. F.; Vlaeminck, Siegfried; Prat, Delphine; Arroyo, Jose M. C.; Conincx, Ilse; Van Hoey, Olivier; Roume, Hugo; Udert, Kai; Sas, Benedikt

    2016-07-01

    Space synthetic biology offers key opportunities for long-term space missions. Planets mining, terraformation, space medicine and Life Support technologies would all benefit from an integrative biological approach. However, space is a harsh environment for life: microgravity, temperature, UV and cosmic radiation can affect the health and functionality of microorganisms and plants, possibly preventing the optimal performance of the systems. The European Space Agency's Life Support System (MELiSSA) has been developed as a model for future long term Space missions and Space habitation. MELiSSA is a 5 compartment artificial ecosystem with microorganisms and higher, that aims at completely recycling gas, liquid and solid waste. In this study, the survival and functional activity after Lower Earth Orbit conditions of microbial nitrogen conversions, relevant for MELiSSA's CIII compartment, was tested. Synthetic communities containing Nitrosomonas europeae, Nitrosomonas ureae, Nitrobacter winogradskyi, Nitrospira moscoviensis and Cupriavidus pinatubonensis were exposed to the Lower Earth Orbit conditions of the International Space Station (ISS) for 7 days. Nitrosomonas europeae, Nitrobacter winogradskyi, Cupriavidus pinatubonensis, and three mixed communities (a urine nitrification sludge, a sludge containing aerobic ammonia oxidizing bacteria and anammox bacteria (OLAND), and an aquaculture sludge containing ammonia oxidizing archaea) were exposed to Lower Earth Orbit conditions for 44 days. Survival after both space flights was demonstrated because nitritation, nitratation, denitrification and anammox activity could be restored at a rate comparable to ground storage conditions. Our results validate the potential survival feasibility and suggest future space applications for N-related microorganisms.

  5. Uses Semi–quantitative and Relative Quantity Methods to Analysis Gene Expression of DGAT1 Gene Responsible for the Olive Diacylglcerol Acyltransferases in 10 Cultivars of Olive (Olea europaea. L

    Directory of Open Access Journals (Sweden)

    Ali Saeed Atiyah AL-Janabi

    2015-03-01

    Full Text Available In this study gene expression for DGAT1 gene was analyzed. Diacylglycerol acyltransferases (DGATs catalyze the final step of the triacylglycerol (TAG biosynthesis of the Kennedy pathway. Two major gene families have been shown to encode DGATs, DGAT1 (type-1 and DGAT2 (type-2. Gene expression were analyzed for 10 Olive cultivars (Olea europaea L. (Khaderi, Qaysi, Manzenillo, Baashiqi, Arabqween, Nabali, Labeeb, Dahkan, Shami and Sorani. Different plant organs as plant materials (mature leaves, mesocarp and seeds for drups used for analysis. Two methods for analysis gene expression were used, first method was called semi – quantitative and second method was called relative – quantitative, used in relative method (Real time PCR and Actine gene as Housekeeping gene. On the other hand chemical analysis was used on fruits like moisture % and oil % of dry and fresh weigh. The results revealed the following: DGAT1 gene expression in leaves, mesocarp and seeds by two methods (semi- quantitative and relative quantity were the convergent results and clear, also if this results compared with chemical analysis shows that the best cultivars were Arabqween, Khaderi, Qaysi and Labeeb. The cultivars Shami and Khaderi then were contain in fruits desirable qualities of olive oil, low moisture and high oil percentages ratios. While Nabali, Manzanello, and Sorani cultivars middle desirable quantity, and Baashiqi and Dahkan cultivars had undesirable because of low oil quantity and high moisture in contain fruits. Some cultivars have low intensity in semi- quantitative and little fold in relative quantity but it have high oil in contain fruits that may be indicate that these cultivars were complete gene expression and begin to accumulation and save oil in tissue. Therefore particular emphasis was given to the temporal regulation of olive DGATs during drupe development. In olive fruit, TAGs are formed and stored in both the mesocarp and the seed .Two drupe

  6. Alergénios do pólen de oliveira (Olea europaea): os níveis de exposição e a sua relevância para a sintomatologia alérgica numa população do Alentejo

    OpenAIRE

    Candeias, Joana Rita Venâncio

    2015-01-01

    A oliveira, uma espécie relevante na região do Alentejo, constitui uma das maiores causas de hipersensibilidade do tipo I. Os objetivos deste trabalho foram caracterizar o perfil alergénico da Olea europaea no Alentejo, estudar a sensibilização a esta espécie nesta região e desenvolver um método que permita avaliar “in vitro” a resposta celular ao alergénio. Preparou-se um extrato de pólen de oliveira cujo perfil alergológico foi estudado por Western-Blot, após separação das proteínas por ...

  7. Proteome Regulation during Olea europaea Fruit Development

    DEFF Research Database (Denmark)

    Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana;

    2013-01-01

    the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein...... accumulation occurring during these complex physiological processes. Methodology/Principal Findings: In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three...... evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. Conclusions/Significance: This study identifies a number of proteins responsible for quality traits...

  8. Elemental profiling of single bacterial cells as a function of copper exposure and growth phase.

    Directory of Open Access Journals (Sweden)

    Ran Yu

    Full Text Available The elemental composition of single cells of Nitrosomonas europaea 19718 was studied via synchrotron X-ray fluorescence microscopy (XFM as a function of inhibition by divalent copper (Cu(II and batch growth phase. Based on XFM, the intracellular Cu concentrations in exponential phase cultures of N. europaea exposed to Cu(II were statistically higher than in stationary phase cultures at the 95% confidence interval (α = 0.05. However, the impact of Cu inferred from specific oxygen uptake